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Increasing levels of antibiotic resistance in many bacterial pathogen popu-
lations are a major threat to public health. Resistance to an antibiotic
provides a fitness benefit when the bacteria are exposed to this antibiotic,
but resistance also often comes at a cost to the resistant pathogen relative to
susceptible counterparts. We lack a good understanding of these benefits
and costs of resistance for many bacterial pathogens and antibiotics, but esti-
mating them could lead to better use of antibiotics in a way that reduces or
prevents the spread of resistance. Here, we propose a new model for the
joint epidemiology of susceptible and resistant variants, which includes expli-
cit parameters for the cost and benefit of resistance. We show how Bayesian
inference can be performed under this model using phylogenetic data from
susceptible and resistant lineages and that by combining data from both we
are able to disentangle and estimate the resistance cost and benefit parameters
separately. We applied our inferential methodology to several simulated data-
sets to demonstrate good scalability and accuracy. We analysed a dataset of
Neisseria gonorrhoeae genomes collected between 2000 and 2013 in the USA.
We found that two unrelated lineages resistant to fluoroquinolones shared
similar epidemic dynamics and resistance parameters. Fluoroquinolones
were abandoned for the treatment of gonorrhoea due to increasing levels of
resistance, but our results suggest that they could be used to treat a minority
of around 10% of cases without causing resistance to grow again.
1. Introduction
The levels of antimicrobial resistance of many pathogens have risen worryingly
over the past few decades. In a report on the threat posed by antibiotic resist-
ance published by the CDC (Centres for Disease Control and Protection),
three microorganisms including Neisseria gonorrhoeae are classified as posing
an urgent threat level, and twelve more represent a serious threat to public
health [1]. A review on antimicrobial resistance estimated that resistance
claims at least 700 000 lives per year worldwide and that the death toll could
go up to 10 million per year by 2050 if current trends are allowed to continue
[2], and a recent study estimated that there were almost 5 million deaths associ-
ated with resistance in 2019 [3]. Few new antimicrobials have been developed
and deployed since the 1970s, whereas resistance to new drugs often emerges
soon after initial introduction [4], so that several pathogens are dangerously
close to becoming completely untreatable. Effectively tackling antimicrobial
resistance requires greater understanding of epidemiological and evolutionary
factors leading to emergence of resistance and the spread of resistance
through pathogen populations. Achieving this goal requires development of
mathematical models of antimicrobial resistance and robust statistical analysis
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of epidemiological models with informative observations.
This modelling approach to resistance was initiated in the
late 1990s [5,6] and has led to the development of many
models, appropriate for different organisms, mode of
spread, study scale and context [7].

Resistance brings a clear fitness benefit to pathogens
acquiring it in the presence of antimicrobials. The net value
of this fitness benefit therefore increases with the frequency
with which the specific antimicrobial is employed, either
against the pathogen itself or more generally in the case of
a pathogen that can be carried asymptomatically. However,
resistance also typically comes with a fitness cost to the
pathogen [8]. The simplest demonstration of this effect is
when discontinued use of an antimicrobial leads to
reductions in resistance rates. The fitness costs and benefits
of resistance remain poorly understood for many pathogens
and antimicrobials [9]. A better quantification of resistance
benefits and costs is required to provide a solid basis for
evaluating the potential effectiveness of public health inter-
vention measures proposed to exploit fitness costs in the
hope of stopping or even reversing the spread of resistance
[9]. For example, the numbers of gonorrhoea cases sensitive
and resistant to cefixime in England over a decade were
recently analysed to quantify the cost and benefit associated
with resistance to this antibiotic [10]. These estimates were
used to predict that cefixime could be reintroduced to treat
a minority (approx. 25%) of gonorrhoea cases without caus-
ing an increase in cefixime resistance levels, which would
reduce the risk of emergence of resistance to the currently
used antibiotics. Moreover, the extent of the fitness cost of
resistance can vary by genomic background [11], such that
the effect of interventions that seek to capitalize on the fitness
costs of resistance may be lineage dependent. Therefore, it is
necessary to estimate fitness costs at the per lineage level. The
aim of this study is to quantify the contribution that changes
in prescription policy have on the population dynamics of
particular resistant lineages. This is in contrast to studies
that are interested in the overall ecology of resistance or the
eventual fate of resistant phenotypes (e.g. [12]).

