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MEAN CURVATURE FLOW WITH GENERIC

LOW-ENTROPY INITIAL DATA

OTIS CHODOSH, KYEONGSU CHOI, CHRISTOS MANTOULIDIS,
AND FELIX SCHULZE

Abstract. We prove that sufficiently low-entropy closed hypersurfaces
can be perturbed so that their mean curvature flow encounters only
spherical and cylindrical singularities. Our theorem applies to all closed
surfaces in R3 with entropy ≤ 2 and to all closed hypersurfaces in R4

with entropy ≤ λ(S1×R2). When combined with recent work of Daniels-
Holgate, this strengthens Bernstein–Wang’s low-entropy Schoenflies-type
theorem by relaxing the entropy bound to λ(S1 × R2).

Our techniques, based on a novel density drop argument, also lead
to a new proof of generic regularity result for area-minimizing hypersur-
faces in eight dimensions (due to Hardt–Simon and Smale).

1. Introduction

Mean curvature flow is the natural heat equation for submanifolds. A
family of hypersurfaces M(t) ⊂ Rn+1 flows by mean curvature flow if

(1.1)
(
∂
∂tx

)⊥
= HM(t)(x),

where HM(t)(x) denotes the mean curvature vector of M(t) at x. When
M(0) is compact, mean curvature flow is guaranteed to become singular in
finite time. Understanding the potential singularities is thus a fundamental
problem. One approach to this issue is to study the flow in the generic case: a
well-known conjecture of Huisken suggests that the singularities of a generic
mean curvature flow should be as simple as possible, namely, spherical and
cylindrical [Ilm03, #8].

The main results of this note completely resolve Huisken’s conjecture in
three and four dimensions for low-entropy initial data (see (1.2) for the
definition of entropy). Informally stated (see Corollaries 1.8 and 1.9 for
precise statements) we prove the following results.

Theorem 1.1 (Low-entropy generic flow in R3, informal). If M2 ⊂ R3 is a
closed embedded surface with entropy λ(M) ≤ 2 then there exist arbitrarily
small C∞ graphs M ′ over M so that the mean curvature flow starting from
M ′ has only multiplicity-one spherical and cylindrical singularities.

Theorem 1.2 (Low-entropy generic flow in R4, informal). If M3 ⊂ R4 is
a closed embedded hypersurface with entropy λ(M) ≤ λ(S1 × R2) then there
exist arbitrarily small C∞ graphs M ′ over M so that the mean curvature
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flow starting from M ′ has only multiplicity-one spherical and cylindrical
singularities.

In an earlier version of this paper, we conjectured that Theorem 1.2 could
be combined with a surgery construction to yield a strengthened version
of Bernstein–Wang’s low-entropy Schoenflies theorem [BW22a] (cf. Theo-
rem 1.4 below). This surgery construction has been recently carried out
by Daniels-Holgate [DH22] who showed that if a mean curvature flow has
only spherical and neckpinch singularities, then one can construct a mean
curvature flow with surgery. As such, combining these results leads to the
following:

Corollary 1.3 (Strengthened low-entropy Schoenflies-type theorem). If
M3 ⊂ R4 is an embedded 3-sphere with entropy λ(M) ≤ λ(S1 ×R2) then M
is smoothly isotopic to the round S3.

See Sections 1.2 and 1.4 for an expanded discussion of this result.

1.1. Previous work on generic mean curvature flow. Trailblazing
work of Colding–Minicozzi demonstrated that spheres and cylinders are
the only linearly stable singularity models for mean curvature flow [CM12].
In particular, the remaining singularity models are unstable so should not
generically occur (as conjectured by Huisken). In a previous paper [CCMS20],
the authors introduced new methods to the study of generic mean curvature
flow, proving that a large class of singularity models (specifically, singular-
ities with tangent flows modeled on multiplicity one compact or asymptot-
ically conical self-shrinkers) can be indeed avoided by a slight perturbation
of the initial conditions.

In particular, our previous work shows that for a generic initial surface in
R3, either the mean curvature flow has only spherical and cylindrical singu-
larities or at the first singular time it has a tangent flow with a cylindrical
end or higher multiplicity (both possibilities are conjectured not to happen).
We refer the reader to the introduction to our previous article [CCMS20]
for further discussion of generic mean curvature flows and related work.

1.1.1. Relationship between this paper and our previous work. In [CCMS20],
we proved a classification of ancient one-sided flows (analogous to the min-
imal surface results of Hardt–Simon [HS85]; see Appendix D for further
discussion) which led to a complete understanding of flows on either side of
a neighborhood of a non-generic (compact or asymptotically conical) singu-
larity. In particular, we showed that nearby flows to either side do not have
such singularities nearby.

In R3, to understand generic mean curvature flow without a low-entropy
condition (in contrast with this note), one must work at the first non-generic
time rather than globally in space-time. However, two serious issues arise
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when working this way. First, there is no partial regularity known for tan-
gent flows past1 the first singular time without a low-entropy bound. Sec-
ond, the possibility that a small perturbation of the initial data increases the
first singular time slightly without improving the flow in an effective way.
To that end, in [CCMS20] we had to additionally prove that the nearby
flows strictly decrease genus as they avoid the non-generic singularity. This
genus-loss property is crucial for tackling Huisken’s conjecture in R3 without
a low-entropy condition and is a consequence of the classification of ancient
one sided flows, as obtained in [CCMS20].

