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Abstract— To provide significant energy saving in the air 

and water supply systems, centrifugal fans/pumps are driven by 

variable frequency induction motor drives. To reduce the cost 

of the required energy saving close loop control, the necessary 

expensive flow rate or pressure (head) sensors can be replaced 

by estimators based on the monitored variables of the drives and 

imbedded into the drives’ software. Available estimation 

techniques are based on the steady state experimental or data 

sheet fans’/pumps’ curves which is justified by quasi-steady 

modelling of the fans and pumps. The present paper identifies 

the problem of this approach during transients. It develops 

quasi-steady and dynamical estimators for the flow rate and 

pressure of a centrifugal fan with induction motor drive based 

on the neural networks trained based on the steady state and 

transient experimental data. It uses the referred frequency of 

the stator voltages, the measured rms stator current and the 

estimated input active power of the motor as inputs of the 

estimators avoiding the velocity estimation as in the available 

approaches. It demonstrates better dynamical performance of 

the dynamical estimators with one sample time delayed 

feedback as the additional input which is justified by dynamical 

modelling of the fans/pumps. The details of a specifically 

designed test rig based on the Nicotra-Gebhardt industrial 

centrifugal fan equipped with a three-phase induction motor 

and estimators’ design procedure are explained. 

Keywords—AC Motor Drives Control and Applications; 

Observers and Sensorless Methods; Artificial Neural Networks 

I. INTRODUCTION 

Energy saving control in air and water supply systems is 

achieved via using centrifugal fans and pumps driven by 

induction motor drives and it is based on the fact that the 

power consumed for the air/water transportation is 

proportional to the fans/pumps cubic velocity. It can be an 

open loop system which follows some consumption schedule, 

or it can be a close loop system, usually a stabilization 

system, which can accurately track consumers’ demand. In 

the last case it requires corresponding sensors of the flow rate 

or pressure (head) which costs, for low power applications, 

are comparable with the costs of the fans/pumps with the 

driven motors. Therefore, the reduction of the costs for the 

close loop control implementation of the flow rate and 

pressure (head) can be achieved via replacing these sensors 

by corresponding estimators processing the available 

measurements from the electrical drives. It also reduces the 

maintenance costs. 

Usually, the fans/pumps drives implement the scalar 

V/f2=const regulation providing good matching between the 

critical motor torque and the load torque developed by the 

fans/pumps in the whole control range [1], [2]. It does not 

require velocity sensors and the motors are not equipped with 

them. Sensorless motor control more relates to the field-

oriented control and includes the motor velocity estimation 

based on electrical measurements [3]–[6]. Modern industrial 

induction motor drives can monitor (estimate) the shaft 

velocity and shaft power both for the scalar and field-oriented 

approaches. The sensorless control of the centrifugal fans and 

pumps is defined as a close loop control without the flow rate, 

pressure (head) and velocity sensors [7]–[10]. 

Further analysis is dedicated to the estimation approaches 

for the flow rate and pressure (head) based on the available 

cheap measurements in the drives. Since the operation 

principles of the centrifugal fans and pumps are the same, the 

estimation methodologies are the same as well. Note that the 

estimations are impossible for inhomogeneous water or air 

systems because the power at any particular operating point 

will vary greatly depending on the quantity of solid particles 

in the water or air [11]. 

The standard (QP-curve-based) method [12] of the head 

and flow rate estimations of the centrifugal pump utilizes two 

(either experimental or data sheet) pump steady state curves 

for rated velocity: the dependence of the head on the flow rate 

(QH curve) and the dependence of the shaft power on the 

flow rate (QP curve). The main drawback is that this 

estimation is achieved via auxiliary estimations. The 

estimated motor velocity is used to modify the pump’s curves 

and along with the estimated input active motor power 

(because of the PWM voltages) or shaft power to determine 

the flow rate and head from the modified curves. Besides 

there are possible flat regions of the pump curves preventing 

accurate estimations and the affinity laws are not accurate if 

the velocity changes more than 20% [13]. 

A set of experimental curves obtained for different 

velocities can be used instead in the form of look-up tables or 

polynomial or artificial neural network approximations.  

The process-curve-based estimation method [12] is based 

on the process QH curve (the characteristic of the pump load), 

affinity laws and the estimated velocity. The method is 

applicable for the cases when the parameters of the process 

curve are constant during the estimation. 



