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Abstract

Building on recent disjunctive compilers for zero-knowledge (e.g. Goel et al. [EUROCRYPT’22]) we pro-
pose a new compiler that, when applied to sublinear-sized proofs, can result in sublinear-size disjunctive
zero-knowledge with sublinear proving times (without meaningfully increasing proof sizes). Our key ob-
servation is that simulation in sublinear-size zero-knowledge proof systems can be much faster (both con-
cretely and asymptotically) than the honest prover. We study applying our compiler to two classes of
O(logn)-round protocols: interactive oracle proofs, specifically Aurora [EUROCRYPT’19] and Fractal [EU-
ROCRYPT’20], and folding arguments, specifically Compressed Σ-protocols [CRYPTO’20, CRYPTO’21]
and Bulletproofs [S&P’18]. This study validates that the compiler can lead to significant savings. For ex-
ample, applying our compiler to Fractal enables us to prove a disjunction of ` clauses, each of size N ,
with only O((N + `) ·polylog(N)) computation, versus O(`N ·polylog(N)) when proving the disjunction
directly. We also find that our compiler offers a new lens through which to understand zero-knowledge
proofs, evidenced by multiple examples of protocols with the same “standalone” complexity that each
behave very differently when stacked.
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1 Introduction

Zero-knowledge proofs and arguments [GMR85] allow a prover to convince the verifier of the validity of
an NP statement without revealing anything beyond the validity itself. Early results established that such
protocols exist for all NP languages [GMW86], and recent work has proposed zero-knowledge proofs that
are more practically efficient e.g. [JKO13, BCTV14, Gro16, KKW18, BBB+18, BCR+19, HK20b]. Many of
these efficient zero-knowledge proofs are now being used in practice [BCG+14, Zav20, se19], and zero-
knowledge proofs have become a critical component of constructing larger cryptographic systems.
Disjunctive Zero-Knowledge. A disjunctive statement is an NP statement consisting of a logical OR of a set
of clauses. We refer to zero-knowledge proofs for disjunctive statements as “disjunctive zero-knowledge.”
Disjunctive zero-knowledge is central to privacy-preserving systems where revealing which clause a prover
has a witness for might reveal their identity. Disjunctive zero-knowledge has received a great deal of
attention [CDS94, AOS02, GMY03] and recently there has been renewed interest in optimizing crypto-
graphic protocols for disjunctions, both in the context of zero-knowledge [GK15, CPS+16, Kol18, HK20b,
GGHAK22, ACF21] and secure multiparty computation [BMRS21, HK20a, HK21].

The simplest approach to disjunctive zero-knowledge is to appeal to NP-completeness: a disjunction
of NP statements is itself an NP statement which can be proved using a proof system for NP. In practice,
however, this has two key drawbacks: first, the individual clauses may be of a special form that admits
efficient zero-knowledge proofs (e.g. a discrete-log relation) but that structure can not be preserved under
disjunction. Second, even if the clauses are general circuits, if the clauses are distinct then the resulting
circuit is as large as the sum of the size of individual clauses. As a result, the complexity of the proof system
grows at least linearly in the number of clauses.

In light of this, one alternative approach that has been explored in the literature is to manually modify
specific zero-knowledge protocols directly [GK15, HK20b, ACF21] such that they naturally support dis-
junctive statements. Excitingly, recent work has shown that manual modification can result in protocols
with communication sub-linear in the number of clauses [HK20b, ACF21]. However, such approaches rely
strongly on the structure of individual protocols and do not necessarily generalize.

A more robust approach is to build disjunctive compilers [CDS94, AOS02, BMRS21, GGHAK22], generic
approaches that automatically transform large classes of zero-knowledge protocols into disjunctive zero-
knowledge protocols. The seminal work in this area is [CDS94], which proposed an approach that com-
piled Σ-protocols for disjunctions by having the prover simulate the clauses for which it did not have a
witness. More recently, Baum et al. [BMRS21] and Goel et al. [GGHAK22] built upon this idea to compile
large classes of zero-knowledge protocols into disjunctive zero-knowledge protocols with communication
complexity sub-linear in the number of clauses.
Succinct Proofs. A proof system is succinct if its communication cost is polylogarithmic in the size of the
computation being proven. Succinct zero-knowledge proofs are the subject of a long and active line of
research ([Kil94, GGPR13, BCTV14, Gro16, BCS16, BCC+16] and many others) and in recent years have be-
come efficient enough to use in practice. Many such proof systems support some expressive NP-complete
problem, e.g. arithmetic circuit satisfiability. This raises a natural suggestion: to prove a disjunctive state-
ment, one could simply construct a circuit for the disjunction and employ a succinct proof system. The size
of the resulting proof would be only slightly larger than a proof for a single clause.

The main caveat is that, while the proof size is essentially unaffected, the time and space complexities of
the prover increase by at least a multiplicative factor of the number of distinct clauses, compared the cost of
proving a single clause. Since succinct proof systems typically have quite high prover complexity, avoiding
this increase would result in significant savings.
Stacking Succinct Proofs. In our work, we explore how we can apply the frameworks developed in recent
research on minimizing the communication complexity of disjunctive zero-knowledge (specifically [GGHAK22])
to achieve succinct proofs for disjunctions which avoid this multiplicative blowup in the prover computa-
tion time.

At the heart of our approach is the observation that succinct proof systems often have faster simulators
than provers. Intuitively, this is because the cost of “cheating” the verifier in a zero-knowledge protocol
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generally scales with the verifier’s running time, rather than the prover’s. Thus, following the approach
of Cramer, Damgård and Schoenmakers, [CDS94], the prover in a succinct proof system can run the (more
efficient) simulator for the inactive clauses instead of (less efficient) prover algorithm.

Taken together, we obtain succinct proof systems that can prove disjunctions without incurring a multi-
plicative increase in prover complexity in the number of clauses. We also show that in some cases, we can
also avoid a similar increase in the verifier’s complexity using batching techniques.
Set Membership vs. True Disjunctions. There is an important case in which appealing to NP completeness
is concretely efficient: specifically, if (1) the zero-knowledge protocol supports an expressive NP-complete
language, and (2) there is a high degree of homogeneity between the clauses. If a prover wants to prove e.g.
x1 ∈ L ∨ . . . ∨ x` ∈ L, it can do so efficiently by proving the statement “∃(i,x), st.x ∈ L ∧ x = xi (so the
choice of branch is part of the NP witness). The size of this circuit is only slightly larger than the circuit for
L itself. We refer to such statements as set membership statements. Our results are most significant in the case
of what we call true disjunctions, i.e., where the prover wants to prove e.g. x1 ∈ L1 ∨ . . . ∨ x` ∈ L` making
the above transformation more expensive.

1.1 Our Contributions

Framework for Prover-Efficient Succinct Disjunctive Zero-Knowledge. We present a framework, which
we refer to as speed stacking, for composing succinct proofs for disjunctions that often yeild significant
improvements in prover time. We do this by extending the notion of a “stackable” Σ-protocol, introduced
by Goel et al. [GGHAK22], to a more general notion of a “stackable” interactive protocol. We then show
how to compile a stackable zero-knowledge interactive protocol (ZK-IP) into a disjunctive zero-knowledge
interactive protocol. Specifically, we prove the following theorem:
Theorem 1.1 (Informal). Let Π be a “stackable” zero-knowledge interactive protocol for a NP relationRwith associ-
ated simulator S. Then, there exists a zero-knowledge interactive protocol Π′ for the NP relationR′((x1, . . . ,x`),w) :=
∃i,Ri(xi,w) = 1 with communication complexity proportional to Π + O(log(`)) and prover computational com-
plexity Time(Π) + (`− 1) · Time(S).

This theorem covers true disjunctions whenR is sufficiently expressive, e.g.

R = circuit-SAT : R′(((C1,x1), . . . , (C`,x`)),w) = ∃i, Ci(xi,w) = 1.

Note that while the above is a “universal” relation, our approach does not make use of universal circuits.
As we discuss in the technical overview, while universal circuits are conceptually elegant (and sometimes
achieve good asymptotic efficiency), the associated overhead makes them impractical.

Next, we study the speed-stackability of two protocols from each of two families of sublinear-sized zero-
knowledge proof systems: interactive oracle proofs and folding arguments. Interestingly, we find that the
concrete savings offered by each of the four protocols we consider differ dramatically, offering anything
from dramatic, asymptotic speed-ups to concrete savings without asymptotic gains to minimal speedups.
In addition to the new protocols we design, these results offer a new lens through which to study zero-
knowledge proofs.
Speed Stacking Interactive Oracle Proofs. We adapt our stackability framework to interactive oracle proofs
(IOPs) [BCS16], a generalization of interactive proofs that underlies various efficient succinct argument
constructions. We show how to adapt the [BCS16, COS20] transformations to convert stackable IOPs (resp.
holographic IOPs) into stackable succinct arguments (resp. with preprocessing).

We then consider the stackability of two existing IOP protocols for the rank-one constraint satisfaction
(R1CS) language. Let ` be the number of clauses and N be the maximum circuit size of a clause.

• Aurora [BCR+19] can be easily seen to be efficiently stackable by carefully examining the zero-knowledge
simulator. By applying our compiler, we obtain a stackable succinct argument where the prover runs in
time OF(N(logN + ` log2 λ log log λ)). By comparison, the cost of directly proving a disjunction using
Aurora is OF(`N log(`N)).1

1OF indicates that time complexity is measured in field operations.
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• Fractal [COS20] is not itself efficiently stackable: the verifier runs in polylogarithmic time after pre-
processing, whereas any simulator for the original Fractal protocol involves a linear-time statement-
dependent computation. To address this, we modify Fractal into a protocol we call Stactal, a stackable
IOP for R1CS with polylogarithmic simulation. By applying our compiler, we obtain a stackable succinct
argument where the prover runs in timeOF(N logN+` ·polylog(N)). In particular, proving a disjunction
on ` clauses for `� N is asymptotically as efficient as proving a single clause.

Speed Stacking Folding Arguments. Finally, we show how to apply our framework to “folding argu-
ments” [BCC+16, BBB+18, AC20, ACK21, ACF21]. This class of protocols, best represented by Compressed
Σ-protocols [ACF21] and Bulletproofs [BBB+18], in which the prover replaces a linear-sized protocol mes-
sage in a zero-knowledge interactive proof with a multi-round, privacy-free, interactive protocol with log-
arithmic communication complexity.
• Compressed Σ-Protocols [AC20, ACF21] is a stackable ZK-IP for openings of linear forms (after very

minor modifications). By applying our compiler, we obtain a ZK-IP for the disjunction of linear form
openings in which simulating each additional clause only requires computing one exponentiation and
one group multiplication, in addition to a linear number of field operations. We also show that our ideas
extend to circuit-satisfiablity variant of compressed Σ-protocols. We note that our results are stronger
than the set membership version of Compressed Σ-protocols presented by Attema et al. [ACF21] in that
our approach supports true disjunctions as well.2

• Bulletproofs [BBB+18] We observe that Bulletproofs (both for range proofs and circuit satisfiability) are
stackable. However, we note that the runtime of the simulator for bulletproofs is roughly the same as
that of the prover. As such, speed-stacking bulletproofs provides only marginal benefits over more direct
techniques. The only exception we note is proving set-membership range proofs; because the range proof
version of bulletproofs is not sufficiently expressive to directly capture set-membership, speed-stacking
is preferable to rephrasing the statement to circuit satisfiability. This presents an interesting contrast
between Compressed Σ-protocols and Bulletproofs, which otherwise seem to rely on very similar tech-
niques.

2 Technical Overview

2.1 Disjunctive Templates for Zero-Knowledge

Given a sequence of statements (x1, . . . ,x`), we wish to prove in zero-knowledge that either x1 ∈ L1,
x2 ∈ L2, . . . , or x` ∈ L`. While we might have access to appropriate and efficient zero-knowledge proof
systems for each individual language L1, . . . ,L`, it is not clear how to apply these to the disjunction, while
ensuring zero-knowledge. Let a denote the clause for which the prover has a witness (the active clause). We
will refer to the other clauses as inactive.

There are two main templates for disjunctive zero-knowledge in the literature: (1) Statement Combination:
Combine the statements to define a newLwith the relationR((x1, . . . ,x`),w) := R1(x1,w)∨. . .∨R`(x`,w).
and use any existing zero-knowledge proof protocol Π that supports general NP statements. (2) Simulation
of Inactive Clauses: Initially suggested by Cramer, Damgård, and Schoenmakers [CDS94], this approach has
been explored primarily in the context of Σ-protocols. In this template, the prover uses the honest prover
algorithm for the active clause, and “cheats” by using the zero-knowledge simulator for each of the inactive
clauses. The protocol guarantees that the prover can cheat for all but one of the clauses.

The best choice of template depends heavily on the underlying zero-knowledge protocol and the struc-
ture of the clauses. If the protocol is not for an NP-complete language (e.g. Schnorr’s protocol [Sch90]), it
may be impossible to combine the statements without protocol modifications, making the simulation tem-
plate more attractive. When statement combination is possible, the efficiency of the combination often
depends on the homogeneity of the clauses, i.e if it is more like set membership or a true disjunctions.

2We expand on the distinction between set membership and true disjunctions in the next section.
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Of course, this difference is qualitative, rather than quantitative. Notably, a proof system for set mem-
bership can be used to construct a true disjunction by using universal circuits and a set membership over the
programming of the circuit. However, transformations with universal circuits are notoriously expensive:
for example, an implementation [LMS16] of Valiant’s UC [Val76] shows that for a circuit implementat-
ing AES in 33,616 gates the universal circuit capable of simulating it has 11,794,323 gates (with 3,135,833
multiplications)—an increase of ≈ 300×. Although there have been recent improvements on Valiant’s ini-
tial constants [LYZ+21], boolean UCs remain orders of magnitude larger than the circuits they can simulate,
and arithmetic UCs would incur even higher constants [LMS16]

Disjunctive Templates for Succinct Proofs. When composing sublinear-sized proofs, succinctness directly
implies communication-efficient disjunctive composition via statement combination; when a relation cir-
cuit’s size is increased by a multiplicative factor of `, a logarithmic-sized proof will only increase in size by
an additive factor of log(`)—only marginally larger.

This approach, however, increases the running time of the prover by (at least) a multiplicative factor
`. This is of special concern for succinct proof systems where the running time of the prover is often a
bottleneck. In addition, many succinct proof systems have space complexity which grows linearly in the
size of the circuit; in this case, the space requirements also increase by a factor `.

The use of the simulation template in the sublinear setting has not yet been explored. We make the
following initial observations:
• Faster Simulators Means Faster Prover Time: The key feature of the simulation template is the use of the

simulator in each of inactive clauses. While the runtime of a simulator is typically proportional to the
runtime of the prover in linear-sized zero-knowledge protocols, in sublinear-sized proofs it is common
to have simulators that are more efficient—either asymptotically or concretely—than the prover. This
observation means that applying the simulation template to sublinear-sized zero-knowledge proofs could
produce disjunctive composition techniques that do not require the prover to pay—from a computational
perspective—for the inactive clauses, resulting in significantly faster (and more space-efficient) provers
than those produced by applying the statement combination template.

• Communication Overhead Can Be Avoided: The seminal construction of [CDS94] yields a protocol whose
communication complexity is linear in `. In a recent work, Goel et al. [GGHAK22] proposed a new
instantiation of the simulation template for Σ-protocols that can achieve the same results while only in-
troducing an additive term in log(`) to the proof size. At a high level, they observe that is is possible to
simulate the inactive clauses such that they share a third round message with the active clause. When
simulation is carried out in this way, there is no need for the prover to send transcripts for each clause,
removing the communication overhead of [CDS94].

In this work, we use these two observations to motivate the study of applying the simulation template to
the the disjunctive composition of sublinear-sized proofs. When taken together, these observations should
facilitate the “the best of both worlds:” concrete computational savings for the prover without incurring
any meaningful communication overhead. However, it is not immediately clear how to mobilize these
observations into a concrete protocol proposal. In the paragraphs that follow, we start by summarizing the
approach of Goel et al. [GGHAK22] and then proceed to discuss sublinear-sized proofs.

2.2 Stacking Sigmas for Sublinear-sized Proofs

The Approach of Stacking Sigmas [GGHAK22]. Goel et al. [GGHAK22] propose a new instantiation of
the simulation template. Their compiler applies to Σ-protocols (three-round public coin zero-knowledge
protocols) that have the following two properties (such Σ-protocols are called stackable Σ-protocols in their
work):

1. Recyclable Third Round Messages: The distribution of the third round message across all instances must be
the same. That is, there exists an efficient randomized algorithm that can produce a third round message
from the correct distribution. Critically, this algorithm must be independent of the statement.
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2. Deterministic Transcript Completion: The protocol supports a deterministic simulator SDET that can produce
an accepting first round message when supplied with a challenge and an arbitrary third round message
(from the third round message distribution). Importantly this simulator must be deterministic, as it will
be run locally by both the prover and the verifier.

Their compiler is based on a 1-out-of-` partially binding commitment scheme, a vector commitment scheme
that is only binding in a single (pre-selected) index. First the prover generates the first round message for
the active clause aa honestly. Instead of directly sending this message, the prover instead commits to a
vector containing aa in the ath position and zeros in all other positions such that the binding position is a.
The verifier then sends a challenge c to the prover as normal. Next, the prover generates the third round
message for the active clause za. Rather than generate a separate third round message for the inactive
clauses, the prover instead reuses za as the third round message for all clauses. To do this, the prover uses
the special deterministic simulator SDET to produce ai such that ai, c, za is an accepting transcript for the
statement xi. The prover’s final message consists of za along with the randomness used to open the 1-out-
of-` partially binding commitment scheme to the vector (a1, . . . , a`). The verifier is then able to recompute
the values ai independently, checks that each transcript is accepting, and makes sure that the commitment
matches.

Stackable Zero-Knowledge Interactive Protocols. In order to apply the simulation template to multi-round
protocols, we must first extend Goel et al.’s notion of stackability to the muti-round setting (i.e., more than
three-round setting). We extend the notion of recyclable messages so that it naturally applies to multi-round
protocols. Goel et al. consider the distribution of third round messages with respect to the statement, we
define a more fine-grained notion that consider the joint distribution of parts of multiple prover messages
(i.e., messages sent across different rounds) with respect to the statement. That is, we let a part of each
prover message be considered recyclable, in that it can be re-used across multiple statements. In order to be
considered recyclable, it must be possible to design a randomized simulator SRAND that can produce these
messages independently of the statement. We note that identifying the recyclable component of each prover
message is up to the protocol designer and it may be possible to produce multiple recyclable message sets
for any given protocol.

With this multi-round notion of message recycablility, we are ready to understand how to deterministi-
cally complete the protocol transcript. Goel et al.’s deterministic simulator for Σ-protocols does a statement-
dependent mapping of the third round message (i.e. the set of recyclable prover messages for a Σ-protocol)
to the first round message (i.e. the remaining prover messages). We define the notion of deterministic sim-
ulation in the exact same way in the multi-round setting: the deterministic simulator SDET takes as input
(1) the statement x, (2) the verifier challenges, and (3) the recyclable components of each message, and pro-
duces the completion of each prover message such that they form an accepting transcript for the statement
x.

Stacking Multi-round Protocols. To stack multi-round zero-knowledge interactive protocols, we begin by
partitioning each prover message of the protocol into two parts: a recyclable part mRAND,i and a determinis-
tic completion mDET,i. The prover then runs a modified version of the original prover for the active clause.
When the prover would send a recyclable part of a message, it simply sends the message directly. When the
prover would send a non-recyclable message, it instead uses a 1-out-of-` binding commitment scheme to
commit to a vector containing the message in the active clause’s index. In the final round of the protocol, the
prover uses the deterministic simulator to compute the “missing” non-recyclable messages for the inactive
clauses and opens all of the commitments.
Finding the Recyclable Messages. We note that there may not be a unique partitioning of the messages
into recyclable and non-recyclable components. For instance, consider the following toy example: imagine
a protocol to prove that x ∈ L contains two messages a and b, such that a and b are random elements of
{0, 1}|x| subject to the constraint that a ⊕ b = x. Clearly it is not possible to partition the set of messages
such that both a and b are recyclable. However, a can be consider recyclable while b is not, or vice versa. As
such, choosing the most optimal partition (either with respect to prover runtime or proof size) may require
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a small amount of manual optimization. We discuss an informal process for finding the recyclable message
set in Section 3.5.

