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Exploring the configuration space of elemental carbon with
empirical and machine learned interatomic potentials
George A. Marchant 1✉, Miguel A. Caro 2, Bora Karasulu 1 and Livia B. Pártay1✉

We demonstrate how the many-body potential energy landscape of carbon can be explored with the nested sampling algorithm,
allowing for the calculation of its pressure-temperature phase diagram. We compare four interatomic potential models: Tersoff,
EDIP, GAP-20 and its recently updated version, GAP-20U. Our evaluation is focused on their macroscopic properties, melting
transitions, and identifying thermodynamically stable solid structures up to at least 100 GPa. The phase diagrams of the GAP models
show good agreement with experimental results. However, we find that the models’ description of graphite includes
thermodynamically stable phases with incorrect layer spacing. By adding a suitable selection of structures to the database and re-
training the potential, we have derived an improved model — GAP-20U+gr — that suppresses erroneous local minima in the
graphitic energy landscape. At extreme high pressure nested sampling identifies two novel stable structures in the GAP-20 model,
however, the stability of these is not confirmed by electronic structure calculations, highlighting routes to further extend the
applicability of the GAP models.
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INTRODUCTION
Carbon is the fourth most abundant element in the universe and,
while it readily forms a much wider range of compounds than any
other element (including the bio-polymers crucial for life), its
behaviour is just as rich in elemental form as well. Carbon atoms can
bond to each other in fascinatingly diverse ways, forming a wide
range of two- and three-dimensional allotropes, amorphous phases,
clusters, fullerenes and multi-layered particles that give carbon one
of the most diverse ranges of chemical and physical properties
among materials1–8. The Samara carbon database, which catalogues
simulation data for these proposed structures of carbon, consists of
more than five-hundred periodic configurations9 (as of December
2021). Furthermore, the properties of these structures are often
unique, such as the hardness of diamond; the electronic properties
of graphene; or the high ductile strength of carbon-fibres, resulting
in extensive use of carbon across a wide range of industries, from
battery design to advanced optical technologies10,11.
One of carbon’s best known features is its phase transition from

graphite to cubic diamond at pressures above 2 GPa. Diamond
and graphite’s vastly different density and structural properties are
reflected in carbon’s melting curve, which exhibits a dramatic
change at the corresponding triple point; shifting from a subtly
non-monotonic curve at lower pressures where graphite is
formed, to diamond’s melting curve that quickly increases in
temperature as greater pressures are applied. Diamond remains
stable up to at least 300 GPa, but due to the extreme pressure little
is known experimentally of carbon’s atomic structure beyond this.
Ab initio calculations suggest a maximum in diamond’s melting
line at around 450 GPa, as well as a transition to bc8 between
890–1000 GPa, and shock-wave experiments provide evidence for
the accuracy of these predictions12,13. The bc8 structure is also
predicted to have a maximum in the melting temperature at
around 1450 GPa, due to changes in the coordination number in
the liquid phase14. In the terapascal regime further phase

transitions are predicted, such as bc8-simple cubic and simple
cubic-simple hexagonal3.
Atomistic simulations have thus played a major role in discover-

ing novel phases of carbon; furthering our understanding of its
phase diagram; and driving the development of new applications by
providing useful insight into their structure and properties. However,
the diverse properties of carbon mean that capturing its various
characteristics within interatomic potential models is particularly
difficult, especially when creating models that aim to be transferable
among different allotropes and reproduce carbon’s macroscopic
properties reliably under a wide range of conditions.
Several empirical interatomic potential models have been

developed for carbon in the past 35 years. The bond-order
potential introduced by Tersoff15 in 1988 is still considered to be
the fastest and most simple carbon potential. Its elegant
functional form, in which the strengths of chemical bonds are
modified according to the number of nearest neighbours, allows
for rapid calculation of chemical properties without a significant
sacrifice in accuracy when compared to other, more expensive
potentials16. Despite its shortcomings - the primary one being its
lack of consideration for long-range interactions - it is still an ideal
choice for testing the performance of new computational
methods and more complex chemical potentials. Other early
carbon models include the Stillinger-Webber potentials parame-
terised for diamond and graphitic carbon17,18, although, due to
their fixed coordination, these models are limited in their
transferability across structures. Developed from the Tersoff model
to include a wider range of parameters (conjugation and torsional
terms), the “reactive” bond-order potentials were introduced:
REBO (also referred to as the Brenner potential)19 and REBO-II20.
They were further improved by the inclusion of a long-range term
to create a potential that accounts for the effects of dispersion,
providing the adaptive intermolecular REBO (AIREBO)21. The
environment-dependent interaction potential (EDIP) consists of a
two-body pair energy; a three-body angular penalty; as well as a
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generalised description of coordination22. EDIP is known to
successfully predict topological properties of carbonaceous films
as well as clusters23,24. One of the first empirical models capable of
providing an accurate description of low-to-medium pressure
phases of carbon is the long-range carbon bond-order potential
(LCBOP). The LCBOP model is partially based on ab initio data,
closely matches the ab initio MD results for the liquid structure,
and accounts for interplanar interactions in graphite25. Ghiringelli
et al. have calculated the pressure-temperature phase diagram of
the LCBOP potential, calculating the melting line up to 60 GPa and
graphite–diamond transition, showing a good agreement with
experimental findings26. Another family of potentials were
developed to accurately describe carbon’s bond formation and
dissociation: the reactive force field (ReaxFF) potentials27,28.
The emergence of machine-learning (ML) techniques offer the

