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Abstract

In this study, we propose a new method based on the large deviations theory to select

an optimal investment for a large portfolio such that the risk, which is defined as the prob-

ability that the portfolio return underperforms an investable benchmark, is minimal. As a

particular case, we examine the effect of two types of asymmetric dependence; 1) asymmetry

in a portfolio return distribution, and 2) asymmetric dependence between asset returns, on

the optimal portfolio invested in two risky assets. Furthermore, since our analysis is based

on a parametric framework, this allows us to formulate a close-form relationship between

the measures of correlation and the optimal portfolio. Finally, we calibrate our method

with equity data, namely S&P 500 and Bangkok SET. The empirical evidences confirm

that there is a significant impact of asymmetric dependence on optimal portfolio and risk.
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1 INTRODUCTION

The main purpose of this study is to develop the idea, that is proposed in Stutzer (2003), Stutzer

(2001a), Stutzer (2004), Stutzer (2000) and Stutzer (2001b), of using the large deviations theory

in the problem of optimal portfolio selection. That is, an investor who is averse to losing more

than an investable benchmark wants to choose an optimal portfolio that maximizes an expected

utility function. Thus, both the criterion of minimization of the likelihood that the portfolio

return falls less than a benchmark return and the criterion of maximization of an expected

utility function can be reconciled.

Value at Risk (VaR) is a measure of market risk of a particular portfolio; it basically shows

the maximum loss over a period at a given confidence level. Many new approaches have been

developed. Popular approaches include historical simulation techniques; techniques based on

parametric models such as Wong and So (2004), and methods on semiparametric estimations as

proposed by Fan and Gu (2003). Alternatively, the underperformance probability (see Stutzer,

2003) can be used as a measure to gauge risk; it shows the likelihood that the portfolio return

underperforms a given benchmark return. Hereby, the first purpose of this paper is to apply the

large deviations theory to estimate the optimal portfolio and the underperformance probability

(i.e., asymmetric risk) for a large portfolio in view of two types of asymmetry in equity returns

(Patton, 2004): 1) asymmetry in return distributions 2) asymmetric dependence between two

or more equity returns. We also propose a general approach to choose optimal investment in a

large number of assets. Although this method does not require the measures of correlation to

be estimated, those measures or their connections can be recovered as functions of the optimal

portfolio. Furthermore, we provide some large deviations theorems that state the asymptotic

relationship between asymmetric risk and expected utility. In particular, by imposing the asym-

metric Gamma distribution for the portfolio return, we can investigate the special case that there

are two risky assets. The Edgeworth expansion is used to examine the effect of skewnesses and

linear/nonlinear correlations on optimal portfolio and its asymmetric risk or risk bound, whereby

a formal test can be formulated.
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The second part of this paper first provides a brief review of portfolio construction results

under nonnormality and gives an elementary illustration of the large deviations principle that is

used to construct the asymptotic estimate of the upper tail or the lower tail of a portfolio return

distribution. Next, we provide major results on optimal portfolio selection for a large number of

assets and analysis of the effect of skewnesses and correlations.

The third part is devoted to simulation and empirical evidences. Equity data of Bangkok SET

index and S&P 500 index are used to confirm that there is an effect of skewnesses and nonlinear

correlations on optimal portfolio and asymmetric risk; and the optimal portfolio depends on

investor’s attitude toward risk.

The final part is an appendix containing proofs of the large deviations theorems given in the

main text.

2 OPTIMAL PORTFOLIO AND ASYMMETRIC RISK

2.1 Minimization of the Underperformance Probability

The method of optimal investment selection originates from Markowitz (1952) who defined opti-

mal portfolio as the proportion that maximizes the mean of a portfolio return for a given level of

risk as gauged by the standard deviation. Basically, this model assumes that the portfolio return

is normal distributed so that high moments such as skewness and kurtosis that are prevalent in

asset returns are disregarded (see e.g. Jondeau and Rockinger, 2003).

Another conventional procedure to construct an optimal portfolio is by using an expected

utility. The basic idea of this method is to maximize a non-decreasing and concave expected

utility function for an optimal investment strategy (see e.g. Ingersoll, 1987). Choosing an

appropriate functional form of investor’s utility is problematic. Many utility functions such

as the log utility, the power utility, and a class of HARA utility functions are proposed to

capture investor’s attitude to risk. Meanwhile, many authors such as Malevergne and Sornette

(2002) propose that the optimal portfolio can be selected by maximizing an approximation of

an expected utility function in terms of high order moments of wealth. However, since investors
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are often adverse to earning a portfolio return that is less than a benchmark return (Stutzer,

2000), the rational investment criteria should involve minimization of the likelihood that the

portfolio return underperforms a benchmark return. As Stutzer (2003) pointed out, the large

deviations theory can be used to reconcile the criterion of maximizing an expected utility and

that of minimizing the underperformance probability.

The underperformance probability that is sometimes interpreted as downside risk (see Menezes

et al., 1980) has the following properties:

• The underperformance probability is a special case of the lower partial moment CAPM

that was first proposed by Bawa (1978), then extended by Harlow and Rao (1989). In

this framework, the lower partial moment is defined as LPMn(r, P ) =
∫ r

∞(r − r̃)ndP (r̃).

Hence, the underperformance probability is obtained when n = 0. Bawa (1978) argues

that for an arbitrary probability distribution P , LPMn(r, P ), that is calculated at a fixed

boundary value (r), appears to be a relevant scalar risk measure instead of the usual

variance. This is due to the fact that there exists an intimate relationship between the

Second Stochastic Dominance (SSD) and the lower partial moment (LPM). [See Theorem

1 in Bawa (1978).] Based on the generalized LPM, the LPM CAPM was constructed by

Harlow and Rao (1989). They shows that the optimal market portfolios, that are not mean-

variance efficient, may be SSD efficient because the SSD simply picks up the downside risk

that is overlooked in the mean-variance framework; and uses those additional sources of

risk in order to rationalize the mean-variance inefficiency of the optimal market portfolios.

Since the SSD is based on the Von Neumann expected utility paradigm,1 the optimal

portfolio, that minimizes the underperformance probability whilst maximizing a skewness-

preference expected utility is obviously SSD efficient.

• The underperformance probability has many advantages over the methods of using higher

moments as measures of fluctuation. As Malevergne and Sornette (2002) pointed out, using

high order cumulants as the risk measures would result in irrational behavior of an agent

1The SSD is defined on a set of utility functions U such that U
′′′

> 0, U” < 0, and U
′

> 0. Kane (1982) shows
that these types of utility function support skewness preference.
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who tries to minimize risk. For instance, the fourth order cumulant C4 = µ4 − 3µ2
2, where

µ4 and µ2 are the fourth order central moment and the variance respectively, depicts an

agent who tries to avoid the large risks whilst ready to accept the smallest ones. Therefore,

the lower tail of a return distribution instead of its high order moments should be used as

a coherent measure of risk.

Let r̃i,t for i = 1, .., n and t = 1, .., T denotes the arithmetic asset return as given by

r̃i,t =
Pi,t − Pi,t−1

Pi,t−1
.

Throughout this paper, r̃i,t are assumed IID, thus the probability that the one period portfolio

return R
(α)
p,n (ω) =

∑n
i=1 αir̃i, where α = {α1, ..,αn} are investable proportions, exceeds a riskfree

interest rate is

P{R(α)
p,n (ω) > r} ! exp

{
− max

θ>0
1
′

α=1

{
θr − log E

[
exp{θR(α)

p,n (ω)}
]}}

. (1)

(1) is first established by Cramer. The RHS of (1) is also known as Chernoff’s bound. [See

Dembo and Zeitouni (1999, page 26).] The intuition of (1) is that the upper bound can be made

as close as possible to the upper tail of the return distribution by increasing the number of assets

(n). The duality between P{R(α)
p,n (ω) > r} and P{R(α)

p,n (ω) < r} can be seen in Figures i and ii.

Figure i shows that 1[r,∞)

(
R

(α)
p,n (ω)

)
≤ exp{θR

(α)
p,n (ω)}

exp{θr} if θ > 0. Therefore, the upper tail proba-

bility can be written as

P{R(α)
p,n (ω) > r}

(
= E[1[r,∞)(R

(α)
p,n (ω))]

)
≤ E

[exp{θR(α)
p,n (ω)}

exp{θr}

]

= exp
{
−
(
θr − log E[exp{θR(α)

p,n (ω)}]
)}

= exp{−Λn(r, θ,α)}, (2)

where Λn(r, θ,α) = θr − log E[exp{θR(α)
p,n (ω)}].

Now, we can make the RHS of (2) as close as possible to the LHS by maximizing the deviations
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function Λ(r, θ,α) w.r.t. θ and α, then sending (n) to infinity.

Similarly, Figure ii shows that the lower tail probability is

P{R(α)
p,n (ω) < r}

(
= E[1(∞,r](R

(α)
p,n (ω))]

)
≤ E

[exp{θR(α)
p,n (ω)}

exp{θr}

]

= exp{−Λn(r, θ,α)}, (3)

where θ < 0.

The RHS of (3) can be made as close as possible to the LHS by maximizing Λn(r, θ,α) w.r.t.

θ and α.

exp{θR
(α)
p,n (ω)}

exp{θr}

r

I[r,∞)(R
(α)
p,n (ω))

Figure i: θ > 0

exp{θR
(α)
p,n (ω)}

exp{θr}

r

I(−∞,r)(R
(α)
p,n (ω))

Figure ii: θ < 0

Furthermore, maximization of the RHS of (3) can be interpreted as the maximization of the

expected value of the exponential utility function

U(R(α)
p,n (ω)) = −

[
exp{R(α)

p,n (ω)}
exp{r}

]θ

,

which has the first and second derivatives

U
′

(R(α)
p,n (ω)) = −θ

[
exp{R(α)

p,n (ω)}
exp{r}

]θ

,

U”(R(α)
p,n (ω)) = −θ2

[
exp{R(α)

p,n (ω)}
exp{r}

]θ

.
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Hence, the Arrow-Pratt measure of absolute risk aversion is defined as

θAP = −
U”(R(α)

p,n (ω))

U ′(R(α)
p,n (ω))

= −θ.

In particular, when r̃i, with i = 1, ..n are IID, Theorem 1 states that the RHS of (1) or (3) can

be made as small as possible so that it can adequately approximate the LHS as (n) is sufficiently

large.

Theorem 1. Let r+ = arg limn−→∞ sup
1
′
α=1 Λn(r,α) = ∞. Then, for r ∈ (E[r̃1], r+) and a

given α s.t. 1
′

α = 1 we have

P{R(α)
p,n (ω) > r} %

1√
2π
∑n

1 α2
i θ(r)σ(r)

exp{−Λn(r,α)},

where R
(α)
p,n (ω) is defined in (1), Λn(r,α) = supθ>0

{
rθ − log E[exp{θR(α)

p,n (ω)}]
}

with θ(r) =

arg supθ>0

{
rθ − log E[exp{θR(α)

p,n (ω)}]
}

and σ2(r) = 1
θ′ (r)

.

Similarly, let r− = arg limn−→∞ inf
1
′
α=1 Λn(r,α) = ∞. Then, for r ∈ (r−, E[r̃1]) we have

P{R(α)
p,n (ω) < r} %

1√
2π
∑n

1 α2
i θ(r)σ(r)

exp{−Λn(r,α)},

where Λn(r,α) = supθ<0

{
rθ−log E[exp{θR(α)

p,n (ω)}]
}

with θ(r) = arg supθ<0

{
rθ−log E[exp{θR(α)

p,n (ω)}]
}

and σ2(r) = 1
θ′ (r)

.

Proof. See Appendix.

