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Abstract

One of the main questions in Urban Science is whether systems of cities around

the world show similarities in their structure and trajectories of development.

Shannon entropy has played a crucial role in this line of research, both because

it is a versatile measure of uniformity and because of its ability to discriminate

significant patterns from only seemingly organised maximum randomness.

In this thesis, we present novel ways to analyse the structure of systems

of cities and its evolution using entropy-based measures. We focus on key

morphological aspects of a system of cities: the distribution of city sizes, their

spatial arrangement, the population density and land use of their surroundings,

and their connectivity via transport infrastructure; which we reconnect to

human activities via spatial interaction models.

We propose normalisation formulae for the first degree-based graph entropy

that facilitate its interpretation as a measure of balance of the degree sequence

of a network. We define a local entropy measure for raster data that quantifies

the heterogeneity of a variable of interest in the surroundings of each cell.

We define a measure of morphological polycentricity for historical systems of

cities based on the entropy of the most likely potential interactions between

the cities.

We apply our methods to analyse systems of cities in different parts of

the world and moments in history. We study the evolution of the entropy of

city sizes in the main European powers from 1300 to 1850; the local entropy

of land use and population density in Italy, the British Isles, and South Asia

from 1700 to modern day; and the spatial organisation and morphological

polycentricity of English and Welsh towns in the 19th century, via the entropy

of spatial networks informed by the emerging railway system.

Finally, we model the spatial-temporal dynamics of geo-tagged Tweets in

London, of the Hungarian social network iWiW, and of the network of literary

imitations between medieval Occitan troubadours.
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Chapter 1

Introduction

Contemplating these essential landscapes, Kublai reflected

on the invisible order that sustains cities, on the rules that

decreed how they rise, take shape and prosper, adapting

themselves to the seasons, and then how they sadden and

fall in ruins.

Invisible Cities, Italo Calvino

1.1 Motivation

Since their emergence, cities have been the main places of exchange and in-

teraction for the human race. More recently, with over 50% of the world

population living in urban areas, they have also become its primary abode.

With increasing rates of urbanisation, the destiny of Man seems to be that

of becoming more and more a Homo Urbanus [65]. Yet, the growth of cities

has hardly ever been a smooth process: wars, political changes, geographical

discoveries, epidemics, and technological innovations have all impacted the

pace and form of urbanisation.

In their uneven trajectories, cities have seen their shapes and functions

multiply and transform. Emerged as local centres of trade, craftsmanship,

culture, and administration, cities have expanded their influence well beyond

their immediate surroundings and have become interconnected in sophisticated

and complex systems, as a resilient solution to the ever-changing constraints

of their local ecological and political environment [174]. Constantly evolv-

ing transport infrastructure and long-distance social connections have

become vital to their existence and thriving.

1



With much of their development happening in an unplanned way, it may

be tempting to intuitively equate the growth of these systems to an increase

in their haphazardness. Yet, as cities grow in number and size, new forms of

structure have been argued to emerge at the system level, from Christaller’s

hierarchical organisation in the spatial distribution of cities [60], to Zipf’s

rank-size law of their populations [227]. Whether the observed patterns are

genuine and significant or an expected consequence of complete randomness,

it remains debatable.

The questions addressed in this thesis come out directly of this ambiguity.

We asked ourselves, Can entropy, a versatile measure of uncertainty of a dis-

tribution, be used to construct intuitive measures of the structure of a system

of cities? If reasonably exhaustive entropy-inspired measures exist, do they

reveal general trends, or do cities evolve in a constantly renegotiated balance

between order and randomness? Can one trace the history of worldwide ur-

banisation, capturing its salient moments from the variation of these entropy

measures in time?

Speculative questions like these, by their own nature, do not offer a definite

answer, but rather propose a fascinating problem. Instead of surrendering to

the spectre of sterile ineffability, we decided to try and track the trails they

opened. This thesis is the result of this effort.

1.2 Research Objectives

This thesis aims to identify meaningful patterns in the physical and social

structure of historical systems of cities, and consolidate entropy-based ap-

proaches for the analysis of their evolution. It is supported by the EPSRC

project “Patterns of City Formation and Development”, that looks at possible

ways to study the complexity of systems of cities and its evolution in time,

towards the ambitious goal of identifying mathematical principles governing

their emergence and development.

This research is grounded on the consideration that the essential aspects

of interest of a system of cities include on the one hand its morphological

structure, that is the settlements’ locations, populations, local environment,

and physical connectivity through transport infrastructure, and on the other

hand the human activities that the system sustains, such as the production

and exchanges of goods, the social ties, and the transmission of knowledge.

This thesis proposes to tackle the following research objectives:

2



RO1 Extend and refine theories on the spatial organisation of system

of cities. Based on empirical observations, it has been suggested that

the distribution of settlements in a uniform, mostly rural region either

abides to a certain regularity or tends to evolve towards it as a con-

sequence of competition pressure. The spatial organisation of more ur-

banised and non-geographically uniform regions is much less understood,

and real-world examples rather point towards increased clustering. We

propose to test the hypothesis that a random cluster point process may

describe the locations of cities in an industrialising system (Section 4.4).

The underlying assumption is that the spatial organisation of systems

of cities is informed by a variety of factors, such as the natural envi-

ronment and the interaction between the centres, but is not completely

deterministic, resulting instead from a realisation of a random process,

subject to these constraints.

RO2 Define meaningful entropy-based measures for the structure of

systems of cities. Shannon entropy, a simple and versatile measure

of uniformity of a distribution, has been proposed as an index of con-

centration or regularity for the spatial distribution of cities, but also for

other morphological and functional aspects of interest in the systems.

We propose to adapt Shannon entropy to capture the heterogeneity of

the land use and population density of the cities’ surrounding territory

(Section 4.3), the travel time between cities (Section 5.2.3), and the

cities’ interactions (Section 5.2.4).

RO3 Identify the correlation, if any, between changes in entropy-

inspired measures and major historical events and technologi-

cal innovations. Once suitable entropy-based measures of heterogene-

ity for several aspects of systems of cities have been identified, we plan to

assess their significance in analysing the historical evolution of the sys-

tems by correlating their variation with historical events and with the

emergence of technological innovations that have had a strong impact

on urban structure (Sections 4.2, 4.3, and 5.2.3).

RO4 Improve the interpretability of the first degree-based graph

entropy. Graph-based models are frequently adopted to analyse the

interactions between individuals or cities. The first degree-based graph

entropy (i.e., the Shannon entropy of the degree sequence of a graph)

captures several aspects of potential interest in a system at the same

3



time: the number of constituent parts, the number of connections, and

how equitably these are distributed. A correct interpretation of its value,

though, requires to disentangle these aspects. We aim to identify the

minima and maxima of this measure given natural constraints on the

graph size (Section 3.2), or on both its order and size (Section 3.3). Our

goal is that of using this information to define a normalised version of

the entropy, that might allow for more easily interpretable comparisons

between graphs, and thus between the systems they model.

RO5 Refine measures of morphological polycentricity. Morphological

polycentricity is a concept from regional studies that describes the het-

erogeneity of a system of settlements in terms of their populations and

spatial organisation. Existing entropy-based methods do not account

for the effects of evolving transport networks on inter-city distances.

We propose to define a measure of morphological polycentricity based

on evolving travel time and existing entropy-maximising spatial interac-

tion models that could better reflect the potential interactions between

cities (Section 5.2.4). Our aim is that of achieving more human-centred

measures of polycentricity that are closer to what an inhabitant of the

system would perceive, and thus examine the strong connection between

the morphological and functional aspects of systems of cities.

RO6 Test these methods with actual historical data on human ac-

tivity A human-centred perspective calls for the study of individual

behaviour, which may deviate from the optimal one predicted by en-

tropy maximisation. We propose to study both modern and ancient

data on people’s locations and interactions using the tools adopted and

developed in the rest of the thesis: random point processes and their

entropy (Section 6.1), and an entropy-based analysis and modelling of

their interactions (Section 6.3).

1.3 Contributions

The thesis tackles the above research objectives and makes the following con-

tributions:

C1 We give a mathematical proof of the extremal values of the first degree-

based graph entropy for graphs of fixed size m, and for graphs with fixed

order n and size m when n − 1 ≤ m ≤ 2n − 3. We provide numerical
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results for the case of large order and fixed, arbitrary size. This allows

to normalise the first degree-based entropy and compare graphs subject

to these natural constraints, thus improving its interpretation (RO4).

Furthermore, it solves a conjecture by Yan [221].

C2 We define a local spatial entropy measure for raster data and use it to

study the heterogeneity of the land use and population density of urban

areas and their surroundings (RO2). We apply it to selected systems

of cities (Italy, South Asia and Britain from 1700 to modern day), cor-

relating the changes in entropy to historical events and technological

innovations (RO3).

C3 We identify an inhomogeneous Matérn cluster point process that de-

scribes the locations of new towns emerged in England and Wales be-

tween 1801 to 1881, a period of fast urbanisation (RO1). The model

fits the observed distribution according to major summary characteris-

tics tests, except at the scale of approximately 800 meters, for which it

fails to capture the slight repulsion in the pattern.

C4 We introduce the suitably normalised first degree-based entropy of disc

graphs (the spatial graphs where two vertices are connected if and only if

their distance is smaller than a certain threshold) as a tool for the anal-

ysis of the spatial organisation of systems of cities (RO2). Through the

example of the English and Welsh systems of towns in the 19th century

and its expanding railway system, we show how the method can adopt

both geographic distance and travel time. We remark the differences

between these two cases and show the correlation between innovation in

transport technology and the change in this entropy measure (RO3).

C5 We propose a framework to compute the morphological polycentricity,

based on Wilson’s entropy-maximising spatial interaction model, the

cities’ populations and intercity travel time. The method expands exist-

ing approaches to morphological polycentricity based on spatial interac-

tion models, as it explicitly accounts for changes in travel time as the

transport infrastructure evolves, and makes minimal assumptions on the

functional form of the most likely intercity interactions (RO2, RO5).

We illustrate the framework with the aforementioned England and Wales

system of towns and railways in the 19th century.

C6 We identify the best fitting homogeneous point processes to describe the
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locations of geo-tagged Tweets in an area of central London (RO6) at

certain times of the day.

C7 We reveal the temporal and spatial properties of the network of knowl-

edge exchange in the Middle Ages between Occitan composers and be-

tween Occitan region, based on evidence of literary imitation (RO6).

1.4 Thesis outline

This thesis is structured as follows.

In Chapter 2, we provide the theoretical background of the thesis. We be-

gin by introducing operational definitions of “city” and “system of cities”, suit-

able in a variety of geographical and historical contexts (Section 2.1). We then

present some of the databases of historical urban data that we use throughout

our work (Section 2.2). We review the literature on city population size and

spatial organisation of systems of cities, and how these morphological aspects

can be combined to estimate intercity flows and other functional interactions

using spatial interaction models (Section 2.3). We formally define entropy,

discuss its role in urban science, and explain why we adopt it as the main ana-

lytical tool in our research (Section 2.4). Finally, we lay out the mathematical

framework of the thesis, which includes random point process statistics, graph

entropy, and spatial and temporal networks, with particular emphasis on their

applications in the analysis of systems of cities (Section 2.5).

In Chapter 3, we discuss the normalisation of the first degree-based en-

tropy of graphs, based on its extremal values for graphs subject to size and/or

order constraints. More specifically, we determine the minimum entropy of a

graph with given size (Section 3.2, based on [48]) and with given order and

size for small sizes (Section 3.3, based on [47]), and provide numerical results

that could support the solution of the problem when both order and size are

fixed and arbitrary.

In Chapter 4, we focus on the population distribution and spatial organ-

isation of systems of cities. As preliminary work, we clarify and schematise

the relations between different data sets of historical city sizes and popula-

tion density, and assess their compatibility (Section 4.1). We compute the

entropy of city sizes in Late Medieval and Early-Modern Europe, and in 19th

century England and Wales, and correlate it with main historical events (Sec-

tion 4.2). We define local spatial entropy as a measure of heterogeneity of

raster data, and apply it to the analysis of the population density and land
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use in and around cities in the British Isles, South Asia, and Italy from 1700 to

modern day, again correlating the variation of the measure to main historical

events (Section 4.3, based on [151]). Finally, we model the location of English

and Welsh towns from 1801 to 1881 using point processes, and measure the

changing heterogeneity of their spatial distribution at different scales using

the normalised first degree-based entropy of the disc graphs (Section 4.4).

In Chapter 5, we study the connectivity between cities, based on trans-

port infrastructure. First, we study the heterogeneity of the worldwide flight

network using the normalised first degree-based entropy (Section 5.1). Then

we focus on the railway network in England and Wales and its evolution from

1851 to 1881 (Section 5.2). We expand our discussion on the heterogeneity

of the spatial distribution of towns by using travel time along the network

instead of geographical distance (Section 5.2.3). We define a measure of mor-

phological polycentricity by combining travel time and population using an

entropy-maximising spatial interaction model (Section 5.2.4, based on [150]).

In Chapter 6, we apply our entropy framework to study examples of

human activities in cities and systems of cities. We study the spatial and

temporal distribution of geo-tagged Tweets in London using point processes

and their entropy (Section 6.1, based on [152]). We briefly discuss early results

and some difficulties of modelling the impact of physical infrastructure on

the evolution of social connectivity in an online social network (Section 6.2).

Finally, we study an example of network of cultural exchanges in the Middle

Ages, discussing how to deal with temporal uncertainty in the historical data

set of literary imitations on which the network is built (Section 6.3, partially

based on [159]).

In Chapter 7, we close the thesis with a discussion on the limitations of

our approach and how to address them in future work.

7



Chapter 2

Background: Structure,

Entropy and Evolution

2.1 What is a city, what is a system?

In a study aimed at tracing the evolution of systems of cities, it is necessary to

adopt definitions of “city” and “system of cities” that are sufficiently general

to be applicable to potentially very diverse forms of settlements in different

places and moments in time, and simple enough to be of practical usage for a

quantitative approach based on often scarce historical data.

2.1.1 An ideal definition of city

The problem of finding a sufficiently encompassing definition of city, valid in

different places and historical eras is, in fact, a long-standing one. Already at

the beginning of the 20th century, Maunier [147] discussed how the notion of

city has evolved in time and pointed out the limitations of adopting any univer-

sal criterion to define a city, may this be morphological, demographic, juridical,

functional, or even a combination of all these. The author proposed to define

a city as a relatively dense community having numerous distinct social groups.

Relative population density and social complexity are among the few proper-

ties of cities that have been found to be consistent since the independently

emerged Indus Valley, Egypt, Mesopotamia, and Maya civilisations according

to Childe [59]. With the rise of social network studies, social interactions have

in some cases taken precedence over other aspects, as cities are studied fun-

damentally as social networks, embedded in the built environment [32, 105].

But other characteristics, such as the concentration of administrative, reli-
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gious, and artistic functions, and the engagement in exchanges with other

settlements to import resources not available locally, remain fundamental.

The profundity of these studies lies first of all on their stressing the rela-

tivity of the concept of city and its dependence on context, and secondly on

highlighting that cities may not exist in isolation, but only as an integral part

of a more extensive settlement system that includes their local environment

and the other centres with which they are connected, via physical and abstract

links, as well as via individual human ties. Over the course of this thesis, we

will explore each of these aspects.

2.1.2 An operational definition of city

Ideally, the definition of city adopted in academic studies should include all the

above criteria. In practice, though, this is severely limited by data availability.

Most official data bases of cities around the world adopt simpler, operational

definitions. Some countries, such as Brazil, require a city to be the seat of local

administrative power; others, such as Nicaragua, demand it to possess certain

kind of urban infrastructure, and others call for the majority of its population

to be employed in non-agricultural activities1. Population thresholds remain

by far the most commonly adopted principle to officially define a city. Even

these, though, may be widely different across countries: if in both Japan and

the Korea 50,000 inhabitants or more are needed for a settlement to qualify

as a city, just 200 people are sufficient in Norway or Iceland.

As a matter of convenience, studies of worldwide urbanisation have often

adopted a common and arbitrary population threshold to identify cities. [75],

for example, used a threshold of 20,000 inhabitants to distinguish a city from

a rural settlement, and thus compare global rates of urbanisation. Similarly,

[175] used a database of all urban areas in the world having 10,000 inhabitants

or more, to study the evolution of the rank-size distribution in various world

countries across the years 1950-1990. [41] argued against adopting a universal

threshold and proposed to adapt it to each country and moment in time. For

example, for European countries in the second half of the 20th century, they

argue that 10,000 people is a sensible threshold beyond which one can expect

settlements to exhibit the functional and social features that characterise cities.

On the other hand, [15] who collected population of European cities from

the 9th to 19th century, used 5,000 people as a threshold but argued that,

ideally, 2,000 would be a more appropriate threshold for the period under

1See Table 6 in [204] for details.
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consideration.

In recent years, the creation of high resolution spatial data sets has al-

lowed the emergence of alternative, density-based approaches to define cities.

[5], for instance, proposed to identify cities via percolation in high-resolution

street networks data. In [187, 188], grid-based population density data was

used to identify urban areas by merging together neighbouring cells whose

density is strictly positive, and selecting those clusters whose total popula-

tion (given by the sum of the populations of the cells which compose them) is

larger than a certain threshold. The articles argued that the proposed raster-

based approach captures the presence of new forms of urbanisation, such as

‘conurbations’, ‘metropolitan areas’, and ‘megalopolises’ that may escape the

simple rural/urban dichotomy entailed by threshold methods [54], and offers

a universally applicable method to construct cities rather than depending on

arbitrary administrative definitions. This approach is certainly more satisfac-

tory than a threshold, but available raster data sets of past population density

are based on city population databases, which are themselves assembled using

thresholds (See Section 2.2.1.2 and Fig. 4.1), which nullifies the effort.

All the above approaches focused exclusively on the morphological aspect

of a territory to identify a city, neglecting the social and functional aspects

that were integral in all the “ideal” definitions given above. Other studies

have proposed definitions of city based on human processes, such as [4], who

used commuting patterns to define cities via percolation. The reconstruction

of functional and human relations in the past remains, though, a complex and

time-consuming process, as will be discussed in Section 2.2.2.2 and Chapter 6.

Furthermore, some functional aspects, such as evidence of sufficient social

complexity, cannot be obtained directly, without recurring, as in [41] to an

educated guess based on city size. This is often the case in historical studies,

where one must deduce whether a city engaged in the secondary and tertiary

activities that would let it qualify as such exclusively from its morphological

aspects, such as evidence of monumentality, or, indeed, its estimated size [106].

In this thesis, while acknowledging the limitations of a population threshold-

based approach, we recognise its inevitability. To define cities, we rely on

databases that adopt threshold-based definitions, directly or indirectly, as de-

tailed in Section 2.2.1.
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2.1.3 Defining a System

Childe’s definition reminds us that an essential property of a city is that of

being part of a more extensive system of settlements, without which it would

not be possible for it to exist. In the most general sense, a system of cities

is a set of cities subject to some constraint (geographical, political, econom-

ical, cultural or of other kind) and linked by strong interactions, so that the

trajectories of their evolution are strongly interdependent [40].

Even though it may be argued that a handful of global cities are part of

a highly integrated system of their own that surpasses geographical bound-

aries [190], the vast majority of studies on systems of cities assumes the cities

to be located in the same region or nation [171]. The boundaries are often

taken to be those of contemporary political entities, even in longitudinal stud-

ies (see, for example, [173, 15]). This approach is not completely satisfactory

given that political, economical, and cultural regions may be subject to major

changes in a long time frame, but it is in part justified by the convenience

of dealing with fixed, familiar boundaries. In this thesis we will sometimes

adhere to this simplification, though we will look explicitly at non-modern

geographic and cultural regions, when appropriate2.

There are several reasons to adopt spatial proximity as a fundamental cri-

terion for cities to form a system. From a practical perspective, focusing on

sets of cities within a well-defined, bounded geographical area helps to ensure

that the data about the individual cities is consistent, as historical data sets

usually focus on a specific region and period of time and combining different

data sets raises issues of compatibility. Furthermore, if the cities under consid-

eration are located in a geographically well-defined area, it becomes possible to

apply powerful analytical tools, such as point process and spatial interaction

models. If the area is relatively homogeneous, geographically or in terms of

available technologies, a condition better approximated at the regional level,

the application of such tools is greatly simplified. More conceptually, in spite

of the promulgated “Death of Distance” [46] in the contemporary information

age, geographical distance has been proved to be a strong influencing factor

in many urban phenomena of interest, including the most abstract of intercity

2In Section 4.3 we look at the British Islands (including both Great Britain and Ireland)
and South Asia (from the Indus River to the West to the Bay of Bengal to the East) in
our study of the evolution of local entropy from 1700 to modern day, because the national
boundaries evolved dramatically over the course of this period. Similarly, in Section 6.3, we
study literary influences between medieval composers from different areas of the historical
cultural region of Occitania, which includes most of modern day Southern France, as well as
modern Monaco, and portions of Spain and Northern Italy.
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interactions, such as knowledge flows [63].

2.2 Historical Urban Data

The study of the historical evolution of systems of cities is affected by the

availability of data, which may be limited in certain regions and time peri-

ods. Here, we introduce the population data sets used throughout the thesis

and describe how they were assembled combining historical population studies

and estimation procedures, before embarking on a more detailed analysis of

their relations, compatibility, and completion in Sections 4.1.2 and 4.1.1. We

also discuss proxy data as evidence of human activity and social interactions,

both in the past and in the present, briefly touching on the opportunities and

challenges afforded by modern online social network data.

2.2.1 Data sources of historical population

A great deal of effort has been directed by the scientific community towards

assembling data sets suitable for a longitudinal study of the distribution of

human population. We distinguish between two categories of these: popu-

lation estimates for individual cities and raster data sets. The former ones

conceptualise cities as discrete entities, often defined via (more or less ar-

bitrary) population thresholds and boundaries. The latter ones attempt to

represent more realistically the continuous distribution of human population,

including cities as well as sparser settlements, and provide information on the

spatial extension of cities. However, this comes at the cost of relying on more

speculative and assumption-heavy estimation techniques.

2.2.1.1 City population estimates

Censuses arguably constitute the most reliable sources of historical population

estimates for cities. Bennett [27] assembled Census data for 934 English and

Welsh towns, covering the period from 1801 to 1911 at 10 years intervals. The

data set provides the population of all settlements with at least 2500 inhabi-

tants, a population density of 1 inhabitant per acre or more3, and a spatially

contiguous built-up area, so to distinguish towns from rural communities.

To study urban populations in historical periods and regions of the world

in which censuses were or are not widespread, other estimates are needed. For

3This is equivalent to approximately 247.1 inhabitants per square kilometer.
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the relatively recent period from 1950 to 2018, the United Nations World Ur-

banisation Prospects [206] provides the population of all urban agglomerations

that had 300,000 inhabitants or more in 2018, for a total of 1,860 cities.

For more remote times, it is often regional rather than worldwide studies

that offer the most complete perspective. The aforementioned Bairoch [15],

for instance, compiled a data set of population estimates of European cities

from the year 800 to 1850, including all centres that achieved a population of

5,000 or more at some point during that period. Hanson [107, 106] assembled

a comprehensive atlas of cities in the Roman Empire between 100 B.C. and

300 A.D., with their respective area, which can be used to derive population

estimates by making reasonable assumptions on the population density.

The Historical Urban Population data set [180] by the National Aeronau-

tics and Space Administration Socioeconomic Data and Application Center

(NASA SEDAC) is one of the most complete collections of historical popula-

tion of cities around the world, covering the period from 3700BC to 2000AD

for a total of 1595 cities. It is built upon two major studies of historical urban

populations [179]: “Four Thousand Years of Urban Growth: A Historical Cen-

sus” [55], by historian Tertius Chandler and “World Cities: -3,000 to 2,000”

[161], by political scientist George Modelski.

Chandler used an adaptive definition of city, depending on both the year

and the geographical location. For the period from 800AD to 1850AD, the

author defines a city as a settlement with more than 20,000 inhabitants, except

for Asia, where he applied a larger threshold of 40,000 inhabitants. Starting

from 1850AD, suburbs are included in the computation of populations and the

threshold of 40,000 inhabitants is applied to all locations. From 1962, suburbs

outside the municipal area are also counted as part of the urban population.

Modelski focused explicitly on areas underrepresented in Chandler’s work.

Three thresholds are applied, depending on the year but independent of the

location: in Ancient times (3500 BC to 1000 BC): a city is defined as a set-

tlement with at least 10,000 inhabitants; in the classical period (1000 BC to

AD 1000) the threshold is raised to 100,000 inhabitants, and in Modern times

(AD 1000 onward) only settlements with 1,000,000 inhabitants or more are

included.

In spite of its completeness, [180] presents a few weaknesses. The fact that

the data set issued from assembling two different historical studies raises some

compatibility issues. First of all, Modelski’s population estimates for the year

2000AD are based on the United Nations’s 2000 Demographic Yearbook [205]
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data for ‘cities as proper—governed as one unit’, and thus do not correspond

to Chandler’s definition of cities, which include the urban agglomeration. This

suggest that population estimates for different cities in recent years in [180]

may not comparable. Furthermore, Chandler’s estimates had been the subject

of criticism by Bairoch [15], who claimed that, taking into consideration the

land type within city walls, Chandler’s estimate of the populations of European

cities should be increased by 15% and those of Latin American cities by up

to 50%. Finally, Modelski selectively applied rank-order principles, i.e., the

Zipf’s law (Section 2.3), to reconstruct the population of individual cities.

This implies that any conclusion on general statistical properties of cities in

[180] may be inherently biased towards displaying this regularity.

In Section 4.1.2 we discuss how to complete missing records and spatialise

some of the data to create data sets suitable for our subsequent analyses in

Sections 4.2, 4.4, and 5.2.

2.2.1.2 Raster data

We have seen that conceptualising the cities of a region as well-defined, sep-

arate entities poses a number of issues, including the adoption of arbitrary

thresholds, and the risk of neglecting sparser settlements forms and the char-

acteristics of the landscape, that have an integral role in the creation and

maintenance of the urban system. A different approach is afforded by raster

data, that subdivides a region in a grid of small, regular cells and provides for

each of these the value of one or more variables of interest associated to its

location.

In recent years, several raster data sets have been developed to study

population density, in part thanks to the advancement of satellite imagery

and computer vision techniques. For instance, [61], [186], and [83] all provide

very high resolution population density grids. Unfortunately, the latter two

do not provide historical estimates, and advise against using their data for

year-on-year comparisons, as changes may reflect advancements in collection

and classification techniques rather than actual patterns. The former one only

provides historical data from 1970, making it unsuitable for our interest in a

long term analysis.

A rare example of raster data set designed for longitudinal studies is HYDE

3.2 [127]. HYDE 3.2 provides worldwide land use and population density es-

timates from 10,000BCE to 2015CE, with more frequent and accurate data

in more recent years. It allows to distinguish between several categories and
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subcategories of land use, including the following seven: urban areas, dense

settlements, villages, cropland, rangeland, semi-natural, and wild land; cells

corresponding to seas and oceans are unclassified. Estimates of the total pop-

ulation counts and density for each cell are also given.

The resolution of the longitude/latitude grid is relatively coarse: 5′ × 5′

corresponding to a square of side 9.26km on the equator or roughly 6km at the

latitude of the United Kingdom. This limits its scope to the study of regions or

cities with respect to their surroundings, not allowing for the detection spatial

patterns within individual cities, except very large ones.

HYDE 3.2 is assembled via an elaborate procedure, detailed in [127] and

[128]. Historical population numbers are taken from [153], [11] and [142],

supplemented with the sub-national population numbers of Populstat [130],

among others. Spatial patterns are obtained by using population density map

patterns for current time periods from [164], and gradually replacing them with

weighted maps based on proxies such as distance to water and soil suitability

when going back in time. Historical urban densities are taken from [15, 70].

It is important to notice that the data set assumes a functional relation

between urban population densities and urban land area. Following the ob-

servation that the urban density in Europe and in the United States seems

to increase rapidly to very high densities (up to 40,000 inhabitants/km2) and

then slowly decrease over time, the data set assumes that the density fol-

lows an asymmetric bell-shaped curve and that this applies to all countries of

the world. This assumption may not be accurate for individual cities. Despite

these limitations, we deem the data set suitable for an analysis that focuses on

larger areas and averaging procedures, as the one we carry out in Section 4.3.

2.2.2 Estimating human activity and social connectivity, in

the present and in the past.

Resident population data only provides a partial perspective on the way we

humans inhabit cities. Other forms of data are necessary to capture the daily

fluctuations in the spatial distribution of people as we move around to work,

shop, and engage in leisure activities, and, more generally, the relations that

we interweave with the city and with one another.

2.2.2.1 The opportunities and challenges of social media data

In a modern, highly digitised world, people leave digital traces of their pas-

sage, which are increasingly collected and analysed, often with an eye towards
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continuously improving service provision. This data is precious to understand

how humans behave, move, and interact.

Twitter data has seen a wide variety of applications to study human be-

haviour in urban areas, including understanding citizen happiness and well-

being [99, 201], crowds [38], urban crime [89], and riots [172]. Tweets, like

many other social media data, often contain meta-information, one of which

is the location. In Chapter 6.1, we evaluate point process models for a data

set of more than 430,000 geo-tagged Tweets posted in a 40km radius disc cen-

tred in Trafalgar Square, London, between Sunday 10 June 2012 and Sunday

24 June 2012 [222]. The data was purchased from Twitter and represents

the most comprehensive geo-tagged data set of Tweets for that time period

and was used, for instance, in [223]. Nonetheless, it should be stressed that

the Tweets’ spatial distribution may suffer from issues of representativeness,

as only 1-2% of Tweets are GPS pin pointed and users from certain socio-

economic backgrounds are more involved in the generation of geo-referenced

tweets than others [133]. We take this as an unavoidable limitation of the data

set.

Citizen’s digital data can also be used to study the connectivity between

individuals, cities and wider regions. Corporate credit card expense data has

been used to assess the economic benefits of the flow of knowledge generated

by international business travel [63]. Mobility data from Facebook’s Data for

Good initiative has been used to track the change in population distribution

in a system of settlements as a consequence of disruptive events. For instance,

[74] showed that during the first wave of the COVID-19 pandemic, India wit-

nessed a sharp decrease in Facebook users in urban areas (4-11%), paralleled

by an increase in their number in rural areas (7%), mostly attributed to urban

migrant workers returning to their places of origin, which were often smaller,

remote localities. The number of Facebook users was also used to study the

change in population density in the UK from March 2020 to September of

the same year, evidencing that larger cities (and London in particular) saw

a strong decline in users, as opposed to smaller towns, especially along the

coast, that witnessed an increase across the period [203]. On the other hand,

Facebook’s mobility data in Italy showed that people did not move consider-

ably within the country during the first lockdown. Peripheral rural areas saw

only marginal increase in the total number of users, whilst most users who

appeared to have moved out of large cities, moved to mid-sized towns in their

vicinity and urban belts, reflecting a halt in the established commuting pat-
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terns rather than a rural exodus [28]. These studies are helpful in suggesting

a large displacement of people towards rural and peripheral areas during the

lockdown, but are careful in warning that Facebook users may not be repre-

sentative of the population as a whole, and that not every user shares their

location information.

An example of online social network that required its users to provide

spatial information about themselves is the Hungarian social network iWiW,

shorthand for “International Who is Who”. Launched in 2002, iWiW enjoyed

remarkable popularity, with approximately 40% of the Hungarian population

joining, but eventually it succumbed to the competition of other social net-

works, noticeably Facebook, and closed down in 2014 [132]. In iWiW, every

user had to confirm their city of residence. In Section 6.2, we show how to

adapt an entropy-based model for the evolving connectivity among Hungary’s

eighteen regional capitals as well as the national capital Budapest, based on

monthly counts of registrations to the platform. By discussing in greater detail

the peculiarities of the iWiW, we show the limitations of using online social

network data for identifying long term trends in real social connectivity, even

in the case of a platform that seems particularly well-suited to study of the

spatial patterns of its users and their connections.

2.2.2.2 Finding sources of human interactions in the past

The reconstruction of human interactions in the past is a key object of study

in history, sociology, and archaeology.

The sources to reconstruct historical human interactions between differ-

ent cities and regions are numerous and highly heterogeneous. For instance,

[170] estimated the historical migration flows between regions in the United

Kingdom in the last three centuries from a combination of census birthplace

data, Poor Law certificates, apprenticeship registers, and written and oral

personal accounts. Mail exchanges, on the other hand, were used in [96] to

estimate the flow of information between British regions, and revealed much

greater integration between British cities and London than one would expect

from distance and cost alone. For more remote times, other forms of material

culture, such as pottery, can be used to reconstruct the trade and cultural

connections between settlements and their evolution in time [185, 112].

Making use of these historical data sources to study human interactions im-

plies having to manage some of their inevitable limitations. In most cases, the

sources were not collected explicitly for the purpose of studying interactions,
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and thus may not contain all the relevant information, and have inconsistent

resolution and format. For instance, population movements between two ar-

eas may have beeen recorded only as net demographic effects, underestimating

gross migration flows [170]. The records may not carry precise temporal in-

formation, which calls for methods to assess robustness of the results [80].

Furthermore, they may be incomplete.

The application of link prediction algorithms has been proposed for the

reconstruction of missing connections in data sets of historical interactions,

when these are represented as links in mathematical networks (see Section 2.5).

In [202], the authors consider a representative sub-graph of a trade network,

and evaluate the accuracy of introducing a new link according to different

criteria exclusively based on the network structure.

Network analytical tools, more generally, have played a growing role in

the study of human connections for a number of essential questions, including

their temporal evolution and the relation between connectivity and physical

distance, migration and mobility [212]. Networks based on spatial interac-

tion models, for instance, have proven helpful to reconstruct potential human

connections from incomplete historical sources by assuming that distance acts

as friction, limiting interactions [129] (see Section 2.3.2.4). Yet, a number of

other factors influence material exchanges that mean that the patterns ob-

served in the data do not always follow spatially-informed constraint, includ-

ing conscious bias toward local products, conformism, appreciation of rarity,

competition, etc. [185].

In Section 6.3, we reconstruct an evolving network of cultural exchanges

in the historical region of Occitania during the 11th to 13th century, based on

musical imitation and collaboration between authors, as evidenced by music

manuscripts and biographical information. We assess the impact of physi-

cal distance on the exchanges, and discuss how to manage the high levels of

temporal uncertainty in the data.

2.3 Structure and Evolution of systems of cities

2.3.1 In search of universal rules

Despite having extremely diverse forms and histories, regional and national

systems of cities have been argued to present remarkable statistical regular-

ities in their spatial organisation, distribution of city sizes, and trajectories

of development. Several theories describing common structural properties of
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Advanced services

Intermediate services

Basic services

Large settlement

Medium settlement

Small settlement

Figure 2.1: Example of hierarchical structure of settlements according to Cen-
tral Place Theory, based on market principles. Each town is surrounded by
nested hexagonal regions, proportional in number and area to the town’s size,
in which the town acts as provider of services. The regions never overlap at the
same level, but they do overlap at different levels, as larger towns offer more
specialised services to a larger area. This pattern repeats itself in an infinite
uniform surface, so that every point is provided with all types of services.

systems of cities have been proposed in the first half of the 20th century.