2.3 Speed-Stacking Interactive Oracle Proofs

A key technique for obtaining sublinear-sized interactive arguments is the cryptographic “compilation” of
interactive oracle proofs (IOPs) [Kil92, Mic94, BCS16, RRR16]. An interactive oracle proof is an interactive
proof system where the verifier, rather than reading the messages it receives in their entirety, has oracle
access to each message and can query the messages at any index. IOPs can be viewed as a natural multi-
round generalization of the notion of probabilistically checkable proof (PCP) [BFLS91]. All IOPs discussed in
this paper will be public-coin. A zero-knowledge IOP additionally has an efficient simulator: given the ver-
ifier’s random tape, the simulator computes oracle responses to the verifier’s queries which have the same
distribution as in the real interaction. Given a succinct vector commitment scheme (e.g. a Merkle tree), an
IOP can be transformed into a succinct interactive argument as follows [BCS16]: in each round, the prover
simply computes a commitment to the message and sends the commitment to the verifier; the verifier then
responds with the set of query points and the prover provides opening proofs for the responses.

In this section we give an overview of our results on the stackability of IOP-based succinct arguments.
We provide a two-part framework: we first define a notion of stackability for IOPs, and then show how a
stackable IOP can be “compiled” into a stackable interactive argument — with some minor tweaks the exist-
ing compiler outlined above preserves “stackability”. We show that several interactive oracle proofs (IOPs)
are stackable, specifically Aurora [BCR+19] and a variant of Fractal [COS20] that we call Stactal. Finally, we
outline why it is possible to achieve prover computational savings when compiling these protocols. What
follows is an informal description of the definitions and techniques described formally in Section 4. The
central definition is the notion of a “stackable IOP”:

Stackable IOPs. A stackable IOP is a zero-knowledge IOP with a particular simulation strategy: there
exists a partition of the k oracles (rounds) into Rrec and [k] \Rrec, such (1) responses to queries for oracles in
Rrec can be sampled independently from the relation/statement. (2) while responses to queries for oracles in
[k] \Rrec can be computed deterministically from the relation/statement and other query answers.

Inutively a stackable IOP enables reusing the same oracles in Rrec to simulate multiple IOPs for distinct
relations/statement, while communicating the responses for the remaining (distinct) oracles in [k] \ Rrec

requires no additional communication – since the expected responses can be deterministically computed
by the verifier (by running the simulator).

Stackable IOPs to Stackable IPs. Analogously to the way that IOPs can be compiled into arguments in
the plain model, stackable IOPs can be compiled into stackable arguments in the plain model. We show
that the existing IOP to IP compiler (outlined above) from vector commitments, can be adapted to preserve
the efficient “stackability” of the underlying IOP. In order to preserve efficient simulation for the inactive
clauses we need the vector commitment scheme to allow committing to and opening a subvector in time
that depends only on the size of the subvector. We show that specific instantiations of Merkle trees satisfy
this requirement.

Efficiency. One of the advantages of IOPs over other sublinear-sized proofs is that the running time of the
IOP verifier can be polylogarithmic in the size of the statement. To maintain this property when applying our
stacking compiler, we require also that the (instance-dependent component of the) simulator be similarly
efficient. This is typically not a design goal for simulators, since polynomial (rather than polylogarithmic)
efficiency suffices for zero-knowledge. As such, the security proofs of many existing protocols construct
simulators which are not efficient enough for us. In some cases, all that is required is a more careful sim-
ulator construction. In others, to achieve efficient simulation we must substantially modify the protocol
itself.

Showing Stackability. Many IOP constructions share a similar basic structure, consisting of two main parts:
an encoded protocol, where soundness holds assuming that the prover’s messages are close to words in an
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error-correcting code, and a proximity test, which guarantees that this condition holds. The code of choice
for most constructions is the Reed–Solomon code, the code of evaluations of low-degree univariate poly-
nomials over finite field F on some domain L ⊆ F. Achieving zero-knowledge for protocols constructed in
this way typically involves only two techniques:

(1) Bounded independence: when the prover sends an encoding of a secret vector v ∈ Fk, rather than
directly encoding v, it chooses a random vector r ∈ Fb and encodes v‖r ∈ Fk+b. The properties
of the Reed–Solomon code guarantee that, under a mild condition on the evaluation domain L, the
answers to any set of b queries to a codeword are distributed uniformly at random in F (that is, the
code is b-wise independent). To simulate, the simulator simply answers any verifier query uniformly
at random.

(2) Masking: often the verifier needs to check some linear property P with respect to the prover’s mes-
sages (a property P ⊆ F` is linear if it is an F-linear subspace of F`). Examples of such properties
include the Reed–Solomon code itself (low-degree testing), or the subcode of the Reed–Solomon code
consisting of polynomials whose evaluations over a set S ⊆ F sum to zero (univariate sumcheck).

Linear properties allow for zero-knowledge via random self-reduction: to show that f ∈ P , the prover
sends a uniformly random word r ∈ P (the “mask”), the verifier chooses a challenge α ∈ F uniformly
at random, and the prover and verifier then engage in a protocol to show that αf + r ∈ P . To
simulate, the simulator first generates a transcript showing that q ∈ P for uniformly random q ∈ P ; it
then answers queries to r by “querying” q − α · f . Note that this simulation strategy requires that the
simulator can simulate some number of queries to f , which is typically achieved through bounded
independence as described above.

These two techniques lend themselves to the [GGHAK22] stacking approach, as follows. Simulation for
(1) is trivially instance-independent (recyclable), since the simulator simply answers queries uniformly at
random. For (2), observe that provided P is an instance-independent property, the process of sampling a
protocol transcript showing that q ∈ P is also instance-independent. Given q, queries to the mask r can then
be answered deterministically. Hence for essentially all zero-knowledge IOP constructions, every message
is fully recyclable except for those in which the prover sends a random mask.

To demonstrate the above approach, we consider two key IOP constructions from the literature: Au-
rora [BCR+19] and Fractal [COS20]. We start with the more complicated case of Fractal:

Fractal/Stactal. Fractal is a Holographic IOP, which means it can be compiled to a preprocessing zkSNARK
in which the verifier’s running time is polylogarithmic. Unfortunately Fractal is not an efficiently stackable
IOP. The challenge originates in the Fractal “holographic lincheck” which proves, for encodings of (secret)
vectors x, y, that Mx = y for a public matrix M that is “holographically” encoded. The central problem
with this lincheck is that it reduces to opening a bivariate polynomial uM (β, α) at a random β, α ∈ F. Since
this evaluation depends (deterministically) on every nonzero entry of M , simulation requires reading all of
M to compute the correct uM (α, β). As a result, the stacked verifier becomes inefficient. To alleviate this we
introduce “Stactal”, a variant of “Fractal” which does admit very efficient stacking. “Stactal” modifies the
lincheck protocol to allow the prover to extend the matrix M to a larger matrix M ′ that is “padded” with
random values. This introduces sufficient bounded independence that uM ′(β, α) is uniformly random (and
so independent of M ).

Aurora. Aurora is naturally a stackable IOP: since the verifier in Aurora is quasi-linear the stacking simu-
lator has enough “computational budget” to read all of M . Hence, the (simpler, non-holographic) lincheck
of Aurora can easily be simulated with the same time complexity as the verifier.

2.4 Speed-Stacking Folding Arguments

The next class of sublinear-sized zero-knoweldge proofs are ones based on “folding arguments”. These
are interactive zero-knowledge protocols with logarithmic round complexity. The two most prominent
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examples of such protocols are Compressed Σ-protocols [AC20, ACK21, ACF21] and Bulletproofs [BCC+16,
BBB+18].
Folding Technique. The central object in all folding argument based zero-knowledge protocols is a sub-linear,
interactive, logarithmic-round non zero-knowledge protocol to demonstrate that the prover has knowledge
of a witness. The key idea used in the design of these logarithmic-round non zero-knowledge protocols is to
enable the prover (using randomness from the verifier) to “fold” the witness in on itself, thereby reduce the
size of the witness by half in each round. This step is repeated for logarithmic number of rounds, until the
witness is reduced to a constant size.

In order to build a sub-linear zero-knowledge protocol using the above non zero-knowledge protocol, most
existing constructions rely on the same rough template—these constructions begin with a constant round
“base” protocol containing a large final round message (i.e., linear in the size of the original witness) that
achieves zero-knowledge. Finally, instead of actually sending this large final round message, the prover
uses the above (non zero-knowledge) recursive folding approach to prove knowledge of this large message
over logarithmic rounds. The key observation used here is that since the “base” protocol achieves zero-
knowledge even if the large final round message is sent to the verifier in the clear, it suffices for the prover
to use the above non zero-knowledge sublinear protocol to prove knowledge of this message.
Folding Argument Based ZK-IP are Stackable. Most folding argument based zero-knowledge protocols
including Compressed Σ-protocols and Bulletproofs fall into the category of sublinear-sized proofs, with
verifier runtime roughly equivelent to the prover runtime. We observe that the folding arguments we study
are stackable such that the prover’s entire last round message is recyclable.3 To see this, note that if the last
round message could instead be computed deterministically using the rest of the transcript, without access
to the witness (which is the case for non-recyclable messages), then this last round message could also be
computed by the verifier independently and there would be no need to send this message.4 Specifically,
this holds for the final round message in the “base” protocol in both Bulletproofs [BCC+16, BBB+18] and
Compressed Σ-protocols [AC20, ACK21, ACF21]. Because this last round message is recyclable, we observe
that the entire folding argument—a proof of knowledge of a recyclable message—is itself recyclable and
can be reused across clauses. We note, however, that the mere fact that these protocols are stackable doesn’t
immediately imply that there are vast computational savings available when stacking folding arguments.
Interestingly, we find that stacking Compressed Σ-protocols offers significant computational savings, while
stacking Bulletproofs does not.
Computational Savings via Stacking. As discussed earlier, our hope to get computational savings when
stacking sublinear zero-knowledge proof systems for disjunctions, stems from the observation that the
simulator in such proofs is typically much faster than the prover algorithm. This is because, the verifier
in most such protocols runs in sublinear time and since the job of the simulator is to essentially “fool” the
verifier into accepting a simulated proof, the work required from a simulator is somewhat proportional to
the work done by the verifier. As a result, being able to replace the prover algorithm with the simulator for
all inactive clauses in the disjunction, can yield significant computational savings.

Folding argument based sublinear proof systems we consider, however, do not have a sublinear-time
verrifier. In fact, the work done by the verifier in these protocols is asymptotically equivalent to the work
done by the prover. Hence, the overall simulator is not asymptotically more efficient than the prover al-
gorithm. For computational savings, here we rely on our second observation about simulators: the simu-
lator can often be split into two parts SRAND and SDET, where SRAND is responsible to simulating the state-
ment independent part of the transcript, while SDET simulates messages that are dependent on the state-
ment/relation. Since the messages simulated by SRAND are statement independent, the resulting messages
can be re-used/recycled in all the inactive clauses, while we must compute the messages simulated by SDET

separately for each clause. If SDET is significantly faster than SRAND, we can still hope to get significant con-
crete computational savings for the prover when stacking such protocols (even if there are no asymptotic
savings). This is where the crucial difference between Bulletproofs and Compressed Σ-protocols appears.

3We formalize this claim in Section 3.5.
4We do note, however, that some protocols include deterministic messages in the final round in order to minimize verifier compu-

tation.
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In Compressed Σ-protocols, the statement/relation-dependent verifier computation only consists of
simple field operations, while the statement independent verification consists of expensive group multi-
exponentiations. As a result SDET is significantly more efficient than SRAND, yielding concrete computational
savings for the prover upon stacking. Unfortunately, Bulletproofs lie on the other end of the spectrum,
where the runtimes of SDET and SRAND are approximately the same (ie. up to a small constant factor). This is
alludes to an interesting distinction between these two folding argument based protocols and motivates the
design of sublinear-sized zero-knowledge protocols in which the verifier’s statement-dependent computation
is much faster than the verifier’s statement-independent verifier computation—in other words, protocols that
are more amenable to speed-stacking. We now give a brief technical overview of Compressed Σ-protocols
and Bulletproofs to further highlight this distinction and demonstrate stackablilty.
Compressed Σ-Protocol. Compressed Σ-protocols [AC20, ACK21, ACF21] provide zero-knowledge inter-
active protocols for proving knowledge of openings of linear forms, i.e., proving that the output of a linear
function f applied to a vector x contained in a commitment P equals some publicly known value y. The
“base” protocol in Compressed Σ-protocols, performs a randomized self-reduction, in which the problem
is reduced to the task of proving a different (related) statement for the same relation in a privacy-free way.
To prove this related statment, they provide a log-sized privacy-free argument.

We observe that the entire folding argument transcript can be reused during stacking (after making very
minor modifications to the protocol), but not all of the computation can be reused. That is, the randomized
simulator SRAND creates the folding argument transcript and then deterministic simulator SDET completes
the transcript, but runs in time linear in the size of the vector x (SDET recursively folds the linear form to
facilitate the final check). However, we observe that the linear number of operations in SDET are all field
arithmetic, and SDET contains only a single group exponentiation and a single group multiplication, with no
multi-exponentations. As a result, simulating each additional inactive clause remains significantly faster
than the prover algorithm.

We note that were able to handle disjunctions where each clause i ∈ [`] could have a different homo-
morphic linear function fi and a different commitment Pi. This is a stronger notion of disjunctions than the
ones considered in [ACF21], which give proofs where either the homomorphism or commitment is fixed
across a disjunction of multiple clauses.
Bulletproofs. The main task in the initial “base” protocol in Bulletproofs [BBB+18] is reduced to transform-
ing any given relation into a privacy-free inner-product relation. This is followed by an efficient folding argu-
ment for Rinnerprod. This approach is used to acheive efficient zero-knowledge for range proofs and circuit
satisfiability. Because the last message of the “base” protocol is recyclable, the folding argument transcript
can be reused, and we find that only two of the messages in the “base” protocol are non-recyclable. How-
ever, simulating these two non-recyclable messages requires performing multi-exponentiations dependent
on the relation function. As a result, any savings obtained from being able to recycle the entire non zero-
knowledge sublinear-sized folding argument at the end across all inactive clauses are more-or-less eclipsed
by the computation involved in individually simulating the above two non-recyclable messages for each
inactive clause.

As such, stacking Bulletproofs for “true” disjunctions does not seem to offer considerable savings. We do
note, however, one might consider set-membership for range proofs (ie. ∃xi ∈ {x1, . . . , x`} st. xi ∈ Range),
where appealing to NP completeness is expensive. Because the the statement dependent computation (that
must be run separately for each clause) is remarkably inexpensive (involving only one group exponentia-
tions and a constant number of group multiplications), applying the compiler in this case may be valuable.
While set membership for range proofs is not particularly valuable, studying Bulletproofs illuminates fun-
damental differences between Compressed Σ-protocols and Bulletproofs, despite their superficial similari-
ties. Moreover, this highlights the key parameters to keep in mind when stacking a protocol and points to
new considerations when designing new—potentially stackable—zero-knowledge proof systems.
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Aurora
(Ben-Sasson et al. [BCR+19])

Stactal
(Section 4.5)

Bulletproofs(Range Proofs)
(Section 6)

Compressed Σ-Protocols
(Section 5)

Stackable RS-IOP
(Definition 4.5 Ext.)

Stackable IOP
(Definition 4.5)

Stackable IP
(Definition 3.4)

Theorem 4.12

Theorem 4.13

Lemma 4.7
Theorem 4.9

Theorem 6.3

Theorem 5.2

Theorem 3.5 Stackable Prover-Efficient
Disjunctive Proofs

Figure 1: A roadmap for the results in our paper.

2.5 Roadmap to Our Results

In order to achieve our results, we follow the roadmap depicted in Figure 1. Our formalization of a Stack-
able Interactive Protocol appears in Section 3. Our speed-stacking compiler for ZK-IP is presented in Sec-
tion 3.4. In Section 4, we show how to speed stack IOPs, including the top pathway in Figure 1. In Section 5
and Section 6 we show how to speed stack folding arguments (bottom pathway in Figure 1).

2.6 Notation

When discussing interactive protocols in this work, we will use both interactive turing machine notation,
ie. 〈P,V〉(x), and algorithmic notation, ie. the ith message is computed with algorithm Pi. More formally,
we assume that for zero-knowledge interactive proofs, the interaction 〈P,V〉(x) contains an ordered list
of algorithms Pi, such that the prover computes their ith message using Pi. We use CC(Π) to denote the
computational complexity of Π, and let Time(Π) denote the runtime of the algorithm Π. Finally, we note
that our work spans different lines of research that commonly leverage different notation for the same
concepts. Wherever possible we have made notation internally consistent, at the cost of being inconsistent
with prior work.

For an NP relation R, we denote the instance as x and the witness as w. Let the number of clauses in
the disjunction ` and the index of the active clause as a. Where applicable, we use N to denote the relevant
size of x. We use multiplicative notation for groups and group operations.

In lieu of a single preliminaries section for the entire paper, we have moved preliminaries content into
localized preliminary sections in the most relevant technical section. We make this choice in recognition
that understanding our technical results requires familiarity with a large number of existing work. As such,
we aim to defer complexity until it is most needed, where possible. We include a standard definition of
Public-Coin Zero-Knowledge Interactive Proofs in Section 3.1. For completeness we include the definition
of Partially-Binding Vector Commitments, originally introduced in [GGHAK22], in Section 3.2. We give
definitions for Holographic Interactive Oracle Proofs and Reed-Solomon encoded Holographic Interactive
Oracle Proofs in Section 4.1 . We also provide a definition of hiding key-value commitments in Defini-
tion 4.6.

3 Stacking Zero-Knowledge Interactive-Proofs

In this section, we extend the notion of “stackability” introduced in Goel et al. [GGHAK22] to the multi-
round setting proceed to give a generic compiler that can transform a stackable ZK-IP into a ZK-IP for
disjunctive statements. We start by recalling the relevant preliminaries before proceeding to our technical
results: definiting Stackable ZK-IP (Section 3.3), presenting our stacking compiler (Section 3.4), and provid-
ing a heuristic mechanism for preparing ZK-IP protocols for stacking (Section 3.5).
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3.1 Public-Coin Zero-Knowledge Interactive Proofs

To establish notation, we start by recalling the definition of a public-coin zero-knowledge interactive proof.5

Definition 3.1 (Public-Coin ZK-IP). LetR be an NP relation. A public coin zero-knowledge interactive-proof (ZK-
IP) Π for R is an interactive protocol between a prover P and a verifier V consisting of k prover messages and k − 1
verifier messages. The prover is defined by an interactive algorithm P = {Pi}i∈[k] and the verifier is defined by a
predicate φ, with the following interfaces:

– mi ← Pi(x,w, (cj)j∈[i−1]; prand) (∀i ∈ [k]): On input (x,w) ∈ R, challenge messages {cj}j∈[i−1] received
from the verifier in previous rounds and prover randomness prand, this algorithm outputs message mi that P
sends to V in the ith round.

– ci
$←− {0, 1}κ, ∀i ∈ [k − 1]: The verifier V samples a random challenge ci to send to P in the ith round.

– b ← φ(x, {mi}i∈[k], (ci)i∈[k−1]): On input the statement x, prover’s messages (mi)i∈[k] and the challenge
messages (ci)i∈[k−1], this algorithm run by V, outputs a bit b ∈ {0, 1}.

We denote by 〈P(x,w),V(x)〉 the random variable corresponding to the bit b output by V in the above interaction.

For completeness, we include the standard security notions for ZK-IP.

– Completeness: A public-coin ZK-IP Π is complete if for any (x,w) ∈ R,

Pr[〈P(x,w),V(x)〉 = 1] = 1 .

– Computational Soundness. Π has computational soundness if for all x /∈ L(R) and PPT provers P̃,

Pr[〈P̃,V(x)〉 = 1] ≤ negl(λ).

