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Quantum light spectroscopy is an emerging field in which the quantum nature of light is exploited
to reveal information about the properties of matter. Although there is evidence that spectroscopy
with quantum light can improve upon classical light, this advantage has not been rigorously assessed.
Instead of a standard spectroscopic analysis, we use quantum estimation theory to study the ultimate
precision limit for the estimation of parameters of the matter system, when it is probed by a travelling
pulse of quantum light. Concretely, we focus on the estimation of the interaction strength between
the pulse and a two-level atom, equivalent to the estimation of the dipole moment. We present
a detailed analysis of single-photon pulses, which we use to highlight the interplay between the
information gained from the photon absorption by the atom, as measured in absorption spectroscopy,
and the perturbation to the field temporal mode due to spontaneous emission. Going beyond the
single-photon regime, we introduce an approximate model to study more general states of light in
the limit of short pulses, where spontaneous emission can be neglected. We also show that for a vast
class of entangled biphoton states entanglemment gives no fundamental advantage and the same
precision can be obtained with a separable state. We conclude by applying the theoretical results to
study a concrete problem, dipole-moment estimation of a sodium atom.

I. INTRODUCTION

[The introduction needs to be shortened]
Spectroscopy seeks to estimate one or more parameters

appearing in the model of a matter system by measuring
the light that has interacted with it.

Recent technological developments have made it possi-
ble to use quantum light, i.e. Fock, squeezed or entangled
states of light, in spectroscopy [1]. This resulted in en-
hanced sensing to better precisions than the classical
shot noise limit [2], in obtaining different scaling of the
spectroscopic signals [3] and in new spectroscopic tech-
niques [4, 5]. However, the advantages of using entangled
light in spectroscopy remain unclear.
Many proposals. Nothing quantitative. Quantitative

evaluation of the performance of quantum light - precision.
Absorption spectroscopy - linear at short time (this paper),
nonlinear at long time (next paper).
In this paper, we start to uncover the fundamental

limits of quantum spectroscopy by employing quantum
estimation theory and ideas from quantum metrology.
This approach is needed to understand to what extent the
enhancements of quantum metrology [6, 7] are relevant
under the more stringent and practical constraints of
quantum light spectroscopy experiments.
More concretely, we focus on a paradigmatic scenario

that can be considered a minimal example of quantum
spectroscopy: a pulse of quantum light is used to probe a
single two-level atom. In paricular, we study the quan-
tum limits to the precision of estimating the interaction
parameter Γ between the pulse and the atom, propor-
tional to the square of the EDM (thus the two estimation

∗ francesco.albarelli@gmail.com

tasks are essentially equivalent). Even for such a simple
two-level quantum system the dynamics is not trivial and
the problem presents a rich phenomenology.
When a propagating pulse of quantized radiation in-

teracts with an atom or molecule, a photon from the
incoming pulse is absorbed and induce an excitation, but
at the same time the excited state tends to decay due to
spontaneous emission. Indeed, if the atom is perfectly
coupled only to the spatial and polarization mode of the
incoming pulse it cannot emit into other modes and, after
the pulse has passed, Γ can be interpreted as the decay
rate. The spontaneously emitted light has the well-known
exponentially decaying shape in time, thus the light after
the interaction will have a different shape, as well as a
different quantum state. Perfect coupling can be achieved
even in free space by careful mode-matching [8, 9]; how-
ever, in spectroscopy the pulse mode usually represents
a propagating paraxial beam and thus the spontaneous
emission does not happen exclusively into the pulse mode,
but also in other orthogonal spatial modes with an overall
rate Γ⊥.

By studying the case of single-photon pulses in detail we
separate two sources of information about the parameter
Γ: an absorption contribution, reminiscent of absorp-
tion spectroscopy with single-photon states [10], and a
temporal-shape perturbation contribution, reminiscent of
fluorescence lifetime estimation [11] and fluorescence spec-
troscopy [12]. These phenomena are usually studied in
separate frameworks, but the underlying physical model
of light-matter interaction contains both absorption and
emission contributions, thus we treat the problem in a
unified manner, using the lens of quantum estimation
theory.
When light is used to probe an ensemble of atoms,

quantum spectroscopy strategies that take into account
also the phase shift and not only absorption have been
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studied [13, 14], as well as quantum strategies for absorp-
tion measurements taking into account the saturation [15].
We take a very different approach by studying the exact
dynamics of a pulse interacting with a single atom. Fluo-
rescence lifetime estimation is also closely related to our
problem, but in that context one simply assumes that the
atom is initially excited and measures the spontaneously
emitted light [11]. We consider instead the atom initially
in the ground state and model also the excitation induced
by a quantum pulse of light.

If the pulse of radiation is much shorter than the spon-
taneous emission lifetime of the relevant transition, there
is a clear separation of time scales: absorption and spon-
taneous emission can be considered as two distinct phe-
nonema that happen one after the other. In this regime of
short pulses, we can essentially neglect spontaneous emis-
sion. We employ this simplification to study more general
quantum states of light and we argue that this regime is
also appropriate to study free space configurations, be-
cause the additional decay dictated by Γ⊥ is predominant
and prevents further information to be encoded in the
pulse spatial mode.

Regarding entangled light, previous works have shown
that for one-photon processes the statistics obtained from
an entangled photon pair can be reproduced with cor-
related separable states [16], as long as the photons are
measured individually and do not interact again after
passing through the sample. Here, we show that for a
large class of biphoton states this kind of measurements is
optimal and thus there is no fundamental advantage due
to entanglement. We also show that for such entangled
biphoton states the precision can always be improved
by probing the atom with an appropriate single-photon
wavepacket. This is in perfect agreement with the case
of absorption spectroscopy, where the ultimate precision
limit is achieved by using single-photon states [17], with
correlated pairs only approaching that limit [10, 15, 18].

Matter/atom?
Finally, we study a concrete example of a sodium atom

in free space. We show that a one-photon Gaussian
wavepacket and the entangled photon pair with Gaus-
sian joint spectral amplitude have similar performances,
while the performance of coherent states is much worse.
Moreover the performance of the entangled photon pair is
decreased for more entangled states. Overall, our results
indicate that using Fock states to estimate the EDM of
a two-level atom is preferable to using entangled light,
similarly to the case of absorption measurements.

Our main results are as follows:

1. Exc. prob. and QFI different

2. CFI = QFI/2 for incoming pulse measurement.

The paper is structured as follows. In Sec. II we present
our theoretical framework: the model, the methods to
solve the dynamics, and a summary of local quantum
estimation theory that we use for our analysis. In Sec. III
we present an extensive analysis of the problem for single-
photon pulses, where analytical or semi-analytical solution

are available. In Sec. IV we show how to approximate
the problem to a much simpler one in the regime of short
pulses and present general solution within this approxi-
mation. In Sec. V we present some general remarks about
entangled biphoton states for this estimation problem. In
Sec. VI we apply our general results a concrete applica-
tion: dipole-moment estimation with a sodium atom. We
conclude the paper with Sec. VII where we summarize
and discuss our results.

II. THEORETICAL FRAMEWORK

We begin with the theoretical model of light-atom inter-
action, followed by the analytical and numerical methods
to solve the dynamics in various regimes. We then provide
a brief introduction to quantum estimation theory, needed
to quantify the achievable precision.

A. Model

1. Atom, field, and their iinteraction

We consider a single two-level atom (the “atom” subsys-
tem) modelled by its free Hamiltonians HA. The ground
and excited states of the atom are denoted by |g〉 and |e〉
respectively. Setting the ground state energy to zero,

HA = ~ω0|e〉〈e|, (1)

where ω0 is the transition frequency. We assume the
atom, for simplicity, to be stationary in free space.
We next consider a travelling pulse of quantized ra-

diation field (the “field”/ pulse? subsystem) modelled
by its free Hamiltonians HF. A travelling pulse must be
described by a continuum of frequencies. As is customary
in spectroscospic setups, we assume the field to have a
well-defined direction of propagation. This leads to the
free field Hamiltonian [19]

HF = ~
∫ ∞

0

dω ωa†(ω)a(ω), (2)

with the bosonic operators [a(ω), a†(ω)] = δ(ω − ω′) in-
dexed by a continuous frequency ω. We further assume
the field to be sufficiently narrowband around a carrier
frequency ω̄. Then the positive-frequency component of
the electric field operator (in the interaction picture with
respect to the free Hamiltonian) is

E(t) = i~εA(ω̄)

∫ ∞
−∞

dω a(ω)e−iωt, (3)

where ε is a unit polarization vector, A(ω̄) =√
ω̄/(4πε0cA~) and A is the transverse quantisation area.
The interaction the travelling pulse and the atom is

illustrated in Fig. 1. It is modelled by an interaction term
HI. As the atom is much smaller than typical optical
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wavelengths, the interaction is captured by the dipole
approximation. Making next the rotating wave approx-
imation, the interaction Hamiltonian in the interaction
picture takes the standard form [20]

HI(t) = d(t) ·E†(t) + d†(t) ·E(t), (4)

= −i~
√

Γ
(
σ+a(t)− σ−a†(t)

)
(5)

where d(t) = µegσ−e
−iω0t is the positive frequency part

of the dipole operator, µeg = −qe〈e|r|g〉 is the relevant
dipole matrix element (qe is the charge of the electron),
and σ− = |g〉〈e| = σ†+. In (5) we have introduced the
so-called “quantum white-noise” operators 1

a(t) =

∫ ∞
−∞

dω a(ω)e−i(ω−ω0)t (6)

satisfying [a(t), a†(t′)] = δ(t − t′) and the constant Γ =
(µeg · ε)2A(ω̄)2 proportional to the square of the dipole
moment.