On the other hand, by including a low-entropy condition, here we are
able to work globally in space-time. This allows for significantly simplified
arguments. In fact, the key observation of this paper is that in this setting
one can completely avoid the classification of one-sided ancient flows and
instead rely on a soft argument based on compactness and a new geometric
property of non-generic shrinkers (see Proposition 2.2). We emphasize that a
drawback of the methods used in this note as compared to our previous work
is that the arguments used here give no indication as to the local dynamics
near a non-generic singularity (such information was obtained in [CCMS20]
near asymptotically conical and compact shrinkers; see also [CM19, CM22]).

Remark. After the first version of this paper (as well as our previous paper
[CCMS20]) were posted, another approach to the generic perturbation of
the initial data was pursued by Sun–Xue [SX21b, SX21a]. This approach is
in the spirit of local ODE dynamics, as suggested by the Colding–Minicozzi
program, cf. [CM19]. The analytic framework in [SX21b, SX21a] has the
interesting feature that non-one-sided perturbations are analyzed, but the
applications are currently limited to locally perturbing away singularities
that arise at the first singular time. Conversely, our geometric approach
(first developed in [CCMS20]) is motivated by global results such as the
ones stated in Theorems 1.1 and 1.2. Of course, our approach also admits
localizations; see Appendix C.

1.2. Entropy. To state our main results, we first recall Colding–Minicozzi’s
definition [CM12] of entropy of Mn ⊂ Rn+1:

(1.2) λ(M) := sup
x0∈Rn+1

t0>0

∫
M
(4πt0)

−n
2 e

− 1
4t0

|x−x0|2 .

By Huisken’s monotonicity of Gaussian area, we see that t 7→ λ(M(t)) is
non-increasing when M(t) is flowing by mean curvature flow. A computa-
tion of Stone [Sto94] shows that the entropies of the self-shrinking cylinders

1At the first singular time, work of Ilmanen [Ilm95] and Wang [Wan16] show that the
support of any tangent flow is a smooth self-shrinker with only conical/cylindrical ends.
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Sk(
√
2k)× Rn−k ⊂ Rn+1 satisfy2

2 > λ(S1) =
√

2π

e
≈ 1.52 >

3

2
> λ(S2) =

4

e
≈ 1.47 > · · · > λ(Sn).

Several fundamental results have been obtained about hypersurfaces with
sufficiently small entropy, starting with work of Colding–Ilmanen–Minicozzi–
White [CIMW13] who proved that the round sphere Sn(

√
2n) has minimal

entropy among all closed self-shrinkers. This was extended by Bernstein–
Wang [BW16] who showed that the round sphere minimizes entropy among
all closed hypersurfaces (see also [Zhu20, HW19]). Moreover, Bernstein–
Wang have also proven [BW17] that the cylinder S1(

√
2) × R ⊂ R3 has

second least entropy among all self-shrinkers in R3 (their result crucially
relies on Brendle’s classification of genus zero self-shrinkers [Bre16]).

Subsequent work of Bernstein–Wang provides a robust picture of hyper-
surfaces with sufficiently small entropy [BW18b, BW18a, BW22b] (see also
[BW21]). In particular, they obtained the following low-entropy Schoenflies
result:

Theorem 1.4 (Bernstein–Wang [BW22a]). If M3 ⊂ R4 has λ(M) ≤ λ(S2×
R) then M is smoothly isotopic to the round S3.

In [BW22a], this is proven by flowing M by mean curvature flow and then
smoothing out any potential non-generic singularities to construct the de-
sired isotopy. Our previous work [CCMS20] on generic mean curvature flow
gave an alternative approach to this result by showing that if one perturbs
M slightly, the mean curvature flow directly provides the isotopy:

Theorem 1.5 ([CCMS20]). If M3 ⊂ R4 has λ(M) ≤ λ(S2 × R) then after
a small C∞-perturbation to a nearby hypersurface M ′, the mean curvature
flow M ′(t) is completely smooth until it disappears in a round point.

One of the consequences of this paper is a simplified proof of Theorem
1.5 (see also the stronger version stated in Corollary 1.3).

1.3. Main results. We now describe our main results in full generality. We
construct generic mean curvature flows of sufficiently low-entropy hypersur-
faces in all dimension. To quantify the low-entropy condition we make sev-
eral definitions.3 Let Sn denote the set of smooth self-shrinkers in Rn+1 with

λ(Σ) < ∞, i.e., properly embedded hypersurfaces Σ satisfying H + x⊥

2 = 0
with finite Gaussian area. Let S∗

n denote the non-flat elements of Sn. For
Λ > 0, let

Sn(Λ) := {Σ ∈ Sn : λ(Σ) < Λ}, S∗
n(Λ) := Sn(Λ) ∩ S∗

n.