As shown in Remark 4.1 of Appendix A, in order to ensure that the deviations function for

the lower tail probability/the upper tail probability has a unique maximal value, the benchmark

(r) in Theorem 1 must be set below/above the mean value E[R(α)
p,n (ω)].

However, when there are two risky assets, Λ2(r, θ,α) is concave in both α and θ. This can

be seen by applying an Edgeworth expansion (see e.g. Cramer, 1946) to the moment generating
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function (mgf), i.e.,

E[exp{θR(α)
p,n (ω)}] = exp

{
θ(αE[r̃1] + (1 − α)E[r̃2]) +

θ2

2

(
α2V ar[r̃1] + (1 − α)2V ar[r̃2]

+ 2α(1 − α)Cov[r̃1, r̃2]
)

+ remainder
}

. (4)

In (4), the positions of θ and α can be exchanged without essentially changing the value of the

deviations function as long as we have a finite truncation.

Therefore, maximization of the expected exponential utility (or the deviations function) is

equivalent to minimization of the upper bound of the underperformance probability. That is

min
0<α<1

P{R(α)
p,n (ω) < r} ! − max

θ<0
0<α<1

−E
[exp{R(α)

p,n (ω)}
exp{r}

]θ

= min
θ<0

0<α<1

exp{−Λ2(r, θ,α)}

= exp
{
− max

θ<0
0<α<1

Λ2(r, θ,α)
}
. (5)

Since the number of risky assets are small the RHS of (5), that is defined as the risk bound,

may not be close enough to the LHS. Hence, the optimal portfolio (α̂) found in (5) can be

interpreted as the value that maximizes the expected exponential utility and minimizes the risk

bound simultaneously.

Remark 2.1. By the large deviations principle in (Dembo and Zeitouni, 1999), the benchmark

(r) in (5) must be set below E[R(α)
p,n (ω)] to ensure that a unique maximal value of the deviations

function exist. Since E[R(α)
p,n (ω)] is the population mean that depends on a unknown quantity

(α), the benchmark can empirically be set below the sample mean of a typical asset. Moreover,

regarding the upper tail of the return distribution as in (2), (r) must be set above E[R(α)
p,n (ω)] for

the existence of a unique maximal value.

Remark 2.2. As noted in (3), Prob{R(α)
p,n (ω) < r} can be approximated by maximizing the

deviations function w.r.t. α and θ. Stutzer (2004) advocates that the risk-aversion parameter

θAP = −θ can be determined by maximization of expected utility because the risk-aversion para-
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meter can be assumed to depend on a set of feasible investments. The mathematical logic behind

this idea is owed to the Gartner-Ellis theorem (see e.g. Dembo and Zeitouni, 1999, page 45) that

applies the Fenchel Legendre transformation to show that the RHS of (3) converges to the LHS

when (n) becomes large. However, by using asymmetry in the probability distribution of R
(α)
p,n (ω),

we can show a similar large deviations theorem without relying on the Fenchel Legendre transfor-

mation. Whereby, the conventional utility approach can be maintained; i.e., an expected utility

function should be only partially maximized. In another word, the expected utility function can be

maximized w.r.t. (α) for any appropriately chosen risk-aversion parameter. Consequently, the

risk bound in (5) is dependent on the risk aversion parameter (θ). This point is clarified in next

sections.

2.2 Implication of Asymmetry on Optimal Asset Allocation

Recent studies in the empirical finance literature have reported many evidences of two types of

asymmetry in equity returns. [See e.g. (Patton, 2004) and references therein.] The first is asym-

metry in asset return distributions that leads to asymmetry in the portfolio return distribution,

and the second is asymmetric dependence between two or more assets; i.e., asset returns appear

to be more highly correlated during market downturns than during market upturns.

Now we provide a simple example just to illustrate the role played by asymmetric dependence

and skewness in optimal investment problem. First, Let us define the first and second nonlinear

correlations between two asset returns r̃1 and r̃2 as

λ12 =
E
[
[r̃1 − E(r̃1)][r̃2 − E(r̃2)]2

]
√

E[r̃1 − E(r̃1)]2E[r̃2 − E(r̃2)]4
,

λ21 =
E
[
[r̃1 − E(r̃1)]2[r̃2 − E(r̃2)]

]
√

E[r̃1 − E(r̃1)]4E[r̃2 − E(r̃2)]2
.

(See Appendix B for further details of λ12 and λ21.) Without losing generality, let us assume

that E[r̃1] = E[r̃2] = 0. In this case, an investor always prefers to hold a portfolio with positive
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skewness and probably lower variance. Moreover, let us define the skewness as

skew3(α) =
µ3(α)

µ
3/2
2 (α)

,

where

µ3(α) = E[αr̃1 + (1 − α)r̃2]
3

= α3E[r̃3
1] + (1 − α)3E[r̃3

2] + 3α2(1 − α)E[r̃2
1 r̃2] + 3α(1 − α)2E[r̃1r̃

2
2],

µ2(α) = E[αr̃1 + (1 − α)r̃2]
2

= α2E[r̃2
1] + (1 − α)2E[r̃2

2] + 2α(1 − α)E[r̃1r̃2].

Suppose that E[r̃3
1] = E[r̃3

2] = −1, E[r̃2
1] = E[r̃2

2] = 1 and E[r̃1r̃2] = 0 we can compare investment

strategies in two different cases as follows

1. Two assets are non-correlated, i.e. E[r̃2
1 r̃2] = E[r̃1r̃

2
2] = 0, we shall examine two strategies

(a) α = 0.5: skew3(0.5) = −0.714, µ2(0.5) = 0.5

(b) α = 0.4: skew3(0.4) = −0.756, µ2(0.4) = 0.52.

Since Strategy (a) has a lower variance and a higher skewness, thus Strategy (a) is obviously

preferred to Strategy (b).

2. Two assets are non-linearly correlated, i.e. E[r̃2
1 r̃2] = −0.3 and E[r̃1r̃

2
2] = 0.9, we shall

examine two strategies

(a) α = 0.5: skew3(0.5) = −0.071, µ2(0.5) = 0.5

(b) α = 0.4: skew3(0.4) = 0.06, µ2(0.4) = 0.52.

Strategy (b) might be preferred to Strategy (a). Since a typical investor prefers posi-

tive skewness and dislikes high variance, he/she will select Strategy (b) if he/she is more

concerned about negative skewness.
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Hence, it is interesting to examine the implication of asymmetry in a portfolio return distribution

and asymmetric dependence on optimal asset allocation. First, a parametric model is proposed

to capture the asymmetric characteristics of portfolio return distribution. Next, an Edgeworth

expansion can be applied to pick out the nonlinear correlations of asset returns (λ12, λ21),

whereby we can examine their effects on an optimal portfolio choice and its risk bound.

2.3 Parametric Implementation

2.3.1 Large portfolio optimization technique

The deviations function in (5) is the Fenchel-Legendre transformation of the logarithm of the mgf.

If individual returns are uncorrelated, the mgf of the portfolio return is simply the product of the

individual mgfs, thus no assumption on the portfolio return distribution is necessary. A standard

optimization technique can then be applied to maximize the deviations function. However, when

individual returns are not uncorrelated, it is necessary to impose an explicit assumption on the

portfolio return distribution. This portfolio optimization technique is based on 1) maximizing

the expected log likelihood function of the portfolio return 2) maximizing the deviations function

in (5) w.r.t. the investment proportion (α) for a given degree of absolute risk aversion. Note

that the degree of absolute risk aversion should be chosen in the vicinity of the maximal values

(θ∗,α∗) of the deviations function so that the RHS of (5) can be tightened to the LHS by an

asymptotic argument.

In another word, maximization of an expected log likelihood function, that is interpreted as

the minus of the empirical entropy of the portfolio return, is equivalent to minimization of the

uncertainty level of the portfolio return. Moreover, as shown in (3), maximization of a deviations

function is equivalent to maximization of an expected utility function. Both can be associated

with minimization of the risk that the portfolio return may fall below an investable benchmark.

Suppose that there are (n) risky assets, the portfolio return is given by

R(α)
p,n (ω) =

n−1∑

i=1

αir̃i + (1 −
n−1∑

i=1

αi)r̃n

= α

′

r̃ + (1 − 1
′

α)r̃n,
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where α
′

= {α1, ..,αn−1} and r̃
′

= {r̃1, .., r̃n−1}.

Let us assume that R
(α)
p,n (ω) ∼ pdf

(
R

(α)
p,n (ω)|Θ

)
, where R

(α)
p,n (ω) stresses that Rp depends on

(α) and (n). Given a sample of size T {r̃t}T
t=1, the log-likelihood function can be written as

'(Θ,α) =
1

T

T∑

t=1

log pdf
(
R

(α)
p,n,t(ω)|Θ

)
.

Therefore, the ML estimate of Θ is

Θ̂(α) = arg max
Θ∈A

'(Θ,α) (6)

for a given α, where A is a compact set containing the true parameters, and Θ̂(α) stresses that

the ML estimate depends on a specific α. The ideal case is when Θ̂(α) is a function of α.

Otherwise, we can rely on an interpolation technique to find an approximation of Θ̂(α) that is

a polynomial of (α).

Furthermore, in view of (5) it can be shown that as the number of risky assets (n) is large,

we have

log P{R(α)
p,n (ω) < r} ≈− max

θ<0
α∈S

[
rθ − log exp{θR(α)

p,n (ω)}
]

= −max
θ<0
α∈S

Λn

(
r, θ, Θ̂(α)

)
,

where S is the set of feasible investments. (The formal result for asymmetric return distributions

will be given in the next section.)

For a given risk-aversion parameter (θ̂ < 0) in the vicinity of (θ∗) that is obtained by total

maximization of Λn

(
r, θ, Θ̂(α)

)
, the optimal portfolio is given as

α̂(θ̂) = arg max
α∈S

Λn

(
r, θ̂, Θ̂(α)

)
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⇔

α̂(θ̂) = arg
{

α :
∂Λ(r, θ̂, Θ)

∂Θ

∣∣∣
Θ=Θ(α)

∂Θ̂(α)

∂α

= 0
}

. (7)

Suppose that the distributions of r̃ are pdf(r̃i) with the central moments µi,m = E
[
r̃i − E[r̃i]

]m

for i = 1, .., n, then we have the following relationship

E
[
R(α̂)

p,n (ω) − E[R(α̂)
p,n (ω)]

]m
= E

[ n∑

i=1

(r̃i − µi,1)
]m

= E

[
n∑

i=1
i
k=1 mk=m

(
m

m1, ...,mi

) j=i∏

j=1

[α̂j(r̃j − µj,1)]
mj

]

=
n∑

i=1

α̂m
i E
[
r̃i − E[r̃i]

]m

+
n∑

i=2
i
k=1 mk=m

mi &=m, ∀ i=2,..,n

(
m

m1, ..,mi

) i∏

j=1

α̂
mj

j E
[ i∏

j=1

[r̃j − µj,1]
mj
]

=
n∑

i=1

α̂m
i µi,m +

n∑

i=2
i
k=1 mk=m

mi &=m, ∀ i=2,..,n

(
m

m1, ..,mi

) i∏

j=1

α̂
mj

j ρm1,..mi
, (8)

where ρm1,..mi
∀ i = 2, .., n are the measures of covariance.

Hence, for an optimal portfolio as given in (7), the individual central moments, and the central

moments of the pdf of Rα̂

p,n(ω) that is estimated by (6), the relationship among the measures of

correlation that is denoted by the second term in the RHS of (8) can be recovered by using (8).

Although this technique does not enable us to effectively recover the individual values of the high

order measures of correlation, an interesting implication of (8) is that although the individual

nonlinear correlations may not effect the optimal portfolio and the risk, an appropriate linear

combination of the individual linear correlation or the nonlinear ones, that contributes to a

decrease in the portfolio variance or an increase in the portfolio skewness, can have a strong

impact on the optimal portfolio and the risk. We will address this further in the empirical

analysis.