Introduced in 1933 by Christaller [60], Central Place Theory asserts that

in an ideal infinite, homogeneous, and uniformly densely populated surface,

a system of settlements would be arranged in an ordered spatial hierarchical

structure dictated by the logic of universal and efficient marketing, transporta-

tion, or administration. While having slightly different formulations according

to the kind of service provided, the theory predicts in all cases that settlements

would be placed along a regular hexagonal lattice (Fig. 2.1). All settlements

would provide basic services to a small surrounding hexagonal area, and a few

larger centres would provide more specialised services to a larger area, cover-

ing several towns. The larger towns would thus be distributed in a spaced-out

fashion along the lattice. This structure would be repeated at multiple lev-

els, with fewer and fewer larger cities at each level providing more and more

specialised services.

A territory is rarely uniform enough for the conditions of Central Place

Theory to hold and indeed the spatial distribution of cities in real-world sys-

tems is in general much less regular. When one allows for fluctuations, Okabe

and Sadahiro [165] proved that some fundamental properties of Christaller’s

spatial organisation also hold for a completely random distribution of cities
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in a flat surface. For instance, if in this hypothetical random system we look

at a city’s Voronoi cell (i.e., the points of the surface that are closer to it

than to any other city), then the probability that the cell has n sides peaks

when n = 6 [111] and its average is < n >= 6 [37, Chapter 5], which means

that the hexagonality of service areas arises frequently from the simple fact

of operating in a two dimensional surface, without the need of assuming mar-

ket logic or a rigid hierarchical organisation. Assessing the null hypothesis of

complete spatial randomness has long been an essential step in studying the

spatial pattern of cities in real world scenarios, as we will discuss more ex-

tensively in Section 2.5.1.4. Yet, Central Place Theory remains influential in

its fundamental concepts, and indeed contemporary studies have approached

the analysis of the spatial organisation of systems of cities via a hierarchical

approach based on their size, Voronoi cells, and those of their neighbours [139].

In light of its enduring legacy, another theory on systems of cities that

deserves a special mention is Zipf’s law [227], which suggests that a city’s

population size is inversely proportional to a power of its position in its na-

tional population ranking. This rank-size relation can be expressed with the

formula

Ru = αP−β
u , (2.1)

where Pu and Ru are the population and rank of a city u, and α and β

are constants. What is remarkable is not only the apparent ubiquity of this

distribution, but also its exceptional stability [174], which persists in spite of

the fact that individual cities may see major changes in their ranking [22].

For this reason, Zipf’s law has been used to estimate historical populations of

cities when data was scarce [161].

A great deal of effort has been directed to finding a mathematical explana-

tion for Zipf’s law [17], from the null hypothesis that cities’ populations grow

with independent, identically distributed rates [92], to more complex, but not

necessarily more realistic models of cities populations as random walks con-

strained to remain positive [87], or driven by random growth and identical

intercity migration rates [39]. An equal amount of effort has been dedicated

to disproving it statistically [187], evidencing its dependence on the definition

of city one adopts [6], and dismissing it as a mere statistical consequence of

the fact that the rank Ru of a city is derived from its population Pu, instead of

a meaningful observation on the distribution of the city sizes [88]. Alternative

rank-size relations have also been proposed [40], as well as less rigid, dynamic

models, that incorporate the effects of rare population shocks [209].
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2.3.2 From a static to a dynamic approach

Both Central Place Theory and Zipf’s law present a static view of systems of

cities, that assumes that a system is in equilibrium, and ignores the effects of

evolving intercity interactions.

Alternative theories on the spatial distribution of settlements addressed

more explicitly this concern. For instance, Hudson [116] proposed that the

location of rural settlements is the result of a multi-stage process, whereby

new centres are founded in a previously uninhabited territory, which is then

densified through short distance dispersal of the centres; this exacerbates local

competition pressures, eventually producing the empirically observed evenly

spaced patterns.

In other instances, ideas from these laws were adapted to assess the valid-

ity of dynamic models of cities’ formation and development [21, 33], and to

theorise and analyse trends in the evolution of systems of cities.

2.3.2.1 Evolution of Centralisation

The exponent in Zipf’s law was used to perform cross-time and cross-regional

comparisons of systems of cities and describe trends in their level of centralisa-

tion, i.e., the economic and demographic imbalance between one or few major

centres and the smaller centres in the system. The cities within a region (or a

subset of them) are ranked from the largest to the smallest in terms of popu-

lation size and a line is fitted to the graph of the logarithm of their population

vs the logarithm of their rank. The exponent in Zipf’s law is the slope of this

line: the steeper the line, the larger the unbalance between the population

sizes, and thus the more centralised the region is taken to be.

Pumain and Moriconi-Ebrard [175], for example, remarked that, following

a period of increasing centralisation during the 19th and early 20th century

described in [15], a clear evolutionary pattern in national systems of cities did

not emerge in more recent years from the analysis of the exponents. Hence,

the authors advocated for more sophisticated methods that do not only take

into account city sizes, but also their territorial contexts and spatial locations

to quantify how centralised a system of cities is.

2.3.2.2 Polycentricity

Intuitively antithetical to centralisation, polycentricity has gained considerable

traction in planning but has remained for a long time an ambiguous concept,
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open to multiple interpretations [157]. This vagueness largely derives from

the fact that polycentricity has been used to refer to two different aspects

of a system of cities: the morphological one, relating to the size and spatial

distribution of the cities (see, e.g., [158]), and the functional one, concerning

the linkages and relations between them [78, 95].

In this thesis, we are careful about this distinction and say that a system

of cities is morphologically polycentric when its cities are similarly sized and

evenly spaced across its territory [157, 117]. The distance between two cities

may be computed as their geographical distance or, more aptly, as the travel

time or some other travel cost function [78]. Similarly, we say that a system

is functionally polycentric when the functional connections between the cities

are more balanced [95]. Examples of functional connections include migration

flows, commuting patterns, material and knowledge exchanges, among others.

Another source of ambiguity is the fact that polycentricity has been vary-

ingly treated an observable geographical phenomenon or as a policy objective

to pursue [95].

Hall and Pain [102] described polycentricity as an emergent and ongo-

ing process, discussing the advent of what they called “Mega-city regions”:

polycentric regions clustered around one or more major cities and developed

through a process of decentralisation, whereby the cities within the region take

advantage of the division of labour and operate synergistically.

When polycentricity is interpreted as a policy objective, the primary aim

is often that of analysing the connection between morphological and/or func-

tional polycentricity and economic prosperity. In some cases, the seemingly

neutral notion of polycentricity is inflected with the positive connotation of

“desirable balance”. The European Spatial Development Perspective [82], for

example, maintained that the disproportionate economic and demographic

concentration in the core area of the EU (roughly defined as the pentagon

with London, Paris, Milan, Munich and Hamburg at its vertices) hinders the

full realisation of the economic potential of the peripheral regions, and stressed

the importance of multiplying hubs for accelerating growth, reduce regional

imbalance and ensure global competitiveness. In other cases, though, the link

between polycentricity and economic performance was called into question

when regions in the same or different countries were compared. For example,

Seymour [192] remarked the different levels of economic success in similarly

functionally polycentric regions, such as the Dutch Randstad and German

Ruhr, and in the morphologically polycentric North of England compared to
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the much more morphologically centralised South East.

2.3.2.3 Measuring Polycentricity

Whether polycentricity is treated as an emerging geographical phenomenon

or as a policy objective, a fundamental problem is that of quantifying it.

Most approaches to measuring morphological polycentricity consider cities in

a region as existing “in isolation”, and focus on one or more aspects of interest,

such as their population size, for which several heterogeneity indices can then

be used, including the aforementioned exponent in the rank-size relation.

Just as Pumain and Moriconi-Ebrard [175] used it as an index of centrali-

sation for nation-wide systems of cities, the exponent in the rank-size analysis

has been widely used as a simple measure of polycentricity at the regional

scale [158, 45, 42]. This method is also mentioned in Hall and Pain [102], but

the authors stressed therein its crudeness. Major limitations of this measure

include its sensitivity to sample size (different slopes may result if a larger

or smaller subset of cities in a region is selected), the fact that a line may

approximate only very crudely the rank-size relation, and the measure’s afore-

mentioned inability to capture spatial information about the cities’ locations

or distance between the cities.

Composite indices are adopted as more specialised and sophisticated mea-

sures for polycentricity, their main advantage being that of merging together

information about some attributes of interest, such as employment or popula-

tion, and the spatial location of the cities. Examples include the polycentricity

index proposed by ESPON 1.1.1 – Potentials for Polycentric Development in

Europe [78], which uses the slope in the rank-size relation for cities’ popu-

lation and Gross Domestic Product, the Gini coefficient of the sizes of the

cities’ service areas, and their multimodal accessibility, and the simpler Ur-

ban Centrality in [168], which combines inequity in the distribution of jobs

with an index of the spatial dispersion of centres based on their geographi-

cal distance. Disadvantages of the polycentricity index are its reliance on the

rank-size relation and its complexity, as it involves combining several pieces

of information. The Urban Centrality, on the other hand, uses geographical

distance to compute heterogeneity in the spatial arrangement, which may not

reflect real travel time conditions.

The study of functional polycentricity presupposes instead a network ap-

proach [53], in which cities are represented as nodes connected by links that

correspond to some functional linkage, such as commuting patterns, trade,
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letter exchanges, etc.. In Section 2.5.3, after we formally introduce networks,

we discuss network-based measures of polycentricity.

Real world observations suggest that a morphologically polycentric region

is not necessarily a functionally polycentric one [192]. Yet, morphological and

functional polycentricity are not independent, as the spatial distribution of

cities and their sizes impacts the infrastructural linkages between them, which

are indispensable for the creation of functional linkages [156, 45].

2.3.2.4 Spatial Interaction Models

Spatial Interaction Models (SIMs) attempt to estimate the intensity of func-

tional connections and the resulting flows of goods and people using exclusively

morphological properties of the system. The common assumption of all SIMs

is that the intensity Tuv of the flows between two locations u and v is a func-

tion of some relevant socioeconomic factors Pu and Pv of the locations, such

as their population or number of jobs, and of the friction due to their distance

duv, which may mean geographical distance, but also travel time or cost [184].

A plethora of different models exist. The gravity models are a family of

spatial interaction models whose most general formulation [215] posits that

the interaction Tuv between two locations u and v is given by

Tuv = KuKvPuPvf(duv),

where Ku and Kv are constants that allow to accommodate additional con-

straints to ensure better fitting of the system, and f is a decreasing function of

distance, frequently taken to be f(duv) = d−ϕ
uv , where ϕ is a parameter regulat-

ing the impact of distance. The models derive their name from their affinity

with Newton’s law of universal gravitation [19], that is retrieved when Ku and

Kv don’t depend on the locations u and v and ϕ = 2. It is in this simplified

formulation that they were originally introduced to model migration flows in

the works of Ravenstein [177, 178], and they still appear occasionally in more

modern works [122, 100].

Gravity models, in spite of their popularity, suffer from numerous disad-

vantages. An immediately apparent one is the fact that they do not allow

for self-interactions (since, when u = v, the distance term at the denominator

would be duv = 0), which may be important in modelling some phenomena

such as spending or intercity social ties. Most importantly, they lack a rigorous

mathematical derivation from first principles.
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The entropy-maximisation model introduced by Wilson [215] overcomes

both of these limitations. In Wilson’s model, the interactions are derived from

constrained entropy-maximisation, that is mathematically equivalent to find-

ing the most statistically likely or optimal interactions, given basic constraints

on total intensity of interactions at each locality. Hence, it corresponds to

adopting Occam’s razor principle, imposing minimal assumptions on the func-

tional form of the interactions. This is crucial in the context of historical

studies, where information on the interactions is often partial and, in fitting

or reconstructing them, one wants to avoid the risk of imposing on them a

specific functional form, even one is reasonable in the present, as it may not

have been equally valid in the past [183]. The entropy maximisation model

finds an explicitly dynamic formulation in [216, 217], where the morpholog-

ical characteristics of the localities, such as their population, are repeatedly

updated so the reduce the unbalance with the predicted, ideal flows. We dis-

cuss this model in greater detail in Section 2.4.2.1, after we formally introduce

entropy, and adopt it throughout this thesis.

It is worth mentioning that other rigorously constructed SIMs do exist.

[214] proposed the Two-Trip model, also based on entropy-maximisation prin-

ciples, which accounts for the destination’s surroundings when predicting the

interactions between two localities. The radiation model [195] is a SIM to

predict intercity migrations founded on the principle of intervening opportu-

nities. According to this principle, an individual residing in city u will move to

a city v if no better opportunities are offered in u or in all other cities falling

in the disc centred at u having as radius the distance duv. The crucial advan-

tage of the radiation model is that it is parameter-free, which allows to avoid

the careful calibration needed for a successful application of both the gravity

and the entropy-maximisation model. Nonetheless, the accuracy of the model

in its basic formulation has been subject to criticism [169], especially when

confronted to more sophisticated versions of the above two models.

However careful the construction, it is important to remark that spatial

interaction models such as the entropy maximisation model provide the op-

timal or most likely functional interactions, but the real-world interactions

may not correspond to an optimal state, deterministically derived from mor-

phological constraints. In predicting the interactions between Aegean Islands,

[129] utilised a gradient descent model, that retrieves the most likely interac-

tions based on a balance of cost and benefit, but is open to fluctuations and

stochastic effects.
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Human, political, and technological factors all play an important role in

influencing interactions that is not easily captured by spatial interaction mod-

els. In their study of the evolution of social connectivity between settlements

in South-West U.S. before European contact, Hill et al. [112] highlighted that

people’s desire to maintain their connection even after displacement led to the

continuation of highly impractical long-distance ties, which would defy opti-

misation principles. The necessity of guaranteeing high level of integration

in a nation state manifests itself in much more intense than expected mail

exchanges with London from all parts of Britain than what one would expect

from proximity alone [96]. The observation that, at least for Europe, centres

of political power tend to grow larger than other cities [15], mean that any

SIM for intercity migration would fail to completely explain cities’ growth [40].

Finally, a city’s functional interactions and evolution are strongly linked to its

functional specialisation, which depend on the diffusion of randomly emerged

innovations [174], a complex phenomenon driven by the presence of suitable

local conditions and by the active engagement of individuals, that no SIM

could fully predict.

It is with full awareness of these limitations that we adopt SIMs in our

analysis.

2.4 Entropy

The concept of entropy has long been central in urban studies, lending itself

to multiple applications and interpretations [176]. In this thesis we focus on

two historically distinct, but mathematically (nearly) equivalent notions of

entropy, emerged from the fields of Information Theory and Statistical Me-

chanics, due respectively to Shannon, and Boltzmann and Gibbs.

2.4.1 Definition(s)

2.4.1.1 Entropy in Information Theory

Let X : Ω → R be a discrete random variable, where Ω is the sample space of

a probability space with probability function P . Let X ⊂ R be its image and

p : X → [0, 1] be its probability mass function, i.e., for all x ∈ X,

p(x) = P (X = x) = P ({ω ∈ Ω|X(ω) = x}).
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Definition 1 (Shannon entropy [193]). The Shannon entropy of X is

H(X) = −
∑
x∈X

p(x) log2 p(x).

To keep the notation light, in the following, we will write log for log2.

H(X) can be thought of as a measure of heterogeneity of p [64]. If X is a

finite subset, and n = |X|, then H attains its maximum value Hmax = log(n)

when all outcomes x ∈ X are equally likely, or, in other words, p(x) = 1
n , for

all x ∈ X. It attains its minimum value Hmin = 0 when one of the outcomes

has probability one4.

With a slight abuse of notation, we will apply this definition to any finite

vector q = (q1, . . . , qn), denoting

H(q) := −
n∑

j=1

pj log pj ,

where pj =
qj∑n
i=1 qi

. The interpretation remains similar: H(q) is a measure of

the balance of the entries of q, with larger values indicating a more homoge-

neous distribution and smaller values a more unequal one.

2.4.1.2 Entropy in Statistical Mechanics

In classical physics, to describe a system constituted by several particles, it is

enough to describe all their individual positions and momenta. This is referred

to as the system’s microstate. When the number of particles is extremely large

(think, for instance, of particles of a gas), this is impractical, and it is usually

preferable to describe the system in terms of its macroscopic properties. This

is called the system’s macrostate.

Definition 2 (Boltzmann entropy). The entropy of a system is

SB = kB lnW,

where ln is the natural logarithm, kB = 1.380649×10−23J/K is the Boltzmann

constant, and W is the number of microstates in which the particles may be

found given the system’s macrostate.

Boltzmann proposed an explicit formula for W . Assuming that the system

4For an outcome x such that p(x) = 0, we take 0 log 0 = 0, in accord with the limit
limp→0+ p log p = 0.
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is formed by N indistinguishable particles, of which Ni are found in a certain

state i, the number of microstates is

W =
N !∏
iNi!

,

where the denominator accounts for the possible permutations of particles in

a given state.

Gibbs generalised Boltzmann formula, by allowing microstates to have

different probabilities.

Definition 3 (Gibbs entropy). If the microstate i of a system has probability

pi, then the entropy of the system is SG = −kB
∑

pi ln pi.

Boltzmann’s formulation of the entropy of a system may be retrieved from

Gibbs’s by assuming that all microstates are equally likely, i.e. pi = 1
W . This

also corresponds to the maximum value Gibbs entropy can achieve.

Gibbs entropy and Shannon entropy are mathematically equivalent, up to

a multiplicative constant. One can intuitively reconnect the Shannon entropy

of the discrete random variable X to the number of configurations of individual

particles in a microstates by thinking of the event X = x more explicitly as of

{ω ∈ Ω|X(ω) = x}.

2.4.2 Entropy in Urban Science

The usage of entropy in Urban Science is well-established since its introduction

in the pioneering works by Wilson [215] and Batty [19], who followed, respec-

tively, a Boltzmann- and a Shannon-inspired approach, whilst both adopting

the more general Shannon’s formula.

2.4.2.1 Entropy Maximisation Models

Given a set V of locations, Wilson [215] applied a Boltzmann-inspired in-

terpretation of entropy to find the most likely distribution of spending flows

{wuv}(u,v)∈E between the locations pairs E = {(u, v)}u,v∈V . The author in-

terpreted the distribution of flows as a macroscopic description of the system.

Such flows could result from assigning to each pair of locations (u, v), several

different sets of individuals residing in u and spending in v. This assignment

is interpreted as a microscopic state. Wilson argued that the most likely

structure of the spending flows (macrostate of the system) is the one that

is associated with the maximum number of possible assignments, where the
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assignments are assumed to be equally likely. The maximisation procedure

can be subject to additional constraints on the cost and benefit resulting from

spending in a given location v by a person residing in u.

More precisely, for each u and v, Wilson considered the “cost” cuv of

spending in v for a person in u, which can be some measure of travel cost

between locations u and v; and the benefit bv derived from spending in v,

dependent on characteristics of the location v. He then let w =
∑

u,v wuv and

assumed the following constraints:

• the total money
∑

v wuv spent by people living in u is known for all u;

• the total cost
∑

uv cuvwuv and the total benefit
∑

uv bvwuv are also

known.

Maximising W (wuv) = w!∏
u,v wuv !

under the above constraints yields the most

likely configuration of the flows5. Using Lagrange multipliers, Wilson proved

that the resulting most likely flows are given by

wuv = γ · pu
exp(αbv − βcuv)∑
x exp(αbx − βcux)

. (2.2)

Here γ is a proportionality constant, pu is the population size Pu, and the

parameters α and β represent the relative weight of the cost and the benefit,

which need to be calibrated to the specific system.

As anticipated in Section 2.3.2.4, Wilson’s model can be thought of as the

spatial interaction model with minimal assumptions on the functional form of

the interactions, since this is derived exclusively as the most statistically likely

or optimal form with respect to cost and benefit considerations. We will use

this spatial interaction model in Sections 5.2, 6.2, and 6.3.4.

A dynamic formulation of the model is possible [216], with all the quantities

and parameters taken to be dependent on time t. Assuming that the system

evolves towards this ideal state, the characteristics of the locations at time t+1

are adjusted according to the imbalance between the observed flows and the

predicted optimal ones at time t. This dynamic interpretation of the entropy-

maximising spatial interaction model was applied to intercity migration by

Wilson and Dearden [217], who studied the evolution of population in the

U.S. Midwest from 1790 to 1870 by postulating that migration flows would

5In fact, maximising W (wuv) is equivalent to maximising log(W (wuv)), which, by Stir-
ling’s approximation of the factorial of a logarithm, can be proved to be equivalent to max-
imising the Shannon entropy of the flow distribution −

∑
uv wuv logwuv, which is how Wilson

proceeded.
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follow the most likely spending flows. The results showed partial alignment

with the evolution of the real system.

2.4.2.2 Spatial Entropy

Batty’s work, on the other hand, adopted a Shannon-inspired approach. In [19]

and [20], the author clarified how to adapt the discrete formula of Shannon

entropy to continuous spatial data, such as population density, by subdividing

the study area into zones, treating the zone-level populations as a finite dis-

tribution, and computing its entropy. The work carefully discusses the effects

that the number of zones, zone sizes, and zone aggregation produce on the

measure. Batty and al. [23] contains a practical application of these technical

observations, in a study of the entropy of the population density in London.

By defining and numbering zones concentrically from London’s historical core,

they showed that if one progressively adds new zones further away from the

core, one observes an increase in the entropy, but this is almost entirely due

to the increased number of zones. Normalising the entropy by the maximum

value it could attain every time a new zone is added reveals a more mean-

ingful pattern, with entropy at first increasing, as the area of study includes

both the sparsely populated financial core and the densely populated inner

areas London, and then declining, as a large number of vast, less dense suburb

and rural areas are also included. This show the importance of both carefully

considering the size of the window of observation as well as normalising the

entropy to improve its interpretation. The same study also proposed to look

at the temporal evolution of the measure, showing that the population density

within Greater London became increasingly homogeneous over the course of

the 20th century.

Batty’s approach is prevalent in the field of spatial statistics, for example,

in studies of the expansion and evolution of urban areas, such as [1] and [2].

It is worth remarking that while Batty’s work focuses primarily on the issue

of zone size and number, further developments have been made on the connec-

tion between entropy and scale in the analysis of scale-free spatial patterns,

and the association between entropy and fractal dimension [57].

Another aspect which remains under-explored in Batty’s work is the effect

of the relative location of the zones in which the region of interest is subdivided,

e.g., whether two zones are contiguous. Karlstrom and Ceccato [124] addressed

this issue, by introducing spatial weights so that the neighbours of a zone also

affect its contribution to the entropy. Nonetheless, their measure maintain a
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global approach, that is, it focuses on the entropy of the entire area of study

(or a subset of it) rather than the entropy of neighbours of individual zones.

In Section 4.3, we see how Batty’s approach can be used to study the entropy

of a region at the local level, as we focus on urban areas and their immediate

surroundings.

2.4.2.3 Entropy of Cities Locations and Population

Shannon entropy has found fruitful applications as a measure of heterogeneity

of the spatial distribution of cities in a region and their population.

Medvedkov [155], for instance, proposed to subdivide a region with m

towns in n cells of equal areas; count the number mi of towns in each cell i,

for i = 1, . . . , n; deduce the distribution of count frequencies p = {pj}j=1,...,m,

where pj = |{i|1 ≤ i ≤ n,mi = j}|, and compute its entropy H(p). If all cells

contained the same number of towns, say k of them, then the distribution of

count frequencies would be maximally concentrated (pk = n, and pj = 0, for

all j ̸= k), and thus the entropy would be minimum. This would indicate

a highly regular spatial distribution, while larger values would correspond to

more irregular distributions. Note that this definition is based on frequen-

cies, and its interpretation is the opposite of Batty’s, for whom more regular

distributions yield larger entropy.

A similar approach to entropy based on frequency has been proposed by

Curry [67] in the context of city population sizes, to argue that regularity in

the distribution of city sizes may emerge as a consequence of entropy max-

imisation. Given a system with Z settlements, of which Zn have population

size n, if one assumes that each settlements has the same attractiveness for

an individual, the number of ways in which N individuals can be distributed

among the settlement sizes is

W =
Z!∏N

i=1 Zn!
, (2.3)

Maximising W in a Boltmann’s fashion, with a Lagrange multiplier to account

for the fact that the average settlement size is known to be N/Z, yields

Zn =
Z2

N
e−

nN
Z . (2.4)

Hence, the probability that the (i + 1)st largest city in the system has a

population that is a ratio of the ith city is constant.
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The argument was reprised by [29] and clarified and extended in [189]. The

latter article reformulated the reasoning in terms of the probability pn that a

randomly selected city has size n, and the probability rn that a person chosen

at random lives in a city of size n, and showed that the entropy maximisation

can be used to retrieve Zipf’s law for the rank-size distribution6.

2.4.3 Why entropy?

The concept of entropy has proved both extremely versatile and meaningful

in the study of several aspects of urban systems. In the previous Sections,

we have seen some examples, and others will be presented in Sections 2.5.2.6

and 2.5.2.7, as network-specific notions of entropy are introduced.

A great deal of statistical regularities observed by systems of cities can be

simply explained as the most likely outcome of a purely random process [30,

92, 165]. Such scenario corresponds in many cases to the one maximising

the entropy of a distribution subject to some constraints. It is then natural

to use entropy as a measure of regularity (and deviation from it), as it is in

the deviations from the most likely scenario that the presence of meaningful

structures ought to be sought.

Entropy is fundamentally linked to the crucial if at times nebulous no-

tion of complexity, which, though not explicitly the subject of this thesis, is

an established perspective in the study of urban system. Batty [23] argues

that Shannon entropy captures several aspects that ought to be included in

an intuitive definition of complexity of a system, such as the number of its

components, scale, size, and (spatial) distribution.

More philosophically, a fundamental, albeit controversial, theory in ur-

ban science for the rationale behind the development of cities from sparser

settlements is that of scaling laws (see, e.g., [31]). These suggest that to a

linear increase in population corresponds a super-linear growth in economic

6[189] argues that the maximisation of W can be interpreted in terms of the energy of
the system. The two distributions pn and rn are linked by the the relation rn = npn

<n>
, where

< n >= N
Z

is the average city size. If we identify the population size n as the energy in the set
of cities with n people, maximising W as in [67] can be shown to be equivalent to maximising
H({pn}) subject to a constraint on the average energy

∑
n npn =< n >. This yields the

Boltzmann distribution in eq. (2.4). If one, instead, accounts for the pairing of pn and rn and
assumes rn to be maximally entropic without constraints (and thus uniform), then a better
definition for the energy is logn and the constraint on its average is

∑
n pn logn =< log(n) >.

This corresponds to the cross entropy of {pn} and the distribution {p′n} obtained if rn were
uniform (see the Appendix in [189] for details). The maximisation, in this case, yields

pn = n−γ

ζ(γ)
, for constant γ, i.e., the Zipf’s distribution is retrieved as the maximally entropic

one.
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output and a sub-linear growth in infrastructure volume and cost. A possible

explanation is that higher density fosters more and more varied connections,

facilitating the exchange of knowledge and efficient division of labour. Shan-

non entropy is a measure of uniformity and concentration of a distribution.

Therefore, the entropy of the distribution of population in different cities and

in space, of their connections, and of their interactions, are reasonable candi-

dates for a quantity to explore the fundamental mechanisms of urbanisation

and the connection between the development of system of cities, major histor-

ical events and technological innovation, which define the core subject of this

thesis.

2.5 Mathematical Framework

In our analysis of systems of cities, we rely on mathematical techniques from

the theory of point processes and network theory, with particular emphasis

on spatial and temporal networks, and on network entropy. Here we present

the mathematical framework and the notation used throughout the thesis, as

well as the fundamental results from the literature on the application of these

concepts in Urban Science.

2.5.1 Points process statistics

A point pattern is a collection of points in some well-defined region of a Eu-

clidean space. A point process is a generalisation of a random variable whose

realisations are point patterns.

The theory of point processes is extremely vast and sits at the basis of

Stochastic Geometry [198], the branch of Mathematics concerned with the

study of random objects in space. In this thesis, we focus exclusively on point

process statistics, that is the application of point processes to analyse the

locations of objects that can be thought of as points distributed at random

in space [119]. Classic examples of these include the location of trees in a

forest, cells in biological tissues, and epicentres of earthquakes occurred in a

given region in a fixed time interval. We also focus exclusively on processes in

regions of the two-dimensional Euclidean space, which we see as a reasonable

approximation of small portions of the Earth surface.
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2.5.1.1 Point Process Models

Several point process models exist that generate point patterns with differ-

ent geometric properties. The Homogeneous Poisson Process (HPP) is the

simplest one. It satisfies two fundamental properties:

1. the number of points in any bounded subregion B of space is distributed

as a Poisson random variable with mean λν(B), where λ is a fixed pro-

portionality constant, known as the intensity, and ν(B) is the area of

the subregion;

2. the number of points in k disjoint bounded subregions are k independent

random variables, for any k.

The Homogeneous Poisson Process corresponds to the scenario of Complete

Spatial Randomness (CSR), where the intensity does not depend on the loca-

tion and there is no interaction between the points. Two fundamental proper-

ties of the HPP are its stationarity and isotropy, that is the invariance of the

distribution with respect to translation and rotations, respectively.

A more general model is provided by the Inhomogeneous Poisson Process

(IPP), that allows for the intensity λ(x) to be dependent on the location

x. The Inhomogeneous Poisson Process satisfies the latter of the above two

properties and a suitably generalised version of the former, where the mean

of the Poisson random variable describing the number of points in a bounded

region B is substituted by the integral
∫
B λ(x)dx, where the integration is

with respect to the usual Lebesgue measure. The Inhomogeneous Poisson

Process can be used to model patterns that show visible trends in the area

of study and/or depend on exogenous factors that favour or hinder higher

density in specific areas (for instance, rain patterns or elevation in the case

of the location of trees). On the other hand, in an IPP the points remain

mutually independent.

Neyman-Scott processes are a category of point process models that in-

volve the generation of a point pattern in three steps: first a pattern of “par-

ent points” is generated following an HPP with intensity λP ; then a random

number of “daughter points” are scattered independently with identical dis-

tribution around each parent point; finally only the daughter points are kept

in the final pattern. If C is the random variable of the number of daughter

points around a parent, then the intensity of the process is λ = λP C̄, where

C̄ is the expected value of C. A realisation of a Neyman-Scott process is a

clustered point pattern.
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Different models correspond to different distributions of daughter points

in the clusters. The Matérn cluster process generates the daughter points

in discs of fixed radius R. The number of points C in each cluster follows a

Poisson distribution, and the points are independently and uniformly scattered

in the disc. The Modified Thomas process also generates C points around each

parent, where C follows a Poisson distribution, but the points are distributed

in a symmetric normal distribution, where the expected distance of a daughter

point from its parent is regulated by a parameter σ.

Remark that also an IPP can create clustered conditions: the choice of

a Neyman-Scott process model over an IPP can be ascribed to the expected

generating mechanism of the pattern, but the two processes are not necessarily

distinguishable on the basis of interpoint distance alone. The characteristics

of a IPP and a Matérn cluster process can be combined by generating parent

and/or daughter points according to an IPP instead of an HPP. We call this

the Inhomogeneous Matérn cluster process.

A point pattern may also exhibit regularity, that is the points may be more

distant one from the other than one would expect in the case of complete spa-

tial randomness. Models for regular point patterns include the Gibbs process,

in which pairs of points interact with a strength dependent on their distance

and the points are distributed according to a probability density that depends

on the total sum of these interactions7. When the interaction is such that no

two points are allowed to exist at a distance below a certain threshold, we talk

about a Gibbs hard-core process. When instead the interaction allows points

to be arbitrarily close, albeit with very small probability, the process is said

to be soft-core.

Finally, note that a point pattern may display several characteristics at

once and may be better described by composing or superimposing the reali-

sations of two or more of the above models.

2.5.1.2 Functions for point processes analysis

To analyse a point pattern and identify a suitable model, one may use summary

characteristics: scalars or functions that capture geometric properties of the

7More precisely, if the number of points n in the pattern is fixed, the locations x1, . . . , xn

of the n points follows the density f(x1, . . . , xn) ∝ exp (−U(x1, . . . , xn), where U(x1, . . . , Un)
is the sum of the pairwise interactions and is known as the total energy of the system. This
formula results from the maximisation of the entropy of f subject to a fixed expected total
energy [119]. This opens interesting connections, which are not part of this thesis (see
Section 7.2).
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pattern.

Clark and Evans’s R index is the ratio of the mean nearest neighbour

distance observed in the pattern to that expected in an HPP of the same

intensity [62]. For a regular pattern, R > 1, whilst for clustered patterns

R < 1.

The Empty Space Function or Spherical contact distribution function F (r)

is the probability that the disc B(x, r) of radius r centred at an arbitrary

location x in the observed region (not necessarily a point in the point pattern)

contains at least one point of the pattern.

For a stationary point process, we also define the Nearest neighbour dis-

tance function G(r) and Ripley’s K−function K(r).

The Nearest neighbour distance function G(r) is the distribution of the

distance r from a typical point to its nearest neighbour, where by typical point

here we mean a randomly chosen one8. The functions G and F differ from

each other in that the former is centred on points, while the latter depends

on location [119]. Consequently they are distinct, in general, though they do

coincide in the case of an HPP, for which

F (r) = 1 − exp(−λπr2) = G(r),

for all r ≥ 0, where λ is the intensity of the process.

Ripley’s K−function is the function K(r) such that λK(r) is the mean

number of points in the disc B(x, r), where x is a typical point of the pattern,

excluding x itself. In the case of an HPP, K(r) = πr2. The advantage of K

with respect to F and G is that K captures inter-point distance properties

beyond the first contact or nearest neighbour9.

The use of F , G and K is preferable to that of the R index, as they

allow to study the pattern at different scales. Deviations of F , G and K from

their theoretical values in the case of Complete Spatial Randomness can help

assess whether the pattern exhibits clustering or repulsion at certain scales,

8The assumption of stationarity in the definition of G and K ensures that the notion
of typical point of a point process, on which these definitions rely, is rigorously defined in
the sense of Palm distribution theory. Palm distributions are conditional probabilities that
a point process satisfies some property given that the process contains a point at a given
location. We will not discuss the details here; instead, we intuitively equate the typical point
to its empirical interpretation as “randomly chosen point” [198]. Hence, we will be able to
extend these definitions to non-stationary point patterns as well, which can be helpful in
fitting or testing point process models (see, for instance, [13] or [119, Example 7.1]).