Pathogen genomic data have great potential to help us
understand the evolutionary and epidemiological dynamics of
infectious disease [13]. An important advantage of this phylo-
dynamic approach is that analysis of genomic data is less
sensitive to sampling biases, especially when using a coalescent
framework which describes the ancestry process conditional on
sampling [14]. A few studies have used this approach to shed
light on the fitness cost associated with antimicrobial resistance.
For example, a study showed the association between the
growth rate of a methicillin-resistant Staphylococcus aureus line-
age and consumption of beta-lactams [15]. Other studies
quantified the relative transmission fitness of resistance
mutations in HIV [16] and Mycobacterium tuberculosis [17].
Here, we take a different approach by modelling explicitly the
phylodynamic trajectories of the sensitive and resistant lineages
as a function of the fitness cost, which is constant, and the
fitness benefit, which depends on the antimicrobial consump-
tion. Our method therefore requires three inputs: the amount
of antimicrobial being used over time, genomic data from a sen-
sitive lineage and genomic data from a resistant lineage. From
this, we disentangle the fitness cost and benefit of resistance,
thereby providing the parameters needed to predict phylo-
dynamic trajectories and inform recommendations on how to
use antimicrobials without worsening the resistance threat.
Overall, the scenario we are interested in is that of overall resist-
ance dynamics at a large population level. In such a scenario,
the bulk of incidence is going to be caused by local transmission
rather than imports. We do not intend for the methods pre-
sented in this paper to be applicable to small populations
dominated by imports and complex, heterogeneous routes of
transmission, such as nosocomial infections in a hospital setting.
For such a scenario, a different approach using birth–death type
models would be more appropriate [16,17].
2. Methods
2.1. Overall approach
Pathogen phylogenetic data contain information about past
population size dynamics of the pathogen under study [13,18].
Under assumptions of the epidemic process being characterized
well enough by a simple compartmental epidemic model, this
information about population size dynamics can be translated
into epidemic trajectories [19,20]. These epidemic trajectories
can be described using an epidemic model which accounts for
the effects of a fitness cost and benefit of resistance to a specific
antimicrobial. As the use of this antimicrobial changes through
time, so will the net fitness of the particular lineage in consider-
ation. This will in turn lead to changes in the behaviour of the
epidemic trajectory. However, not all changes in the behaviour
of the epidemic trajectory will be due to changes in the fitness
of the resistant phenotype. Confounding factors, such as
depletion of susceptibles or changes in host behaviour, will
also affect the epidemic trajectory. Under relatively mild assump-
tions detailed below changes in these confounding factors will
affect other lineages equally. We can therefore use as ‘control’
some data from a susceptible lineage, ideally closely related
and with the same resistance profile to other antimicrobials
used in significant amounts as primary treatment. Differences
between the trajectories of the sensitive and resistant lineages
can then be ascribed specifically to resistance, allowing us to esti-
mate the associated fitness cost and benefit parameters.

Let us consider a pathogen causing infections at the level of a
large population that are or were treated with a certain antimicro-
bial compound. We assume that at some point in the past one or
several lineages with resistance to this antimicrobial compound
have arisen. Our aim is to quantify the fitness cost and benefit of
the resistance to this antimicrobial for a given lineage as a function
of use of the antimicrobial of interest through time. To this end, we
need data that quantify the use over time of the given antimicrobial
to treat infections caused by this pathogen, as well as a reasonable
sample of sequenced case isolates from infections caused by the
pathogen over time. Furthermore, we need information that charac-
terizes the resistance profiles of the individual isolates, which can be
either obtained by resistance screening in vitro or predicted from the
sequences in silico [21]. A dated phylogeny of these samples is esti-
mated, for example using BEAST [22], BEAST2 [23] or BactDating
[24]. This phylogeny is then used as the starting point for analysis
[25], to identify which samples belong to resistant and susceptible
lineages and to select related lineages for further study that are
wholly resistant or susceptible to the antimicrobial of interest, but
otherwise similar in their resistance profiles. Note that for simplicity
resistance is treated as a binary trait, with samples being either
resistant or susceptible to antimicrobials, as is usually the case in
resistance modelling studies [7].

2.2. Transmission model derivation
In order to estimate the fitness cost and benefit of antimicrobial
resistance, a transmission model needs to be specified. We
focus on estimating the fitness parameters of a particular lineage
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harbouring a certain treatment resistant phenotype when pre-
vious infection does not confer immunity against reinfection.
Under the simplifying assumptions that the host population is
unstructured and that past infections do not confer any immu-
nity, the multi-lineage susceptible–infected–susceptible (SIS) is
a reasonable model [26,27]. This model is more commonly
referred to as multi-strain SIS. Fluctuations in the carriage
levels of different lineages can also be due to external factors,
such as changes in host demography or behaviours. Left unac-
counted, such fluctuations would bias estimates of the fitness
cost and benefit of resistance to a given antimicrobial. Therefore,
we modify the model with time-varying transmission rate β(t)
and population size N(t). This leads to an n-lineage model
described by a system of the following n-coupled ordinary
differential equations (ODEs):

dI1ðtÞ
dt

¼ bðtÞSðtÞI1ðtÞ
NðtÞ � g1ðtÞI1ðtÞ,

dI2ðtÞ
dt

¼ bðtÞSðtÞI2ðtÞ
NðtÞ � g2ðtÞI2ðtÞ,

..