Note that when individual asset returns are independent, the probability distribution of the
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portfolio return R
(α)
p,n (ω) can be straightforwardly derived from the distributions of the individual

returns. For instance, the weighted sums of Normal, Gamma, or Chi squared random variables

are Normal, Gamma, or Chi squared distributed respectively. (See Rao, 1973 for the proofs.)

However, when asset returns are dependent, it is rather complicated to derive the distribution

of the portfolio return that is usually dependent on a specific assumption about dependence.

Thus, in this section we assume a certain parametric form for the portfolio return distribution

that depends on an investable portfolio (α). As a consequence, the measures of covariance can

be recovered from the relationship (8), thus explicitly depend on the optimal portfolio (α̂). An

explanation is that the probabilities of the extreme values of R
(α)
p,n (ω) are so small that they

contribute negligibly to the value of the average log-likelihood function (6). Thus, it is sensible

to choose a proportion (α̂) such that the frequency of realizations of R
(α)
p,n (ω) in the lower tail

of the portfolio return distribution is as small as possible. This is consequently equivalent to

selecting a portfolio (α̂) such that the underperformance probability is minimized whilst the

expected utility function is maximized. This idea can be summarized in the following remark.

Remark 2.3. The optimal portfolio (α̂) is the maximal value of the deviations function and the

minimal value of the frequency of the lower tail extreme values of R
(α)
p,n (ω). Thus, the recovered

measures of covariance are dependent on α̂.

In order to illustrate how this technique works, let us assume that there are two risky assets;

and that the portfolio return is normal distributed, i.e.,

pdf
(
R

(α)
p,2 (ω)

)
=

1√
2πσp

exp

{
−

1

2

[
R

(α)
p,2 (ω) − µp

σp

]2}
,

mgf(θ) = exp
{
θµp +

θ2

2
σ2

p

}
.
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Then, the ML estimates of µp and σp are

µ̂p(α) =
1

T

T∑

t=1

R
(α)
p,2 (ω),

σ̂2
p(α) =

1

T

T∑

t=1

(R(α)
p,2 (ω) − µ̂p(α))2,

∂µ̂p(α)

∂α
=

1

T

T∑

t=1

(r̃1t − r̃2t),

∂σ̂2
p(α)

∂α
=

2

T

T∑

t=1

(
R

(α)
p,2 (ω) − µ̂p(α)

)
(r̃1,t − r̃2,t).

Let θ∗ denotes the maximal value obtained by maximizing Λn(r, θ,α) w.r.t. α and θ. Then, for

a given θ̂ in the neighbourhood of θ∗ α̂(θ̂) is a solution to

θ̂
∂µ̂(α)

∂α
+

θ̂2

2

∂σ̂2(α)

∂α
= 0.

Hence, we have

α̂(θ̂) = −
A

B
,

where A and B are defined as

A = θ̂
{ 1

T
(2 −

1

T
)[

T∑

t=1

(r̃1t − r̃2t)]
2 −

T∑

t=1

(r̃1t − r̃2t)
2
}
−

T∑

t=1

(r̃1t − r̃2t),

B = θ̂
{ T∑

t=1

r̃2t(r̃1t − r̃2t) −
T 2 − T − 1

T

T∑

t=1

r̃2t

T∑

t=1

(r̃1t − r̃2t)
}

.

2.3.2 Asymmetric Gamma distribution

To capture asymmetry in a return distribution, we can use a mixture of two Gamma distributions.

This distribution basically represents that an asset return can be positive or negative with unequal

likelihoods. Furthermore, asset returns are more correlated during a trough than a boom. As

a result, a portfolio return distribution must have some sorts of asymmetry. The asymmetric

Gamma distribution is proposed by Knight et al. (1995) as a method to capture asymmetry in
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asset returns. In view of Knight et al. (1995), our analysis is based on two cases; 1) asset returns

are uncorrelated, and 2) asset returns are correlated. First, we state the statistical properties of

the asymmetric Gamma distribution and the (partially) symmetric Gamma distribution.

1. The Asymmetric Gamma Distribution

A return distribution is a mixture of two Gamma distributions, i.e.,

r̃ ∼ mixture
(
p, Gamma(γ1,κ1), Gamma(γ2,κ2)

)

if its values depend on whether return is positive or negative. The probability density is

given by

pdf(r̃) = pI[0,∞)(r̃)
1

γκ1
1 Γ(κ1)

r̃κ1−1 exp{−
r̃

γ1
} + (1 − p)I(−∞,0)(r̃)

1

γκ2
2 Γ(κ2)

(−r̃)κ2−1 exp{
r̃

γ2
},

where γ1 and γ2 are positive. Γ(•) is the standard Gamma function.

Given a sample of size T {r̃t}T
t=1, the likelihood function can be written as

T∏

t=1

pdf(r̃t) =
T∏

t=1

{
pI[0,∞)(r̃t)

1

γκ1
1 Γ(κ1)

r̃κ1−1
t exp{−

r̃t

γ1
} + (1 − p)I(−∞,0)(r̃t)

1

γκ2
2 Γ(κ2)

(−r̃t)
κ2−1 exp{

r̃t

γ2
}
}

. (9)

Since the RHS of (9) is the product of sums of the orthogonal terms, we have

T∏

t=1

pdf(r̃t) = p#{t∈[1,T ]: r̃t≥0}(1 − p)T−#{t∈[1,T ]: r̃t≥0}
∏

t∈{t∈[1,T ]: r̃t≥0}

{
I[0,∞)(r̃t)

1

γκ1
1 Γ(κ1)

r̃κ1−1
t exp{−

r̃t

γ1
}
} ∏

t∈{t∈[1,T ]: r̃t<0}

{
I(−∞,0)(r̃t)

1

γκ2
2 Γ(κ2)

(−r̃t)
κ2−1 exp{

r̃t

γ2
}
}

,

where #{t ∈ [1, T ] : r̃t ≥ 0} is the number of the nonnegative return realizations in the

sample.

Since the shifting probability (p) has the sample estimate p̂ = #{t∈[1,T ]: r̃t≥0}
T , the log likeli-
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hood function can be written as

'(γ1, γ2,κ1,κ2) = #{t ∈ [1, T ] : r̃t ≥ 0} log(p̂) + (T − #{t ∈ [1, T ] : r̃t > 0}) log(1 − p̂)

+ (κ1 − 1)
∑

t∈{t∈[1,T ]: r̃t≥0}

log(r̃tI[0,∞)(r̃t)) −
1

γ1

∑

t∈{t∈[1,T ]: r̃t≥0}

r̃tI[0,∞)(r̃t)

− #{t ∈ [1, T ] : r̃t ≥ 0}
(
κ1 log(γ1) + log(Γ(κ1))

)

+ (κ2 − 1)
∑

t∈{t∈[1,T ]: r̃t<0}

log
(
− r̃tI(−∞,0)(r̃t)

)
+

1

γ2

∑

t∈{t∈[1,T ]: r̃t<0}

r̃tI(−∞,0)(r̃t)

− #{t ∈ [1, T ] : r̃t < 0}
(
κ2 log(γ2) + log(Γ(κ2))

)
.

By taking derivatives of '(γ1, γ2,κ1,κ2) w.r.t. (γ1, γ2,κ1,κ2), the ML estimates (γ̂1, γ̂2, κ̂1, κ̂2)

are the solutions to






Γ
′

(κ1)
Γ(κ1) − log(κ1) =

T
t=1 log(r̃tI[0,∞)(r̃t))

#{t∈[1,T ]: r̃t≥0} − log
(∑T

t=1
r̃tI[0,∞)(r̃t)

#{t∈[1,T ]: r̃t≥0}

)
,

Γ
′

(κ2)
Γ(κ2) − log(κ2) =

T
t=1 log

(
−r̃tI(−∞,0)(r̃t)

)

#{t∈[1,T ]: r̃t<0} − log
(
−

T
t=1 r̃tI(−∞,0)(r̃t)

#{t∈[1,T ]: r̃t<0}

)
,

γ1 =
T
t=1 r̃tI[0,∞)(r̃t)

#{t∈[1,T ]: r̃t≥0}κ1
,

γ2 = −
T
t=1 r̃tI(−∞,0)(r̃t)

#{t∈[1,T ]: r̃t<0}κ2
.

(10)

Figure 2 shows that the functions f(κ) = the LHS− the RHS of the first two equations in

(10) are increasing, thus the ML estimates are the unique solutions to (10).

The asymptotic variances of (γ̂1, γ̂2, κ̂1, κ̂2) are the diagonal elements of the inverse of the

sample information matrix as given by

I = T inv





P ∗
κ2
1

P ∗
κ1γ1

P ∗
κ1γ2

P ∗
κ1,κ2

P ∗
γ1κ1

P ∗
γ2
1

P ∗
γ1γ2

P ∗
γ1κ2

P ∗
γ2κ1

P ∗
γ2γ1

P ∗
γ2
2

P ∗
γ2κ2

P ∗
κ2κ1

P ∗
κ2γ1

P ∗
κ2γ2

P ∗
κ2
2





(γ1,γ2,κ1,κ2)=(γ̂1,γ̂2,κ̂1,κ̂2)

,
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where

P ∗
γ2
1

= #{t ∈ [1, T ] : r̃t ≥ 0}
κ1

γ2
1

−
2

γ3
1

T∑

t=1

r̃tI[0,∞)(r̃t),

P ∗
γ2
2

= #{t ∈ [1, T ] : r̃t < 0}
κ2

γ2
2

+
2

γ3
2

T∑

t=1

r̃tI(−∞,0)(r̃t),

P ∗
κ2
1

= −#{t ∈ [1, T ] : r̃t ≥ 0}
Γ”(κ1)Γ(κ1) − (Γ

′

(κ1)2)

Γ2(κ1)
,

P ∗
κ2
2

= −#{t ∈ [1, T ] : r̃t < 0}
Γ”(κ2)Γ(κ2) − (Γ

′

(κ2)2)

Γ2(κ2)
,

P ∗
γ1κ1

= −#{t ∈ [1, T ] : r̃t ≥ 0}
1

γ1
,

P ∗
γ2κ1

= −#{t ∈ [1, T ] : r̃t ≥ 0}
1

γ2
,

P ∗
γ1κ2

= P ∗
γ1γ2

(
= P ∗

κ1γ2
= 0
)

where Γ
′

and Γ” are the first and the second derivatives of the standard Gamma function.

2. The (Partially) Symmetric Gamma Distribution (i.e. γ1 = γ2)

Let us assume that the scale parameters (γ1, γ2) are equal. Thus, in this case the mo-

ments become more symmetric than the other case. The case of complete asymmetry (i.e.,

both the scale parameters and the magnitude ones are the same) can be derived straightfor-

wardly. Therefore, by applying the conventional MLE method, the ML estimates (γ̂, ˆ̂κ1, ˆ̂κ2)

for the partially symmetric Gamma distribution are the solutions to






Γ
′

(κ1)
Γ(κ1) − log

(
#{t ∈ [1, T ] : r̃t ≥ 0}κ1 + #{t ∈ [1, T ] : r̃t < 0}κ2

)

= 1
#{t∈[1,T ]: r̃t≥0}

∑T
t=1 log(r̃tI[0,∞)(r̃t)) − log

∑T
t=1 r̃t

(
I(0,∞)(r̃t) − I(−∞,0)(r̃t)

)
,

Γ
′

(κ2)
Γ(κ2) − log

(
#{t ∈ [1, T ] : r̃t ≥ 0}κ1 + #{t ∈ [1, T ] : r̃t < 0}κ2

)

= 1
#{t∈[1,T ]: r̃t<0}

∑T
t=1 log(−r̃tI(−∞,0)(r̃t)) − log

∑T
t=1 r̃t

(
I(0,∞)(r̃t) − I(−∞,0)(r̃t)

)
,

γ =
T
t=1 r̃t

(
I(0,∞)(r̃t)−I(−∞,0)(r̃t)

)

#{t∈[1,T ]: r̃t≥0}κ1+#{t∈[1,T ]: r̃t<0}κ2
.