9Indeed, if we generalise G(r) to the kth nearest neighbour distance functions Gk(r), then
λK(r) =

∑∞
k=1 Gk(r).
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keeping in mind that the functions may also be affected by other sources of

inhomogeneity.

Alternative approaches to analyse a point pattern include recurring to aux-

iliary secondary structures on point processes, for instance geometric networks,

which we discuss in Section 2.5.3.3.

2.5.1.3 Validation of a point process model

Summary characteristics may be used to fit a suitable model to an observed

point pattern. Following [119], fitting a point process involves a series of steps:

1. The choice of a possible model, informed by observation of the pattern

and a priori knowledge.

2. Testing the CSR hypothesis (if this is not rejected, then no other model

than an HPP ought to be sought).

3. Assess simple models, such as Neyman-Scott cluster models or Gibbs

Processes, before passing to more elaborate cluster models based on

non-Poisson parents.

4. Estimate the model parameters. For this, several methods are possible,

including the method of minimum contrast that aims to minimise the

discrepancy between the observed values of a summary characteristic

Ŝ(r) and the theoretical values of the same function expected from the

model for a choice of parameters.

5. Test the agreement of the model with the observed pattern via another

summary characteristic S′(r).

6. Perform a formal goodness-of-fit test, such an envelope test: generate

a large number of patterns using the model, find the minimum value

S′
min(r) and maximum value S′

max(r) of S′(r) at each r among the

generated patterns, and verify that the observed value Ŝ′(r) satisfies

S′
min(r) < Ŝ′(r) < S′

max(r) for all r.

The identification of a model is useful to assess hypotheses concerning the

nature and generative mechanism of the pattern.
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2.5.1.4 Point Process to model city locations

There is a long tradition of studies that use point processes to study the spatial

distribution of human settlements, most commonly in small, homogeneous

rural areas with regular boundaries.

Dacey [68] studied the distribution of farms in the Tonami Plain in Japan

in 1932 and of towns in Iowa with at least 2500 inhabitants, using census data

from 1840 to 1960, at 10-year-long intervals. Both areas are characterised by

remarkable uniformity in geographical features. The author’s method consists

in dividing the region under consideration into cells (squares of equal area in

the case of the Tonami Plain, and counties of similar size in the case of Iowa)

and in counting the number of settlements (farms or towns respectively) in

each cell. The resulting distribution of counts is normalised into a probability

mass function (pmf), whose first and second moments are matched to those

of the following parametric probability mass function:

p(x) = (1 − p)
λxe−λ

x!
+ p

xλx−1e−λ

x!
,

for x ∈ {0, 1, . . .}. This allows to estimate of the parameter p of the pmf, which

represents the transition from an entirely random distribution of points in the

cells (for p = 0, one has the pmf of a Poisson distribution with parameter λ)

to a more regular pattern (if p = 1 every cell has at least one settlement). The

distribution of farms in the Tonami Plain in 1932 was found to be more regular

than the CSR null hypothesis. For the case of towns in Iowa, the experiment

revealed a steady increase in regularity in time, with values of p gradually

increasing from p = 0.008 in 1840 to p = 0.830 in 1960. One may argue, not

without reason, that choosing counties as cells in the case of Iowa introduces a

bias in the counting, even considering the fact that their areas are very uniform.

Yet, the results make perfect sense from a Christallerean perspective [60]: the

mostly rural character of the State and the limited size of the towns suggest

that they are primarily local bases for agricultural activities, and thus they are

bound to be separated one from the other by the expansive rural areas they

serve. Furthermore, the increasing regularity is also compatible with the latest

stage of the aforementioned Hudson’s spatial theory of rural settlements [116],

which predicts growing uniformity as competition between rural centres forces

inefficient farms to be annexed by more successful nearby ones. Despite the

simplicity of its methodology, [68] remains a particularly interesting study for

our thesis because of its dealing with the temporal evolution of the process
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and its uniformity.

Glass and Tobler [94] made fuller use of methods from the theory of spatial

point processes in their study of the distribution of towns in a rectangular por-

tion of the Spanish Plateau south-east of Madrid. The short paper introduces

the “radial distribution function” g(r) for r > 0 as the probability that a point

(by which here we mean a town) is located in a unit square at a distance r

away from a typical point, proposing also an estimator. This function is more

commonly known as the pair correlation function in more recent literature10.

Comparing the radial distribution function ĝobs(r) obtained for the data set

to that of an HPP with the same intensity (for which g(r) ≡ 1), Glass and To-

bler observe that ĝobs(r) is considerably smaller than 1 for small values of the

radius r, and then it oscillates about 1. This behaviour is typical of soft-core

repulsive processes in which a point inhibits the presence of other points in its

vicinity, but the strength of its influence is reduced as the distance from the

point increases. The authors suggested that this observation was compatible

with a point pattern that is maximally random subject to the constraint of

moderately repulsive interactions. It is important to remark that the model

tacitly assumes isotropy and stationarity, assumptions that may apply in the

flat, homogeneous Spanish Plateau but would fall short in a more general

setting.

Isotropy was the object of extensive scrutiny in [109] and [207], both of

which used as case study the distribution of towns in the Argentinian Plain

with a population of 2000 or more, comparing it for the years 1914, 1947, and

1960. In both articles, the authors connected the towns to their nearest neigh-

bour and then studied the distribution of the off-north angles of the resulting

vectors. A significant directionality in the pattern is observed in 1914, re-

flecting the road infrastructure radiating from Buenos Aires in the north-east.

This directionality persists in subsequent years, though not significantly, which

the authors ascribed to the addition of interlacing roads to the previous radial

pattern and the subsequent development of towns along them. Though the ar-

ticles agree about directionality, they differ in their conclusions regarding the

evolution of the pattern. Haynes and Enders [109] used the nearest-neighbour-

based Clark and Evans’s R statistic [62] and a decomposition of Medvedkov’s

entropy of towns counts in cells to conclude that the process is degenerating

towards greater randomness, contradicting Christaller’s thesis of increasing

10The pair correlation function g(r) is strongly related to Ripley’s K−function, satisfying

the relation g(r) = K′(r)
2πr

for stationary point processes in two dimensions [119].
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uniformity in the time limit. This thesis was rejected by Upton [207], who ar-

gued that the R statistics suffers from edge-related effects and proposed to use

the spherical contact distribution function F and the nearest neighbour dis-

tance distribution function G, instead. Such measures allowed for a finer study

of the pattern at different scales and did not show any apparent reversion from

regularity towards a more random arrangement. Upton also advocated the us-

age of double angles in the study of directionality to avoid the complications

arising with the frequent reciprocity in the nearest-neighbour relation. Per-

haps more interestingly, in the conclusion of the paper, the author called for a

directional analysis that takes into account the unequal size of the towns, by

weighting links according to distance and size, de facto reconnecting the point

process based approach to an analysis based on SIMs (seed in Section 2.3.2.4).

In addition to warning against the indiscriminate adoption of the assumption

of isotropy, the case study shown in [109] and [207] is also a cautionary tale

about artificially defining the boundaries of the area under consideration, with

little concern for the political entity it belongs to. Indeed, the pattern of cities

in the Argentinian Plain seems to be influenced by the growth in the large

cities of Buenos Aires, Rosario, and Córboda, situated in its proximity, but

outside its boundaries [109].

A remarkable attempt to address the issue of boundary effects and lack of

stationarity is presented in [90]. The paper studies the distribution of popu-

lation in 1970 in the Chicago area, using one point to represent ten thousand

people. The most prominent geographical feature of the region is Lake Michi-

gan, whose shore runs approximately south to north. The lake introduces a

remarkable directional bias as a greater than average concentration of popula-

tion can be observed in a thin strip facing the lake, and just north of the Loop

(Chicago’s Central Business District). A rectangular observation window was

carefully placed in such a way to include the vast majority of the city but ex-

clude any water surface and the denser strip, so to make stationarity plausible.

The window was then mapped to a torus, so to avoid boundary effects. An

edge-corrected estimator of Ripley’s K function was finally used to test the

pattern against the hypothesis of complete spatial randomness. Repulsion at

small distances was observed, whilst clustering is observed at distances of 7-9

miles, corresponding to the mean journey-to-work distance in Chicago. The

adopted methodology ignites a number of necessary reflections. Aggregating

the population of a continuously inhabited area in a single point necessarily

affects the results of the analysis at small scale. Second-order methods such as
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Ripley’s K−function are extremely helpful for the analysis of point patterns

because they capture the reciprocal influence of points at different scales, but

in order to be meaningful they require the pattern under consideration to be

stationary and isotropic. If these assumptions fail, directional trends in the

data may incorrectly be identified as clustering. The article addressed the

issue by artificially removing areas for which the assumption of stationarity

is certainly not valid. But it could not ensure that stationarity was really

satisfied.

Second order methods are employed in [101] to study the distribution of

rural settlements in Iowa and Sweden. The results in this case show clear

repulsion at small scale and clustering at larger scale, leading the author to

suggest that a mixed model with large scale Poisson distributed clusters and

repulsion among the points in the clusters might be the best at describing

the distribution of points. However, such model entails a considerably more

complex fitting procedure, that the author does not execute.

2.5.2 Graphs and networks

A graph is pair G = G(V,E), where V is a set of objects called vertices and

E is a set of pairs of vertices, called edges. When a graph is used to represent

a real-world system of objects and their relations, it is often called a network,

and its vertices and edges are referred to as nodes and links, respectively.

2.5.2.1 Graph definitions and notation

We distinguish between directed graphs, for which the edges in E are ordered

pairs, i.e., E ⊆ {(u, v)|u, v ∈ V }, and undirected graphs, where the pairs

in E are unordered, i.e., E ⊆ {{u, v}|u, v ∈ V }. An undirected graph such

that any two vertices are connected by at most one edge and self-loops (i.e.,

edges connecting a vertex to itself) are not allowed, is said to be simple. All

undirected graphs in this thesis are assumed to be simple. A subgraph is a

graph whose vertices and edges are subsets of those of another graph.

If two vertices in an undirected graph are connected by an edge, they are

said to be adjacent ; the vertices are called the endpoints of that edge. A clique

is a subset of vertices in a simple graph such that all pairs of distinct vertices

are adjacent. Conversely, a stable set is a subset of vertices such that no two

distinct vertices are adjacent. The set of all vertices adjacent to a given vertex

v is called its neighbourhood and denoted by N(v). If a vertex has no adjacent

vertex, it is said to be isolated. For a graph G = G(V,E) and a subset S ⊆ V
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of its vertices, the induced subgraph G[S] is the subgraph with vertex set S

and as edge set all the edges in E whose endpoints are both in S.

The number of vertices n = |V | is called the order of G, and the number

of edges m = |E| is called the size of G. For conciseness, we will call a graph

of order n and size m an (n,m)−graph. Note that for a simple graph we have

m ≤
(
n
2

)
= n(n−1)

2 . The order of the largest clique contained in a graph is

called its clique number.

In a directed network, the number dout(v) of edges issuing from a vertex

v ∈ {v1, . . . , vn} is called its out-degree; the number of edges din(v) ending

in v is called its in-degree. In a undirected network these two notions are

indistinguishable and we simply call d(v) = dout(v) = din(v) the degree of v.

Definition 4. The degree sequence of an undirected graph is the sequence

(di)1≤i≤n of vertex degrees.

Conventionally, the degree sequence is arranged in non-increasing order, that

is di ≥ dj if i ≤ j. Furthermore, a concise notation is adopted that indicates

the multiplicity of an entry in the sequence as its exponent. For example, the

degree sequence (4, 1, 1, 1, 1) becomes (4, 14). Remark that in a simple graph,∑
i di = 2m, a result known as the hand shaking lemma.

Vertices and edges in a graph may be associated with labels or numerical

attributes, that provide additional information about the entities and their

relations. For example, the weight wuv of the edge (u, v) is a positive value

associated to the edge connecting u to v. In general, one takes wuv = 0 if no

edge exists from u to v. In a directed graph, the sum sout(v) =
∑

uwvu of

the weights of the edges issuing from a vertex v is called its out-strength; and

the sum sin(v) =
∑

uwuv of the weights of the edges ending in v is called its

in-strength. In an undirected graph, s(v) = sout(v) = sin(v) is simply called

the strength of v.

A path from a node v to a node u in a (directed) graph is a sequence of

vertices connected by distinct (directed) edges that starts in v and ends in u,

never passing through an already visited node (when the sequence is allowed

to include multiple times the same vertex, but never the same edge, one talks,

more generally, of a trail). If a vertex v is connected via a path to a vertex

u, u is said to be reachable from v. The set of all vertices reachable from v is

called the forward reachability set of v. The set of all vertices that reach v is

called the backward reachability set of v.

When any two vertices in the graphs are connected by at least one path,

the graph is said to be connected. A component of an undirected graph is a
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connected subgraph that is not contained in any larger connected subgraph.

More than one path may exist between any two vertices in a graph, thus

special attention is given to the shortest paths connecting them, by which one

can mean either the paths containing the smallest number of edges, or, in the

context of weighted graphs, the paths whose total sums of edge weights is

minimal. The distance duv from a vertex u to a vertex v is the length of any

shortest path connecting them, i.e., the number of edges or the sum of edge

weights along the path. Remark that dvu need not be equal to duv in directed

graphs, whilst equality always holds in undirected graphs. If no path connects

two vertices u and v, then one formally lets duv = ∞ or 1
duv

= 0.

2.5.2.2 Measures of vertex importance

The degree of a vertex and its strength, if the graph is weighted, are two simple

measures of the vertex’s importance. The size of the forward reachability set

extends the notion of (out-)degree. It can be thought of a measure of the

potential spread of information released from v when this can be transmitted

to the vertices to which v is connected, and from these to the vertices they

are connected to, and so on. Hence, the size of the forward reachability set

may be a more appropriate notion of importance of a vertex in the context of

information diffusion since, whilst a vertex may have few connections in itself,

the connections of these may be numerous and the information it released may

thus spread extensively. Similarly, the size of the backward reachability set

can be interpreted an indicator of the receptiveness of a vertex.

The literature contains a great deal of sophisticated notions of the impor-

tance of single nodes, collectively known as centrality measures, each offering

a different interpretation of the potential influence of a node in the overall

network. The classic [86] contains a clear discussion of the meaning and origin

of several centrality measures, while [131] provides a more modern and exten-

sive account. Amongst the most common ones, we mention incidentally the

closeness centrality and the betweenness centrality, that we employed in [159],

upon which Section 6.3 is partially based. According to closeness centrality,

a vertex is more central when it is close to the other vertices, as measured by

shortest paths [25]11. The betweenness centrality of a vertex v is based on the

principle that v is more central when it is “strategically located” along the

11The original definition of closeness centrality given in [25] could be applied only to
connected graphs. A definition that could be applied to any graph was introduced by [143],
but had already been used in the context of real-world networks in [93].
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largest number of shortest paths connecting other vertices [24, 85].

2.5.2.3 Graph invariants

Reachability and centrality measures focus on individual, distinguishable ver-

tices in the graph. A different approach consists in considering graph in-

variants, that is properties of the overall structure of the graph, that do not

depend on labelling its vertices or edges. The aforementioned size and order

of a graph are examples of graph invariants given by a single integer value;

the diameter, that is the length of longest path in an unweighted graph, is

another example. Being connected is an example of boolean invariant, and

so is the property of having no cycles: non-empty trails connecting a node to

itself. Other invariants are given by finite sequences of non-negative integers;

the degree sequence is a chief example of these.

Some simple graphs satisfying basic invariants have been named and re-

served a special notation for convenience. The following definitions list a few

of them, that will be helpful in the rest of the thesis.

Definition 5. The following are named simple graphs of order n:

• A tree Tn is a connected graph with no cycles.

• The path Pn is the tree with degree sequence (2n−2, 12).

• The star Sn is the tree with degree sequence (n− 1, 1n−1).

• A k-regular graph is a graph in which every vertex has degree k. Its

degree sequence is (kn).

• The complete graph Kn is the graph in which all pairs of vertices are

connected by an edge. Equivalently, it is the (n− 1)-regular graph.

• K−
n is Kn with one edge removed. It is the graph with degree sequence

(n− 1n−2, n− 22).

Definition 6 (Colex graph). Write the graph size m as m =
(
k
2

)
+ ℓ where

0 ≤ ℓ < k. The colex graph C(m) is the graph formed by connecting a vertex

v to ℓ vertices of a clique Kk.

An example of colex graph is depicted in Figure 2.2 for m = 31, i.e., k = 8

and ℓ = 3.
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Figure 2.2: The graph C(31).

Definition 7. A threshold graph KaT is one whose vertex set can be parti-

tioned into two disjoint sets Ka and T , where Ka is a clique with a vertices,

no edge has both ends in T and if d(u) ≥ d(v) for u, v ∈ T , then all vertices

adjacent to v are also adjacent to u [221].

Remark 8. The colex graph is a threshold graph.

2.5.2.4 Graph entropy measures

We have seen two different ways to analyse a graph: focussing on individual

vertices or studying structural graph invariants. A Shannon-entropy based

approach can be taken in both cases. In fact, several vertex properties and

graph invariants are given by finite sequences for which Shannon entropy is

an intuitive measure of uniformity.

In this thesis we focus on the following two notions of Shannon entropy,

one at the individual vertex and the other at the global level:

Definition 9 (Entropy of interactions). Let G = (V,E) be a weighted, directed

graph (possibly with self loops) and let v be a vertex in G. The entropy of

interactions S(v) is the Shannon entropy of the weight wvu of edges (v, u)

issuing from v, normalised by the out-strength sout(v):

S(v) = −
∑
u∈V

wvu

sout(v)
log

(
wvu

sout(v)

)
. (2.5)

An equivalent definition can be formulated for incoming connections, but

we will not use it in this thesis.

Definition 10. The first degree-based entropy of a simple graph G with degree

sequence (di)1≤i≤n and size m equals

I(G) = −
n∑

i=1

di
2m

log

(
di
2m

)
. (2.6)
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The adjective “first” in Definition 10 refers to a more general definition of

degree-based entropy that rests on degree powers dci , with c > 0 an arbitrary

positive integer, and reduces to eq. (2.6) if one takes the first power c = 1 [91]:

Ic(G) = −
n∑

i=1

dci∑n
j=1 d

c
j

log

(
dci∑n
j=1 d

c
j

)
.

The entropy of interactions of a vertex v attains its minimum value of

Smin(v) = 0 when only one edge issuing from v has non-zero weight; it attains

its maximum Smax(v) when all edges issuing from v have equal weight. Hence,

normalising by Smax(v), one obtains an index between 0 and 1 suitable to

compare the entropy of interactions even between graphs with different order.

In absence of constraints on the vertex and the graph (i.e., considering an

arbitrary weighted directed graph, possibly with self-loops), the theoretical

maximum is Smax(v) = log(n) where n is the order of the graph. Additional

information on the graph and on the vertex call for the adoption of more a

appropriate normalisation constant. For example, if self-loops are not allowed

in the graph, the maximum value S(v) can obtain is Smax(v) = log(n − 1),

which is thus a better choice.

2.5.2.5 Normalisation of the first degree-based entropy

The normalisation and interpretation of the first degree-based entropy present

a more difficult challenge. When the only constraint on the graph is its order n,

the first degree based entropy attains its maximum value log(n) for all regular

graphs. When only the size m is known, the maximum entropy log(2m) is

reached by the graph mK2: the graph of order 2m formed by m pairs of

vertices connected by an edge. When both the order n and the size m are

known, Yan [221, Theorem 7] showed that the maximum is obtained by a

graph whose nodes have largest and smallest degree differing at most by 1

(see Theorem 11) . This corresponds again to the intuition that the graphs

with maximum entropy are those with degree sequence as uniform as possible,

given the constraints.

Finding the minimum value is not always equally simple. The problem

resides in the fact that not every arbitrary finite sequence of non-negative

integers is a valid degree sequence; trivially, it is not possible to have a degree

sequence with all but one entry equal to zero that would lead to zero entropy.

There are specific conditions to ensure that a finite sequence is a valid degree

sequence (see, for example [194]) and they impose major limitations on the
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values that the first degree-based entropy can attain.

More generally, determining the extremal values of the entropy of a graph

invariant is a non-trivial task. Dehmer [71] proposed a general approach to

study the Shannon entropy of probability distributions derived by normalising

graph invariants. This approach was motivated by the application of entropy

in the study of graph invariants in mathematical Chemistry [162, 36] and

was indeed subsequently applied in [73] to compare the properties of real and

synthetic chemical structures.

Powers dc of the vertex degrees d, normalised by their sum, were from the

beginning a chief example of such invariants, also in light of their connection to

the first Zagreb index [77] in mathematical Chemistry. Cao et al. [52] proved

extremal properties for certain classes of graphs (trees, unicyclic, bicyclic, and

chemical graphs of given order and size) for the special case of the first degree-

based entropy, i.e., when the exponent of the degree powers is c = 1. In [51],

they extended their work to the case c > 1 and provided bounds depending

on the smallest and largest degree of the graph. The smallest and largest

degree were similarly used in [140] and [141] to provide new bounds, which

they proved via Jensen’s inequality. Chen et al. [58], instead, focused on the

relation between the entropy and different values of the exponent c, providing

numerical results for trees, unicyclic, bipartite and triangle-free graph with

small number of vertices. Das and Dehmer [69] conjectured that the path

graph maximises the degree-based entropy for c > 0 among trees, a result

eventually proved in [118]. Ghalavand at al. [91] focused again on the first

degree-based entropy and used the Strong Mixing Variable method to extend

maximality results for trees, unicyclic and bicyclic graphs, following an idea

very similar to that used in [52, Lemma 1].

Yan [221] focused on the first degree-based entropy for graphs with given

order and size and proved that a connected graph whose degree sequence

achieves minimum entropy must be a threshold graph [221, Theorem 4]. The

same result holds true when only the graph size is fixed. Yan proceeded to

find the minimum entropy for graphs with given order n and size m when

n−1 ≤ m ≤ n+ 5 and conjectured that the degree sequence of the graph that

minimises the first degree based entropy when m ≥ n + 9 is

(n− 1,m− n + 2, 2m−n+1, 12n−m−3).

Note that the cases n − 1 ≤ m ≤ n + 1 correspond to trees, unicyclic, and

bicyclic graphs, solved in [52].
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In Chapter 3, we determine the extremal values of the first degree-based

entropy for connected graphs with given size, prove an extended version of

Yan’s conjecture in the range n − 1 ≤ m ≤ 2n − 3 for graphs and with given

order and size, and provide numerical results for the case m ≥ 2n− 2.

2.5.2.6 Entropy of interactions in Urban Science

As mentioned in Section 2.3.2.3, studies of functional polycentricity start in-

variably from explicitly defining a network of cities where the nodes are taken

to represent cities in a region and the links between them a functional relation

of interest. Denoting by V the set of cities in the region, u and v are two cities

in V , and wuv, the intensity of the connection from u to v. For example, if

the network represents commuting patterns in a region, wuv may denote the

number of people commuting from u to v.

Yang et al. [224] and Marin et al. [144] used the entropy of v’s interactions

(Definition 9) as a measure of the node’s functional polycentricity. In this

context, S(v) = 0 when all connections from v end in a single city, i.e., when

the set of connections is maximally centralised, and S(v) = log n when all

links issuing from v have equal weight, i.e., when the relation of v with its

neighbours is maximally polycentric.

The construction of SIMs using morphological properties of the cities in a

system has allowed to apply the entropy of interaction as a measure of mor-

phological polycentricity of the system. Chapman [56] studied the evolution

of the UK and the U.S. system of cities, combining the changing population of

cities with their distances via a simple gravity model to obtain two weighted

networks. For each city, the author then computed the entropy of interactions.

A similar approach has been proposed for Chinese cities by [84], who also in-

cluded the cities’ Gross Domestic Product in their computations. In [84], the

distance between the city is computed using an unrealistic Euclidean metric.

In [56], the distance is computed along the railway network, but the method

does not account for the evolution of the railway network, neither in terms

of its extension nor in terms of its speed. In both cases, the choice of the

gravity model to establish potential interactions is arbitrary, and does not al-

low for self-interactions, as discussed in Section 2.3.2.4. This implies that in

an extremely unbalanced system constituted by two cities, one much larger

than the other, the measure would counter-intuitively assign maximum possi-

ble balance to both the towns. In Section 5.2, we use the entropy of a node’s

interactions to measure the evolution of the morphological polycentricity of
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the English and Welsh system of cities. We adopt the asymmetric Wilson’s

Spatial Interaction Model, based on travel time on an evolving railway network

to overcome some of the limitations of the previous studies, and obtain a more

intuitive and, we argue, realistic measure of morphological polycentricity.

2.5.2.7 Alternative graph entropy measures

It is worth remarking that the complex networks literature proposes several

other network entropy measures derived from the Shannon entropy, of which

an extensive survey is presented in [72], Some of these have been successfully

adapted to the urban context. Gudmundsson and Mohajeri [97], for example,

studied the Shannon Entropy of the distribution of the lengths and cardinal

orientations of streets in 41 cities, tracking their evolution in time as the cities

expanded.

The von Neumann entropy of a network introduced by Passerini and Sev-

erini [167] has also been interpreted as a measure of centralisation of the

connections in a graph by Simmons et al. [196]. Yet, it is computationally

expensive, and existing approximations [103, 138, 136], present each its own

set of problems [160]. Furthermore, a general interpretation of von Neumann

entropy is still an open problem [160], especially in the context of weighted

and directed graphs [225], which limits for now its applications to study urban

systems.

2.5.3 Spatial and temporal networks

Time and space play an important role in shaping interactions between cities

and between individuals. Temporal and spatial networks provide a powerful

methodological tool of analysis for these relations.

2.5.3.1 Temporal Networks

In a temporal network, nodes and links are transient and exist only in certain,

well defined, intervals of time [114]. Because of this, temporal networks are

occasionally also referred to as time-varying [213], or evolving [218] networks.

A temporal network is perhaps easier to imagine as a sequence of static

snapshots of the network taken at different moments in time, each capturing

a specific instant in the network’s evolution (see Fig. 2.3), a perspective which

reconnects them to the more encompassing theory of multilayer networks [34].

For simplicity, it is sometimes convenient to “ignore” the temporal information
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Figure 2.3: Simple temporal network with its projection.

and consider the static network that includes all nodes and links appearing

in the temporal network at any point in time. This cumulative view of the

network is called the temporal network’s projection [114], as it is akin to

projecting the multilayer network on a single layer.

Temporal networks have been successfully used in the analysis of com-

munication and the consequent diffusion of information. In [113], they were

applied to model email exchanges: each individual is represented as a node

and an email is a directed link between two individuals that exists for a single

instant in the moment it is read. Similarly, temporal networks are a crucial

tool in the study of the spread of diseases. In [182] individuals are again taken

as nodes, and if two individuals come in proximity of each other, a link is

drawn between them which persists for the duration of their contact; trans-

mission of disease may then happen from an infected individual to a healthy

one along such links. Temporal networks are also used as a tool to analyse the

emergence of patterns in static networks [154].

2.5.3.2 Node Centrality in Temporal Networks

The definitions of node importance given in Section 2.5.2.2 need some care to

be generalised to temporal networks.

One possible approach is that of analysing each of the network’s snapshots,

but this ignores the relation between them. Alternatively, one can adopt a cu-

mulative approach, analysing the network’s projection, or several projections

including the network’s evolution up to certain time. A couple of remarks are

needed.

First of all, it is important to notice that not all paths that appear in

the projection network are viable, or time-respecting paths [114], across which

transmission of information from a node to another one is possible. To clarify

this statement, let us consider the situation presented in Fig. 2.3. In the

50



projection network, two paths connect v1 to v4: one passing through v2 and

the other one passing through v3. The link connecting v1 to v2 appears at time

t = 0, and the link connecting v2 to v4 appears at time t = 2. Thus, if we study

the transmission of information along the network, a piece of information from

v1 would be able to reach v4 by first being transmitted from v1 to v2 at time

t = 0, and then from v2 to v4 at t = 2. On the other hand, the link connecting

v1 to v3 appears at time t = 2, while the link connecting v3 to v4 appears at

t = 1. This means that it would not be possible for information from v1 to

reach v4 via v3. Hence the only time-respecting path connecting v1 to v4 is

the one passing through v2.

Second, in a temporal network, the notion of shortest path (among the

time-respecting ones) may have two different interpretations, and thus impact

some centrality measures. On the one hand, a shortest path connecting an

ordered pair of nodes may be, as in a static network, a path that allows to

reach the latter from the former in the smallest number of steps; on the other

hand, a shortest path may be one that allows to reach the latter from the

former in the shortest time [208]. Which of these two interpretations should

be preferred, depends on the context.

[163] and [200] define several careful alternative generalisations of centrality

measures to temporal networks, and [199] presents how some of them have

been applied in real-world networks.

2.5.3.3 Spatial Networks

In a spatial network, the nodes are associated with locations in a space and

the structure of the network is at least partially constrained by its spatial

properties [16]. The dimension of the space and its metric depend on the

system under consideration. The infrastructural and social networks studied in

this thesis are constrained on a portion of the Earth’s surface, so we adopt a 2-

dimensional space, in which the location of a node v is completely identified by

its two geographical coordinates (lonv, latv). The simplest way of computing

the distance between two nodes is along great circles. For a network located on

a sufficiently small region, the 2-dimensional Euclidean distance might provide

a reasonable approximation, but if the region of interest is large enough, such

as the network of international flights that we analyse in Section 5.1, the great

circle spherical distance or another measure of distance on ellipsoids or geodes

is strictly necessary.

Note that in several real-world applications the metric properties of the
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space may be considerably more complex. The presence of transport infras-

tructure and the maximum speed attainable, for instance, affect the ease, cost,

and speed of travel, and induce alternative metrics on the space. We explore

the role of transport technology on distance in Section 5.2.

The strength of spatial network theory is that it allows to translate met-

rical properties into graph properties that can be analysed with the above

described graph measures. For this reason, spatial graphs are often used as

a complementary approach to the analysis of point patterns, alongside the

summary statistics that we discussed in Section 2.5.1. Geometric networks

are spatial networks built on a point pattern according to some geometric

rule [16]. Illian [119] provides a list of geometric networks models that are

commonly used in the analysis of point patterns. These include the maxi-

mum threshold graphs or disc graphs, in which nodes are connected if they are

closer than a certain distance; nearest-neighbours graphs, in which nodes are

connected to a fixed number of their closest neighbours; and Gabriel graphs,

where two nodes are connected if and only if no other node falls in the circle

having as diameter the segment that connects them.

2.5.3.4 Urban spatial networks

Spatial network theory finds extensive application in the analysis of systems

of cities, both because of its great versatility, as the nodes and links in a

network allow to effectively represent numerous kinds of geographical entities

and relations between them, and because of its well-developed set of models

and techniques.

The interaction between systems of cities are often modelled via the deter-

ministic and stochastic spatial interaction models discussed in Section 2.3.2.4.

Examples include highway traffic flows between South Korean cities [122] via

gravity models; mobility and migration patterns in the United States via the

radiation model [195]; maritime interactions between Aegean islands via the

minimisation of a cost/benefit Hamiltonian [129]. The choice of the space met-

ric in these models depend on the context. For instance, in [112] the authors

used least-cost paths to connect pre-colonial settlements in the Southwestern

United States, noticing that the area’s topography, rich in valleys and peaks,

would make other simpler distance measures inappropriate.

Brughmans and Peeples [44] surveyed a number of spatial network models

used to reconstruct interactions between historical settlements, and compared

their efficacy in modelling the ancient Roman transport network, including
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several of the aforementioned geometric networks12.

Another context in which spatial networks are widely applied is the study

of polycentricity. For morphological polycentricity, the existence of a network

is not always explicit. Yet, to account for the spatial distribution of cities,

distances between the cities have to be computed, and this defines an implicit

network structure where the weight wuv of the link between cities u and v is

some function of their distance.

First introduced in Wasserman et al. [210], the aptly named Polycentric-

ities are a class of network-based measures that make use of the standard

deviation of the nodes’ strengths s(u), and of the network density ∆ to give

an indication of how polycentric the network is.

Polycentricities have been adapted to the urban context by Green [95],

who took the nodes in the network to be cities, and the links to be functional

relations between them, such as email exchanges, commuting, or migration

flows. Green defined the Ordinary Polycentricity PF (N) of a directed network

N with m links and no loops as

PF (N) := ∆

(
1 − σF

σFmax

)
, (2.7)

where ∆ = m
n(n−1) is the density of the network; σF is the standard deviation

of the out-strength of the vertices; and σFmax is the standard deviation of the

pair {0, smax}, smax being the maximum vertex strength in the network.

σFmax is the maximum value σF can attain, so that PF (N) ∈ [0, 1], with

0 indicating maximal centralisation and 1 denoting complete polycentricity.

The subscript F in eq. (2.7) refers to the particular functional relation used

to build the network. PF (N) is a purely topological measure, in the sense

that it contains information about the network’s links and not about the lo-

cation of its vertices, but it can be extended so that it also accounts for the

distance between the network vertices when multiplied by the Topographical

Polycentricity PT . This is defined as:

PT := 1 − σT
σTmax

, (2.8)

where σT is the standard deviation of the distances between the cities (pos-

sibly subject to some upper bound) and σTmax , as above, is the standard

12Sometimes, geometric network models may appear implicitly in other fields under dif-
ferent names. For instance, the usage of nearest-neighbours graphs in the study of historical
settlements in Archaeology is an approach also known as Proximal Point Analysis [43].
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deviation of the pair {0, dmax}, where dmax is the maximum distance between

two cities in the system. As above, PT ∈ [0, 1]. Thus, one obtains the Regional

Polycentricity

RSF := PT · PF , (2.9)

whose name hints to the fact that imposing an upper bound on the maximum

distance allows to study systems of cities located within a particular distance

from each other, and thus within the same region.

Green [95] developed Polycentricities with a functional approach in mind,

and, in fact, the computation of Ordinary and Regional polycentricity requires

knowledge of additional data on the functional relation between the cities

which cannot be derived from the spatial distribution and population sizes

of the cities alone (the variables of interest in morphological polycentricity).

Nonetheless, there have been attempts to extend Polycentricities to spatial

urban networks built using a morphological perspective. For instance, [137,

135, 134] adapted the Ordinary Polycentricity to study the relation between

the main centre of a city and its secondary subcentres, substituting the term σF

in eq. (2.7) with the standard deviation of the products pj ·dj of the population

pj of a subcentre j and its distance dj from the main centre. One issue of this

adaptation is that it assumes the existence of a single main centre, and this

may not be the case within a region. Furthermore, it ignores the relations

between smaller centres, which may be of great interest.
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Chapter 3

Mathematical Prelude: the

Normalisation of First

Degree-Based Entropy

Recall that, by Definition 10, the first degree-based entropy of a simple graph

G with n vertices, m edges and degree sequence (di)1≤i≤n is

I(G) = −
n∑

i=1

di
2m

log

(
di
2m

)
.