.

and
dInðtÞ
dt

¼ bðtÞSðtÞInðtÞ
NðtÞ � gnðtÞInðtÞ,

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ð2:1Þ

where Ij(t) denotes the number of people infected with the jth
lineage at time t. β(t) is the transmission rate that varies with
time due for example to changes that are not specific to any line-
age, for example host behaviour. N(t) is the host population size
which may also change with time due to demographic factors.
γj(t) is the recovery rate of the jth lineage at time t. These may
or may not vary with time through their dependency on the anti-
microbial usage which changes with time. Finally, S(t) denotes
the number of susceptible hosts:

SðtÞ ¼ NðtÞ �
Xn
j¼1

I jðtÞ
0@ 1A: ð2:2Þ

Typically, this model could simply be reduced to a two lineage
model, averaging over all lineages that are phenotypically similar
in their resistance profiles. However, this is undesirable, as some
of the lineages with the same resistance phenotype could differ in
fitness due to different genomic background which would con-
found our estimates. Furthermore, this sort of model would
not be readily tractable in a genomic framework, because phylo-
genetic data are generally going to be informative about the
dynamics of a particular lineage only. Note that this also
means that the analysis produced is valid for the lineages
being studied, and cannot be extrapolated to the overall
dynamics of resistance for a given pathogen.

We therefore need to focus on the resolution of individual
lineages. We note that environmental effects such as fluctuations
in host population size or behaviour affect all lineages equally, if
the population is well mixed. We denote the combination of
these effects as b(t) = β(t)S(t)/N(t). Conditional on the knowledge
trajectory of b(t) the ODEs in equation (2.1) become uncoupled,
and this allows us to reduce the system to uncoupled equations
corresponding to the lineage we will be focusing on. As such, we
will treat b(t) as a random object that needs to be inferred. We
further assume that for the susceptible lineages the average
recovery rate denoted γs does not change over time, whereas
for the resistant lineage it takes one of two values: γT = qT + γs if
a given patient is treated with the antimicrobial of interest, or
γU = qU + γs otherwise. If we also consider the known proportion
of registered cases treated with the antimicrobial of interest u(t),
this fully determines the average recovery rate of the resistant
lineages as

grðtÞ ¼ uðtÞgT þ ð1� uðtÞÞgU : ð2:3Þ
We can now fully write down the equations of the model we
will be using for the sensitive and resistant lineages, respectively:

dIsðtÞ
dt

¼ bðtÞIsðtÞ � gsIsðtÞ

and
dIrðtÞ
dt

¼ bðtÞIrðtÞ � [uðtÞgT þ ð1� uðtÞÞgU]IrðtÞ:

9>>=>>; ð2:4Þ

In practice, we are interested in the difference in recovery rates
between the susceptible and the resistant lineages when every case
gets treated with the antimicrobial of interest, and when the anti-
microbial of interest is not used at all. We denote these by

qT ¼ gT � gs
and qU ¼ gU � gs:

�
ð2:5Þ

The interpretation is therefore that qT captures the fitness benefit of
resistance in the case qT < 0 and qU captures the fitness cost of
resistance in the case qU > 0.

This model can be applied to any number of resistant and sen-
sitive lineages, simply by adding lineage-associated terms to the
likelihood and adding required parameters. This is straightfor-
ward as the individual lineages are independent conditional on
b(t), but for simplicity the remainder of methods description
focuses on the case of a single sensitive and a single resistant line-
age, with the general case being a straightforward extension.
2.3. Link to phylogenies
Having defined the epidemiological model, we can now link it to
the phylogenetic process. Based on [19,28], the instantaneous
coalescent rates for a single pair of lineages can be derived as

lsðtÞ ¼ 2bðtÞ
IsðtÞ and lrðtÞ ¼ 2bðtÞ

IrðtÞ ð2:6Þ

in the susceptible and resistant populations, respectively. The like-
lihood of a dated phylogeny g with n leaves at times s1 < · · · < sn
and n− 1 coalescent events at times c1 < · · · < cn−1 and A(t) lineages
at time t is therefore given by Griffiths & Tavare [29]:

pðgjlðtÞÞ ¼ exp �
ð1
�1

1½AðtÞ � 2� AðtÞ
2

� �
lðtÞdt

� �Yn�1

i¼1

lðciÞ,

ð2:7Þ
where λ(t) = λs(t) and λ(t) = λr(t) for the susceptible and resistant
phylogenies, respectively. However, in most cases, and indeed in
our case, the integral in equation (2.7) is not analytically intractable.
Furthermore, the antibiotic use data are unlikely to span the entire
phylogeny. Therefore, we define the approximate likelihood for the
phylogeny truncated to [tmin, tmax], which is the intersection interval
spanned by the antibiotic use data and the phylogenies under study.