– Special Honest Verifier Zero-Knowledge. A public-coin ZK-IP Π = ({Pi}i∈[k], φ) is said to be special honest
verifier zero-knowledge, if there exists a PPT simulator S, such that for any x,w such that R(x,w) = 1, it
holds that

{{mi}i∈[k] | {ci
$←− {0, 1}κ}i∈[k−1]; {mi}i∈[k] ← S(1λ,x, {ci

$←− {0, 1}κ}i∈[k−1])} ≈c

{{mi}i∈[k] | prand
$←− {0, 1}∗; {mi ← Pi(x,w, {cj}j∈[i−1]; prand)}i∈[k]; {ci

$←− {0, 1}κ}i∈[k−1]}

Preprocessing. We additionally consider ZK-IPs with a preprocessing step; we refer to these as preprocess-
ing ZK-IPs. Preprocessing ZK-IPs operate on indexed relationsR, consisting of index-instance-witness triples
(i,x,w). We split the preprocessing into a statement-independent randomized setup algorithm Setup and
an index-dependent (instance-independent) deterministic indexer I.

– The setup Setup takes in 1λ and outputs public parameters pp.

– The indexer I takes in public parameters pp and the index i and outputs proving key ipk and verifica-
tion key ivk.

The completeness definition now provides the honest prover with ipk and the honest verifier with ivk.
The soundness definition now provides the adversary with pp and the honest verifier with ivk. The zero
knowledge definition now allows the simulator to generate pp and provides the honest verifier with ivk.

Well-Behaved Simulator.We recall the notion of a well-behaved simulator, as defined by Goel et al. [GGHAK22].
We give the natural generalization to ZK-IPs here.

5Formally, the constructions in this paper are arguments rather than proofs because they are only computationally sound.
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Definition 3.2 (Well-Behaved Simulator). We say that a ZK-IP for a NP language L and associated relation
R(x, w) has a well-behaved simulator if the simulator S defined for Special Honest Zero-Knowledge has the fol-
lowing property: For any statement x (for both x ∈ L and x 6∈ L),

Pr
[
φ(x, {ci}i∈[k−1], {mi}i∈[k]) = 1

∣∣ {ci $←− {0, 1}κ}i∈[k−1]; {mi}i∈[k] ← S(1λ,x, {ci
$←− {0, 1}κ}i∈[k−1])}

]
= 1

Recall that Goel et al. [GGHAK22] prove that simulators are well-behaved for Σ protocol, without loss
of generality. It is simple to see that this result can extend to ZK-IP.

3.2 Partially-Binding Vector Commitments

In this section, we recall the partially-binding vector commitments introduced by [GGHAK22]. For a con-
struction of these commitment schemes, we refer the reader to the work of Goel et al.

Definition 3.3 (t-out-of-` Binding Vector Commitment). A t-out-of-` binding non-interactive vector commitment
scheme with message spaceM, is defined by a tuple of the PPT algorithms (Setup,Gen,EquivCom,Equiv,BindCom)
defined as follows:

• pp← Setup(1λ) On input the security parameter λ, the setup algorithm outputs public parameters pp.

• (ck, ek)← Gen(pp, B): Takes public parameters pp and a t-subset of indices B ∈
(

[`]
t

)
. Returns a commitment

key ck and equivocation key ek.

• (com, aux)← EquivCom(pp, ek,v; r): Takes public parameter pp, equivocation key ek, `-tuple v and random-
ness r ∈ R. Returns a partially-binding commitment com as well as some auxiliary equivocation information
aux.

• r ← Equiv(pp, ek,v,v′, aux): Takes public parameters pp, equivocation key ek, original commitment value
v and updated commitment values v′ with ∀i ∈ B : vi = v′i, and auxiliary equivocation information aux.
Returns equivocation randomness r.

• com ← BindCom(pp, ck,v; r): Takes public parameters pp, commitment key ck, `-tuple v and randomness r
and outputs a commitment com. Note that this algorithm does not use the equivocation key ek. This algorithm
plays a similar role to that of Open in a typical commitment scheme.

The properties satisfied by the above algorithms are as follows:

(Perfect) Hiding: The commitment key ck and commitment com (perfectly) hides the binding positions B and the
equivocated values, even when opening the commitment. Formally, for all v(1),v(2) ∈ M`, B(1), B(2) ∈

(
[`]
t

)
and a ‘valid equivocation’ for both vectors v′ ∈ M` i.e. ∀i ∈ B(1) : v

(1)
i = v′i and ∀i ∈ B(2) : v

(2)
i = v′i) and

pp← Setup(1λ), the two distributions are equal:(ck, com, r′)

∣∣∣∣∣∣∣∣
(ck, ek)← Gen(pp, B(1)); r

$←− {0, 1}λ;

(com, aux)← EquivCom(pp, ek,v(1); r);

r′ ← Equiv(pp, ek,v(1),v′, aux)


p=(ck, com, r′)

∣∣∣∣∣∣∣∣
(ck, ek)← Gen(pp, B(2)); r

$←− {0, 1}λ;

(com, aux)← EquivCom(pp, ek,v(2); r);

r′ ← Equiv(pp, ek,v(2),v′, aux)


The definition essentially states that any two sets of binding positions and original vectors, which could ‘explain’
the provided opening of v′, are indistinguishable.
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(Computational) Partial Binding: An adversary (that generates ck itself) cannot equivocate on more than ` − t
positions, even across multiple different commitments. Define the function ∆ :M`×M` 7→ P([`]) taking two
vectors and returning the set of indexes on which the vectors differ:

∆(v,v′) = {j ∈ [`] : vj 6= v′j} .

Consider an adversary A that outputs ck and a set S of pairs of openings S ⊆ M` ×M` ×R×R such that
each pair of openings share the same commitment under ck, then the set of index on which the openings differ
across all pairs has cardinality at most t− `, formally, we require that the following probability is negligible in
λ for any PPT A:

Pr


∣∣∣⋃(v,v′,r,r′)∈S ∆(v,v′)

∣∣∣ > `− t ∧

∀(v,v′, r, r′) ∈ S.
BindCom(pp, ck,v; r)

= BindCom(pp, ck,v′; r′)

∣∣∣∣∣∣∣ pp← Setup(1λ)
(ck, S)← A(1λ, pp)

 .

Partial Equivocation: Given a commitment to v under a commitment key ck ← Gen(pp, B), it is possible to
equivocate to any v′ as long as ∀i ∈ B : vi = v′i. More formally, for all B ∈

(
[`]
t

)
, and all v,v′ ∈ M` st. ∀i ∈

B : vi = v′i then:

Pr

BindCom(pp, ck,v′; r′) = com

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ); r

$←− {0, 1}λ;

(ck, ek)← Gen(pp, B);

(com, aux)← EquivCom(pp, ek,v; r);

r′ ← Equiv(ek,v,v′, aux)

 = 1 .

We note that Goel et al. [GGHAK22, Corollary 1] include a concretely efficient construction of 1-of-`
partially binding vector commitments with O(λ log(`)) communication in their paper.

3.3 Defining Stackable ZK-IP

Recently, Goel et al. [GGHAK22] introduced the notion of “stackability” for Σ-protocols (i.e., three-round
ZK-IPs), and showed most natural Σ-protocols are stackable. At the heart of their approach is the obser-
vation that the simulators for common Σ-protocols can be divided into two components: a randomized,
statement independent part, which we will denote SRAND,6 and a deterministic, statement dependent part,
which we denote SDET.

We extend their intuition to the multi-round setting. Intuitively, we require that each message in the
protocol can be subdivided into two (potentially empty) parts: a recyclable part that can be reused across
multiple statements, and a deterministically computable part. More formally, we assume that each prover
message i of a ZK-IP is a concatenation of two parts—mRAND,i and mDET,i. To satisfy stackability, we require
that it is possible to generate the messages {mRAND,i}i∈[k] using a randomized, statement independent al-
gorithm SRAND. Additionally, we require that there exists a deterministic simulator SDET that can simulate
the remaining parts of the messages {mDET,i}i∈[k] such that the resulting transcript matches an “honest”
execution of the protocol.

Definition 3.4 (Stackable ZK-IP). Let Π be a ZK-IP consisting of k prover messages and k − 1 verifier messages
(see Definition 3.1) for a relation R. For each i ∈ [k], let mi = (mRAND,i,mDET,i) and let MRAND = (mRAND,i)i∈[k]

and MDET = (mDET,i)i∈[k]. We say that Π is Stackable, if there exists a PPT simulator SRAND and a polynomial-time

6We depart from the notation introduced by Goel et al. [GGHAK22], in which this first part is instead discussed as an efficiently
sampleable distribution, rather than a simulator. We note that these notions are clearly equivalent: the output of SRAND defines a
distribution from which elements can be efficiently sampled (namely, by running SRAND)
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Stacking Compiler
Statement: x = x1, . . . ,x`
Witness: w = (a,wa)
For each i ∈ [k − 1], the Prover and Verifier take turns sending messages:

– Prover in Round i: Prover computes P′i(x,w; rp)→ mi as follows:

– Parse rp = (rpa‖{rj}j∈[k]).

– Compute (mRAND,i,a,mDET,i,a)← Pi(xa,wa; rpa).

– Set vi = (vi,1, . . . , vi,`), where vi,a = mDET,i,a and ∀j ∈ [`] \ a, vi,j = 0.

– If i = 1, compute (ck, ek)← Gen(pp, B = {a}).

– Compute (comi, auxi)← EquivCom(pp, ek,vi; ri).

– If i = 1, send mi = (ck, comi,mRAND,i,a) to the verifier, otherwise send mi = (comi,mRAND,i,a) to the verifier.

– Verifier in Round i: Verifier samples ci
$←− {0, 1}λ and sends it to the prover.

Round k: Prover computes P′k(x,w, {cj}j∈[k−1]; r
p)→ z as follows:

• Parse rp = (rpa‖{rj}j∈[k]).

• Compute (mRAND,k,a,mDET,k,a)← Pk(xa,wa, {cj}j∈[k−1]; r
p
a).

• For j ∈ [`] \ a, compute {mDET,i,j}i∈[k] := SDET(xj , {cj}j∈[k−1], {mRAND,i,a}i∈[k]).

• For each i ∈ [k], set v′i = (mDET,i,1, . . . ,mDET,i,`) and compute r′i ← Equiv(pp, ek,vi,v
′
i, auxi) (where auxi can be

regenerated with ri).

• Send mk = (mRAND,k,a, {r′i}i∈[k]) to the verifier.

Verification: Verifier computes φ′(x, {mi, ci}i∈[k−1],mk)→ b as follows:

• For each i ∈ [k], if i = 1, parse mi = (ck′, comi,mRAND,i,a), else parse mi = (comi,mRAND,i,a). Parse mk =
(mRAND,k,a, cki,mk,a, {r′i}i∈[k])

• For j ∈ [`], compute {mDET,i,j}i∈[k] := SDET(xi, {ci}i∈[k−1], {mRAND,i,a}i∈[k]).

• For each i ∈ [k], set v′i = (mDET,i,1, . . . ,mDET,i,`).

• Compute and return:

b =
∧
i∈[k]

(
comi

?
= BindCom(pp, ck,v′i; r

′
i)
) ∧
j∈[`]

(
φ(xj , {(mRAND,i,a,mDET,i,j)}i∈[k], {ci}i∈[k−1])

)
Figure 2: A compiler for stacking multiple instances of a stackable ZK-IP

computable, well-behaved (see Definition 3.2), deterministic simulator SDET, such that for each C = (ci)i∈[k−1] ∈
({0, 1}κ)k−1 and for all instance-witness pairs (x,w) st. R(x,w) = 1, it holds that:{

(M,C) | rp $←− {0, 1}λ;∀i ∈ [k], (mRAND,i‖mDET,i)← Pi(x,w, (cj)j∈[i−1]; r
p)
}

≈
{

((mRAND,i‖mDET,i)i∈[k], C) |MRAND ← SRAND(1λ, C);MDET := SDET(x, C,MRAND)
}

The natural variants (perfect/statistical/computational) are defined depending on the class of distinguishers with re-
spect to which indistinguishability holds.

3.4 Compiler for Stacking ZK-IPs

We now present our compiler that can transform any stackable ZK-IP into a ZK-IP for disjunctions. As
discussed earlier, similar to Goel et al. [GGHAK22], the main idea behind this construction is to honeslty
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compute the transcript of the active clause and reuse its recyclable messages for all the inactive clauses.
Concretely, the prover starts by generating a (ck, ek) pair for the index associated with the active clause.

Subsequently, in each round it computes messages for the active clause honestly and commits to the non-
recyclable messages along with a bunch of 0s for the inactive clause using the partially-binding vector
commitment scheme and commitment key ck. It sends this commitment along with the honestly computed
recyclable message to the verifier. In the last round, upon receving all the challenge messages from the
verifier, it simulates to “complete” the transcript of the inactive clauses and equivocates all of the previ-
ously computed commitments to a commitment of these messages and sends the assiciated commitment
opening/randomness to the verifier. Based on the recyclable messages, the verifier also simulates the non-
recyclable messages for each clause, and checks if they were honestly committed inside the commitment. It
also checks if the resulting transcript for each clause is accepting.

Theorem 3.5. Let Π be a stackable ZK-IP (see Definition 3.4) consisting of k prover messages and k − 1 verifier
messages for the NP relation R : X ×W → {0, 1} and let (Setup,Gen,EquivCom,Equiv,BindCom) be a 1-out-of-`
binding vector commitment scheme (See Definition 3.3). For any pp← Setup(1λ), the compiled protocol Π′ described
in Figure 2 is a stackable ZK-IP for the relation R′ : X ` × ([`] ×W) → {0, 1}, where R′((x1, . . . ,x`), (a,w)) :=
R(xa,w).

Proof of Theorem 3.5. We now prove that the protocol Π′ = {P′i}i∈[k] described in Figure 2 is a stackable
ZK-IP for the relationR′((x1, . . . ,x`), (a,w)) := R(xa,w).
Completeness. Completeness follows directly from the completeness of the underlying ZK-IP Π and the
partially binding commitment scheme. Note that because the underlying ZK-IP has a well-behaved simu-
lator, the prover will not produce non-accepting transcripts on any clauses embedding false instances.

Computational Soundness. We describe how an efficient prover P̃′ for Π′ that convinces with probability
δ > 0 can be used to derive a cheating prover P̃ for the original ZK-IP Π that convinces or breaks partial
binding with probability δ/(2`). Without loss of generality, P̃′ is deterministic, and so we can view it as a
function from (k − 1)-tuples of challenges to protocol transcripts. We define P̃ as follows, for each τ ∈ [k]:

P̃τ (c1, . . . , cτ−1; a):
1. Repeat the following at most N = d2ke/δe times:

(a) Sample cττ , . . . , cτk−1 uniformly at random.

(b) Obtain transcript T := (ck, (comi,mRAND,i)i∈[k], (ri)i∈[k])← P̃′(c1, . . . , cτ−1, c
τ
τ , . . . , c

τ
k−1).

(c) If V′(T, (c1, . . . , cτ−1, c
τ
τ , . . . , c

τ
k−1)) accepts, output (mRAND,τ ,mDET,τ ) where

(mDET,i)i∈[k] := SDET(xa, (c1, . . . , cτ−1, c
τ
τ , . . . , c

τ
k−1), (mRAND,i)i∈[k]).

2. Otherwise, abort.
We take a above to be chosen uniformly at random.

Suppose first that P̃ does not abort, and let

Tτ = (ckτ , (comτ
i ,m

τ
RAND,i)i∈[k], (r

τ
i )i∈[k])

be the accepting transcript obtained from P̃′ by P̃τ . Let S := {((mi
DET,i,j)j∈[`], r

i
i), ((m

k
DET,i,j)j∈[`], r

k
i ) : i ∈

[k]}, where (mτ
DET,i,j)i∈[k] := SDET(xj , (c1, . . . , cτ−1, c

τ
τ , . . . , c

τ
k−1), (mRAND,i)i∈[k]). Since for all i, comk

i = comi
i

by construction, each pair in S maps to the same commitment under ck. Hence by partial binding it holds
(with overwhelming probability) that there exists j ∈ [`] such that for all i ∈ [k], mk

DET,i,j = mi
DET,i,j .

Recall that (mRAND,i,m
i
DET,i,a) is the message sent by P̃i to V in round i. Moreover it holds that V′ accepts

(Tk, c) where c are the verifier’s challenges in the real interaction. Hence

1 = φ(xj , {(mRAND,i,m
k
DET,i,j)}i∈[k], c) = φ(xj , {(mRAND,i,m

i
DET,i,j)}i∈[k], c) .

It follows that V accepts in the real interaction when a = j, which occurs with probability 1/`.
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We conclude by bounding the probability that P̃ aborts. To do so, we bound the following probability:

γ := Pr
c

[∃τ ∈ [k], P̃τ (c1, . . . , cτ−1) aborts ∧ P̃′(c) convinces V′] .

Then by a union bound, Pr[P̃ aborts] ≤ 1− δ + γ. For a vector of challenges (c1, . . . , cτ−1), define

δ(c1, . . . , cτ−1) := Pr
cτ ,...,ck

[P̃′(c) convinces V′] .

We can then bound γ as follows:

γ ≤
k∑
τ=1

Pr
c

[P̃τ (c1, . . . , cτ−1) aborts ∧ P̃′(c) convinces V′]

=

k∑
τ=1

Ec1,...,cτ−1
[(1− δ(c1, . . . , cτ−1))Nδ(c1, . . . , cτ−1)] ≤ ke

N + 1
,

where e is Euler’s number. The final inequality follows because x(1 − x)N ≤ e/(N + 1) for all x ∈ [0, 1].
Hence the probability that P̃ aborts is at most 1− δ + ke

N+1 ≤ 1− δ/2.
Stackability. We construct the PPT simulator S ′RAND and the deterministic simulator S ′DET as follows, letting
a = 1:

ck, {ri,mRAND,i,a}i∈[k] ← S ′RAND(1λ, {ci}i∈[k])

1 : Compute (ck, ek)← Gen(pp, B = {1}).

2 : for i ∈ [k], Sample ri
$←− {0, 1}λ

3 : {mRAND,i,a}i∈[k] ← SRAND(1λ, {ci}i∈[k])

{comi}i∈[k] := S ′DET((x1, . . . ,x`), ck, {ri,mRAND,i,a, ci}i∈[k])

1 : for j ∈ [`] \ a : Compute {mDET,i,j}i∈[k] := SDET(xj , {ci,mRAND,i,a}i∈[k])
2 : for i ∈ [k] : Compute comi ← BindCom(pp, ck,v = (mDET,i,1, . . . ,mDET,i,`); ri)

3 : return {comi}i∈[k]

:

We now proceed to show using a hybrid argument that an honest transcript resulting from an honest
prover possessing witness (a,w) running Π′ with an honest verifier on the statement (x1, . . . ,x`) is indis-
tinguishable from the transcript simulated by S ′RAND and S ′DET.

• H0: This is identical to the honest exceution.

• H1: Let this be the same as H0, except let the non-recyclable messages of clause a be generated by
simulation, i.e. {mDET,i,a}i∈[k] := SDET(xa, {ci,mRAND,i,a}i∈[k]). Since SDET is a deterministic simulator
for the underlying protocol Π, indistinguishability betweenH0 andH1 follows from stackability of Π.

• H2 : Let this be the same as H1, except let the commitment key ck be generated with the binding
position as B = {1}, i.e. (ck, ek) ← Gen(pp, B = {1}). Observe that H1

p= H2 by the (perfect) hiding
of the partially-binding commitment scheme. Lastly, note that H2 matches the output distribution of
S ′RAND and S ′DET.

Therefore Π′ is a stackable Σ-protocol.

Complexity Discussion. Let CC(Π) be the communication complexity of Π. Then, the communication
complexity of the Π′ obtained from Theorem 3.5 is (CC(Π)+|ck|+|com|+|r′|), where the sizes of ck, com and r′

depend on the choice of partially-binding vector commitment scheme and are independent of CC(Π). In the
construction of partially-binding vector commitments from DLOG due to Goel et al. [GGHAK22, Corollary
1], |ck|, |r′| = Oλ(log `), and |com| = Oλ(1). Hence the communication cost of proving a disjunction of `
clauses is O(log `).
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3.5 Finding Recyclable Messages

It is natural to wonder, in light of our definition of stackability, how to decide which message parts are
recyclable and which are not. In the case of a Σ-protocol, answering such a question was straight forward:
the largest and most complex messages are usually in the third round, and so its desirable to make the entire
third round message recyclable. In multi-round protocols, however, it may be more difficult to determine
which message parts in each round are recyclable. Indeed, it may be possible to define many divisions of
the simulator demonstrating that the protocol is stackable, but finding the “optimal” simulator and division
of messages can be quite challenging.