In addition to the mode defined by the travelling pulse,
an atom in free space interacts with an infinitude of other
modes that lead to spontaneous emission. We account
for this by introducing a coupling to an additional field
mode b, leading to the interaction-picture Hamiltonian

HI(t) = −i~σ+

(√
Γa(t) +

√
Γ⊥b(t)

)
+ h.c., (7)

where the new set of white noise operators b(t) satisfying
[b(t), b†(t′)] = δ(t−t′) represents a collective “environment”
mode coupled to the atom. For completeness, we show
in Appendix A that this is equivalent to a more realistic
model where the environment consists of a discrete set of
infinitely many modes.

The interaction Hamiltonian (7) seeks to capture an ex-
perimental scenario where only the field in the pulse mode
can be measured, while light emitted into the environment
is irreversibly lost. Mathematically, this means tracing
out the mode b; the resulting reduced dynamics of the
atom-pulse subsystem is governed by a master equation
in Lindblad form

dρ(t)

dt
= −i

√
Γ
[
σ+a(t)− σ−a†(t), ρ(t)

]
+ Γ⊥D[σ−]ρ(t),

(8)
where we have introduced the superoperator D[A]ρ =
AρA†− 1

2

(
ρA†A+A†Aρ

)
. While a master equation treat-

ment is very useful numerically, for single-photon pulses
it will be easier to solve the total unitary dynamics. We
take the latter approach in Sec.??.

Note that although the Hamiltonian (7) is obtained in
the white noise limit, which is a Markov approximation,

1 Formally, the operators a(t) should be treated using quantum
stochastic calculus [21, 22]. However, this is uncecessary for our
purposes; we refer the reader to some physics-oriented introduc-
tions to quantum stochastic calculus in the context of light-matter
interaction with pulses of radiation [23–25] .

Figure 1. Illustration of the excitation of the atom by a
quantum pulse of light (with Gaussian temporal envelope). Γ
represents the interaction strength with the pulse mode, while
Γ⊥ describes emission into other (inaccessible) orthogonal
modes. As shown, the shape of the wavepacket is changed by
the interaction with the atom. Illustration not to scale.

this is not enough to have a reduced dynamics in Lindblad
form for a generic initial state of the field?? Do you mean
the travelling pulse?; however, we have the additional
property that the state of the environment is the vacuum
and thus temporally uncorrelated. On the contrary, for
nonclassical initial states of the field, such as Fock or
squeezed states, we have temporal correlations and the
reduced dynamics of the atom is non-Markovian [30].
It can generally be described by hierarchies of master
equations [23, 31, 32] or by using fictitious cavities [33, 34],
as we explain in Sec. II B.
The interaction Hamiltonian (7) can be used to de-

scribe light-matter interactions in different scenarios by
assigning different expressions to the coupling constants.
In a free-space configuration with the atom probed by
paraxial light, there is usually a strong coupling with the
environment and a weak coupling with the pulse, result-
ing in Γ⊥ � Γ [27]. Nonetheless, by matching the pulse
spatial and polarization mode to the dipole pattern of
the atom, one could in principle obtain a perfect coupling
Γ⊥ = 0 even in free space [9]. However, the scenario
Γ⊥ = 0 is mostly employed to study two-level atoms in
one-dimensional waveguides [28, 29].
In this paper, we will not grapple with such model-

dependent details and take the Hamiltonian (7) as our
starting point until Sec. VI. There we will apply our
methods to estimating the dipole moment of the Sodium
D?? transition using travelling pulses of quantum light.
Furthermore, we will always assume that the atom is
initially in the ground state, because we want to model
light absorption and the corresponding excitation induced
by the pulse. However, if we kept the same Hamiltonian
but started the dynamics with the atom in the excited
state and both field modes a(t) and b(t) in the vacuum, the
overall decay rate would be Γtot = Γ + Γ⊥ [9, 23, 25, 26],
and in free-space this corresponds to the standard rate
obtained from Wigner-Weisskopf theory Γtot =

|µeg|2ω3
0

3πε0~c3 .

2. Quantum states of the travelling pulse

A pulse of light travelling in one dimension can be
described quantum mechanically using Fock states defined
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as [19]

|nξ〉 =
1√
n!

(∫
dω ξ̃(ω)a†(ω)

)n
|0〉, (9)

where ξ̃(ω) is an arbitrary square-integrable normalised
function. As we assume the light to be sufficiently nar-
rowband around the carrier frequency ω̄, we can define
the photon-wavepacket annihilation operator

Aξ =

∫ ∞
−∞

dt ξ(t)a(t), (10)

such that [Aξ, A
†
ξ] = 1 for a spectral amplitude ξ(ω). The

function ξ(t) is the Fourier transform of ξ̃(ω)e−iω̄t and
represents a temporal wavepacket with modulation at the
frequency ω̄, as depicted in Fig. 1.

In this paper we only consider real-valued functions ξ(t),
which in frequency domain means ξ̃(ω − ω̄)∗ = ξ̃(ω̄ − ω),
e.g. if ξ(ω) ∈ R as often happens, it must be symmetric
around the carrier frequency2. While we do not con-
sider general situations with arbitrary complex-valued en-
velopes, our choice covers many practically relevant cases.
[@Aiman can you help me with some reference/argument
on this?]This is a restricted case. How complicated are
the general expressions? For instance, the conclusions of
Sec III B, appendix D may not hold for complex pulses.
In general ξ(t) can be considered as one element of an
orthonormal basis of functions that form a complete set of
temporal modes [35–37], e.g. Hermite-Gauss polynomials
if ξ(t) is Gaussian. We also assume no detuning between
the carrier frequency and the transition frequency of the
atom ω̄ = ω0.
In terms of the photon-wavepacket creation operator

A†ξ, the Fock states (9) can be reexpressed as |nξ〉 =
1√
n!
A†nξ |0〉. Descriptions of other states such as coherent

states

|αξ〉 = eαA
†
ξ−α

∗Aξ |0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|nξ〉, (11)

with average photon number
∫∞
−∞ dt〈αξ|a†(t)a(t)|αξ〉 =

|α|2 and squeezed vacuum states [32, 36]

|sξ〉 = e
1
2 (sA† 2

ξ −s
∗A2

ξ)|0〉 =
1
√
µ

∞∑
n=0

(
ν

2µ

)2√
(2n)!

n!
|2nξ〉,

(12)
where s = reiφ, µ = cosh r and ν = eiφ sinh r and the av-
erage photon number is

∫∞
−∞ dt〈sξ|a†(t)a(t)|sξ〉 = sinh2 r

follow.

2 However an overall global phase, i.e. a purely imaginary ξ(t) cor-
responding to an antisymmetric ξ̃(ω) around the carrier frequency,
does not change our analysis.

B. Dynamics of the state in the travelling pulse
temporal mode

[Move this to an appendix?] When Γ⊥ = 0 the
Schrödinger equation for the joint pulse-atom system
can be formally solved for input pulses containing a finite
number of photons, as shown in Ref. [28], but the integrals
quickly become intractable as the number of photons in-
creases. However, to the best of our knowledge there is no
general approach to obtain the field state analytically for
arbitrary Γ and Γ⊥. The main difficulty is that the inter-
action does not only transform the input quantum state,
defined in terms the operators A†ξ, but also changes the
temporal mode structure due to the spontaneous emission
of the atom, as schematically depicted in Fig. 1.
A more tractable problem is to focus on the output

state of the light in a particular temporal mode, i.e. the
reduced state obtained by tracing out all the other field
temporal modes. In this way, we only take into account
the effect that the interaction with the atom has onto the
quantum state of the travelling pulse, without taking into
account the modifications to the temporal wavepacket
due to spontaneous emission.

A powerful formalism to treat this scenario was recently
put forward by Kiilerich and Mølmer [33, 34]. Without
going into details, the physical system, i.e. the atom
interacting with a travelling pulse of radiation, can be
mapped to the atom interacting with two fictitious optical
cavities u and v, corresponding to the bosonic annihilation
operators au and av, with a time-dependent coupling. The
quantum states of the cavity u and v correspond to states
of the incoming and outgoing pulse, respectively. The
whole dynamics of the composite system can be described
by a time-dependent Lindblad equation:

ρ̇(t) = − i

~
[H(t), ρ(t)]+Γ⊥D[σ−]ρ(t)+D[L(t)]ρ(t), (13)

the Hamiltonian reads

H(t) =
i~
2

(√
Γgu(t)a†uσ− +

√
Γg∗v(t)avσ+

+gu(t)g∗v(t)a†uav − h.c.
)
,

(14)

the time-dependent couplings depend on the shape of the
chosen temporal mode as follows

gu(t) =
ξ∗(t)√

1−
∫ t

0
dt′|ξ(t′)|2

gv(t) = − ξ∗(t)√∫ t
0
dt′|ξ(t′)|2

,

(15)
and the collapse operator is

L(t) =
√

Γσ− + gu(t)au + gv(t)av. (16)

Crucially, in Eq. (13) excitations can only go from the
cavity u to the atom and from the atom to the cavity
v [33]. Since we are focusing on the quantum state of the
light in the same temporal mode as the input pulse, the
function ξ(t) appears in both couplings (15), however in
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general they could be different. In a spectroscopy setting
we can only measure the output light scattered by the two-
level atom and thus we will mostly consider the reduced
state of the cavity v, i.e. ρv(t) = Tru,s ρ(t).