As such we resort to the standard way of approximating
coalescent likelihoods [30], partitioning the interval [tmin, tmax]
into a fine mesh tmin = t1 < t2 < t3 < · · · < tN = tmax such that ti−
ti−1 < Δt and that all sampling and coalescent times between
tmin and tmax are included in the mesh:

pðgjlðtÞÞ ¼ exp �
XN
i¼2

ðti � ti�1Þ
Aðti�1Þ

2

� �
lðti�1Þ

 !Yn�1

i¼1

1½ci

[ ½tmin, tmax��lðciÞ:
ð2:8Þ

We note that the approach of howwe treat the relationship between
the phylogenies and epidemic is effectively a structured coalescent
with no migration and time varying Ne(t) determined by the deter-
ministic epidemic model. Approaches reminiscent of ours have
been used to formally study the expected age of a mutation in
both the presence or absence of selection [31]. However, in that
case the populations correspond to different alleles, and the Ne(t)



Table 1. Summary of the parameters and priors used in the model.

parameter symbol prior

susceptible lineage recovery rate γs lognormalðlog g�, sÞ
resistant lineage recovery rate if treated with focal antibiotic γT normalðgs, 0:3g�Þ1½x . 0�
resistant lineage recovery rate if treated with other antibiotic γU normalðgs, 0:3g�Þ1½x . 0�
initial prevalence of sensitive lineage Is0 lognormalð6, 2Þ
initial prevalence of resistant lineage Ir0 lognormalð6, 2Þ
GP kernel marginal variance α gammað4, 4Þ
GP kernel length scale ρ inverse� gammað4:63, 2:21Þ
approximate GP functions f1:m N ð0, 1Þ

5 × 106

6 × 106

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 J

un
e 

20
23

 

curves follow the proportion of population with a given allele as
determined byWright–Fisher diffusion forwards in time. Migration
between the demes corresponding to individual alleles can also
further be added corresponding to recombination [32].
N
(t

)
β(
t)

3 × 106

4 × 106

6.0

6.1

6.2

6.3

0.1

0.2

0.3

0.4

5 10 15 20
time

u(
t)

Figure 1. Host population size function N(t), transmission rate over time β(t)
and antibiotic usage function u(t) used in the simulated datasets.

20:20230074
2.4. Bayesian inference
We first re-scale time from the interval [tmin, tmax] to [−1, 1].
Denoting the scale factor D = (tmax− tmin)/2 associated with this
re-scaling, we account for this in the model by defining �gs ¼ gsD.

The model consists of independent first-order linear homo-
geneous ODEs for each lineage with time-varying coefficients.
The solutions at time t subject to initial conditions Is(0) = Is0
and Ir(0) = Ir0 can be obtained in terms of the integral of the
instantaneous rates up to time t:

IsðtÞ ¼ Is0 exp
ðt
0
bðtÞ � gs dt

� �
and IrðtÞ ¼ Ir0 exp

ðt
0
bðtÞ � ½uðtÞgT þ ð1� uðtÞÞgU �dt

� �
:

9>>>=>>>;
ð2:9Þ

As it stands, this model would not be well suited for performing
inference under, primarily due to the difficulty in choosing a
sensible prior on b(t), and a very complicated dependency
structure between the initial conditions and b(t). As such we
re-parameterize the model by directly modelling the logarithm
of Is(t) as a Gaussian process:

CðtÞ ¼ log IsðtÞ � ms, ð2:10Þ
where C(t) is an appropriately chosen zero mean Gaussian pro-
cess, and μs is the susceptible intercept which relates to the
susceptible initial condition Is0 as follows:

ms ¼ log Is0 � Cð0Þ: ð2:11Þ
We use this formulation principally to loosen the coupling
between the intercept parameter and the Gaussian process in
order to speed up sampling. From this, we can compute b(t)
and log Ir(t) as

bðtÞ ¼ d
dt

CðtÞ þ gs ð2:12Þ

and

log IrðtÞ ¼ CðtÞ þ mr þ
ðt
0
gs dt�

ðt
0
uðtÞgT dt�

ðt
0
ð1� uðtÞÞgU dt

¼ CðtÞ þ mr þ
ðt
0
gs � uðtÞðgT � gUÞ � gU dt

¼ CðtÞ þ mr þ ðgs � gUÞt� ðgT � gUÞ
ðt
0
uðtÞdt:

ð2:13Þ
Once again we follow the same reasoning for the resistant trajec-
tory intercept μr, relating it to Ir0 as

mr ¼ log Ir0 � Cð0Þ: ð2:14Þ

Note that (d/dt)C(t) exists as long as the associated covariance
kernel is sufficiently smooth such as in the case of the radial
basis function (RBF) kernel [33] which we used. Evaluating a
full-rank, Gaussian process with differentiable trajectories on
the entirety of the mesh would be prohibitively expensive due
to the O(n3) computational complexity, where n is the number
of grid points. Such a high computational cost would make the
model infeasible. Instead, we work with a low-rank represen-
tation of C(t) based on the framework introduced in [34]. This
leads to the representation of the low-rank projection of C(t),
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Figure 2. Posterior summary of dynamics for the sensitive (a,c) and resistant (b,d ) lineages, showing prevalence (a,b) and reproduction number (c,d ). Bold solid red
lines indicate simulated values. Posterior median in bold dashed black line. Shaded bands indicate 95% posterior credible intervals. Solid light lines represent
posterior draws.
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denoted by ĈðtÞ