The first degree-based entropy is a conceptually and computationally simple

measure of uniformity and balance of the connections in a graph. As discussed

in Section 2.5, its careful and context-informed normalisation and interpreta-

tion pose some challenges, as they require knowing the range of values the

measure can take, which is not a trivial problem. Finding the measure’s ex-

tremal value for networks satisfying natural constraints is crucial to solve it.

In the context of intercity transportation networks, an obvious constraint

for the structure of the network is the availability of financial or material

resources. Whilst it might be ideal for each city to have a dedicated and direct

connection to every other city in the system, this is often not economically

viable. Instead, there may be sufficient resources to construct and maintain

only a certain number of connections.

Another constraint in transportation networks is the necessity to ensure

overall connectivity across the system. In principle, a well-designed trans-

portation network should connect every pair of distinct nodes in the system,

albeit possibly only via an indirect path. This is the case, for example, of the
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network of flights connecting airports across the globe (Section 5.1), and of a

well-developed road and railway network on a landmass.

In this Chapter, we determine the extremal values of the first degree-based

entropy given these two natural constraints.

3.1 Introduction

3.1.1 Problem Statement

In the abstract language of graphs, the problem translates into finding the

extremal values for graphs with given size, and for connected graphs with

given order and size. In both cases, the graphs are assumed to be undirected

and simple.

Determining the maximum entropy given these constraints is relatively

straightforward. Among all graphs of size m, the (unique) graph attaining

the maximum entropy is mK2: the graph of order 2m formed by m pairs of

vertices connected by an edge (Fig. 3.1a). This is because 2m is the maximum

order of a graph of size m, and thus any graph G, of any order n, satisfies

I(G) ≤ log(n) ≤ log(2m) = I(mK2). Amongst all graphs with given order and

size, Yan [221] proved that the maximum entropy is obtained by an “almost

regular graph”, that is a graph whose nodes have largest and smallest degree

differing at most by 1 (Fig. 3.1b).

Theorem 11 (Theorem 7 in [221]). The (n,m)−graph Gmax
n,m that maximises

the first degree-based entropy has degree sequence

(
(q + 1)r, qn−r

)
,

where 2m = qn + r, with q = ⌊2mn ⌋ and 0 ≤ r < n.

Here we determine the graphs with minimum entropy. More precisely, we

prove the following two statements:

Theorem 12. Among all graphs with m edges, the colex graph C(m) minimizes

the first degree-based entropy.

The colex graph C(m) (Definition 6) maximizes the number of triangles

(and cliques) among all graphs with size m [126]. Thus it can be considered

as the most clustered graph and so a natural candidate for minimising the

entropy, which is a measure of balance.
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m pairs

(a) mK2 graph (b) Almost regular (8, 14)−graph

Figure 3.1: Examples of graphs yielding maximum first degree-based entropy
when the size m is known, and when both the size and order n are known.

Theorem 13. Among all (connected) graphs with n nodes and m edges, with

n− 1 ≤ m ≤ 2n− 3, every graph minimizing the first degree-based entropy has

a degree sequence of the form

(n− 1,m− n + 2, 2m−n+1, 12n−m−3) if n + 6 ≤ m ≤ 2n− 3

or m ∈ {n, n + 1, n + 3},

(n− 1, 44, 1n−5) if m = n + 5,

(n− 1, 42, 32, 1n−5) or (n− 1, 6, 25, 1n−7) if m = n + 4,

(n− 1, 33, 1n−4) if m = n + 2,

(n− 1, 1n−1) if m = n− 1.

These graphs are presented in Table 3.1.

Furthermore, we provide numerical observations for graphs with n nodes

and m edges, with 2n− 3 < m ≤
(
n
2

)
.

3.1.2 Notation

We begin by introducing some notation that will be helpful in the proofs.

Definition 14 (Functions fc and hc). For any constant c ≥ 0, we define

the function fc(x) = (x + c) · log(x + c). For a graph G with degree sequence

(di)1≤i≤n, we define hc(G) =
∑

i fc(di). When c = 0, we just write f(x) for

f0(x) and h(G) for h0(G) =
∑

i di log(di).

With this notation, we can rewrite the definition of first degree-based en-

tropy (Definition 10) as

I(G) = log(2m) − 1

2m
h(G).

57



Table 3.1: Overview of extremal (n,m)-graphs minimizing the entropy. Com-
pare to [221, Table 1] and [52, Theorems 1,2, and 3].

m = n− 1 + a
0 ≤ a ≤ n− 2
a ̸∈ {3, 5, 6}

an− 2− a

m = n + 2

n− 4

m = n + 4

n− 5
5n− 7

m = n + 5

n− 5

Hence, determining the minimum (resp. the maximum) of I(G) is equivalent

to determining the maximum (resp. the minimum) of h(G).

The function hc allows us to generalise these arguments while imposing

additional constraints on the graph. For example, fixing the order n means

that all n entries in the degree sequence are greater than or equal to 1, a
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condition that h1(G) embeds directly in its definition. We will see how finding

the graph G maximising h1(G) allows to simplify the solution of Theorem 13.

Remark that when c ∈ {0, 1}, isolated vertices of G do not contribute to the

value of hc(G), since 0 · log(0) = 0 = 1 · log(1). When c ≥ 2, the function

hc(G) depends on the number of vertices as well, since isolated vertices of G

contribute fc(0) = c log c > 0. Thus, we compare graphs with a different order

by implicitly extending the order, i.e., adding isolated vertices in such a way

that the graphs have the same order1.

Also note that

f(x) = x log(x) =

∫ x

1
(log(t) + log(e)) dt,

a fact2 that we use frequently in the proof of Lemma 25 in Section 3.2.2.

In some proofs, we will also make use of the following function.

Definition 15. The function ∆c is defined by ∆c(x) = fc(x) − fc(x − 1) =

log(e) +
∫ x+c
x+c−1 log t dt.

Note that ∆c is a strictly concave, increasing function.

Definition 16 (Generalised colex graph). Let k and m be integers with m =(
k−1
2

)
+ a(k− 1) + b for some integers a, b satisfying a ≥ 0 and 0 ≤ b ≤ k− 2.

The graph C(m, k) is formed by a clique Kk−1 whose vertices are all connected

to a stable set of size a and with b vertices of the clique connected to one

additional vertex.

An example of C(m, k) graph is presented in Fig. 3.2.

Figure 3.2: The graph C(31, 7). Here a = 2 and b = 4.

Remark 17. When m <
(
k+1
2

)
, the graph C(m, k) is just the colex graph C(m).

For instance, the graph C(31, 8) is just the colex graph C(31) in Fig. 2.2.

1If the orders of two graphs to be compared were N and n, with N ≥ n, one could have
defined hN

c (G) =
∑

i fc(di) + (N − n)fc(0) and used hN
c for the comparison, but it would

have made the notation excessively heavy.
2The presence of the constant log(e) = log2(e) in the integrand derives from the choice to

use the logarithm base 2 in this study, in accord with the main results from the literature.
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3.1.3 Preliminary Results

Since we are dealing with degree sequences, some arguments are simplified by

using general results on sequences. We start with introducing the notion of

majorising sequences. When we speak about a sequence majorising another

one, we always assume that the sequences are non-increasing sequences of

non-negative reals. If necessary, we add zeros to be sure they are the same

length.

Definition 18. A sequence (xi)1≤i≤n majorises the sequence (yi)1≤i≤n if and

only if
∑

1≤i≤j xi ≥
∑

1≤i≤j yi for every 1 ≤ j ≤ n and equality holds for

j = n.

This definition is used in the following useful inequality, with its immediate

subsequent corollary and subsequent lemma.

Theorem 19 (Karamata’s inequality, [123]). Let (xi)1≤i≤n be a sequence ma-

jorising the sequence (yi)1≤i≤n. Then for every convex function g we have∑
1≤i≤n g(xi) ≥

∑
1≤i≤n g(yi). Furthermore, this inequality is strict if the se-

quences are not equal and g is a strictly convex function. For concave func-

tions, the same holds with the opposite sign.

Corollary 20. Let c > 0 and let G and G′ be two graphs such that the degree

sequence of G′ majorises the degree sequence of G. Then hc(G
′) ≥ hc(G).

Proof. By Theorem 19, it is sufficient to note that fc(x) = (x + c) log(x + c)

is a convex function for any c > 0.

This corollary has also been observed in [81] for c = 0.

Lemma 21. Let n, t, ℓ > 0 be fixed positive integers. Write t = qn + r, with

integers q ≥ 0 and 0 ≤ r < q. Then, under the condition that all zi’s in

(zi)
n
i=1 are non-negative integers and

∑n
i=1 zi = t,

∑n
i=1 f(zi + ℓ)−

∑n
i=1 f(zi)

is maximized when (zi)
n
i=1 = ((q + 1)r, qn−r).

Proof. The function δ(z) = f(z + ℓ) − f(z) is a strictly concave function for

every ℓ > 0, and every (non-increasing) sequence of n integers with sum t

majorises the sequence (zi)
n
i=1 = ((q + 1)r, qn−r). Hence, the result follows

immediately by Karamata’s inequality.

This allows to give an alternative proof to the following simple result on

the entropy of graphs with given order n, already found in [52, Theorem 1],

which we will use as a base case in the proof of Theorem 12.
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Proposition 22. Among trees of order n, h(G) is maximised by the star Sn

and minimized by the path Pn. The second smallest value is attained by any

tree with 3 leaves.

Proof. The degree sequence of a tree satisfies
∑

1≤i≤n di = 2(n−1) by the hand

shaking lemma. Since a tree has at least 2 vertices of degree 1, and all degrees

are at least 1, the degree sequence majorises (2, 2, . . . , 2, 1, 1) and is majorised

by (n − 1, 1, 1, . . . 1). The path and the star are the only graphs with these

degree sequences. Any tree that is not a path has at least 3 vertices of degree

1. If it has more than 3 vertices of degree 1, its degree sequence majorises

(3, 2, 2, 2, . . . , 2, 1, 1, 1), the degree sequence of a tree with 3 leaves. So the

conclusion follows from Corollary 20.

Note that this statement is also true for the function hg(G) =
∑

i g(di) for

any convex function g, in particular this proves [81, Conjecture 1].

We remark here that it will be sufficient to focus on connected graphs.

Proposition 23. When omitting the isolated vertices, the graph maximizing

hc(G) among all graphs of size m is a connected graph.

Proof. Identifying two vertices u and v in different components with strictly

positive degrees du, dv leads to an increase of the value hc(G) since fc is a

strictly convex function, i.e., fc(du + dv) + fc(0) > fc(du) + fc(dv).

3.2 Minimum entropy graphs given size

3.2.1 Main proof

Lemma 24. Let G be a graph maximising h(G) among all graphs of size m.

Then G is a threshold graph.

Proof. Let G be the graph G maximising h(G) among all graphs of size m.

By Proposition 23, G is connected. Furthermore, G clearly maximizes h(G)

among all graphs with size m and order n as well, where n is the order of G.

By [221, Theorem 4], we know that the statement holds for connected graphs

with given order and size. Therefore G is a threshold graph.

Lemma 25. Let k ≥ 3. For every m ≥
(
k
2

)
, h(C(m, k)) > h(C(m, k − 1)).

The proof of the lemma is quite computational and therefore postponed

to the subsequent section.
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Theorem 26. Let k and m be integers with m =
(
k−1
2

)
+a(k−1)+b for some

integers a, b satisfying a > 0 and 0 ≤ b ≤ k − 2. Among all threshold graphs

G with clique number ω(G) = k and size m, the graph C(m, k) is the unique

graph maximising h, up to isomorphism.

Proof. We will prove this by a double induction on k and m.

When k = 2, the graph is a tree and the unique extremal graph is a star,

as mentioned in Proposition 22. So the base case with k = 2 is true for every

m ≥ 1. Now we assume that the statement of the theorem has been proven for

all values from 2 to k − 1 for every choice of m and prove by induction that

this hypothesis is also true for clique number k. When m =
(
k
2

)
, the graph

C(m, k) = Kk is the unique one and thus extremal. So now assume it is proven

when the size is between
(
k
2

)
and m− 1 and let G be a threshold graph with

clique number k and size m. Let v be a vertex in the clique whose degree is

precisely k − 1. Such a vertex exists because G is a threshold graph: if all

vertices in the clique had degree k or larger, then there would be a vertex in

the stable set connected to all of them, and so G would have a clique of order

k + 1, but this is impossible since its clique number is k.

Let d1, d2, . . . , dk−1 be the degrees of the k − 1 neighbours of v. In that

case, we have

h(G) = h(G\v) + f(k − 1) +
k−1∑
j=1

f(dj) −
k−1∑
j=1

f(dj − 1) (3.1)

When m <
(
k
2

)
+k−1, the clique number ω(G\v) = k−1 and since the result

is known for clique number k− 1, we have h(G\v) ≤ h(C(m− (k− 1), k− 1)).

When m ≥
(
k
2

)
+ k − 1, by the induction hypothesis and Lemma 25 we know

that h(G\v) ≤ h(C(m− (k−1), k)). By Lemma 21 the other part of the upper

bound in (3.1) is maximized if and only if all di differ at most 1. Thus, we

conclude that the maximum is precisely h(C(m, k)), and that C(m, k) is the

unique extremal graph. Hence, by induction, the statement is true for every

m. Finally, by complete induction, we conclude that the theorem is true for

every value of k.

We can now proceed with the proof of Theorem 12.

Proof of Theorem 12. Let G be the graph that minimises the first degree-

based entropy among all graphs with m edges. By Lemma 24, G is a threshold

graph. Let k be its clique number. Note that this implies that m ≥
(
k
2

)
. By

62



Theorem 26, G must be the generalised colex graph C(m, k). Now, Lemma 25

implies that k is as large as possible, and thus m <
(
k+1
2

)
. By Remark 17, we

conclude that G is indeed the colex graph C(m).

3.2.2 Proof of Lemma 25

Write

m =

(
k − 1

2

)
+ a(k − 1) + b,

with a ≥ 0 and 0 ≤ b ≤ k − 2, and

m =

(
k − 2

2

)
+ a′(k − 2) + b′, (3.2)

with a′ ≥ 2 and 0 ≤ b′ ≤ k − 3. Then the degree sequence of C(m, k) is

((k − 1 + a)b, (k − 2 + a)k−1−b, (k − 1)a, b),

and the degree sequence of C(m, k − 1) is

((k − 2 + a′)b
′
, (k − 3 + a′)k−2−b′ , (k − 2)a

′
, b′).

Remark that since

m =

(
k − 1

2

)
+ a(k − 1) + b

=

(
k − 2

2

)
+ (k − 2) + a(k − 2) + a + b,

we have

a′ = a + 1 +

⌊
a + b

k − 2

⌋
and

b′ ≡ a + b (mod k − 2).

We divide the proof of the Lemma in three steps aimed at reducing the

general case to a more manageable one:

1. We begin by showing that if Lemma 25 is true for all m for which b′ = 0

in equation (3.2), then it holds for all m, i.e., for every 0 ≤ b′ ≤ k − 3

as well. We do so by showing that if a counterexample does exist for

some m with 1 ≤ b′ ≤ k − 3, then there is a counterexample with size

m′ that can be represented in such a way that the corresponding b′ (in
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equation (3.2)) is 0.

2. We then show that if Lemma 25 holds in the case b′ = 0 and 2 ≤ a′ ≤ k,

then it holds for all values of a′. We do so by proving that if our claim

is true for a certain size m, then so it is for m′ = m + (k − 1)(k − 2).

3. We conclude by proving that the claim holds for values m that be written

as in (3.2) with 2 ≤ a′ ≤ k and b′ = 0.

In the last two steps, we are careful with a reduction to m =
(
k
2

)
− 1, since

then C(m, k) = C(m, k − 1). In the following, we state these steps in the form

of claims, which are proven separately3.

Claim 27. It is sufficient to prove Lemma 25 for the case b′ = 0 (and every

a′ ≥ 3).

Proof. If h(C(m, k)) ≤ h(C(m, k−1)) and k−2 > b′ ≥ b, then h(C(m+1, k)) ≤
h(C(m + 1, k − 1)) as well, since

h(C(m + 1, k − 1)) − h(C(m, k − 1))

=f(k − 2 + a′) − f(k − 3 + a′) + f(b′ + 1) − f(b′)

≥f(k − 1 + a) − f(k − 2 + a) + f(b + 1) − f(b)

=h(C(m + 1, k)) − h(C(m, k)).

So we can repeat this until b′+1 = k−2. But then m+1 =
(
k−2
2

)
+(a′+1)(k+2),

so it is sufficient to verify a case with b′ = 0.

If h(C(m, k)) ≤ h(C(m, k − 1)) and 0 < b′ < b ≤ k − 2 (note that this

implies that a′ ≥ 3), then h(C(m − 1, k)) ≤ h(C(m − 1, k − 1)) as well. For

this note that b
b′ ≥

k−2
k−3 and k−3+a′

k−2+a ≤ k−1
k−2 < k−2

k−3 , the latter being true since

a′ − 1 = a +
⌊
a+b
k−2

⌋
≤ a + a+k−2

k−2 . This implies that

h(C(m, k)) − h(C(m− 1, k))

=f(k − 1 + a) − f(k − 2 + a) + f(b) − f(b− 1)

≥f(k − 2 + a′) − f(k − 3 + a′) + f(b′) − f(b′ − 1) (3.3)

=h(C(m, k − 1)) − h(C(m− 1, k − 1)).

3Note that one can check the three claims in reverse order as well. In that case, one is
increasing the range of values of m for which it is known that Lemma 25 is true.
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Inequality (3.3) is true by the following two inequalities

f(b) − f(b− 1) −
(
f(b′) − f(b′ − 1)

)
=

∫ 1

0
log

(
b− 1 + t

b′ − 1 + t

)
dt

≥
∫ 1

0
log

(
b

b′

)
dt

= log

(
b

b′

)
≥ log

(
k − 2

k − 3

)
and

f(k − 2 + a′) − f(k − 3 + a′) − (f(k − 1 + a) − f(k − 2 + a))

=

∫ 1

0
log

(
k − 3 + a′ + t

k − 2 + a + t

)
dt

≤
∫ 1

0
log

(
k − 3 + a′

k − 2 + a

)
dt

≤ log

(
k − 2

k − 3

)
.

♢

Claim 28. It is sufficient to prove Lemma 25 for the case 2 ≤ a′ ≤ k− 1 and

b′ = 0.

Proof. It is sufficient to prove that for every m ≥
(
k
2

)
− 1 and m′ = m + (k −

1)(k− 2), we have h(C(m′, k))−h(C(m′, k− 1)) ≥ h(C(m, k))−h(C(m, k− 1))

and that this inequality is strict when m =
(
k
2

)
− 1.

Write m =
(
k−2
2

)
+ a′(k− 2) =

(
k−1
2

)
+ a(k− 1) + b and let m′ = m+ (k−

1)(k − 2) =
(
k−2
2

)
+ (a′ + k − 1)(k − 2). Then

h(C(m′, k)) − h(C(m, k))

=b (f(k − 1 + a + k − 2) − f(k − 1 + a))

+ (k − 1 − b) (f(k − 2 + a + k − 2) − f(k − 2 + a)) + (k − 2)f(k − 1)

≥(k − 1) (f(k − 2 + a + k − 2) − f(k − 2 + a)) + (k − 2)f(k − 1)

since f(k− 1 + a+ k− 2)− f(k− 1 + a) > f(k− 2 + a+ k− 2)− f(k− 2 + a).
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Also,

h(C(m′, k − 1)) − h(C(m, k − 1))

=(k − 2)
(
f(k − 3 + a′ + k − 1) − f(k − 3 + a′)

)
+ (k − 1)f(k − 2).

Here k − 3 + a′ ≤ k−1
k−2(k − 2 + a). Hence, we have

f(k − 2 + a + k − 2) − f(k − 2 + a) − (k − 2)

=

∫ k−2

0
log (k − 2 + a + t) dt

=
k − 2

k − 1

∫ k−1

0
log

(
k − 2 + a +

k − 2

k − 1
t

)
dt

and

f(k − 3 + a′ + k − 1) − f(k − 3 + a′) − (k − 1)

=

∫ k−1

0
log
(
k − 3 + a′ + t

)
dt

≤
∫ k−1

0
log

(
k − 1

k − 2
(k − 2 + a) + t

)
dt

=

∫ k−1

0
log

(
k − 2 + a +

k − 2

k − 1
t

)
+ log

(
k − 1

k − 2

)
dt.

So we conclude

h(C(m′, k)) − h(C(m, k)) ≥ h(C(m′, k − 1)) − h(C(m, k − 1)),

which is equivalent to

h(C(m′, k)) − h(C(m′, k − 1)) ≥ h(C(m, k)) − h(C(m, k − 1)).

Furthermore the difference is strict when b > 0, which is the case when m =(
k
2

)
− 1. ♢

Claim 29. Lemma 25 is true when 2 ≤ a′ ≤ k and b′ = 0, i.e., when m =(
k−2
2

)
+ (a+ 2)(k− 2) =

(
k−1
2

)
+ a(k− 1) + (k− 2− a) for some 0 ≤ a ≤ k− 2.

Proof. For this, we need to prove that

(k − 2)f(k + a− 1) + (a + 2)f(k − 2)

≤(k − 2 − a)f(k + a− 1) + (a + 1)f(k − 2 + a) + af(k − 1) + f(k − 2 − a)
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and that this is strict when a > 0. The latter is equivalent to

a [f(k + a− 1) − f(k + a− 2) − f(k − 1) + f(k − 2)]

≤f(k − 2 + a) + f(k − 2 − a) − 2f(k − 2). (3.4)

We rewrite the right hand side of inequality (3.4) as a telescoping sum:

f(k − 2 + a) + f(k − 2 − a) − 2f(k − 2)

=
a∑

i=1

[f(k − 2 + i) − f(k − 3 + i) − f(k − 2 − a + i) + f(k − 3 − a + i)] .

The inequality now follows from the fact that

f(x + 1) − f(x) − f(x + 1 − a) + f(x− a) =

∫ 1

0
log

(
x + t

x− a + t

)
dt

is a function that is strictly decreasing in x (where the domain is x ≥ a). ♢

This concludes the proof of Lemma 25.

3.3 Minimum entropy graphs given order and size

By [221, Theorem 4], we know that every graph maximizing h(G) among all

(n,m)-graphs is a threshold graph. This implies in particular that it has

a universal vertex v, i.e., a vertex adjacent to all other vertices and hence

with degree n − 1. Now, the graph G\v, obtained by removing v and all

its incident edges from G, is a (n − 1,m − n + 1)-graph. Considering that

dG(u) = dG\v(u) + 1 for every vertex u ̸= v, we note that it is sufficient to

find the (n−1,m−n+ 1)-graph maximizing h1(G), where h1(G) is formed by

taking into account that the original degrees are larger by one. We extend this

idea towards the setting where there are c universal vertices initially. Then,

we compute the extremal graphs maximizing the related function hc(G) given

only the size (and fixed large order essentially). We do so by induction.

We begin by computing some extremal graphs for small size. These are

the base cases for the induction.

3.3.1 Graph with small size

We compute the extremal graphs maximizing h1(G) for m ≤ 10 and for hc(G)

with c ≥ 2 for m ≤ 6.
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Lemma 30. For m ≤ 10, among all graphs with m edges, h1(G) is maximized

by

G =



Sm+1 if m ̸∈ {3, 5, 6}

K3 if m = 3

K−
4 and S6 if m = 5

K4 if m = 6.

Proof. A computer program can verify this claim4. Since h1(G) only depends

on the degree sequence of the graph, for a given m ≤ 10, it is enough to list all

degree sequences of graphs of size m and then compute h1 for each sequence.

To list all degree sequences, it is sufficient to list all integer partitions of 2m

and then to establish which of these are valid degree sequences using one

of several existing criteria (see, e.g., [194]). For example, one can use the

function parts() from the R-package partitions [104] to list all partitions

of 2m and check which ones are degree sequences using is_graphical() from

the R-package igraph [66].

Lemma 31. For c ≥ 2 and m ≤ 6, among all graphs with m edges, hc(G) is

maximized by

G =

Sm+1 if m ̸= 3

K3 if m = 3.

Remark that in this Lemma, one has to take into account isolated vertices

when comparing graphs with different order.

Proof. For m ∈ {1, 2} nothing needs to be done, as there is only one connected

graph of size m. When m = 3, there are precisely 3 connected graphs and we

observe that

hc(P4) = 2fc(1) + 2fc(2) < hc(S4) = 3fc(1) + fc(3)

< hc(K3) = 3fc(2) + fc(0).

The first inequality follows from strict convexity of the function fc. The sec-

ond inequality holds because ∆c (Definition 15) is strictly concave, and thus

∆c(3) + ∆c(1) < 2∆c(2).

By Karamata’s inequality, it is sufficient to consider the degree sequences

of graphs with size m that are not majorized by the degree sequences of other

4https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/

minimal_entropy_small_size.R
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such graphs.

For m = 4, these non-majorized degree sequences are

v41 = {4, 1, 1, 1, 1} and v42 = {3, 2, 2, 1, 0}.

For m = 5, they are

v51 = {5, 1, 1, 1, 1, 1}, v52 = {4, 2, 2, 1, 1, 0}, and v53 = {3, 3, 2, 2, 0, 0}.

For m = 6, the sequences are

v61 = {6, 1, 1, 1, 1, 1, 1}, v62 = {5, 2, 2, 1, 1, 1, 0},

v63 = {4, 3, 2, 2, 1, 0, 0}, and v64 = {3, 3, 3, 3, 0, 0, 0}.

Now we verify that, hc(v
m
j ) =

∑
i fc(di) is always maximized by the first

degree sequence (j = 1 for all the above values of m).

For 4 ≤ m ≤ 6, we have

hc (vm1 ) − hc (vm2 ) = ∆c(m) + ∆c(1) − 2∆c(2)

≥
∫ c

c−1
log

(
(t + 1)(t + 4)

(t + 2)2

)
dt > 0,

the last inequality is true since (t + 1)(t + 4) > (t + 2)2 whenever t ≥ 1.

For m ∈ {5, 6} we analogously have

hc (vm1 ) − hc (vm3 ) = ∆c(m) + ∆c(m− 1) + 2∆c(1) − ∆c(3) − 3∆c(2)

≥
∫ c

c−1
log

(
(t + 5)(t + 4)(t + 1)2

(t + 3)(t + 2)3

)
dt

> 0,

the last inequality being true since (t + 1)(t + 4) > (t + 2)2 for t > 0 and

(t+5)(t+1) ≥ (t+3)(t+2) for t ≥ 1, and thus (t+5)(t+4)(t+1)2 > (t+3)(t+2)3

whenever t ≥ 1.

For the final case, we have

hc
(
v61
)
− hc

(
v64
)

= ∆c(6) + ∆c(5) + ∆c(4) + 3∆c(1) − 3∆c(3) − 3∆c(2)

=

∫ c

c−1
log

(
(t + 6)(t + 5)(t + 4)(t + 1)3

(t + 3)3(t + 2)3

)
dt

> 0,
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where the inequality can be verified as follows. When c = 2, this can be

computed5. For c ≥ 3, this is due to

(t + 6)(t + 5)(t + 4)(t + 1)3 > (t + 3)3(t + 2)3

for t ≥ 2. Indeed, on the one hand (t + 6)(t + 1)2 > (t + 2)3 is equivalent to

2t2 + t − 2 > 0, which holds for t > −1+
√
17

4 ≈ 0.78, and thus for t ≥ 1; on

the other hand (t + 5)(t + 4)(t + 1) > (t + 3)3 is equivalent to t2 + 2t− 7 > 0,

which holds for t > −1 + 2
√

2 ≈ 1.83, and thus for t ≥ 2.

Therefore the extremal degree sequences for m ≤ 6, m ̸= 3 correspond to

the star Sm+1.

3.3.2 Main proof

We prove the following theorem that gives the precise characterization of ex-

tremal graphs for hc(G) where c ≥ 1 is an integer (for c = 0, this corresponds

to the case when only the size is given, which was treated previously).

Some technical computations are postponed until the following section not

to distract from the main argument.

Theorem 32. Among all graphs with m edges, h1(G) is maximized by

G =



Sm+1 if m ̸∈ {3, 5, 6}

K3 if m = 3

K−
4 and S6 if m = 5

K4 if m = 6.

For any c ≥ 2, among all graphs with m edges and n > m vertices, hc(G) is

maximized by

G =

Sm+1 if m ̸= 3

K3 if m = 3.
(3.5)

Proof. Assume we know the extremal graphs with size at most m − 1. By

Lemmas 30 and 31, this has been done for m ≤ 6 and m ≤ 10 when c = 1. So

we assume m ≥ 7 (or m ≥ 11 if c = 1). Let G be an extremal graph with size

m for which the minimum (non-zero) degree is equal to b. The latter implies

that there are at least b+1 vertices with degree at least b and thus m ≥
(
b+1
2

)
.

5It is approximately 0.0908
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Let v be a vertex with degree b and let d1, d2, . . . , db be the degrees of the

neighbours of v.

If b = 1, we have

hc(G) = hc(G\v) + fc(1) − fc(0) + ∆c(d1)

≤ hc(Sm) + fc(1) − fc(0) + ∆c(m)

= hc(Sm+1)

and equality occurs if and only if G = Sm+1.

Now assume b ≥ 2. Note that
∑b

i=1 di ≤ m +
(
b
2

)
since every edge which

is not part of the subgraph G[N(v)] induced by the neighbours of v can be

counted at most once.

Since ∆c is strictly concave, we have

hc(G) − hc(G\v) = fc(b) − fc(0) +

b∑
i=1

∆c(di)

≤ fc(b) − fc(0) + b · ∆c

(
m +

(
b
2

)
b

)
:= LHS(m, b, c).

On the other hand, we also have

hc(Sm+1) − hc(Sm−b+1) = fc(m) − fc(m− b) + b∆c (1)

:= RHS(m, b, c).

By the computations performed in the following section, the first is smaller

than the second, i.e., LHS(m, b, c) < RHS(m, b, c). Hence

hc(G) < hc(Sm+1) − hc(Sm−b+1) + hc(G\v).

Now, G\v has m − b edges. Here m − b ≥ 4 (for c ≥ 2) and m − b ≥ 7 (for

c = 1). Due to Lemmas 30 and 31, we have hc(G\v) ≤ hc(Sm−b+1). Therefore

we conclude that hc(G) < hc(Sm+1).

By complete induction, we have the whole characterization.

We are now ready to prove Theorem 13. Indeed, when n ≤ m ≤ 2n − 3,

the extremal (n,m)-graph minimizing the entropy is such that, deleting its

universal vertex, one obtains the (n−1,m−n+1)-graph G maximizing h1(G),
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as described in Theorem 32.

Proof of Theorem 13. By [221, Theorem 4], we know the extremal (n,m)-

graph is a threshold graph. This implies in particular that it has a universal

vertex v with degree n − 1. Now G′ = G\v is a (n − 1,m − n + 1)-graph.

Taking into account that dG(u) = dG′(u) + 1 for every vertex u ̸= v, we note

that

h(G) = f(n− 1) + h1(G
′).

Now, since m − n + 1 ≤ n − 2, we note that the extremal structure for G′ is

determined in Theorem 32 and the conclusion is immediate.

3.3.3 Technical lemmas

In this section, we complete the proof of Theorem 32. We show that

LHS(m, b, c) = fc(b) − fc(0) + b ·

(
fc

(
m +

(
b
2

)
b

)
− fc

(
m +

(
b
2

)
b

− 1

))

and

RHS(m, b, c) = fc(m) − fc(m− b) + b · (fc(1) − fc(0))

satisfy LHS(m, b, c) < RHS(m, b, c) for every b ≥ 2 and m ≥
(
b+1
2

)
whenever

m ≥ 7 and c ≥ 1, or m ≥ 4 and c ≥ 2.

We do this by means of the following lemmas. In Lemma 33, we show

that for fixed b and c, it is sufficient to prove the inequality for the smallest

m in the range. After that, we prove it in the cases for which m =
(
b+1
2

)
in

Lemma 34 and for the remaining cases in Lemma 35.

The proofs are mainly computational and there are alternative computa-

tions that lead to the same conclusion6.

Lemma 33. Fix b ≥ 2 and c ≥ 1. Then RHS(m, b, c) − LHS(m, b, c) is an

increasing function in m.

Proof. We want to prove that the derivative of this quantity with respect to

m is positive. To compute the derivative, taking into account the chain rule

6See, for example, https://arxiv.org/abs/2205.03357 for an alternative proof of
Lemma 34.
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and d
dxfc(x) = log(x + c) + log(e), we have that

d

dm
(RHS(m, b, c) − LHS(m, b, c))

= log

(
m + c

m− b + c

)
− log

(
m +

(
b
2

)
+ bc

m +
(
b
2

)
+ bc− b

)
> 0,

where the inequality follows from the fact that whenever 0 < b < y < z, we

have y
y−b > z

z−b . Here it is enough to take y = m+ c and z = m+
(
b
2

)
+ bc.

Lemma 34. Fix b ≥ 2 and c ≥ 1. Let

LL(b, c) = (b + 1)fc(b) − fc(0) − bfc(b− 1)

and

RL(b, c) = fc

((
b + 1

2

))
− fc

((
b

2

))
+ b · (fc(1) − fc(0)) .

Then

LL(b, c) < RL(b, c)

if c = 1 and b ≥ 4, or c ≥ 2 and b ≥ 3.

Proof. The cases 1 ≤ c ≤ 3 can be verified directly using the formulae: solving

numerically the resulting inequalities in the variable b, one finds that the

inequality holds as long as b > 3.24, b > 2.53, and b > 2.35 for c = 1, c = 2,

and c = 3, respectively7.

For c ≥ 4 and b ≥ 3, write

RL(b, c) = fc

((
b

2

)
+ b

)
− fc

((
b

2

))
+ b∆c(1)

=
b∑

i=1

[
fc

((
b

2

)
+ i

)
− fc

((
b

2

)
+ i− 1

)]
+ b∆c(1)

=

b∑
i=1

∆c

((
b

2

)
+ i

)
+ b∆c(1),

7https://github.com/MatteoMazzamurro/extrema-graph-entropy/blob/main/lemma_

4_base_cases.R.
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and

LL(b, c) = b (fc(b) − fc(b− 1)) + fc(b) − fc(0)

= b∆c(b) + fc(b) − fc(0)

= b∆c(b) +

b∑
i=1

[fc(i) − fc(i− 1)]

= b∆c(b) +
b∑

i=1

∆c(i).

Then

RL(b, c) − LL(b, c) =

b∑
i=1

[
∆c

((
b

2

)
+ i

)
− ∆c(i)

]
− b (∆c(b) − ∆c(1))

> b

[
∆c

((
b

2

)
+ b

)
− ∆c(b)

]
− b (∆c(b) − ∆c(1)) (3.6)

= b

[
∆c

((
b + 1

2

))
+ ∆c(1) − 2∆c(b)

]
where inequality (3.6) follows from b ≥ 2 and the strict concavity of ∆c(x).