construction of potential models which are comparable in cost to
classical interatomic potentials and, at the same time, comparable in
accuracy to ab initio-level calculations. Using the Gaussian approx-
imation potential (GAP) formalism29,30, an ML potential was
developed to describe the behaviour of liquid and amorphous
carbon accurately31. This was later extended to include properties of
crystalline bulk phases, defects and surfaces, known as the GAP-20
model32,33. The C60 GAP force field includes van der Waals
corrections and is especially suited for the simulation of C60 fullerene
structures34, with another recent version specifically trained for nano-
porous carbon35. Recently, two other ML carbon potentials were also
developed, using neural-networks36 and the ACE formalism37.
The performance and reliability of these potentials have been

compared from different perspectives. Their (in)ability to describe
amorphous structures16,23 has underscored transferability issues and
highlighted the need for thorough investigation of models in order
to trust the interpretation of simulation results. The accuracy in
predicting microscopic properties (e.g., surface energy, formation
energy of common defects) have been also compared32. The
performance of seven models in predicting the properties of carbon
nano-clusters have been recently investigated, with a focus on their
accuracy in structure search and global optimisations24. The GAP-20
model emerged as the best performing model.
While these studies provide a detailed picture of the

microscopic properties of carbon potentials, our knowledge of
their macroscopic properties is limited. In order to understand the
reliability and predictive power of computational results, it is
important to examine the potential models’ macroscopic beha-
viour and evaluate their phase stability, unbiased by our chemical
intuition. Ultimately, this also informs the development of new
generations of potentials, such as ML-based models, highlighting
strengths as well as areas for improvement.
In the current work we aim to evaluate the performance of

carbon potentials and calculate their pressure-temperature phase
diagram, by performing an exhaustive and predictive sampling of
the potential energy surface, using the nested sampling techni-
que38,39. Nested sampling (NS) was first introduced by John
Skilling in the area of Bayesian statistics40,41, later taken up by
various research fields39 and adapted to sample the potential
energy surface of atomistic systems38,42. The main advantages of
NS are that it automatically generates thermodynamically relevant
structures without any prior knowledge of, e.g., (meta)stable
crystalline structures; moreover it provides unique and easy access
to the notoriously elusive partition function. Thermodynamic
properties that are otherwise difficult to determine, such as the
heat capacity or free energy, thus become straightforwardly
calculable. The added usefulness of NS resides in the fact that a
broad picture of the phase diagram can be gained by a single
technique, overcoming the typical procedural barriers one faces
when working with multiple simulation methods and/or packages.
The power and usefulness of NS has been thoroughly

demonstrated in studying various systems, as well as in
comparison to widely used computational techniques. Examples

of its application include cluster formation42–44; calculation of the
quantum partition function45; sampling transitions paths46, as well
as the calculation of the pressure-temperature phase diagram for
various metals47–49, alloys50,51, and model potentials52, identifying
previously unknown stable solid phases.
In the current work we compare the behaviour of three widely

used interatomic potential models for carbon using NS, which span
a suitable range in terms of complexity, accuracy and computational
cost. We first use the ML potential, GAP-2032, considered to be the
state-of-the-art model for carbon3,16,23, to examine its reliability
outside its original training conditions and hence understand better
the extent of the model’s transferability and predictive power. The
majority of our GAP-20 calculations were performed using the
original model detailed in Ref. 32, and we also provide supplemental
results generated with the updated version of the model, GAP-20U,
released recently33. As the fastest and simplest model, we evaluate
the phase diagram of the Tersoff model in the original parameter-
isation form, as available in LAMMPS (although valuable modifica-
tions to the Tersoff carbon potential also exist53,54). We also selected
EDIP22 for modelling, providing a mid-point in accuracy and
computation cost between the Tersoff and GAP-20 potentials.

RESULTS
GAP-20 and GAP-20U
Nested sampling runs with the GAP-20 potential were carried out
with a system size of 16 atoms at ten different pressures between
0.1 and 1000 GPa. Due to the large computational cost of the GAP
potential, fewer calculations were carried out with 32 atoms - at
pressures of 1, 10, 50, 500 and 800 GPa - to assess the finite size
effects at pressures where different solid phases are expected. The
configuration space of the GAP-20U potential was also sampled
using NS, at pressures of 0.1, 1, 10 and 50 GPa, to assess the extent
to which the melting line may deviate from the original GAP-20
model in the graphite and cubic diamond phases. The resulting
pressure-temperature phase diagram is illustrated in Fig. 1. The
experimentally determined phase boundaries55–57 are shown by
solid black lines, highlighting that the graphite melting line has a

Fig. 1 Pressure-temperature phase diagram of GAP-20 ML
potentials. Black lines show experimental phase boundaries55–57;
red dashed lines show high-pressure phase transitions predicted by
DFT from ref. 14 (with the phase above 1 TPa being bc8); purple and
green lines and symbols show NS results of GAP-20 with 16 and 32
atoms respectively; orange lines and symbols correspond to the
GAP-20U potential with 16 atoms; and blue lines and symbols show
the results of GAP-20U+gr with 16 atoms. Symbols reflect the most
stable phase predicted by NS at the corresponding temperature and
pressure. Error bars represent the full widths at half maximum of the
heat capacity peaks.
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slight maximum, as above 0.4 GPa the density of graphite
becomes lower than that of the liquid, causing the melting line
to have a negative gradient. This change however is very subtle,
driven by the relatively weak interaction between graphite’s
neighbouring hexagonal layers. Above 20 GPa the liquid carbon
freezes into the high-density cubic diamond structure, resulting in
melting temperatures increasing rapidly with pressure in compar-
ison to the graphite phase.
The melting curve predicted by the GAP-20 model follows these

experimental features with reasonable accuracy, though at
pressures below 10 GPa there is a clear positive gradient in the
graphite melting line where the experimental melting line is non-
monotonic. It is in the graphite region of the phase diagram that
we also observe the only notable deviation between the melting
lines of the GAP-20 and GAP-20U models, with a difference of
around 10% in melting temperatures at 0.1 GPa such that the