ĈðtÞ ¼
Xm
j¼1

SRBF

ffiffiffiffiffiffi
jp
2L

r
; r, a

 ! ffiffiffi
1
L

r
sin

jp
2L

ðtþ LÞ
� �

f j ð2:15Þ

and

d
dt

ĈðtÞ ¼
Xm
j¼1

SRBF

ffiffiffiffiffiffi
jp
2L

r
; r, a

 ! ffiffiffi
1
L

r
jp
2L

cos
jp
2L

ðtþ LÞ
� �

f j: ð2:16Þ

This reduces the evaluation complexity of the Gaussian process
prior from O(n3) to O(nm). L and m are approximation par-
ameters that need to be specified a priori (see [34] for details).
In practice, we used the Hilbert space Gaussian process
(HSGP) approximation with parameters L = 6.5 and m = 60.
These approximation parameters are appropriate for the 99%
interval of the length-scale prior used as per [34]. Here fj are inde-
pendent and identically distributed random variables following
the standard Gaussian distribution, SRBF( · ; · , · ) is the appropri-
ate spectral density for the RBF kernel, ρ is the kernel
length scale and α is the marginal standard deviation of the
kernel [34].

Denote by u ¼ ðgs, gU , gT , Is0, Ir0, ĈðtÞÞ the parameters of the
pathogen dynamics model. We can now factorize the model
posterior pðu, a, r, f1:m j gs, grÞ, suppressing dependency on t
where appropriate:

pðu, a, r, f1:m j gs, grÞ/ pðgs j lsÞpðgr j lrÞpðls j uÞpðlr
j uÞpðu, a, r, f1:mÞ: ð2:17Þ

The first two terms are computed using the coalescent likelihood
in equation (2.7). The third term is given by combining equations
(2.6), (2.10) and (2.12). The fourth term is obtained by combining
equations (2.6), (2.12) and (2.13). Finally, the last term is given by

pðu, a, r, f1:mÞ ¼ pðĈðtÞ j a, r, f1:mÞpðgT j gsÞpðgU j gsÞpðgsÞ
pðIs0ÞpðIr0ÞpðaÞpðrÞpðf1:mÞ,

ð2:18Þ
where the first term is given by the Gaussian process (equations
(2.15) and (2.16)) and the remaining terms correspond to the
prior distributions listed below.

2.5. Choice of prior and parameterization
The model is parameterized with the priors summarized in table 1.
The data are not expected to be very informative about the value
of γs. As such,we impose a fairly informative prioron this parameter,
centred around a guess γ* which must be known and supplied
a priori. σ then governs how informative the prior is. We typically
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Figure 3. Marginal and joint posterior distributions for the recovery rate of the sensitive lineage (γs), fitness cost (qU) and fitness benefit (qT) of resistance. Bold red
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useavalueofσ = 0.3,which includes relative fluctuationsof over 50%
in its 95% interval. The higher the value of σ, the more complicated
the geometry and subsequently sampling of the posterior becomes.
γT and γU represent the recovery rates for the resistant lineage
when the resistant lineage is treatedwith the focal antibiotic of inter-
est, or another antibiotic, respectively. A normal distribution centred
at γs and truncated to positive values only is a natural choice. We
choose its standard deviation to be 0.3γ* as this puts greater than
99% of the weight within 2γ* thus making implausibly large fluctu-
ations unlikely. Such large fluctuations are hardly of interest here
since they would lead to a very rapid selective sweep or extinction.
The recovery rates γT and γU are related to the absolute changes in
recovery and therefore fitness parameters using equation (2.5).
γU > γs corresponds to faster recovery when the resistant lineage is
treated with an antimicrobial it is sensitive to and therefore a cost
of resistance. γT< γs corresponds to slower recovery when the resist-
ant lineage is treatedwith theantimicrobial of interest and therefore a
benefit of resistance. If instead a large proportion of posterior prob-
ability mass has γU < γs or γT> γs, we conclude that the result is
consistent with either the cost or the benefit of resistance not being
significantly present. The prior on ρ was chosen so that approxi-
mately 1% of mass lies on values of ρ< 0.2 and approximately 1%
of mass lies on ρ> 2. The lower bound was chosen to avoid over-
fitting, and the upper bound to suppress length scales that exceed
the range of data and thus cannot be informed about by the data.