Then, by Definition 15,

RL(b, c) − LL(b, c)

≥ b

∫ c

c−1

[
log

(
t +

(
b + 1

2

))
+ log(t + 1) − 2 log(t + b)

]
dt

For the integral to be positive, it is enough that, for c− 1 < t < c,(
t +

(
b + 1

2

))
(t + 1) − (t + b)2 > 0,

which is equivalent to

t(b− 2)(b− 1) > b(b− 1). (3.7)

Now, since b ≥ 3, inequality (3.7) holds if and only if t > b
b−2 . Furthermore,

b ≥ 3 also implies b
b−2 ≤ 3. But c ≥ 4 so t > c − 1 = 3 ≥ b

b−2 . Therefore

RL(b, c) > LL(b, c) for c ≥ 4 and b ≥ 3 as well.

Lemma 35. It is true that LHS(7, 3, 1) < RHS(7, 3, 1) and LHS(7, 2, 1) <
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RHS(7, 2, 1). For any c ≥ 2, it is true that LHS(4, 2, c) < RHS(4, 2, c).

Proof. By direct computation, we find RHS(7, 3, 1)−LHS(7, 3, 1) ≈ 0.26 and

RHS(7, 2, 1)−LHS(7, 2, 1) ≈ 0.52, and thus LHS(7, 3, 1) < RHS(7, 3, 1) and

LHS(7, 2, 1) < RHS(7, 2, 1). LHS(4, 2, c) < RHS(4, 2, c) is equivalent to

2∆c(2.5) + ∆c(2) < ∆c(4) + ∆c(3) + ∆c(1).

This is true for every c ≥ 2 since

∫ c

c−1
log

((
t +

5

2

)2

(t + 2)

)
dt <

∫ c

c−1
log ((t + 4)(t + 3)(t + 1)) dt,

as
(
t + 5

2

)2
(t+2) < (t+4)(t+3)(t+1) for every t ≥ 1. Indeed, expanding this

inequality, it simplifies to t2+ 11
4 t−

1
2 > 0, which holds for t > −11+3

√
17

8 ≈ 0.17,

and thus for every t ≥ 1.

3.3.4 Numerical observations

In the previous argument, we have seen that, apart from few exceptions for

small values of m, the graph G1
n,m with degree sequence

(n− 1,m− n + 2, 2m−n+1, 12n−m−3)

minimises the first degree-based entropy. However, G1
n,m is only well defined

for m ≤ 2n − 3. Extending the characterisation of (n,m)-graphs minimising

the entropy to the case m > 2n− 3 is not a trivial challenge. A crucial aspect

in the proof of Theorem 13 is that, when m ≤ 2n − 3, the minimum entropy

graph contains exactly one universal vertex. Deleting such vertex, the problem

is reduced to that of maximising h1 amongst graphs with unconstrained order.

When m ≥ 2n − 2, instead, the graph may contain more than one universal

vertex, so the order n remains a potentially influential factor even after one

universal vertex is deleted.

A computational approach allows to determine the minimum entropy graphs

for some values of n and m. As proved by [221, Theorem 4], the (n,m)-graph

yielding minimum first degree-based entropy must be a threshold graph KaT

for some value of a.

Now, fix a value of a. We know that any threshold graph KaT has a

universal vertex v∗ ∈ Ka. Thus, by construction, any KaT graph contains the

subgraph G, having the same vertex set as KaT , and having as edge set all
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(a) K4T (7, 11)-graph G1.

1

2

3

4

5

6

7

(b) Tableau of G1.

p′

p

(c) Decomposed tableau.

Figure 3.3: KaT (n,m)−graph G1 with a = 4, n = 7, m = 11, with corre-
sponding Young tableau. In (b), the numbers on the left correspond to nodes
in G1. In (c), the shade of gray represents different components of the graph.
The lightest boxes correspond to the edges connecting nodes in T to v1 = v∗,
the intermediate ones to the edges in Ka, and the darkest ones to the remain-
ing edges between Ka and T . The darker boxes are the partitions p and its
conjugate p′, either of which, together with a, n, and m, define the graph
uniquely.

edges in the clique Ka and, for each vertex in T , the edge connecting it to v∗.

As the edges in G are in common among all KaT graphs, listing all

KaT graphs reduces to listing all ways in which the remaining r = m −
n−1+(a−1)2+n−a

2 edges can be distributed to connect vertices in Ka and those

in T . Now, in a threshold graph, the neighbourhoods of all vertices in T are

nested sets of vertices in Ka, and thus, they are completely determined by the

degree of the corresponding vertex in T . In other words, it is enough to pro-

vide the degree sequence of T and the structure of the graph KaT is uniquely

defined. This degree sequence is in turn completely determined by a partition

p = (p1, . . . , pn−a) of r into n−a parts (r being the number of remaining edges

and n− a the number of vertices in T ). Note that p can be any partition of r

into n − a parts as long as all its entries are smaller than a − 1, that is, the

number of vertices in Ka excluding the fully connected node v∗. See Fig. 3.3

for a visual construction.

For a suitable partition p = (p1, . . . , pn−a), with p1 ≥ p2 ≥ . . . ≥ pn−a,

the degree sequence s of the corresponding graph can be retrieved as follows.

Write the degree sequence of G as

sG = (n− 1) ⊕ sKG ⊕ sTG,

where sKG = ((a− 1)a−1), and sTG = (1n−a). Consider the vector

w = (w1, . . . , wa−1),
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where wi = |{j|pj ≥ i}|. Then

s = (n− 1) ⊕ (sKG + w) ⊕ (sTG + p).

Remark that w is nothing other than the conjugate p′ of p, filled with zeros

at the end so to match the length of sKG .

From this construction, it is clear that finding all KaT graphs for a given a

corresponds to finding all partitions p of r into at most n− a parts, such that

all parts are less than or equal to a− 2, or equivalently8, all their conjugates

p′, i.e., all the partitions of r into at most a− 2 parts, such that all parts are

less than or equal to n− a.

We thus have an algorithm to compute all degree sequences for (n,m) −
KaT−graphs for fixed values of a, n, and m. Now, although we know from

[221] that the graph yielding minimum first degree-based entropy must be of

the form KaT for some a, we do not know a priori what value a should take.

The possible values of a depend on both n and m. A KaT−graph with n nodes

that is not also a Ka+1T graph contains at most (a−1)
(
n− a

2

)
edges. Indeed,

the clique Ka contains exactly a(a−1)
2 edges, no edges exist among vertices in

T and each of the n − a vertices in T is connected to at most a − 1 vertices

in Ka (if a vertex t ∈ T were connected to all a vertices in Ka, then Ka ∪ {t}
would form an (a + 1)-clique, and we would have a Ka+1T -graph). For m

fixed, if we let

amin = min
{
a : (a− 1)

(
n− a

2

)
≥ m

}
,

then a ≥ amin. Similarly, a KaT graph has at least a(a−1)
2 + n− a edges (the

number of edges in G as described above). If we let

amax = max

{
a :

a(a− 1)

2
+ n− a ≤ m

}
,

then a ≤ amax. Then, to find all possible candidates for minimum entropy

graph it suffices to find the degree sequences of all (n,m) −KaT−graphs for

amin ≤ a ≤ amax. Solving the quadratic expressions for amin and amax with

8Whilst mathematically equivalent, computationally there is a difference, because one still
needs to find a large number of partitions and select only the suitable ones. [3, Theorem 1.4]
shows that swapping each partition for its conjugate establishes a bijection between the
partitions of r in which all parts are less than or equal to a− 2 and the partitions of r into
at most a− 2 parts. Given the bounds on a, this is a substantially smaller set to start from
than the set of partitions of r into n− a parts.
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(a) Example G1
6,7 graph (b) Example G2

8,11 graph

Figure 3.4: Examples of graphs G1 and G2. Both are threshold graphs with
clique-numbers a = 3 for G1

n,m and a maximal given m for G2
n,m. Vertices in

the clique are shown in gray.

respect to a we find:

amin =

⌈
n +

1

2
−
√
n2 − 2m− n +

1

4

⌉
,

and

amax =

⌊
3 +

√
9 + 8(m− n)

2

⌋
.

With this approach we can explicitly find the degree sequence of the minimum

entropy (n,m)−graph for small values of n. Here we show the results for

n ≤ 72.

The above computational approach confirms that the degree sequence of

the minimum entropy (n,m)−graph when m ≥ 2n − 2, does indeed depend

on the value of n. When n ≤ 16, the graph yielding minimum entropy when

m > 2n− 3 is G2
n,m, with degree sequence

(n− 1, (k + 1)j , kk−j , j + 1, 1n−k−2),

where k and j are the unique values satisfying

m = (n− 1) +

(
k

2

)
+ j,

1 ≤ k ≤ n− 2,

1 ≤ j ≤ k.

The graphs G1
n,m and G2

n,m have both a clear construction and interpreta-

tion (see Fig. 3.4). G1
n,m is built by considering the smallest possible non-trivial
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clique (a 3-clique) and then distributing the remaining edges among the ver-

tices in the only compatible way to have a threshold graph. G2
n,m is built by

taking the largest possible clique (a k-clique), connecting all other vertices to

a single vertex in the clique, and then distributing the remaining edges by

concentrating them as much as possible in one of the vertices outside of the

clique (which hence obtains its j + 1 degree), so to maximise the unbalance

in the degree distribution. We can interpret G1
n,m as the graph whose degree

sequence is maximally concentrated in two vertices, but admitting potentially

many vertices with degree 1 or 2, whilst we can interpret G2
n,m as the graph

where the number of vertices with degree 1 is maximised.

However, when n > 16, other (n,m)−graphs attain smaller entropy than

G2
n,m for m ∈ {2n − 2, 2n − 1, . . . , 2n − 3 + ℓ(n)}, where ℓ(n) ≥ 1 is a small

non-negative integer that depends on n.

For instance, when m = 2n− 2, and n > 16, the graph yielding minimum

entropy has degree sequence

((n− 1)2, 32, 2n−4),

that is a graph with two universal vertices and one additional edge. When

m = 2n− 1, the minimum-entropy graph is G2
n,m for n ≤ 22, but for n > 22,

the minimum entropy graph has degree sequence

((n− 1)2, 4, 32, 2n−5),

that is a graph with two universal vertices and such that, deleting such vertices,

one is left with a star S2. More generally, the computations suggest that when

m = 2n − 3 + m′, with 1 ≤ m′ ≤ ℓ(n), the minimum entropy graph is the

graph with two universal vertices and the edges from the graph G of size m′

described in equation (3.5) in Theorem 32. When m > 2n − 3 + ℓ(n), then

G2
n,m is again the minimum entropy graph (Fig. 3.5).

The difficulty in establishing this result via a mathematical proof lies pri-

marily in the seemingly irregular pattern followed by ℓ(n) as a function of n

(Fig. 3.6), which hinders the formulation of a precise conjecture.

3.3.5 Approximations for applications to large graph

An obvious limitation of a computational approach is that it can only be

applied to a limited range of values of n. In the above, for example, we have

limited ourselves to the range n ≤ 72. Many graphs of practical interest are
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Extrema of first degree-based entropy for graphs of order n = 24
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Figure 3.5: Extrema of first degree-based entropy for graphs of order n = 24,
as function of the size m. Note the three distinct patterns for the minimum
values: I(G1

24,m) when m ∈ {n− 1, 2n− 3}, with the exceptions described in

Theorem 13, I(G2
24,m) when m ≥ 2n, and an intermediate transition zone of

length ℓ(24) = 2.

considerably larger than that. A complementary approach consists in looking

at the behaviour of the entropy for very large n, or, more precisely, in the limit

n → ∞.

We have seen that (in most cases) G1
n,m minimises the first degree-entropy

amongst (n,m)-graphs for n − 1 ≤ m ≤ 2n − 3, and that G2
n,m is the most

promising candidate for minimising it for m > 2n − 3 + ℓ(n), where ℓ(n) is

a function of n. In this section, we prove that, for large n, the entropy for

both these graphs can be approximated by expressions that depend only on

the size m and on α = limn→∞
n
m , the limit of ratio of the order and size of

the graph. This provides us with two simple expressions for the normalisation

of the entropy of large graphs (Propositions 36 and 37).
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ℓ(n) as a function of n
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Figure 3.6: Number ℓ(n) of values of m for which the (n,m)−graph minimising
the first degree-based entropy is neither as described in Theorem 13 nor G2

n,m.
Remark that ℓ(n) = 0 for n ≤ 16, and ℓ(n) tends to increase with increasing
n, though not monotonically.

Proposition 36. For large n, and any n + 6 ≤ m ≤ 2n− 3,

I(G1
n,m) ≈ 1

2
logm +

1

2
I(α) + α,

where α = n
m , and

I(α) = −α log(α) − (1 − α) log(1 − α)

is the binary entropy function.
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Proof. If m is large, and since m ≥ n + 6

1

2m
(n− 1) log(n− 1)

=
1

2m
(n− 1)

(
log n + log

(
1 +

1

n

))
=

1

2m
(n log n− log n) + O

(
1

m

)
=

1

2
α log n + O

(
log n

m

)
, (3.8)

1

2m
(m− n + 2) log(m− n + 2)

=
1

2m
(m− n + 2)

(
logm + log

(
1 − n

m
+

2

m

))
=

1

2

(
1 − n

m
+

2

m

)(
logm + log

(
1 − n

m

)
+ log

(
1 +

2

m− n

))
=

1

2
(1 − α) logm +

1

2
(1 − α) log(1 − α) + O

(
logm

m

)
,

and,
2(m− n + 1)

2m
= 1 − α +

1

m
.

Combining these three results, we obtain

I(G1
n,m) = log(2m) − 1

2m
[(n− 1) log(n− 1)

+ (m− n + 2) log(m− n + 2) + 2(m− n + 1)]

= log(m) + 1 − 1

2
(α log n + (1 − α) logm + (1 − α) log(1 − α))

− 1 + α + O

(
logm + log n

m

)
=

1

2
logm− 1

2
(α(log n− logm) + (1 − α) log(1 − α))

+ α + O

(
logm + log n

m

)
=

1

2
logm− 1

2
(α logα + (1 − α) log(1 − α))

+ α + O

(
logm + log n

m

)
=

1

2
logm +

1

2
H(α) + α + O

(
logm + log n

m

)
,
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with O
(
logm+logn

m

)
vanishing for large m.

Proposition 37. For large n, and n ≤ m ≤ n(n−1)
2 ,

I(G2
n,m) ≈ 1

2
(logm + I(α) + α + 1)) ,

where α = n
m .

To prove Proposition 37, we introduce an approximation f(n,m) for I(G2
n,m)

that does not depend explicitly on j and k, but only n and m. For a fixed

n and variable m, the function f(n,m) is obtained by considering a smooth

curve passing through the endpoints of the small arcs described by the graph

of I(G2
n,m) (see Fig. 3.7).

Definition 38 (Approximation of I(G2
n,m)).

f(n,m) = log(2m) − 1

2m
((n− 1) log(n− 1) + Jn,m) , (3.9)

where

Jn,m =

(
1 +

√
1 + 8(m− n + 1)

2

)2

log

(
1 +

√
1 + 8(m− n + 1)

2

)
.

We now proceed with the proof, that we subdivide in Lemmas for conve-

nience.

Lemma 39. Write m = n− 1 + k(k−1)
2 + j, k ≥ 1, 1 ≤ j ≤ k.

39.1 If k > 1 then
∣∣∣4(2j−k)+1

4k2

∣∣∣ < 1.

39.2 If m ≥ n + 6, then
∣∣∣2j−k+2

k2

∣∣∣ < 1.

Proof. 1. On the one hand, since j ≥ 1,

4(2j − k) + 1

4k2
≥ 9 − 4k

4k2
,

and
4(2j − k) + 1

4k2
> −1 ⇐⇒ 4(k(k − 1)) > −9,

which is true for all k. On the other hand, since j ≤ k,

4(2j − k) + 1

4k2
≤ 4k + 1

4k2
,
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First degree-based entropy for G1
n,m and G2

n,m for n = 100 nodes
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Figure 3.7: Unnormalized first degree-based entropy I(G1
n,m) and I(G2

n,m)
for n = 100 nodes as n + 6 ≤ m ≤ 2n − 3. For a fixed n, the gap
I(G2

n,m) − I(G1
n,m) tends to grow larger as m increases. Remark that

l2 = limn→∞
(
I(G2

n,m) − I(G1
n,m)

)
= 1−α

2 , where α = limn→∞
n
m is the limit of

ratio of the order and size of the graph. Remark that for G1
n,m to be defined,

we need n + 6 ≤ m ≤ 2n− 3, thus 1
2 ≤ α ≤ 1, and therefore 0 ≤ l2 ≤ 1

4 .

and
4k + 1

4k2
< 1 ⇐⇒ 4k(k − 1) > 1,

which hold for all k > 1. Therefore if k > 1 then
∣∣∣4(2j−k)+1

4k2

∣∣∣ < 1.

2. m ≥ n + 6 and j ≤ k, so k(k+1)
2 ≥ 7. Hence k ≥ 3. Now, since j ≥ 1,

2j − k + 2

k2
≥ 4 − k

k2
,

and
4 − k

k2
> −1 ⇐⇒ k(k − 1) > −4,
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which holds for all k. On the other hand, since j ≤ k,

2j − k + 2

k2
≤ k + 2

k2
.

Now, k+2
k2

< 1 as long as k > 2, and we’ve just seen that k ≥ 3. Therefore

if m ≥ n + 6, then
∣∣∣2j−k+2

k2

∣∣∣ < 1.

Lemma 40. limn→∞
(
I(G2

n,m) − f(n,m)
)

= 0, ∀m ∈ N : n ≤ m ≤ n(n−1)
2 .

Proof. Write m = (n − 1) + k(k−1)
2 + j with k and j as above. Then the

difference becomes

I(G2
n,m) − f(n,m) =

Ik,j − Jk,j
2(n− 1) + k(k − 1) + 2j

, (3.10)

where

Ik,j = j(k + 1) log(k + 1) + k(k − j) log k + (j + 1) log(j + 1),

and

Jk,j =

(
1 +

√
1 + 4(k(k − 1) + 2j))

2

)2

log

(
1 +

√
1 + 4(k(k − 1) + 2j)

2

)
.

If k = 1, then j = 1 and Ik,j = 4 = Jk,j , so I(G2
n,m) − f(n,m) = 0 for any

value of n.

Assume k > 1. Then by Lemma 39.1,
∣∣∣4(2j−k)+1

4k2

∣∣∣ < 1. We can thus rewrite

the square root term using a binomial series expansion as

√
1 + 4(k(k − 1) + 2j)) = 2k

√
1 +

4(2j − k) + 1

4k2

= 2k

(
1 +

1

2

4(2j − k) + 1

4k2
+ O

(
1

k2

))
= 2k

(
1 + O

(
1

k

))
(3.11)

= 2k + O(1), (3.12)

where eq. (3.11) follows from the fact that j ≤ k.
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Now, when |x| > 1,

log(x + 1) = log

(
x

(
1 +

1

x

))
= log x + log

(
1 +

1

x

)
= log x +

1

ln(2)

(
1

x
+ O

(
1

x2

))
(3.13)

= log x + O

(
1

x

)
, (3.14)

where in eq. (3.13) we’ve used a Taylor expansion of the natural logarithm.

By taking x =
√

1 + 4(k(k − 1) + 2j) in eq. (3.14), we can then write

log

(
1 +

√
1 + 4(k(k − 1) + 2j)

2

)
= log

(
1 +

√
1 + 4(k(k − 1) + 2j)

)
− 1

= log
(√

1 + 4(k(k − 1) + 2j)
)

+ O

(
1√

1 + 4(k(k − 1) + 2j)

)
− 1

=
1

2
log(1 + 4(k(k − 1) + 2j)) + O

(
1

k

)
− 1

=
1

2
log

(
4k2

(
1 +

4(2j − k) + 1

4k2

))
+ O

(
1

k

)
− 1

= log k + 1 +
1

2
log

(
1 +

4(2j − k) + 1

4k2

)
+ O

(
1

k

)
− 1

= log k + O

(
4(2j − k) + 1

4k2

)
+ O

(
1

k

)
(3.15)

= log k + O

(
1

k

)
, (3.16)

where eq. (3.15) follows from a Taylor expansion (note that k > 1, and so∣∣∣4(2j−k)+1
4k2

∣∣∣ < 1).

By eqs. (3.12) and (3.16), we have thus

Jk,j =

(
1 + 2k + O(1)

2

)2(
log(k) + O

(
1

k

))
= k2 log k + O(k log k). (3.17)
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Now, applying eq. (3.14) to Ij,k, and recalling that 1 ≤ j ≤ k, we have

Ij,k =j(k + 1)

(
log k + O

(
1

k

))
+ k(k − j) log k + (j + 1) log(j + 1)

=jk log k + j log k + O(k) + k2 log k

− kj log k + (j + 1) log(j + 1)

=k2 log k + O(k log k). (3.18)

And thus by equations 3.17 and 3.18,

Jj,k − Ij,k = k2 log k + O(k log k) −
(
k2 log k + O(k log k)

)
= O(k log k). (3.19)

The sum in the denominator of eq. (3.10), contains n and k2 terms which

dominates O(k log k), as long as an appropriately large n is chosen. Therefore

we can make the difference I(G2
n,m) − f(n,m) arbitrarily small for large n,

that is

lim
n→∞

(
I(G2

n,m) − f(n,m)
)

= 0.

Lemma 41. For large n, and n + 6 ≤ m ≤ n(n−1)
2 ,

f(n,m) ≈ 1

2
(logm + I(α) + α + 1)) ,

where α = n
m

Proof.

f(n,m) = log(2m) − 1

2m
((n− 1) log(n− 1) + Jn,m) ,

where

Jn,m =

(
1 +

√
1 + 8(m− n + 1)

2

)2

log

(
1 +

√
1 + 8(m− n + 1)

2

)
.

Let x = m− n + 1, then

Jx =

(
1 +

√
1 + 8x

2

)2

log

(
1 +

√
1 + 8x

2

)
.

87



Now,

Jx =
1

4
(1 + 2

√
1 + 8x + 1 + 8x)

(
log(

√
1 + 8x) + log

(
1 +

1√
1 + 8x

)
− 1

)
=

1

2
(1 +

√
1 + 8x + 4x)

(
1

2
log(8x) +

1

2
log

(
1 +

1

8x

)

+ log

(
1 +

1√
1 + 8x

)
− 1

)

=
1

2
(1 +

√
1 + 8x + 4x)

(
1

2
log x + O

(
1

x

)
+ O

(
1√
x

)
+

1

2

)
(3.20)

=x log x + x + O(
√
x log x), (3.21)

where for eq. (3.20), we’ve used the fact that m ≥ n + 6, so x ≥ 7, and thus

we can use a Taylor expansion for log.

By eq. (3.21), we have

Jn,m
2m

=
(m− n + 1)

2m
log(m− n + 1)

+
m− n + 1

2m
+ O

(
log(m− n + 1)

m

)
=

1

2

(
1 − α +

1

m

)(
logm + log(1 − α) + O

(
1

m

))
+

1 − α

2
+ O

(
logm

m

)
=

1 − α

2
(logm + log(1 − α) + 1) + O

(
logm

m

)
. (3.22)

Thus by equations 3.22 and 3.8, we have

In,m = logm + 1 − 1

2
α log n

− 1 − α

2
(logm + log(1 − α) + 1) + O

(
logm

m

)
=

1

2
logm− α

2
(log n− logm)

− 1 − α

2
log(1 − α) +

α + 1

2
+ O

(
logm

m

)
=

1

2
(logm− α logα− (1 − α) log(1 − α) + α + 1) + O

(
logm

m

)
=

1

2
(logm + H(α) + α + 1) + O

(
logm

m

)
, (3.23)
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with the term O
(
logm
m

)
small for large values of m.

Proof of Proposition 37. The result follows from Lemmas 40 and 41.

3.4 Normalisation

Normalising the first degree-based entropy I(G) on the basis of one’s knowl-

edge of basic graph properties of G provides a more informative index Ĩ(G)

of the balance of the graph connections than normalising by the extrema ob-

tained by the measure amongst all graph.

When we are interested in comparing G with other connected graphs with

order n, a possible approach is that of situating its entropy I(G) in a range go-

ing from the entropy of the most centralised tree I(Sn−1) = 1+ 1
2 log(n−1) (as

proved in Proposition 22), to the entropy of the complete graph I(Kn) = log(n)

(or any other regular graph with n nodes). This is achieved by normalising

I(G) as

Ĩ(G) = In(G) =
I(G) − I(Sn−1)

I(Kn) − I(Sn−1)
.

By the results of Theorem 12, when one compares G with other graphs of

size m, one should normalise I(G) as

Ĩ(G) = Im(G) =
I(G) − I(C(m))

I(mK2) − I(C(m))
.

Here I(mK2) = log(2m) and

I(C(m)) = log(2m) − 1

2m
(ℓf(k) + (k − ℓ)f(k − 1) + f(ℓ)) ,

where m =
(
k
2

)
+ ℓ with 0 ≤ ℓ < k. Then, Im(G) falls within the range

[0, 1] with the minimum (resp. maximum) obtained precisely when the graph’s

degree sequence is maximally concentrated (resp. balanced).

By Theorems 11 and 13 and by the above numerical observations, a more

appropriate normalisation for an (n,m)-graph G, for which both the order n

and the size m are known, is

Ĩ(G) = In,m(G) =
I(G) − I(Gi

n,m)

I(Gmax
n,m ) − I(Gi

n,m)
,

where i = 1 when n + 6 ≤ m ≤ 2n − 3 and i = 2 when m > 2n − 3 + ℓ(n).
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Here

I(Gmax
n,m ) = log(2m) − 1

2m
(rf(q + 1) + (n− r)f(q)),

where 2m = qn + r, with q = ⌊2mn ⌋ and 0 ≤ r < n,

I(G1
n,m) = log(2m) − 1

2m
(f(n− 1) + f(m− n + 2) + m− n + 1) ,

and

I(G2
n,m) = log(2m) − 1

2m
(f(n− 1) + jf(k + 1) + (k − j)f(k) + f(j + 1)) ,

with j and k satisfying m = n−1+
(
k
2

)
+j, with 1 ≤ k ≤ n−2, and 1 ≤ j ≤ k.

Then, the index In,m(G) ∈ [0, 1] with In,m(G) = 0 when the degree sequence

of G is maximally unbalanced given the constraints on its order and size, and

when In,m(G) = 1 when the degree sequence is as balanced as possible.

In Chapters 4 and 5, we use the normalised indices In, Im, and In,m to

study the balance of the distribution of connections in various urban networks:

the disc graphs connecting towns in a region when their geographical distance

is smaller than a certain threshold (Section 4.4.4); the worldwide network of

airports connected via direct flight routes (Section 5.1); and the disc graphs

based on the evolving travel time between towns as the railway system expands

and modernises (Section 5.2.3). Whilst the indices are easy to calculate for a

given network, the proofs and computations presented in this chapter to verify

their validity show the intricacy of the problem even in these simple cases. In

practice, much more complex spatial, geographic, economic, political, cultural,

and historical constraints are in place on the structure of real urban networks.
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Chapter 4

Cities and their Territory:

Population and Spatial

Organisation of Systems of

Cities

In this chapter, we look at fundamental aspects of the morphology of a system

of cities: the cities’ population sizes, the land use and population density of

their surrounding territory, and their spatial organisation in terms of locations

and reciprocal distances.

We open the chapter with a discussion on the compatibility of some of the

historical population data sets introduced in Section 2.2, and the rationale

behind our choice to focus on three of them. We show a simple application

of Shannon entropy to study the balance of city sizes in several European

powers from 1300 to 1850 in Section 4.2. In Section 4.3, we introduce local

entropy: a spatial entropy measure for raster data, and apply it to study the

heterogeneity in and around urban areas in the British Isles, Italy, and South

Asia. In both sections, we discuss the correlation between variations in the

measures and major historical events. Finally, in Section 4.4, we focus on

the spatial distribution of towns in England and Wales in the 19th century,

which we study using point processes and the first degree-based entropy of

disc graphs, which connect any two towns when their geographical distance is

less than a fixed threshold, normalising the entropy as seen in Section 3.4.
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Figure 4.1: Population data sets and studies and their relations with one
another. Shaded data sets are used in the thesis.

4.1 Completion and compatibility of historical pop-

ulation data sets

4.1.1 Compatibility of different data sets

The data sets described in Section 2.2.1 adopt different criteria to compute

historical estimates of the population, and often focus on different regions or

time periods. Yet, as we have seen, they are deeply interconnected with one

another, being often derived from common historical studies. A diagram of

their relations in given in Fig. 4.1. This raises the question of whether the

data sets are compatible, or, in other words, whether analyses carried out

with different data sets would lead to consistent results.
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The NASA SEDAC [180] and UN World Urbanisation Prospects [206] are

formally unrelated data sets, but have the same worldwide geographic scope,

cover overlapping periods of time, and contain a similar number of cities.

Thus, we check here their compatibility.

We create a more complete data set, merging together the two data sets.

Discrepancies in the population data of the same city are to be expected,

given that they use different criteria to define urban populations, as detailed in

Section 2.2.1. To avoid major clashes, the population data from year 1000BC

to 1950AD was taken from the NASA data set, whilst data from 1955AD

onward was taken from the UN one. Cases of different spellings for the same

cities and countries were manually accounted for and appropriately matched.

The resulting merged data set contained 2738 cities, but only 717 had records

in both original data sets. The remaining 2021 cities appear in only one of

the two data sets, and thus the data on their population refers to either the

1000BC-1950AD period or the 1955AD-2015AD period, but not to both.

We compare the thus assembled data set with the population data in

HYDE 3.2 [127].Both the NASA and UN data sets provide population data

for each individual city u, and a single pair of coordinates (lonu,latu), corre-

sponding to the city centre. On the other hand, HYDE 3.2 is a raster data

set of historical population counts and densities in small cells covering the

globe, estimated by combining present-day high-resolution population maps,

historical sources for the population of cities and wider regions, and estimates

of historical urban densities and water and soil accessibility, through the pro-

cedure outlined in Section 2.2.1.2 and detailed in [127] and [128]. For each

city u, the coordinates (lonu,latu) fall in exactly one cell (iu, ju) in HYDE 3.2.

We matched the city’s population pu,y in a given year y in the merged

data set to the population of the corresponding cell p(iu,ju),y in HYDE 3.2.

The population of the cell vastly underestimated the population of the city

(p(iu,ju),y << pu,y), especially in recent years and for larger cities. This was

to be expected since a cell has an area of at most 86km2 and many modern

urban areas are larger than that.

To contrast this effect, we mapped each city not just to one cell but to

a set of cells. For each cell (i, j) in the raster data set, we considered the

neighbourhoods Cn
(i,j) formed by the cell itself and its closest, n − 1 = 4, 8

or 20 closest neighbours, as measured by great-circle distance between the

centres of the cells. The resulting neighbourhoods correspond to discs around

the centre of the cell (i, j), having radii 8km, 12km and 20km at the equator,
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respectively. The neighbourhood Cn
(i,j) acts as an observation window of size

n around the cell (i, j), as depicted on the top of Table 4.1.

For each year y, we found the most appropriate value n̂y of window size n

by minimising the mean “error”

εn,y =
1

N

N∑
i=1

pu,y
pCn

(iu,ju)
,y

− 1,

across the whole data set, i.e.,

n̂y = argmin
n

εn,y.

We report the values of εn,y for all years and window sizes in Table 4.1, as an

indicator of the compatibility of the data sets.

Note that the selection of a window size had to be performed a priori on

the whole data set and not at the individual city level, because of the missing

records. Hence, the mapping from a city to a set of cells tends to underestimate

the population of larger centres and overestimate that of smaller centres. On

average the error of the best-matching city to cell set size is 17%. We consider

this an excessive error, and therefore we proceed to use Bairoch [15] and

Bennett’s [27] data sets in Section 4.2 and HYDE 3.2 in Section 4.3, as the

former data set is incorporated directly in the latter, avoiding incorporating

data from other data sets.

4.1.2 Data set completion

Historical data sets, even the most accurate ones such as census data, often

have missing records. Whether the lack of a data point should be addressed

as an issue, accepted as a limitation, or interpreted as a significant piece of

information in and of itself, it depends on the specific case. On the one hand,

if a town’s population is not recorded at some point in time, but it is known

shortly before and after, one can reasonably assume that the town was there

all along, and estimate the missing record(s) via interpolation. On the other

hand, if a town’s population is not recorded for a long period of time, the

settlement may have faced a disruptive event that made it impossible to count

its population, or even led it to be momentarily abandoned and then rebuilt

on the same location.

In [27], complete population records are not available for every town in

England and Wales between 1801 and 1911, but the time interval between
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Table 4.1: Average error εn,y when comparing the population of cities from
the data sets NASA SEDAC [180] (until 1950AD) and UN World Urbanisation
Prospects [206] (1955AD onwards) to the population of the corresponding cells
in HYDE 3.2 [127], depending on the size of the observation window.

year cell (i, j) C5
(i,j) C9

(i,j) C21
(i,j)

1000BC -0.034 3.071 5.863 13.453
0 -0.64 0.533 1.605 4.562
500AD -0.692 0.296 1.188 3.63
700AD -0.738 0.106 0.876 2.969
1000AD -0.813 -0.209 0.343 1.839
1100AD -0.784 -0.082 0.562 2.313
1200AD -0.783 -0.077 0.57 2.329
1300AD -0.804 -0.175 0.404 1.979
1400AD -0.837 -0.315 0.164 1.456
1500AD -0.832 -0.295 0.197 1.523
1600AD -0.844 -0.348 0.108 1.332
1700AD -0.837 -0.335 0.128 1.362
1750AD -0.744 -0.058 0.537 2.066
1800AD -0.619 0.267 0.986 2.762
1850AD -0.5 0.495 1.252 3.031
1900AD -0.647 -0.034 0.398 1.34
1950AD -0.685 -0.19 0.135 0.796
1960AD -0.655 -0.118 0.229 0.924
1970AD -0.672 -0.17 0.15 0.783
1980AD -0.68 -0.2 0.101 0.69
1990AD -0.688 -0.229 0.055 0.603
2000AD -0.707 -0.288 -0.031 0.461
2005AD -0.722 -0.329 -0.089 0.365
2010AD -0.729 -0.351 -0.122 0.31
2015AD -0.74 -0.381 -0.165 0.24
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successive records is only 10 years long, and the data is more frequently missing

in small towns with little population changes. Hence, if a town’s population

is not recorded for one or more years, we chose to complete the data via a

simple linear interpolation. For some towns, records only begin from a certain

year onward, and it is not possible to establish a priori whether the town was

a newly established one, or the data was not recorded for other reasons. For

these cases, we preferred not to intervene on the original data set. Thus, we

could limit the effects of missing data, whilst retaining information on the

increase in number of settlements in the system over time.