2Note that λ(Sk(
√

2k) × Rn−k) = λ(Sk).
3The definitions here are closely related to the hypotheses (⋆n,Λ), (⋆⋆n,Λ) introduced

by Bernstein–Wang (cf. [BW18b, BW22a]), but our second hypothesis is less restrictive.
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We also define

Sgen
n :=

{
O(Sj(

√
2j)× Rn−j) ∈ Sn : j = 1, . . . , k, O ∈ O(n+ 1)

}
to be the set of (round) self-shrinking spheres and cylinders in Rn+1.

Similarly, we let RMCn denote the space of regular minimal cones in
Rn+1, i.e., the set of C ⊂ Rn+1 with C \ {0} a smooth properly embedded
hypersurface invariant under dilations and having vanishing mean curvature.
Let RMC∗

n denote the non-flat elements of RMCn. Define

RMCn(Λ) := {C ∈ RMCn : λ(C) < Λ}, RMC∗
n(Λ) := RMCn(Λ)∩RMC∗

n.

For a dimension n ≥ 2 and entropy bound Λ ∈ (λ(Sn), 2], our first hypothesis
is

(†n,Λ) For 3 ≤ k ≤ n, RMC∗
k(Λ) = ∅

while our second hypothesis is

(††n,Λ) S∗
n−1(Λ) ⊂ Sgen

n−1.

Finally, we define certain notation that will be used throughout.

Definition 1.6. For a closed embedded hypersurface Mn ⊂ Rn+1 we denote
by F(M) the set of cyclic4 unit-regular integral Brakke flowsM withM(0) =
Hn⌊M , and for each M ∈ F(M), we define singgenM ⊂ singM to be the

set of singular points (x, t) so that some5 tangent flow to M at (x, t) is a
multiplicity-one flow associated to elements of Sgen

n .

Having given these definitions, we can now state our main technical result.
By convention we take λ(S0) = 2. Everywhere below, M is taken to be closed
and embedded.

Theorem 1.7. Assume that n ≥ 2 and Λ ∈ (λ(Sn), λ(Sn−2)] satisfy hypoth-
esis (†n,Λ) and (††n,Λ). If Mn ⊂ Rn+1 has λ(M) ≤ Λ then there exist arbi-
trarily small C∞ graphs M ′ over M so that λ(M ′) < Λ and all M′ ∈ F(M ′)
have singM′ = singgenM′. In particular, the level set flow of M ′ does not
fatten.

See [CCMS20, Section 1.2] for a discussion of results related to the regu-
larity of flows satisfying singM′ = singgenM′.

In low dimensions, the hypothesis (†n,Λ) and (††n,Λ) can be understood
more concretely. This leads to the following results.

Corollary 1.8. If M2 ⊂ R3 has λ(M) ≤ 2 then there exist arbitrarily small
C∞ graphs M ′ over M so that the level-set flow of M ′ is non-fattening and
the associated Brakke flow M′ ∈ F(M ′) has singM′ = singgenM′.

4Recall that a integral varifold V is cyclic if the unique mod 2 flat chain [V ] has
∂[V ] = 0. Work of White [Whi09] shows that this property is preserved under varifold
(and Brakke flow) convergence.

5Note that if some tangent flow is a multiplicity one element of Sgen
n then all are by

[CIM15, CM15], cf. [BW15].
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Proof. Condition (†2,2) is vacuous while (††2,2) holds by the classification of
self-shrinking curves [AL86]. □

Corollary 1.9. If M3 ⊂ R4 has λ(M) ≤ λ(S1 × R2) then there exist ar-
bitrarily small C∞ graphs M ′ over M so that the level-set flow of M ′ is
non-fattening and the associated Brakke flow M′ ∈ F(M ′) has singM′ =
singgenM′.

Proof. By the resolution of the Willmore conjecture [MN14],RMC∗
3(ΛC) = ∅

for

ΛC =
2π2

4π
≈ 1.57 > λ(S1) ≈ 1.52.

Thus (†3,Λ) holds for all Λ ≤ ΛC . Furthermore, by the classification of low-
entropy shrinkers in R3 from [BW17], it holds that S∗

2 (λ(S1)) = Sgen
2 . Thus

(††3,λ(S1)) holds. □

1.4. Generic mean curvature flow with surgery. As already observed
in [CCMS20], we can apply Corollary 1.9 to give a direct proof of Theorems
1.4 and 1.5. Moreover, Daniels-Holgate has recently proven that if an initial
hypersurface admits a (cyclic, unit-regular, integral) Brakke flow with only6

spherical and neckpinch type singularities7 then it is possible to construct a
smooth mean curvature flow with surgery starting from this initial condition
(see [DH22] for the precise definition of mean curvature flow with surgery).

As such, Corollaries 1.8 and 1.9 combined with [DH22, Theorem 1.2]
yields the following generic surgery construction.

Corollary 1.10 (Generic mean curvature flow with surgery). Assume that
n ≥ 2 and Λ ∈ (λ(Sn), λ(Sn−2)] satisfy (†n,Λ) and (††n,Λ). If Mn ⊂ Rn+1

has λ(M) ≤ Λ, then there is an arbitrarily small C∞ graph M ′ over M and
a smooth mean curvature flow with surgery starting from M ′.