Paper [12] also proposes a hybrid method which means 

using the QP curve-based method for an allowed velocity 

range and where the QP curve is not flat, and otherwise the 

process-curve-based method is used. The main challenge of 

the hybrid method is in the selection of the areas where the 

two methods are switched. Note that all estimation methods 

in [12] are based on steady state curves and they are assessed 

only for steady state operation. 

Paper [14] focuses on the accuracy of the QP curve-based 

and the process curve-based methods of estimation. The 

observations provided conclude that usually the data sheet 

QH curves are very accurate and the data sheet QP curves are 

less accurate which causes estimation errors if the data sheet 

curves are used instead of the experimental ones. 

Paper [15] develops the estimation of the head and flow 

rate based on the measured stator current rms for the case 

when the motor is fed from a constant AC voltage source. 

16% flow rate estimation steady state error is reported for this 

approach which is suitable for energy audit technique for a 

high power pump supplied directly from the grid. 

Paper [13] proposes a QH/QP method of estimation. It 

combines a QH method, which in fact means using this curve 

for the flow rate determining based on the measured 

pressure/head and estimated velocity, and the QP curve-

based method. Uncertainty factors are determined for the 

corresponding operating points and the best method is applied 

or an average estimate from both methods is computed. This 

combined method is applicable only for cases with the 

pressure/head measurements. It is validated experimentally 

only in steady states and no dynamics is presented. 

The feature of this paper [16] is that it develops the flow 

rate and head estimation algorithms along with the estimation 

of the driving motor’s velocity and load torque whereas other 

papers assume the motor’s velocity and shaft power 

estimation known. The Extended Kalman Filter is designed 

to predict the motor velocity and load torque. The flow rate 

is estimated via real time solving of a cubic equation in flow 

rate whose parameters depend on the velocity, shaft power 

and head at zero flow rate. The efficiency is assumed to be 

constant restricting the possible sensorless control range. The 

head estimate is computed from the approximation of the QH 

curve whose coefficients depend on the velocity, head at zero 

flow rate and hydraulic resistance of the pump. 

Paper [8] develops a quasi-steady model of a centrifugal 

pump using standard approximations of the QH and QP 

curves with added approximation for the pump efficiency as 

a third order polynomial. The estimation of the flow rate is 

based on the estimated velocity and shaft power using dual 

neural network architecture. 

Paper [17] validates experimentally that in the well-

known quadratic approximation of the QH curves the 

frequency of the motor voltage can replace the velocity with 

sufficient accuracy. However, this is not the case for the QP 

curves. Instead, the paper succeeds in development of a three 

layers feed-forward backpropagation neural network head 

estimator based on experimental data. The estimator is 

assessed during steady states and transients using a specially 

developed pump model. 

Paper [7] designs neural network estimators for the flow 

rate and pressure of a centrifugal fan based on the 

experimental data of the steady state QH and QP curves 

(quasi-steady model) for various frequencies of the stator 

voltage. The velocity estimation is eliminated from the 

algorithm via using the frequency, measured stator current 

rms and active motor power as the inputs of the estimators. 

Like all methods discussed above it is based on steady state 

fan curves and experimentally assessed in steady states only. 

The present paper extends the previous results of the 

authors in [7] via demonstrating the problems of quasi-steady 

estimations during transients and develops artificial neural 

(ANN) estimators based on dynamical data. A specially 

developed test rig and design procedure are explained. A 

comparison of the operation of the quasi-steady estimators 

and dynamical estimators is provided to demonstrate the 

advantage of the proposed technique. 

II. EXPERIMENTAL TESTING OF A CENTRIFUGAL FAN 

A. Test Rig Description 

 

 
Fig. 1.  Functional block diagram of the control prototyping test rig of the 
centrifugal fan. 

The test rig is based on the REM 48-0200-2D-07 

industrial centrifugal fan from Nicotra-Gebhardt (see Fig.1 

and Fig. 2). The recommended operating point is at 1215 m3/h 

flow rate, 680 Pa pressure and 2840 rpm velocity, which 

provides 53.5% efficiency. The fan is equipped with the 0.37 

kW delta-connected Siemens three-phase squirrel-cage 

induction motor 1LA9070-2KA11-Z. The rated voltage is 

230 V, and the rated velocity is 2840 rpm. 

 

 
Fig. 2.  The test rig of the centrifugal fan. 