In [15], the data sets presents similar gaps in the time series of city pop-

ulations in major European powers from 1300 to 1851, but the time interval

between two records, if an intermediate one is missing, is between 100 years

and 200 years long. We considered this too long a time to assume a smooth

transition between the available records, and thus decided against applying

interpolation on this data set.

On a different note, neither [27] nor [15] provided the geographical locations

of the settlements. We retrieved these via Geonames1, associating each town

to the coordinates of a modern settlement with the same name. Whilst sanity

checks were performed by mapping the data, there remains the possibility

of rare incorrect assignment of geographical coordinates in [15] due to the

presence of more than one locality with the same name in the same country,

or change of city names.

4.2 Population entropy

A first, simple application of entropy to the study of the evolution of systems

of cities is the analysis of the temporal evolution of the Shannon entropy of

the proportion of urban population residing in each city.

4.2.1 Entropy of urban populations in Europe in 1300-1850

Figure 4.2 shows the evolution of this measure in several European systems

of cities, from 1300 to 1850. The data is taken from Bairoch [15], whose data

set was described in Section 2.2.1. Beyond merely compiling data, [15] also

highlighted the urbanisation trends in major European countries and how they

were impacted by major historical events. The Shannon entropy of the urban

1https://www.geonames.org/.
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Entropy of urban population in Europe
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(a) Unnormalised Shannon entropy of the population of
cities in major European countries from 1300 to 1850.
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(b) Shannon entropy of the population of cities in major
European countries, normalised for each country C and
year y by its maximum possible value log(NC,y), where
NC,y is the number of cities in C in year y.

Figure 4.2: Shannon entropy of the population of cities in major European
countries from 1300 to 1850, based on data from Bairoch [15]. The country
borders are matched to modern ones. Some major events in European history
are indicated along the time axis by shaded blocks.
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population, in spite of its simplicity, is able to capture some of these structural

changes.

The general though uneven growth in the unnormalised Shannon entropy

shown in Fig. 4.2a reflects primarily the increase in the number of cities as the

population of Europe slowly climbs for most of the period under consideration,

but also the improvements in records. The most noticeable exception to this

growth is observed in 1400, after the Black Death struck Europe, killing at

least a third of the continent’s population between 1348 and 1351. The epi-

demic had a remarkable impact on the urban system. As the total population

decreased, the urbanisation rate increased in the vast majority of the coun-

tries [15], fuelled by rural to urban migration [121]. The uneven spatial pattern

of mortality-driven population decline and subsequent migration-led popula-

tion recovery produced major shifts in the population rankings of cities [121]

and the population concentrated into fewer centres, as the cities engaged in a

“survival of the fittest” competition [50], in which only few managed to grow

or even avoid decline. These factors are reflected in the decrease in unnor-

malised entropy of every country from 1300 to 1400, visible in Fig. 4.2a, as

well in normalised entropy (Fig. 4.2b), that follows a similar decline in all

countries but Germany.

The final stages of the Reconquista, with the War of Granada, had a major

impact on the Spanish urban system as a very urbanised Islamic territory

passed under the domain of a more rural Christian one [15]. The sharp increase

in both the unnormalised and normalised Shannon entropy reflects the decline

in the population of the main cities in Andalusia, such as Granada, Cordoba

and Seville, which were at the time among the largest in Europe, and thus the

levelling-down to a more equalised urban system.

The Thirty Years’ War (1618-1648) affected especially Germany, whose

cities saw a decline of 60% in their populations. This correlates to the decline

in the country’s Shannon entropy in the 17th century.

The Reign of Peter I (also known as Peter the Great) signed an enormous

expansion of the Russian Tsardom and the creation of the Russian Empire.

Several cities were founded, including the capital Saint Petersburg, explaining

the spectacular growth in entropy shown in Fig. 4.2a.

The main effects of the Industrial Revolution (1760-1840) would not be

felt in Europe until much later than the observed period, but Great Britain is

major exception. Not only does the overall entropy reach its peak, signalling

the expansion of the system of cities, but also the normalised entropy shows
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a remarkable increase after two centuries of decline. This reflects the fact

that, for the first time since the 1500, the epicentre of urban growth starts to

move away from London towards other smaller cities, creating a more uniform

system. In fact, industrialisation emerged outside of London and the other

main British cities of the time, in a small number of minor centres that saw

their population grow unprecedentedly [14]. In spite of its increase in the 19th

century, the distribution of population in British cities remained significantly

more unbalanced than in other European countries from the 1600s onward, as

reflected by the low values of both the normalised and unnormalised entropy,

primarily for the dominating position of London2.

The Shannon entropy of the population distribution in a system of cities is

thus able to capture the change in uniformity of the system, with greater values

of entropy associated to more numerous cities, and growth in the relative share

of the population in mid-to-small sized cities. Yet, this simple measure is not

able to capture other crucial trends in the urbanisation, such as the progressive

shift of the epicentre of European urbanisation from Southern to Western and

Northern Europe from the 16th century onward. To capture trends like this,

more explicitly spatial measures are needed.

4.2.2 Entropy of urban populations in England and Wales in

1801-1911

We perform the same analysis for the population of English and Welsh towns

from 1801 to 1911. We use Census data [27] completed via linear interpolation,

as detailed in Section 4.1.23.

Fig. 4.3 shows the evolution of the Shannon entropy, in its non-normalised

and normalised form. The growth in the former is almost exclusively due to

the increase in the number of settlements in the system. The latter follows

a generally decreasing trajectory until 1891, indicating a progressive increase

in concentration of the population in fewer centres. Both these observations

reflect the period of fast urbanisation and significant internal migration that

2As late as 1520, most major towns in England had failed to recover from the population
losses caused by the Black Death, as evidenced by a stagnating land market and large
prevalence of derelict, empty buildings [108]. London was a rare exception. Whilst towns
with more than 10,000 inhabitants grew faster than the population as a whole starting from
the 1550s, London’s manifold advantages of being a court, capital city, and major port [115]
cemented its dominating position in the 16th and 17th century, with the primate city housing
11.5% of the national population in 1700, up from 5% in 1600, that is 19 times the population
of Norwich, the second largest centre [115].

3The results obtained with the original data set are almost identical, but we chose to
present those of the completed data set to ensure consistency with the analysis in Section 5.2.
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Entropy of the population in English and Welsh towns (1801-1911)
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Figure 4.3: Shannon entropy of the population of English and Welsh towns
from 1801 to 1911, in its non-normalised form (scale on the left) and normalised
form (scale on the right). The normalisation is performed by dividing the
entropy in each year y by its theoretical maximum value log(Ny), where Ny is
the number of towns in the year y. The data is taken from [27].

characterised England and Wales for most of the 19th century [211, 170].

The years after 1880 witnessed a change in the trajectory of urbanisation, as

new industrial sectors emerged, old ones declined, and the bulk of the growth

shifted from larger centres to suburban towns [170]. Again, this is captured

by the measures,with a sharp increase in both the un-normalised entropy and,

more significantly, the normalised entropy at the turn of the 20th century.

It is important to remark, though, that the absolute variation in the nor-

malised entropy is relatively small4, and the measure is significantly smaller

than what is observed in other European countries in the previous centuries

(See Fig. 4.2b). This indicates that the English and Welsh system of cities

remained an extremely unbalanced and centralised one throughout the 19th

century, as already remarked above for earlier periods.

4The measure attains a minimum of 0.713 in 1891 and a maximum of 0.734 in 1811.
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4.3 Local entropy

Until now, we have studied cities and the evolution of the Shannon entropy of

their population by considering them as discrete, individual entities (Section

4.2). But, as discussed in Section 2.1, cities may not exist in isolation.

In this Section, we conceptualise cities as entities emerging from a con-

tinuum, that remain inextricable from their territory, and shift our attention

on the relation between a city and its immediate geographical surroundings.

We focus on two fundamental dimensions of urbanisation and their effects on

a territory: increased land consumption and growing population density. In

Section 4.3.1, we define local entropy, that expands recent efforts to extend

Batty’s spatial entropy to create measures accounting not only for size and

number of spatial units but also for spatial proximity, as discussed in Section

2.4.2.

We retain our interest in a long-term historical study, and, through the

case studies of the British Isles, Italy, and South Asia, reconnect the tempo-

ral evolution to some of the main socioeconomic, political, and technological

changes and epidemic events these regions went through during the last three

centuries.

4.3.1 Methodology

For this analysis, we use the HYDE 3.2 raster data set [127], introduced in Sec-

tion 2.2.1.2. Recall that HYDE 3.2 provides estimates of historical population

densities in a grid of 5′×5′ cells covering the whole world surface, and classifies

each cell according to its prevailing land use into one of the seven categories:

urban area, dense settlement, village, cropland, rangeland, semi-natural, and

wild land, with the exception of oceans, that are unclassified. We assess the

level of heterogeneity and disorder in land use and population density in and

around human settlements via a local entropy measure, adapted to the raster

form of the above described data set.

Consider a region R, and fix some window size n ∈ {5, 9, 21}, as formally

defined Section 4.1.1 and depicted in Fig. 4.4. Let (i, j) be any cell in R

whose land use classifies it as a human settlement (urban, dense settlement,

or village). Suppose n′ of the cells in its neighbourhoods Cn
(i,j) fall within R

and on land. Let pk be the fraction of these n′ cells in Cn
(i,j) with land use

k, where k ranges along the aforementioned categories as well as cropland,

rangeland, semi-natural, and wild lands (so that
∑

k pk = 1). We define the
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cell (i, j) C5
(i,j)

C9
(i,j) C21

(i,j)

Figure 4.4: Neighbourhoods Cn
(i,j) of a cell (i, j) for n = 5, 9 and 21.

land use local entropy En
(i,j) of the cell (i, j) with respect to its n − 1 closest

neighbours as the Shannon entropy

En
(i,j) = −

∑
k

pk log pk.

The minimum value of the entropy (En
(i,j) = 0) is achieved when all cells in

the neighbourhood Cn
(i,j) have the same land use as (i, j), i.e., when we have a

homogeneous landscape around (i, j). The more heterogeneous the landscape

is, the larger the value of the entropy.

Note that the maximum possible value of En
(i,j) depends on n′, rather than

n directly. For example, for any value of n, if the neighbourhood Cn
(i,j) contains

only n′ = 5 cells falling on land and within the borders of the region R, the

most heterogeneous case is the one in which the 5 cells have any 5 distinct land

uses, i.e., pk = 1
5 for any 5 of the k’s and pk = 0 for the remaining two, giving

a maximum value of log 5. Normalising En
(i,j) by the appropriate maximum

values allows to avoid border effects and compare the local entropy at (i, j)

for different window sizes. The normalised values fall between 0 (complete

homogeneity) and 1 (maximum heterogeneity).

We use the normalised values to define a new raster of land use heterogene-

ity around human settlements (see, for example, Figs. 4.6 and 4.7 in Section

4.3.3). Summing over all cells (i, j), we obtain En
land, a measure of the total

local entropy of human landscapes in R. Similarly, averaging over the cells,
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we obtain E
n
land, a measure of the mean local entropy of urban landscapes in

R. By computing En
land and E

n
land at different moments in time, it is finally

possible to study the evolution of the local heterogeneity of land use in the

region R.

In a completely analogous way, we classify the density raster data into dif-

ferent categories, and study the evolution of the local entropy of the population

density in time. For simplicity and symmetry, here we choose seven categories:

zero density (uninhabited lands), densities between 1 and 50 inh/km2 (sparsely

populated), 51 to 100 (moderate-low density), 101 to 200 (moderate-high den-

sity), 201 to 500 (high density), 501 to 1,000 (very high density), and 1,001

or more inh/km2 (extremely high density). We proceed as before, calculating

the local entropy of the density in the neighbourhoods of each cell classified

as human settlement, and normalising the values accordingly. Summing over

the cells we obtain En
density, a measure of the total local entropy of population

density in R. Averaging, we obtain E
n
density, a measure of the mean local

entropy of population density in R.

Remark that the averaging procedure allows the local entropy to be ap-

plied at different scales. We will see an analogous approach in studying cities

connectivity via the entropy of interactions (Definition 9 in Section 2.5.2), and

its application to polycentricity of systems of cities (Section 5.2).

4.3.2 Example

(a) A simple region: a moderate density
settlement surrounded by fields.

(b) A more complex region: a mixture of
high, moderate and low density areas, as
well as agricultural land.

Figure 4.5: Examples of a simple and a more complex region.

As a simple example of the computation of local entropy, we consider the

two 9-cell regions in Fig. 4.5. As reference systems, we take the top cell in

each region to be (1, 1). We choose n = 5 as the window size.

In the region in Fig. 4.5a, we have agricultural land with a moderately
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dense settlement at its centre. In this case, only the central cell (2, 2) contains

a human settlement, so we only deal with C5
(2,2). Here n′ = 5 and pdense = 1

5 ,

pcropland = 4
5 , with pk = 0 for every other land use k. Thus

E5
(2,2) = log 5 − 8

5
.

Normalising by the maximum value log 5, we obtain

E5
land = E

5
land =

log 5 − 8/5

log 5
≈ 0.31.

In Fig. 4.5b, we have a more complex region with one urban cell at the cen-

tre (2, 2), four cells with dense settlement around it {(1, 2), (2, 1), (3, 1), (3, 2)},

two low density villages {(2, 3), (3, 3)}) and two cells of cropland {(1, 3), (3, 1)}.

In this case, we have to compute Cn
(i,j) for all cells except the two allocated to

cropland. As an example of cell on the border, consider (1, 2). C5
(1,2) contains

n′ = 4 cells, with purban = 1
4 , pdense = 1

4 , pcropland = 1
2 , and pk = 0 for all

other land use k. Hence

E5
(1,2) =

3

2
,

and the normalising constant is log 4 = 2. After computing and normalising

appropriately each cell entropy value, we sum or average over the 7 cells with

human settlements, and obtain

E5
land ≈ 4.2 , and E

5
land ≈ 0.6,

reflecting the fact that this region is considerably more heterogeneous than

the one in Fig. 4.5a, both overall, and on average around each settled cell.

4.3.3 A Real-world Study of Local Entropy

We apply local entropy to study the change in heterogeneity of land use and

population density in the British Isles, South Asia, and Italy.

These regions are all characterised by relatively high population density

by global standards, but have radically different urban systems. Britain’s

industrial revolution propelled it from a mostly rural, sparsely populated area

to the first country to industrialise and achieve high rates of urbanisation. It

has several large cities, but its urban system is dominated by the primate city

of London. Parts of South Asia, on the other hand, have long been amongst the

most densely populated in the world, but the region has seen urbanisation rates
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rise only in more recent years. The region has large number of metropolises,

none of which contains a large proportion of the total population and can be

said to dominate above the others. Italy represents an intermediate situation:

it kept relatively high urbanisation rates throughout its history, even before its

industrialisation, which truly began only after the country’s unification in the

late nineteenth century. It has a relatively heterogeneous system of cities, with

three major, similar sized urban areas: Milan, Rome and Naples, respectively

in the North, Centre, and South of the peninsula.

We consider the years from 1700 to 2015, a period in which the regions

were shaken by important socioeconomic and technological changes (e.g., the

industrialisation) and political events (e.g., the colonisation and decolonisation

of India, the unification of Italy, the World Wars), which had lasting effects

on their urban structure.

4.3.3.1 Raster of local entropy

Figure 4.6 shows the regions’ rasters of local entropy of land use and in 1700,

1900 and 2015.

In the British Isles, after a dramatic expansion from 1700 to 1900, the

number of cells occupied by human settlements remains roughly unchanged

to 2015. Comparing the 1900 to 2015, some of the cells classified as villages

turn into dense settlements and dense settlements are incorporated into the

growing urban areas around major metropolises, resulting in a shift in their

color from orange (low local entropy) to green (high local entropy), reflecting

the growing heterogeneity in land use of the areas around them. This process

is exemplified by Greater London, where the urban core expands, resulting in

lower entropy values in the centre, surrounded by higher local entropy areas

at the fringes of the city’s Green Belt.

In Italy, a similar expansion is observed from 1700 to 1900, but the in-

crease in settled areas continues to 2015. The majority of new cells occupied

by settlements appear in the vicinity of already established urban areas, es-

pecially in the Po Valley, or lie along the coast. These newly settled cells are

characterised by large local entropy, reflecting their peripheral nature.

In India, the Valley of the Ganges and the South were already hosting sev-

eral settlements by 1700. The period to 1900 sees the expansion of settlements

especially along the coast, in part as a consequence of the growth of port cities

during the British colonial rule. A great expansion of the settled areas in the

interior follows. Most of the cells are classified as villages surrounded by other
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Local entropy of land use in the British Isles
1700 1900 2015

Local entropy of land use in South Asia
1700 1900 2015

Local entropy of land use in Italy
1700 1900 2015

Figure 4.6: Local entropy of land use for each cell classified in HYDE as a
human settlement (urban, dense settlement, or village) in the British Isles,
South Asia, and Italy, in 1700, 1900, and 2015. The window size is n = 5.
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Local entropy of population density in the British Isles
1700 1900 2015

Local entropy of population density in South Asia
1700 1900 2015

Local entropy of population density in Italy
1700 1900 2015

Figure 4.7: Local entropy of population density for each cell classified in HYDE
as a human settlement (urban, dense settlement, or village) in the British Isles,
South Asia, and Italy, in 1700, 1900, and 2015. The window size is n = 5.
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villages or cropland, and this is reflected by the predominance of low entropy

(orange) cells. Nonetheless, higher values are observed in either more remote

areas of the interior and along the Himalayas, where settlements border wilder

landscapes, and around established large urban centres.

Figure 4.7 shows the regions’ rasters of local entropy of population density

in the same period.

In the British Isles, the local entropy of cells corresponding to large cities

tends to decrease from 1900 to 2015, as their urban areas expand and the

population becomes less concentrated in the urban core and more uniformly

spread in its surroundings. Urban fringes, on the other hand, retain large

entropy values. Remark this phenomenon, for example, in the highly densely

populated regions in North-Western England, that display increasingly distin-

guishable low entropy cores.

A similar phenomenon is noticeable in some areas in Italy as well, for

example around Naples, in the South-West, and Milan, in the North-West,

but is less apparent elsewhere.

In South Asia, from 1700 to 1900, the relatively uniformly populated areas

in the North, see the population become more concentrated, resulting in a more

heterogeneous landscape of large and small entropy values. The progressive

concentration of population proceeds to 2015, with generally higher entropy

values and some areas of low entropy, resulting from consistently high densities,

visible in Mumbai, on the Arabian Sea coast; in Uttar Pradesh and Bihar, in

North India; Bangladesh; and along the Kerala coast, in the South West.

4.3.3.2 Historical evolution of local entropy in the British Isles

In Fig. 4.8 we show the evolution of the total local entropy of land use En
land

and population density En
density in the British Isles from 1700 to 2015 for

various choices of window size n = 5, 9, and 21. The value of n is found not

to affect the overall trends.

The evolution of En
land (Fig. 4.8a) and En

density (Fig. 4.8b) reflects quite

clearly the two industrial revolutions that Great Britain experienced between

1760-1840 and from the 1870s to the beginning of World War I in 1914. Both

periods show a sustained growth in total local entropy, and were followed

by more unstable decades of plateauing or slowly decreasing entropy values.

Recent years are characterised by different behaviours in the two measures:

whilst the entropy of land use continues to grow, the entropy of population

density enters a phase of relative decline.
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Total local entropy of land use in the British
Isles
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Figure 4.8: Total local entropy En
land of land use and En

density of population
density in the British Isles, for n = 5, 9, and 21 nearest neighbours. Whilst
differences in absolute values exist, the general trends are not impacted by the
window size, and are mostly consistent between the measures.
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Mean local entropy of land use in the British
Isles
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(b) Mean local entropy E
n

density of population density.

Figure 4.9: Mean local entropy E
n
land of land use and E

n
density of population

density in the British Isles, for n = 5, 9, and 21 nearest neighbours. The
general trends are not greatly affected by the window size but reveal impor-
tant differences between the measures, with the entropy of population density
steadily increasing while that of land use sees a more irregular evolution.
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To distinguish the purely local effects from the mere increase in the num-

ber of cells occupied by settlements, we look at the mean entropy E
n
land and

E
n
density in Fig. 4.9. As above, the value of n does not affect the main trends.

These are not constant during the two industrial revolutions and may represent

more nuanced consequences of industrialisation.

The first industrial revolution sees at first a rapid increase in E
n
land, fol-

lowed by a sharp decrease starting from 1800 (Fig. 4.9a). This could reflect the

fact that after a period of emergence of large number of new settlements, ur-

ban areas become better established and development happens mostly around

them, creating more homogeneous urban and dense landscapes in their sur-

roundings. We will see in Section 4.4 that this is indeed a time when industrial

and urban cluster emerged in England and Wales.

The second industrial revolution, on the contrary, shows at first a decline in

E
n
land, followed by a modest recovery toward the dawn of the First World War

after an all time minimum in 1900. This suggests that more complex phenom-

ena were already in place concerning land use in the British Isles. As we will

discuss in greater details in Section 5.2, this is a period of strong expansion of

the railway, and the decline in the measure may denote growing concentration

of population in compact cities before the rise of urban sprawling.

The evolution of E
n
density during the first industrial revolution is of fast

growth which plateaus towards the end of the period, followed by an increase

in subsequent decades until present day (Fig. 4.9b). A possible interpretation

is that the technologies of the first industrial revolution allow only up to a

certain maximum urban density, and, thus, stratification and heterogeneity

of densities. It’s only as new technologies emerge that maximum population

density can again increase.

4.3.3.3 Historical evolution of local entropy - South Asia and Italy

In Figs. 4.10 and 4.11, we perform a similar analysis for the total and mean

entropy of land use and population density, in the British Isles, South Asia,

and Italy. The choice of n = 5 corresponds to the value minimising the average

error in Table 4.1 in the period 1700AD to 2015AD. Nonetheless, the choice

of n was found not to have a major impact on the overall trends.

The analysis of the total local entropy in Italy reveals a steady growth in

both E5
land (Fig. 4.10a) and E5

density (Fig. 4.10b), that slows down in the 1980s

and reignites in 2015. This trend correlates with the country’s demographic

stagnation of the late 20th century, followed by a brief period of demographic
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Total entropy of land uses in the British Isles
(BI), South Asia (SA), and Italy (IT)
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Figure 4.10: Comparison of local entropy E
5
land of land use and E

5
density of

population density in the British Isles, South Asia, and Italy.
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Mean entropy of land uses in the British Isles
(BI), South Asia (SA), and Italy (IT)
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Figure 4.11: Comparison of local entropy E
5
land of land use and E

5
density of

population density in the British Isles, South Asia, and Italy.
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expansion in the new millennium.

The case of South Asia is more revealing. The change in E5
land in In-

dia correlates with some of the major historical events that affected the area

(Fig. 4.10b). As the rule of the British East India Company on India is estab-

lished in 1757, the entropy of land use enters a period of decline. The measure

returns to grow in the early 19th century but it dips at the end of the century,

at a time when India is struck by a major epidemic of bubonic plague. Twenty

years later, the measure begins a long phase of fast expansion. The bubonic

plague also correlates with a dip in E5
density. The correlation of this latter

measure with the beginning of the Company rule is absent, possibly masked

by the general demographic growth.

The change in E
5
land in South Asia follows very closely the evolution of

the political situation of the area as well (Fig. 4.11a). The Company rule

corresponds to a period of fast decline and stagnation in E
5
land. The measure

returns to grow in the early 19th century and continues to do so until the end

of WWII, at a time when India regain its independence. On the other hand,

the evolution of E
5
land for Italy does not seem to be deeply affected by major

events in the 19th century, including the unification of the country in 1861,

proceeding instead a steady decline begun in the mid 18th century. It is only

in the 1920s that the measure returns to growth. This is a period which sees

Italy under Fascist rule, with fast demographic expansion of Rome as capital,

and the foundation of a few new urban centres in swampy areas reclaimed

for cultivation, but the growth in the measure may also reflect more general

industrialisation and urbanisation trends seen elsewhere in Europe, including

the British Isles. The evolution of E
5
density is monotonically increasing and

relatively smooth for both South Asia and Italy (Fig. 4.11b).

4.3.3.4 Historical evolution of local entropy - Observations

On a comparative note, the larger values of both E5
density and E5

land in South

Asia compared to Italy and Britain reflect the large size of its system of set-

tlements; the smaller values of both E
5
density and E

5
land reflect most likely its

much lower urbanisation rate.

A long term historical vision help to shed some light on the inherently

unpredictable nature of urbanisation. Looking at the past confirms that cor-

relation, let alone causation, between major events and changes in urban form

are often far from obvious. Political events were strongly correlated with the

evolution of local entropy in the case of South Asia, but much less so in Italy.
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Cities, in virtue of their density and enhanced social contact, are imprac-

tical places to live in without technological intervention [120]. It is thus un-

surprising that it is the diffusion of technological innovation that seems to

correlate more strongly with the evolution of the land and population entropy

of urban systems, in good accord with the aforementioned theory of innovation

waves [174].

4.4 Spatial distribution of systems of cities

Together with their population and land use of their surrounding territory, an-

other fundamental morphological aspect of a system of cities is the locations

of the cities. As mentioned in Section 2.5.1, the location of a city may depend

on a large number of factors, including characteristics of the natural environ-

ment (such as natural resources or access to rivers and seas), but also on the

location of other cities and on its interactions with them. Given the infinite

amount of possible configurations a systems of cities could take in a given

territory, any attempt to completely explain and unequivocally determine the

location of cities using this or any list of factors alone would probably prove

futile. Rather, the factors should be more aptly thought of as a large set of

constraints that make some layouts more likely than others, while still allow-

ing for many possible concrete realisations. When adopting this perspective,

point processes become a natural tool to analyse the location of cities. Inho-

mogeneous processes may reflect the constraints of the local environment and

cluster point processes or Gibbs processes may capture the reciprocal influence

of cities locations in terms of clustering, attraction and repulsion.

In this Section, we model the spatial distribution of towns in England

and Wales in 1801 and 1881 using point processes. We base our analysis

on Bennett’s data set [27], completed via linear interpolation and spatialised

via Geonames, as detailed in Section 4.1.2. For each year, the data set in-

cludes only the settlements with a population of 2500 inhabitants or more, a

population density of at least 1 inh/acre (approximately 250 inh/km2), and

whose built-up area is spatial contiguous. These criteria are satisfied by 530

towns in 1801, and by 811 towns in 1881. In Section 4.4.1, we discuss the

main spatial properties of the system and highlight the differences between

the proto-industrial period in 1801 and the Second industrial revolution in

1881. We discuss homogeneous models for the patterns and their limitations

in Section 4.4.2, and propose an inhomogeneous model for new cities emerged
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between 1801 to 1881 in Section 4.4.3. We then analyse the patterns using the

secondary structure of disc graphs, applying the first degree-based entropy.

Remark that we will not explicitly use spatial entropy as a method of analy-

sis. Whilst a theoretical literature on the entropy of point process models is in

development (see for instance [10]), applied methods rely on subdividing the

observed area into a grid and computing the Shannon entropy of the frequency

of cell counts [155]. Spatial entropy methods, such as the one developed in

Section 4.3, would also be applicable. This study would be very similar to

the one on the local entropy of the UK described in the previous section, but

neglecting the cities populations and focusing only on the locations, thus we

preferred not to pursue it5. We conclude this Section with a few remarks and

limitation in Section 4.4.5.

4.4.1 Town locations in England and Wales

Fig. 4.12 shows the locations of the towns in 1801 and 1881. The distribution

in 1801 is far from uniform (Fig. 4.12a). Central Wales and some areas of

the extreme North of England host fewer cities, as one may expect given their

mountainous topography. Small clusters of cities characterise other areas of

England, most noticeably around London in the South East, in the Midlands

and in the North-West. The concentration of cities along the coast is higher

than average, with the majority of Welsh and North-Eastern cities lying on

the coast, as well as a large number of cities dotting the shores of the English

Channel in the South. In the rest of the territory, cities look more regularly

spaced than completely random (see, for instance, the East), suggesting the

presence of some repulsion effects in their location, not uncommon in agrarian

systems of settlements [116].

In 1881, the spatial pattern (Fig. 4.12b) maintains many of the earlier

characteristics, including clustering in Northern England, Midlands, around

London and along the coast and regularity outside of clusters, but the number

of towns increases by more than half, from 530 to 811. Areas that had already

higher than average density of centres in 1801, such as the North, the Mid-

lands, and the surroundings of London seem to have reinforced their primacy.

This can be in part ascribed to suburbanisation: especially from 1851, English

cities that were already quite large grew further, their municipal area rapidly

filled, and their population overflowed to the neighbouring territory, creating

5For an example of an application of spatial entropy methods to the analysis of point
processes in a different context, see Section 6.1.
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Locations of English and
Welsh towns in 1801

(a) Locations of English and Welsh
towns in 1801. The distribution ap-
pears inhomogeneous: cities are more
regularly distributed than random in
the East of England and in Wales; ag-
gregated in clusters in the North, the
Midlands, and around London; and in
higher number along the coast.

Locations of English and
Welsh towns in 1881

(b) Locations of English and Welsh
towns in 1881. The distribution is
inhomogeneous: clustering is appar-
ent in North East, in the North, Mid-
lands, South Wales, and around Lon-
don. The pattern is more regular else-
where, with above average concentra-
tion along the coast.

Figure 4.12: Locations of English and Welsh towns in 1801 and 1881. New
centres primarily appear around established population centres in the North
of England and around London. Other areas where new centres sprout are
South Wales and North East.
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new towns or transforming existing rural settlements into urban ones [211].

Exceptions to this are new clusters of cities emerged around the estuary of

River Tyne, in the extreme North East of England, and in Southern Wales,

that emerged as a prominent coal and iron mining region in the 19th cen-

tury [211]. More generally, if we look exclusively at new cities, we notice that

they tend to form clusters, with most new singletons being new port cities

along the Southern and Western coast (see also Fig. 4.15a in Section 4.4.3).

4.4.2 Homogeneous models for town locations in England and

Wales

The above description of the spatial patterns already suggests that homoge-

neous processes may not be a suitable models for the distribution of cities in

neither 1801 nor 1881.

The null hypothesis of Complete Spatial Randomness is formally tested in

Fig. 4.13, where we show, for 1801 and 1881, the observed values F̂obs and

Ĝobs of the Empty Space Function F and the Nearest Neighbour Distance

Function G, and compare them to their theoretical values Ftheo and Gtheo for

Homogeneous Poisson Processes with the same number of points. For each

test function and year, the plots also show confidence bands, obtained by

performing 100 simulations of the proposed model, and selecting the smallest

and largest values (F̂lo(r) and F̂hi(r), and Ĝlo(r) and Ĝhi(r) respectively) at

each radius r.

In all cases, the observed values F̂obs(r) and Ĝobs(r) fell outside of the

confidence bands for many values of r, confidently rejecting the null hypothe-

sis. A more detailed interpretation of the values of F̂obs(r) and Ĝobs(r) is not

possible at this stage, as we haven’t yet established homogeneity, and devia-

tions of the values from Ftheo(r) and Gtheo(r) due to interactions between the

points would not be distinguishable from those originated from other sources

of inhomogeneity.

The apparent presence of clusters invites us to formally test the hypothesis

of homogeneous cluster processes, i.e., cluster processes in which the parent

process is a homogeneous Poisson process. Fig. 4.14 performs the same tests

with the F and G functions comparing the values observed for the locations

of cities in 1801 and 1881 to those of the best fitting Matérn cluster processes

according to the method of minimum contrast, applied to Ripley’s K-function

(See Section 2.5)6.

6In 1801, the best fitting homogeneous Matérn cluster process has an intensity of 0.000337
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CSR vs towns in 1801, F -test
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(a) The Empty Space Function F of the
location of English and Welsh towns in
1801 lies below the lower limit of the
confidence band when r ≥ 10km, reject-
ing the Complete Spatial Randomness
assumption.

CSR vs towns in 1881, F -test
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(b) The Empty Space Function F of the
location of English and Welsh towns in
1881 lies below the lower limit of the
confidence band when r ≥ 4km, which is
incompatible with the Complete Spatial
Randomness assumption.

CSR vs towns in 1801, G-test
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(c) The Nearest Neighbour Distance
Function G(r) of the locations of towns
in 1801 lies below the lower limits of
the confidence band when r ≈ 8km,
and when 10km ≤ r ≤ 22km, reject-
ing the hypothesis of Complete Spatial
Randomness.

CSR vs towns in 1881, G-test

3 6 9 12 15 18 21 24 27

0

0.2

0.4

0.6

0.8

1

r (km)

G
(r
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(d) The Nearest Neighbour Distance
Function G(r) of town locations in 1881
exceeds the upper limit of the confidence
band when 2.2km ≤ r ≤ 7.2km, and
lies below the lower limit when 10.5km
≤ r ≤ 23km, clearly violating the Com-
plete Spatial Random assumption.

Figure 4.13: Test Complete Spatial Randomness of the distribution of towns
in England and Wales in 1801 and 1881 using the Empty Space Function F
and the Nearest Neighbour Distance Function G. In all cases, the test show
that the patterns are incompatible with the assumption of Complete Spatial
Randomness.
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Matérn vs towns in 1801,
F -test
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(a) The Empty Space Function F of the
location of English and Welsh towns in
1801 falls within the confidence band of
the best fitting Matérn cluster process,
but this may be due to inhomogeneity.

Matérn vs towns in 1881,
F -test
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(b) The Empty Space Function F of the
location of English and Welsh towns in
1881 lies above the confidence band of
the best fitting Matérn cluster process
when r ≥ 15km.

Matérn vs towns in 1801,
G-test
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(c) The Nearest Neighbour Distance
Function G(r) of the locations of towns
in 1801 lies below the lower limits of
the confidence band of the best fitting
Matérn cluster process when 1.8km ≤
r ≤ 7km, and again when 8.2km ≤ r ≤
15.6km.

Matérn vs towns in 1881,
G-test
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(d) The Nearest Neighbour Distance
Function G(r) of the locations of towns
in 1881 lies below the lower limits of
the confidence band of the best fitting
Matérn cluster process when 0.7km ≤
r ≤ 2km, and again when 4.3km ≤ r ≤
22km.

Figure 4.14: Testing the hypothesis that a Matérn cluster processes built on a
Homogeneous Poisson Process may describe the spatial distribution of towns
in England and Wales in 1801 and 1881. The best fitting Matérn Cluster
processes are identified via the minimum contrast method applied to Ripley’s
K function. For both 1801 and 1881, at least one of the Empty Space Function
F or the Nearest Neighbour Distance Function G falls outside the confidence
band of the model, thus rejecting the hypothesis.
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In Fig. 4.14a, we see that the observed values of F̂obs in 1801 are compatible

with those of the best fitting model and its realisations. Yet, the hypothesis is

rejected by the G function (Fig. 4.14c), for which the observed values Ĝobs(r)

fall below the lower limit of the confidence band when 1.8km ≤ r ≤ 7km,

and again when 8.2km ≤ r ≤ 15.6km, indicating that the model is excessively

clustered compared to the real distribution. Figs. 4.14b and 4.14d show that

the Matérn cluster process for 1881 is not suitable: with both the F and G

functions pointing towards excessive clustering of the model.