C. Local quantum estimation theory

Estimation theory quantifies the precision in estimat-
ing the true value of a parameter Γ from the exper-
imental observations x distributed according to some
probability distribution p(x|Γ). Quantum mechanically,
p(x|Γ) = Tr(ρΓΠx) - the probability distribution of the
collected data is obtained from the Born rule. Here ρΓ

is a mixed quantum state depending on the parameter
Γ, Πx is an element of a positive operator-valued mea-
sure (POVM), which mathematically describes a quantum
measurement [38], and x labels the possible experimental
outcomes. For example, in a photon counting measure-
ment x is the number of detected photons. In this paper,
ρΓ may correspond either to the joint state of the atom
and field or to the reduced state of the field.

If Γ̃ is an unbiased estimator of Γ its variance satisfies
the Cramér-Rao bound (CRB) [39]

Var[Γ̃] ≥ 1

MC(ρΓ,Πx)
, (17)

where M is the number of repetitions of the experiment
and C(ρΓ,Πx) is the classical Fisher information (CFI)3
defined as

C(ρΓ,Πx) =
∑
x

1

p(x|Γ)

(
∂p(x|Γ)

∂Γ

)2

, (18)

where the summation becomes an integral for continuous
distributions. Since the inequality (17) can be saturated
in the limit M → ∞ [40], e.g., by the maximum likeli-
hood estimator, the CRB encodes the maximal precision
that can be extracted by the collecting data from the
distribution p(x|Γ).

To identify the fundamental quantum limit on the pre-
cision of the estimator, the CFI must be maximised over
all possible POVMs, obtaining [41–44]

max
{Πx}

C(ρΓ,Πx) ≤ Q(ρΓ), (19)

where we introduced the quantum Fisher information
(QFI), defined as

Q(ρΓ) = Tr
[
ρΓL

2
Γ

]
, (20)

3 Since the CFI depends only on the classical probability distri-
bution we will often use notation C(p), to indicate the CFI of
a particular Γ-dependent distribution p, often dropping the Γ
dependence too.

where the Hermitian operator LΓ is called the symmetric
logarithmic derivative (SLD) and satisfies the Lyapunov
equation

2
∂ρΓ

∂Γ
= ρΓLΓ + LΓρΓ. (21)

The bounds on the estimation precision are thus

Var[Γ̃] ≥ 1

MC(ρΓ,Πx)
≥ 1

MQ(ρΓ)
. (22)

We assume that M can be made sufficiently large, so that
we can safely focus on the CFI and QFI as the relevant
figures of merit to quantify the estimation precision. This
setting is known as local estimation, since the CFI and
QFI are defined locally around the true value of the pa-
rameter (ρΓ and ∂ΓρΓ are evaluated at the true value of Γ
in all the equations above). In order to study the problem
for small M , non-local approaches such as Bayesian or
minimax estimation would be more suitable.
The effect of a generic (nonlinear) reparametrization

Γ 7→ µ(Γ) only enters as a multiplicative factor in the
CFI and QFI, i.e. Q(ρµ) = Q(ρΓ(µ))(dΓ(µ)/dµ)

2 (and
analogously for the CFI). Note that the CFI and QFI
are dimensional quantities if the estimated parameter has
physical dimensions. Sometimes it is useful to consider
the adimensional quantum signal-to-noise ratio (QSNR)
Γ2Q(ρΓ) that quantifies the relative estimation precision.
SNR2 ??
While the QFI (20) generally does not have a simple

closed-form expression and must be evaluated by diago-
nalizing the density matrix, in some cases more explicit
formulas can be obtained. For a pure state |ΨΓ〉

Q(|ΨΓ〉) = 4
(
〈∂ΓΨΓ|∂ΓΨΓ〉 − |〈∂ΓΨΓ|ΨΓ〉|2

)
. (23)

Another case that will be relevant is the rank-2 mixed
state ρΓ =

∣∣∣ψ̃e〉〈ψ̃e∣∣∣+
∣∣∣ψ̃g〉〈ψ̃g∣∣∣, obtained from tracing

out the atomic degrees of freedom from a pure state
of the form |ψΓ〉 = |e〉|ψ̃e〉 + |g〉|ψ̃g〉. The two vectors∣∣∣ψ̃e〉 and

∣∣∣ψ̃g〉 capturing the quantum states of the field
will neither be normalized nor mutually orthogonal, and
generally infinite-dimensional. In this scenario the QFI
can be evaluated explicitly without rewriting ρΓ on an
orthonormal basis, thanks to methods for solving Eq. (21)
using non-orthogonal bases [45–47], recently introduced
in the context of superresolution imaging. We use this
technique in Sec. IV.
Another useful property of the QFI is the extended

convexity [48, 49]

Q

(∑
m

pm,Γρm,Γ

)
≤ C({pm,Γ}) +

∑
i

pi,ΓQ(ρm,Γ), (24)

where {pm,Γ} is a (potentially parameter-dependent) prob-
ability distribution and {ρm,Γ} are normalized quantum
states. In words, this means that the QFI of a generic



6

mixture is upper bounded by the CFI of the mixing prob-
ability plus the average QFI of the states; this reduces
to standard convexity when the mixing probability does
not dependent on the parameter. This equation can be
understood as a consequence of the monotonicity of the
QFI under CPTP maps [50], since the right-hand side of
Eq. (24) is the QFI of the state

∑
m pm,Γρm,Γ ⊗ |m〉〈m|

while the left-hand side is obtained via its partial trace,
potentially losing information. In the context of prob-
abilistic quantum metrology, a state in this form can
be obtained by making a selection measurement on an
initial state and storing the outcome in an ancillary sys-
tem that acts as a classical register [51]. If the states
ρm,Γ have support in mutually orthogonal subspaces (at
least in the neighbourhood of the true parameter value),
then the information contained in the classical register
{|m〉〈m|} is formally redundant, since they are perfectly
distinguishable, and Eq. (24) is saturated with equality.

III. SINGLE-PHOTON PULSES

We now begin the presentation of our results on quan-
tum light spectroscopy of a two-level atom using single-
photon pulses. This is a simple, yet conceptually bene-
ficial and practically relevant scenario of quantum light
spectroscopy. The results of this section can be applied
to arbitrary pulse shapes. We present concrete results
for a few paradigmatic simple pulse shapes employed in
theoretical papers [9], but often focus on a rectangular
pulse for the This is more than a mere theoretical exercise
as the realization of nontrivial single-photon wavepackets
is a well-developed experimental field [52–55].
First, we present the analytical solution available in

this case, then we employ it to evaluate the QFI for
the case of perfect coupling between the atom and the
pulse mode. Finally, we extend the discussion to the
case in which the two-level system couples also to the
environment, focusing in particular on the free-space case
where Γ⊥ � Γ and elaborate on the relation to single-
photon absorption spectroscopy.

A. Unitary evolution of atom, pulse and
environment

We start with the atom in the ground state. Thus, the
global atom-pulse-environment state never contains more
than one excitation due to the form of the interaction
Hamiltonian (7) This state is given by (omitting the
explicit time dependence for brevity)

|Ψ〉 = ψe|e〉|0P 〉|0E〉+ |g〉(|ψg,P 〉|0E〉+ |0P 〉|ψg,E〉),
(25)

where |ψg,P (t)〉 =
∫∞
−∞ dτψg,P (t, τ)a†(τ)|0P 〉 and

|ψg,E(t)〉 =
∫∞
−∞ dτψg,E(t, τ)b†(τ)|0E〉 are unnormalized

single-photon states in the pulse and environmental modes
respectively when the atom is in the ground state. For

clarity we have explicitly separated the vacuum in the
pulse and environment modes. The scalar function ψe(t)
is the excitation amplitude of the atom.
Solving the Schrödinger equation i~ d

dt |Ψ(t)〉 =
HI(t)|Ψ(t)〉 for the interaction-picture Hamiltonian (7)
assuming the initial state |g〉

(∫∞
−∞ dτξ(τ)a†(τ)|0P 〉

)
|0E〉

at t = −∞ gives

ψe(t) = −
√

Γ

∫ t

−∞
dt′e−

1
2 (Γ+Γ⊥)(t−t′)ξ(t′) (26)

|ψg,P (t)〉 =

∫ ∞
−∞

dτ
(
ξ(τ) +

√
ΓΘ(t− τ)ψe(τ)

)
a†(τ)|0P 〉

(27)

|ψg,E(t)〉 =
√

Γ⊥

∫ t

−∞
dτψe(τ)b†(τ)|0E〉, (28)

by following the approach of Ref. [28], see also Ref. [25,
Appendix G].[There is a difference wrt [25] at the point
t = τ , due to the convention for the value of Θ(0). Since
it is a measure-zero set it should play no role.]Appendix D
in published version? Note that for ξ(t) ∈ R the evolved
wavefunctions remain real. For Γ > 0 there is a nonzero
excitation probability pe(t) = ψe(t)

2 which tends to zero
for large times: limt→∞ pe(t) = 0. This happens even
when Γ⊥ = 0, meaning that the atom spontaneously
emits into the pulse mode; in this case the final state∣∣ψ∞g,P 〉 = limt→∞|ψg,P (t)〉 is a normalized one-photon
wavepacket with amplitude ξ(τ) +

√
Γψe(τ). Note also

that the states in Eqs. (25)–(28) are normalized, as we
show explicitly in Appendix C.
Assuming the initial spectral/temporal mode of the

pulse to be the only one accessible for detection, we
trace out both the atom and the environment degrees of
freedom, obtaining an incoherent mixture of the vacuum
and the modified single photon wavepacket

ρΓ =
(
|ψe|2 + 〈ψg,E |ψg,E〉

)
|0P 〉〈0P |+ |ψg,P 〉〈ψg,P |, (29)

where again we have suppressed the explicit time depen-
dence. In the long-time limit t→∞ the atom decays to
the ground state and becomes disentangled with the light,
but for Γ⊥ > 0 the initial photon of the pulse is partly
lost to the environment.