GAP-20U model’s phase boundary has a steeper gradient and
deviates further from experimental trends compared to the GAP-
20. Figure 2 shows the heat capacity curves calculated by NS using
GAP-20, showing how the points on the melting line were
determined based on the location of the peaks. The peaks
corresponding to 32-atom runs are sharper than those of the 16-
atom runs, reflecting how in the thermodynamic limit the heat
capacity diverges at first-order phase transitions. The difference
between the transition temperature predicted by 16 and 32-atom
runs is approximately 8% at lower pressures, with the difference
diminishing at pressures above 100 GPa, suggesting that finite size
effects become negligible at higher pressures.
At 0.1 GPa, the liquid phase generated by NS is dominated by

chain-like structures. This is in agreement with the known low-
coordinated liquid phase formed at low pressures, dominated by
branch-like structures31. To demonstrate the change in the typical
coordination of carbon atoms at different temperatures and
pressures, we calculated the NS weighted average of the
coordination number over a range of temperatures using Eq. (1),
as shown in Fig. 3. Here we see that at 0.1 GPa the average
number of neighbours in the liquid phase reaches a maximum of
two before rapidly increasing to three at the freezing transition. As
pressure increases, the liquid can no longer sustain the chain-like
structures, and we observe an increase in the average coordina-
tion number. The average coordination number also reflects the
structure of the solid phases, with three nearest neighbours in the
case of graphite and four in the case of diamond, with higher
values for the extreme high pressure phases.
Up to 20 GPa the liquid freezes into the graphite structure.

While at lower pressures the density of the graphite is found to be
higher than that of the liquid, this trend changes, and at 20 GPa
we can observe a maximum on the density curve at the transition,
shown in the bottom panel of Fig. 2. This is consistent with the
expectation that the melting line has a negative gradient in that
pressure range. We can therefore deduce that within the GAP-20
and GAP-20U models there is a compensation point around
10–20 GPa where the density of the liquid phase is equal to that of
graphite at the melting transition, corresponding to a maximum in
the phase boundary. This is in qualitative agreement with
experiment, though the maximum is expected to occur at lower
pressures, around 0.5 GPa.
The graphite configurations explored by NS are diverse both in

terms of the distance between adjacent graphite layers and in
stacking pattern. Among the configurations generated by NS we

Fig. 2 Heat capacity and densities of GAP-20 ML potentials. Top
panel, a heat capacity as a function of temperature at various
pressures, calculated using the GAP-20 with 16 atoms (dashed lines)
and 32 atoms (solid lines). For better visibility, heat capacity values
are shifted according to pressure. Bottom panel, b density as a
function of temperature calculated using the GAP-20, GAP-20U and
GAP-20U+gr potentials, using 16 atoms. Arrows point to the
temperatures at which the peaks of the corresponding heat capacity
curves are found for GAP-20. Filled and open triangles on the
density axis show experimentally determined room temperature
density values of graphite and diamond, respectively75.

Fig. 3 Average coordination number of GAP-20 model at different
pressures. Average coordination number, within a cutoff of 1.8Å as
a function of temperature using GAP-20 with 16 atoms, sampled by
NS. Multiple lines correspond to results of multiple parallel NS runs.
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can find the most energetically favourable AB and ABC stacking
variants58,59, alongside AA stacking and a variety of unique
arrangements where adjacent layers are shifted only partially in
relation to each other, spanning the phase space between the
typical AA, AB and ABC patterns. In terms of the distance between
the graphite layers, we see a significant change with respect to
temperature and pressure. Figure 4 shows the distribution of
carbon atoms along the normal vector of the graphite structure at
different pressures and temperatures, calculated as the phase
space–weighted average (using Eq. (1)) from configurations
generated by NS. At 0.1 GPa the typical spacing between
neighbouring layers is around 3.8Å at temperatures below
2000 K, while the intralayer distributions become significantly
broader as the temperature increases. This layer distance
corresponds to a lattice parameter of c= 7.6Å, much larger than
the experimentally observed value of c= 6.71Å60. The underlying
reason for this discrepancy becomes obvious by calculating the
energy of graphite structures as a function of the lattice
parameters, shown in panel (a) of Fig. 5. These calculations reveal
that the graphitic energy surface has multiple minima with respect
to layer spacing in the case of GAP-20, with the lowest energy
distance confirmed to be at c= 7.6Å. At higher pressures the
contribution of the pressure-volume term to the enthalpy
becomes significant enough that local minima corresponding to
shorter layer distances become enthalpically favourable. This is
reflected in the histograms of Fig. 4, which show that NS runs at
10 and 20 GPa sampled graphite configurations that are
consistent with the local minimum at c= 5.5Å. We even observe
a phase transition at 10 GPa as temperature is reduced below
2000 K, as the average spacing rapidly decreases from c= 6.3Å to
5.5Å, with a double peak feature at 1000 K that reflects the
simultaneous sampling of graphite basins with distinct layer
separations. It is important to note that this behaviour naturally
influences the average density of the sampled graphite phases as
well. Specifically, it leads to a lower-than-expected density at low

pressures and a higher density than expected at higher pressures.
We could speculate that this behaviour, if affecting the density
ratio between graphite and liquid carbon, is capable of changing
the gradient of the melting curve and shifting the expected
maximum in the melting temperature to higher pressures. We will
address this idea further in a later section on improving the
potential. The multiple minima as a function of graphite lattice
parameters can be still observed, though to a lesser extent, in the
case of GAP-20U (see Fig. 5, panel b). As in the case of the GAP-20,
the updated model exhibits a phase transition at 10 GPa from high to
low density graphite just below 2000 K, though the change in density
is significantly smaller. Calculations of the graphite energy landscape

Fig. 5 Minimum energy layer spacing of graphite using different
models. Potential energy of the graphite AB structure as a function
of lattice parameters a and c, represented in the inset of panel a.
Calculated using GAP-20 (panel a), GAP-20U (panel b), our re-trained
potential including more graphite structures, GAP-20U+gr (panel c)
and DFT (panel d). Symbols in panel c represent lattice parameters
of the graphite configurations we added to the training set.