Similar experiments also reject other homogeneous cluster models, such as

the Thomas process.

4.4.3 Inhomogeneous models for new town locations in Eng-

land and Wales

The tests in the previous section confirm what the maps in Fig. 4.12 already

suggested: a suitable point process to describe the locations of English and

Welsh cities is likely to be an inhomogeneous one.

The inhomogeneous intensity λ(lon, lat) of cities in England and Wales

may depend on a potentially very large number of covariate spatial densities.

Instead of embarking on the likely unsuccessful identification of all of them,

here we take a different approach. We consider the locations of English and

Welsh towns in 1801 as our base knowledge of the system, encoding a lot of

what can be known about the local natural constraints at play. We use this

local knowledge to build a model for the new towns that emerged from 1801

to 1881.

In Section 4.4.1, we have already highlighted some properties of the loca-

tions of new cities displayed in Fig. 4.15a. Amongst these the most prominent,

confirmed by historical studies [211], is that many new cities formed through

a process of suburbanisation, creating clusters around already existing large

centres, which tended to be located in generally more densely populated ar-

eas. This observation suggests that a suitable model for the formation of new

cities might be a cluster process, in which both the number of clusters and the

number of points in the cluster is positively influenced by the existing density

of centres.

points/km2, i.e., a parent point every 2967.359km2 on average, and a cluster radius of
50.228km, with an average of 10.14 points in each cluster. In 1881, the best fitting model
has a lower parent density of 0.000156 points/km2, corresponding to a parent point every
6410km2, and smaller cluster radius of 35.776km, but much higher density of daughter points
within each cluster: 38.505 on average.
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New towns in England and
Wales from 1801 to 1881

Towns in 1801

New Towns in 1881

(a) Locations of new English and
Welsh towns emerged between 1801
and 1881. The new towns are clustered
primarily around already denser ar-
eas in the North, Midlands, and South
East. New clusters are visible in the
North East and South Wales, and spo-
radic towns emerge elsewhere.

Example of inhomogeneous
Matérn clusters

Towns in 1801

Matérn clusters

(b) Locations of English and Welsh
towns in 1801 and the clusters of a re-
alisation of the inhomogeneous Matérn
cluster model. Most of the large clus-
ters of simulated new towns are lo-
cated in areas with higher density in
1801 by design. A few isolated centres
emerge.

Figure 4.15: Comparison of the real distribution of new towns emerged in
England and Wales from 1801 to 1881, and a realisation of the inhomogeneous
Matérn cluster model, superimposed to the distribution of towns in 1801.
The model captures the new clusters in dense areas, but fails to account for
sporadic large clusters in areas with low density in 1801, such as South Wales
and North East, and, more generally, of new centres along the coast.
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Inhomogeneous Matérn, new
towns, F -test
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(a) The Empty Space Function F of the
location of new English and Welsh towns
between 1801 and 1881 falls within the
confidence bands of the selected inhomo-
geneous Matérn cluster model.

Inhomogeneous Matérn, new
towns, G-test
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(b) The Nearest Neighbour Distance
Function G of the location of new En-
glish and Welsh towns between 1801 and
1881 falls within the confidence bands
of the selected inhomogeneous Matérn
cluster model, except when 0.8km ≤ r ≤
0.9km.

Figure 4.16: Testing the hypothesis that an inhomogeneous Matérn cluster
process may describe the new towns emerged in England and Wales from
1801 to 1881. The selected model assumes that the predicted intensity κ̂ of
the parents points and of the points in each cluster reinforces the density
κ1801(lon, lat) in 1801. The summary functions reject the hypothesis, but
point towards an improvement in the goodness of fit of the selected model,
which is incompatible only for very small values of r.

In Fig. 4.16, we test the hypothesis that the locations of new towns in 1881

may be described via an inhomogeneous Matérn cluster process, for which the

intensity of the parent point reinforces the existing density in 1801, and the

average cluster size is larger in areas that were denser in 18017. The model

is compatible with both test functions F , G for most values of r. The only

exception is when 0.8km ≤ r ≤ 0.9km, for which the model appears excessively

clustered according to G(r) as opposed to the slight repulsion evidenced in the

real pattern. Given its small scale, the repulsion observed in the real data may

be due to the surface area of the town, which physically impedes other towns

7More precisely, we take the cluster radius to be 12km, or roughly equivalent to the
radius of a large metropolitan area. We let λ(lon, lat) be the intensity of the process in 1801,
computed via kernel smoothing. Then we take the intensity κ(lon, lat) of the parent points
to be κ(lon, lat) ∝ λ(lon, lat)3 and the intensity µ(lon, lat) of daughter points in the disc
around a parent point to be µ(lon, lat) ∝ λ(lon, lat)4. These values are somewhat arbitrary
and found by trial and error, in absence of a more suitable and efficient procedure to fit
inhomogeneous point processes to an existing pattern.
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to be so close to its centre.

A realisation of the inhomogeneous Matérn cluster model is presented in

Fig. 4.15b. The model captures reasonably well the new clusters around Lon-

don and in the North of England, as well as the sporadic smaller cluster of

cities emerged outside of the areas of highest density in 1801. The model,

though, does not capture the new urbanisation phenomena described in Sec-

tion 4.4.1, such as the emergence of ports and clusters in areas which in 1801

hosted relatively few towns, such as the River Tyne estuary and South Wales.

This is to be expected, given that the model was designed to reinforce the

existing structure of the urban system.

4.4.4 Degree entropy of disc graphs

We conclude our study of the spatial distribution of English and Welsh towns

by analysing the evolving inhomogeneity of the pattern via an auxiliary struc-

ture: disc graphs.

For each year y ∈ {1801, 1811, . . . , 1881} and non-negative distance thresh-

old r, we define the network Gy,r by taking as nodes all towns that were part

of the system in year y, and connecting a pair of towns by a link if their ge-

ographic distance is at most r. We study the first degree-based entropy of

the networks {Gy,r}y,r as r is gradually increased from r = 0km, for which

one obviously obtains the empty graph, to r = 672km, the maximum intercity

distance, for which the complete graph is retrieved.

In Fig. 4.17, we show the networks Gy,r for thresholds r = 13km and

r = 30km in the years y = 1801 and 1881.

For r = 13km, a large number of cities remain disconnected and the net-

works are divided into several, mostly small components, including a large

number of dyads. Some of the components in G1801,13km merge into larger

ones in G1881,13km. That is the case for the towns around the Pennines and

the Tyne estuary in the North of England, Southern Wales, and near Birm-

ingham and London.

For r = 30km, in both 1801 and 1881, most towns are part of a single

network component, with the exception of an isolated dyad in central Wales8,

and a few isolated peripheral nodes9. The networks are characterised in large

8The neighbouring but otherwise remote towns of Newton and Llanidloes.
9Berwick in Northumberland; Minehead in Somerset, South-West England; Aberystwyth

on the coast of central Wales; and, in 1881, Holyhead, a former fishing village in Northern
Wales that in the early 19th century was redeveloped into a port town with links to nearby
Ireland, and railway connection to Chester and Shrewsbury in England.
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Disc graph in 1801, r = 13km

(a) The disc graph in 1801 for a small
threshold of r = 13km is extremely
sparse, with only a few, small clusters
and several isolated towns.

Disc graph in 1881, r = 13km

(b) The disc graph in 1881 for a small
threshold of r = 13km shows larger
clusters, but they generally contain
several nodes with small degree.

Disc graph in 1801, r = 30km

(c) For a moderate threshold r = 30km
almost all towns in 1801 are connected.
The graph resembles a lattice with a
few denser areas.

Disc graph in 1881, r = 30km

(d) When r = 30km, the disc graph
in 1881 connects almost all towns,
with more numerous, denser and larger
clusters compared to 1801.

Figure 4.17: Disc graph of the pattern of English and Welsh towns in 1801
and 1881, for the thresholds r = 13km and r = 30km.
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part by a lattice structure, which is almost the same in 1881 as is 1801, im-

plying a large number of relatively low degrees nodes. The denser clusters of

towns in 1881, though, create a small number of nodes with very high degree

(up to 85), and thus a clearly less balanced degree sequence. This is captured

by the appropriately normalised first degree-based entropy, that is smaller in

1881 than in 1801 for this threshold.

Fig. 4.18 shows the degree entropy of the disc graphs Gy,r when y =

1801, 1851, and 1881, and 13km≤ r ≤ 500km. The entropy is normalised

according to the graph order n or both the graph order n and size m, as

detailed in Section 3.4. The entropy of the graphs are not shown for r > 500km

because for very large values of the distance threshold, the network is almost

complete. On the one hand, this means that the order-normalised degree

entropy In(Gy,r) is almost 1 in all years. On the other hand, the difference

between the minimum and maximum unnormalised entropy of graphs with

the same order and size as Gy,r is very small. Normalising by this difference

makes the order- and size-normalised entropy In,m(Gy,r) unstable, in a non-

meaningful way. Remark, however, that a normalisation is still advisable in

most cases, because, when the entropy is not normalised, the effect of the

increase in the number of towns on the measure is so large that any other

structural property is masked.

In Fig. 4.18a, the entropy In(Gy,r) shows a monotonic increase in all years

as a function of r, reflecting primarily the growth in the network sizes. For very

small values of r, In(G1801,r) is smaller than both In(G1851,r) and In(G1881,r),

but the relation is reversed when 14km≤ r ≤ 175km, and 16km≤ r ≤ 138km,

respectively. The large drop in entropy from 1801 to 1851 for these values of

r is explained by the increased clustering of the pattern of towns, especially

around Manchester, Sheffield and Leeds, and, to a lesser extent, on the river

Tyne. By 1881, the entropy has grown modestly compared to 1851. This

reflects the fact that the new towns appeared in the period from 1851 to 1881

are more widespread, with a reinforcement of the main Northern cluster and

the river Tyne area, but also the emergence of new clusters in industrial valleys

of South Wales, and a large number of towns in the South East of England,

on the Southeastern and Northwestern coast, and along the newly constructed

railway corridors from London to the North10. Note, however, that in all years

the entropy is smaller than In(GHPP ), the first degree-based entropy expected

10We’ll discuss the railways and their impact on travel distance in Section 5.2.
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Degree entropy of disc graphs
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(a) Entropy of the disc graphs in 1801,
1851, and 1801 for changing disc radius
threshold r, normalised by n. In all
years, the entropy grows monotonically
as a function of r. This is mostly due to
the increase in the graphs’ sizes as r in-
creases.
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(b) Difference between the entropy of
the disc graphs in 1851 and 1801, and
1881 and 1801, for changing disc radius
threshold r, normalised by n. The thus
normalised entropy reveals clustering for
r < 175km, but is not very sensitive for
medium and large r.
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(c) Entropy of the disc graphs in 1801,
1851, and 1881 for changing r, nor-
malised by n and m. For small r, the de-
gree sequence became more unbalanced
by 1851 than in 1801, and then changed
very little. In 1801, the system was more
balanced for small r than medium values,
unlike in 1851 and 1881.
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(d) Entropy difference of the disc graphs
in 1851 and 1801, and 1881 and 1801, for
changing r, normalised by n and m. The
measure is sensitive at small and medium
scale, picking up the change in the spatial
distribution, but becomes noisy at large
scales.

Figure 4.18: Normalised degree entropy of the disc graphs in 1801 and 1881,
for the disc radius threshold 13 km≤ r ≤ 500km. The normalisation by the
order n is affected by the dependency between r and the size m. This is not the
case for the normalisation by both n and m, but this measure is too sensitive
and noisy for large r, when the disc graph approaches the complete network.
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for a disc graph built on a Homogeneous Poisson Process11, indicating greater

clustering than complete spatial randomness at all points in time. For larger

r, G1851,r and G1881,r have larger entropy than G1801,r but the measures are

almost indistinguishable. This is more clearly visible in Fig. 4.18b, where the

difference In(Gy,r) − In(G1801,r) is shown for y = 1851 and 1881. The results

are partially explained by the fact that when the entropy is normalised by the

order n alone, graphs with large sizes achieve consistently high entropy, which

masks the difference between them. In other words, In(G) is not a sensitive

measure when G has large size.

In Fig. 4.18c, the entropy In,m(Gy,r), normalised by both n and m, shows

a more varied behaviour as a function of r. In all years, the entropy increases

for small r, which is expected as many pairs of cities become connected and

thus several nodes see their degree increase from 0 to 1, creating a more bal-

anced degree sequence12. The effects are more marked in 1801 than in 1851

and 1881, because in later years the patterns are more clustered, and thus

an increase in r even to modest values also yield an increase in the number

of relatively high degree nodes, counterbalancing the uniformity of the degree

sequence. In 1801, the entropy starts declining as a function of r as soon as

r > 40km, as all nodes become connected and the density in the relatively

sparser clusters increases. In 1851 and 1881, we observe a general increase in

the entropy as r increases to 170km, ascribable to the fact that the clustering

is mostly happening at the local and regional scale. At a finer look, though,

the entropy sees a slight decrease for 43km≤ r ≤ 84km in 1851 and plateaus

in 1881. The interval’s extrema are consistent with the radius of the main

Northern England cluster and the distance between the barycentres of the

main Northern England cluster and the Tyne estuary cluster. As r reaches

the intermediate value of 170km, In,m(Gy, r) begins to decline in all years,

and returns to grow markedly for values of r > 320km in all years, as the net-

work grows towards the complete graph13. This is likely a consequence of the

geometric shape of England and Wales rather than any other property of the

pattern, as revealed by a comparison with the normalised entropy In,m(GHPP )

Homogeneous Poisson Process in the same territory. The slightly higher values

in 1881 for large r may be due to the larger number of clusters, which yield a

marginally more balanced degree distribution, but the structure of the system

11The intensity of this process is irrelevant, since we normalise by the number of towns n.
12We have observed, in fact, that the first degree entropy is particularly sensitive to increase

when a previously isolated node increases its degree to 1.
13Remark that r = 320km is approximately the radius of the networks.
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is similar in term of balance at this scale in all years. Again, the described

features are clarified by the difference In,m(Gy,r)− In,m(G1801,r) in Fig. 4.18d.

This figure also reveals that the normalised entropy becomes noisy for large r,

thus suggesting that this measure is too sensitive to analyse graphs that are

almost complete.

4.4.5 Towards more complete point process models of town

locations

We have used a point process approach to describe the location of towns in

England and Wales in 1801 and 1881, with a particular focus on new cities

emerged during the intervening period. The experiments show the necessity

to use rather complex inhomogeneous models to capture both the variations

in the natural environment and the interactions between the cities. Whilst an

inhomogeneous Matérn cluster process is able to successfully capture some of

the salient properties of the new towns and generate patterns whose first and

second order properties are generally compatible to those observed in reality,

several challenges emerge.

The first is that of creating a model that can at the same time repro-

duce the observed reinforcement of the existing patterns while allowing for

the emergence of new significant structures. This will necessarily require the

introduction of supplementary information in the form of relevant spatial co-

variates. These may be of multiple kinds, and their identification is not trivial.

For instance, the emergence of a cluster of cities in Southern Wales over the

course of the 19th century was strongly tied to the mining of iron. The pres-

ence of such mineral may not have been such a crucial factor for economic

development before the consolidation of the industrial revolution, in times of

lower demand and ineffective extraction technologies, and thus would have not

been seen as a sufficiently attractive factor to establish such cluster in 1801.

The second is the careful consideration of border issues, and the influence

of cities beyond the observed areas. The expansion of ship-building industries

and overseas commerce, for instance, were at the basis of the emergence of port

cities, which would have been impossible to predict given the distribution of

cities in England and Wales alone.

The third is the necessity to account for the surface area of cities, which

imposes a minimum distance between them that may be incorrectly picked up

by point process methods as a sign of regularity at small scales. For this, more

complex objects and methods, such as random closed sets [198], may be more
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suitable.

A final one, which we have not discussed so far, is the inhomogeneity of dis-

tance when one substitutes more realistic metrics such as travel time to the Eu-

clidean (or great circle) metric implied in a point process approach. In recent

years, new mathematical and computational methods have being developed

to study random lines [125] and point processes on linear networks [220, 12].

These methods are a very promising way to better account for the impact

of geographical discontinuities such as rivers and mountains, and of transport

infrastructure on distances and interactions between towns. In the next Chap-

ter, we focus in greater detail on transport infrastructure, its role in connecting

cities, and the quantification of the heterogeneity of such connections.
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Chapter 5

Cities and their Connections:

Transportation and

Polycentricity of Systems of

Cities

After having explored the population sizes, surrounding territory, and spatial

arrangement of systems of cities, we now turn our attention to the transport

networks that connect them. A transportation link, such as a scheduled bus

or flight, may be considered as an example of a functional connection between

two cities, enabling the flow of people, goods, and ideas. On the other hand,

transport infrastructures, such as roads and railways, are also an integral part

of the morphological arrangement of cities, as they modify the spatial relations

between them by shrinking the travel time and generating non-uniform metrics

on the space. In this chapter, we adopt the latter perspective.

In Section 5.1, we compute the first degree-based entropy of the worldwide

network of flights, and see how the different normalisation methods described

in Section 3.4 yield different conclusions on the level of centralisation of the

system. In Section 5.2, we look at the evolution of the railway system in

England and Wales between 1851 and 1881. We use the first degree-based

entropy to analyse the evolving spatial organisation of the pattern of cities,

applying it to disc graphs built using minimum theoretical travel time instead

of geographical distance. This extends our work in Section 4.4.4. We also study

the evolution of the entropy of interactions of a theoretical network of optimal

flows retrieved via an entropy-maximisation model. We show how accounting
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for the presence of transport infrastructure can yield a more realistic and

human-centred view of morphological polycentricity.

5.1 Flight network

We consider the worldwide network of flights as recorded in the Openflights

database [166] (Fig. 5.1). For each pair of cities connected by a direct flight,

the database provides information on which airlines operate on the route.

We neglect this information, and merge in one link all routes with the same

endpoints, irrespective of the number of airlines by which they are served.

This ensures that the network is simple.

Worldwide flight network

Figure 5.1: Network of worldwide flights. Longer distance flights are depicted
in darker shades for aesthetic reasons, but distance plays no role in this analysis

The network contains 3334 airports, connected by 19203 distinct routes.

The network is divided into 7 components, but it has a clear giant component

containing 3308 nodes. The other six components are small local systems of

minor airstrips, located in remote areas of the United States and its territories,

in New Caledonia, and in Namibia. Here we focus on the main component,

that we call G.

G contains n = 3308 airports, connected by m = 19178 distinct routes. A

quick computation shows that the unnormalised entropy I(G) ≈ 10.14.

In Table 5.1, we compare the three normalisation of I(G) presented in Sec-

tion 3.4. In(G) ≈ 0.68, which gives the network a relatively high entropy with

respect to the minimum and maximum values other connected graphs of order

n can achieve. When compared to graphs with given size m, the normalised

entropy Im(G) ≈ 0.33, which means that the system is quite centralised given
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Table 5.1: Normalised first degree-based entropy of the flight network.

Constraint
order n size m n and m

Imin 6.85 7.62 7.99
Imax 11.69 15.23 11.69

Ĩ(G) 0.68 0.33 0.58

the “budget” of connections. The most realistic situation, where we compare

G to graphs with its same order n and size m, yields In,m(G) ≈ 0.58, showing

that the flight network sits in between centralised and balanced systems.

5.2 Transportation networks, network entropy and

polycentricity

Consider a region R, with a set V of cities. To each city u ∈ V , associate a pair

of coordinates (lonu, latu) ∈ R, for example, the coordinates of its city hall or

other landmark. The travel cost cuv to move one unit of population from u

to another city v may be affected by several factors: geographical distance, of

course, but also the presence of transport infrastructure in R, and the state

of its technology. In other words, the cost of travel metric in the region R is

generally not uniform nor constant in time.

Here we take the cost of travel cuv = tuv, where tuv is the minimum

theoretical time to travel from u to v or vice versa1. Via the example of

the system of English and Welsh towns in the period from 1851 to 1881, and

its rapidly evolving railway network, we show the effects of the transportation

network on the spatial organisation of the system of cities, and their potential

interactions.

5.2.1 Data sets

For the historical population sizes of English and Welsh towns, we use again

the UK Data Service database [27], completed via linear interpolation, as

discussed in Section 4.1.2.

To estimate travel time between localities at different times, we assume

that people use the fastest land transport available. We use data on historic

1This metric need not be symmetric in general, but in our computation of travel we do
not account for this asymmetry. See Section 7.2 for a discussion on limitations and future
improvements of this method.
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Railway network in 1851

(a) Railway network in 1851, with sta-
tions and towns locations. There are 656
towns. The network is sparse and con-
nects primarily the main urban clusters,
with large areas having no lines nor sta-
tions.

Railway network in 1881

(b) Railway network in 1881, with sta-
tions and towns locations. The number
of towns has increased to 811. The net-
work is considerably denser, with more
stations, and most towns are directly
connected to it.

Figure 5.2: Railway network in 1851 and 1881, with stations (in red) and towns
locations (in blue). This is a period of extremely fast expansion of both the
network and the urban system. The data on the historical railway network is
taken from [145, 110, 146, 191, 35], while the data on historical towns is taken
from [27], spatialised through Geonames.

railway lines [191, 146], and railway stations locations [110, 146] in England,

Wales and Scotland. The data sets do not explicitly contain travel time nor

speed along the lines.

The “Bradshaw’s Monthly Railway and Steam Navigation Guides” provide

a comprehensive collection of train timetables for Britain, covering the period

from October 1839 to May 1961 at monthly intervals. Some of the guides are

available online as pdf scans of the original printed versions2. The remarkable

length of each guide (from 145 pages for a guide in 1850 to more than 500

pages for the October 1882 issue) made it impractical to manually transform

the timetables into machine-readable data and the idiosyncratic style of train

2See, for instance, the online archive https://timetableworld.com/.
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timetables defied conventional image to text converters. Whilst recognising

that, ideally, train timetables should be used to accurately find the travel time

between any pair of localities, for the scope of this work we decided to estimate

it based on average train speeds and distance along the railway network.

We derive our estimate for average speed from the online atlas that ac-

companies the railway data [35]. The atlas mentions that in 1830, the year

that saw the beginning of the railway era with the opening of the Liverpool

to Manchester Railway, the average train speed was 12 miles per hour (mph),

equivalent to 19.3 kilometres per hour (km/h). In 1900, the average speed had

increased to 40 mph (64.4 km/h). Assuming a linear increase in the trans-

port speed, we can estimate the average speed in 1851 and 1881 to be 20.4

mph (32.8 km/h) and 32.4 mph (52.1 km/h), respectively. This makes railway

transport about 2.55 and 4.05 times faster in 1851 and 1881 respectively when

compared to the 8 mph (12.9 km/h) average speed reached by the stagecoach,

which was the fastest form of land transport available to passengers before the

advent of the railways.

5.2.2 Travel time computation

For each year and each pair of towns u and v, we computed the travel time

as follows. Refer to Fig. 5.3 for a visual depiction of this method, applied to

a fictional example region (Fig. 5.3a).

First of all, we found the geographic distance duv separating u and v

(Fig. 5.3b). We divided the distance by the speed of 12.9 km/h, and obtained

the theoretical minimum time needed to reach v from u along the geodesic via

stagecoach3. This value was taken as a baseline.

For each town, we found the three closest stations in the stations data

sets, and recorded the geodesic distances that separate them from the town

(Fig. 5.3c). The assumption here is that one may accept to travel out of a

town using a station other than the closest one, if this allows one to access a

shorter railway connection to one’s destination.

In the railway lines data sets, each line is defined as a set of segments.

Railway lines that allow for interchanges have a point in common, but the

endpoints of the segments do not necessarily coincide with the coordinates of

a station in the station data sets. For each station, we associated the closest

segment endpoint in the rail line data sets (Fig. 5.3d). We assumed that the

lines that include that point among their segment endpoints are accessible

3For simplicity, this ignores the topography.
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(a) Example region.

u

v

50min

(b) Step 1: Geodesic travel time.

u

v

u3

u1

u2

v3

v1

v2

(c) Step 2: Find closest 3 stations for
each city by geodesic travel time.

(d) Step 3: Identify each station with its
closest endpoint (if not already).

(e) Step 4: Delete unnecessary break-
points, keeping record of the length.

u

v

u1

v3

(f) Step 5: Find shortest paths between
each pair (ui, vj)1≤i,j≤3. Here u1 to v3.

u

v

u1

v3

30min

u

v

(g) Step 6: For each shortest path, com-
pute travel time using train speed and
including city-station path.

u

v

20min

(h) Step 7: Identify fastest path overall
(remarking that it could be the geodesic
from Step 1).

Figure 5.3: Travel time computation. Here blue dots are cities, black dots are
stations, and crosses are railway segments endpoints.
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from the station.

We simplified the network by merging together two segments if one of

their endpoints coincided and no other line intersected them at that point

(Fig. 5.3e). We associated to the new segment a length attribute equal to the

sum of the lengths of two segments that were merged to form it, so to keep

track of the real length while simplifying the network.

Using the igraph package in R [66], we computed the shortest railway

path connecting each pair of stations {ui, vj}1≤i,j≤3 amongst the three closest

stations to u and v, and recorded its length (Fig. 5.3f). Dividing by the

maximum railway speed for the year under consideration, we obtained the

travel time between these stations.

For the pair of towns (u, v), we computed the travel time along nine paths,

each corresponding to a combination of travelling from u to one of the three

stations closest to it along the geodesic, from this station to one of the closest

three stations to v, and from there to v along the geodesic (Fig. 5.3g).

We finally defined the travel time tu,v between cities u and v as the min-

imum between the stagecoach travel time along the geodesic and the fastest

among these nine paths (Fig. 5.3h).

5.2.3 The degree entropy of disc graphs based on travel time

We extend our study of the spatial organisation of the English and Welsh

towns, which we begun in Section 4.4.4. We construct disc graphs Gy,t, for a

year y ∈ {1851, 1881} and a travel time threshold t, this time connecting two

towns u and v if their minimum theoretical travel time tu,v ≤ t.

Fig. 5.4 shows the dramatic change in the theoretical connectivity within

1h between 1851 and 1881, both as a consequence of a vastly expanded railway

network and of faster average train speed along the lines. For this threshold,

the network in 1851 (Fig. 5.4a) is sparse, with many isolated towns and small

components. The largest components are found in the Midlands and Pennine

area, on the Tyne estuary, and in the South East. Many links follow the

railway lines. By 1881 (Fig. 5.4b), all but the most remote towns in the

extreme North of England, coastal Wales, and Devon are connected, and the

network is visibly denser. Whilst part of the same giant component, the

Pennine/Midlands, Tyne estuary, South Wales and London clusters remain

visually distinct for this choice of threshold.

The analysis of the first degree-based entropy in Fig. 5.5 reveals complex

effects of the presence and development of railways on the level of morpholog-
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Disc graph in 1851, t = 1h

(a) The disc graph with the minimum
theoretical travel time threshold t = 1h
in 1851. Most links (in red) are in the
major urban cluster or follow the sparse
railway lines (in black). Several towns
remain disconnected.

Disc graph in 1881 t = 1h

(b) The disc graph with travel time
threshold t = 1h in 1881. The higher
speed of trains and the more capillary
railway network greatly expand the link
set. Almost every town is part of the
same giant component.

Figure 5.4: Disc graphs of English and Welsh towns in 1851 and 1881, for a
travel time threshold of t = 1h, accounting for the development of railways.

ical polycentricity of the system.

On the one hand, an expanded and faster railway system makes the net-

work in 1881 generally more balanced with respect to the order-normalised

entropy than in 1851, for all given travel time threshold t (Figs. 5.5a and 5.5b).

This is primarily, but not exclusively, a consequence of the vastly expanded

link set. A local maximum of the difference In(G1881,t)−In(G1851,t) is observed

when t = 4h45min. In 1881 this travel time was enough to reach London and

the Tyne estuary from the main Pennines/Midlands cluster, which means that

the clusters become more balanced and integrated. On the other hand, nor-

malised values of the entropy tend to be smaller than the ones observed in

Section 4.4.4 when only geographic distance was employed.

Fig. 5.5c shows the entropy in 1851 and 1881, normalised by n and m.

In,m(G1851,t) reaches its minimum for small t, due to the fact that only few
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(a) Entropy of the disc graphs in 1851
and 1881 for changing travel time thresh-
old t, normalised by the order n. In both
years, the entropy grows monotonically,
as the graph size increases.
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(b) Difference between the entropy of the
disc graphs in 1881 and 1851, for dif-
ferent travel time t, normalised by n.
In(G1881,t) > In(G1851,t) at all times,
with a local maximum at t = 4h45min.
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(c) Entropy of the disc graphs in 1851
and 1881 for changing travel time t, nor-
malised by n and m. The oscillations are
connected to the spatial distribution of
towns, but the presence of the railway ac-
centuates the imbalance for moderate to
large t. For t > 10h, In,m(G1881,t) may
not be indicative of the centralisation of
the system due to the excessive sensitiv-
ity of the measure for large size graph.
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(d) Difference between the entropy of the
disc graphs in 1881 and 1851, for differ-
ent travel time threshold t, normalised by
n and m. The system is more balanced
in 1881 for small travel time, but less
so for t ≈ 2h15min, when In,m(G1851,t)
reaches its peak. When 4 ≤ t ≤ 10h,
most towns in the core become increas-
ingly connected in 1881, making the en-
tropy more balanced than in 1851.

Figure 5.5: Normalised degree entropy of the disc graphs in 1851 and 1881,
for travel time 45min ≤ t ≤ 24h. The oscillations reveal the complex interac-
tion of spatial organisation and the presence of railways, and their impact on
morphological polycentricity.
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towns are connected to each other. Its reaches its maximum when t =

2h15min. Multiplied by the maximum speed of the stagecoach, which would

still have been the fastest mean of transport available in many towns, this

corresponds approximately to the distance threshold of r = 30km which in

Fig. 4.17 saw most towns become connected in a lattice. Notice, however,

that the maximum value of the entropy In,m(G1851,2h15min) ≈ 0.758 remains

smaller than In,m(G1851,30km) ≈ 0.800, signalling that the presence of railways

in its early days has favoured the connectivity around some towns only, and

thus increased the centralisation of the system. The coverage of the railway

network was rather unequal: all of the major clusters of towns in 1851 were

served by railways, but this was not the case for many other towns. The

entropy In,m(G1851,t) declines for t > 2h15min, and remains relatively stable.

The entropy in 1881 sees larger fluctuations. A local maximum and the

global maximum are reached for t ≈ 1h30min and t ≈ 4h, respectively. These

oscillations are compatible with the pattern of slight peaks, plateaus and de-

clines remarked in Fig. 4.18c for a distance threshold r < 170km. When

4 ≤ t ≤ 7h, the entropy declines, and plateaus when 7h≤ t ≤ 10h. When

multiplied by the average train speed in 1881 (52.1 km/h), the plateau cor-

responds approximately to the increase observed in In,m(G1881,r) for 350km≤
r ≤ 500km. The fact that in this case the entropy does not increase but only

slows down its decline may be ascribed to the fact that the few towns not yet

reached by the railway network in 1881 were all located in the more peripheral

areas of the country. This meant that they are comparatively worse connected

in the travel-time-based networks than in the geographic-distance-based ones,

when compared to the towns in the well-served and geographically central

core of the region. When t > 10h, we observe a steep decline. These values

are not visible in Fig. 4.18c, as the distance threshold only stops at 500km.

The decline may be ascribed in part to the aforementioned phenomenon of

sharpened isolation of geographically peripheral towns, disconnected from the

railway network, but the large oscillation of the measure and its steep, uneven

increase for t > 16h suggest that it may be quite simply the result of the

excessive sensitivity of In,m for near-complete graphs.

Apart from its peak t = 2h15min, In,m(G1851,t) remains smaller than

In,m(G1881,t) for all values of t for which the latter value is a valid indica-

tor of polycentricity (Fig. 5.5d).
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5.2.4 A human-centred morphological polycentricity: the en-

tropy of potential interactions

We apply Wilson’s spatial interaction model [215] discussed in Section 2.4.2,

to obtain the most likely flows {wuv}u,v between cities u and v, based on their

travel time distance tuv and populations pu, pv, in 1851, 1861, and 1881.

Following [216] and [215], as the population is the only morphological at-

tribute known for each city, we assume the benefit bv of interacting with city

v to be bv = log pv. With these assumptions, eq. (2.2) for the most likely

interactions simplifies to

wuv = γ · pu
exp(α log pv − βtuv)∑
x exp(α log px − βtux)

. (5.1)

Note that we have substituted the travel time for the more generic travel

cost. Since we are interested in the entropy of interactions (Definition 9) and

thus in wuv normalised by their sums, we can safely take the proportionality

constant γ = 1. Recall that α regulates the benefit that u receives from

interacting with a city v given its population pv: if α = 1, the interaction with

v is directly proportional to pv, if α > 1, then the attractiveness of v depends

superlinearly on its population. On the other hand, β is a weight for the

disadvantage of interacting, for instance, the negative impact of geographical

distance and poor infrastructure on travel time or cost: a larger β signals

higher sensitivity to these aspect, while β = 0 represents the extreme case of

distance, travel time or cost having no influence at all on the interactions.

Thus, we obtain a family of networks, one for each choice of α and β,

whose connections represent the most likely interactions between the pairs of

cities, given some assumption on the balance of cost/benefit of interacting,

their population and the travel time between them.

For each city u, we can now compute the entropy of interactions S(u) and

obtain a measure of heterogeneity of u’s most likely connections. As these

depend exclusively on its population, its location with respect to other cities

in V , and the transport infrastructure and technology in R, S(u) can be inter-

preted as a dynamic, human-centred measure of morphological polycentricity.

Note that this measure can be adapted to different scales and purposes.

In the Topographical and Regional Polycentricity (eqs. (2.8) and (2.9)), one

could impose an upper threshold on distances duv. The same can be done

here with the travel time tuv, and thus one can study the polycentricity of

each town within a certain travel time distance t, such as commuting distance

141



(say, t ≤ 1h) or day-trip distance (say, t ≤ 4h).

On the other hand, one can average S(u) among all cities in R and obtain

an overall measure of polycentricity of the region:

SR =
1

|V |
∑
u∈V

S(u).

Similarly, one can average S(u) across subregions of R for a comparative ap-

proach. For instance, for subregions R1 and R2 of R, with set of cities V1

and V2, one can write SR1 = 1
|V1|
∑

u∈V1
S(u), and SR2 = 1

|V2|
∑

u∈V2
S(u), and

compare the two values.