In practice, due to our choice of a sampling approach we
need to parameterize γU and γT on an unconstrained space,
and ideally also weaken the dependency on γs. To do so, we
introduce parameters ~qU and ~qT , and define γU and γT to be a
deterministic transformation of these:

gU ¼ logð1þ exp f~qU þ log gsgÞ

and gT ¼ logð1þ exp f~qT þ log gsgÞ:

9=; ð2:19Þ
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Figure 4. Inferred parameters versus correct values. A total of 50 simulated
datasets were generated, with decreasing values of qT and increasing values
of qU as shown by the dotted lines in grey and blue, respectively. For each
simulated dataset, we applied our inference method. The grey and blue dots
show the mean inferred values of qT and qU, respectively, with vertical bars
representing the 95% credible intervals for both parameters.
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The Jacobian adjustment to the likelihood associated with this
transformation is proportional to

jdet Jqj/ ð1þ exp f�~qT � log gsgÞ�1ð1
þ exp f�~qU � log gsgÞ�1: ð2:20Þ
2.6. Computational implementation
The posterior in equation (2.17) is a high-dimensional distri-
bution and we expect many parameters to have a high degree
of interdependency. In order to sample from this distribution,
we use dynamic Hamiltonian Monte Carlo (HMC), a HMC sam-
pler available in Stan [35]. HMC is a Markov chain Monte Carlo
approach that due to possessing energy conserving properties is
able to take large steps between individual states while maintain-
ing high acceptance rates. This makes it efficient at sampling
from moderately high dimensional posterior distributions
with differentiable likelihoods, while requiring a much lower
number of iterations. We implemented the model and inference
method in an R package which is available at https://github.
com/dhelekal/ResistPhy/. All results shown used four chains
with 2000 iterations for warmup and 2000 iterations for
sampling. For all model parameters and all analysis, the bulk
effective sample size (bulk-ESS) was always greater than 500,
and all bR statistics were lower than 1.05 [36], values that indicate
no issues with mixing. We also checked that there were no
divergent transitions at least during the sampling phase.

2.7. Use of simulated and real datasets
For all simulations, we use a stochastic, discrete state-space ver-
sion of the multi-lineage SIS in equation (2.1). The system is
simulated using tau-leaping [37]. More specifically, we consider
a scenario with three lineages simulated over the course of 19
years. Two lineages are set to be susceptible and thus unaffected
by antibiotic usage fluctuations and one is set to be resistant. The
first lineage aims to represent the unobserved bulk of the popu-
lation and thus is set to start at much higher prevalence.
Conditional on the trajectories of the two lineages, we sample
phylogenies under Kingman’s coalescent with varying effective
population size Ne(t) following equation (2.6) conditional on
the trajectories [28]. The parameters for the simulation were
selected as to consistently provide a reasonable range of plausible
behaviours so that resistant lineages would reach prevalence
with orders of magnitude between 102 and 104.

A total of 1102 genomes were collected between 2000 and 2013
by the CDC Gonococcal Isolate Surveillance Project (GISP) [38]. A
maximum-likelihood phylogeny was computed using PhyML [39],
which was corrected for recombination using ClonalFrameML [40]
and dated using BactDating [24]. This dated phylogeny is the same
as previously used in an analysis of hidden population structure
[41]. The distribution of primary antimicrobial drugs used to
treat gonorrhoea among participants of the GISP between 1988
and 2019 was obtained from the GISP reports available at
https://www.cdc.gov/std/statistics/archive.htm. Note that
usages of ciprofloxacin and ofloxacin were combined into a
single fluoroquinolone category. All the data and code used in
the simulated and real dataset analyses are available at https://
github.com/dhelekal/ResistPhy/tree/main/run.
3. Results
3.1. Detailed analysis of a single simulated dataset
To validate the performance of this model, we first resort to
simulation from a three-lineages stochastic SIS with popu-
lation size N(t), transmission rate β(t) and antimicrobial
usage function u(t) varying over the past 20 years, as illus-
trated in figure 1. The first two lineages are susceptible and
thus unaffected by fluctuations in antimicrobial usage,
whereas the third lineage is resistant and therefore affected.
The first lineage represents the bulk of the susceptible
lineages and is thus left unobserved. The remaining two
lineages represent the observed lineages, susceptible and
resistant, respectively. The per-day recovery rate of the sensi-
tive lineage was set to γs = 1/60, the fitness cost of resistance
to qU = 1.25 and the fitness benefit of resistance to qT =−2.7.
From each of these two observed lineages, a dated phylogeny
with 200 leaves was simulated. The sampling dates were ran-
domly assigned to one of the first 6 years, with the relative
probability of a particular year being chosen proportional
to the total prevalence in that year. We performed inference
on this simulated dataset; the traces are shown in electronic
supplementary material, figure S1, and the posterior distri-
bution of the kernel parameters in electronic supplementary
material, figure S2. The prevalence and reproduction
number R(t) of both the susceptible and resistant lineages
are shown in figure 2. As expected, the inferred values fol-
lowed the correct values used in the simulation. The
inferred values of the susceptible lineage recovery rate γs
and the cost and benefit of resistance qU and qT were also
found to be close to their correct values, as shown in
figure 3. The posterior distribution of γs was almost identical
to the prior, which was centred on the correct value 1/60,
reflecting the fact that the data are uninformative about this
parameter and stressing the importance of using an informa-
tive prior. There was a strong negative correlation between
the inferred values of qU and qT, as expected since these
two parameters play opposite roles in the overall fitness of
the resistant lineage relative to the sensitive lineage. Never-
theless, we detected both the cost and the benefit associated
with resistance, since the ranges of inferred values for qU
and qT were, respectively, above and below one, contrary to
their lognormal priors with mean one (figure 3). Finally, we
computed the posterior predictive distribution [42] for the

https://github.com/dhelekal/ResistPhy/
https://github.com/dhelekal/ResistPhy/
https://www.cdc.gov/std/statistics/archive.htm
https://github.com/dhelekal/ResistPhy/tree/main/run
https://github.com/dhelekal/ResistPhy/tree/main/run
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number of ancestral lineages through time A(t) and compared
this with the input phylogenetic data (electronic supplemen-
tary material, figure S3). The data and posterior predictive
trajectories were similar, indicating a good fit of the model
to the data as indeed would be expected here since the
same model was used for simulation and inference.