Fig. 4 Pressure and temperature dependence of graphite layer
spacing. Distribution of the carbon atoms along the direction
perpendicular to the graphite layers, calculated as the weighted
average from the NS configurations, using the GAP-20 potential and
16-atom runs. Distribution around 0.0Å acts as the reference layer,
its widths representing the deviation from a perfectly flat layer.
Vertical lines show the equilibrium graphite layer distance, coloured
according to their respective pressures.
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using DFT (shown in panel d of Fig. 5) show that these curves should
be completely smooth, with only a single minimum at 6.7Å.
Although the liquid freezes to the graphite structure at 20 GPa,

in the case of the GAP-20U potential we observe the solid-solid
transition to diamond at 2800 K. This is marked by a sudden and
significant jump in density, which can be seen in the bottom panel
of Fig. 2. Using a combination of density and the Steinhardt bond-
order parameters61 Q4 and W4, we are able to distinguish between
diamond and graphite configurations generated by NS and
calculate their contributions to the Gibbs free energy separately,
as a function of temperature. Comparing these free energy
contributions allows us to locate the phase transition between the
different crystalline structures and the liquid, as shown in Fig. 6. As
expected, the temperatures at which graphite and diamond
become the most stable phases correspond exactly with peaks in
the heat capacity, as well as the sudden step in density that was
previously noted.
While NS simulations at 40, 50 and 100 GPa also explored

graphite and hexagonal diamond structures to some extent, these
phases remain metastable at all temperatures, as the cubic
diamond structure becomes the dominant phase. Crucially, the
change in the stable solid phase, from graphite to diamond, also
corresponds to the change in melting line from a roughly vertical
curve to one with a large positive gradient, as also observed
experimentally55–57. These agreements are particularly notable, as
high-pressure behaviour was not explicitly considered in the
potential development process, and there is no indication that
structure optimisation was performed at non-zero pressures in the
training data. It must be noted however that the training data

contains configurations where the stress tensor has non-zero
diagonal elements, corresponding to pressures ranging between
−100 and 100 GPa, isotropic or otherwise.
To evaluate the accuracy of the GAP-20U model more generally

– across the liquid, graphite and cubic diamond phases – we take
configurations generated with NS at three different pressures (0.1,
10 and 50 GPa) over a suitable range of temperatures
(500–11000 K) and for each sample calculate the difference in
potential energy predicted by the GAP-20U and DFT models. The
results of these calculations are shown in Fig. 7, showing a
maximum energy difference of ~0.35 eV/atom in the liquid phase
at 0.1 GPa. At each pressure, the energies of the liquid
configurations are typically underestimated by the GAP-20U, and
unsurprisingly the overall distribution of energy differences in the
liquid phase is considerably larger than those of the solid phases,
with a sharp decrease in the distributions at the freezing
transitions. In the graphite phase at 0.1 GPa and 10 GPa we see
that the agreement between the GAP-20U and DFT energies
improves as the temperature decreases and crystal order
increases, however at 10 GPa there is a sudden deviation in
energies just below 1000 K, corresponding to the graphite spacing
transition than can be seen in Fig. 4. In comparison, the energy
difference in the cubic diamond phase at 50 GPa are far smaller
than in the graphite phases at low temperatures, suggesting that
diamond’s higher degree of crystal symmetry and stronger,
isotropic bonding makes its energy landscape less difficult to
approximate via machine learning.

Fig. 6 Graphite–diamond phase transition of GAP-20U. Nested
sampling results at 20 GPa, using 16 atoms and the GAP-20U
potential. Top panel: density of individual configurations sampled
during NS, symbols are coloured by the average Q4 bond-order
parameter of the configuration. Middle panel: Gibbs free-energy
difference compared to the diamond phase. Bottom panel: The
corresponding heat capacity curve. Vertical grey lines show the
melting temperature, Tm and the solid-solid transition between the
diamond and graphite phases, TDG.

Fig. 7 Comparison between GAP-20U and DFT energies. Energy
differences between the GAP-20U and DFT models of configurations
generated during NS runs at 0.1, 10 and 50 GPa, plotted as a
function of temperature. Points are coloured according to the
density of their corresponding configuration. Grey shaded areas
show phase transitions, with the widths representing the full width
at half maximum of the corresponding heat capacity peaks.
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Before continuing on to discuss the GAP-20 model’s extreme
high pressure behaviour, we acknowledge the erroneous stability
of a very low density bcc phase in the PES of the GAP-20, which
would later be addressed in the updated GAP-20U model33. Due
to its large nearest neighbour bonds (~80% larger than typical
carbon bonds) and a coordination structure that is very different
from that of the corresponding liquid phase, this phase is not
explored by the NS, nor by the structure searches performed in
the original work. Hence, we speculate that the phase space
volume of the low density bcc phase is likely to be negligible
compared to the graphite structure, and separated from the liquid
by extremely high free energy barriers. Further evidence of the
bcc structure possessing a relatively small phase space volume
can be found in the Discussion section of the Supplementary
Material.
The predictive power of the GAP-20 and GAP-20U models is

reasonably good, even up to 100 GPa. Further increasing the
pressure will certainly break down the reliability of the model, but
exploring to what extent and under what conditions this will occur
can still provide us critical information about the ability of the
machine learning to extrapolate, as well as areas for future
improvement. NS simulations above 100 GPa suggest that the
melting line closely follows the trend expected from DFT
calculations (see Fig. 1), but at extreme high pressures two new
phases emerge as ground state structures of the GAP-20, both in
the 16-atom and 32-atom simulations. At 500 and 800 GPa the
stable structure predicted by NS is that of a strained variant of
cubic diamond, where the strain is positive, in the direction of an
arbitrary cubic axis and coupled with a compression along the
perpendicular axes. Between 800 and 1000 GPa the system
transitions to a highly compressed hexagonal close packed
structure. This belongs to the P63/mmc spacegroup, having two
atoms in the unit cell, each with eight nearest neighbours. We will
refer to this structure as strained hexagonal close-packed (strained
hcp). Figure 8 shows snapshots of these two new structures along