The IRS26310DJ gate driver evaluation board powers the 

induction motor through a two-level full-bridge three-phase 

voltage source inverter (VSI) based on IGBTs. The board also 

includes a single-phase full-bridge diode rectifier and a DC 

link capacitor. The rectifier's input rated voltage is 230 V 

RMS. The inverter's rated continuous output power is 400 W. 

The evaluation board's digital control is turned off. The 

dSpace DS1104 controller board implements the ramp unit 

for the linear frequency reference increase, the V/f2=const 
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control algorithm, sinusoidal PWM modulation, analogue-to-

digital conversion of the output voltages of the DC voltage 

sensor (based on LV 25-P) and the stator currents sensors 

(based on LTS 6-NP). The PWM pulses are supplied to the 

board via digital isolators. 

The fan's output is linked to an air duct. A gate is used to 

manually control the output area of the duct from fully open 

to fully closed. The Anemometer HHF141 Omega with the 

turbine installed inside the duct measures the air flow rate. 

The differential pressure sensor Ziehl Abegg DSG2000 

measures the air pressure in the duct. The outputs of both 

sensors are DC voltages converted into digital signals via 

DS1104. The designed ANN estimators are run in real time 

by the DS1104 as well. The experimental data for ANNs’ 

training are recorded through the ControlDesk software. 

B. Experimental Data Acquisition 

The gate is used to close the duct of the system. The width 

of the centrifugal fan’s duct is 11cm and it has been marked 

for each centimetre as shown in Figs. 3.a and 3.b. 

 

 
Fig. 3.  Fan obstruction at position (a) 9 cm and (b) 5 cm closed, 

respectively.  
 

 

Fig. 4. Experimental f-Q-H characteristics of the centrifugal fan. 

The steady state data were collected as follows. The 

frequency is kept constant at intervals of 2 Hz between 30 Hz 

and 50 Hz. The gate position varies between 0 and 11 with a 

step of 1 cm for each constant frequency. The obtained 

experimental centrifugal fan's Q-H characteristics are shown 

for 11 various frequencies in Fig. 4. In total, the data base 

includes 132 operating points. For each operating point the 

estimated input active power of the motor was computed 

based on the stator voltage references and measured stator 

currents in α-β stator stationary reference frame, in the 

dSpace controller. The RMS stator current was computed in 

real time based on the measured instantaneous stator currents. 

For the dynamical tests, the fan was started smoothly till 

the frequency reached 50 Hz at a certain gate position. Then 

the frequency was changed by step several times allowing the 

flow rate and pressure to reach their steady state values. Then 

the gate position was smoothy changed which was followed 

by several step frequency changes. The frequency range 

covered is from 47 Hz to 50 Hz and the step changes used are 

either 1 Hz, or 2 Hz or 3 Hz. The step responses were 

recorded with the sample time of 0.0012 s which provides 

more than 200000 recorded points. 

III. ARTIFICIAL NEURAL NETWORK ESTIMATORS DESIGN 

In the paper, three-layer feed-forward backpropagation 

ANNs are used for all flow rate and pressure estimators, with 

hyperbolic tansig as activation function of the first and second 

layers neurons and purelin for the third output layer neuron. 

The Matlab nntool is used for ANNs design. Bayesian 

Regularization (trainbr in Matlab) is used as a training 

function for all estimators. The gensim Matlab command 

converts the trained ANNs into Simulink blocks used for real 

time implementation in dSpace controller and for simulations. 

We define three types of the estimators based on the 

trained data used. Quasi-steady estimators are the ANNs 

trained based on the experimental data of the 132 steady state 

operating points. The inputs are the reference frequency, the 

measured RMS stator current and the estimated input active 

power of the motor. For the flow rate estimator there are 3, 3 

and 1 neurons in the corresponding layers whereas for the 

pressure estimator these are 5, 5 and 1 neurons [7]. The 

number of neurons in the first and second layers were selected 

iteratively, with the estimation accuracy meeting the ISO 

13348 criteria [18]. The term quasi-steady is borrowed from 

the quasi-steady modelling of the centrifugal fan (without own 

dynamics) which flow rate and pressure are changed 

synchronously with the change of the motor velocity. The 

architecture of the estimators is shown in Fig. 5 and Fig.6. 