B. Single-photon QFI: absorption and
temporal-mode perturbation

The state (29) has the form ρΓ = pΓ|0〉〈0| + (1 −
pΓ)|ψΓ〉〈ψΓ|, where we have now highlighted the depen-
dence on the parameter Γ and written it in terms of a
normalized single-photon state 〈ψΓ|ψΓ〉 = 1. It would be
useful to express pΓ and |ΨΓ〉 in terms of the quantities
in Eq. 29 here. Since we are dealing with real-valued
wavefunctions, 〈∂ΓψΓ|ψΓ〉 = 0 and the QFI of ρΓ is sim-
ply the QFI of the two-outcome probability distribution
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{pΓ, 1− pΓ} plus the QFI of the pure single-photon state
multiplied by the corresponding probability:

Q(ρΓ) =
(∂ΓpΓ)2

pΓ(1− pΓ)
+ (1− pΓ)4〈∂ΓψΓ|∂ΓψΓ〉 (30)

= C(pΓ) + Q̃(|ψΓ〉). (31)

This form corresponds to the right-hand side of (24) as
expected, since the two pure states in the mixture are
orthogonal and the vacuum contains no information on
Γ. Note the two contributions to the fundamental limit
of estimating Γ: (i) the probability pΓ of losing a photon
from the pulse mode giving the CFI C(pΓ) = (∂ΓpΓ)2

pΓ(1−pΓ) ,
which we call the absorption contribution to the total
QFI Q(ρΓ), and (ii) the perturbation to the temporal
shape of the single-photon wavepacket gives the QFI
of the pure state single-photon wavepacket (rescaled by
the corresponding probability of not losing a photon)
Q̃(|ψΓ〉) = (1 − pΓ)4〈∂ΓψΓ|∂ΓψΓ〉, which we call the
temporal-mode perturbation contribution. In Appendix D
we report more explicit expressions, using an alternative
formulation, written in terms of the unnormalized single
photon state, which is more convenient for evaluation.

Is (i) available in classical spectroscopy and (ii) only in
quantum spectroscopy?
We next discuss the means of attaining (i) and (ii)

respectively.
For any real wavefunction ψ(τ) with real deriva-

tive ∂Γψ(τ), the CFI of the probability distribution
ψ(τ)2 saturates the QFI, since

∫
dτ
[
∂Γψ(τ)2

]2
/ψ(τ)2 =

4
∫
dτ [∂Γψ(τ)]

2. In the long time limit t → ∞ this is
the standard “direct measurement” of the photon arrival
time, optimal for estimating the fluorescence lifetime [11].
[This requires some assumptions on the detectors though.
I do not know in which situations it is practically fea-
sible.] We remark that in lifetime estimation problems,
one usually considers a simplified picture in which the
atom is initially excited and the excitation process itself
is not modeled, unlike in this work. However, in general
the state ρΓ contains less than one photon on average
and the QFI (31) is saturated when it is possible to dis-
tinguish the vacuum from the single-photon component.
In other words, the first absorption contribution in (31)
is obtained by measuring the photon loss, similarly to
absorption spectroscopy, while the second temporal-mode
perturbation contribution is obtained by measuring the
arrival time of the surviving photon. Confused by this
para. Is this about attaining (i) only, and the next para
about (ii)?
One possibility is to only measure the original, un-

perturbed, temporal mode of the pulse. In the spirit
of Sec. II B, we seek to measure changes in the quan-
tum state of the original incident pulse after interacting
with the atom. For single photons, this corresponds to
a two-outcome POVM with elements Π1 = |ξ〉〈ξ| and
Π0 = 1 − Π1, where |ξ〉 =

∫∞
−∞ dτξ(τ)a†(τ)|0P 〉 is the

initial state of the single-photon pulse. The probability
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Figure 2. Plot of the quantum signal-to-noise-ratio Γ2Q(ρ∞Γ )
about the atom-pulse coupling parameter Γ for the asymptotic
single-photon wavepacket (perfect coupling Γ⊥ = 0), as a
function of ΓT . The pulse duration T is defined as the standard
deviation of the original photon wavepacket. The pulse shapes
are (from top to bottom in the legend): Gaussian, rectangular,
decaying, rising and symmetric exponential (overlapping in the
plot). Inset [will become an inset when we agree on the plots]:
plot of the maximal excitation probability of the two-level
atom, for the same pulse shapes (except the Gaussian Why
not?).

of seeing such a detector click for the state (29) is thus
porig = Tr[Π1ρΓ(t)] = |〈ξ|ψg,P (t)〉|2. The performance of
this measurement in attaining the quantum limit (31) is
addressed in the next section.
Another possibility is to detect the emitted light in

different temporal modes. For a single photon pulse,
this corresponds ideally to a rank-1 projective POVM
|ξk〉〈ξk| on an orthonormal basis of temporal modes |ξk〉 =∫∞
−∞ dτξk(τ)a†(τ)|0P 〉. Cite Aiman’s paper which does
this.
[Another possibly interesting case is a projection onto

output state ψg,P , which also saturates the QFI (at least,
I’ve checked this for Γ⊥ = 0 and t→∞). This is often an
optimal measurement in local quantum metrology, where
a small discrepancy from a probability of 1 carries a lot
of information about the small deviation from the true
parameter value, but I think it is not really feasible in
general, so I would not mention it] Why not?

C. Perfect atom-pulse coupling

To clarify our understanding of quantum light spec-
troscopy using single photon pulses, we now focus on
perfect atom-pulse coupling by setting Γ⊥ = 0.
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1. Long-time results

We start by studying the asymptotic case t→∞, when
the final state of the pulse contains exactly one photon,
and is pure and disentangled from the atom. Then all
the information about the parameter Γ is encoded in the
temporal shape of the wavepacket, which is perturbed
due to the interaction. Do you mean pΓ = 0? If yes, say
so. Is this true for all pulses? The table in the Appendix
E shows that pe(∞) 6= 0 for the rect. pulse. In Fig. 2
we show the asymptotic QSNR Γ2Q(ρ∞Γ ) as a function
of the pulse duration, for various pulse shapes. The
mathematical descriptions of the pulse shapes considered
in Fig. 2 are provided in Appendix E, together with
the available analytical expressions for the quantities of
interest 4. Note that by employing the adimensional
QSNR the the parameters enter only in the combination
ΓT . How do you know this is true for arbitrary pulses?
The various pulse shapes display the same qualitative

behaviour: The QSNR increases linearly as the pulse dura-
tion increases from ΓT = 0. There is a limited dependence
on the particular shape. It reaches a maximum for a value
around the fluorescence time ΓT = 1. Overall, there is a
mild dependence on the particular shape. This behaviour
is similar to that of the maximum excitation probability of
the atom [9, 56], shown in the inset of Fig. 2. One might
naively think that an higher excitation probability of the
atom, which corresponds in some sense to a “better” inter-
action between the atom and the pulse, would correspond
to a higher QFI of the outgoing pulse of light. Our results
show otherwise. Firstly, the optimal pulse duration for a
given pulse shape for the two tasks are different. Secondly,
while a rising and a decaying exponential pulse of the
same duration yield the same asymptotic QFI, i.e., over-
lapping curves in Fig. 2, the rising exponential is optimal
to excite the atom [56] (reaching one in the inset plot),
while the decaying exponential performs much worse.

In Fig. 3, we show how much information can be ex-
tracted by detecting the photon in the original temporal
wavepacket compared to the information available in the
asymptotic state by plotting the ratio between the CFI
of this detection strategy C(porig) (for t → ∞) and the
asymptotic QFI (already plotted on its own in Fig. 2).
In the limit of short pulses T → 0 this ratio tends to the
value 1/2; curiously it is always 1/2 for the rising and
decaying exponentials. This has been proven exactly for
all pulse shapes except for Gaussian pulses, for which all
the quantities must be evaluated by solving the integrals

4 There is no unique way to define the duration of a pulse, since
most pulses are supported on an open interval. In order to make a
meaningful comparison, the definition of “pulse duration” used in
in Fig. 2 is the standard deviation of the single-photon probability
distribution |ξ(τ)|2 in absence of interaction. While this makes
the comparison more meaningful, it does not always correspond
to the intuitive notion of pulse duration when the support is finite,
e.g. for a rectangular pulse.
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Figure 3. Plot of the ratio between the FI C(porig) for photode-
tection in the original pulse mode and the asymptotic QFI,
for different pulse shapes (the legend “Exp” stands for both
rising and decaying exponential shape).

numerically. We conjecture this to be a general feature
of this metrological problem in the T → 0 limit, since the
details of the pulse shape should be less relevant in this
regime.
It is remarkable that for quantum light spectroscopy

with single-photon pulses, this simple detection strategy
yields a substantial fraction of the maximal information
available, quantified by the asymptotic QFI, about the
parameter. As we show in the next section, measuring the
photon in the original temporal mode has the advantage
that the information can be obtained rather rapidly after
the interaction (about femto- or picoseconds for ultrafast
pulses), without the need to wait for the atom to decay
(timescale of nanoseconds in standard atomic and molec-
ular systems). While this may be of limited appeal in
spectroscopy, it may be exploited in quantum information
processing.
Finally, one could in principle, optimize the pulse

shape to maximise the QSNR. Given the recent advances
in the experimental shaping of single-photon wavepack-
ets,e.g. [52–55], this could be a practically interesting
question.