with cubic diamond, as well as the corresponding radial
distribution functions, with all three structures optimised at
300 GPa. The enthalpy differences between the different
optimised structures at 0 K are shown in Fig. 9, calculated by
the GAP-20 and GAP-20U potential up to 1 TPa, as well as with DFT
for comparison up to 10 TPa. While both GAP-20 and GAP-20U
predict the stabilisation of strained cubic diamond structure at
very high pressures, cubic diamond becomes the ground state
again above 380 GPa in the case of GAP-20U. This demonstrates
that changes to an ML potential from refitting may influence the
behavior of the model in data-sparse regions of phase space, far
from its fitting conditions. It is notable that, as the bc8 structure
was not included in the training data, neither versions of the GAP
model predict it to be a low-enthalpy state at pressures above
1 TPa. Geometry optimisations carried out with the same DFT
parameters as those used in the training show good agreement
with previous ab initio random structure search results3, showing
a ground state transition from cubic diamond to bc8, simple cubic,
then to simple hexagonal as pressure increases. While neither of
the high-pressure configurations predicted by the GAP models
have proven to be ground state structures according to DFT, they
are nevertheless low-enthalpy metastable states that may be
worth further consideration. Finally, the considerable agreement
between the extreme high pressure melting lines predicted by
GAP and DFT, in spite of the GAP’s erroneous phase stability,

Fig. 8 Extreme high pressure structures using GAP-20. High
pressure structures found to be stable by NS, using the GAP-20
potential. Cubic diamond (a) strained diamond (b) and strained
hexagonal-close-packed (c) structures. The lower panel shows the
radial distribution function of the above three structures, optimised
at 300 GPa.

Fig. 9 Ground state structures of different models as a function of
pressure. Enthalpy of several thermodynamically relevant carbon
crystal structures, calculated as a function of pressure using the
GAP-20 potential (top), GAP-20U potential (middle), and DFT
(bottom). In each case, energies are compared to the cubic diamond
structure at the same pressure, and shaded areas highlight the
pressure region when a structure is the ground state. The simple
cubic and simple hexagonal structures are marked with sc and sh,
respectively, in the bottom panel.
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implies that the model maintains an accurate description of
carbon’s macroscopic density.

GAP-20U+gr
The exhaustive and unbiased sampling of carbon’s phase space
afforded by NS allows us to identify regions where each model’s
description could be improved. Moreover, it helps to identify
structural features that are captured inaccurately by the model. An
obvious area for improvement is the extreme high pressure
behaviour, i.e., the relative stability of crystal structures at
pressures above 200 GPa - most notably the lack of a stable bc8
phase. Making these improvements will require the inclusion of
configurations of multiple crystalline phases in the training set,
with repeated exhaustive sampling to confirm the finite tempera-
ture stability of the solid phases. Given the associated computa-
tional cost of this particular flavour of GAP modelling, which
focuses on providing an accurate description of the long range
van der Waals interactions, we will address these improvements in
a future project by concentrating on shorter range interactions
which dominate at high pressures.
However, using NS we were able to identify another shortfall of

the GAP-20 models, the erroneous local minima with respect to
inter-layer spacing in the graphite phase. In this section we aim to
improve the accuracy of the GAP-20U model’s description of the
graphite phase – the primary goal being the elimination of local
minima that we have previously shown to result in unphysical
solid-solid graphite phase transitions. We have therefore
expanded the DFT dataset on which the potential is trained by
including an additional 165 ordered graphite configurations with
AA, AB and ABC stacking patterns (the entire training dataset,
including these new configurations, are available at DOI:10.5281/
zenodo.7463706). The lattice parameter c spans a range of ±40%
of the equilibrium value for each stacking pattern (determined
from DFT), where caa= 7.02 Å; cab= 6.64Å, and cabc= 6.70 Å;
while a is varied by ±2% about an equilibrium value of 2.47Å. We
otherwise used the same GAP fitting parameters as in the original
GAP-20U, in order to preserve the work that was done in
optimising the potential’s transferability32. The additional data
points from the AB-ordered set are illustrated in panel (c) of Fig. 5
alongside the energy landscape of the updated potential, which
we refer to as the GAP-20U+gr. These results resemble DFT
calculations much more closely than both the GAP-20 and GAP-
20U models. The minimum-energy layer separation remains the
same, with the c lattice parameter being 6.7Å. Performing
structure optimisations with the new potential reveals that the
0 K graphite–diamond transition has been shifted to 7.2 GPa,
much closer to the ab initio prediction of 5.8 GPa as compared to
9.0 GPa in the case of the GAP-20U. Given that the GAP-20U+gr
remains practically unchanged from the GAP-20U with respect to
energies of non-graphite configurations and the pressure-
dependent stability of different crystalline phases (see the
Discussion section of the Supplementary Material), we do not
expect significant deviation from the GAP-20U in other respects,
though of course this is difficult to fully evaluate without
considerable time and resources. Though the error with respect
to the DFT graphite energy landscape is reduced considerably,
there remains a shallow local minimum around c= 7.4Å.
Additional tests show that this artifact persists even when
additional data points are included in this region, suggesting it
is the result of influence from other configurations in the dataset.
It should also be noted that long range interactions such as those
between adjacent graphite layers are difficult to accurately
capture with ML methods, due to the inherent increase in
configurational complexity as the potential’s cut-off radius is
increased. This is why recent ML potentials aiming to model the
graphite phase have opted to tabulate the long range
interactions35.