 

 

Fig. 5.  Quasi-steady ANN estimation architecture for flow rate 

The own dynamics of the pump/fan, additional to the 

motor dynamics, is introduced in the modelling via a 

nonlinear differential equation of first order for the flow rate 

[16]. Respectively, we introduce two types of dynamical 

estimators for the flow rate and pressure trained based on 

experimental transients. The first ones have the same inputs 



as the quasi-steady estimators. The second ones have an 

additional input with the flow rate/pressure estimated at the 

previous ANN sample time to account for the own fan’s 

dynamics. All dynamical estimators have 5, 5 and 1 neurons 

in the corresponding layers. The architecture of the 

dynamical estimators is depicted in Fig. 7 where z-1 denotes 

one sample time delay of the ANN. 

 
Fig. 6.  Quasi-steady ANN estimation architecture for pressure 

 

 
Fig. 7.  Dynamical ANN estimation architecture 

 

IV. RESULTS 

A.  Steady State Estimations 

The quasi-steady estimators demonstrated a high 

accuracy in steady states. The relative error obtained for the 

132 operating points are shown in Figs. 8 and 9. 

 
Fig.8.  Steady state error between measured and estimated pressure. 

 
Fig.9. Steady state error between measured and estimated flow rate. 

B. Estimation during Transients 

The experimental transients are caused in the fan via step 

changes in the frequency as shown in Figs. 10-15 and in the 

middle of the process the gate smoothly changed position 

from 7 cm to 6 cm. These transient data were used for training 

the ANNs. Figs. 10 and 11 show the simulated operation of 

the quasi-steady estimators during the recorded experimental 

transients. It can be observed that these estimators fail to 

accurately predict the pressure and flow rate during 

transients. A sensorless control system based on them must 

be implemented quite slow to be considered quasi-steady.  

 
Fig.10.  Pressure quasi-steady estimation compared with measured 
pressure. 

Fig. 11.  Flow rate quasi-steady estimation compared with measured flow 
rate. 



Figs. 12 and 13 illustrate the quality of the dynamical 

estimation without the one sample time delayed 

pressure/flow rate ANN feedback. Although the estimations 

are in general quite accurate, there appear some spikes which 

will cause disturbances in the pressure/flow rate close loops. 

The figures show the simulated estimation during the 

recorded experimental transients used for training. 

 

Fig. 12.  Pressure dynamic estimation compared with measured pressure 

when inputs are frequency, RMS current and input power.

 
Fig. 13.  Flow rate dynamic estimation compared with measured flow rate 

when inputs are frequency, RMS current and input power. 

 

Fig. 14.  Pressure dynamical estimation compared with measured pressure 

when inputs are frequency, RMS current, input power and measured 

pressure delayed by one sample time. 

Figs. 14 and 15 report the results for the dynamical 

estimations with the one sample time delayed pressure and 

flow rate ANN feedbacks. The quality of the dynamical 

estimation is better than for two other types of the estimators. 

The figures show the simulated estimation during the 

recorded experimental transients used for training. 

 

Fig. 15.  Flow rate dynamic estimation compared with measured flow rate 
when inputs are frequency, RMS current, input power and measured flow 
rate delayed by one sample time. 

 

C. Estimation during Untrained Transients 

Figs. 16 and 17 show the results of the simulated 

dynamical estimation with the one sample time delayed 

pressure and flow rate ANN feedbacks during the recorded 

experimental transients not used for training at 8 cm gate 

position. The accuracy of the estimation remains high. 

Further improvement of the estimation will require more 

dynamical training data within the expected control range. 

 

Fig. 16.  Untrained dynamical pressure estimation.  



 

Fig. 17.  Untrained dynamical flow rate estimation. 

V. CONCLUSION 

The paper identifies the problem of quasi-steady flow rate 

and pressure estimators of centrifugal fans with induction 

motor drives during transients. It develops quasi-steady and 

dynamical estimators based on the neural networks trained 

based on the steady state and transient experimental data. It 

uses the referred frequency of the stator voltages, the 

measured rms stator current and the estimated input active 

power of the motor as inputs of the estimators avoiding the 

velocity estimation as in available approaches. It shows better 

dynamical performance of the dynamical estimators with one 

sample time delayed feedback as the additional input which 

is justified by dynamical modelling of the fans/pumps. The 

methodology will be the same for any centrifugal fans or 

pumps which can also have different type of duct, but 

individual training data should be obtained. 
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