In this subsection, we provide intuition which can be used to find a set of recyclable messages. We
emphasize that this process is not a formal one and is not guaranteed to output the optimal set of messages
(by any metric). Instead, we offer this intuition as a tool that can assist the reader in applying our techniques
to other protocols. To that end, we offer an informal procedure and an insight that we found to be successful:
Start with the Last Round. We start with an observation about ZK-IPs that are designed to be minimal, ie.
not contain unnecessary communication:

Lemma 3.6. Let Π be a ZK-IP consisting of k prover messages and k − 1 verifier messages. If Π is stackable, then
either

(1) there exists a simulator SRAND which produces the entirety of the prover’s kth message, or

(2) there exists a ZK-IP Π′ for the same language which is the same as Π, except it has a shorter kth round prover
message.

Proof. Let us assume for the sake of contradiction that no such SRAND exists. From the definition of stackable
ZK-IP, it follows that some part of the kth prover message can be deterministically given the messages in
preceding rounds without the knowledge of the witness. In that case, the verifier could simply compute
this part of the message on their own during verification, given access to the previous messages in the
transcript. As such, the messages added nothing to the verifier’s view and could simply be omitted from
the protocol without changing its properties. If this is not true, we get a contradiction and it follows that
such a SRAND exists.

The ramifications of this observation is that if the protocol designers minimized the communication of
the ZK-IP, then the entire last round message is recyclable. Note that not all ZK-IPs are designed to contain
no “unnecessary” communication, as this communication can be used to improve the verifier’s runtime.
Indeed, this is the case in some IOPs. However, when such non-recyclable messages are included in a
protocol, it will usually be quite obvious. As such, identifying the recyclable portion of the final message is
usually a straight-forward task.
Verifier Checks as Constraints. It is helpful to use the verifier equations as a methodology for determining if
a set of messages is recyclable, as the natural way to check is the joint distribution of messages is “correct”
with respect to a statement is to simply check if those messages are part of an accepting transcript. These
verifier equations create of a set of constraints over the messages of a protocol. When a set of messages is
over-constrained with respect to the verifier equations, it is likely the set of messages is not recyclable. On the
other hand, if the set of messages is under-constrained (ie. retains additional degrees of freedom) with respect
to the verifier equations, the joint distribution of those messages is likely independent of the statement—
making them recyclable. The “sweet spot” is when these constraints are perfectly, uniquely, satisfied.

For a simple example, consider the transcript of the Schnorr [Sch90] identification protocol for the state-
ment A = gx with a three round transcript (T, c, z). To verify this transcript, a verifier will see if AcT = gz .
Note that this means that the relationship between the two variables T and z is determined by the challenge
c and the statement A. However, the distribution of each message T and z alone is not fixed, and for any
choice of z, an appropriate T can be found. Thus, if z is a candidate recyclable message, then T cannot be
recyclable, as it is uniquely defined by the existing recyclable messages and the statement A.
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To make this more concrete, let us assume that the verifier equations to define e equations over v vari-
ables (ie. message parts) and f fixed values (eg. the statement). If assigning arbitrary values to each mes-
sages in a candidate set of recyclable messages makes there be no solution to the e equations, then the set
is unlikely to be recyclable. On the other had, is an assignment leave multiple degrees of freedom for some
of the e equations, the set of recyclable messages can likely grow. Finally, if there is a unique solution to
all e equations, the messages are likely recyclable, but the set cannot grow (without first removing some
candidate messages).
An Informal Procedure. We now present a simple, informal procedure for finding recyclable messages.

• Initialize the set of recyclable messagesMRAND to contain the recyclable part of the kth prover message.

• For each i ∈ [(k − 1), . . . , 1], do the following:

– Divide mi into its “natural” sub-components (comp1, comp2, . . .). (e.g., divide so that each sub-
component contains a single group element or field element).

– For each component compj :

* Assign uniform random values to each element in MRAND and compj

* If there exist any verifier equations that are unsolvable, discard compj and continue

* If there exist unique values of all unassigned variables in all verifier equations that satify
these equations, add compj to MRAND.

* If there any verifier equations have remaining degrees of freedom, add compj to MRAND and
continue

• Return MRAND as the recyclable messages.

We note that this process is inherently informal. There may be statement-dependent relationships be-
tween messages that are not governed by the verifier equations. Moreover, the notion of a sub-component
and a verifier equation are not formally defined. As such, this procedure should be understood as an intu-
ition building exercise for future work and not a formal result. Finally, while we found success using this
procedure, it is not guaranteed to find an optimal division of messages.

4 Speed-Stacking Interactive Oracle Proofs

Interactive oracle proofs, originally proposed by [BCS16, RRR16], form the basis of a widely-used frame-
work for building succinct arguments. In this section we describe how to adapt this framework to build
stackable succinct arguments.

We begin this section by recalling the preliminary definition of holographic IOPs (hIOPs), a generaliza-
tion of IOPs introduced by [COS20] that allows for part of the input to be preprocessed, in Section 4.1. We
then proceed to outline the technical machinery necessary to speed-stack two IOPs, Aurora IOP [BCR+19]
Fractal hIOP [COS20]. Specifically, we use a series of compilers that speed-stacks these IOPs via several
intermediary definitions. First, we define the notion of a stackable (holographic) IOP in Section 4.2. Next,
we describe how to transform a stackable IOP into a stackable (succinct) interactive argument, which can
in-turn be speed-stacked using the compiler in Section 3. Finally, in Section 4.4, we describe our two con-
structions of stackable hIOPs, based on the Aurora IOP [BCR+19] and Fractal hIOP [COS20] constructions
respectively.

4.1 Holographic IOPs

In this section, we start by defining Holographic IOPs (hIOP) and then proceed to define a sub-class of
hIOPs called Reed-Solomon encedoded hIOP (RS-hIOP).
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Definition 4.1 (Holographic IOP). A holographic IOP [COS20] for an indexed relation R is specified by a tu-
ple HOL = (I,P,V), where I is the indexer, P the prover, and V the verifier. The indexer is a deterministic
polynomial-time algorithm, while the prover and verifier are probabilistic polynomial-time interactive algorithms. In
an offline phase, given an index i, the indexer I computes an encoding of i, denoted I(i). Subsequently, in an online
phase, the prover P receives as input a triple (i,x,w), while the verifier V receives as input x and is granted oracle
access to the encoded index I(i). The online phase consists of multiple rounds, and in each round the verifier V sends
a message mi and the prover P replies with a proof string Πi : Li → Σ, which the verifier can query at any set of
locations. At the end of the interaction, the verifier V accepts or rejects.

We say that HOL has perfect completeness and soundness error ε if the following holds.

• Completeness. For every index-instance-witness triple (i,x,w) ∈ R, the probability that P(i,x,w) con-
vinces VI(i)(x) to accept in the interactive oracle protocol is 1.

• Soundness. For every index-instance pair (i,x) /∈ L(R) and prover P̃, the probability that P̃ convinces
VI(i)(x) to accept in the interactive oracle protocol is at most ε.

The round complexity k is the number of back-and-forth message exchanges between the verifier and the prover.
The proof length L is the sum of the length of the encoded index plus the lengths Li = |Li| of all oracles sent by
the prover. The query complexity q is the total number of queries made by the verifier; this includes queries to the
encoded index and to the oracles sent by the prover.
Public coins and oblivious queries. In this work we will consider a certain subclass of IOPs: public-coin IOPs
with oblivious queries. An IOP is public coin if each verifier message to the prover is a random string. This means
that the verifier’s randomness C consists of its messages c1, . . . , ck−1 ∈ {0, 1}∗ and possibly additional randomness
ck ∈ {0, 1}∗ used after the interaction (in particular, for choosing the query set). An IOP has oblivious queries if
the verifier can be partitioned into a query algorithm VQ and a decision algorithm VD as follows. VQ takes as input C
(and nothing else) and outputs query sets (Q1, . . . , Qk). VD takes as input (x, C,Π1|Q1

, . . . ,Πk|Qk) and outputs a
bit b.
Zero knowledge. A public-coin holographic IOP HOL has (perfect) special honest verifier zero knowledge if there ex-
ists a probabilistic polynomial-time simulator S such that for every (i,x,w) ∈ R the random variables View(P(i,x,w),VI(i)(x;C))
and (C,S(i,x, C, VQ(C))) are identical, where:

• C = (c1, . . . , ck−1, ck) is the verifier’s (public) randomness, chosen uniformly at random, and
• View(P(i,x,w),VI(i)(x;C)) is the view of V when interacting with P, i.e., it is the random variable

(C,Π1|Q1
, . . . ,Πk|Qk).

Reed–Solomon encoded holographic IOPs (RS-hIOPs). An RS-hIOP is a variant of hIOP where the
prover’s messages in both the honest and malicious case are required to be Reed–Solomon codewords
of a specified rate. Before defining RS-hIOP, we define the notion of a rational constraint.

Definition 4.2 (Rational Constraint). A rational constraint is a tuple c = (p, q, d) where p : F1+` → F and
q : F → F are arithmetic circuits, and d ∈ N is a degree bound. The arithmetic circuits (p, q) and a list of words
f1, . . . , f` : L→ F jointly define the word (p, q)[f1, . . . , f`] : L→ F given by

∀ a ∈ L , (p, q)[f1, . . . , f`](a) :=
p(a, f1(a), . . . , f`(a))

q(a)
.

A rational constraint c = (p, q, d) is satisfied with respect to (f1, . . . , f`) if

(p, q)[f1, . . . , f`] ∈ RS[L, d] .7

When describing rational constraints, we will often use the shorthand notation “deg(f̂) ≤ d”, where
f : L → F is defined as a rational equation over some oracles. This should be taken to mean the rational
constraint c = (p, q, d) that is naturally induced by the expression that defines f .

A special type of rational constraint is a boundary constraint, defined next.
7For a ∈ L, if q(a) = 0 then we define (p, q)[f1, . . . , f`](a) := ⊥. Note that if this holds for some a ∈ L then, for any words

f1, . . . , f` and degree bound d, the rational constraint (p, q, d) is not satisfied by f1, . . . , f`.
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Definition 4.3 (Boundary Constraint). A boundary constraint is a rational constraint that expresses a condition
such as “f̂(α) = β” for some word f : L→ F and elements α, β ∈ F. Such a condition is represented via the rational
constraint c = (p, q,deg(f̂) − 1) where p(X,Y )

def
= Y − β and q(X)

def
= X − α, which can be summarized as

“deg(ĝ) ≤ deg(f̂)− 1” where g(a)
def
= (f(a)− β)/(a− α). We denote this constraint simply by “f̂(α) = β”.

In the following we use RS[L, (d1, . . . , dk)] ⊆ (Fk)L to denote the interleaved Reed–Solomon code overL
with degree bounds (d1, . . . , dk), i.e., the set of k×|L|matrices where the i-th row is a codeword of RS[L, di]
(which itself is all evaluations over L of univariate polynomials of degree at most di).

Definition 4.4 (Reed–Solomon encoded hIOP). A Reed–Solomon encoded holographic IOP (RS-hIOP) for
an indexed relationR is a tuple

(I,P,V, {dI,dP,1, . . . ,dP,k})
where I is a deterministic algorithm, P and V are probabilistic interactive algorithms, and dI ∈ N`0 ,dP,i ∈ N`i are
vectors of degree bounds, that satisfies the following properties.

• Degree bounds. On input any i, the indexer I outputs a codeword of RS[L,dI]. Moreover, on input any
(i,x,w) ∈ R and for every round i, the i-th message of P(i,x,w) is a codeword of RS[L,dP,i].

• Completeness. For every (i,x,w) ∈ R, all rational constraints output by VI(i)(x) after interacting with
P(i,x,w) are satisfied with respect to I(i) and P(i,x,w)’s messages with probability 1.

• Soundness. For every (i,x) /∈ L(R) and unbounded malicious prover P̃ whose i-th message is a codeword of
RS[L,dP,i], all rational constraints output by VI(i)(x) after interacting with P̃ are satisfied with respect to
I(i) and the prover’s messages with probability at most ε.

Often we will write that V “accepts”, which means that all of the rational constraints it outputs are satisfied, or that
it “rejects”, which means that at least one rational constraint is not satisfied.
Zero knowledge. Honest-verifier zero knowledge for RS-IOPs is trivial, since the honest RS-IOP verifier makes
no queries, and so learns nothing from the interaction. Instead, we introduce a notion of special semi-honest
verifier zero knowledge (SSHVZK), which guarantees zero knowledge against verifiers that behave honestly during
the interaction, and then make a bounded number b of arbitrary queries. Formally, an RS-IOP is SSHVZK with
query bound b if there exists a PPT simulator S such that for every (i,x,w) ∈ R, every large enough ` ∈ N and
every function Q : {0, 1}` →

(
L
b

)
, the random variables ViewQ(C)(P(i,x,w),VI(i)(x)) and (C,S(i,x, C,Q(C)))

are identical, where
• C = (c1, . . . , ck−1, c

∗), chosen uniformly at random, is the verifier’s (public) randomness, (possibly) aug-
mented to ` bits with additional randomness c∗, and

• ViewQ(C)(P(i,x,w),VI(i)(x)) = (C,Π1|Q(C), . . . ,Πk|Q(C)) is the view of the verifier in the protocol (which
consists only of its own messages), augmented with the restriction of each prover message to the set Q(C) ⊆ L.

Note that we count by b the number of distinct query locations across all oracles; this only makes the class of adver-
saries larger as an adversary making b queries can query at most b distinct locations.

4.2 Defining a Stackable IOP and Stackable RS-IOP

In this section we give definitions for a stackable RS-IOP and a stackable IOP, before showing how to com-
pile from the former to the later in Section 4.3. Looking ahead, we will give modifications of Aurora
IOP [BCR+19] and Fractal hIOP [COS20] that are stackable RS-IOPs. The two definitions are defined in
largely the same way; the differences are analogous to the differences between an RS-IOP (Definition 4.4)
and IOP (Definition 4.1). As such, we only explicitly give the definition of a stackable IOP, as the general-
ization is trivial.

Recall that the simulator for a ZKIOP is required to sample answers for exactly the points that the honest
verifier queries in each round; these points are provided to the simulator as a vector Q = (Q1, . . . , Qk),
where Qi is the set of points that the verifier queries in round i. Hence we can write the simulator’s output
as a sequence of functions Π∗i : Qi → Σ, where Σ is the alphabet of the IOP. Given this template, stackability
for IOPs is defined similarly to stackability for IPs (Definition 3.4), as follows.
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Definition 4.5 (Stackable hIOP). We say that an k-round holographic IOP HOL = (I,P,V) is stackable if there
exists a subset of “recyclable” rounds Rrec ⊆ [k] and a pair of algorithms (SRAND,SDET) where SDET is deterministic,
such that for all (i,x,w) ∈ R, the following algorithm is a special honest-verifier zero-knowledge simulator for HOL:

S(i,x, C,Q):
1. sample (Π∗i : Qi → Σ)i∈Rrec

$←− SRAND(C,Q);
2. compute (Π∗i : Qi → Σ)i∈[k]\Rrec

:= SI(i)DET (x, (Π∗i )i∈Rrec , C,Q);
3. output (Π∗i )i∈[k];

and for all λ ∈ N and (i′,x′,w′) (whether inR or not), S(1λ, i′,x′) outputs an accepting view with certainty.

The definition extends in the natural way to Reed–Solomon encoded IOPs (RS-IOPs), except that we
require that S be an SSHVZK simulator (see Definition 4.4).

4.3 Compiling RS-IOP to Stackable IP via Stackable IOP

In this section we show how to “compile” a stackable RS-IOP into a stackable IOP, and a stackable IOP
into a stackable IP using a key-value commitment schemes. In Definition 4.6 we give a formal definition
for the key-value communitment schemes that we require. In this section we provide both compilers (in
Lemma 4.7 and Theorem 4.9 respectively).

Hiding Key-Value Commitments. Key-value commitments, described by Boneh, Bünz and Fisch [BBF19]
and Agrawal and Raghuraman [AR20] primarily in blockchain-related applications are a generalization of
vector commitments: allowing the committer to efficiently commit to a (potentially) exponentially large but
sparse vector in time that is polyomial in the security parameter and the number of entries in the sparse
vector. Unlike the primary motivation for these works, we are not concerned with updateability of the
map; however, we additionally require the commitments to hide the unopened entries. We formalize this
notation below:

Definition 4.6 ((Insert-Only) Key-Value Commitments). Let Map(K,Σ) ⊆ P(K × Σ) be the set of dictionaries
with keys in K and values in Σ, i.e. M ∈ Map(K,Σ) ⇐⇒ ∀(k1,v1), (k2,v2) ∈ M : k1 = k2 =⇒ v1 = v2. A
(insert-only) key-value commitment scheme consists of four polynomial time algorithms. For notational convince, we
omit the explicit random tape as a parameter:

P ← KV.Setup(1λ) Takes a unary representation of the security parameter, a random tape and returns public pa-
rameters P .

(C, o)← KV.Com(P,M) Takes public parameters pp ∈ P , a key-value mapM = {(ki,vi)}i and a random tape.
Produces a commitment C ∈ C and opening information o ∈ O.

o← KV.Open(P, o,M′) Takes public parameters pp ∈ P , opening information o ∈ O and a subsetM′ ⊆ M of
the committed dictionary. Returns an inclusion proof o ∈ I.

C← KV.Verify(P,M,o) Takes public parameters pp ∈ P , a dictionaryM ∈ Map(K,Σ) and an opening random-
ness o. Returns the (recomputed) valid commitment C.

For completeness we require that correctly computed inclusion proofs for subsets of the map successfully verify, i.e.
∀λ : ∀M ∈ Map(K,Σ) : ∀M′ ⊆M :

1 = Pr

[
KV.Verify(pp,M′,o) = C

∣∣∣∣∣ pp← KV.Setup(1λ);

(C, o)← KV.Com(pp,M);o← KV.Open(pp, o, {k}(k,v)∈M′)

]

Informally, for security we require that (1) every position k can be mapped to at-most one value v (2) unopened
positions remain hidden: openings of any two maps that agree on the opened indices are indistinguishable.. Formally
security is defined by the games in Figure 3 and the following:
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GameBinding(λ,A)

1 : pp← KV.Setup(1λ)

2 : (C,o1,M1,o2,M2)← A(1λ, pp)

3 : if KV.Verify(pp,o1,M1) 6= C : return 0

4 : if KV.Verify(pp,o2,M2) 6= C : return 0

// Awins if there exists inconsistent assignment of a key

5 : if ∀(k,v1) ∈M1, (k,v2) ∈M2 : v1 = v2 : return 0

6 : return 1

GameHiding(λ,A)

1 : pp← KV.Setup(1λ)

// Commit to one of two maps chosen byA.

2 : (M0,M1,K, st)← A(find, 1λ, pp)

3 : b
$←− {0, 1}; (C, o)← KV.Com(pp,Mb)

// Open keys present in both maps.

4 : if K 6⊆ {k}(k,v)∈M0
∩ {k}(k,v)∈M1

:

5 : return 0

6 : o← KV.Open(pp, o,K)

// Guess which map the opening belongs to.

7 : b′ ← A(guess,o, st, 1λ, pp)

8 : return b
?
= b′

Figure 3: Security games for key-value commitments

Position Binding. For every PPT algorithm A there exists a negligible function negl(λ) such that for any suffi-
ciently large λ: Pr

[
GameBinding(λ,A) = 1

]
≤ negl(λ)

Value Hiding. For every PPT algorithm A there exists a negligible function negl(λ) such that for sufficiently large
λ: Pr

[
GameHiding(λ,A) = 1

]
− 1/2 ≤ negl(λ)

For our applications (compiling stackable interactive oracle proofs to stackable interactive arguments)
a key-value commitment with polynomial size K (in the security parameter) suffices, i.e. |K| = O(poly(λ)).
In Appendix B we give two simple instantiations of the above primitive based on Merkle trees: one in the
random oracle model, and one in the standard model based on compressing commitments.