The asymptotic variances of (γ̂, ˆ̂κ1, ˆ̂κ2) are the diagonal elements of the inverse of the sample
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information matrix as given by

I = T inv





P ∗
κ2
1

P ∗
κ1γ P ∗

κ1,κ2

P ∗
γκ1

P ∗
γ2 P ∗

γκ2

P ∗
κ2κ1

P ∗
κ2γ P ∗

κ2
2





(γ,κ1,κ2)=(γ̂,ˆ̂κ1,ˆ̂κ2)

,

where

P ∗
γ2 = −

2

γ3

T∑

t=1

r̃t

(
I(0,∞)(r̃t) − I(−∞,0)(r̃t)

)
+ #{t ∈ [1, T ] : r̃t ≥ 0}

κ1

γ2
,

P ∗
γκ1

= −#{t ∈ [1, T ] : r̃t ≥ 0}
1

γ
,

P ∗
γκ2

= −#{t ∈ [1, T ] : r̃t < 0}
1

γ
,

P ∗
κ2
1

= −#{t ∈ [1, T ] : r̃t ≥ 0}
Γ”(κ1)Γ(κ1) − (Γ

′

(κ1))2

Γ2(κ1)
,

P ∗
κ2
2

= −#{t ∈ [1, T ] : r̃t < 0}
Γ”(κ2)Γ(κ2) − (Γ

′

(κ2))2

Γ2(κ2)
,

P ∗
κ1κ2

= 0.

The likelihood ratio (LR) test for the null hypothesis of partial asymmetry against the alternative

one of symmetry (i.e., γ1 = γ2) can be formulated as

LR = 2
(
'(γ̂1, γ̂2, κ̂1, κ̂2) − '(γ̂, ˆ̂κ1, ˆ̂κ2)

)
∼ χ2(1), (11)

where χ2(1) is the Chi squared distribution with 1 degree of freedom.

Next, let us assume that the portfolio return (R(α)
p,n (ω)) has the asymmetric Gamma distribu-

tion. We state Theorem 2 which shows that when the portfolio return distribution is asymmetric

such that the probability that the portfolio return is in the vicinity of zero is arbitrary small,

the RHS of (2) or (3) can be tightened as close as possible to the LHS. The theorem does not

require the deviations function totally maximized w.r.t. the investable proportions (α) and the

risk aversion parameter (θ). [See Stutzer (2003) for further details.] However, the risk aver-
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sion parameter is required to remain in the neighbourhood of the totally maximal value of the

deviations function.

Theorem 2. Suppose that the return of a portfolio of (n) risky assets

R(α)
p,n (ω) = α

′

r̃ + (1 − 1
′

α)r̃n,

where α
′

= (α1, ..,αn−1) and r̃
′

= (r̃1, .., r̃n−1), is asymmetrically distributed, we have

lim
n−→∞

1

n
sup
α∈S

log
(
P
(
R(α)

p,n (ω) > r
))

= −
{

θ̂r − lim
n−→∞

1

n
sup
α∈S

[
log E

P
(

R
(α)
p,n (ω)
)[ exp

{
nθ̂R(α)

p,n (ω)
}]]}

,

(12)

where S is a compact set of feasible investments, θ̂ is in the neighbourhood of θ∗, and P
(
R

(α)
p,n (ω)

)

is the portfolio return distribution. Furthermore,

θ∗ = arg lim
n−→∞

1

n
inf
α∈S

sup
θ∈(0,∞)

{
nθr − log E

P
(

R
(α)
p,n (ω)
)[ exp

{
nθR(α)

p,n (ω)
}]}

.

Similarly, we have

lim
n−→∞

1

n
inf
α∈S

log
(
P
(
R(α)

p,n (ω) < r
))

= −
{

θ̂r+ lim
n−→∞

1

n
sup
α∈S

[
−log E

P
(

R
(α)
p,n (ω)
)[ exp

{
nθ̂R(α)

p,n (ω)
}]]}

,

(13)

where θ̂ is in the neighbourhood of θ∗, where

θ∗ = arg lim
n−→∞

1

n
sup

θ∈(−∞,0)
α∈S

{
nθr − log E

P
(

R
(α)
p,n (ω)
)[ exp

{
nθR(α)

p,n (ω)
}]}

.

Proof. See Appendix.

If the logarithmic expectation in the RHS of (12) or (13) is a concave function of α in the

compact set S, (12) and (13) imply that if the portfolio is large enough, either maximization of the

overperformance probability or minimization of the underperformance probability is equivalent

to maximization of an expected utility function. However, if the logarithmic expectation in (12)
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or (13) is a monotonic function, the solution is trivial since the optimal portfolio lies on the

boundary of the investment set S.

As shown in Section 2.3.1, when a portfolio is very large, the number of individual central

moments increases; the structure of dependence becomes rather complicated. This can hinder

our analysis of the effects of individual skewnesses and correlations on optimal portfolio and

asymmetric risk. For ease of exposition, we analyze the case when there are two risky assets.

First, the case of two independent asset returns is analyzed.

2.3.3 Assets are uncorrelated

The mgf of R
(α)
p,2 (ω) = αr̃1+(1−α)r̃2, where r̃i ∼ mixture

(
pi, Gamma(γi,1,κi,1), Gamma(γi,2,κi,2)

)

for i = 1, 2 as defined in Section 2.3.2, is given by

mgf(θ,α) = p1p2
1

(1 − θαγ1,1)κ1,1(1 − θ(1 − α)γ2,1)κ2,1

+ (1 − p1)(1 − p2)
1

(1 + θαγ1,2)κ1,2(1 + θ(1 − α)γ2,2)κ2,2

+ p1(1 − p2)
1

(1 − θαγ1,1)κ1,1(1 + θ(1 − α)γ2,2)κ2,2

+ p2(1 − p1)
1

(1 + θαγ2,1)κ2,1(1 − θ(1 − α)γ1,2)κ1,2
, (14)

where the parameters (γi,1,κi,1, γi,2,κi,2) for i = 1, 2 can be estimated from actual data by using

the procedures described in Section 2.3.2.

To study the effects of the individual skewnesses or all the other high order moments of

R
(α)
p,2 (ω) on the optimal portfolio and the risk bound, we need to use some Edgeworth expansions

of the mgf. The second order Edgeworth expansion (i.e., the mgf is truncated up to the second
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moment) is given by

E2(θ,α) = exp
{

θE[R(α)
p,2 (ω)] +

1

2
θ2E
[
R

(α)
p,2 (ω) − E[R(α)

p,2 (ω)]
]2

+ remainder
}

= exp
{

θ
(
α(p1γ1,1κ1,1 − (1 − p1)γ1,2κ1,2) + (1 − α)(p2γ2,1κ2,1 − (1 − p2)γ2,2κ2,2)

)

+
1

2
θ2
(
α(p1γ

2
1,1κ1,1 + (1 − p2)γ

2
2,2κ2,2) + (1 − α)(p2γ

2
2,1κ2,1 + (1 − p2)γ

2
2,2κ2,2)

)

+ remainder
}

. (15)

The third order Edgeworth expansion (i.e., the mgf is truncated up to the third moment) is given

by

E3(θ,α) = exp
{

θE[R(α)
p,2 (ω)] +

1

2
θ2E
[
R

(α)
p,2 (ω) − E[R(α)

p,2 (ω)]
]2

+
1

6
θ3E
[
R

(α)
p,2 (ω) − E[R(α)

p,2 (ω)]
]3

+ remainder
}

= exp
{

θ
(
α(p1γ1,1κ1,1 − (1 − p1)γ1,2κ1,2) + (1 − α)(p2γ2,1κ2,1 − (1 − p2)γ2,2κ2,2)

)

+
1

2
θ2
(
α(p1γ

2
1,1κ1,1 + (1 − p2)γ

2
2,2κ2,2) + (1 − α)(p2γ

2
2,1κ2,1 + (1 − p2)γ

2
2,2κ2,2)

)

+
1

3
θ3
(
α(p1γ

3
1,1κ1,1 − (1 − p2)γ

3
2,2κ2,2) + (1 − α)(p2γ

3
2,1κ2,1 − (1 − p2)γ

3
2,2κ2,2)

)

+ remainder
}

. (16)

As justified in (3), the underperformance probability is always bounded from above by exp{−Λ2(r, θ,α)},

where Λ2(r, θ,α) = rθ − log
(
mgf(θ,α)

)
. (mgf(θ,α) and its approximations are given in (14),

(15), and (16) respectively.) Thus the upper bound is called the risk bound. To find an optimal

portfolios for a given risk-aversion degree θ̂, we can use the Newton Raphson Algorithm to max-

imize −mgf(θ̂,α), E2(θ̂,α), and E3(θ̂,α) respectively2. Now, let us specify the following models:

Model M1 in Table 1 is used as a benchmark for the other models. In order to test whether

there is an effect of individual skewnesses or other high order moments on the optimal portfolio

and the risk bound, we need to formulate a set of statistical hypotheses as follows:

2As shown in Burden and Fairs (1997), this algorithm has the degree of convergence N1/2, where (N) is the
number of iterations.
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Table 1: Model description
Model The deviations function is based on

M1 (15)
M2 (16)
M3 (14)

1. The null hypothesis that there is a sole effect of the skewnesses on the optimal portfolio is

H
(1)
0 : |α̂M2 θ̂) − α̂M1(θ̂)| ≤ ε, (17)

where ε is an arbitrary small positive number, and θ̂ is a given risk aversion parameter.

2. The null hypothesis that there are effects of the skewnesses and all the other high order

moments on the optimal portfolio is

H
(2)
0 : |α̂M3(θ̂) − α̂M1(θ̂)| ≤ ε. (18)

To test the null hypotheses H
(1)
0 and H

(2)
0 , The one-cell contingency table test can be used. [See

Rao (1973, page 393).] First, let us denote (N) samples of the same size (T ) drawn from the

true return distributions as
{{

(r̃(i)
1t , r̃

(i)
2t )
}T

t=1

}N

i=1
. However, we can split up a big sample of data

in to (N) small subsamples. Then, the t test for the hypothesis H
(1)
0 is given by

t =
o1 − e1

e1
+

o2 − e2

e2
∼ χ2(1), (19)

where

o1 = #{i ∈ [1, N ] : |α̂M2,i(θ̂) − α̂M1,i(θ̂)| ≤ ε},

o2 = N − o1,

e1 = 0.95N,

e2 = 0.05N,



24 Chu, Knight and Satchell.

where α̂M2,i(θ̂) for i = 1, .., N are the optimal portfolios estimated from the subsamples.

The t test for the hypothesis H
(2)
0 can also be formulated in a similar way. Furthermore, since

skewness and asymmetry are typical features of asset returns, we believe that they have a strong

effect on optimal portfolio, thus risk bound. This logic implies that the test for a sole effect

of skewnesses on the optimal portfolio is equivalent to the test for asymmetry in the portfolio

return distribution.

2.3.4 Assets are correlated

When asset returns are pairwise correlated, in view of Theorem 2 we need to specify a distribution

for the portfolio return so that the mgf can be evaluated. An appropriate candidate is the

asymmetric Gamma distribution as defined in Section 2.3.2. We apply the general theory given

in Section 2.3.1 to construct parametrically optimal portfolios from actual return data.