In particular, when M3 ⊂ R4 is an embedded 3-sphere with λ(M) ≤
λ(S1 × R2), the mean curvature flow with surgery can be used (see [DH22,
Theorem 6.4]) to construct an isotopy to the round 3-sphere. This yields
the strengthened version of the low-entropy Schoenflies theorem stated in
Corollary 1.3.

Remark. In the setting of 2-convex mean curvature flow with surgery (see
[HS99, HS99, Bre15, BH16, HK17a, HK17b, ADS19, ADS20, BC19, BC21])
the surgery to isotopy construction has been studied in several works [HS09,
BHH16, BHH19, Mra18, MW21]. (We also mention related work using
Ricci flow with surgery [Mar12, CL19] and singular Ricci flow [BK22, BK23,
BK19].)

6The spherical and neckpinch singularities are the tangent flows for which a canonical
neighborhood theorem is proven, thanks to [CHH22, CHHW22].

7Note that if M′ is such a Brakke flow in Rn+1 and singM′ = singgen M′, then

the condition “M′ has only spherical and neckpinch singularities” is a consequence of
λ(M′) < λ(Sn−2).
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1.5. Generic regularity of area-minimizing hypersurfaces in eight
dimensions. We remark that the study of generic mean curvature flow in
our previous work [CCMS20] can be viewed as the parabolic analogue of the
work of Hardt–Simon [HS85] and Smale [Sma93] concerning the generic reg-
ularity of area-minimizing hypersurfaces in eight dimensions. In particular,
the existence and uniqueness of the ancient one-sided mean curvature flow
[CCMS20] is a direct analogue of the existence and uniqueness of the foli-
ation on either side of a regular area minimizing cone, as proven in [HS85]
(see also [Wan22]).

In this paper, we develop a new technique based on density drop, that
avoids the classification of the ancient one-sided flow. As one might expect,
this also yields a new proof of the generic regularity results of Hardt–Simon
[HS85] and Smale [Sma93] that avoids the need to classify the foliation. This
is discussed further in Appendix D.

1.6. Organization. See [CCMS20, Section 2] for the conventions used in
this paper. In Section 2 we prove entropy drop near non-generic singularities
and we use this to prove Theorem 1.7 in Section 3. Appendices A and B
recall some standard stability results. Appendix C contains a localized per-
turbative result. In Appendix D, we discuss how the arguments here relate
to generic regularity of area-minimizing hypersurfaces in eight dimensions.

1.7. Acknowledgments. O.C. was partially supported by a Sloan Fel-
lowship, a Terman Fellowship, and NSF grants DMS-1811059 and DMS-
2016403. K.C. was supported by KIAS Individual Grant MG078901. C.M. was
supported by the NSF grant DMS-2050120 and DMS-2147521. F.S. was sup-
ported by a Leverhulme Trust Research Project Grant RPG-2016-174. We
would like to thank Richard Bamler for some discussions related to weak
flows and surgery constructions. Finally we are grateful to the referees for
many helpful suggestions concerning

2. Entropy drop near non-generic singularities

Lemma 2.1. Assume that (†n,Λ) holds for some Λ ≤ 2. Suppose that V is a
F -stationary cyclic integral n-varifold in Rn+1 satisfying F (V ) < Λ. Then,
there is Σ ∈ Sn(Λ) so that V = Hn⌊Σ.

Proof. This follows from the proof of [BW18b, Lemma 3.1 and Proposition
3.2] except the cyclic property of V is used to rule out three half-spaces as
a potential iterated tangent cone (cf. [Whi09, Corollary 4.5]). □

Recall that Huisken has classified the cylinders Sk(
√
2k) × Rn−k as the

unique smooth embedded self-shrinkers with non-negative mean curvature
H ≥ 0 [Hui90, Hui93] (the technical assumption of bounded curvature was
later removed by Colding–Minicozzi [CM12]). The following result can be
viewed as a geometric consequence of Huisken’s result. It will serve as our
key mechanism for perturbing away “non-generic” singularities.



8 CHODOSH, CHOI, MANTOULIDIS, AND SCHULZE

Proposition 2.2. For Σ ∈ S∗
n, fix an open set Ω ⊂ Rn+1 with Σ = ∂Ω.

Assume that there is a space-time point (x0, t0) ∈ (Rn+1×R) \ (0, 0) so that

(2.1)
√
t0 − tΣ+ x0 ⊂

√
−t Ω̄

for all t < min{0, t0}. Then, one of the following holds:

(1) Σ = Sn(
√
2n), or

(2) Σ = O(Σ̂× R) for Σ̂ ∈ S∗
n−1 and O ∈ O(n+ 1).

Note that if we replaced condition (2.1) with

(2.2)
√
t0 − tΣ+ x0 ⊂

√
−tΩ

(i.e., if we replaced the closure of Ω with the interior of Ω), we could use an
inductive argument to conclude that Σ ∈ Sgen

n .
Let us give the geometric intuition underlying our proof strategy. Let M0

denote the spacetime track of t 7→
√
−tΣ and M denote the spacetime track

of t 7→
√
t0 − tΣ+x0. For λ ∈ (0, 1], let Mλ be the parabolic rescaling of M

by a factor of λ; thus, M1 = M and, as λ → 0, Mλ → M0 smoothly locally
away from (0, 0). Note that M0 is invariant under parabolic dilations, so
Mλ always lies weakly to one side of M0.