2. Finite-time results

For finite t, the atom remains partially excited and
the overall atom-field state entangled, so the absorption
contribution C(pΓ) in (31) now plays a role 5. To highlight
the qualitative features in this case, we focus on a rectan-
gular pulse ξ(t) =

√
1/TΘ(t)Θ(T − t) supported on an

5 For real-valued ξ(t) that we consider, no additional information
would be available by having access to the global field-atom pure
state. In fact, there is no information encoded in the relative phase
of the state ψe|e〉|0P 〉+|g〉

∣∣ψg,P 〉 and it is easy to see that its QFI
is equal to the QFI [Do you mean the second term in (31)?] of the
pulse state (29) with Γ⊥ = 0, i.e. |ψe|2|0P 〉〈0P |+

∣∣ψg,P 〉〈ψg,P ∣∣.
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Figure 4. Plot of the classical and quantum SNR for the pa-
rameter Γ, for a rectangular single-photon pulse, with Γ⊥ = 0.
Top: ΓT = 2,bottom: ΓT = 1/20. The dashed lines represent
the absorption component Γ2C(pΓ), the dotted lines represent
the pure state contribution Γ2Q̃(|ψΓ〉) and the full lines rep-
resent the full QSNR Γ2Q(ρΓ) (the sum of both terms). The
dot-dashed lines represent the SNR Γ2C(porig) for photodetec-
tion in the original temporal mode. The shaded region shows
the pulse shape as a guide for the eye (not in scale on the
vertical axis). The dotted lines are hard to see. Also in Fig. 5.

interval of duration T 6, starting at t0 = 0, where Θ(x) is
the Heaviside step function. This choice makes both ana-
lytical calculations cleaner (see first row, last two columns
in Table. .. in Appendix ...) and the identification of the
beginning and the end of the pulse unambiguous.

In Fig. 4 we plot the two contributions to the QFI (31)
separately as a function of time, as well as the CFI C(porig)
obtained by detecting the photon in the original temporal
mode. For a pulse of duration comparable to the fluo-
rescence lifetime, ΓT = 2, the upper panel shows that
the total QFI approaches its asymptotic value by an in-
terplay of the two contributions and for large times only
the temporal-mode perturbation is relevant, as expected
from the preceding long-time analysis. The dot-dashed
line represents the information obtained by detecting the

6 For a rectangular pulse, T is unambiguously the “pulse duration”,
yet in Fig. (2), for comparison purposes, the pulse duration was
chosen instead as the standard deviation T/

√
12 of the corre-

sponding uniform distribution.
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Figure 5. Plot of the classical and quantum SNR. Absorption
contribution Γ2C(pΓ) (dashed blue), temporal-shape perturba-
tion contribution Γ2Q̃(|ψg,P 〉), whole QSNR Γ2Q(ρ∞Γ ) (solid
green, sum of the previous two) and SNR Γ2C(porig) for the
original temporal mode (dot-dashed red). Left: Γ⊥ = Γ/2;
right: Γ⊥ = 10Γ. Also make upper/lower like Fig. 4 for
consistency.

photon wavepacket in its initial temporal mode, and it
settles to a value around half seems more than 1/2?? of
the asymptotic QFI, as previously shown in Fig. (3). Af-
ter the pulse has finished interacting with the atom, this
information remains constant although the atom contin-
ues to emit spontaneously. [[This spontaneous emission is
into the mode we are measuring, so why is this constant?]]
The qualitative behaviour in this figure will be exhibited
by other pulse shapes that are well-localised.
The lower panel of Fig. 4 presents the results for a

much shorter pulse, ΓT = 1/20. In this case the photon
interacts with the atom for a short time and there is
only a small distortion to the photon wavepacket. This
is witnessed by the fact that the dotted line representing
the temporal-mode perturbation contribution Q̃(|ΨΓ〉) in-
creases only slightly while the pulse is interacting with the
atom (shaded region). On the other hand, during the in-
teraction most of the information is obtained by measuring
the absorption probability pΓ, which in this regime practi-
cally coincides with porig and we have C(pΓ) ≈ C(porig) in
this region of the plot. However, after the interaction is
over C(porig) remains unchanged, exactly as in the upper
panel, while C(pΓ) decreases and Q̃(|ΨΓ〉) increases as the
atom decays back to the ground state.

D. Free-space scenario

We now deal with a nonzero coupling to the additional
environmental field modes, i.e., Γ⊥ > 0. For simplicity, we
focus on asymptotic results and present results for a rect-
angular pulse; qualitatively similar results can be obtained
for other shapes. In Fig. 5 we show two exemplary cases,
one (left panel) where Γ⊥ is smaller but comparable to Γ,
Γ⊥ = Γ/2 and one (right panel) where the coupling to the
environment is significantly more relevant Γ⊥ = 10Γ. For
larger Γ⊥ the temporal-mode perturbation contribution
is less important and almost all the information can be
retrieved by restricting measurements to the incoming
temporal mode. [[The SNR is less than 1. This is for
M = 1. Scales as

√
M?]]
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Figure 6. Plot of the QSNR (solid lines) and of the classical
SNR Γ2C(porig) (dot-dashed lines) for ΓB = 10Γ (two lower
curves) and for perfect coupling ΓB = 0 (two top curves).
Inset: zoom on the region close to ΓT = 0.ΓB??

The parameter choice Γ⊥/Γ = 10 is intended to capture
a pulse interacting with an atom in free space, without
particular geometries to enhance the coupling. It is com-
parable to that for the Na D?? transition we consider
in Sec. VI. In general, for Γ⊥ � Γ the atom is coupled
more strongly with the vacuum environment than with
the pulse and after the excitation will predominantly
spontaneously emit into the environmental modes.

In Fig. 6 we compare the total QFI (including both con-
tributions from (31)) and the CFI of the original temporal
mode for Γ⊥/Γ = 10 with that for the perfect-coupling
case Γ⊥ = 0 considered in the previous section. As ex-
pected, a larger Γ⊥ decreases both the QFI and the CFI.
However, in the region of short pulses (shown in the inset),
the CFI C(porig) of the perfect coupling case follows closely
the CFI and the QFI of the curves for Γ⊥ = 10Γ. This
observation is confirmed more generally. Indeed using the
analytical expressions in Table ... of Appendix ... we can
show that

lim
Γ⊥→∞

lim
T→0

Q(ρΓ(Γ⊥), T )

C(porig(Γ⊥ = 0, T ))
= 1, (32)

where we have highlighted the dependence on the param-
eters Γ⊥ and T . [I’ve struggled a lot with the notation,
suggestions are welcome.] Notice that formally these lim-
its cannot be exchanged, since limΓ⊥→∞Q(ρΓ(Γ⊥)) = 0.

Physically, the above observation means the following:
The information obtained during the interaction between
the atom and the pulse is the same regardless of the pres-
ence of additional environment modes because the pulse
is so short7 that the spontaneous emission terms can be

7 For Γ⊥ > 0 a pulse as “short” if it interacts with the atom much
faster than the overall lifetime of the atom, i.e., T (Γ⊥ + Γ) =
TΓtot � 1.

neglected during this part of the dynamics. Moreover, in
this limit all the information on Γ is entirely retrieved by
considering only the original temporal mode; this moti-
vates the next section on more general quantum states.
However, by waiting until the atom decays by sponta-
neous emission, additional information can be obtained
if the emitted photon can be measured (Γ⊥ = 0 case)
but nothing more if it decays into inaccessible modes
(Γ⊥ � Γ).

IV. SHORT PULSES IN ARBITRARY STATES

[[Arbitrary: This is still ’single-mode’ as ξ is a function
of a single variable. Or does this apply to ξ(ω1, ...., ωl)
that can include entangled states etc.?]]