Following Section 2.3.3, assuming that there are two risky assets. The portfolio return is

R
(α)
p,2 (ω) = αr̃1+(1−α)r̃2, where R

(α)
p,2 (ω) ∼ mixture

(
p(α), Gamma(γ1(α),κ1(α)), Gamma(γ2(α),κ2(α))

)
.

Then, we have two different cases.

• The Asymmetric Portfolio Return Distribution

As shown in Section 2.3.2, for a given investable proportion (α), the ML estimates
(
γ̂1(α), κ̂1(α),
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γ̂2(α), κ̂2(α), p̂(α)
)
, which are the functions of α, are the solutions to (20)-(24), i.e.,

Γ
′

(κ1(α))

Γ(κ1(α))
− log

(
κ1(α)

)
=

∑T
t=1 log

(
R

(α)
p,2,t(ω)I[0,∞)(R

(α)
p,2,t(ω))

)

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) ≥ 0}

− log

(∑T
t=1 R

(α)
p,2,t(ω)I[0,∞)(R

(α)
p,2,t(ω))

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) ≥ 0}

)
, (20)

Γ
′

(κ2(α))

Γ(κ2(α))
− log

(
κ2(α)

)
=

∑T
t=1 log

(
− R

(α)
p,2,t(ω)I(−∞,0)(R

(α)
p,2,t(ω))

)

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) < 0}

− log

(
−
∑T

t=1 R
(α)
p,2,t(ω)I(−∞,0)(R

(α)
p,2,t(ω))

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) < 0}

)
, (21)

γ1(α) =

∑T
t=1 R

(α)
p,2,t(ω)I[0,∞)(R

(α)
p,2,t(ω))

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) ≥ 0}κ1(α)

, (22)

γ2(α) = −
∑T

t=1 R
(α)
p,2,t(ω)I(−∞,0)(R

(α)
p,2,t(ω))

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) < 0}κ2(α)

, (23)

p(α) =
#{t ∈ [1, T ] : R

(α)
p,2,t(ω) ≥ 0}

T
. (24)

• Partially Symmetric Portfolio Return Distribution

Let γ1(α) be equal to γ2(α) (i.e., γ(α) = γ1(α) = γ2(α)). Then the ML estimates
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(
γ̂(α), κ̂1(α), κ̂2(α), p̂(α)

)
are the solutions to (25)-(28), i.e.,

Γ
′

(κ1(α))

Γ(κ1(α))
− log

(
#{t ∈ [1, T ] : R

(α)
p,2,t(ω) ≥ 0}κ1(α) + #{t ∈ [1, T ] : R

(α)
p,2,t(ω) < 0}κ2(α)

)

=
1

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) ≥ 0}

T∑

t=1

log
(
R

(α)
p,2,t(ω)I[0,∞)(R

(α)
p,2,t(ω))

)

− log
T∑

t=1

R
(α)
p,2,t(ω)

(
I[0,∞)(R

(α)
p,2,t(ω)) − I(−∞,0)(R

(α)
p,2,t(ω))

)
, (25)

Γ
′

(κ2(α))

Γ(κ2(α))
− log

(
#{t ∈ [1, T ] : R

(α)
p,2,t(ω) ≥ 0}κ1(α) + #{t ∈ [1, T ] : R

(α)
p,2,t(ω) < 0}κ2(α)

)

=
1

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) < 0}

T∑

t=1

log
(
− R

(α)
p,2,t(ω)I(−∞,0)(R

(α)
p,2,t(ω))

)

− log
T∑

t=1

R
(α)
p,2,t(ω)

(
I[0,∞)(R

(α)
p,2,t(ω)) − I(−∞,0)(R

(α)
p,2,t(ω))

)
, (26)

γ(θ) =

∑T
t=1 R

(α)
p,2,t(ω)

(
I[0,∞)(R

(α)
p,2,t(ω)) − I(−∞,0)(R

(α)
p,2,t(ω))

)

#{t ∈ [1, T ] : R
(α)
p,2,t(ω) ≥ 0}κ1(α) + #{t ∈ [1, T ] : R

(α)
p,2,t(ω) < 0}κ2(α)

, (27)

p(α) =
#{t ∈ [1, T ] : R

(α)
p,n,t(ω) ≥ 0}

T
. (28)

Note that neither (20)-(24) nor (25)-(28) exist close form solutions. For brevity, we shall focus on

(20)-(24); (25)-(28) can be handled in a similar way. An interpolation technique can be applied

to estimate
(
γ̂1(α), κ̂1(α), γ̂2(α), κ̂2(α), p̂(α)

)
. Cubic splines (see e.g., Burden and Fairs, 1997)

can be used to fit these relationships.

Let
(
cs1(α), cs2(α), cs3(α), cs4(α), cs5(α)

)
denote the fitted cubic splines of the ML estimates

(
γ̂1(α), κ̂1(α), γ̂2(α), κ̂2(α), p̂(α)

)
resp. Then, the fitted mgf of R

(α)
p,2 (ω) is given by

m̂gf(θ,α) = cs5(α)

(
1

1 − θcs1(α)

)cs2(α)

+
(
1 − cs5(α)

)( 1

1 + θcs3(α)

)cs4(α)

. (29)

To study the effect of asymmetric dependence gauged by the nonlinear measures of correlation as

defined in Section 2.2 on the optimal portfolio we need to examine the sensitivity of the portfolio

skewness to changes in the nonlinear measures of correlation. Thus, some Edgeworth expansions
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of the fitted mgf can be used. The second order Edgeworth expansion is given by

Ê2(θ,α) = exp

{
θ
(
cs5(α)cs1(α)cs2(α) − (1 − cs5(α))cs3(α)cs4(α)

)

+
1

2
θ2
(
cs5(α)cs2

1(α)cs2(α) + (1 − cs5(α))cs2
3(α)cs4(α)

)
+ remainder

}
. (30)

The third order Edgeworth expansion is given by

Ê3(θ,α) = exp

{
θ
(
cs5(α)cs1(α)cs2(α) − (1 − cs5(α))cs3(α)cs4(α)

)

+
1

2
θ2
(
cs5(α)cs2

1(α)cs2(α) + (1 − cs5(α))cs2
3(α)cs4(α)

)

+
1

3
θ3
(
cs5(α)cs3

1(α)cs2(α) − (1 − cs5(α))cs3
3(α)cs4(α)

)
+ remainder

}
. (31)

As shown in Theorem 2, the optimal portfolios
(
α̂(θ̂)
)

are the maximal values of −m̂gf(θ̂,α),

−Ê2(θ̂,α), and −Ê3(θ̂,α) resp., where θ̂ is in the neighbourhood of θ∗ as defined in Theorem

2. The models are summarized in Table 2. For the (partially) symmetric case as defined by

Table 2: Model descriptions
Model The deviations function is based on

M4 (30)
M5 (31)
M6 (29)

(25)-(28), we can define the models M7 (the benchmark model), M8 (the third order Edgeworth

expansion), and M9 (the exact moment) in a similar way.

As pointed out in (8), although high order measures of correlations can not be recovered from

the central moments of the optimal portfolio return, their pairwise linear relationships can be

recovered, i.e.,

λ̂11 =
E
[
R

(α̂)
p,2 (ω) − E[R(α̂)

p,2 (ω)]
]2 − α̂2E

[
r̃1 − E[r̃1]

]2 − (1 − α̂)2E
[
r̃2 − E[r̃2]

]2
√

E
[
r̃1 − E[r̃1]

]2
E
[
r̃2 − E[r̃2]

]2 , (32)
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λ̂21α̂
2(1 − α̂)

√
E
[
r̃1 − E[r̃1]

]4
E
[
r̃2 − E[r̃2]

]2

+ λ̂12α̂(1 − α̂)2
√

E
[
r̃1 − E[r̃1]

]2
E
[
r̃2 − E[r̃2]

]4

=
2

3
√

6

(
E
[
R

(α̂)
p,2 (ω) − E[R(α̂)

p,2 (ω)]
]3 − α̂3E

[
r̃1 − E[r̃1]

]3 − (1 − α̂)3E
[
r̃2 − E[r̃2]

]3
)

, (33)

where

E
[
R

(α̂)
p,2 (ω) − E[R(α̂)

p,2 (ω)]
]2

= cs5(α̂)cs2
1(α̂)cs2(α̂) + (1 − cs5(α̂))cs2

3(α̂)cs4(α̂),

E
[
R

(α̂)
p,2 (ω) − E[R(α̂)

p,2 (ω)]
]3

= cs5(α̂)cs3
1(α̂)cs3(α̂) − (1 − cs5(α̂))cs3

3(α̂)cs4(α̂),

E
[
r̃1 − E[r̃1]

]2
= p̂1γ̂

2
1,1κ̂1,1 + (1 − p̂1)γ̂

2
1,2κ̂1,2,

E
[
r̃1 − E[r̃1]

]3
= p̂1γ̂

3
1,1κ̂1,1 − (1 − p̂1)γ̂

3
1,2κ̂1,2,

E
[
r̃1 − E[r̃1]

]4
= p̂1γ̂

4
1,1κ̂1,1 + (1 − p̂1)γ̂

4
1,2κ̂1,2,

E
[
r̃2 − E[r̃2]

]2
= p̂2γ̂

2
2,1κ̂2,1 + (1 − p̂2)γ̂

2
2,2κ̂2,2,

E
[
r̃2 − E[r̃2]

]3
= p̂2γ̂

3
2,1κ̂2,1 − (1 − p̂2)γ̂

3
2,2κ̂2,2,

E
[
r̃2 − E[r̃2]

]4
= p̂2γ̂

4
2,1κ̂2,1 + (1 − p̂2)γ̂

4
2,2κ̂2,2,

and λ̂11 is the recovered linear correlation. λ̂12 and λ̂21 are the recovered first nonlinear correlation

and the recovered second one as given in Section 2.2. α̂ is the optimal portfolio estimated from the

models in Table 2. The other parameters with hats (̂) are the ML estimates of the asymmetric

Gamma distributions as defined in Section 2.3.2.

(32) and (33) shows the precise relationship between the optimal portfolio
(
α̂(θ̂)
)

and the

recovered linear correlation (λ̂11) or the recovered nonlinear correlations (λ̂12, λ̂21). The effect

of the measures of correlation on the optimal portfolio is rather sensitive to the interpolation

polynomials cs1, cs2, cs3, cs4 and cs5. Furthermore, (32) implies that changes in the individual

variances and in the linear correlation may cancel out one other so that the effect of the linear

correlation on the optimal portfolio becomes negligible. (33) implies that changes in the nonlinear

correlations ceteris paribus may cancel out one other so that the optimal portfolio remains

intact. Hence, there exists a configurational possibility of the linear correlation or the nonlinear
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correlations such that the total impact of asymmetric dependence on the optimal portfolio is

negligible. We will address this point further in Section 3.

Let M4 denotes the benchmark model. In order to test whether there is an effect of the

second order nonlinear correlations or the other high order nonlinear correlations on the optimal

portfolio, we need to formulate a set of statistical hypotheses as follows:

1. The null hypothesis that there is a sole effect of the second order nonlinear correlations on

the optimal portfolio is

H
(3)
0 : |α̂M5(θ̂) − α̂M4(θ̂)| ≤ ε, (34)

where ε is an arbitrary small number. θ̂ is in the neighbourhood of θ∗ as defined in Theorem

2.

2. The null hypothesis that there is an effect of the other high order nonlinear correlations on

the optimal portfolio is

H
(4)
0 : |α̂M6(θ̂) − α̂M4(θ̂)| ≤ ε, (35)

where α̂M4 , α̂M5 , and α̂M6 are the optimal portfolios estimated from the models in Table 2.