If Mλ touches M0 for some λ > 0 (equivalently, for all λ > 0 due to M0’s
parabolic dilation invariance), it is then a simple consequence of the strong
maximum principle and monotonicity that Σ splits a line.

Otherwise, Mλ was disjoint from M0 for all λ ∈ (0, 1]. It is then standard
to use the height of Mλ over M0 at time t = −1, for λ > 0 small, to produce
a kernel element of the linearized operator that is everywhere nonnegative
(Mλ always lies weakly to one side of M0). By studying the geometry of
parabolic dilations, the kernel element produced is x0 · νΣ if x0 ̸= 0 or x · νΣ
if x0 = 0 ( =⇒ t0 ̸= 0). It turns out that the former case implies splitting
once again, while the latter implies the mean-convexity of Σ.

The proof we give below is a more succinct version of the argument above:
it handles both cases in a unified way.

Proof of Proposition 2.2. Observe that the set ∪t<0

√
−t Ω̄×{t} is invariant

under parabolic dilation around the space-time origin. We thus conclude
that for all λ ∈ [0,∞) and t < min{0, λ2t0},√

λ2t0 − tΣ+ λx0 ⊂
√
−t Ω̄

In particular, taking t = −1 and λ ≥ 0 small, we have that

λ 7→ Σλ :=
√

1 + λ2t0Σ+ λx0 ⊂ Ω̄

is a 1-parameter family of hypersurfaces with Σ0 = Σ = ∂Ω. The normal
speed at λ = 0 is x0 · νΣ ≥ 0 (where νΣ is the unit normal pointing into Ω).
Because

∆Σ(x0 · νΣ)− 1
2x · ∇Σ(x0 · νΣ) + |AΣ|2(x0 · νΣ) = 0
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(cf. [CM12, Theorem 5.2]), the maximum principle implies that either x0 ·
νΣ > 0 along Σ or x0 · νΣ = 0 along Σ. (Note that Σ is connected thanks to
the Frankel property of shrinkers, cf. [CCMS20, Corollary C.4].)

In the first case (i.e., x0 · νΣ > 0), each component of Σ is a graph over
the x⊥

0 -hyperplane. By [Wan11] (cf. [EH89]), each component of Σ must be
a hyperplane, so there is only one component and Σ is a flat hyperplane.
This contradicts the assumption that Σ ∈ S∗

n (the set of non-flat shrinkers).
In the second case (i.e., x0 · νΣ = 0), we see that x0 ∈ TpΣ for all p ∈ Σ.

In particular, if x0 ̸= 0, then Σ splits a line in the x0-direction. It thus
remains to consider the situation in which x0 = 0. If this is the case, then
it must hold that t0 ̸= 0 and we have

Σ̃µ := (1 + µt0)Σ ⊂ Ω̄.

for µ ≥ 0 sufficiently small. The normal speed at µ = 0 is t0x · νΣ ≥ 0.
Using the shrinker equation, we thus find that t0HΣ ≥ 0. Since t0 ̸= 0, we
can assume that HΣ ≥ 0. Thus, up to a rotation, Σ = Sk(

√
2k)× Rn−k for

k = 1, . . . , n by [CM12, Theorem 10.1]. This completes the proof. □

Recall the the definition of smoothly crossing Brakke flows in Definition
B.1.

Proposition 2.3. Fix n ≥ 2, ε > 0 and Λ ∈ (λ(Sn), 2] so that (†n,Λ) and
(††n,Λ) hold. There is δ = δ(n, ε,Λ) > 0 with the following property.

Consider Σ ∈ S∗
n(Λ − ε) \ Sgen

n and M̃ an ancient cyclic unit-regular

integral n-dimensional Brakke flow in Rn+1 with λ(M̃) ≤ F (Σ) so that

M̃ does not smoothly cross the flow (−∞, 0) ∋ t 7→ Hn⌊
√
−tΣ. Then,

ΘM̃(x, t) ≤ F (Σ)− δ for all (x, t) ∈ (Rn+1 × R) \ (0, 0).

Proof. We argue by contradiction. Consider a sequence of Σi ∈ S∗
n(Λ− ε) \

Sgen
n and Mi ancient cyclic unit-regular integral Brakke flows in Rn+1 with

λ(M̃i) ≤ F (Σ) so that M̃i does not smoothly cross the flow (−∞, 0) ∋ t 7→
Hn⌊

√
−tΣi and so that there are points (xi, ti) ∈ (Rn+1 × R) \ (0, 0) with

(2.3) ΘM̃i
(xi, ti) ≥ F (Σi)− o(1)

as i → ∞. We can assume that |(xi, ti)| = 1.
By Lemma 2.1 and Allard’s theorem [All72, Sim83], we can pass to a

subsequence so that Σi converges in C∞
loc to Σ ∈ Sn(Λ). By Brakke’s theorem

[Bra75, Whi05], Σ is non-flat. Because cylinders are isolated in C∞
loc by

[CIM15], we thus see that Σ ∈ S∗
n(Λ) \ S

gen
n . Note that F (Σi) → F (Σ).