3.2. Benchmark using multiple simulated datasets
We repeated the same application of our inference method to
data simulated in the same conditions as described above and
illustrated in figure 1, except the values of the fitness cost and
benefit of resistance were varied. A total of 50 simulated data-
sets were generated and analysed, with the fitness cost qU
increasing linearly from 1 to 1.2, and the fitness benefit qT
decreasing linearly from 1 to 0.5. The prevalences of the sus-
ceptible and resistant lineages in these simulations are shown
in electronic supplementary material, figure S4. The results of
inference are illustrated in figure 4 and show that in almost all
cases, the posterior 95% credible intervals covered the correct
values of the fitness cost and benefit of resistance used in the
simulations.
3.3. Application to fluoroquinolone resistant
N. gonorrhoeae in USA

We demonstrate the use of our model and inferential frame-
work by estimating the cost and benefit of fluoroquinolone
resistance in N. gonorrhoeae. Based on the 1102 genomes col-
lected between 2000 and 2013 by the CDC GISP [38], a
recombination-corrected tree was constructed using Clonal-
FrameML [40] and dated using BactDating [24]. As there
are two major fluoroquinolone resistant lineages present in
this phylogeny [38], we decided to do a comparative study.
The two fluoroquinolone resistant lineages and one fluoro-
quinolone susceptible lineage were selected based on
similar resistance profiles against other relevant antibiotics.
By inspecting the antibiotic usage data and the resistance pro-
files for the three lineages (figure 5), we can see that the
resistance profiles match for antimicrobials that were in use
as primary treatment at significant levels after 1995. As
such, this is the year we set as the analysis start date (tmin =
1995) and the end date is the date when the last genomes
were collected (tmax = 2013). Note that a subclade within the
susceptible lineage that displayed a de novo gain of resistance
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to cefixime has been removed. The prior mean for the per-day
recovery rate for the susceptible lineage was set to γ* = 1/90
based on previous gonorrhoea modelling studies [10,43,44].

We performed inference for this dataset; the traces are
shown in electronic supplementary material, figure S5, and
the posterior distribution of kernel parameters in electronic
supplementary material, figure S6. Figure 6 depicts the
summary of posterior latent transmission dynamics for the
two resistant lineages, whereas electronic supplementary
material, figure S7, shows the same for the susceptible line-
age. The two resistant lineages have similar dynamics, with
a peak in prevalence around 2007, which corresponds to
the moment when fluoroquinolone use dropped (figure 5).
Figure 7 depicts the marginal and joint posterior distributions
for the resistance parameters qU and qT for both resistant
lineages. This is consistent with there being both a cost and
benefit to fluoroquinolone resistance for both lineages, since
both qT and qU are, respectively, localized below 1 and
above 1, with high posterior probability. It is noteworthy
that while both of these lineages come from distinct genetic
background, their resistance profile is qualitatively very simi-
lar, indicating both of these lineages faced similar selective
pressures and neither seems to have successfully adapted to
overcome the fitness cost associated with fluoroquinolone
resistance. We used a posterior predictive approach to
ensure that the model can explain the data appropriately
[42]. Posterior predictive trajectories for the function of ances-
tral lineages through time A(t) were simulated and found to
be very similar to the ones implied by the phylogenetic data
(electronic supplementary material, figure S8).