For short times t� 1/(Γ⊥ + Γ) the spontaneous emis-
sion of the atom, either back into the pulse mode or
into environmental modes orthogonal to the pulse mode
can be neglected. In that regime, for short pulses ξ(t)
with T � 1/(Γ⊥ + Γ), the evolution of the atom-field
state evolved according to the master-equation (8) can be
approximated by a unitary evolution obtained from time-
dependent Jaynes-Cummings (JC) interaction between
the pulse temporal mode and the atom

HJC(t) = i~
√

Γξ(t)
(
Aξσ+ −A†ξσ−

)
. (33)

In this limit the interaction with the two-level atom does
not modify the pulse temporal mode, but only affects
the quantum state of the field in this mode. The time-
dependence of the Hamiltonian is trivial and the solution
is the same as in the standard cavity-based JC model with
the substitution t 7→

∫ t
0
ξ(t′)dt′ = Gt.?? For an initial

state |ψ0〉 =
∑∞
k ψk|kξ〉|g〉, where |nξ〉 |k〉?? are the Fock

states (9) in the pulse mode, the evolved state is [57]

|ψ(t)〉 =− i
∞∑
n=0

sin
(√

ΓGt
√
n+ 1

)
ψn+1|e, nξ〉+

+

∞∑
n=0

cos
(√

ΓGt
√
n
)
ψn|g, nξ〉

=|e〉
∣∣∣ψ̃e(t)〉+ |g〉

∣∣∣ψ̃g(t)〉,
(34)

where we have introduced two unnormalized field states
for later convenience.
We have numerically checked the validity of this ap-

proximate model by employing the methods of Sec. II B,
as well as a different method based on the decomposition
into a truncated basis of orthonormal temporal modes [58].
This approximation is also consistent with the fact that
for intense classical? pulses of light interacting with a two-
level atom, Rabi oscillations can be observed in with??
the pulse temporal mode [23, 24, 27]. Finally, the method
of Sec. II B can be reformulated in a way that resembles
the JC interaction (33) for any pulse duration, at the cost
of including an additional interaction between the system
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and an extra orthogonal mode [59]. Indeed, we have also
checked numerically that in this reformulation the addi-
tional orthogonal mode remains essentially unpopulated
in the regime of validity of our approximation.
The main advantage of making this approximation is

that we can directly apply existing results regarding the
estimation of the coupling constant of the JC model [60].
Firstly, the overall atom-field QFI is proportional to the
variance of the generator of the unitary calculated over
the initial state and the time-dependent details of the
problem enter only as a multiplicative factor:

Q(|ΨAF (t)〉) = 4
G2
t

Γ
Var|ΨAF (0)〉

[
Aξσ+ −A†ξσ−

]
. (35)

For an arbitrary pulse shape, its duration can be fac-
tored out as ξ(t) = 1√

T
f
(
t−t0
T

)
, where f(x) is the scale-

invariant shape function [25], dimensionless and squared-
normalized

∫
dxf(x)2 = 1. A change of variable gives

Gt =
√
T
∫ (t+t0)/T

−t0/T dxf(x). This means that within this
approximation the global atom-field QFI Q(|ΨAF 〉) is
linear in the pulse duration T , and different shapes only
induce different proportionality constants.

Secondly, for an atom initially in the ground state and
any Fock state wavepacket |nξ〉, the QFI of the reduced
field state after the interaction is equal to the pure-state
QFI Q(|ΨAF 〉) of the composite field-atom system [60].
The same holds also for the reduced atomic state. This
is practically irrelevant as the atom cannot be measured
directly. Moreover, the reduced state of the field is always
diagonal in the Fock basis and photon counting is thus
the optimal measurement that attains the QFI.

In other words, for Fock-state wavepackets no informa-
tion is lost due to the impossibility of measuring the atom.
Counting the photons in the original pulse temporal-mode
after the interaction is optimal, at least in the regime of
validity of the JC approximation. This resembles an analo-
gous result in absorption spectroscopy using single-photon
states [10] (formally equivalent to loss estimation [61]),
where even being able to measure lost photons would
yield no additional information about the absorption (loss)
rate [18]. The analogy between the two problems goes
further, since for both Γ estimation (in the approximate
JC regime) and bosonic loss estimation, the QFI of a Fock
probe state is proportional to the number of photons.
Thus, the fundamental quantum limit set by n single-
photon states or a single n-photon state are identical.
For other states of the field, however, we need to take

the partial trace over the atomic system, leading us to
the rank-2 field state

ρF (t) =
∣∣∣ψ̃e(t)〉〈ψ̃e(t)∣∣∣+

∣∣∣ψ̃g(t)〉〈ψ̃g(t)∣∣∣
= pe(t)|ψe(t)〉〈ψe(t)|+ pg(t)|ψg(t)〉〈ψg(t)|,

(36)

for which can employ the formulas Eqn.numbers ??men-
tioned in Sec. II and reported in Appendix B.
The approximate hamiltonian (33) will be applied to

estimating the dipole moment of the Na D?? transition
in Sec. VI.

V. ENTANGLED BIPHOTON PROBES

[[Add a simple diagram of the setup.]]
We consider a so-called linear biphoton setup as in

Fig. ?? in which only one of the two spatially distinct
modes of an initial entangled biphoton state interacts with
the atom, i.e. the signal, while the other mode acts as the
idler. This is the simplest instance of entangled light for
spectroscopy - the archetypal instance of quantum light
spectroscopy [1, 3, 62]. Similar setups have already been
employed to show some form of quantum advantage in
experiments [@Aiman: please add the relevant references].
[[Experiments or proposed experiments?]] Our objective
is to quantify the performance of entangled states in the
simple spectroscopic setup of Fig. ??.
Theoretically, the statistics generated by a setup rely-

ing only on coincidence measurements can be reproduced
exactly without the need of entanglement, as pointed out
by Stefanov [16]. Moreover, as only one of the entangled
photons interacts with the sample in Fig. ??, the setup
is formally equivalent to the use of noiseless ancillas in
quantum metrology. Therein, it is well-known that entan-
glement with ancillas is not advantageous in the case of
noiseless unitary dynamics, but may can be useful in pres-
ence of noise [63]. The exact conditions when noiseless
ancillas are advantageous in quantum metrology remain
unknown [64].

We limit ourselves to the case of perfect coupling (Γ⊥ =
0), but stress that in the short pulse limit spontaneous
emission may be neglected. Thus a nonzero coupling
with additional environment modes would not change the
results. [[What is the definition of pulse width? Because of
time-freq. entanglement, there is none?]] As the biphoton
pulse becomes entangled with the atom, the dynamics
of the field is not unitary and the initial entanglement
between the signal and idler modes could be useful.
In this Section, we show this to be untrue for estimat-

ing the coupling parameter Γ, under some assumptions
on the joint spectral amplitude that include those com-
monly generated by parametric down-conversion (PDC).
Different conclusions are reached for the estimation of
different atomic parameters. These will be presented in
forthcoming works [65, 66].
The biphoton states obtained from a low-gain PDC

process is given by

|11ent〉 =

∫
dωsdωiΦ̃(ωs, ωi)a

†
s(ωs)a

†
i (ωi)|00〉, (37)

where Φ̃(ωi, ωs) is the joint spectral amplitude (JSA) de-
pends on the envelope of the pump field and the phase-
matching function [67] ωs, ωi denote the signal an idler
frequencies respectively.
For the moment, we do not specify a particular form,

but in the next section we will consider a realistic Gaussian
spectral density.
The JSA admits a Schmidt decomposition in terms of
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discrete Schmidt modes:

|11ent〉 =
∑
k

rkÂ
†
kB̂
†
k|00〉 =

∑
k

rk|ξk〉|φk〉, (38)

where Â†k and B̂†k are bosonic creation operators for each
Schmidt mode of the signal and idler modes respectively,
|ξk〉, |φk〉 are the respective single-photon wavepackets
and rk are positive Schmidt weights [68, 69]. For instance,
a Gaussian JSA has Hermite-Gauss functions as Schmidt
modes [70].
As we have done so far, we assume that the carrier

frequency ω̄s of the signal photon [[How do we define
the frequency of one half of the entangled state?]] is
equal to the transition frequency of the two-level atom
and that the joint spectral density is sufficiently narrow-
band around the central carrier frequencies ω̄s and ω̄i.
In analogy with the single-photon case, we assume the
time-domain envelope Φ(ti, ts), i.e. the Fourier transform
of Φ̃(ωi, ωs)e

−i(ω̄iti+ω̄sts), to be real-valued so that we can
choose the time-envelopes of the signal photon Schmidt
modes ξk(t) to be real valued as well (additional global
phase factors that may arise from the decomposition can
be included in the definition of the idler photon modes).
We can thus take the same approximations explained in
Sec. II and consider and interaction-picture Hamiltonian
identical to (5) with the substitution a(t) 7→ as(t)⊗1i, i.e.
only the signal mode interacts with the atom. By linearity
we can thus employ the previous single-photon solution
given by Eqs. (25), (26) and (27) (here for Γ⊥ = 0) and
apply it to the wavepackets ξk(t) of the signal mode:

U(t)⊗ 1i|g〉|11ent〉 =
∑
k

rk(U(t)|g〉|ξk〉)|φk〉

=
∑
k

rk(ψe,k(t)|e〉|0〉s + |g〉|ψg,k(t)〉)|φk〉.
(39)

Since the idler photons modes are orthogonal, i.e.
〈φj |φk〉 = δjk and all the amplitudes ψe,k(t), ψg,k(t, τ)
are real we have the following chain of equalities:

QΓ(|11ent(t)〉) =
∑
k

r2
kQ(ψe,k(t)|e〉|0〉+ |g〉|ψg,k(t)〉)

=
∑
k

r2
kQ
(
ψe,k(t)2|0〉〈0|+ |ψg,k(t)〉〈ψg,k(t)|

)
= Q

(∑
k

r2
k

[
ψe,k(t)2|0〉〈0|+ |ψg,k(t)〉〈ψg,k(t)|

]
⊗ |φk〉〈φk|

)
.