We now pass to a further subsequence so that (xi, ti) → (x0, t0) ∈ Rn+1×
R with |(x0, t0)| = 1 and the Brakke flows M̃i converge to an ancient cyclic

unit-regular integral Brakke flow M̃ with λ(M̃) ≤ F (Σ). By upper semi-
continuity of Gaussian density, (2.3) implies that ΘM̃(x0, t0) ≥ F (Σ). Be-

cause λ(M̃) ≤ F (Σ), M̃ is a self-similar flow around (x0, t0). By stabil-

ity of smoothly crossing flows, Lemma B.2, M̃ does not smoothly cross
(−∞, 0) ∋ t 7→ Hn⌊

√
−tΣ.
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Consider any tangent flow to M̃ at t = −∞. By Huisken’s monotonicity
formula and Lemma 2.1 there is a smooth shrinker Σ̃ so that this tangent
flow at t = −∞ corresponds to some Σ̃ ∈ Sn(Λ) with multiplicity-one. By
the Frankel property for self-shrinkers (cf. [CCMS20, Corollary C.4]) and

the strong maximum principle, if Σ̃ ̸= Σ then the flows t 7→ Hn⌊
√
−tΣ and

t 7→ Hn⌊
√
−t Σ̃ smoothly cross each other at some point. This contradicts

the stability of smooth crossings.
We conclude that any tangent flow to M̃ at t = −∞ is the flow associated

to Σ. Since M̃ is self-similar around (x0, t0) we find

M̃(t) = Hn⌊(
√
t0 − tΣ+ x0)

for t < t0. Since M̃ does not smoothly cross t 7→ Hn⌊
√
−tΣ, we see that

there is an open set Ω ⊂ Rn+1 with ∂Ω = Σ so that
√
t0 − tΣ+ x0 ⊂

√
−t Ω̄

for t < min{0, t0}. We can thus apply Proposition 2.2 to conclude that (up

to a rotation) Σ = Σ̂×R for Σ̂ ∈ S∗
n−1(Λ). By hypothesis (††n,Λ), Σ̂ ∈ Sgen

n−1

so Σ = Σ̂× R ∈ Sgen
n . This is a contradiction. □

3. Proof of Theorem 1.7

For M ′ ⊂ Rn+1 a smooth closed hypersurface, recall that F(M ′) is the set
of cyclic unit-regular integral Brakke flows M′ with M′(0) = Hn⌊M ′. Note
that [Ilm93, Whi09] implies that F(M ′) ̸= ∅ (see also [HW20, Appendix B]).

We define

D(M ′) := sup{ΘM′(x, t) : M′ ∈ F(M ′), (x, t) ∈ singM′ \ singgenM′}.

Recall that by convention sup ∅ = −∞.
Assume that hypotheses (†n,Λ) and (††n,Λ) hold for Λ ∈ (λ(Sn), λ(Sn−2]

fixed. Consider a smooth closed hypersurface Mn ⊂ Rn+1 with λ(M) ≤ Λ.
Flowing M by mean curvature flow for a short time strictly decreases the
entropy unless M is homothetic to a self-shrinker. If M is homothetic to a
self-shrinker other than Sn(

√
2n) then by [CM12], a small C∞-perturbation

of M has strictly smaller entropy.
As such, either M = Sn(r) in which case the Theorem 1.7 trivially holds

or we can perform an initial perturbation and assume that λ(M) ≤ Λ− 2ε
for some ε > 0. Choose a foliation {Ms}s∈(−1,1) of a tubular neighborhood
of M so that M0 = M and so that λ(Ms) ≤ Λ − ε. Fix δ = δ(n, ε,Λ) > 0
from Proposition 2.3.

Lemma 3.1. We have

lim sup
s→s0

D(Ms) ≤ D(Ms0)− δ.

for all s0 ∈ (−1, 1).
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Lemma 3.1 implies Theorem 1.7 by a straightforward iteration argu-
ment since by Brakke’s regularity theorem [Bra75, Whi05], if D(M ′) ≤ 1
then D(M ′) = −∞ implying that singM′ = singgenM′ for all M′ ∈
F(M ′). Since λ(M ′) < Λ ≤ λ(Sn−2 × R2), any M′ ∈ F(M ′) has only
(multiplicity one) Sn and Sn−1 × R-type singularities. Thus, the resolu-
tion of the mean convex neighborhood conjecture for Sn−1 ×R singularities
[CHH22, CHHW22] (cf. [HW20]) implies non-fattening of the flow of M ′.

Proof of Lemma 3.1. Assume there is si → s0 ∈ (−1, 1) with si ̸= s0 but

lim
i→∞

D(Msi) > D(Ms0)− δ.

Fix Mi ∈ F(Msi) and (xi, ti) ∈ singMi \ singgenMi with

lim
i→∞

ΘMi(xi, ti) > D(Ms0)− δ

Pass to a subsequence Mi converging to M ∈ F(Ms0) and (xi, ti) →
(x0, t0) ∈ singM. Since si ̸= s0 for all i, we have that Msi is disjoint
from Ms0 for all i. In particular, suppMi ∩ suppM = ∅ (by the avoidance
principle for Brakke flows [Ilm94, 10.6]). Thus, (xi, ti) ̸= (x0, t0).