Under the assumption of perfect competition between
lineages, if we want to ensure to that a resistant lineage
cannot establish, and its proportion decays sufficiently fast,
we fix a decay factor c > 0 and aim to ensure that the growth
rate of the resistant lineage is c units lower than that of the sen-
sitive lineage, that is rs(t)− rr(t) > c. Note that r(t) is the growth
rate through time, not R(t), the time varying reproduction
number. We choose to work with growth rates as these are
less sensitive to susceptible recovery rate mispecification.
Given that the lineages have the same transmission rate func-
tion b(t), this condition is equivalent to γs(t)− γr(t) > c, and
using the definition of γr(t) from equation (2.3), this is equival-
ent to u(t)qT + (1− u(t))qU > c. We use this to estimate posterior
probabilities. The differences in growth rates between the sus-
ceptible lineage and each of both resistant lineages exceed c as
shown in figure 8. In order to be 95% certain that the resistant
lineages remain at a lower fitness than the susceptible lineage,
fluoroquinolone should not be prescribed to more than
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approximately 20% and 15% of infected individuals, for
resistant lineages 1 and 2, respectively.
oyalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230074
4. Discussion
A bacterial pathogen lineage that is resistant to a given anti-
biotic incurs both a fitness cost and a fitness benefit compared
to similar susceptible lineages [8]. When the antibiotic is used
extensively, the benefit is likely to be greater than the cost. In
that case, a resistant lineage has a selective advantage over
susceptible lineages, and therefore grows at a faster rate. Con-
versely, if the antibiotic is used rarely or not at all, the benefit
is likely to become smaller than the cost, which will lead to
the resistant lineage decreasing in frequency. Estimating
these parameters is therefore of primary importance to deter-
mine how antibiotics should be prescribed without causing
an increase in resistance [9]. Here, we have shown how
genome sequencing data coupled with data on antibiotic pre-
scriptions can be used for this purpose, following on previous
work that demonstrated the link between epidemic dynamics
and phylogenetics [13,19,20,28]. By comparing the phylo-
dynamic trajectories of susceptible and resistant lineages,
and relating them with a known function of antibiotic use,
we show that it is possible to estimate separately the par-
ameters corresponding to the fitness cost and benefit of
resistance. In particular, we reanalysed a large published col-
lection of N. gonorrhoeae genomes [38]. We were able to infer
these parameters for two lineages of N. gonorrhoeae resistant
to fluoroquinolones, and found similar estimates of cost
and benefit in both (figure 7). We were able to use this knowl-
edge to make recommendations on antibiotic stewardship of
fluoroquinolones (figure 8).

Dated phylogenies for both susceptible and resistant
lineages are needed as input into our method. Several soft-
ware tools can be used to produce this either from a
sequence alignment, for example BEAST [22] and BEAST2
[23], or from an undated phylogeny, for example treedater
[45] and BactDating [24]. Building such a dated phylogeny
requires either the population to be measurably evolving
over the sampling period [46,47], or a previous estimate of
the molecular clock rate [48]. Another input required by our
method is the antibiotic usage function over a relevant time-
frame and geographical location. This may not always be
available in all historical contexts, but efforts are increasingly
being made to capture these data [49]. Finally, our method
requires an informative prior of the recovery rate for the sus-
ceptible lineage (table 1), since this is typically not identifiable
from the data, as in many similar compartmental epidemic
models [50]. This prior needs to be chosen carefully depend-
ing on the infectious disease under study and based on the
existing scientific literature.

Our inferential methodology is based on a well-defined
and relatively simple epidemic model (equation (2.4)) which
means making a number of assumptions the validity of
which was considered before performing our analysis. Our
model assumes multiple-lineage pathogen dynamics driven
by person-to-person transmission in a well-mixed host popu-
lation in the absence of any significant population structure,
so that there is perfect competition between lineages. It also
assumes that individuals become infectious as soon as they
are infected, that their infectiousness remains constant until
they recover, after which they become susceptible again
without any immunity being gained. This list of relatively
strong assumptions may seem to preclude application to
any real infectious disease, but they are necessary to obtain
a model under which inference can be performed. Further-
more, violation of some of these assumptions does not
necessarily invalidate the results of inference. For example,
if infection causes immunity, this will effectively reduce the
number S(t) of susceptible individuals (equation (2.2)), but
this number is not assumed to be constant in our model. In
fact both the size N(t) of the host population and the
number S(t) of susceptible individuals are integrated out as
part of our parameterization in terms of the function b(t)
(cf. equation (2.4)), so the inference is robust as long as
the immunity conferred applies to all lineages under study.
Likewise, the assumption of an unstructured population
may seem problematic, including in our application to
N. gonorrhoeae throughout the USA, but for anything other
than small local outbreaks the genomes available for analysis
are sparsely sampled from the whole infected population
[51]. In these conditions, any effect of the host population
structure on phylodynamics is likely to be insignificant as
long as an effective rather than actual number of infections
is considered [52,53].

The compatibility of our model with the phylogenetic data
under analysis can be tested using posterior predictive distri-
bution checks (electronic supplementary material, figures S3
and S8). If these tests fail, or if the model assumptions are
thought to be inappropriate, a solution may be to resort to
other methods that postprocess a dated phylogeny [25] but
make fewer assumptions, at the cost of not inferring directly
the parameters of resistance. Alternative approaches includes
non-parametric methods that detect differences in the branch-
ing patterns in different lineages [41,54] as well as methods
parameterized in terms of the pathogen population size
growth rather than underlying epidemiological drivers
[15,55]. However, our model-based approach is both general
and flexible, so that we expect it to be applicable in many set-
tings using our software implementation which is available at
https://github.com/dhelekal/ResistPhy/. We believe that
this methodology, applied to the increasingly large genomic
databases on many bacterial pathogens, will help quantify
the exact link between antibiotic usage and resistance and
therefore provide a much-needed evidence basis for the
design of future antibiotic prescription strategies [9,56,57].
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