Compiling RS-IOP to Stackable IOP. We now show that, by slightly tweaking the RS-IOP to IOP transfor-
mation presented in [BCR+19, Section 8.1], we can preserve stackability. The compiler of [BCR+19, Section
8.1] converts an RS-IOP into an IOP using a (IOP) proximity test for Reed-Solomon codes [BBHR18] [BGKS20]
(also called a Low-Degree Test (LDT)). Since the concrete cost of the proximity test is large, by exploiting the
linearity of the code, all the oracles are combined using a random linear combination into a single claimed
codeword; rather than repeating the proximity for every individual oracle. This incurs a soundness-error of
1/|F|8. This works for codewords in the same code, to account for multiple RS codes of different rate note that
component-wise products of Reed-Solomon codes is a Reed-Solomon code, i.e. for a fixed C1 ∈ RS[L, d1]:
C1 ◦ C2 ∈ RS[L, d1 + d2] ⇐⇒ C2 ∈ RS[L, d2]. This allows homogenizing all the rates: for the verifier to
query (C1 ◦ C2)(i) simply query C2(i) and compute C1(i) · C2(i), hence we can assume that the rate of all
codewords is the same. Note that C1 can be an arbitrary codeword, in particular it can be chosen such that
computing C1(i) is very efficient. Lastly, since the proximity test is not zero-knowledge the prover samples
a random codeword which is added to the linear combination: such that the distibution of the codeword
on which the proximity test is run is uniform. In summary, the verifier samples z ∈ Fk and the proximity
test is run on the oracle:

q = zTΠ + r

for codewords Π ∈ RS[L, d]k and r ∈ RS[L, d]. Note that q(i) can be accessed by simply querying Π and r
at i, hence in [BCR+19, Protocol 8.6] there is no need for the prover to send the oracle q explicitly9, however
we need this to efficiently stack.

8For fields where 1/|F| is not negligible, parallel repetition is used: requiring repetitions of the proximity test as well.
9Which would also require an additional proximity test between q and zTΠ + r
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Lemma 4.7 (From Stackable RS-IOP to Stackable IOP). There is a transformation (an adaptation of [BCR+19,
Protocol 8.6]) which composes a stackable RS-IOP and any IOPP for the Reed–Solomon code (i.e., a low-degree test)
to produce a stackable IOP for the same relation. Moreover, the cost of SDET for the resulting IOP is the same as the
cost of SDET for the RS-IOP. The construction follows easily from the discussion above, see ?? for details.

Compiling Stackable IOP to Stackable IP. Next we show how to compile stackable IOPs into stackable
interactive arguments using hiding key-value commitments (see Definition 4.6). The construction is an
adaptation of the natural construction of a succinct argument from an IOP using vector commitments; the
security and efficiency guarantees of hiding key-value commitments are necessary to preserve stackability
and stacking efficiency of the underlying IOP.

Construction 4.8 (Stackable IOP to Stackable IP Compiler). Assume wlog. that the (public coin) VI(i)(x) only
makes queries to the oracles after the k’th round and transform an k-round holographic IOP into a k + 1 stackable IP
follows: In round i, when P(i,x,w) outputs Πi, compute the commitment to the oracle:

(Ci, oi)← KV.Com(pp, {(j,Πi(j))}j∈[|Li|])

And sends Ci to V. After round k, V outputs the set of queries Q = {Qi}i∈[k] to each oracle Πi. The prover P responds
by opening the key-value commitments at the requested positions: for all i ∈ [k] definingMi = {(j,Πi(j))}j∈Qi ,
followed by sendingMi and oi ← KV.Open(pp, oi,M) to V. The transformation above is essentially the one by Ben-
Sasson et al. [BCS16, Section 6] (from IOPs to IPs) but replacing Merkle trees with the related notion of a key-value
commitment.

Theorem 4.9 (Correctness of Construction 4.8). Given a key-value commitment scheme (see Definition 4.6): a
stackable holographic IOP HOL = (I,P,V) can be compiled into an efficient stackable interactive argument (P,V).
Furthermore, the running time of the compiled SDET is that of SI(i)DET from the IOP, plus that of computing (C1, . . . ,Ck),
which is O(

∑
i |Π∗i | · poly(λ, log(|Πi|))) (where |Πi| is the length of the i-th oracle in the real execution) See ?? for

the proof.

4.4 Stackable RS-IOPs

In this section we show that two key IOP protocols from the literature, Aurora [BCR+19] and Fractal [COS20]
can be made stackable. These protocols are proof systems for the R1CS relation, defined formally below.

Definition 4.10. Rank-one constraint satisfiability (R1CS) is an indexed NP relation consisting of all index-instance-
witness tuples ((F, A,B,C), x, w) forA,B,C ∈ Fn×n, x ∈ Fk, w ∈ Fn−k, such that for z = (x‖w),Az◦Bz = Cz,
where ◦ is the element-wise product.

Before proceeding to discuss how to make these protocols stackable, we provide a brief overview of the
Aurora and Fractal RS-IOPs. These descriptions are not comprehensive, but rather aim to give context for
the stackable variants presented later. Both protocols start from the same basic template:

1. On input ((F, A,B,C), x, w), the prover sends to the verifier a (Reed–Solomon) encoding fw of w,
from which the verifier can deterministically compute an encoding fz of z = (x‖w). The prover also
computes vectors Az,Bz,Cz and sends their corresponding encodings fA, fB , fC to the verifier.

2. For each M ∈ {A,B,C}, the prover and verifier engage in the “lincheck” protocol to show that fM is
an encoding ofMz. This involves one or two rounds of interaction for Aurora and Fractal respectively,
after which the verifier will output some rational constraints.

3. Lastly the verifier outputs the constraint “fA(i) · fB(i)− fC(i) = 0 for all i ∈ [n]”.

To achieve zero-knowledge, the encodings fw, fA, fB , fC are randomized so that any “view” consisting of
b locations in the encoding is distributed as a uniformly random vector in Fb; hence the messages sent in
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Step 1 are recyclable. Because the prover does not send any information in Step 3, it is not relevant for
zero-knowledge or stackability. As such, we need only focus on Step 2. Indeed, the difference between
Aurora and Fractal lies in this step: Aurora’s lincheck has verification time linear in the number of nonzero
entries in A,B,C, whereas Fractal’s lincheck is exponentially faster after preprocessing. As a result, they
behave quite differently when stacked.

Aurora is Stackable. We show that a small modification to Aurora yields a stackable RS-IOP. We first
outline the lincheck protocol used in Aurora. Both the prover and verifier take as input a matrix M , and
have access to Reed–Solomon codewords f, fM , which purportedly satisfy the relation fM |H = Mf |H for
specified H ⊆ F. For α ∈ F, denote by uα the vector (1, α, α2, . . . , α|H|−1) ∈ FH .

1. The verifier sends a challenge point α ∈ F.
2. The prover and verifier both compute the vector uαM ∈ FH along with its low-degree extension ĝ.
3. The prover and verifier then engage in the zero-knowledge sumcheck protocol to show that

〈uαM,f |H〉 − 〈uα, fM |H〉 =
∑
a∈H

ûα,M (a)f(a)− ĝ(a)fM (a) = 0 .

This protocol is complete because if fM |H = Mf |H then for all vectors u, 〈u, fM |H〉 = 〈u,Mf |H〉 =
〈uM, f |H〉. For soundness, observe that if fM |H 6= Mf |H then 〈uαM,f |H〉 − 〈uα, fM |H〉 is a nonzero
low-degree polynomial in α; soundness follows by elementary algebra and the soundness of the zero-
knowledge sumcheck protocol.

Observe that the only prover-to-verifier communication in this lincheck protocol is within Step 3; specifi-
cally, in the execution of zero-knowledge sumcheck. We now recall (and slightly modify) the zero-knowledge
sumcheck protocol, which relies on the following lemma.

Lemma 4.11 (By Ben-Sasson et al. [BCR+19]). Let H be a coset of an additive or multiplicative subgroup of F.
Then there is a polynomial ΣH,Y (X), which can be evaluated in time polylog(|H|), such that the following holds: let
f̂ ∈ F[X] be such that deg(f̂) < |H|. Then

∑
α∈H f̂(α) = σ if and only if there exists ĝ with deg(ĝ) < |H| − 1

such that f̂(X) ≡ ΣH,σ(ĝ(X)).

The protocol proceeds as follows: The prover and verifier have access to a summand codeword f of
degree d, which purportedly satisfies

∑
a∈H f̂(a) = 0.

1. The prover chooses a random polynomial r̂ of degree d, computes ζ =
∑
a∈H r̂(a), and sends r, ζ to

the verifier.
2. The verifier sends a challenge β.
3. The prover divides q̂ := r̂ + βf̂ by vH to obtain ĝ, ĥ satisfying the identity q̂ ≡ ΣH,ζ(ĝ) + ĥ · vH with

deg(ĝ) < |H| − 1, and sends h to the verifier.
4. The verifier outputs the rational constraint “deg(ê) < |H| − 1”, where ê := Σ−1

H,ζ(q̂ − ĥ · vH).
The zero-knowledge simulator given by [BCR+19] operates by first choosing a random polynomial q̂, and
sending ζ =

∑
a∈H q̂(a) in the first round. ĝ, ĥ are obtained from this q̂ in the same way as the honest prover.

Queries to r are answered using q − βf .
We are now ready to show that the above protocol is stackable, after a small modification.

Theorem 4.12. The Aurora zero-knowledge RS-IOP for R1CS [BCR+19, Protocol 7.5] is stackable (after a small
modification) with SDET running in time O(‖A‖+ ‖B‖+ ‖C‖+ n log2 b log log b) (measured in field operations).

Proof. The only modification necessary is to the zero-knowledge sumcheck protocol. Specifically, in Step 3,
the prover will also send g; this is purely for the purposes of simulation and does not affect soundness.

Note that in a real execution, g, h are (marginally) uniformly random codewords, and so can be gener-
ated by SRAND (i.e., they are recyclable). Hence the only oracle in the protocol that is not recyclable is r. The
inclusion of g in the protocol allows SDET to compute r as ΣH,ζ(g) + h · vH − βf .

As a result, the time complexity of SDET is dominated by the evaluation of f at b points. This requires
computing rA, rB, rC ∈ Fn for some r ∈ Fm, which takes O(‖A‖ + ‖B‖ + ‖C‖) field operations, and
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evaluating the low-degree extensions of these vectors at b points, which takesO(n log2 b log log b) operations
using the algorithm of [BM74].

4.5 Stactal

Next we describe “stackable Fractal”, or Stactal, a variant of the Fractal protocol [COS20] which can be
efficiently stacked. The verifier in Fractal runs in time quasilinear in the length of the input vector x and
polylogarithmic in the dimensions of A,B,C. This is achieved via a sparse holographic encoding of A,B,C
using the Reed–Solomon code.

First, we discuss why directly stacking Fractal leads to an inefficient protocol. Recall that in the stacked
protocol, the prover and verifier run the instance-dependent part of the simulator SDET on each clause j ∈ [`].
Therefore, to achieve the desired computational savings for the prover while maintaining the complexity of
the verifier, we want SDET to run in polylogarithmic time. Unfortunately, this is not possible for the original
Fractal protocol (in the true disjunction setting), as we explain next.

The verifier’s running time in the Aurora protocol is dominated by the lincheck subprotocol: specifically,
the cost of evaluating, for each input matrix M ∈ {A,B,C}, the low-degree extension ûα,M of the vector
uαM . To eliminate this cost, Fractal replaces Aurora’s lincheck protocol with a holographic variant. In
particular, [COS20] shows that, given an appropriate encoding of the input matrices, there is a protocol that
allows the verifier to check an evaluation of this low-degree extension in time polylog(‖M‖).

Since the verifier cannot compute this evaluation itself, the prover sends ûα,M (β) for the desired eval-
uation point β. In the standard setting of zero-knowledge, since the input matrices are public, this is not
a problem: the simulator can simply compute this evaluation as the honest prover would, in time linear
in ‖M‖. In the stacking setting, however, this computation would be part of SDET, more than negating the
computation savings obtained via holography.

Worse, it is not possible to simply design a better simulator: for most choices of α, β, ûα,M (β) depends
on every nonzero entry of M . Thus SDET must run in at least linear time. To resolve this, we must instead
significantly modify the Fractal protocol. In more detail, we allow the prover to “pad” the input matrices
with randomness, in a way that does not affect the satisfiability of the statement, so that ûα,M (β) becomes
uniformly random. The simulator for this protocol runs in time polylog(‖M‖) and makes a small number
of queries to the encoding of M .

Theorem 4.13 (Stactal). The protocol obtained from Fractal by replacing the holographic lincheck protocol with
Construction A.3 is stackable, with SDET running in time O(b · (|x| + polylog(‖A‖ + ‖B‖ + ‖C‖))) (measured in
field operations).

We defer the details of the construction and proofs to Appendix A.

5 Speed-Stacking Compressed Σ-Protocols

We now turn our attention to stacking sublinear proofs based on folding arguments. “Folding arguments”
refers to a class of proof system that relies on algebraic structure and interaction to iteratively reduce the
size of (or “fold”) the statement of interest. The two most notable instantiations of this class are Bullet-
proofs [BBB+18], which give a folding argument for inner products, and Compressed Σ-Protocols [AC20,
ACF21, ACK21], which give folding arguments for linear forms. In this section, we show how to stack
Compressed Σ-Protocols and demonstrate the computational savings that our techniques offer when ap-
plied to them. In the next section, we demonstrate how to stack Bulletproofs, which as discussed earlier are
less amenable to computational savings from our stacking approach.

5.1 Overview of Compressed Σ-Protocols

Compressed Σ-protocols were proposed in a series of recent works by Attema, Cramer, Fehr and Kohl [AC20,
ACF21, ACK21]. In this section, we focus on the specific instantiation of this approach proposed by Attema,
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Πbase-compressed for the relationRcompressed =
{

(g ∈ GN , P ∈ G, y ∈ GT ;x ∈ ZNq ) : P = gx, y = f(x)
}

Prover Verifier

r
$←− ZNq , t = f(r), T = gr t, T

c c
$←− Zq

z← cx + r z f(z)
?
= cy + t,gz ?

= TP c

Figure 4: Base Σ-protocol protocol used in Compressed Σ-protocols [ACF21].

Cramer, and Fehr [ACF21], as it has a clean presentation.
Notation. We slightly modify some of the notation presented by Attema, Cramer, and Fehr in [ACF21]
for clarity of presentation, but endeavor to make it sufficiently consistent that an interested reader can
easily refer back to their work for additional details. Let G be a cyclic group of prime order p. Let f be a
homomorphism from (additive) ZNq to some group GT .10 We denote the set of such homomorphisms as
LN .

Let gi = (gi,1, gi,2, . . . , gi,N ) be vectors of generators in G, where the size of the vector will either be stated
explicitly or, when clear from context, left implicit. All other lower-case letters, e.g. c, a, refer to elements in
Zq , and bold lower-case letters, e.g. xi, z refer to vector of elements in Zq . Let x = {x1, . . . , xM} ∈ ZNq , and
f : ZNq → GT . We denote xL = {x1, . . . , xN/2} and xR = {xN/2+1, . . . , xN}. We denote fL : ZN/2q → GT as
the function f(xL, 0, . . . , 0) and fR : ZN/2q → GT as the function f(0, . . . , 0,xR). Uppercase letters refer to
elements of G. For a vector gi of length N , we denote the first N/2 elements of gi as giL and the remaining
N/2 elements of gi as giR. We denote the element-wise group operation of two vectors of group elements
as g ∗g′ = (g1g

′
1, . . . , gNg

′
N ), where N is an arbitrary size parameter. Finally we denote multiexponentation

by gx =
∏
i g
xi
i .

Compressed Σ-Protocols. Attema et al. [ACF21] consider the relation

Rcompressed =
{

(g ∈ GN , P ∈ G, y ∈ GT , f ∈ LN ;x ∈ ZNq ) : P = gx, y = f(x)
}
,

where x is a vector of length N and f is a homomophism from ZNq to GT . Intuitively, their protocol is a

“standard” (Schnorr-type) Σ-protocol (shown in Figure 4), where the prover computes r $←− ZNq , T = gr and
t = f(r) and sends t, T to the verifier. Upon receiving a challenge c, it computes and sends z = cx+ r to the

verifier. The verifier then verifies if: gz ?
= TP c and f(z)

?
= cy + t (later in this section, we will denote the

value TP c as Q). Note that, the third round message z ∈ ZNq that the prover sends in this protocol contains
O(N) elements, which is undesirable.

To compress the communication complexity of this last round message, this line of works makes the ob-
servation that the message z is itself a trivial proof of knowledge for an instance ofRcompressed. Specifically,{

(g ∈ GN , TP c ∈ G, cy + t ∈ GT , f ∈ LN ; z ∈ ZNq ) : P = gz, y = f(z)
}
.

Importantly, however, sending z reveals nothing about x. As such, for reducing the communication com-
plexity of the base protocol, it suffices to design a proof of knowledge for Rcompressed that need not be

10Although GT is often used to indicate a target group in a pairing, in this context it simply refers to the target group of the
homomophism; there are no pairings here. Additionally, we encourage the reader to think of G simply as Zq , as this is the clear
motivation for the proof system.
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zero-knowledge. The various versions of Compressed Σ-Protocols design slightly different variants of this
compressive “folding” proof of knowledge. In this work, we focus on the one presented in [ACF21].
Folding Argument. They start by enabling the prover and the verifier to split the statement in half and fold
it in on itself, resulting in a transcript that is half the size. This is done as follows: the verifier generates a
random challenge c ∈ Zq , and the task of proving the original instance is reduced to the problem of proving
another instance of Rcompressed for a new linear form f ′ = cfL + fR with bases g′ = gcL ∗ gR. Note the
dimension of each of these is half the dimension of the original. All that remains now is to generate a new
commitment P ′ and find a new target value y′ for this reduced-dimension instance. The prover and verifier
compute this as follows:

(1) Before c is sent by the verifier, the prover computes A = gxL
R , a = fR(xL), B = gxR

L , b = fL(xR) and
sends (A, a,B, b) to the verifier.

(2) The verifier then samples and sends c.

(3) The prover and verifier compute P ′ = AP cBc
2

and y′ = a+ cy + c2b.

The new instance is now of the form:{
(g′ ∈ GN/2, AP cBc

2

∈ G, y′ ∈ GT , f ′ ∈ LN/2;x′ ∈ ZN/2q ) : AP cBc
2

= g′x
′
, y′ = f ′(x′)

}
Note that a trivial proof of knowledge for this new instance is just x′ = xL + cxR, which is already half
the length of the initial x. The same process can be repeated again for computing a proof knowledge of x′,
to further reduce the communication complexity. This process is recursively applied until the final trivial
witness is of a constant size.

We note that Attema et al. have demonstrated how to use their protocol(s) to prove generic circuit
satisfiability, by arithmetizing the circuit into a compatible format. We focus on the simpler base case where
the prover only wishes to prove a linear form, and disucss the generalization in Section 5.3. We now state
the main Theorem from [ACF21].

Theorem 5.1 ([ACF21]). Let N > 2. There exists a (2µ+ 3)-move protocol Πcompressed for relationRcompressed, where
µ = dlog2(N)e − 2. It is perfectly complete, special honest-verifier zero-knowledge and unconditionally (2,3,3, . . . ,
3)-special sound.

We give an unrolled description of protocol Πcompressed from [ACF21] (with some modifications high-
lighted in red, which we discuss next) in Figure 5.

5.2 Compressed Σ-Protocols are Stackable

We consider statements of the form:

Rdis-compressed = {(g ∈ GN , {Pi ∈ G, yi ∈ GiT , fi}i∈[`]; a ∈ [`],xa ∈ ZNq ) : Pa = gxa , ya = fa(xa)}.