Observe that that if (x0, t0) ∈ singgenM then since λ(M) < Λ ≤ λ(Sn−2),

we see that (x0, t0) must be a Sn or Sn−1 × R-type singularity. Proposition
A.1 then implies that (xi, ti) ∈ singgenMi, a contradiction. Thus, it must
hold that (x0, t0) ∈ singM\ singgenM.

Translate (x0, t0) to the space-time origin and parabolically dilate to yield

M̃i and (x̃i, t̃i) with |(x̃i, t̃i)| = 1 and

lim
i→∞

ΘM̃i
(x̃i, t̃i) > D(Ms0)− δ

Pass to a subsequence so that M̃i ⇀ M̃ and (x̃i, t̃i) → (x̃, t̃) ∈ (Rn+1×R) \
(0, 0). By upper semicontinuity of density

(3.1) ΘM̃(x̃, t̃) > D(Ms0)− δ.

On the other hand, we can perform the same translation and parabolic
dilation to M and by extracting a further subsequence, the resulting flows
converge to a tangent flow to M at (x0, t0). By Lemma 2.1, the tangent
flow is the multiplicity-one flow associated to a smooth shrinker Σ. Note
that

F (Σ) ≤ λ(M) ≤ lim sup
s→s0

λ(Ms) ≤ Λ− ε.

Since (x0, t0) ∈ singM\ singgenM it must hold that Σ ∈ S∗
n(Λ− ε) \ Sgen

n .

Huisken’s monotonicity formula implies that λ(M̃) ≤ F (Σ) = ΘM(x0, t0)
(cf. the proof of Proposition 10.6 in [CCMS20]). Finally, since the supports
of M and Mi are disjoint, Mi does not smoothly cross M. As such (using

Lemma B.2), M̃ does not smoothly cross t 7→ Hn⌊
√
−tΣ. We can now apply

Proposition 2.3 to conclude that

ΘM̃(x̃, t̃) ≤ F (Σ)− δ = ΘM(x0, t0)− δ ≤ D(Ms0)− δ.
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This contradicts (3.1), completing the proof. □

Appendix A. Stability of generic singularities

Based on [CHHW22], the following stability of generic singularities was
proven in [SS20, Proposition 2.3] (see [CCMS20, Lemma 10.4] for the simple
argument when the singularity is modeled on Sn). When n = 2 this also
follows via density considerations using [BW17].

Proposition A.1. Suppose that Mi ⇀ M are unit-regular integral Brakke
flows in Rn+1 and that (xi, ti) ∈ singMi converge to (0, 0) ∈ singgenM. If

the singularity at (0, 0) is modeled on Sn or Sn−1×R, then for i sufficiently
large (xi, ti) ∈ singgenMi.

Appendix B. Stability of crossing points

Definition B.1. Given two integral unit Brakke flows M(1) and M(2), we
say that M(1) and M(2) smoothly cross at (x, t) if there is r > 0 with

M(j)(s)⌊Br(x) = Hn⌊Γ(j)(s)

for s ∈ (t − r2, t + r2) where Γ(j)(s) are smooth connected mean curvature

flows so that in any small neighborhood of x there are points of Γ(1)(0) on

both sides of Γ(2)(0).

The following is a straightforward consequence of Brakke’s regularity the-
orem [Bra75, Whi05].

Lemma B.2. For j = 1, 2, suppose that M(j)
i ⇀ M(j) are integral unit-

regular n-dimensional Brakke flows in Rn+1. Assume that M(1) smoothly
crosses M(2) at (x, t). Then, for i sufficiently large, there is (xi, ti) → (x, t)

so that M(1)
i smoothly crosses M(2)

i at (xi, ti).

Appendix C. Local results

In this appendix we prove the following local perturbative result.

Proposition C.1. Suppose that Mn ⊂ Rn+1 is a closed embedded hyper-
surface, M ∈ F(M) is a cyclic unit-regular integral Brakke flow starting at
M . Assume that for (x0, t0) ∈ singM, the following holds:

• regM∩ {t < t0} ⊂ Rn+1 × R is connected
• any tangent flow N to M at (x0, t0) has N (−1) = Hn⌊Σ, for Σ ∈
S∗
n \ Sgen

n that does not split a line.

Then, there is r = r(M,x0, t0) > 0 so that for Mj = graphM (uj), uj > 0
with uj → 0 in C∞ it holds that any

(x, t) ∈ Br(x0)× (t0 − r2, t0 + r2)

has ΘMj (x, t) ≤ ΘM(x0, t0)− r for j sufficiently large.
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In particular, no tangent flow to M at (x0, t0) can arise as the tangent
flow to Mj at some point in Br(x0)× (t0 − r2, t0 + r2), for j large.

Proof. If this failed, there is (xj , tj) → (x0, t0) with

ΘMj (x, t) ≥ ΘM(x0, t0)− o(1).