In order to evaluate the performance of the enhanced potential
in the case of unbiased PES sampling, we have performed single
NS runs — using the same NS parameters as those used for the
GAP-20U — at four different pressures: 0.1 GPa, 1 GPa, 10 GPa and
20 GPa. The resulting phase transitions are included in Fig. 1 and
the corresponding densities are shown in the bottom panel of
Fig. 2. We find that the enhanced potential, GAP-20U+gr, predicts
graphite densities that are closer to experimental values than the
GAP-20U, which can most clearly be seen at 10 GPa, where the
GAP-20U+gr model does not undergo a phase transition to a
lower density graphite phase as temperature increases, as the
GAP-20U does just below 2000 K. Performing the same thermal
averaging analysis as shown in Fig. 4 on the new potential, the
local minimum at c= 7.4Å does appear to affect the average
spacing at 0.1 GPa by broadening the distribution, but the
resulting decrease in average density is minimal.
However, despite these improvements, we do not observe a

significant change in the melting behaviour, with melting
temperatures matching the GAP-20U results almost perfectly. This
suggests that the inaccuracy of the gradient of the melting line,
closely tied to the density ratio between graphite and liquid
carbon, may in fact originate from problems not with the graphite
density, as we originally suspected, but from the liquid being less
dense than expected.

Tersoff potential
The phase diagram calculated with the Tersoff potential is shown
in Fig. 10. Compared to the GAP-20 models, the Tersoff potential
shows a significantly larger finite-size effect that is consistent with
finite size effects seen in other empirical potentials47,49. The
effect’s significance, quantified by the difference in temperature
between 16- and 64-atom runs, is non-monotonic with respect to
pressure, peaking around the graphite–diamond transition at
50 GPa. Overall, the melting line reflects the experimental trend
reasonably well at 64 atoms, however the pressure-dependent
phase stability is less accurate. Though graphite is formed below
50 GPa, the melting line does not reflect the expected negative
gradient at lower pressures, nor the significant change in the
melting line gradient above the graphite–diamond-liquid triple
point, which is overestimated by around ~400% compared to
experimental results. The origin of Tersoff’s monotonic melting
curve in the graphite phase is its small cutoff of 4.1Å, which leads
to a dramatic underestimation of the equilibrium lattice spacing
compared to DFT, by around 40%. This corresponds to a graphite
phase that is more dense than the liquid phase at all pressures,
hence the lack of a maximum in the melting curve.

Fig. 10 Temperature-pressure phase diagram of the Tersoff
potential. Black lines show experimental phase boundaries55–57,
coloured lines and symbols correspond to NS results with different
system sizes. Error bars represent the full widths at half maximum of
the heat capacity peaks.
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Once again we use the Steinhardt bond-order parameters to
sort solid configurations into diamond and graphite basins,
allowing for the calculation of each phase’s contribution to the
Gibbs free energy and the determination of solid-solid phase
transitions. In Fig. 11 we demonstrate this at two different
pressures. At 30 GPa, the large majority of the solid configurations
fall into the basin of the graphite structure, however, the
metastable diamond phase is also sampled to a lesser extent. A
third and smaller basin (appearing to have Q4= 0.45) can be
observed between these, representing a structure where small
graphite-like motifs are interconnected by four-coordinated
carbon atoms. As the pressure increases, the diamond structure
becomes more dominant, until it becomes the ground state
structure at 80 GPa. Due to the Tersoff potential’s short range, the
potential energy of the perfect cubic and hexagonal diamond
structures are the same, and at pressures where the diamond
phases are stable their sampling is about equal, suggesting that
their free energy is comparable as well.

EDIP
Nested sampling calculations using the EDIP potential were
performed with 16 and 32 atoms, at pressures ranging from 1 GPa
to 1500 GPa. The resulting phase diagram is shown in Fig. 12,
showing overall excellent agreement with experimental phase
behaviour up to 100 GPa. The melting line follows the experi-
mental trends well, with a considerably smaller finite-size effect
compared to the Tersoff potential. At lower pressures graphite is
formed upon freezing, as expected, with typical layer spacings at
low temperature corresponding to a lattice parameter of c= 6.4Å,
only a 5% underestimation of experimental data. To explore the
EDIP’s graphite phase further, we plot its energy as a function of
lattice parameters in Fig. 13. One of the potential’s shortcomings is
its lack of dispersive, long-range interactions, and that is reflected
in its graphitic energy landscape, as we see no change in energy
beyond c= 6.4Å. While this is not consistent with the clearly
defined minimum separation predicted by DFT, the influence of
the PV term in the enthalpy effectively prevents larger separations
from being energetically relevant at finite pressures and zero

temperature. To evaluate the finite temperature effect of this short
interplanar cutoff, we plot thermally averaged distributions of
carbon atoms perpendicular to the graphite planes in Fig. 14, for
pressures of 1 and 10 GPa. These show an expected broadening of
carbon atom dispersion in the reference layer at higher
temperatures, due to thermal disorder, but for the nearest-layer
distributions this broadening becomes more biased towards larger
spacings as temperature increases, suggesting that the lack of a
long-range energy barrier allows unphysically large layer separa-
tions to overcome the PV term and become thermodynamically
relevant.
This large separation-bias persists at higher pressures, however

the effect is diminished, which can be intuitively understood as
the increased pressure (and PV energy) encouraging smaller
volumes, and preventing thermal fluctuations from stabilising
larger-separation structures. As the temperature decreases, there
is less kinetic energy available to smear the energies of the
optimised structure, and thus fewer large separation configura-
tions can be energetically viable. In spite of EDIP’s short

Fig. 11 Simultaneous sampling of graphite and diamond phases
using Tersoff potential. Average Q4 bond order parameter61 of
configurations generated by NS, using the Tersoff potential at two
different pressures. Each point corresponds to a configuration
generated by NS and coloured according to the average W4 order
parameter. Arrows point to the Q4 values of diamond and graphite
structures. Vertical dashed lines represent the phase transitions as
determined by the peaks of the heat capacity curves.