The null hypotheses for the partially symmetric case (i.e., the models M7−M9) can be formulated

similarly. The one-cell contingency table test as proposed in Section 2.3.3 can be used to test

H
(3)
0 and H

(4)
0 . However, since asymmetric dependence is a typical phenomenon in the market,

thus it has an evident impact on optimal asset allocation (see e.g. Patton, 2004). We will confirm

that there is a strong effect of the second order nonlinear correlations on the optimal portfolio

by using some empirical evidences.

3 EMPIRICAL EVIDENCE

In this section, we provide some short simulations to illustrate the portfolio optimization tech-

nique proposed in Section 2. By using equity data Bangkok SET index3 and S&P 500, we also

investigate empirically the effect of individual skewnesses and nonlinear correlations on optimal

3Source: www.globaldata.com. Bangkok SET index is the FX adjusted equity price denominated in USD.
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portfolio and risk bound.

1. Data description

Data of Bangkok SET and S&P 500 are available monthly from 1975 to 2001. Arithmetic

return is calculated by r̃t = Pt−Pt−1

Pt−1
. The sample statistics of the returns are reported in

Table 3. The kernel return densities are plotted in Figure 1. The mean and the variance of

S&P 500 are higher while the kurtosises are roughly equal. However, Bangkok SET has a

positive skewness while S&P 500 has a negative one. The first sample nonlinear correlation

and the second one, that are apparently unequal, indicate a strong asymmetric dependence

between the two assets. Hence, in view of the example given in Section 2.2, this case is

indeed interesting to investigate.

The ML estimates of the parameters of the return distributions for Bangkok SET and S&P

500 are reported in Table 4. The same phenomenon as shown in Table 3 can be noticed.

That is, the mean and the standard deviation of S&P 500 are higher than those of Bangkok

SET as shown in the second panel of Table 4. The skewness of S&P 500 is negative while

it is positive for Bangkok SET. Moreover, the standard errors of the ML estimates in the

(partially) symmetric case are in general smaller than those in the asymmetric case. This

indicates that the asset returns are better modelled with a partially symmetric Gamma

distribution. The type of symmetry can be further confirmed by the LR test as given in

Table 5.

First, we choose a benchmark return (r) which must be less than the mean of the portfolio

return (see Remark 2.1). Next, we estimate the optimal portfolios and the risk bounds

that are the upper bounds of P{R(α)
p,2 (ω) < r} for the models in Tables 1 and 2. Finally,

we investigate the effect of the degree of absolute risk aversion, individual skewnesses and

the nonlinear correlations on the optimal portfolio by examining the portfolio mean, the

portfolio standard deviation, the portfolio skewness and the deviations function.

2. Asymmetric Gamma distributions, optimal portfolios, and their risk bounds
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First, we shall assume that the asset returns are uncorrelated. The benchmark is set to

-1%. Table 6 indicates that for three models M1, M2, and M3, the proportion held in S&P

500 decreases as the degree of absolute risk aversion increases. Figure 5 shows that the

growth rate (i.e., the deviations function) curve tends to shift upward as the degree of risk

aversion increases. This implies that the risk bound decreases as an investor becomes more

averse to the likelihood that the portfolio return underperforms a benchmark.

As shown in Table 7, since M1 is the benchmark model, the pro of including the skewnesses

is evident since the mean, the standard deviation, and the skewness of the optimal portfolio

return in Model M2 are higher than those in Model M1. This is because the deviations

function approximated with the third order Edgeworth expansion supports low standard

deviation and positive portfolio skewness. However, in Model M3 where the exact mgf is

used, the mean, the variance, and the skewness of the optimal portfolio return are less

than those in Model M1. This is due to the presence of the high order moments which

may dominate the low order moments, thus diminish the impact of the skewnesses. As

a result, the high order moments decrease the mean, the variance, and the skewness of

the optimal portfolio return whilst the individual skewnesses solely increase those of the

optimal portfolio return. Hence, a rational investor prefers Model M2 to the other two

models since this model gives a higher mean and a higher skewness at the cost of a slightly

higher standard deviation.

Next, we assume that the asset returns are correlated. In this case, we need to make as-

sumptions about the marginal return distributions and the portfolio return distribution.

Suppose that the portfolio return distribution is an asymmetric Gamma distribution. The

method proposed in Section 2.3 does not require us to estimate the measures of nonlinear

correlation explicitly in order to estimate the optimal portfolio. Instead, the optimal port-

folio is found by simultaneous maximization of the deviations function and the average log

likelihood function.

In Table 6, first note that the optimal proportions held in S&P 500 in M4-M9 are much less
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than those in M1-M3 where asset returns are assumed to be uncorrelated. Thus, correlation

apparently has a rather significant impact on optimal portfolio. By setting the benchmark

return to -1% which is less than the sample mean of an asset return, we can observe that

the optimal portfolio initially increases then decreases at the point where the degree of

absolute risk aversion (θ∗) is 14.5 obtained by maximizing the deviations function w.r.t.

both α and θ. As seen in Figures 6 and 7, the growth rate (the deviations function) curve

for θ = 14.5 is on the top of the other curves. In another word, the optimal portfolio, that

is a function of the degree of risk aversion, has smile shape. Furthermore, the risk bounds

are much less than those in M1-M3. Thus, the models M4-M9 are much less risky than the

models M1-M3. This is a benefit of asymmetric dependence in the portfolio analysis.

In addition, the effect of the nonlinear correlations on the optimal portfolio can be examined

in Table 7. In the asymmetric case, M4 is the benchmark model, M5, that is obtained by an

application of the third order Edgeworth expansion of the exact mgf, yields a higher mean

and a lower standard deviation at the cost of a lower skewness. Contrary to Models M1-M3,

the presence of the second order nonlinear correlations as defined in Section 2.2 reduces

the portfolio skewness whilst increasing the portfolio mean. In the symmetric case, M7 is

the benchmark model, M8 yields a higher mean, lower variance, and a higher skewness.

An interesting point to note is that the presence of the nonlinear correlations increases

not only the portfolio skewness but also the portfolio mean. Since investors always prefer

skewness, Model M8 is obviously preferable to Model M7. However, Model M9, which uses

the exact mgf, is the most favourable model since it gives a higher mean, a lower standard

deviation, and a higher skewness. This is due to the fact that the high order correlations

that combine with the second order nonlinear correlations support the deviations function

to effectively generate a high mean, a low standard deviation, and a high skewness. Hence,

the investment efficiency can be enhanced by incorporating high order correlations.

Alternatively, we can use a simulation approach to investigate separately the effect of the

linear correlation (λ11) and a combination of the nonlinear correlations (λ12) and (λ21) on
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the optimal portfolio. First, we generate 2000 bivariate samples of two Gamma random

variables with the true parameters as given in Table 4. Next, we use Model M6 or M9

to estimate an optimal portfolio by total maximization of the deviations function. The

estimated optimal portfolio is then used to recover the linear correlation and nonlinear

ones from each bivariate sample. Eventually, we have a sample of 2000 optimal portfolios

together with recovered measures of correlation. As shown in Figure 3, as the linear corre-

lation increases, the proportion held in S&P 500 noticeably decreases. This is compatible

with the results in Table 6 that when the asset returns are correlated, the proportion in-

vested in S&P 500 decreases significantly. Now, we move on to examine Figure 4. When

Model M6 is used, the nonlinear correlations (λ12) and (λ21), that are of different signs,

have no effect on the optimal portfolio since they can be cancelled out, while the ones,

that are of the same signs, have a rather strong effect as shown in Figure 5(a). However,

when Model M9 is used, regardless of the signs, the nonlinear correlations always have a

strong effect on the optimal portfolio as seen in Figure 5(b). Thus, no effect of signs can be

observed. This is due to the partial symmetry assumed for the portfolio return distribution.

Hence, the sign effects of the nonlinear correlations are always stronger in the asymmetric

case than in the partially symmetric case.

Therefore, the empirical results given in this section confirm our conjecture that asymmetric

dependence between individual assets and asymmetry in the portfolio return are two typical types

of asymmetry that have strong effects on optimal asset allocations. Moreover, we empirically

show that highly efficient investment strategies can be devised by taking high order moments

and high order correlations in to account. However, a general theory which can quantify the

magnitude of effects is complicated to derive in our framework. This is an interesting topic for

the future research.

4 CONCLUSION

In this paper, we apply the large deviations theory in the problem of selecting optimal investment

for a large portfolio such that both criteria of minimizing the underperformance probability and
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maximizing the expected exponential utility function are satisfied. Then, we establish a theoreti-

cal framework for finding optimal portfolios when there are many risky assets. However, because

analysis of the effect of correlation on optimal portfolio is rather complicated for a large number

of assets, we shall focus on the special case of two assets. An asymmetric Gamma distribution

is used to capture two types of asymmetry; 1) asymmetry in the portfolio return distribution 2)

asymmetric dependence (gauged by the second order measures of nonlinear correlation) between

risky assets. Empirical evidences provided in Section 3 confirm that there is a strong effect of

asymmetry and nonlinear correlations on optimal portfolio.

However, since the analysis in this paper is based on the asymmetric Gamma distribution,

our future research will focus on more realistic models such as; 1) the joint distribution of asset

returns is a generalized mixture of Gamma distributions, 2) asset returns may depend on another

economic indicator such as interest rate, yield spread, and market index etc., 3) The benchmark

return can be stochastic. All the above extensions can be difficult problems.
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Appendix A. Proofs of results

The proof of Theorem 1 basically follows from the proof of Theorem 3.

Theorem 3. Let us define (n) IID random variables r̃i with the mgf mgf(θ), where i = 1, .., n.

The upper tail probability of rn = 1
n

∑n
i=1 r̃i is given by (A.36) or (A.37). That is,

P{rn > r} %
1√

2πnθ(r)σ(r)
exp{−nΛ(r)}, (A.36)

where σ2(r) = 1
θ′ (r)

(
= 1

Λ”(r)

)
, Λ(r) = supθ>0

{
θr−log E[exp{θr̃1}]

}
, and θ(r) = arg supθ>0

{
θr−

log E[exp{θr̃1}]
}
.

P{rn > r} = exp{−nθ(r)} exp
{1

2
nσ4(r)θ2(r)

}{
1 − mgf

(√
nσ2(r)θ(r)

)}(
1 + op(1)

)
. (A.37)

Proof. See Zhulenev (1997).

Remark 4.1. Let θ+ = sup{θ ∈ (0,∞) : mgf(θ) < ∞} and r+ = limθ−→θ+{
mgf

′

(θ)
mgf(θ) }. Since

Λ
′

(r) = θ(r)+θ
′

(r)
{
r− mgf

′

(θ(r))
mgf(θ(r))

}
. If r = E[r̃1] then θ(E[r̃1]) = 0 since log

(
mgf(θ)

)
is a strictly

convex function (i.e., Λ(r) is a strictly concave function.) Therefore, for any r ∈ (E[r̃1], r+), the

maximal value of Λ(r) is attained at a unique point θ(r), where the tangent line to mgf(θ(r)) is

parallel with the line rθ. Moreover, the function θ(r) increases ∀ r ∈ (E[r̃1], r+). Further results

can found in Zhulenev (1997).

Proof of Theorem 1. Now, we give a proof for the upper tail. The proof of the large deviations

result for the lower tail is quite similar.