The assumption on the connectedness of the regular set implies thatMj⌊{t <
t0} ⇀ M⌊{t < t0}. Thus, by rescaling around (x0, t0) so that (xj , tj) is
scaled to a unit distance from (0, 0), we obtain Σ ∈ S∗

n \ Sgen
n that does not

split a line and an ancient Brakke flow M̃ that does not smoothly cross t 7→
Hn⌊

√
−tΣ, so that λ(M̃) ≤ F (Σ), but for some (x̃, t̃) ∈ (Rn+1×R)\{(0, 0)}

it holds that ΘM̃(x, t) ≥ F (Σ).
The argument in the second half of the proof of Proposition 2.3 carries

over without change to show that there is an open set Ω ⊂ Rn+1 with
∂Ω = Σ and √

t̃− tΣ+ x̃ ⊂
√
−tΩ

for t < min{0, t0}. By Proposition 2.2, we have that either Σ = Sn(
√
2n) ∈

Sgen
n or Σ splits a line. Either case contradicts the assumption that M has

no such tangent flow at (x0, t0). This completes the proof. □

Note that Proposition C.1 does not give any indication as to how the per-
turbation avoids the singularity (the trade-off is that the proof is very short).
On the other hand, the results in [CCMS20] give a rather complete descrip-
tion of how the perturbed flow avoids a compact/asymptotically conical
singularity. The works [SX21b, SX21a] also obtain some information along
these lines, but only as long as the perturbed flow remains graphical over
the original flow.

Appendix D. The setting of area-minimizing hypersurfaces

We recall the following fundamental result:

Theorem D.1 (Hardt–Simon [HS85, Theorem 2.1]). If Cn ⊂ Rn+1 is a
regular area minimizing cone then there exists smooth area-minimizing hy-
persurfaces S± in each component of Rn+1 \ C = U+ ∪ U− so that if S′ is
area minimizing and contained in U± then S′ = λS±.

The uniqueness statement in Theorem D.1 implies smoothness of solution
to the Plateau problem for seven-dimensional currents in R8 with generic
boundary data (see [HS85, Theorem 5.6]). Later, Smale used Theorem D.1
to prove that for (M8, g) a closed Riemannian manifold and α ∈ H7(M ;Z),
there is a Ck-close metric g′ so that the least area representative of α is
smooth [Sma93].

Remark. Besides their role in generic regularity of area-minimizing hypersur-
faces in eight-dimensional manifolds, the surfaces S± are important objects
in their own right, cf. [IW15, CLS22, Wan20, LW20, Sim21, Sim23]. In our
previous paper [CCMS20], we proved the parabolic analogue of Theorem
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D.1 (for compact/asymptotically-conical self-shrinkers) by constructing and
classifying ancient one-sided flows analogous to the surfaces S±.

We explain here how the main idea of this note can be used to prove the
generic regularity results from [HS85, Sma93] using the following result in
lieu of Theorem D.1 (compare with Proposition 2.3):

Proposition D.2. There is δ > 0 with the following property. Suppose that
C7 ⊂ R8 is a non-flat area-minimizing cone. If S′ is area-minimizing with
support contained in Ū±, where R8 \ C = U+ ∪ U−, then

ΘS′(x) ≤ ΘC(0)− δ.

Proof. Using smooth compactness of the links of area minimizing cones in
R8 it suffices to rule out the case where S′ ⊂ Ū± is area-minimizing and
there is |x0| = 1 so that

ΘS′(x0) = ΘC(0).

Because S′ is contained in Ū±, its tangent cone at ∞ must be C (e.g., using
the Frankel property of minimal hypersurfaces in Sn). Thus, S′ = C + x0.
This implies that C+λx0 ⊂ Ū± as λ → 0, so x0 ·νC ≥ 0. It cannot hold that
x0 · νC = 0 since C does not split a line, so x0 · νC > 0. This would imply
that C is a graph, which is impossible since C is non-flat. □

Using this, we obtain the following density drop result (compare with
Lemma 3.1).

Corollary D.3. There is δ > 0 with the following property. Suppose that
Σ = ∂[Ω] ⊂ B2 ⊂ R8 is an area minimizing boundary with sing Σ = {0}.
Suppose that Ω1,Ω2, · · · ⊃ Ω is a sequence of sets of finite perimeter in B2

with Σi := ∂[Ωi] area minimizing, Σi ∩ Σ = ∅, and Ωi → Ω. Then, for
xi ∈ Σi ∩B1, we have

lim sup
i→∞

ΘΣi(xi) ≤ ΘΣ(0)− δ

Note that this result can be iterated exactly in the proof of Theorem
1.7 to obtain generic regularity of area-minimizing hypersurfaces in eight
dimensions:

Corollary D.4 (cf. [HS85, Theorem 5.6]). For Γ6 ⊂ R8 a smooth compact
oriented submanifold without boundary, there is an arbitrarily small C∞-
perturbation of Γ to Γ′ so that any area-minimizing integral current bounded
by Γ′ is completely smooth.

Corollary D.5 (cf. [Sma93]). For (M8, g) a closed oriented Riemannian
manifold and α ∈ H7(M ;Z) a codimension-one integral homology class,
there is an arbitrarily small Ck-perturbation of g to g′ so that there is a
unique g′-area-minimizing representative Σ of α and Σ is completely smooth.
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