Fig. 12 Temperature-pressure phase diagram of the EDIP poten-
tial. Black lines show experimental phase boundaries55–57, red
dashed lines show high-pressure phase transitions predicted by DFT
from ref. 14 (with the phase above 1 TPa being bc8), purple and
green coloured lines and symbols show NS results with different
system sizes. Error bars represent the full widths at half maximum of
the heat capacity peaks. The top panel includes the high-pressure
range of the phase diagram at a different temperature scale to show
the maximum of the melting line.

Fig. 13 Minimum energy layer spacing of graphite using EDIP.
Potential energy of the graphite AB structure as a function of lattice
parameters, calculated using the EDIP potential.

G.A. Marchant et al.

8

npj Computational Materials (2023)   131 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



interplanar cutoff and its effects, its description of the graphite
melting line is remarkably accurate at only 32 atoms. Given the
importance of the ratio between liquid and solid densities in
shaping the melting line, and that graphite’s volume is particularly
sensitive to interplanar separation, these results show that an
accurate description of graphite’s phase space is essential for
determining its melting behaviour.
At a pressure of 10 GPa we begin to observe a small number of

cubic and hexagonal diamond structures among the sampled
configurations, around the freezing transition. However, these
structures quickly lose thermodynamic relevance in comparison to
the graphite phase. When pressure is increased to 20 GPa, the
diamond configurations become enthalpically viable enough that
the NS algorithm simultaneously samples them along with the
graphite phase, such that we can identify the solid-solid transition.
Supplementary Fig. 15 shows the densities and Q4 parameters of
configurations sampled by NS, which we sort into different
structural basins as before. The resulting free energy of the
diamond and graphite structures are shown in the middle panel of
Fig. 15, demonstrating that below the melting point graphite is
more stable than diamond, however their free energy difference is
smaller in comparison to the GAP-20U model. The most notable
difference between the two potentials is that, in the temperature
region where the liquid phase is the most stable, EDIP’s graphite
phase is less stable than the diamond, whereas the GAP-20U
shows graphite to be more stable than diamond up to the solid-
solid transition. This is likely a result of the EDIP’s short cutoff
providing an unphysically broad distribution of layer spacings at
higher temperatures, which necessarily incurs an entropic energy
penalty. Like in the case of the Tersoff potential, the potential
energy of the perfect cubic and hexagonal diamond structures are
the same using EDIP, and above 20 GPa NS runs sampled both
structures equally.
The top panel of Fig. 12 shows that at extreme high pressures,

above 100 GPa, the EDIP’s diamond melting line rapidly increases
in temperature before reaching a maximum of 24000 K at

1000 GPa. This turning point is at a much larger temperature
than those predicted by the GAP-20 and DFT14, 2.5 and 3 times
larger respectively. The pressure at which it occurs is also larger,
though by only 10%. At 1500 GPa NS calculations explore the six-
coordinated P212121 structure below the freezing transition, while
zero temperature structure optimisations confirm that this
structure is stable for EDIP above 2650 GPa.

DISCUSSION
In the current work we reviewed the performance of three
interatomic potential models of carbon, ranging from fast but less
transferable empirical force fields to slower ML potentials with
state-of-the-art accuracy. Our study focused on assessing their
ability to reproduce experimentally observed macroscopic proper-
ties. We used the nested sampling technique to sample the
potential energy surface of these models over a wide pressure
range, calculating their pressure-temperature phase diagram and
predicting crystalline phases. We emphasise that nested sampling
is a unique tool that allows us exhaustive exploration of the phase
space and makes the calculation of the entire phase diagram a
relatively straightforward process, while also being predictive and
not restricted by known or considered crystalline structures. All
three models, GAP-20, Tersoff and EDIP, predicted the graphite
structure to be more stable at low pressures and the diamond
structure at higher pressures. However, the transition between
these as well as the location of the melting line differed
considerably. Empirical potentials are often fitted to specific
microscopic properties, for example to typical coordination of
graphite and diamond structures, hence their high-temperature
and high-pressure behaviour cannot be expected to accurately

Fig. 15 Graphite–diamond phase transition of EDIP. Nested
sampling results at 20 GPa, using 16 atoms and the EDIP potential.
Top panel: density of individual configurations sampled during NS,
symbols are coloured by the average Q4 bond order parameter of
the configuration. Middle panel: Gibbs free-energy difference
compared to the diamond phase in three parallel runs. Configura-
tions were associated with basins using the number density and the
bond order parameter. Bottom panel: Heat capacity curves of the
three parallel runs. Vertical grey lines show the melting temperature,
Tm and the solid-solid transition between the diamond and graphite
phases, TDG.