The portfolio return is given by

R(α)
p,n (ω) =

n∑

i=1

αir̃i, (A.38)

where r̃i ∼ IID(µ,σ2).
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An application of Cramer’s transformation yields

P{R(α)
p,n (ω) > r} = mgf

(
θ(r)
) ∫ ∞

r

exp{−θ(r)u}P{R(α,r)
p,n (ω) ∈ du}, (A.39)

where R
(α,r)
p,n (ω) is a weighted sum as (A.38) with the mean (r) and the variance (σ2(r)). mgf(θ)

is the mgf of R
(α)
p,n (ω) and θ(r) = argsupθ>0

{
θr − log mgf(θ)

}
. [Note that since mgf

′

(θ)
mgf(θ) |θ=0 = µ,

thus if r = µ then θ(r) = 0.] Hence, we have

P{R(α)
p,n (ω) > r} = mgf

(
θ(r)
) ∫ ∞

0

exp{−θ(r)(u + r)}P{R(α,r)
p,n (ω) ∈ r + du}

= mgf
(
θ(r)
)
exp{−rθ(r)}

∫ ∞

0

exp{−θ(r)u}P
{ R

(α,r)
p,n (ω) − r√∑n

i=1 α2
i σ(r)

∈
du√∑n

i=1 α2
i σ(r)

}

= exp
{
−
(
θ(r)r − log mgf(θ(r))

)}

∫ ∞

0

exp
{
− θ(r)

√√√√
n∑

i=1

α2
i u
}

P
{ R

(α,r)
p,n (ω) − r√∑n

i=1 α2
i σ(r)

∈ du
}

.

Applying the integral separation formula for F (r)(u) = P
{

R
(α,r)
p,n (ω)−r√

n
i=1 α2

i σ(r)
≤ u
}

, we have

P{R(α)
p,n (ω) > r} = θ(r)σ(r)

√√√√
n∑

i=1

α2
i exp

{
−
(
θ(r)r − log mgf

(
θ(r)
))}

∫ ∞

0

exp
{

θ(r)σ(r)

√√√√
n∑

i=1

α2
i u
}(

F (r)(u) − F (r)(0)
)
du. (A.40)

Moreover, an Edgeworth expansion of dF (r)(u) yields

dF (r)(u) = P
{ R

(α,r)
p,n (ω) − r√∑n

i=1 α2
i σ(r)

= u
}

= φ(u) −
E
[
R

(α,r)
p,n (ω) − r

]3
(
E[R(α,r)

p,n (ω) − r]2
) 3

2

φ
′′′

(u) + remainder,

where φ
′′′

(u) is the third order derivative of the standard normal density φ(u). By substituting
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the approximation of dF (r)(u) in to (A.40), we have

P{R(α)
p,n (ω) > r} = β(r) exp

{
−
(
θ(r)r − log mgf

(
θ(r)
))}{∫ ∞

0

exp{β(r)u}
(
Φ(u) − Φ(0)

)
du

−
E[R(α,r)

p,n (ω) − r]3
(
E[R(α,r)

p,n (ω) − r]2
) 3

2

∫ ∞

0

exp{β(r)u}
(
Φ(3)(u) − Φ(3)(0)

)
du
}

+ remainder,

where Φ(u) is the lower tail of the standard normal distribution, Φ(3)(u) is the lower tail of φ
′′′

(u),

and β(r) = θ(r)σ(r)
√∑n

i=1 α2
i .

In view of ∫ ∞

0

exp{θu} exp
{
−

u2

2

}
du =

√
2π exp

{θ2

2

}(
1 − Φ(θ)

)
,

we can easily derive

∫ ∞

0

exp{β(r)u}
(
Φ(u) − Φ(0)

)
du =

1

β(r)

(
exp
{β2(r)

2

}(
1 − Φ(β(r))

))
,

∫ ∞

0

exp{β(r)u}
(
Φ(3)(u) − Φ(3)(0)

)
du = exp

{β2(r)

2

}(
1 − Φ

(
β(r)
))(

β2(r) + 2
)

+
1√
2π

(
β(r) +

1

β(r)

)
.

Hence, we obtain

P{R(α)
p,n (ω) > r} = β(r) exp{−Λ(r)}

{exp{β2(r)
2 }
[
1 − Φ

(
β(r)
)]

β(r)

−
E[R(α,r)

p,n (ω) − r]3

[E[R(α,r)
p,n (ω) − r]2]

3
2

[
exp
{β2(r)

2

}[
1 − Φ(β(r))

][
β2(r) + 2

]

+
1√
2π

(
β(r) +

1

β(r)

)]
+ remainder

}
, (A.41)

where Λ(r) = θ(r)r − log mgf(θ(r)).

Since (
∑n

i=1 α2
i )

3
2 ≥
∑n

i=1 α3
i then

∑n
i=1 α3

i approaches to zero faster than (
∑n

i=1 α2
i )

3
2 as (n)

is sufficiently large. Furthermore, since all the central moments of r̃1 are finite, it follows that

E[R
(α,r)
p,n (ω)−r]3

[E[R
(α,r)
p,n (ω)−r]2]

3
2

is negligible. The same argument can be applied to show that the remainder of
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(A.41) is negligible. Therefore, (A.41) can be written as

P{R(α)
p,n (ω) ≥ r} ≈ exp{−Λ(r)} exp

{β2(r)

2

}[
1 − Φ

(
β(r)
)]

+ o(1).

Furthermore, by the approximation

1 − Φ
(
β(r)
)

=
exp{−β2(r)

2 }
√

2πβ(r)
,

we obtain the main result of Theorem 1.

Finally, in order to show that σ2(r)2 = 1
Λ”(r) we make use of the following identity:

Λ
′

(r) = θ(r),

mgf
′

(θ)
mgf(θ)

∣∣∣
θ=θ(r)

= r. (A.42)

Take the first derivative of (A.42) w.r.t. (r), we have

[
mgf ”

(
θ(r)
)
mgf
(
θ(r)
)
−
(
mgf

′
(
θ(r)
))2]

θ
′

(r)

mgf 2
(
θ(r)
) = 1

⇔
mgf ”(θ)mgf(θ) −

(
mgf

′

(θ)
)2

mgf 2(θ)

∣∣∣
θ=θ(r)

=
1

θ′(r)
.

Since log
(
mgf(θ)

)∣∣∣
θ=θ(r)

= r = E[r̃1], we obtain σ2(r) = log”
(
mgf(θ)

)∣∣∣
θ=θ(r)

= 1
θ′ (r)

(
= 1

Λ′′ (r)

)
.

Proof of Theorem 2. Given the probability space
(
Ω, {Fn}∞n=1

)
that generates the portfolio

return R
(α)
p,n (ω), where (ω) is used to emphasize that R

(α)
p,n (ω) is a random variable, (n) is used to

stress that R
(α)
p,n (ω) depends on (n), and (α) is used to denote that R

(α)
p,n (ω) depends on (α). The

probability space satisfies the usual conditions as in Parthasarathy (1977, page 20). The proof

of this theorem is divided in to two parts.
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• UPPER BOUND: Since

{ω ∈ Ω : R(α)
p,n (ω) ≥ r} ≡

{
ω ∈ Ω : exp{nθR(α)

p,n (ω)} ≥ exp{nθr}
}
∀ θ > 0,

then an application of the Tchebyshev inequality yields

P{R(α)
p,n (ω) > r} ≤ P

{
exp{nθR(α)

p,n (ω)} > exp{nθr}
}

≤ exp{−nθr}E
[
exp{nθR(α)

p,n (ω)}
]
.

Hence, we have

lim sup
n−→∞

1

n
sup
α∈S

log P{R(α)
p,n (ω) > r} ≤− lim sup

n−→∞

1

n
inf
α∈S

(
nθ̂r − log E[exp{nθ̂R(α)

p,n (ω)}]
)
,

where S is a compact set of feasible investment and θ̂ is in the neighbourhood of

θ∗ = lim
n−→∞

1

n
inf
α∈S

sup
θ∈(0,∞)

(
nθr − log E[exp{nθR(α)

p,n (ω)}]
)
.

• LOWER BOUND: This part uses the Randon-Nykodym theorem and the Borell-Catelli

lemma.

First, let us define another probability measure Q on the probability space (Ω, {Fn}∞n=1)

such that
dQ

dP

∣∣∣
Fn

def
= exp

{
nθ̂R(α̂)

p,n (ω) − log E[exp{nθ̂R(α̂)
p,n (ω)}]

}
,

where

α̂(θ̂, n) = arginf
α∈S

(
nθ̂r − log E[exp{nθ̂R(α)

p,n (ω)}]
)
.

Next, since {ω ∈ Ω : R
(α̂)
p,n (ω) > r − ε} ⊇ {ω ∈ Ω : r − ε < R

(α̂)
p,n (ω) < r + ε}, we can
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deduce

log P{R(α̂)
n,p (ω) > r − ε}

≥ log P{r − ε < R(α̂)
p,n (ω) < r + ε}

= log

∫

ω∈Ω

dP

dQ
I
{ω∈Ω: r−ε<R

(α̂)
p,n (ω)<r+ε}

(ω)dQ

= log

∫

ω∈Ω

exp
{

log E[exp{nθ̂R(α̂)
p,n (ω)}] − nθ̂R(α̂)

p,n (ω)
}
I
{ω∈Ω: r−ε<R

(α̂)
p,n (ω)<r+ε}

(ω)dQ

≥ log

∫

ω∈Ω

exp
{

log E[exp{nθ̂R(α̂)
p,n (ω)}] − nθ̂(r + ε)

}
I
{ω∈Ω: r−ε<R

(α̂)
p,n (ω)<r+ε}

(ω)dQ

= −nθ̂(r + ε) + log E[exp{nθ̂R(α̂)
p,n (ω)}] + log

∫

ω∈Ω

I
{ω∈Ω: r−ε<R

(α̂)
p,n (ω)<r+ε}

(ω)dQ

= −nθ̂r + log E[exp{nθ̂R(α̂)
p,n (ω)}] + log Q{r − ε <R (α̂)

p,n (ω) < r + ε}− nθ̂ε.

Hence,

lim inf
n−→∞

1

n
sup
α∈S

log P{R(α̂)
p,n (ω) > r − ε} ≥ − lim inf

n−→∞

1

n

(
nθ̂r − log E[exp{nθ̂R(α̂)

p,n (ω)}]
)

+ lim inf
n−→∞

1

n
log Q{r − ε <R (α̂)

p,n (ω) < r + ε}− o(1).

Thus, the lower bound is obtained if we can show that

lim inf
n−→∞

1

n
log Q{r − ε < R(α̂)

p,n (ω) < c + ε} = 0. (A.43)

In order to show (A.43), we need to define the event

An(ω)
def
= {ω ∈ Ω : r − ε <R (α̂)

p,n (ω) < r + ε} = {ω ∈ Ω : |R(α̂)
p,n (ω) − r| < ε}.

Since R
(α̂)
p,n (ω) has the asymmetric Gamma distribution, thus P{An(ω)} −→ 0 as ε is

arbitrarily small, and (n) is sufficiently large. (See Figure iii for an illustration.) On

the other hand, since exp
{
nθ̂R

(α̂)
p,n (ω) − log E[exp{nθ̂R

(α̂)
p,n (ω)}]

}
is always positive and

infinitely differentiable, the conjugate measure (Q) is absolutely continuous w.r.t. (P ).
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[See Parthasarathy (1977) for definition of absolute continuity.] Then, we have

lim
n−→∞

Q{An(ω)} −→ 0.

Thus,
∑∞

n=1 Q{An(ω)} ≤ ∞, whereby an application of the Borel-Catelli lemma yields

Q
{ ∞⋂

m=1

∞⋃

n=m

An(ω)
}

= Q{lim sup
n−→∞

An(ω)} = 0,

which is also equivalent to

Q
{ ∞⋃

m=1

∞⋂

n=m

An(ω)
}

= Q{lim inf
n−→∞

An(ω)} = 1.