(40)

The first equality means that no information on the pa-
rameter is stored in the coherences between different
Schmidt modes and thus the idler modes act only as a
classical register for the labels k. The second equality
is the same observation we have made previously: for
single-photon wavepackets ξk(t) ∈ R the whole atom-field
information on Γ is fully contained in the field reduced
state and the partial trace over the atom subsystem pre-
serves the QFI. In the third equality, we have simply

stressed that this corresponds to the QFI of an initial
classically correlated state

∑
k r

2
k|ξk〉〈ξk| ⊗ |φk〉〈φk| in-

stead of an entangled state. This is equivalent to probing
the atom with randomly chosen single photon states |ξk〉
with probability r2

k, but retaining the knowledge on each
value k, e.g. detecting the idler photons in the Schmidt
modes to perform heralded state preparation of single-
photon wavepackets of the signal mode. If the knowledge
on the values k is not available one is left with the mixed
single-photon state

∑
k r

2
k|ξk〉〈ξk| obtained by tracing out

the idler mode. Such a spectrally mixed single-photon
state yields in general less information on Γ as shown by
the convexity property of the QFI (24). This is true also
in the asymptotic limit t → ∞: even if the final states
in the mixture are pure and orthogonal 〈ψ∞g,k|ψ∞g,j〉 = δjk,
they do not remain orthogonal by changing slightly the
parameter value, i.e. 〈ψ∞g,k|∂Γψ

∞
g,j〉 6= 0.

Since the QFI (40) is a convex sum of the QFI of
the different Schmidt-modes we immediately see that in
principle it is always better to prepare deterministically
the single-photon wavepacket in the mode ξk with the
largest QFI maxkQ(|ψe,k(t)|2|0〉〈0| + |ψg,k(t)〉〈ψg,k(t)|).
This clearly shows that entanglement is not a fundamental
resource, since there is always a single-photon wavepacket
that gives better precision. However, we note that it could
be easier or more practical to implement entangled-state
strategies rather than some theoretically superior non-
entangled one. To make things more concrete, in the next
section we show that for a realistic Gaussian joint spectral
density coming from PDC, the additional entanglement
actually decreases the overall QFI and it is always better
to employ a Gaussian single-photon wavepacket.

VI. DIPOLE MOMENT ESTIMATION OF A
SODIUM ATOM IN FREE SPACE

We consider again the physical light-matter interaction
Hamiltonian originally introduced in Sec. II, since here
we rephrase estimation of Γ to the more physical problem
of estimating the dipole-moment µ = µeg · ε (we further
assume the polarization vector is directed in the same
direction as the dipole-moment vector). This parameter
is related to the pulse coupling rate we have considered so
far as Γ = µ2A(ω̄)2, where we assume that the constant
A(ω̄) =

√
ω̄/(4π~ε0cA) of the propagating field is known,

so that estimating Γ or µ are formally equivalent problems.
To obtain concrete numbers, we use the experimen-

tal data reported in Ref. [71] for the D2 transition of
a sodium atom. Specifically, we set the dipole moment
µ = 2.988 · 10−29C · m = 1.868 · 10−8e · cm, the tran-
sition frequency ω0 = 2π · 508.333THz (also equal the
carrier frequency of the pulse, since resonance is as-
sumed throughout the whole paper) and the decay con-
stant Γtot = 61.542 · 106s−1 corresponding to a lifetime
1/Γtot = 16.249ns. We compute the value of A(ω̄) by
considering the transverse quantisation area to be propor-
tional to the effective scattering of the light σ ∝ λ2

0/2π,
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Figure 7. QFI and excitation probability for different states

with λ0 the central wavelength of the light. With these pa-
rameter values, we obtain the ratio Γ⊥/Γ = 11.56,[@Eva:
please double check] similar to the value previously con-
sidered in Sec. (III); the decay rate into the perpendicular
modes is obtained by subtracting the decay rate into the
propagating pulse modes from the total free-space decay
rate Γ⊥ = Γtot − Γ. [This was not originally done in
Eva’s thesis/paper. She was considering Γ⊥ = Γtot, using
my notation. I think it must be done to be consistent
though.]
We consider here an ultrashort Gaussian pulse with

T = 0.15ps, which puts us well into the short-pulse regime
defined previously: TΓtot = 9.2313 · 10−6 and TΓ =
7.34995 · 10−7[@Eva: please double check this too] and
we can thus neglect all spontaneous emission effects by
considering the dynamics of the system up to shortly after
the interaction, and employ the results of Sec. IV. This
is also the reason why we can neglect the fact that Γ⊥ is
also proportional to µ2; in this regime this contribution

is totally negligible8

VII. DISCUSSION AND CONCLUSIONS

In this work we have studied a paradigmatic problem
in quantum spectroscopy, the estimation of the dipole
moment of a two-level atom, with the tools of quantum
estimation theory and quantum metrology. We have
employed fully quantum model of light-matter interaction,
considering propagating pulses of quantum light. Even
for the simplest quantum system, a two-level atom, the
theoretical description of the evolution of the light is
rather involved, since both the quantum state and the
modal structure are affected by the interaction. From
the perspective of quantum estimation theory we have
highlighted that different sources of information about
the parameter.

[Add summary of the results]
An important assumption we have made in this work

is that the pulses are perfectly resonant, i.e. the carrier
frequency is identical to the transition frequency of the
two-level atom. Going beyond this assumption is possible,
but warrants a more detailed discussion, since the problem
is closely connected to the related problem of estimating
the transition frequency of the atom. However, we have
preliminary results showing that the resonant case is
indeed the most advantageous for atomic and molecular
[is this correct @Aiman?] parameter estimation [65, 66]

To conclude, this work is a first step towards the timely
goal of understanding quantum spectroscopy more deeply
thanks to rigorous precision bounds from estimation the-
ory. In the future it will be important to extend this
analysis to molecular systems that also undergo a non-
Markovian dynamics due to the presence of a phononic
bath, see e.g. [25].
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Appendix A: Equivalence between spontaneous emission into many modes or a single mode

[This Appendix is probably not really needed, but I originally wrote it to convince myself the model was appropriate
and equivalent to [25].] Let us keep it for completeness.
A two-level atom in free space can be described as interacting with a discrete set of infinitely many modes of

the electromagnetic field. With the usual dipole and Markovian approximations (explained in the main text) the
interaction-picture Hamiltonian is

HI(t) =− i
√

ΓtotηP
(
σ−a(t)† − σ+a

†(t)
)

− i
∑
j

√
Γtotηj

(
σ−aj(t)− σ+a

†
j(t)
)
. (A1)

In this expression Γtot is the standard Wigner-Weisskopf spontaneous-emission rate in free space, which could be
suitably modified to model emission of radiation in a different propagating medium, while the parameters ηl > 0
are geometric factors that determine the coupling of the atom with the mode l, see for instance Ref. [25] for a more
in-depth discussion. In particular, we have separated the term corresponding to the interaction with the travelling
pulse mode, which we assume to be the only experimentally accessible one. The others modes are initially in the
vacuum and we treat them as an inaccessible, i.e. the environment degrees of freedom. For this reason, it is more
convenient to treat them as a single collective mode, defined as

b(t) =
∑
j

√
ηj∑
j′ ηj′

aj(t), (A2)
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and satisfying [b(t), b†(t′)] = δ(t− t′) so that we can rewrite the Hamiltonian (7) used in the main text with Γ = ΓtotηP
and Γ⊥ = Γtot

∑
j ηj .

Appendix B: QFI of a rank-2 state

We consider the rank-2 density matrix

ρµ =
∣∣∣ψ̃e〉〈ψ̃e∣∣∣+

∣∣∣ψ̃g〉〈ψ̃g∣∣∣, (B1)

and we denote with B the (generally nonorthogonal) basis formed by these two vectors and their derivatives

B = {
∣∣∣ψ̃e〉, ∣∣∣ψ̃g〉, ∣∣∣∂µψ̃e〉, ∣∣∣∂µψ̃g〉}. (B2)

with the following Gramiam matrix

GB =



〈
ψ̃e

∣∣∣ψ̃e〉 〈
ψ̃e

∣∣∣ψ̃g〉 〈
ψ̃e

∣∣∣∂Γψ̃e

〉 〈
ψ̃e

∣∣∣∂Γψ̃g

〉〈
ψ̃g

∣∣∣ψ̃e〉 〈
ψ̃g

∣∣∣ψ̃g〉 〈
ψ̃g

∣∣∣∂Γψ̃e

〉 〈
ψ̃g

∣∣∣∂Γψ̃g

〉〈
∂Γψ̃e

∣∣∣ψ̃e〉 〈
∂Γψ̃e

∣∣∣ψ̃g〉 〈
∂Γψ̃e

∣∣∣∂Γψ̃e

〉 〈
∂Γψ̃e

∣∣∣∂Γψ̃g

〉〈
∂Γψ̃g

∣∣∣ψ̃e〉 〈
∂Γψ̃g

∣∣∣ψ̃g〉 〈
∂Γψ̃g

∣∣∣∂Γψ̃e

〉 〈
∂Γψ̃g

∣∣∣∂Γψ̃g

〉

. (B3)

Assuming that B is a basis means that the vectors must be linearly independent and thus GB invertible. While the
linear independence of |ψe〉 and |ψg〉 is implied by the assumption that ρΓ is rank-2, the linear independence of the
whole basis B is as an extra assumption in this derivation, but it is valid for the applications considered in this paper.

Using the notation of Ref. [47] we can represent operators as matrices expressed on the basis B and Eq. (21) becomes

2∂Γρ
B = LBΓG

B
Γρ
B
Γ + ρBΓG

B
ΓL
B
Γ . (B4)

This equation can be solved efficiently by using block vectorization [46, 47]. Once a solution is found, the QFI can be
evaluated as

Q(ρΓ) = Tr
[
LBΓG

B∂Γρ
B
ΓG
B] (B5)

For this particular problem??? Refer to Eqn./Sec in main text. the density matrix and its derivative have a very
simple form

ρB =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ∂Γρ
B =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (B6)

and the Lyapunov equation can be solved analytically to obtain an explicit, albeit complicated, expression for the QFI
that depends only on the matrix elements of GB.