Fig. 14 Pressure and temperature dependence of graphite layer
spacing using EDIP. Distribution of carbon atoms along the
direction perpendicular to the graphite layers, calculated as the
weighted average from NS configurations, using the EDIP potential.
Distribution around 0.0Å acts as the reference layer, its widths
representing the deviation from a perfectly flat layer. Bars are semi-
transparent to aid the visibility of the distributions. Vertical lines
show the equilibrium graphite layer distance at the two different
pressures.
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reflect the diverse structural properties of carbon. Nevertheless,
while the macroscopic properties of the Tersoff potential differ
from the experimental phase diagram considerably, we found the
phase diagram of the EDIP potential to be very close to
experimentally observed behaviour, accurately reflecting both
the predicted graphite–diamond transition, as well as the melting
line up to relatively high pressures.
Machine learning (ML) potentials provide the state-of-the-art in

descriptions of atomic interactions, opening up routes to materials
discovery that are otherwise out of our reach and, to some degree,
offering ab initio level accuracy at an affordable computational cost.
However, the main criticism of ML potentials is that they are
inherently best suited to interpolation problems, and perform
reliably only in the regime of configuration space where the
potential was trained. This means that their behaviour in unexplored
territory, in configurational regions where the potential is forced to
extrapolate from the training data, can be unrealistic or unphysical—
inhibiting their use in scientific discovery. Therefore, our results
showing that the GAP-20 potential performs well and predicts the
expected phase transitions reliably up to 200 GPa, well outside the
original training conditions, is remarkable, emphasising the power of
including a diverse range of local atomic environments in the
training process. Moreover, the exhaustive exploration provided by
NS also highlighted local weaknesses of the model, such as the
stabilisation of unexpected graphite-layer distances or the prediction
of erroneous phases at very high pressures, offering areas for
potential improvement and extensions of the GAP-20 model. Using
these observations we have presented an enhanced version of the
GAP-20U potential called the GAP-20U+gr, which includes additional
ordered graphite configurations in the training set to successfully
avoid graphite phases with unphysical layer spacings becoming
stable under certain thermodynamic conditions. However, these
improvements to the model’s description of the graphite phase did
not provide a more accurate melting line, leading us to conclude
that the density of the liquid phase at low pressures must also be
addressed in further updates to the machine-learned potential.

METHODS
Nested sampling
The NS calculations were performed as presented in ref. 47. After
the sampling has finished, we calculate the partition function and
derive thermodynamic response functions to determine the phase
behaviour. We use the position of peaks in the heat capacity to
locate phase transitions, and calculate the phase space-weighted
averages of observables (e.g., coordination number) to evaluate
their finite temperature values using the following equation:

hAi � 1
Δ

X

i

AiðΓi�1 � ΓiÞe�βHi ; (1)

where Δ is the isobaric partition function; β is the inverse
temperature; and Ai, Hi and Γi are the observable value, enthalpy
and phase space volume of the i-th configuration respectively,
where Γi= (K/(K+ 1))i and K is the number of walkers in the
simulation.
In an infinite system, the heat capacity peaks would be

divergent due to a first order discontinuity in the corresponding
enthalpy vs. temperature curves, but the finite size of these
systems causes a broadening of the peaks. The temperature of a
given transition and its error are ascertained from the combination
of data from each of the three independent runs we performed at
every pressure. In order to test the convergence of the simulations
we fit Gaussian functions to the heat capacity peaks, and the lower
and upper bounds of the error are taken to be the minimum and
maximum temperature values of the peaks’ half-maximums. The
simulations were run at constant pressure, and the bounding cell
of variable shape and size contained 16, 32 or 64 particles

(depending on the potential), in order to estimate the finite size
effect. Previous calculations show that the small system size
usually causes the melting temperature to be overestimated,
however, the solid-solid transitions are less affected, with sampled
crystalline phases usually remaining consistent across different
system sizes38,47. We note that these results may be augmented
by further calculations using standard simulation techniques (e.g.
parallel tempering62,63, coexistence simulations64, thermodynamic
integration65) with larger system sizes, using the NS-predicted
phases as a guide. For each calculation, the number of walkers, K,
was chosen such that the resulting heat capacity peaks were
sufficiently converged, thus predicted transition temperatures
were generally within a range of 200K (exceptions are noted).
Using a larger number of walkers means a sampling of higher
resolution, with the computational cost increasing linearly with K.
The number of walkers used for each potential and system size are
recorded in Table 1. Initial sample configurations were generated
randomly to simulate the gas phase, while subsequent samples
were acquired by performing a sufficiently large number of
randomly selected “moves”, referred to as the number of model
calls in Table 1. These include Hamiltonian Monte Carlo (all-atom)
moves; isotropic volume changes; and perturbations to the shape
of the simulation cell via stretch and shear transformations, where
the probability that each move occurs is given by the ratio 5:3:2:2
(atom:volume:stretch:shear)38.

DFT calculations
In order to compare the energies of configurations and phase
stability predicted by the GAP-20 and GAP-20U models, we
employ density functional theory (DFT) with the same input
parameters as those used to generate the data on which the GAP-
20U model was trained33. DFT calculations are therefore carried
out using the Vienna ab initio Simulation Package (VASP), with the
dispersion-inclusive optB88-vdW exchange-correlation func-
tional66–69, and the projector augmented wave (PAW) pseudopo-
tential method (PAW_PBE C 08Apr2002)70–72 with a plane-wave
cutoff of 600 eV. In each case, reciprocal space is sampled using an
automatically generated, Γ-centred Monkhorst-Pack mesh such
that the smallest spacing between k-points is no greater than
0.2Å−1, and energy levels are smeared by Gaussian distributions
with widths of 0.1 eV.

DATA AVAILABILITY
A vertical slice of the data used to generate the results found in the current work, as
well as the extended ML potential, GAP-20U+gr, and its corresponding dataset are
available at https://doi.org/10.5281/zenodo.7463706.

CODE AVAILABILITY
A parallel implementation of the NS algorithm is available in the pymatnest Python
software package73, using the LAMMPS package74 for the dynamics (the pymatnest
input files that were used to perform the NS calculations in this work is available at
https://doi.org/10.5281/zenodo.7463706).

Table 1. Summary of NS parameters used for each carbon model.

NS parameters GAP-20(U) EDIP Tersoff

16 atoms 32 16 32 16 32 64

K 640 (840) 528 1050 1470 1680 2520 2880

No. of Model
calls

640 (840) 500 840 840 1120 1260 1440

The number of walkers, K, determine the resolution of the sampling, and
the number of model calls is the average number of energy evaluations per
NS iteration, when generating a new sample.
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