Moreover, since {ω ∈ Ω : r− ε <R
(α̂)
p,n (ω) < r + ε} ⊇ infn∈(0,∞]{ω ∈ Ω : r− ε <R

(α̂)
p,n (ω) <

r + ε}, we obtain

1

n
log Q{r − ε <R (α̂)

p,n (ω) < r + ε} ≥
1

n
log Q

{
lim inf
n−→∞

{ω ∈ Ω : r − ε <R (α̂)
p,n (ω) < r + ε}

}
,

which is equivalent to

lim inf
n−→∞

1

n
log Q{r − ε < R(α̂)

p,n (ω) < r + ε} = lim
n−→∞

1

n
log Q{lim inf

n−→∞
An(ω)}

−→ 0.

To complete the proof, we still need to show that

lim sup
n−→∞

1

n

(
nθ̂r − log E[exp{nθ̂R(α̂)

p,n (ω)}]
)

= lim inf
n−→∞

1

n

(
nθ̂r − log E[exp{nθ̂R(α̂)

p,n (ω)}]
)
.

(A.44)

First, since

Λn(θ̂, r) =
1

n
log
{ exp{nθ̂r}

E[exp{nθ̂R
(α̂)
p,n (ω)}]

}
= log

{
E
[
exp
{
nθ̂
(
R(α̂)

p,n (ω) − r
)}]}− 1

n

,
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where log
{

E
[
exp
{
nθ̂
(
R

(α̂)
p,n (ω)−r

)}]}− 1
n

is a convex function. An application of Jensen’s

inequality yields

Λn(θ̂, r) ≤ log E
[
exp
{
− θ̂(R(α̂)

p,n (ω) − r)
}]

. (A.45)

Since the function exp
{
− θ̂(R(α̂)

p,n (ω) − r)
}

is Fn measurable, an application of the Fatou

lemma yields

lim sup
n−→∞

Λn(θ̂, r) ≤ log lim sup
n−→∞

E[exp{−θ̂(R(α̂)
p,n (ω) − r)}]

≤ log E
[
lim sup
n−→∞

exp{−θ̂(R(α̂)
p,n (ω) − r)}

]
.

Second, since {ω ∈ Ω : R
(α̂)
p,n−1(ω) = R} ⊂{ ω ∈ Ω : R

(α̂)
p,n (ω) = R} or Fn−1 ⊂ Fn and

f : R −→ exp{θ̂R} is one-to-one mapping, the random sequence
{

ω ∈ Ω : exp{−θ̂(R(α̂)
p,i (ω)−

r)} = R
}n

i=0
is monotonically increasing. Then, we have

{
ω ∈ Ω : lim sup

n−→∞
exp
{
− θ̂(R(α̂)

p,n (ω) − r)
}}

=
{

ω ∈ Ω : lim inf
n−→∞

exp
{
− θ̂(R(α̂)

p,n (ω) − r)
}}

=
{

ω ∈ Ω : lim
n−→∞

exp
{
− θ̂(R(α̂)

p,n (ω) − r)
}}

.

Another application of the Fatou lemma yields

lim sup
n−→∞

Λn(θ̂, r) ≤ lim inf
n−→∞

Λn(θ̂, r).

On the other hand, it is obvious that

lim sup
n−→∞

Λn(θ̂, r) ≥ lim inf
n−→∞

Λn(θ̂, r).

Thus, (A.44) is shown. In view of (A.43) and (A.44), we have proved Theorem 2.
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-ε ε

..
An−1(ω)An(ω)

Figure iii: The asymmetric Gamma distribution (An(ω) shrinks as n −→ ∞ and ε −→ 0)

Appendix B. Nonlinear Correlations

The third order Edgeworth expansion of the deviations function is given by

Λ(r, θ,α) = rθ −
{

θ
(
αµ1 + (1 − α)µ2

)
+

θ2

2

(
α2σ2

1 + (1 − α)2σ2
2 + 2α(1 − α)λ11

)

+
θ3

6

(
α3λ1 + (1 − α)3λ2 + 3α2(1 − α)λ12 + 3α(1 − α)2λ21

)}
,

where µi, σi, and λi for i = 1, 2 are the means, the variances, and the third central moments

resp. λ11, λ12, and λ21 are the linear correlation and the nonlinear correlations resp. The first

nonlinear correlation is the error coefficient obtained when the first asset return is regressed on

the squared second asset return. That is, supposing that the means of the asset returns are

zero, i.e. E[r̃1] = E[r̃2] = 0, then r̃1 is regressed on r̃2
2. This regression gives the mean square

error(MSE) as follows:

MSE =
1

T

T∑

t=1

(r̃1t − br̃2
2t)

2

=
1

T

T∑

t=1

r̃4
2

(
b −

1
T

∑T
t=1 r̃1tr̃

2
2t

1
T

∑T
t=1 r̃4

2t

)2

+
1

T

T∑

t=1

r̃1t

[
1 −
( 1

T

∑T
t=1(r̃1tr̃

2
2t)√(

1
T

∑T
t=1 r̃2

1t

)(
1
T

∑T
t=1 r̃4

2t

)

)2]
. (A.46)

Hence, the LS estimate of (b) is

b̂T =

∑T
t=1(r̃1tr̃

2
2t)∑T

t=1 r̃4
2t

,
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and the minimum MSE is given by

1

T

T∑

t=1

r̃1t

[
1 −
( 1

T

∑T
t=1(r̃1tr̃

2
2t)√(

1
T

∑T
t=1 r̃2

1t

)(
1
T

∑T
t=1 r̃4

2t

)

)2]
,

whereby we define λ̂12 =
T
t=1(r̃1tr̃2

2t)√
T
t=1 r̃2

1t
T
t=1 r̃4

2t

as the sample estimate of the first measure of nonlinear

correlation. If λ̂12 is equal to -1 or 1, the actual data are well fitted in to the horizontal parabolic

curve or the vertical one. (See Figure iv.)
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Figure iv: Measures of nonlinear correlation measure asymmetric dependence

It follows that |λ̂12| must be less than 1. Furthermore, the nonlinear correlations illustrate

the strength of the nonlinear relationships between r̃1 and r̃2 and vice versa. Since the nonlinear

relationship between r̃1 and r̃2 (as gauged by the first nonlinear correlation) is different from

the nonlinear relationship between r̃2 and r̃1 (as gauged by the second nonlinear correlation).

The nonlinear correlations measure asymmetric dependence. Even when the conventional linear

correlation between r̃1 and r̃2 is zero, there can still be nonzero nonlinear correlations between

r̃1 and r̃2.
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Table 3: Sample statistics
Stock Bangkok SET S&P 500
Minimal value -0.2997 -0.2153
Maximal value 0.3287 0.1346
5% Quantile -0.1311 -0.0558
95% Quantile 0.1502 0.0760
Mean 0.0074 0.0126
Standard deviation 0.0088 0.0429
Skewness 0.3232 -0.5249
Kurtosis 5.3214 5.6127
Linear correlation 0.2625 0.2625

First sample nonlinear correlation (λ̂12) 0.3637

Second sample nonlinear correlation (λ̂21) 0.2771
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Table 4: The ML estimates of the parameters of the return distributions (the parenthetical numbers are standard errors)
Asymmetric Gamma distribution (Partially) symmetric Gamma distribution

Stock Bangkok SET S&P 500 Bangkok SET S&P 500
κ1 0.9577(0.1105) 1.5945(0.0488) 1.0152(1.4711) 1.5799(1.9216)
κ2 0.9902(0.3629) 1.1912(2.1240) 0.9243(1.3685) 1.2085(1.8402)
γ1 0.0698(1.6560) 0.0236(2.6076) 0.0634(0.1015) 0.0239(0.0337)
γ2 0.0565(0.1565) 0.0244(0.0453)

Shifting probability 0.5146 0.6254 0.5146 0.6254
Mean 0.0072 0.1266 0.0046 0.0128

Standard deviation 0.0039 0.0008 0.0062 0.0287
Skewness 0.6581 0.5603 0.1544 -0.6191
Kurtosis 6.2156 5.0804 6.4179 6.6318
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Table 5: The LR test for asymmetry in the return distributions
Stock LR value Result

BangKok SET 33 × 10−43 Accept symmetry
S&P 500 12 × 10−34 Accept symmetry
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Table 6: Optimal portfolios and the risk bounds for different models

θ̂ (the Arrow-Pratt measure of absolute risk aversion)
Model 8 10 12 14 16 18 20

α̂(θ̂)+ Risk++ α̂(θ̂) Risk α̂(θ̂) Risk α̂(θ̂) Risk α̂(θ̂) Risk α̂(θ̂) Risk α̂(θ̂) Risk
M1 0.9678 0.4168 0.9396 0.3374 0.9208 0.2739 0.9070 0.2230 0.8973 0.1820 0.8890 0.1490 0.8832 0.1223
M2 0.9896 0.4159 0.9652 0.3361 0.9500 0.2722 0.9402 0.2209 0.9338 0.1795 0.9298 0.1446 0.9276 0.1191
M3 0.8678 0.1618 0.8695 0.1338 0.8487 0.0911 0.8396 0.0627 0.8295 0.0436 0.8195 0.0305 0.7988 0.0216
M4 0.5740 0.1925 0.5521 0.1306 0.5641 0.0880 0.5117 0.0612 0.5519 0.0412 0.5719 0.0283 0.6091 0.0195
M5 0.6763 0.1911 0.6768 0.1275 0.6068 0.0863 0.5991 0.0582 0.5994 0.0394 0.6000 0.0267 0.6894 0.0181
M6 0.6100 0.1990 0.6091 0.1374 0.5999 0.0955 0.6071 0.0671 0.5938 0.0480 0.6067 0.0352 0.6414 0.0256
M7 0.5180 0.1975 0.4731 0.1349 0.5103 0.0911 0.6428 0.0596 0.8606 0.0370 0.7152 0.0271 0.5181 0.0379
M8 0.5211 0.1961 0.5210 0.1322 0.5282 0.0884 0.5205 0.0609 0.5128 0.0423 0.7166 0.0259 0.5272 0.0379
M9 0.5979 0.2011 0.5982 0.1382 0.5983 0.0963 0.5984 0.0681 0.5982 0.0491 0.5985 0.0362 0.5985 0.0276

+ α̂(θ̂) is the optimal portfolio for a given θ̂.
++ Risk is defined as the upper bound of P{R(α)

p,2 (ω) < −1%} for a given θ̂.
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Table 7: The means, the standard deviations, and the skewnesses of the optimal portfolio returns obtained in the different models

for θ̂AP = 20
Model M1 M2 M3 M4 M5 M6 M7 M8 M9

α̂ 0.8832 0.9276 0.7988 0.6091 0.6894 0.6414 0.5181 0.5272 0.5985
Portfolio mean 0.0120 0.0122 0.0115 0.0106 0.0110 0.0108 0.0084 0.0089 0.0102

Portfolio standard deviation 0.0264 0.0272 0.0262 0.0344 0.0319 0.0334 0.0379 0.0374 0.0348
Portfolio skewness 0.5109 0.5399 0.4506 0.6038 0.5415 0.5636 0.4519 0.4761 0.5645
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Figure 1: Plots of the kernel densities of asset returns
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Figure 2: Plots of Equation 10
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Figure 3: The simulated relationship between the optimal portfolio and the recovered linear

correlation (λ̂11)
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Figure 4: The simulated relationship between the optimal portfolio and the recovered nonlinear

correlations (λ̂12 and λ̂21)
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Figure 5: The deviations functions derived from the symmetric return distributions when two
assets are uncorrelated (the benchmark return r = 1%)
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Figure 6: The deviations functions derived from the asymmetric portfolio return distribution
(the benchmark return r = -1%)
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(b) The deviations functions obtained by a cu-
bic spline interpolation

Figure 7: The deviations functions derived from the partially symmetric portfolio return distri-
bution (the benchmark return r = -1%)
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