Notice that this statement allows for different homomorphisms and commitments for each clause i ∈ [`].
This is a stronger notion of disjunctions than considered in [ACF21], which give proofs where either the
homomorphism or commitment is fixed across a disjunction of multiple clauses. Our goal in stacking will
be concrete speed; specifically, we aim to minimize the number of expensive group operations and multi-
exponentations the prover is required to do for each clause.
Intuition. A first order intuition for speed-stacking Compressed Σ-Protocols is as discussed in the technical
overview: first stack the communication inefficient base protocol, and then apply the recursive folding
“after” stacking the protocols together. The base Σ protocol in Compressed Σ-Protocols can trivially be
stacked using the stacking compiler given from Goel et al. [GGHAK22], reusing the entirety of z as a
recyclable message and allowing t, T to be deterministically recomputed. As such, it is natural to expect
that this multiround protocol should contain all recyclable messages besides t, T , and indeed it does.
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Πcompressed for the relationRcompressed =
{

(g1 ∈ GN , P ∈ G, y ∈ GT , f ∈ LN ;x ∈ ZNq ) : P = g1
x, y = f(x)

}
Prover Verifier

r
$←− ZNq , t = f(r), T = g1

r t, T c
$←− Zq

x1 ← cx + r c

f1 := f, y1 = cy + t, Q1 = TP c f1 := f, y1 = cy + t

A1 = g1
x1L
R , a1 = UniqueOrRand(f, y,f1,R(x1L), c) Q1 := TP c

B1 = g1
x1R
L , b1 = UniqueOrRand(f, y,f1,L(x1R), c) Q1, A1, B1, a1, b1 c1

$←− Zq

x2 ← c1x1L + x1R
c1 Q2 := A1Q1

c1Bc1
2

1 ,g2 := g1
c1
L ∗ g1R

g2 := g1
c1
L ∗ g1R a1, b1 ← UniqueOrRand(f, y, ({a1, b1}), c)

f2 := c1f1,L + f1,R, y2 = a1 + c1y1 + c21b1 f2 := c1f1,L + f1,R, y2 = a1 + c1y1 + c21b1

...

Ai = gi
xiL
R , Bi = gi

xiR
L ,

ai = UniqueOrRand(f, y, ({aj , bj}j∈[i−1],fi,R(xiL)), {cj}j∈[i−1])

bi = UniqueOrRand(f, y, ({aj , bj}j∈[i−1],fi,L(xiR)), {cj}j∈[i−1])
Ai, Bi, ai, bi ci

$←− Zq

xi+1 ← cixiL + xiR
ci Qi+1 := AiQi

ciBci
2

i gi+1 := gi
ci
L ∗ giR

gi+1 := gi
ci
L ∗ giR ai, bi ← UniqueOrRand(f, y, ({aj , bj}j∈[i]), {cj}j∈[i−1])

fi+1 := cif1,L + f1,R, yi+1 = ai + ciyi + c2i bi fi+1 := cif1,L + f1,R, yi+1 = ai + ciyi + c2i bi

...

z← cµ−1xµ−1L + xµ−1R
z (gµ)z

?
= Qµ

fµ(z)
?
= yµ

Figure 5: Compressed protocol Πcompressed for proving linear forms by Attema et. al. [ACF21]. We introduce
two minor modifications intro the protocol, described in the text. First, we have the prover send Q1 in the
protocol. Second, when the value of ai, bi are already uniquely determined, we have the prover simply
send random elements instead. We annotate both these changes in red (the origional protocol can be seen
simply be ignoring the red text). We define the helper function UniqueOrRand, which implements the second
protocol modification. Specifically, this function determines which messages ai, bi were already uniquely
constrained and which were “new” information, and therefore randomly distributed. The output of the
function is the “corrected” values. This function can be implemented by Gauss-Jordan elimination, with
runtime N log2(N). Note that we abuse notation slightly in the definition of this function as written here
and in the main text in order not to obscure the key parts of the protocol or simulator.
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We note, however, that Attema et al.’s choice of compression mechanism requires a more careful anal-
ysis of this stacking approach. Not all the messages in the tail are recyclable. Observe that the messages
in the tail are of the form Ai, Bi, ai, bi. While Ai, Bi are clearly recyclable, ai, bi are outputs of the some
combination of parts of the linear form f and hence depend on f . Moreover, the computation required to
verify the tail is also not re-usable. Specifically, the linear form f is itself incorporated into the compression
mechanism, and f is never blinded, i.e. the computations relying on f cannot be “recycled” (to slightly
abuse our terminology). As such, directly stacking the protocol will run into both efficiency problems and
difficulty in proving zero-knowledge (i.e., in ensuring that the index of the active branch remains hidden).

We propose two minor modifications to this protocol in order for stacking to be maximally valuable:

(1) Sending Q1: In the original protocol described in [ACF21], the prover and verifier independently
compute the value Q1 (i.e., TP c from the base protocol). The first modification that we propose is to
have the prover sendQ1 during the first folding. This modification is simply for efficiency reasons (and
therefore does not impact soundness or zero-knowledge) as Q1 can be deterministically computed by
the verifier and the deterministic simulator. However, computingQ1 directly from the transcript (and,
looking ahead, the recyclable messages) for simulating other messages is expensive — involving many
exponentiations — and therefore we would like to avoid computing it as part of our deterministic
simulator SDET. This modification is similar to the one used to make Aurora efficiently stackable in
the previous Section.

(2) Randomizing ai and bi: In each round i of the folding argument, the prover sends ai = fi,R(xi,L)
and bi = fi,L(xi,R). As such, as discussed above, ai and bi are not recyclable. Note that there are
cases when the verifier already knows the values of ai and bi that it should expect to receive based on
the functions fi,L, fi,R; for example, if either is the zero function. More generally, the verifier might
be able to predict the value of ai, bi given f, ai−1, bi−1, ci−1, ai−2, bi−2, ci−2 . . .. As such, ai, bi are not
generally recyclable. However, since f is a linear form, we observe that the possible values of ai, bi
correspond to the solutions of a linear system in the coefficients of f and the challenges so far. As
such, they are either marginally uniform, or there is an efficient algorithm determining their unique
assignment. Hence, we propose to modify the protocol to have the prover send uniform elements ai
or bi when their “correct” value can already be determined by the verifier. The verifier can simply
ignore these elements when the “correct” value is already determined. It is easy to see that this does
not affect soundness or zero-knowledge of Compressed Σ-protocols.

We give a complete description of the protocol, including these modifications (highlighted in red), in
Figure 5. To capture our second modification, we define a function UniqueOrRand that is used to determine
values ai and bi in each folding. In particular, for each folding (to compute ai, bi), it takes the following in-
puts: the function f , evaluation y = f(x), previously computed values and challenges ai−1, bi−1, ci−1, ai−2, bi−2, ci−2 . . .
and f1,R(xiL) (when computing ai) or f1,L(xiR) (when computing bi). UniqueOrRand checks if the values ai
and bi are already determined based on previous computed values and challenges — in which case it out-
puts a random value —- else, it outputs f1,R(xiL) for ai and f1,L(xiR) for bi. We are now ready to describe
how to speed-stack Compressed Σ-Protocols and prove the following theorem, setting M COMP

RAND = (Q1, A1,
B1, a1, b1, . . . , Aµ−1, Bµ−1, aµ−1, bµ−1, z) for notational convenience.

Theorem 5.2. Compressed Σ-protocols [ACF21] (Figure 5), denoted as Πcompressed, is stackable.

Proof. Random Simulation SRAND. We start by showing that there exists a statement-independent simulator
SCOMP

RAND that produces the set of messages M COMP
RAND such that those messages are indistinguishable from an

honest execution of the protocol. The simulator can be round on the left side of Figure 6.
SCOMP

RAND samples random values for Ai, Bi, ai, bi, and z. From these values, Q1 is already uniquely deter-
mined. As such, SCOMP

RAND folds the generators using the challenges to find the final value of Qlog(N), and then
solves for Q1.

To see why these messages are all recyclable, simply observe that the value x1 is uniformly random in
ZNq , as it was masked with r. First consider, the distribution of ai, bi. Because f are only linear forms, this
means that the range of f is either (1) uniquely determined, or (2) uniformly random in Zq . In case (1),
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(M COMP
RAND )← SCOMP

RAND (1λ, C = (c, c1, . . . cµ))

1 : for i ∈ [log(N)− 1] :

2 : Ai, Bi
$←− G, ai, bi

$←− GT
3 : gi+1 := gi

c
L ∗ giR

4 : z
$←− GT

5 : Qlog(N) := (glog(N))
z

6 : for i ∈ [log(N)− 1, . . . , 1]

7 : Qi := (Qi+1(Ai)
−1(Bc

2

i )−1)−c

8 : returnM COMP
RAND = (Q1, {Ai, Bi, ai, bi}i∈[log(N)−1], z)

(t, T ) := SCOMP
DET (st,x = (P, y, f), C,M COMP

RAND )

1 : for i ∈ [2, . . . , log(N)]

2 : fi := cfi−1,L + fi−1,R

3 : ylog(N) := flog(N)(z)

4 : {âi, b̂i}i∈[log(N)−1] = UniqueOrRand(f, y, {ai, bi}i∈[log(N)−1], C)

5 : for i ∈ [log(N)− 1, . . . , 1]

6 : yi :=
yi+1 − ai − c2i bi

ci

7 : T := Q1P
−c, t := y1 − cy

8 : return (t, T )

Figure 6: Simulators for Compressed Σ-protocols. We define the helper function UniqueOrRand, which
implements the second protocol modification outlined in the text. Specifically, this function determines
which messages ai, bi were already uniquely constrained and which were “new” information, and therefore
randomly distributed. The output of the function is the “corrected” values âi, b̂i. This function can be
implemented by Gauss-Jordan elimination, with runtime O(N log2(N)).

we have already modified the protocol such that the values ai, bi are uniform by definition. In case (2), we
are evaluating f at a random point x1, and therefore the output is uniform. The uniformity of Ai, Bi and z
follows trivially in the exact same way.
Deterministic Simulation SDET. Next, we construct a deterministic, simulator SCOMP

DET that takes in a set of
messages M COMP

RAND and completes the transcript (see the right side of Figure 6). It is trivial to see that these
messages are computed deterministically and correctly.

Combining Theorems 5.2 and 3.5, we get the following Corollary.

Corollary 5.3. Let Πspeed-compressed be output of the compiler in Figure 2 recursively applied to Πcompressed using SCOMP
RAND

and SCOMP
DET as defined in the proof of Theorem 5.2. Then Πspeed-compressed is a stackable ZK-IP for Rdis-compressed with

logarithmic communication complexity, and prover computational complexityO(Time(Πcompressed)+`·Time(SCOMP
DET )).

Efficiency of Speed-Stacked Compressed Σ-Protocols. Our goal in stacking Compressed Σ-Protocols is
to minimize the number of group operations that the prover must perform when proving a disjunctive
statement, as group operations are typically significantly more expensive than field operations. Based on
our compiler, it is easy to see that we get the most savings when the linear form f is actually a homo-
morphism from one field to another field. In that case the vast majority of the group operations are only
necessary in the active clause. Concretely, the prover’s computational cost for running the compiled pro-
tocol is Time(Πcompressed) + ` · Time(SCOMP

DET ) + Time(Gen) + Time(EquivCom) + Time(Equiv). In this case, in
SCOMP

DET , the prover computes only 1 exponentiation and 1 group operation (T := Q1P
−c). If we consider

the commitment scheme proposed by Goel et al. [GGHAK22], both key generation and committing require
` exponentations and group operations, while equivocation requires only field operations. Thus the over-
head (when counting group operations) introduced from running a disjunction with ` clauses is only 2`
exponentiation and 2` group operations. Importantly all the multi-exponentations resulting from folding g
and computing the Ai, Bi can be completely avoided.

We note that our modifications to the protocol do introduce some overheads. Namely, the verifier (and
thus the deterministic simulator) need to decide when a message is already uniquely determined. This
computation requires attempting to solve the system of equations for the particular value ai, bi. The verifier
can simply to this using Gauss-Jordan elimination, which will take N log2(N) field operations.

32



Πcirc-compressed for the relationRcirc-compressed =
{

(g ∈ G(2m+I+3), h ∈ G, C : ZIq → Zq;x ∈ ZIq) : C(x) = 0
}

Prover Verifier

u, v
$←− Zq[X] s.t.

deg(u), deg(u) < m, and

∀i ∈ [1,m], u(i) = αi, v(i) = βi

w(X) := u(X)v(X)

y = (x, u(0), v(0), w(0), w(1), . . . , w(2m))

ρ
$←− Z∗q com = hρgy

ĉ ĉ
$←− Z∗q \ {0, 1, 2, . . . , 2m+ 1}

z1 = u(ĉ), z2 = v(ĉ), z3 = w(ĉ) z1, z2, z3

ρ ρ
$←− Z∗q

L = Linear combination of C(x) = 0,

u(ĉ)− z1 = 0, v(ĉ)− z2 = 0, w(ĉ)− z3 = 0

with coefficients 1, ρ, ρ2, . . .

Πcompressed ((h,g), com, 0, L;y) z3
?
= z1z2,Verify

(
Πcompressed

)

Figure 7: The airthmetic circuit satisfiability version of Compressed Σ-Protocols presented in [AC20]. We
leverage several notation shortcuts introduced in [AC20] in our presentation: we denote the linear forms
derived from the circuit topology as C(x). We unroll Πnullity, presented in [AC20], to explicitly expose the
underlying protocol Πcompressed. This unrolled protocol verifies that the constraintsC((x)), u(ĉ)−z1, v(ĉ)−z2

and w(ĉ)− z3 are all zero with respect to the commitment hρgy, where in secret prover input in y.

5.3 Extension to Circuit Satisfiability

In [AC20], Attema and Cramer present a reduction from general circuit satisfiability to the opening of linear
forms, based on the techniques presented by Cramer, Damgård and Pastro [CDP12]. We briefly summarize
this reduction and present the circuit satisfiability protocol presented in [AC20], before showing how to
speed-stack this resulting protocol.
Overview of Circuit Satisfiability based on Compressed Σ-Protocols. Let C : ZIq → Zq be an arithmetic
circuit consisting of m multiplication gates, and let x ∈ ZIq be a input such that C(x) = 0. The prover
wishes to prove, in zero-knowledge, that it knows such a satisfying input x for C, that is, the prover wants
a zero-knowledge proof for the relation

Rcompressed-circ = {(C : ZIq → Zq;x ∈ ZIq) : C(x) = 0}

Let {(αi, βi, γi)}i∈[m] be the multiplication triples induced on the circuit C when evaluated on x. That is,
for the ith multiplication gate, let αi be the left input wire value, βi be the right input wire value, and γi
be the output wire value. To check that C(x) = 0, the prover can demonstrate that for some fixed set of
values {(αi, βi, γi)}i∈[m], (1) ∀i ∈ [m], αiβi = γi, (2) the output wire of the circuit is equal to 0 (which is a
linear function of the γi’s), and (3) that the proper linear relationships between {(αi, βi, γi)}i∈[m] induced
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(M COMP-CIRC
RAND ← SCOMP-CIRC

RAND (1λ, C = (ĉ, c, c1, . . . cµ))

1 : com
$←− G

2 : z1, z2
$←− Zq, z3 = z1z2

3 : M COMP
RAND ← SRAND(1λ, C = (c, c1, . . . cµ))

4 : return (com, z1, z2, z3,M
COMP
RAND )

(t, T ) := SCOMP-CIRC
DET (x = (g, com, 0, L), C,M COMP-CIRC

RAND )

1 : return SDET(x = (g, com, 0, L), C,M COMP
RAND )

Figure 8: Simulators for Circuit Sat Compressed Σ-protocols.

by the circuit topology are preserved. For example, the circuit topology may dictate that α3 = γ1 + γ2 or
that α2 = γ1.

Attema and Cramer [AC20] adopt an idea from Cramer, Damgård and Pastro [CDP12] to effectively
linearize these constraints and thereby allow checking them using their protocol for proving the opening
of linear forms. The prover begins by sampling random degree m polynomials u and v such that ∀i ∈
[m], u(i) = αi, v(i) = βi. The prover then computes the degree 2m polynomial w(X) = u(X)v(X).11 Finally,
the prover commits to the polynomials by committing to the first m points of u and v and the first 2m + 1
points of w. The prover and verifier then engage in an interactive protocol to checks all the constraints as
follows:

– Check all multiplication triples. The verifier can check all of the multiplication triples in a batch be
sampling a random ĉ ∈ Zq such that ĉ ≥ 2m and checking that u(ĉ)v(ĉ) = w(ĉ). This satisfies condition
(1) and relies on the Shwartz-Zippel Lemma that has become a standard technique in efficient zero-
knowledge. Moreover, note that u(ĉ), v(ĉ), and w(ĉ) can all be computed using a linear combination
of the commited values via polynomial interpolation. Thus, the prover can convince the verifier that
u(ĉ)v(ĉ) = w(ĉ) using a proof of a linear opening.

– Check linear relationships. Attema and Cramer observe that each wire in the circuit can be computed
as a linear combination of the input values x and values of γi, where the coefficients on the linear
combination are a function of the circuit topology. This induces one linear form for each wire in the
circuit, which jointly satisfy conditions (2) and (3).

Attema and Cramer slightly simplify the protocol of [CDP12] by only commiting to u(0) and v(0), rather
than all of u and v, as the remaining points in u and v can be computed as a linear combination ofw(i) and x.
Additionally, in [AC20], Attema and Cramer present a version of the their proof of linear forms that allows
a prover to batch together multiple linear forms that all open to 0 called Πnullity; the protocol is a simple
modification of underlying Πcompressed that involves taking a random linear combination of the linear forms
(for details of that protocol, we refer the reader to Section 5 of [AC20]). We have unrolled this protocol
explicitly, such that it exposes the underlying instance of Πcompressed. They use this protocol to check that all
the linear forms discussed above are satisfied.

The full protocol for circuit satisfiability presented in [AC20] is shown in Figure 7.
Speed-stacking Πcirc-compressed.We now discuss how to apply our speed stacking techniques to Πcirc-compressed.
Specifically, when stacked, we get a prover-efficient protocol for the relation

Rdis-compressed-circ = {({Ci : ZIq → Zq}i∈[`];α ∈ [`],xα ∈ ZIq) : Cα(xα) = 0}12

The vast majority of the computation and communication for Πcirc-compressed is contained within an in-
stance of Πcompressed. As such, it is simple to see how to speed-stack the resulting protocol. Indeed, the

11In the description in [AC20], the authors use f, g, h instead of u, v, w.
12Note that the final statement, as show in Figure 7, also contaings genertors that are used for commitments. We ommit them in the

text for readability.
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simulator required for speed-stacking Πcirc-compressed is virtually identical to that presented in Section 5.2,
and is presented in Figure 8.

Notice that the additional messages at the beginning of the Πcirc-compressed are all distributed indepen-
dently of the statement: com is, definitionally, distributed independently of y and the only constraint on
z1, z2 and z3 is that z3 = z1z2, and because u and v and sampled at random, both z1 and z2 are distributed
uniformly. This means that that the the randomized simulator need only sample these messages at random
and then invoke the randomized simulator of the underlying protocol Πcompressed. The deterministic simu-
lators need only invoke the deterministic simulators of Πcompressed directly. The proof is a trivial extension
of that in Section 5, so we leave it as an exercise to the reader. To see the efficient gains offered by speed-
stacking Πcirc-compressed, observe that the length of y in Πcirc-compressed is proportional to the size of the circuit
(2m+ I + 3), meaning the dimensions of the resulting multiexponentiation will be a function of the circuit
size. When speed stacking, the deterministic simulator need only computing field operations proporitonal

follows directly from the derivations in the previous section.

6 Speed-Stacking Bulletproofs

In this section, we show how to stack Bulletproofs and demonstrate why our techniques only offer compu-
tational savings in very limited scenarios, when applied to Bulletproofs.