Q(ρΓ) =
−4

∆(G11 +G22)

{
∆
[
(ImG13 − ImG24)2 + (ImG14 + ImG23)2

]
+ 4∆G11(ImG33 + ImG44) + 4∆G22(ImG33 + ImG44)

− 4(ImG13)2G2
22 + 8 ImG13 ReG12G22(ImG14 + ImG23) + 8 ImG13 ImG12G22(ReG23 − ReG14)

− 4G11G22

[
2 ImG13 ImG24 + (ReG14 − ReG23)2

]
+ 8 ImG12 ReG12(ImG14 + ImG23)(ReG14 − ReG23)

+ 8 ImG24 ReG12G11(ImG14 + ImG23)

− 4(ReG12)2(ImG14 + ImG23 + ReG14 − ReG23)(ImG14 + ImG23 − ReG14 + ReG23)

+ 8 ImG12 ImG24G11(ReG23 − ReG14)− 4(ImG24)2G2
11

}
,

where ∆ = G11G22 − |G12|2 > 0 is the determinant of the first diagonal block of GB and the superscript B has been
suppressed for compactness. Where is this used in the main text?



17

Appendix C: Explicit check of single photon states normalization

As in the rest of the manuscript we assume real valued pulse amplitudes ξ(t′) so that we deal with real wavefunctions.
Here we consider the case Γ⊥ = 0 for simplicity. The amplitude of the excited atomic state is

ψe(t) = −
√

Γ

∫ t

−∞
dt′e−

Γ
2 (t−t′)ξ(t′) (C1)

and the corresponding probability is

ψe(t)
2 = Γ

(∫ t

−∞
dt′e−

Γ
2 (t−t′)ξ(t′)

)2

= Γe−Γt

(∫ t

−∞
dt′e

Γ
2 t
′
ξ(t′)

)2

. (C2)

The pulse component is

|ψg,P (t)〉 =

∫ ∞
−∞

dτ
(
ξ(τ) +

√
ΓΘ(t− τ)ψe(τ)

)
a†P (τ)|0P 〉 (C3)

with modulus squared

〈ψg(t)|ψg(t)〉 =

∫ ∞
−∞

dτ
(
ξ(τ) +

√
ΓΘ(t− τ)ψe(τ)

)2

=

∫ ∞
−∞

dτξ(τ)2 +

∫ t

−∞
dτ
(

Γψe(τ)2 + 2
√

Γψe(τ)ξ(τ)
)

= 1 + Γ2

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ
2 (τ−t′)ξ(t′)

)2

− 2Γ

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ
2 (τ−t′)ξ(t′)

)
ξ(τ).

(C4)

We now show that the two terms except the unity equals −ψe(t)2 by recognizing a derivative inside the integral.

Γ2

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ
2 (τ−t′)ξ(t′)

)2

− 2Γ

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ
2 (τ−t′)ξ(t′)

)
ξ(τ)

=Γ

∫ t

−∞
dτ

[
Γe−Γτ

(∫ τ

−∞
dt′e

Γ
t
′
ξ(t′)

)2

− 2e−
Γ
2 τ

(∫ τ

−∞
dt′e

Γ
2 t
′
ξ(t′)

)
ξ(τ)

]

=Γ

∫ t

−∞
dτ

[
Γe−Γτ

(∫ τ

−∞
dt′e

Γ
t
′
ξ(t′)

)2

− e−Γt d

dτ

(∫ τ

−∞
dt′e

Γ
2 t
′
ξ(t′)

)2
]

=− Γ

∫ t

−∞
dτ

d

dτ

[
e−Γτ

(∫ τ

−∞
dt′e

Γ
2 t
′
ξ(t′)

)2
]

= −Γe−Γt

(∫ t

−∞
dt′e

Γ
2 t
′
ξ(t′)

)2

.

(C5)

The reasoning when Γ⊥ > 0 is completely analogous.

Appendix D: Single-photon QFI

We can rewrite the QFI in terms of the unnormalized state
∣∣∣ψ̃Γ

〉
=
√

1− pΓ|ψΓ〉, satisfying
〈
ψ̃Γ

∣∣∣ψ̃Γ

〉
= 1 − pΓ

and |∂ΓψΓ〉 = 1√
1−pΓ

∣∣∣∂Γψ̃Γ

〉
+ ∂ΓpΓ

2(1−pΓ)3/2

∣∣∣ψ̃Γ

〉
and substituting this expression in the third term of (31) we obtain an

alternative expression for the QFI

QΓ = (∂ΓpΓ)2/pΓ + 4
〈
∂Γψ̃Γ

∣∣∣∂Γψ̃Γ

〉
(D1)

where the equivalence holds because〈
∂Γψ̃Γ

∣∣∣∂Γψ̃Γ

〉
= (1− pΓ)〈∂ΓψΓ|∂ΓψΓ〉+

(∂ΓpΓ)2

4(1− pΓ)
(D2)
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The form in Eq. (D1) is particularly convenient, since we can immediately use the unnormalized state (27) without
renormalizing it first. These identities hold because we have 〈ψ|∂Γψ〉 = 0.

The terms appearing in (D1) can be evaluated more explicitly as follows (we use the notation ‖v‖2 = 〈v|v〉)

pΓ(t) = ψe(t)
2 + ‖ψg,E(t)‖2 (D3)

ψe(t)
2 = Γ

(∫ t

−∞
dt′e−

Γ+Γ⊥
2 (t−t′)ξ(t′)

)2

(D4)

‖ψg,E(t)‖2 = Γ⊥Γ

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ+Γ⊥
2 (τ−t′)ξ(t′)

)2

(D5)

∂ΓpΓ(t) =

(∫ t

−∞
dt′e−

Γ+Γ⊥
2 (t−t′)ξ(t′)

)2

+ 2Γ

(∫ t

−∞
dt′e−

Γ+Γ⊥
2 (t−t′)ξ(t′)

)(∫ t

−∞
dt′

(t′ − t)
2

e−
Γ+Γ⊥

2 (t−t′)ξ(t′)

)
+ Γ⊥

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ+Γ⊥
2 (τ−t′)ξ(t′)

)2

+ 2Γ⊥Γ

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ+Γ⊥
2 (τ−t′)ξ(t′)

)(∫ τ

−∞
dt′
t′ − τ

2
e−

Γ+Γ⊥
2 (τ−t′)ξ(t′)

)
(D6)

∥∥∥∂Γψ̃g,P

∥∥∥2

=

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ+Γ⊥
2 (τ−t′)ξ(t′)

)2

+ Γ2

∫ t

−∞
dτ

(∫ τ

−∞
dt′

(t′ − τ)

2
e−

Γ+Γ⊥
2 (τ−t′)ξ(t′)

)2

+ 2Γ

∫ t

−∞
dτ

(∫ τ

−∞
dt′e−

Γ+Γ⊥
2 (τ−t′)ξ(t′)

)(∫ τ

−∞
dt′

(t′ − τ)

2
e−

Γ+Γ⊥
2 (τ−t′)ξ(t′)

)
. (D7)

Appendix E: Single-photon wavepackets details

In Table I we report details for all the pulse shapes mentioned in Figs. 2 and 3, including the definition, the
excitation probability the QSNR and the SNR corresponding to a measurement in the original temporal mode; as
mentioned in the main text the relevant parameter for these quantities is the dimensionless product ΓT . For the
Gaussian pulse analytical expressions for the QFI are not available. The arrival time of all the pulses corresponds to
their peak, except for the rectangular pulse for which it corresponds to the beginning of the nonzero region.

Table I. Pulse shapes used in the main text. The arrival of all the pulses is at t = 0. Θ is the Heaviside step function.

Shape ξ(t) ξ(t)2-st. dev. pe(t) Γ2Q(ρ∞Γ ) Γ2C(porig)

Rectangular Θ(t)Θ(T−t)√
T

T√
12

4e−Γt
(
e

Γt
2 −1

)2

ΓT

8

(
2−e−

ΓT
2 (ΓT+2)

)
ΓT

2

(
ΓT−2e

ΓT
2 +2

)2

(
e

ΓT
2 −1

)(
e

ΓT
2 (ΓT−2)+2

)
Rising Exp 1√

T
e
t

2T Θ(−t) T 4ΓTe−Γt

(ΓT+1)2
Θ(t) 8ΓT

(ΓT+1)2
4ΓT

(ΓT+1)2

Decaying Exp 1√
T
e−

t
2T Θ(t) T

4ΓTe−Γt

(
e
t(ΓT−1)

2T −1

)2

(ΓT−1)2
8ΓT

(ΓT+1)2
4ΓT

(ΓT+1)2

Symmetric Exp 1√
T
e−
|t|
T T


4ΓTe

2t
T

(ΓT+2)2
t ≤ 0

4ΓTe−Γt

(
(ΓT+2)e

1
2
t(Γ− 2

T )−4

)2

[(ΓT )2−4]2
] t > 0

64ΓT
(ΓT+2)3

64ΓT
(ΓT+2)2(ΓT+4)

Gaussian 1√
T (2π)1/4 e

− t2

4T2 T
√

π
2

ΓTe
(ΓT )2−2Γt

2
(
erf
(
t

2T
− ΓT

2

)
+ 1
)2 n.a. n.a.
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