6.1 Overview

Bünz et al. demonstrate that several relations including range proofs and circuit satisfiability can be reduced
to a “privacy-free” inner product relation via an interactive protocol. The inner-product relation can be
proved using a folding argument based sublinear argument system introduced in their work. Overall, the
argument system for proving the inner product relation is the most computationally intensive component
in Bulletproofs. As discussed in the introduction, our main observation is that in the case of disjunctions,
all branches can be reduced to the same privacy-free inner product relation and the transcript for that part
of the proof can be “recycled”. However, this does not always yield significant computational savings.
In this subsection, we give an overview of the Bulletproofs protocol and the main ideas underlying our
approach for how to stack Bulletproofs for disjunctions. In subsequent subsections, we show the outcome
of applying these techniques to the two types of relations considered in [BBB+18] – range proofs and circuit
satisfiability.
Notation. In order to ensure readability and consistency with the original presentation of Bulletproofs, we
briefly recall their notation here. Let G be a cyclic group of prime order p and Z∗p denote Zp\{0}. Let g, h ∈ G
be generators of G. Let g = (g1, g2, . . . , gN ),h = (h1, h2, . . . , hN ) ∈ GN be vectors of generators, where N
is some arbitrary size parameter (note that we use the size parameter N instead of n, used in [BBB+18] to
avoid notational collisions with the rest of this work). Capital letters, e.g. V,A, S, T1, T2, denote Pedersen
Commitments and Greek letters, e.g. α, γ, ρ, τ ∈ Z∗p, are blinding factors (in Bulletproofs, Greek letters
denote elements of Z∗p more generally). If y ∈ Zp, then y is a vector of elements in Zp, generally of size N .
Additionally, let the vectors yN = (1, y, y2, . . . , yN−1),1N = (1, 1, . . . , 1) and 2N = (1, 2, 22, . . . , 2N−1). Let
〈a,b〉 =

∑n
i=1 ai · bi be the inner product between two vectors a,b ∈ Fn, and a ◦ b = (a1 · b1, . . . , an · bn) be

the Hadamard product between those two vectors (note that we used ∗ to denote Hadamard product when
discussing Compressed Σ-protocols—we allow the sections to differ in their notation to allow for easier
reference to the original works). Finally we denote multiexponentation by gx =

∏
i g
xi
i .

Manipulating a Set of Constraints. Bünz et al. [BBB+18] consider NP relations of the following form:

R =

{
(g, h ∈ G, {Vi}i∈[I] ∈ GI , f ; {γi}i∈[I] ∈ ZI , {vi}i∈[I] ∈ ZIp, {wj}j∈[J] ∈ ZJp ) :

Vi = hγigvi ,∀i ∈ [I] ∧ f({vi}i∈[I], {wj}j∈[J]) = 1

}

Here the function f can be re-imagined as a collection of constraints of the following form:
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1. Sum of inner products: These are constaints of the form
∑
q〈aq,bq〉 = c, where each aq,bq ∈ ZNp , c ∈ Zp

are some functions in vi’s and wj ’s.

2. Sum of hadamard products: These are constaints of the form
∑
q aq ◦ bq = c, where each aq,bq, c ∈ ZNp

are some functions in vi’s and wj ’s.

It is possible to reduce the second type of constraints to the first type. In particular, let y ∈ Zp be a
random challenge received from the verifier. Then for the second type of constraints it suffices for the
prover to prove

∑
q〈aq,bq ◦ yN 〉 = 〈c,yN 〉.

Since all the constraints are now sums of inner products, we can combine them into a single sum of
inner products by taking another random linear combination of all the constraints. Let

∑
q〈ak,q,bk,q〉 = ck

be the set of k constraints and let z ∈ Zp be a random challenge received from the verifier. Given this, it
suffices for the verifier to simply prove

∑
k z

k−1 ·
∑
q〈ak,q,bk,q〉 =

∑
k z

k−1 · ck.
Next, Bünz et al. observe that this sum of inner products can often be re-written as a single inner

product relation of the form 〈a,b〉 = c, where c only depends on y, z and the vi values. However, since
the two vectors a and b invoved in this inner product reveal information about the witnesses {wj}j∈[J], the
prover cannot send them to the verifier in the clear.

Reducing to a “Privacy-Free” Inner Product Relation. We now recall the main ideas in Bulletproofs for
reducing the above inner-product relation into a privacy-free inner product relation.

This problem is solved in Bulletproofs by introducing two blinding vectors sL, sR ∈ ZNp and defining
two vector polynomials l(X), r(X) ∈ ZNp [X], where the coefficients in l(X) depend on a and sL, while the
coefficients in r(X) depend on b and sR.

Let l(X) and r(X) be polynomials of degree d each. Let t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X+ . . .+ t2d ·X2d

be a polynomial of degree 2d in Zp[X]. The polynomials l(X) and r(X) are chosen such that at least one of
the coefficients Te in polynomial t(X) is independent of any of the wj values and can be computed by the
verifier. Let Te be some deterministic function p(v1, . . . , vI , y, z).

The blinding terms sL and sR ensure that the prover can now publish l(x) and r(x) for one x ∈ Z∗p
(chosen randomly by the verifier) without revealing information about a and b (and in turn about any of
the wj witnesses). However, since the size of coefficients in l(x) and r(x) could potentially be dependent
on the size of the relation function/witness, publishing l(x), r(x) directly, will require communication that
is linear in the size of the relation/witness. Therefore, instead of directly sending l(x), r(x) to the verifier,
Bünz et al. devise a logarithmic-sized argument system for proving correctness of inner-product relations
of the following form

Rinnerprod =

{
(g,h ∈ GN , P ∈ G, t(x) ∈ Zp; l(x), r(x) ∈ ZNp ) :

P = gl(x)hr(x) ∧ t(x) = 〈l(x), r(x)〉

}

where the commitment P to l(x) and r(x) is fixed given all the previously sent messages to the verifier
and can be derived by the verifier during the verification process. In particular, the following Theorem is
proved in [BBB+18].

Theorem 6.1 (Inner-Product Argument). There exists an argument Πinnerprod for relation Rinnerprod that has per-
fect completeness and statistical witness-extended-emulation and requires the prover to only send 2 log2(N) group
elements to the verifier.

Although a significant portion of Bünz et al.’s contribution is in designing an efficient Πinnerprod, we
note that understanding the details of this protocol is not important for understanding how to speed-stack
Bulletproofs, as we will be able to reuse the transcript produced by Πinnerprod in a blackbox way. Using this
Πinnerprod, the prover can now prove that t(x) = 〈l(x), r(x)〉, without having to send l(x), r(x).

Summarizing the Bulletproofs Protocol. To summarize the above discussion, we now present a high level
sketch of the main steps involved in the Bulletproofs protocol.
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• Round 1: The prover starts by committing to the wj witnesses and the blinding terms sL and sR
using pederson commitments. Let S = hρgsLhsR ans let A1, . . . , Ad be the remaining commitments
to the witnesses computed using randomness α1, . . . , αd (We note that each of the witnesses are not
necessarily committed using a different commitment).

• Round 2: The verifier sends challenges y, z.

• Round 3: The prover computes pederson commitments {Ti = gtihτi}i∈{0,...,2d}\e, where ti is the ith

coefficient in t(X) and τi is a random value in Zp. It sends these commitments to the verifier

• Round 4: The verifier responds with the challenge x.

• Round 5: The prover evaluates l(X) and r(X) on the challenge point x to obtain l and r respectively.
Let t̂ = 〈l, r〉. Compute τx =

∑
i∈[2d,i6=e] τix

i + xep(γ1, . . . , γI , y, z). Let µ =
∑
i∈[d−1] αix

i + ρxd. The
prover sends τx, µ, t̂ to the verifier. Given this information, the verifier is able to deduce a commitment
P = glhr. Finally, the prover proves t̂ = 〈l, r〉 to the verifier using Πinnerprod.

Bottleneck in Speed-Stacking Bulletproofs. We start by showing that Bulletproofs are stackable. We
proceed in two steps: (1) we begin by showing how to stack the communication inefficient version of Bullet-
proofs in which the prover simply sends l and r directly, then (2) observe that if all clauses share the same
values of l and r, then only a single instance of Πinnerprod is neccerary to convince the verifier.

In order to stack the communication inefficient version of Bulletproofs, we observe that all but two mes-
sages – namely S and any one of {Ti}i 6=e commitments – sent by the prover in Bulletproofs is recyclable. To
see this, we observe that for fixed values of {Vi}i∈[I], function f and transcripts of the full protocol exclud-
ing S and one of the {Ti}i 6=e values (say Tj), it is possible to deterministically find the values of S and Tj that
will satisfy the equation. This observation gives us a blueprint for designing the two simulators SRAND and
SDET: SRAND will generate a transcript of appropriately distributed values A1, . . . , Ad, {Ti}i/∈{e,j}, τx, µ, t̂, l, r
and SDET completes the transcript by computing S (which can be done independently of the statement)
and Tj (we arbitrarily choose to compute {Ti}i/∈{e,j} using SRAND and Tj using SDET). We present a formal
blueprint of these simulators in Figure 9.

Given the above observation, since t̂, l, r can be recycled, it is easy to see that the transcipt of Πinnerprod
is also recyclable. Using this approach, the additional cost of simulating transcripts for the inactive clauses
depends on the time required to compute S and Tj , given M BULLET

RAND . We observe that computing S re-
quires multi-exponentiations dependent of the size of the function f , while computing Tj requires multi-
exponentiations dependent of the length of the statement, i.e., {Vi}i∈I . While the transcript of Πinnerprod can
be reused, the cost of computing Πinnerprod is comparable to the cost of computing S in SDET. As a result,
unfortunately, we do not get any significant computational savings (barring small constant factor improve-
ments) when trying to stack Bulletproofs for disjunctions. However, when considering set-membership
proofs, most of the heavy computation in S can also be re-used across all clauses. Therefore, the additional
work required to simulate the inactive clauses only majorly depends on the computation of T . In this case,
we do get some computational savings using our approach. However, as discussed in the introduction, this
is only interesting for the case of Range proofs. For the case of circuit-satisfiability, this approach is unlikely
to be any more efficient than the naı̈ve approach used for computing set-membership proofs.

6.2 Speed-Stacking Range Proofs Version of Bulletproofs

Using the high-level ideas from the previous subsection, we now show how to speed-stack the first kind of
relation considered in [BBB+18], namely range proofs. Range proofs are relations, where a prover wishes to
convince the verifier that a committed value lies within a specific range. In particular, Bünz et al. consider
relations of the form

Rrange =
{

(g, h ∈ G, V ∈ G, N > 0; v, γ ∈ Zp) : V = hγgv ∧ v ∈ [0, 2N − 1]
}
.
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M BULLET
RAND ← SBULLET

RAND (1λ, C = (x, y, z))

1 : µ, τx
$←− Zp

2 : A1, . . . , Ad
$←− G

3 : l, r
$←− ZNp

4 : t̂ = 〈l, r〉 ∈ Zp

5 : {Ti}i 6={j,e}
$←− G

6 : return A1, . . . , Ad, {Ti}i6={j,e}, τx, µ, t̂, l, r

T2 ← SBULLET
DET (g, h, {Vi}i∈I , (x, y, z),M BULLET

RAND = ({Ai}i∈[d], {Ti}i 6={j,e}, τx, µ, t̂, l, r)

1 : Compute S and Tj , such that the verification check is satisfied

2 : return S, Tj

Figure 9: General Blue-Print for Simulators in (communication-inefficient version of) Bulletproofs.

Overview. We give a short overview of how this relation can be reformulated as a set of inner product and
hadamard product constraints and how the polynomials l(X) and r(X) are defined. Let aL = (a1, . . . , an) ∈
{0, 1}N be the binary representation of v, i.e., 〈aL,2N 〉 = v. Let aR be such that aL ◦ aR = 0N and aR =
aL − 1N . Intuitively, these constraints guarantee that aL is a valid bit decomposition of v, such that each
element of aL is {0, 1}. Note that if v can be represented with a N bit binary vector, then we can concluded
that v ∈ [0, 2N−1]. Using aforementioned ideas, these constraints can be reduced to the following single
inner product constraint:〈

aL − z · 1N ,yN ◦ (aR + z · 1N ) + z2 · 2N
〉

= z2 · v + δ(y, z)

where
δ(y, z) = (z − z2) · 〈1N ,yN 〉 − z3〈1N ,2N 〉 ∈ Zp. (1)

Finally, given the blinding terms sL, sR ∈ ZNp , vector polynomials l(X), r(X) ∈ ZNp [X] can be defined as
follows:

l(X) = aL − z · 1N + sL ·X
r(X) = yN ◦ (aR + z · 1N + sR ·X) + z2 · 2N

Given l(X) and r(X), the rest of the proof proceeds exactly as described in the previous subsection. We
now state the main Theorem from [BBB+18]:

Theorem 6.2 (Range Proof). There exists a protocol Πrange for relation Rrange that has perfect completeness, perfect
special honest verifier zero-knowledge, and computational witness extended emulation and requires the prover to send
2 · dlog2(N)e+ 4 group elements and 5 elements in Zp.

For the sake of completeness, we give a formal description of protocol Πrange in Figure 10.

Range Proofs Version of Bulletproofs are Stackable. We now show how to apply our compiler in Theorem
3.5 to Bulletproofs. In particular, we consider relations of the form:

Rdis-range =

{
(g, h ∈ G, {Vi}i∈[`], N > 0;α ∈ [`], vα, γ ∈ Zp) :

Vα = hγgvα ∧ vα ∈ [0, 2N − 1]

}
Note that the above statement in less generic than the ones considered in previous sections. Here we

consider the same range across all branches, and therefore this is set memebership. As discussed in the tech-
nical overview, the benefits of applying the same techniques to true disjunction of the circuit satisfiability
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BulletProofs Range Proofs. PoK{(v, γ) : g,h,∈ GN , V = hγgv ∧ v ∈ [0, 2N − 1]}
Prover(v, γ) Verifier

aL ∈ {0, 1}N s.t. 〈aL,2N 〉 = v

aR = aL − 1N ∈ ZNp , α, ρ
$←− Zp, sL, sR

$←− ZNp

A = hαgaLhaR , S = hρgsLhsR ∈ G A,S

t0 = vz2 + δ(y, z) (see 1) y, z y, z
$←− Z∗q

τ1, τ2
$←− Zp

T1 = gt1hτ1 , T2 = gt2hτ2 T1, T2

l = aL − z · 1N + sL · x ∈ ZNp x x
$←− Z∗q

r = yN ◦ (aR + z · 1N + sR · x) + z2 · 2N ∈ ZNp
t̂ = 〈l, r〉 ∈ Zp
τx = τ2 · x2 + τ1 · x+ z2 · γ

µ = α+ ρ · x ∈ Zp τx, µ, t̂,Πinnerprod(t̂, l, r) h′i = h
(y−i+1)
i ∈ G, ∀i ∈ [1, n]

h′ = (h′1, h
′
2, h
′
3, . . . , h

′
n)

gt̂hτx
?
= V z

2

· gδ(y,z) · T x1 · T x
2

2

P = A · Sx · g−z · (h′)z·y
N+z22N

P
?
= hµ · gl · (h′)r

Verify (P,Πinnerprod(t̂, l, r))

Figure 10: Bulletproofs Range Proof Protocol Description.

version of bulletproofs is marginal, so we omit the construction. Additionally, we show that speed stacked
Compressed Σ-protocols support true disjunctive statements.

We now prove the following theorem, showing that the range proofs construction in Bulletproofs is
stackable.

Theorem 6.3. The range proof construction in Bulletproofs [BBB+18] (Figure 10), denoted as Πrange, is stackable.

Proof. Random Simulation SRAND. We start by showing that there exists a statement-independent simu-
lator SRAND that produces the set of messages M BULLET

RAND = (A, T1, τx, µ, t̂, l, r) such that those messages are
indistinguishable from an honest execution of the protocol. The simulator can be found on the left side of
Figure 11.To prove security, we show that the set of messages generated by SRAND and the set of messages
M BULLET

RAND generated from an honest execution of the protocol are indistinguishable. For this, we consider the
following hybrid distributions:

• Hybrid H0: This is the distribution of messages M BULLET
RAND computed in an honest execution of the

protocol.

• Hybrid H1: First lets consider a hybrid H1, where the messages M BULLET
RAND are computed exactly as

in H0, except that T1 and τx are both sampled at random. It easy to see that since T1 is a hiding
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M BULLET
RAND ← SBULLET

RAND (1λ, C = (x, y, z))

1 : α, µ, τx
$←− Zp

2 : aL,aR
$←− ZNp

3 : A = hαgaLhaR ∈ G

4 : l, r
$←− ZNp

5 : t̂ = 〈l, r〉 ∈ Zp

6 : T1
$←− G

7 : return A, T1, τx, µ, t̂, l, r

T2 ← SBULLET
DET (g, h, V, (x, y, z),M BULLET

RAND = (A,S, T1, τx, µ, t̂, l, r))

1 : S = hµ ·A−1 · gl+z·1N · (h′)r−z·y
N−z2·2N ∈ G

2 : δ(y, z) = (z − z2) · 〈1N ,yN 〉 − z3〈1N ,2N 〉 ∈ Zp

3 : T2 =

(
gτ̂ · hτx

V z2 · gδ(y,z) · T x1

)−x2

4 : return T2

Figure 11: Simulators for Bulletproofs.

commitment, the set of M BULLET
RAND generated this way is indistinguishable from an honestly generated

set of messages M BULLET
RAND .

• Hybrid H2: Next, we consider a distribution where the messages M BULLET
RAND are computed exactly as in

SRAND, except that in Step 2, instead of sampling aL and aR randomly, they are computed as follows:
aL ∈ {0, 1}N s.t. 〈aL,2N 〉 = v and aR = aL − 1N . It is easy to see that hybrids H1 and H2 are
identically distributed. Indeed, the only difference between the two is that in H1, we first sample
random sL, sR and then compute the corresponding l, r. Whereas, in H2 we first sample random
l, r, µ and then compute the corresponding S directly.

• HybridH3: This is identical to the messages simulated by SRAND. The only difference betweenH2 and
H3 is in the way aL,aR and hence A is generated. Indistinguishability between these distributions,
follows from the hiding property of Pederson vector commitments.

Deterministic Simulation SBULLET
DET . We now construction a deterministic simulator SBULLET

DET that takes in a set
of messagesM BULLET

RAND and completes the transcript. The simulator can be found on the right side of Figure 11.
It is easy to see that SBULLET

DET produces the exact same transcript that an honest execution would produce.
Moreover, the computations performed by this simulator are all deterministic.
Optimizing SBULLET

DET By Passing State. We note that the runtime of SBULLET
DET can be further improved by

having the randomized simulator compute most of T2. Specifically, compute st =
(

gτ̂ ·hτx
gδ(y,z)·Tx1

)−x2

and output

st as part of the transcript. SBULLET
DET then computes st/V z

2−x2

.

Combining Theorems 3.5 and 6.3, we get the following Corollary.

Corollary 6.4. Let Πspeed-range be the output of the compiler in Figure 2 recursively applied to Πrange from Bulletproofs
using SRAND, SBULLET

DET-I , and SBULLET
DET-D as defined in the proof of Theorem 6.3. Then Πspeed-bullet is a stackable ZK-IP for

Rdis−range with logarithmic communication complexity, and prover computational complexity O(Time(Πrange) +
` · Time(SBULLET

DET )).

Proof. The only remaining observation necessary is that the prover can replace the messages l and r pro-
duced by SBULLET

RAND with the protocol Πinnerprod from [BBB+18] to achieve logarithmic communication com-
plexity.

Efficiency of Speed-Stacked Bulletproofs. Concretely, the prover’s computational cost for running the
compiled protocol is Time(Πcompressed) + ` · Time(SBULLET

DET ) + Time(Gen) + Time(EquivCom) + Time(Equiv).
It is easy to see that SBULLET

DET only requires a constant number of group exponentiations and no multi-
exponentiations. In the commitment scheme proposed by Goel et al. [GGHAK22], both key generation
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and committing require ` exponentations and group operations, while equivocation requires only field
operations. Thus the overhead (when counting group operations) introduced from running a disjunction
with ` clauses is only ` group exponentiations and ` group multiplications, plus the cost of the commitment
scheme.
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and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
327–357. Springer, Heidelberg, May 2016.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press,
May 2014.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128.
Springer, Heidelberg, May 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60.
Springer, Heidelberg, October / November 2016.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014, pages 781–796. USENIX Association, August 2014.
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A Stackable holographic lincheck

In this section we describe a stackable variant of the holographic lincheck protocol of [COS20]. Before
giving the formal construction, we give a high-level overview of the main idea.

Recall that the original holographic lincheck protocol for a matrix M fails to be efficiently stackable
because the prover sends the evaluation of a polynomial ûα,M . Computing a single point in this evaluation
takes time linear in the number ‖M‖ of nonzero entries in M , and so the instance-dependent part of the
simulator must run in time Ω(‖M‖).

The essence of our solution to this problem is in the following observation. Let R ∈ Fk×k be a uniformly
random matrix, and let [M |R] denote the block matrix(

M 0
0 R

)
∈ F(n+k)×(n+k) .

Note that Mx = y if and only if there exist z, z′ ∈ Fk such that [M |R](x|z) = (y|z′), where (u|v) denotes
the concatenation of vectors u, v. Hence we can solve the lincheck problem for M by solving the lincheck
problem for [M |R], ignoring the last k coordinates. The reduction to sumcheck allows this directly.

The advantage of the matrix [M |R] over M itself is that for random R, ûα,[M |R] is a k-wise independent
function; that is, for any k distinct points β1, . . . , βk ∈ F, (ûα,[M |R](βi))

k
i=1 is distributed as a uniformly
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random vector in Fk. Hence provided that the verifier makes at most k queries to ûα,[M |R], the answers to
these queries can be simulated with uniform randomness.

Most of the technical work in this construction is in enabling the prover to commit to the matrix R in a
way that allows it to verifiably open to evaluations of ûα,[M |R]. This is achieved by having the prover send
a univariate polynomial valR encoding the entries of R; this is similar to the encoding used for M except
that the former is dense while the latter is sparse. We design a protocol that combines the encodings of M
and R to achieve our goal.

Appendix A.1 gives preliminaries for readers unfamiliar with [COS20]. Appendix A.2 describes the
stackable lincheck protocol in detail as an RS-IOPP. Finally, Appendix A.3 proves soundness and stackabil-
ity.

A.1 Preliminaries

Notation. We denote polynomials with “hats”, e.g. f̂ , ĝ, the evaluation of a polynomial f̂ on a domain S

by f̂ |S and Reed–Solomon codewords corresponding to those polynomials by plain letters, so f = f̂ |L. In
this formalism, the lincheck problem is the problem of determining, given oracles f1, f2, whether f̂1|H =

M · f̂2|H for H ⊆ F and M ∈ FH×H . The bivariate low-degree extension of a matrix M ∈ FH×H is
denoted by M̂(X,Y ), and is defined to be the unique polynomial of degree |H| − 1 in each variable such
that M̂(a, b) = Mab for a, b ∈ H .

In the construction below, H,K,H0 ⊆ F. We assume that b = |H0| ≤
√
|K| and that H,H0 are disjoint.

Let S := H ∪ H0. Given a matrix M ∈ FH×H and a matrix C ∈ FH0×H0 , we define [M |C] ∈ FS×S to be

the block matrix
(
M 0
0 C

)
. Fix maps Φ1,Φ2 : K → S. We require that the map Φ: K → S × S given by

k 7→ (Φ1(k),Φ2(k)) is bijective when viewed as a map Φ−1(H0 ×H0) → H0 ×H0. We write Φ̂1, Φ̂2 for the
low-degree extensions of Φ1,Φ2. These have degree at most |K|.13 We will assume that the prover and the
verifier can evaluate Φ̂1, Φ̂2 at points in L in time polylogarithmic in |K|, e.g. by precomputation or by the
algebraic structure of K and H0.
Sparse representations of matrices. As in [COS20], our holographic lincheck protocol uses sparse repre-
sentations of matrices, following the definition below.

Definition A.1. Let H,K ⊆ F. A sparse representation of a matrix is a function 〈M〉 : K → H × H × F that
is injective when its output is restricted to H × H . The matrix M ∈ FH×H is obtained from 〈M〉 by setting, for
a, b ∈ H , Ma,b := γ if there exists k ∈ K such that 〈M〉(k) = (a, b, γ) and Ma,b := 0 otherwise.

Note that a matrix M ∈ FH×H has many possible sparse representations. In particular, we may choose
any large enough K and any injection from K to H ×H that “covers” the nonzero entries of M .

Given a sparse representation 〈M〉 : K → H × H × F, define ˆrow〈M〉, ĉol〈M〉 : K → H, v̂al〈M〉 ∈ F[X] to
be the unique polynomials of minimal degree such that for each k ∈ K, letting (a, b, α) := 〈M〉(k),

ˆrow〈M〉(k) := a , ĉol〈M〉(k) := b , v̂al〈M〉(k) :=
α

uH(a, a) · uH(b, b)
.

Special polynomials. For a set S ⊆ F, we denote by vS(X) the “vanishing polynomial” of S, the unique
non-zero monic polynomial of degree at most |S| that is zero on S. We denote by uS the bivariate polyno-
mial

uS :=
vS(X)− vS(Y )

X − Y
of individual degree |S| − 1.

For a matrixM ∈ FS×S , we define the polynomial uM (X,Y ) to be the low-degree extension (inX) of the
vector of polynomials u>SM ∈ F[Y ]S , where uS := (uS(a, Y ))a∈S ∈ F[Y ]S . We recall the following useful
fact about uM from [COS20].

13If K and H0 are algebraically related then this can be reduced.
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Claim A.2. For any matrix M ∈ FS×S , let M∗ ∈ FS×S be the matrix given by M∗a,b := Mb,a · uS(b, b) for all
a, b ∈ S. Then

uM (X,Y ) ≡ M̂∗(X,Y ) .

It will later be useful to observe that [M |C]∗ = [M∗|C∗] for all M,C.

A.2 Construction

Construction A.3 (stackable holographic lincheck). The indexer I receives as input an index i = (F, L,H,K, d, 〈M〉),
computes a sparse representation 〈M∗〉 of the matrix M∗, computes ˆrow〈M〉, ĉol〈M〉, v̂al〈M〉 as described above, and
then outputs their evaluations row〈M〉, col〈M〉, val〈M〉 ∈ RS[L, |K| − 1].

Subsequently, given an instance x = 1log |K| and witness w = (f1, f2), the honest prover P receives as input
(i,x), the honest verifier V receives as input x and oracle access to I(i), and they engage in the following protocol.
(P1) P chooses a matrix C ∈ FH0×H0 uniformly at random and sends c ∈ RS[L, |K|+ b− 1] to the verifier, where

ĉ is a uniformly random polynomial of degree |K|+ b− 1 such that for all k ∈ K:

ĉ(k) =

{
C∗Φ1(k),Φ2(k)

uS(Φ1(k),Φ1(k))uS(Φ2(k),Φ2(k)) if Φ(k) ∈ H0 ×H0, and
0 otherwise.

(V1) V sends α ∈ F \H chosen uniformly at random.
(P2) P sends the evaluation t ∈ RS[L, |H|+ |H0| − 1] of the polynomial t̂(X) := u[M |C](X,α) = ̂[M∗|C∗](X,α).
(P3,V3,P4) P,V engage in the zero knowledge sumcheck protocol to show that∑

b∈H

uH(b, α)f̂1(b)− t̂(b)f̂2(b) = 0 .

(V4) V sends β ∈ F \H uniformly at random.
(P5) P sends the field element γ := u[M |C](β, α) = t̂(β), and V outputs the boundary constraint “t̂(β) = γ”.
(P6) P sends a random f ∈ RS[L, |K|+ b] such that for all k ∈ K,

f̂(k) =
vS(α)

(α− ˆrow〈M〉(k))
· vS(β)

(β − ĉol〈M〉(k))
· v̂al〈M〉(k) +

vS(α)

(α− Φ̂1(k))
· vS(β)

(β − Φ̂2(k))
· ĉ(k) .

V outputs the constraint “deg(e) ≤ 2|K|+ deg(Φ̂1) + deg(Φ̂2) + b” where:

e =
1

vK
·
(

(α− ˆrow〈M〉)(β − ĉol〈M〉)(α− Φ̂1)(β − Φ̂2)f̂

− vS(α) · vS(β) ·
(
(α− Φ̂1)(β − Φ̂2)v̂al〈M〉 + (α− ˆrow〈M〉)(β − ĉol〈M〉)ĉ

))
(P7,V7,P8) P and V engage in the zero knowledge sumcheck protocol to show that

∑
k∈K f̂(k) = γ.

A.3 Proof of correctness

We first state two necessary technical claims.

Claim A.4. Let 〈M〉 be a sparse representation of M ∈ FK×K , and let C ∈ FH0×H0 . Then

[̂M |C](X,Y ) ≡
∑
k∈K

vS(X)

(X − ˆrow〈M〉(k))
· vS(Y )

(Y − ĉol〈M〉(k))
· v̂al〈M〉(k)

+
vS(X)

(X − Φ̂1(k))
· vS(Y )

(Y − Φ̂2(k))
· ĉ(k)

where c ∈ FK is given by ck :=
CΦ1(k),Φ2(k)

uS(Φ1(k),Φ1(k))uS(Φ2(k),Φ2(k)) for k ∈ K such that Φ1(k),Φ2(k) ∈ H0, and ck := 0

otherwise.
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The proof is very similar to the proof of [COS20, Claim 6.4], and so we omit it.

Claim A.5. For uniformly random matrix C ∈ FH0×H0 , and for all (α1, β1) 6= . . . 6= (αn0
, βn0

) ∈ (F \H)2 where
n0 := |H0|, writing C ′ := [0|C], (

Ĉ ′(α1, β1), . . . , Ĉ ′(αn0
, βn0

)
)
∼ U(Fn0) .

Proof. It suffices to show that, for all γ1, . . . , γn0
∈ F not all zero, there exists a matrix C such that

n0∑
i=1

γiĈ ′(αi, βi) 6= 0 .

Let A := {α1, . . . , αn0
} and B := {β1, . . . , βn0

}. Then A × B can be extended to an interpolating set for
bivariate polynomials of individual degree n0 − 1. In particular, there exists a bivariate polynomial Q of
degree n0 − 1 for which Q(αi, βi) = 1 for i the smallest such that γi 6= 0, and Q(αj , βj) = 0 for all j 6= i.

Then P (X,Y ) := Q(X,Y ) · vH(X) · vH(Y ) is a bivariate polynomial of individual degree n − 1 whose
restriction to S × S is equal to [0|C] for some C ∈ FH0×H0 ; hence P ≡ Ĉ ′. Moreover, P (αj , βj) = Q(αj , βj) ·
vH(αj) · vH(βj) is nonzero if j = i and zero otherwise, since αj , βj /∈ H for all j ∈ [n0].

Lemma A.6. Construction A.3 is a stackable RS-IOPP for the lincheck problem with SDET running in time b ·
polylog(|K|) given query access to (f1, f2), f1.

Proof. Completeness. Suppose that f̂1|H = M · f̂2|H . Then∑
b∈H

uS(b, α)f̂1(b) = rTα(f̂1|H 0H0
) = rTα(M · f̂2|H 0H0

)

= rTα [M |C](f̂2|H 0H0
) =

∑
b∈H

u[M |C](b, α)f̂2(b) =
∑
b∈H

t̂(b)f̂2(b) .

By Claim A.4,
∑
k∈K f̂(k) = γ. Hence both sumchecks accept; the other rational constraints are satisfied by

definition.
Soundness. Suppose that f̂1|H 6= M · f̂2|H . Then with probability 1 − |S|/|F|, rTα(M · f̂2|H 0H0

) 6=
rTα [M |C](f̂2|H 0H0). In this case, either

∑
b∈H uS(b, α)f̂1(b) − t̂(b)f̂2(b) 6= 0, or t̂(X) 6≡ u[M |C](X,α). In

the former case, by the soundness guarantee of the zero knowledge sumcheck protocol, the verifier accepts
with probability at most 1/|F|. In the latter case, it holds that t̂(β) 6= u[M |C](β, α) with probability 1−|S|/|F|;
we now consider this subcase.

If γ 6= t̂(β) then the boundary constraint is not satisfied, so suppose otherwise. Then the claim γ =
u[M |C](β, α) is false, and so the zero knowledge rational sumcheck protocol will output an unsatisifed con-
straint with probability 1− 1/|F|.
Stackability. The RS-IOPP described is stackable with query bound b. Rounds Rrec = {1, 2, 4, 5, 7} are
recyclable: the simulator Srec answers all queries in these rounds with uniformly random field elements. In
particular, any set of fewer than |H0| queries to t can be answered with uniformly random field elements
by Claim A.5. The remaining rounds (P3, P6) consist of zero knowledge sumcheck masks which can be
back-computed deterministically in polylogarithmic time (given query access to f1, f2).

B Merkle Trees as Hiding Key-Value Commitments

In this section we provide simple and concretely efficient hiding key-value commitments derived from
Merkle trees.
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C, o← KV.Com(pp,M)

1 : S ← ∅
2 : for (k,v) ∈M : // Hiding commitment to every leaf

3 : rk ← {0, 1}λ

4 : S ← S ∪ {(k,H(v‖rk))}
5 : for i ∈ [c, 1] : // Repeatedly merge internal nodes

6 : S′ ← ∅
7 : for (k‖0,v0) ∈ S : ∃(k‖1,v1) ∈ S :

// Merge the two siblings

8 : Ok‖0 ← v1;Ok‖1 ← v0;S′ ← S′ ∪ {(k,H(v0‖v1))}
9 : for (k‖0,v0) ∈ S : @(k‖1,v1) ∈ S :

// No right sibling: create a ‘fake’ one

10 : v1
$←− {0, 1}λ // Sample ‘fake’ right node

11 : Ok‖0 ← v1;S′ ← S′ ∪ {(k,H(v0‖v1))}
12 : for (k‖1,v1) ∈ S : @(k‖0,v0) ∈ S :

// No left sibling: create a ‘fake’ one

13 : v0
$←− {0, 1}λ // Sample ‘fake’ left node

14 : Ok‖1 ← v0;S′ ← S′ ∪ {(k,H(v0‖v1))}
15 : S ← S′

16 : S = {C}; return (C, (O, r)) // Return the root

o← KV.Open(pp, o = (O, r),K)

1 : for k ∈ K :

2 : r̂k ← rk

3 : for i ∈ [c, 1] : Ôk[:i] ← Ok[:i]

4 : return (Ô, r̂)

C← KV.Verify(pp,o = (Ô, r̂),M)

1 : n← 0

2 : for (k,v) ∈M :

3 : n← n+ 1

4 : Ĉn ← H(v‖r̂k)

5 : for i ∈ [c, 1] :

6 : if ki = 0 : Ĉn ← H(Ĉn‖Ôk[:i])

7 : if ki = 1 : Ĉn ← H(Ôk[:i]‖Ĉn)

8 : if Ĉ1 = Ĉ2 = . . . = Ĉn :

9 : return Ĉ1

10 : return ⊥

Figure 12: A hiding key-value commit scheme in the random oracle model.
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Construction B.1 (In The Random Oracle Model.). We show that (ordinary) Merkle trees implement hiding key-
value commitments (see Figure 12) for K = {0, 1}c (where c is any constant) and Σ = {0, 1}∗ when modelling
the hash function H : {0, 1}2λ → {0, 1}λ as a random oracle. This is implemented by replacing the roots of empty
subtrees with uniformly random strings, since the output of a random oracle is (statistically) indistinguishable from
uniformly random bit-strings this hides the (lack of) values in the particular subtree – ensuring indistinguishablity
between maps when opening the intersection.

Statistical Hiding. For b ∈ {0, 1}, letHb be the distribution of the adversaries view in the hiding game when
the bit b is 0/1 respectively. Consider the hybridH(b,K) in which the commitment C is replaced by (C′, o′)←
KV.Com(pp,M′b = {(k,v)}(k,v)∈Mb∧k∈K) and the opening is computed as o′ ← KV.Open(pp, o′,K). To see
that H(b,K) ≈stat Hb, observe that all the siblings off-path from the indexes in K are uniformly random
strings in H(b,K) and outputs of a random oracle evaluated on a uniformly random string in Hb – these
two distributions are clearly statistically indistinguishable. Lastly to argue that H(0,K) = H(1,K) simply
observe (form the algorithm description) that the opening proof is independent of the values. In conclusion
H0 ≈stat H(0,K) = H(1,K) ≈stat H1, hence (even an unbounded) adversary has negligible adversary in the
hiding game.

Computational Binding. Suppose the adversary opens the commitment C to two maps M0,M1 st. there
exists a key k and values v,v′ with v 6= v

′, (k,v) ∈ M0 and (k,v′) ∈ M1, then in particular there must
exists two distinct sequences of internal nodes from distinct leafs v,v′ with the same position k (and hence
path) terminating in the same root C. This implies that the two sequences must contain equal (internal)
nodes N,N ′ with distinct children v0,v1 and v

′
0,v
′
1 (i.e. v0‖v1 6= v

′
0‖v′1), since N = H(v0‖v1) = N ′ =

H(v′0‖v′1), this yields a collision. Note that any adversary making q queries to the random oracle obtains a
collision with probability at most 1−

∏
i<q(1−

i
2λ

) = 1−
(

2λ!
(2λ−q)!·2λq

)
– negligible when q is polynomial in

λ.

Construction B.2 (In The Standard Model.). The construction shown in Figure 13 is key-value commitment from
a compressing commitment scheme Commit.

Statistical/Computational Hiding. The flavor (statistical/computational) of hiding is inherited from the com-
mitment scheme. The argument is analogous to that of the random oracle based construction, except (statis-
tical/computational) indistinguishably of the hybrids now follows from hiding of the commitment scheme:
the inability of the adversary to distinguish a ‘fake’ node from a commitment to a subtree.

Computational Binding. The proof is analogous to the proof of binding for the random oracle based con-
struction: a collision (distinct committed values) trivially implies the ability to open the same commitment
(some internal node) to two different values (pairs of children) – this violates computational binding of the
commitment scheme.
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C, o← KV.Com(pp,M)

1 : S ← ∅
2 : for (k,v) ∈M : // Commit to every leaf

3 : rk ← {0, 1}λ

4 : S ← S ∪ {(k,Commit(v; rk))}
5 : for i ∈ [c, 1] : // Repeatedly merge nodes

6 : S′ ← ∅
7 : for (k‖0,v0) ∈ S : ∃(k‖1,v1) ∈ S :

// Merge the two siblings

8 : r
$←− {0, 1}λ

9 : Ok‖0 ← (v1, r);Ok‖1 ← (v0, r)

10 : S′ ← S′ ∪ {(k,Commit((v0,v1); r))}
11 : for (k‖0,v0) ∈ S : @(k‖1,v1) ∈ S :

// No right sibling: create a ‘fake’ one

12 : r1
$←− {0, 1}λ;v1 ← Commit(0; r1)

13 : r
$←− {0, 1}λ;Ok‖0 ← (v1, r)

14 : S′ ← S′ ∪ {(k,Commit((v0,v1); r))}
15 : for (k‖1,v1) ∈ S : @(k‖0,v0) ∈ S :

// No left sibling: create a ‘fake’ one

16 : r0
$←− {0, 1}λ;v0 ← Commit(0; r0)

17 : r
$←− {0, 1}λ;Ok‖1 ← v0

18 : S′ ← S′ ∪ {(k,Commit((v0,v1); r))}
19 : S ← S′

20 : S = {C}; return (C, (O, r)) // Return the root

pp← KV.Setup(1λ)

1 : PPcom ← Πcom.Setup(1λ)

2 : pp = (PPcom)

3 : return pp

o← KV.Open(pp, o = (O, r),K)

// Copy opening information for every index.

1 : for k ∈ K :

2 : r̂k ← rk

3 : for i ∈ [c, 1] : Ôk[:i] ← Ok[:i]

4 : return (Ô, r̂)

C← KV.Verify(pp,o = (Ô, r̂),M)

1 : n← 0

2 : for (k,v) ∈M :

3 : n← n+ 1

4 : Ĉn ← Commit(v, r̂k)

5 : for i ∈ [c, 1] :

6 : (C̄, r) := Ôk[:i]

7 : if ki = 0 : Ĉn ← Commit((Ĉn, C̄); r)

8 : if ki = 1 : Ĉn ← Commit((C̄, Ĉn); r)

9 : if Ĉ1 = Ĉ2 = . . . = Ĉn :

10 : return Ĉ1

11 : return ⊥

Figure 13: A hiding key-value commit scheme from compressing commitments.
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