5.2.5 Potential Interactions in England and Wales

As mentioned in Section 2.4.2.1, spatial interaction models based on entropy

maximisation have been used as dynamical models of the evolution of the sys-

tem [216, 217]. The validation of a particular model and choice of parameters

often passes through the model’s ability to describe the system’s evolution. In

our case, assuming that the migration flows follow the most likely interactions

identified by the model, one can use actual migration flows and population

evolution to calibrate the model.

Adopting this approach for a historical study such as our study of mid-19th

century English and Welsh towns poses some challenges linked to the limited

availability of migration data.

The censuses between 1851 and 1881 did not record explicitly migration

flows between British towns. They did record, though, the number of resi-

dents in each county who were born in a different one. On the basis of this

data and on additional qualitative information provided in the Census Notes,

Smith created a map [197, Fig. 3] representing the major inter-county migra-

tion flows in 1861. This map highlights two aspects in particular. The first is

that most migrations in the Midlands and the North were short distance ones.

Lancashire, whilst attracting most migrants from neighbouring counties, espe-

cially the West Riding of Yorkshire, was perhaps an exception, as it attracted

a large number of individuals from as far as Devon. The second is that London

was by far the main centre of attraction for the whole of England and Wales.

Its influence was especially strong in the Greater South East, but could be felt

as far as Northumberland. In particular, counties near London saw very little

reciprocal migration. The places where London’s hegemony was rivalled were

the Midlands and the North, in proximity of attractive counties. The family
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historians Pooley and Turnbull [170] confirmed and expanded these findings

remarking the stability of these migration patterns across the period.

We used Smith’s map to validate our model and choice of parameters. We

aggregated the towns by county and, for any two counties R1 and R2, we

considered the total weight

wR1R2 =
∑

u∈R1,v∈R2

(wuv − wvu) , (5.2)

representing the expected interaction balance between R1 and R2. We com-

pared the largest weights wR1R2 in the year 1861 to the map of major mi-

grations flows [197, Fig. 3], computing the wuv for different choices of the

parameters α and β in eq. (5.1).

The effect of changing α in the reasonable range of scaling effects 1 ≤ α ≤
1.2 was negligible. Hence we fixed α = 1. No choice of β led to completely

satisfactory results. A small value such as β = 0.5 lessened the effects of

distance, and predicted spurious connections from the northernmost counties

to Lancashire and overestimated the influence on London on the Midlands,

but correctly predicted some long-distance migration flows to the capital. In-

creasing values of β led to a sharp decrease in predicted flows to London. A

good compromise was found with β = 1, which reproduced most of the map’s

patterns, although underestimating London’s influence on the North-East and

Devon.

The values α = β = 1 in eq. (5.1) led to networks generally consistent with

historical studies on the evolution of the British urban system in the 19th

century [211] and migration flows [197, 170]. Yet, this remains to some extent,

an arbitrary choice, and a full exploration of the method should account for a

range of values4.

The resulting networks are shown in Fig. 5.7. Following the example of

[144], here the towns are distinguished in three categories to highlight the areas

of greatest interest: the Greater South East (corresponding in our case to the

historical counties of Buckinghamshire, Middlesex, Sussex, Hampshire, Kent,

Oxfordshire, Berkshire, Surrey, Bedfordshire, Cambridgeshire, Essex, Hert-

fordshire, Norfolk, Suffolk and London), the North (Cumberland, Northum-

berland, Westmorland, Durham, Lancashire, Cheshire and Yorkshire) and the

rest of England and Wales. The first thing to remark is that pu, pv, and tuv

have changed substantially from 1851 to 1881, as a result of the combined

4See Section 7.2 for more details on the limitations of this parameter fitting.
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Largest interaction balances between
English and Welsh counties in 1861 (α = β = 1)

Balance

Larger

Smaller

Figure 5.6: The largest interaction balances between English and Welsh coun-
ties in 1861 for parameters α = 1 and β = 1. The interactions largely corre-
spond to the migration flows in 1861 shown in [197, Fig. 3], but underestimate
long-distance migration to London from peripheral counties.

effects of population growth, railway expansion and faster railway speeds. All

these factors led to an overall increase in the strength of the interactions.

In 1851, a number of clusters of strong connections are apparent: a very

centralised star pattern around London in the South-East, a strongly inter-

connected set of cities in the Pennine area, smaller star-shaped patterns in

the Midlands that reconnect the previous two larger clusters, and a few small

isolated clusters in Yorkshire and in the South West of the country. The sit-

uation in 1881 sees two major changes: the expansion of the London-centred

star-shaped pattern to the rest of the South-East, a sign of the consolidation

of London’s preponderance on the region, and a greater level of integration of

the clusters in the North and in the Midlands.

Neglecting directionality, these networks are not too unlike the undirected

networks in Figs. 5.4a and 5.4b. This is to be expected, since travel time is

one of the main factors in the model. Note, however, that the connections

are directed towards or issuing from the main centres in the clusters due

to the effect of their population, instead of connecting nearby centres, as is
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Largest interactions between
English and Welsh towns, 1851

Town Region

North

South-East

Other

Link Intensity

Stronger

Weaker 

(a) Largest potential interactions in
1851. Much of the flow in the South
East is directed towards London, whilst
the interactions in the other clusters are
more polycentric.

Largest interactions between
English and Welsh towns, 1881

Town Region

North

South-East

Other

Link Intensity

Stronger

Weaker 

(b) Largest potential interactions in
1881. The dominance of London in the
South East is reinforced, and the urban
clusters in the North become more inte-
grated.

Figure 5.7: Largest interaction between English and Welsh towns in 1851
and 1881. The size of the symbol representing a town is proportional to its
population. The thickness of the link is proportional to the absolute magnitude
of the interaction. The shade represents the relative weight of the interactions
when compared to other represented in the same figure. For clarity, only the
most intense connections are shown, but the network is complete: all pairs of
towns are connected in the model, albeit some of them only very weakly.

particularly apparent in the case of London and the South East.

5.2.6 Human-centred morphological polycentricity of England

and Wales

We computed the entropy of interactions S(u) for each town u as a measure of

its morphological polycentricity. In Figs. 5.8a and 5.8b we show, respectively,

S(u) in 1851 in 1881 for each city, superimposing it to the maps of railway

lines. London and cities in the South East have substantially smaller entropy

when compared to cities in the North, a result which agrees with what one

would expect from observing the networks in Fig. 5.7. Indeed, most flows from

cities in the South East are directed towards London, and the greatest part of

London’s flows is directed towards itself.
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Entropy of interactions for
English and Welsh towns, 1851

Town Region

North

South-East

Other

(a) Entropy of potential interactions in
1851. Higher entropy values are found in
the Midlands and Pennines area, while
geographically peripheral areas, and the
entire South East have very small en-
tropy.

Entropy of interactions for
English and Welsh towns, 1881

Town Region

North

South-East

Other

(b) Entropy of potential interactions in
1881. Higher entropy values are found in
most of England and Wales except for
London and the South East. Railways
have mitigated the effects of geographi-
cal isolation.

Figure 5.8: Entropy of the potential interactions for each English and Welsh
town in 1851 and 1881. The size of a symbol is proportional to the entropy
of the town, normalised so to fall in the range [0,1]. The shape of the symbol
depends on the region the town belongs to. The black lines represent railway
lines. Remark the vast expansion of railway during this period.

Note that in 1851, towns at the geographic extremes of England and Wales

(such as South-West Wales, Northumberland, and Cornwall) tend to have

small entropy since the number of cities they can reach is limited by their pe-

ripheral locations and poor infrastructure reach. In the case of the Northum-

berland, this is due, at least in part, to artificial boundary effects. Indeed, the

population data refers to England and Wales alone, and including Scottish

cities in the analysis might yield changes in the results. In 1881 the situation

is mitigated by better overall connectivity and faster transport speeds along

the railway lines.

When a maximum travel time threshold t is imposed in the computation

of the entropy, the effects of being located at the geographical extremes or at

centre of the area are alleviated.
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Normalised entropy of
interactions in 1h radius, 1851

Town Region

North

South-East

Other

(a) Entropy of interactions within a 1h
travel time radius in 1851, normalised.
The entropy of towns in the South East
is the smallest, but it is larger than if no
travel time threshold is imposed.

Normalised entropy of
interactions in 1h radius, 1881

Town Region

North

South-East

Other

(b) Entropy of interactions within a 1h
travel time radius in 1881, normalised.
The entropy in the peripheral regions
and in the South-East is larger than if
no travel time threshold is imposed.

Entropy of interactions in 1h
radius, 1851

Town Region

North

South-East

Other

(c) Entropy of interactions within a 1h
travel time radius in 1851, not nor-
malised. The values are generally small.

Entropy of interactions in 1h
radius, 1881

Town Region

North

South-East

Other

(d) Entropy of interactions within a 1h
travel time radius in 1881, not nor-
malised. The values are larger.

Figure 5.9: Entropy of interactions for each English and Welsh town in 1851
and 1881, within one-hour travel distance from the town. The size of a symbol
is proportional to the entropy of the town. The shape of the symbol depends
on the region the town belongs to. The black lines correspond to railway lines.
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Adopting a small threshold t = 1h (Fig. 5.9), the normalised entropy

indicates that connections in the South are substantially more polycentric

than when no threshold is imposed, although they still remain below the values

reached in the North (see Fig. 5.9a and 5.9b). This is because London remains

out of reach from most areas of the South East when such a short travel time

is allowed. When the entropy is not normalised (Fig. 5.9c and 5.9d), we can

appreciate the overall increase in railway connectivity from 1851 to 1881, and

the consequent increase in entropy in peripheral areas, particularly apparent

in Northumberland and Southern Wales.

When a larger threshold t = 4h is imposed (Fig. 5.10), the results of

the normalised entropy (Figs. 5.10a and 5.10b) are already nearly identical

to the unconstrained case. When the entropy is not normalised (Fig. 5.10c

and 5.10d), the effects of the expansions of the railways are again apparent in

the increase of the entropy. In both the normalised and not-normalised case,

the expected pattern of extreme centralisation emerges in all of the “home

counties”, whose name alludes to the fact that their residents could travel to

London and come back within one day.

In Table 5.2, we show the average entropy of interactions SR in the North

and South-East of England, in selected cities, and in the whole system, nor-

malised so to fall in the range [0,1] and be comparable. All areas except the

South East become increasingly polycentric according to the average entropy

measure as a result of better transport connections that allow more hetero-

geneous interactions. The connections coming out of London, though still

extremely centralised, also become remarkably more polycentric, as a result of

increased and faster connections to the neighbouring areas of the South East.

This also explains the reduction of the entropy in the South East from 1851

to 1881, after a temporary increase in 1861.

Tables 5.3 and 5.4 allow to compare these results with more classic mea-

sures of polycentricity that do not employ a network approach.

The slope in the rank-size relations (i.e., the exponent in the Zipf’s law) in

Table 5.3, suggests a tendency for the population distribution to become more

polycentric in the North and progressively less so in the South5. It should

be pointed out, though, that the measure is very sensitive to the number of

cities used to estimate it: the small value of the slope in the Greater South

East suggests that the region is more polycentric than the North, because

the best-fitting line in the rank-size plot ignores London as an outlier. When

5Recall that the slope is steeper when the population distribution is more concentrated.
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Normalised entropy of
interactions in 4h radius, 1851

Town Region

North

South-East

Other

(a) Entropy of interactions within a 4h
travel time radius in 1851, normalised.
Values in the South East are much
smaller than elsewhere.

Normalised entropy of
interactions in 4h radius, 1881

Town Region

North

South-East

Other

(b) Entropy of interactions within a 4h
travel time radius in 1881, normalised.
Values in the South East are much
smaller than elsewhere.

Entropy of interactions in 4h
radius, 1851

Town Region

North

South-East

Other

(c) Entropy of interactions within a 4h
travel time radius in 1851, not nor-
malised. Peripheral areas and the South
east have the largest entropy.

Entropy of interactions in 4h
radius, 1881

Town Region

North

South-East

Other

(d) Entropy of interactions within a 4h
travel time radius in 1881, not nor-
malised. Most towns have visibly larger
entropy than in 1851.

Figure 5.10: Entropy of interaction for each English and Welsh town in 1851
and 1881, within four-hour travel time from the town. The size of a symbol is
proportional to the entropy of the town. The shape of the symbol depends on
the region the town belongs to. The black lines correspond to railway lines.
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only a few towns for this region are used, including London, the results do

point more realistically towards great level of centralisation, but information

regarding smaller cities is inevitably lost.

The Shannon entropy of the population in Table 5.4 tells a more varied

story, with a tendency towards centralisation between 1801 and 1881, that

slows down and inverts its trend by the early 20th century.

Table 5.2: Entropy of the interactions for selected cities and average entropy
in different regions in England and Wales.

Entropy of interactions

Region
Year

1851 1861 1881

North 0.499 0.558 0.645
Greater South East 0.279 0.314 0.26
London 0.035 0.061 0.134
Manchester 0.430 0.490 0.595
Birmingham 0.409 0.438 0.580
England and Wales 0.435 0.485 0.555

Table 5.3: Slope of the rank-size relation in different regions of England and
Wales between 1851 and 1881 (computed with all cities).

Slope in rank-size relation

Region
Year

1801 1851 1861 1881 1911

North 1.171 1.20 1.169 1.149 1.078
Greater South East 0.904 0.984 0.992 1.007 1.072
England and Wales 0.94 1.02 1.025 1.038 1.078

Table 5.4: Shannon entropy of the population distribution for different regions
in England and Wales between 1851 and 1881.

Shannon entropy of town population

Region
Year

1801 1851 1861 1881 1911

North 0.841 0.781 0.764 0.771 0.779
Greater South East 0.457 0.430 0.426 0.418 0.434
England and Wales 0.734 0.720 0.717 0.715 0.723
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5.2.7 Conclusion

The years between 1850 and 1880 were characterised by rapid urbanisation and

industrialisation in Britain, primarily in larger centres [211, 170]. They were

also decades of major expansion and modernisation of the transport infrastruc-

ture. The results of our analysis of morphological polycentricity suggest that,

while this period witnessed an increased concentration of the population into

fewer urban centres, cities became better integrated into a more heterogeneous

network of connections, supported by an expanded and improved transport in-

frastructure. The years after 1880 brought on economic restructuring as older

industries declined and newer sectors emerged and the growth shifted from

large to smaller centres, especially suburban towns [170]. The economic and

social factors driving these processes are complex, but certainly the conditions

for this decentralisation process were made possible by the capillary expan-

sion of the transport system in previous decades and by the strengthening of

connections between larger and smaller centres.

Looking at the greater heterogeneity in population sizes after 1881 sug-

gests that the population growth of cities might eventually have followed the

dynamics of their increasingly polycentric most-likely interactions. A network-

entropy-based approach to measuring morphological polycentricity could thus

give a more accurate description of the state of a region compared to other

non-network based approaches, judging by the system’s subsequent evolution.
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Chapter 6

Cities and their People:

Human Activities in Systems

of Cities

The previous chapters of this thesis studied systems of cities concentrating

on their morphology: their location, population, land use, and the physical

infrastructure connecting them. This chapter adopts a different perspective

to study systems of cities, shifting the focus to the human activities that take

place therein: the daily dynamics of the population distribution, the social

connectivity, and the diffusion of ideas and innovations.

On the one hand, this chapter explores the role of entropy in studying

cities when these are interpreted as “social networks embedded in the built

environment” [32]. On the other hand, it wants to reconnect the morpholog-

ical perspective adopted so far to the functional one, where in this case by

“function” of a city or system of cities we mean the human connectivity they

foster.

These two perspective are highly interdependent: the morphology of a sys-

tem constitutes the backbone on which human activities take place, enabling

and constraining them at the same time. The functional aspect, in turn, is

amongst the factors that influence the shape of cities and their connectivity

via infrastructure.

We begin by developing a model for the distribution of Tweets in London in

Section 6.1 based on point processes, and study its short-term spatio-temporal

dynamics. In Section 6.2, we discuss the complexity of modelling long-term

dynamics with unstable and evolving social network data, using the case study
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of connections between Hungarian cities as measured in the online social net-

work iWiW. Finally, in Section 6.3, we apply a temporal network approach

to model cultural exchanges through imitation and collaboration among me-

dieval lyricists, discussing the different challenge of dealing with high level of

uncertainty in the data.

6.1 Geo-tagged tweets, dynamic model of their lo-

cation

6.1.1 Data set

Our data set comprises the locations and time stamps of 432,067 geo-tagged

tweets posted in a 40km radius disc centred in Trafalgar Square, London,

between Sunday 10th June 2012 and Sunday 24th June 2012 [222]. Neither

the tweets’ content nor any information about the users is provided.

A first inspection of the data revealed large heterogeneity in the spatio-

temporal distribution of the tweets. The hour of the day naturally played an

important role (Fig. 6.2a), with an above average number of tweets posted

between 7am and 22pm, and a marked peak in the evening. A number of

exceptionally high peaks of activity are apparent in the data, likely due to

specific events1, although it was not possible to confirm any association in

absence of the tweets’ content. An unusually low activity at 4pm on Thursday

21st is ascribable to a temporary Twitter outage.

6.1.2 Spatial Model for aggregated tweets

Aggregating the tweets throughout the period (Fig. 6.1) reveals a number of

complex features of the point pattern. The density of tweets is remarkably

higher in the city centre than in the outskirts, reflecting the higher densities of

residential, working, and tourist population in the central areas of the capital.

More generally, the impact of the city’s topography is apparent on the tweets

distribution: the Thames, major parks and major roads such as the M25 are

all visible from a first inspection of the data. The spatial distribution of tweets

in the disc 6.1a is certainly not stationary nor isotropic. This impedes most

1The largest hourly counts are observed between 8pm and 11pm on Sunday 24th June,
8pm to 9pm on Friday 15th, 7pm to 9pm on Tuesday 19th, and 4pm to 6pm on Monday
11th, with tweets distributed across the region of study. At each of these times, a match
of the 2012 UEFA European Football Championship was being aired. The highest peak
corresponds temporally to the penalty shoot-out of the quarter-final match England vs Italy
(eventually won by the latter).
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Aggregated Tweets in and around London

(a) Locations of all the Tweets in the data set. The boundaries of the rect-
angular region of study are provided for spatial orientation. The process is
inhomogeneous and non-stationary and carries the evident impact of London’s
topography: parks, main roads and railways, the Green Belt, the Thames.

Aggregated Tweets in rectangular region

(b) Locations of all the Tweets in the rectangular region. Some Tweets are
clustered and other seem to follow the main transportation lines. The region
is purposely selected to lie in the city centre and avoid major parks and the
river.

Figure 6.1: Locations of Tweets in the data set, aggregated across the entire
study period. The background map (from OpenStreetMap) shows some of the
main topographical features of the city.
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traditional modelling attempts at this temporal resolution and observation

window size.

An attempt to model the distribution of the aggregated tweets using two

separate point processes (one for the city centre and one for the outskirts) and

to model the process in the outskirts as a cluster process with a fixed number

of clusters is presented in [152]. In the article, we clustered the tweets using a

k−means algorithm and tested the hypothesis that in the outskirts the cluster

centres were distributed according to a Homogeneous Poisson Process (the null

hypothesis for the distribution of the centres, but also the base for describing

the overall distribution as a cluster process such as a Neyman-Scott process).

For some values of k and definitions of outskirts, the pattern was compatible

with the Complete Spatial Randomness hypothesis according to the Empty

Space Function; nonetheless, it consistently failed more sophisticated tests

involving second order methods such as Ripley’s K function.

To reduce the issues that plagued this approach whilst keeping as much as

possible its generality, we focused on a smaller but still sufficiently varied area2:

a rectangle comprised between the Tube stations Blackfriars to the South, and

Angel to North, and Great Portland Street to the West and Aldgate to the

East. This area was carefully selected so to avoid the Thames, major parks

and ensure a high density of points throughout, but is not uniform in land

use, being both commercial and residential, nor in population density. The

spatial distribution of the aggregated tweets in this area (Fig. 6.1b) is mostly

organised in clusters (which suggest a manageable underlying Neyman-Scott

process), but is still affected by the same lack of stationarity. Main roads,

indeed, are still visible and mostly oriented in an irregular grid.

The modelling of the aggregated distribution would require a considerably

more complex and ad hoc approach, accounting for the street network and may

not be possible without additional information on the users or the content of

the tweets. This defeats the purpose of seeking simple processes that might

describe, at least in certain circumstances, the spatial distribution of tweets.

6.1.3 Spatial models in one-hour-long intervals

Once established that in non-trivial areas the aggregated distribution of tweets

cannot be captured via a simple process, this raises the question of whether

at the same spatial-scale but at a finer temporal resolution, a simple process

2Much smaller areas, uniform and artificially selected areas might exhibit simpler pat-
terns, easier to model but have the risk of lacking of representativeness.
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Hourly counts of Tweets in the disc
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(a) Hourly counts of Tweets in the disc. Occasional peaks emerge, presum-
ably linked to events.

Hourly counts of Tweets in the rectangle
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(b) Hourly counts of Tweets in the rectangular area of study. Weekly varia-
tions are apparent in this case, as more Tweets are posted on weekdays than
on weekends.

Figure 6.2: Hourly counts of Tweets in the whole data set and in the rectan-
gular area of study. In both cases, daily oscillations are apparent: he highest
level of activity is in the evening and lowest is at night.
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Valid models by hour

12
A
M
1A

M
2A

M
3A

M
4A

M
5A

M
6A

M
7A

M
8A

M
9A

M

10
A
M

11
A
M

12
P
M

1P
M

2P
M

3P
M

4P
M

5P
M

6P
M

7P
M

8P
M

9P
M

10
P
M

11
P
M

0

5

10

15

time

HPP Neyman-Scott Repulsion Other cluster

(a) Number of instances during the 15 day period under scrutiny when one of the
proposed models (Homogeneous Poisson Process, Neyman-Scott cluster processes,
or other repulsive process) is valid, by hour of the day. The proposed models work
better at night, when the density of points is lower. Alternative models are needed
to model the distribution of Tweets in the daytime. Many Neyman-Scott processes
are actually capturing repulsion in the patterns rather than clustering.

10 June 2am-3am

(b) Tweets in the rectangular area be-
tween 2am and 3am on Sunday 10th
June. Distance to nearest neighbour evi-
dences possible repulsiveness between the
points.

12 June 10pm-11pm

(c) Tweets in the rectangular area be-
tween 10pm and 11pm on Tuesday 12th
June. The patterns is compatible with a
Matérn cluster process with cluster ra-
dius of 22m and average size of 0.9.

22 June 6am-7am

(d) Tweets in the rectangular area be-
tween 6am and 7am on Friday 22nd June.
The pattern is compatible with a Homo-
geneous Poisson Process.

24 June 9pm-10pm

(e) Tweets in the rectangular area be-
tween 9pm and 10pm on Sunday 24th
June. The pattern is not compatible
with a Homogeneous Poisson Process,
Neyman-Scott process, and it does not
shows repulsion.

Figure 6.3: Models for the spatio-temporal distribution of tweets in the rect-
angular study region.
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may still be sufficient to describe the process. To this purpose, we aggregate

the tweets in 360 one-hour-long intervals.

The hourly counts (Fig. 6.2b) show a periodic pattern: as well as the daily

oscillation also observed in the whole data set, we also notice a remarkable

weekly variation, with higher counts on weekdays and smaller counts on week-

ends.

In Fig. 6.3, we describe some salient aspects of the spatio-temporal varia-

tion of the hourly-aggregated tweets. An inspection of the data sets reveals the

presence of repeated points in aggregated hour-long intervals. These may be

due, for example, to a user who tweets from the exact same location multiple

times during one hour. Most point process models assume that almost surely

there will not be two points with the same location. In absence of information

on the users, in this instance, we delete repeated entries from the data sets

(see Section 7.2 for a discussion of the limitations of this approach).

For each hour-long interval, we compute a simple Clark and Evans Ag-

gregation Index [62], as a crude measure of whether clustering or regularity

should be expected. The index shows an overwhelming tendency towards clus-

tering, and only in a limited number of cases (26 cases out of 360, and all at

night or early morning), the index points towards regularity (see, for instance,

Fig. 6.3b).

For each hour, we test the hypothesis that the pattern may be described

via a Matérn or Thomas cluster process3. Following the fitting procedure

proposed by [119] and detailed in Section 2.5.1.3, we find the most suitable

parameters for the cluster models. We use a mincon approach, that optimises

the observed parameters against the theoretical Ripley’s K−function of the

model. Subsequently, we perform an envelope test, where the process with the

estimated parameters is generated 99 times, and for each the spherical contact

distribution function F and the nearest neighbour distance G are computed.

The observed values F̂ and Ĝ for the data are compared to the minimum and

maximum values obtained by the simulations. If F̂ or Ĝ fall outside the range

defined by these extremal values, the model is considered invalid.

The Matérn and Thomas processes provide suitable models for a large

number of patterns (105 and 108 respectively), again mostly at night and in

the early morning. However, in a large number of cases, both F̂ and Ĝ are also

3We do not test exclusively clustered patterns because even regular ones may still be
modelled using a Neyman Scott process with an average cluster size less than one. In fact,
this turned out to be the case for almost all of the regular patterns. The case shown in
Fig. 6.3b being the only exception.
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compatible with the Complete Spatial Randomness hypothesis, which ought

to be preferred standing by Occam’s razor. This still leaves respectively 70

and 74 cases in which the Matérn and Thomas processes provide acceptable,

simple models4. In Fig. 6.3c, we see an example of process compatible with a

Matérn cluster process.

In a tenth of the cases (36 out of 360), the null hypothesis of a Homogeneous

Poisson Process remains the best option (see for instance Fig. 6.3d). In the

majority of cases though (221 out of 360), and almost the totality of peak-hours

activity, none of the models considered is valid: the pattern shows no evidence

of regularity and is not compatible with the Complete Spatial Randomness

hypothesis, but its clustering is not describable using a Neyman-Scott process

(Fig. 6.3e).

6.1.4 Hourly evolution of the Shannon entropy

Finally, we study the heterogeneity of the spatial patterns using Shannon

entropy. We subdivide the region of study into a grid of square cells. For each

hour, we count the tweets falling in each cell. Normalising by the number of

tweets posted in that hour, we obtain a distribution of tweets, of which we

compute the Shannon entropy, as a measure of uniformity (See Section 2.4).

Fig. 6.4 shows the Shannon entropy for each hour when each cell is a square

with side 25m (taken as an approximation for the size of a housing or office

block). The results when the cell side is 50m or 100m are nearly identical and

thus are omitted.

The pattern in Fig. 6.4a largely retraces the hourly counts already shown

in Fig. 6.2b, with marked daily and weekly oscillations. This is in part to

be expected given that the Shannon entropy depends also on the number of

occupied cells, and thus between two equally spatially heterogeneous patterns,

one with more tweets is likely to have larger entropy.

To discard the effect of the hourly counts, we normalise the entropy by its

maximum theoretical value given the number of tweets. Given that the number

of cells exceeded the tweet counts at each hour, this simply corresponded to

log nh, where nh is the number of tweets posted in hour h. The normalised

4Remark, however, that the cluster sizes are generally small and all but a handful of these
patterns (13 and 16 respectively) show values of F̂ and Ĝ that both refute the Complete
Spatial Randomness hypothesis. Note, furthermore, that these tests alone do not allow
to determine whether alternative cluster or inhomogeneous processes would provide better
models, as measured, for instance, by minimising some distance metric between the values of
F̂ and Ĝ observed for the patterns and the average values F̄ and Ḡ obtained for the models.
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(a) Shannon entropy of tweets counts in the rectangular area in central London. The
values are heavily influenced by the hourly counts.

Normalised Shannon entropy of tweets counts
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(b) Normalised Shannon entropy of tweets counts in the rectangular area in central
London. The pattern is more concentrated at night and more uniform during the day.
No major differences are visible between different days.

Figure 6.4: Shannon entropy of tweets counts in the rectangular area. in both
its unnormalised and normalised form. The area is subdivided into a grid of
square cells with side 25m. Results are almost identical when larger cells of
50m and 100m side are used. The robustness of Shannon entropy to the grid
resolution was also remarked in [152] for the process in the overall region.
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entropy in Fig. 6.4b still shows remarkable daily oscillations: the tweets tend to

be more concentrated during the night and more uniformly distributed during

the day. This applies to all days, with no remarkable oscillations between

different days of the week.

6.2 Adapting an entropy-based spatial interaction

model for connections in social networks

We have seen in Section 6.1 that geotagged data from a social media plat-

form captures spatio-temporal fluctuations in its users’ behaviour and special

events, and allows to recognise salient aspects of urban morphology such as

transport infrastructure, to which human activities are intimately tied. A

more complex question is whether this kind of data can also reflect long-term

changes in urban structure and the human activities enabled by it; for ex-

ample, whether it allows to evaluate the effects of the construction a new

transportation link on social connectivity.

A necessary step for adopting such a longitudinal approach is the identifi-

cation of a baseline behaviour of the social network against which comparing

anomalies and ascertain the presence of a trend. A key issue with using mod-

ern social media platforms data to this scope is that they themselves tend

to evolve in time, as they increase or wane in popularity or change their fea-

tures in a way that affect their users’ engagement, making it more difficult to

extricate actual social trends from purely platform-related ones.

In this section, we discuss a practical case of this problem. It stems out of

a collaborative project aimed at identifying the effects of new highways and

bridges on inter-city social connectivity in Hungary5. We use the Hungarian

social network iWiW, shorthand for “International Who is Who”, introduced

in Section 2.2.2.1.

iWiW had a number of peculiarities that make it particularly suited for

a longitudinal study of social connectivity and how it is impacted by new

physical infrastructure. First of all, its popularity in the country: 40% of

the population joined the platform. Registrations to the platform were only

possible by invitation from a user, and each user had only a limited number

of opportunities to send an invitation. More precisely, each new user was

given the chance to send exactly one invitation, but occasionally the invitation

5The project was led by Eszter Bokányi, and I contributed with the present adaptation of
an entropy-maximisation model. The data and hence the results, however, are proprietary.
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opportunities would be replenished for all users. This factor suggests that an

invitation was likely the sign of a strong social bound in real life. Furthermore,

every user had to provide information on their city of residence, which means

that some spatial information was known for each user. Finally, in the years

the platform was active, Hungary saw the inauguration of several new highways

and bridges that reduced travel times between several cities.

Our data set consisted of monthly counts of registrations in the Hungary’s

eighteen regional capitals as well as the national capital Budapest. For each

pair of cities u and v, we knew how many invitations were sent from u to

v in each month. To see whether the reduction of travel time between two

cities following the construction of new infrastructure yielded an increase in

invitations being sent between them, we needed a baseline. This required, first

of all, filtering out the effects of the internal dynamics of the social network,

such as the change in frequency of the invitations at time t in the overall

network. We could then focus only on the relative prevalence of links between

u to v with respect to pairs of cities that did not see a reduction of their travel

time.

To define a baseline, we adopted an adapted version of Wilson’s retail

model, described by eq. (2.2). Invitations were interpreted as a special “cur-

rency” that a user in a location u could spend in a location v. The basic

assumption of the model is that the probability that a user from u has a social

tie with a person in v and thus spends their invitation in v at time t is larger

when the travel time cuv(t) from u to v at time t is smaller.

Nonetheless, a few differences with Wilson’s model have to be remarked.

The number of invitations sent from u at time t does not depend directly on

the number of people in u, but rather on the total number of unsent invitations

Cu(t) still available to active users in u. The benefit bv of sending an invitation

to someone in v does not depend on the population of v (as assumed, for

instance, in eq. (5.1)), but rather on the number nv(t) of people who live in v

and have not joined the platform yet.

With these assumptions, we obtain that the expected number wuv(t) of

invitations sent from u to v is

wuv ∝ Cu(t)
nv(t)α · e−βcuv(t)∑
x

(
nx(t)α · e−βcux(t)

) ,
for some parameters α and β.

In practice, more complex temporal dynamics are at play in this social
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network that cannot be captured by a simple spatial interaction model. As

remarked in [132], the number of invitations sent in iWiW followed typical

patterns of the diffusion of innovation: the first users tended to be concen-

trated in Budapest, followed by university cities, and only later the density of

connections became sufficiently homogeneous to allow a comparison.

Furthermore, new features were added to the social network during the late

stages of its life cycle, such as the possibility to trade invitations with other

users, that further complicate the modelling and weaken the assumption that

an invitation represents a strong social tie. In conclusion, the rapid evolution

of online social network makes the identification of long term trends such as

the impact of infrastructure construction on social ties a challenging task.

6.3 Cultural Exchanges

In Section 6.2, we have modelled social connectivity between cities from ties

between individuals in an online platform, and discussed the issue of recon-

structing the current state of a social network via rapidly evolving data. Even

if a fully encompassing view of the present social connections were available,

though, it would not fully encapsulate the complexity of meaningful human

relations. People, in fact, have the ability to transcend the limits of their

immediate social circle, time and environment, and leave traces of themselves

through their works and creations. A different point of view on human pro-

cesses is centred on cultural exchanges, or, in other words, how one’s ideas and

innovations may spread and influence others across space and time. Whilst

the diffusion of ideas is by its own nature rather nebulous, in many cases, it

is possible to have explicit, unambiguous and spatio-temporally located signs

of this passage, e.g. in the form of patents and scholarly citations, both of

which naturally lend themselves to be modelled via networks [18, 226] (see

Section 2.5.3.1). In other cases, the transmission of an idea remains rather

implicit, and establishing its existence as a link, its direction, and its spatio-

temporal properties requires a much more attentive analysis of the items that

bear its traces.

In this section, we reconstruct an evolving network of cultural exchanges

between poets and regions in the historical territory of Occitania in South-

Western Europe, and discuss how to manage high levels of uncertainty in

the data. We look at metrical and musical imitations in Occitan lyrics of
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the 12th and 13th century6, more specifically at the practice of contrafaction,

whereby an author reused a preexisting melody for compositing a new text.

The existence of a link between a model and a contrafactum is established

through a musicological and philological analysis of the songs7. Nonetheless,

the direction of the relationship between two songs is often uncertain, as is

the temporal information on when the songs were composed.

6.3.1 Data set

The data on Occitan lyrics is taken from the Connecting Medieval Music

database8, which is based on the Bibliografia Elettronica dei Trovatori (BEdT)

[7], a relational database of Provençal troubadour texts, and the Dizionario

biografico dei trovatori [98], complemented by critical editions and secondary

literature.

For each text, the database specifies its author; composition year or year

range, when the exact year is not known; whether it is a contrafactum, a model

for one or more contrafacta, or, more generally, it has metrical analogies with

other songs. For each author, the database specifies his area of origin, and the

period in which he was active as a year range. Based on this information, the

BEdT subdivides the authors into six roughly chronological generations.

We selected the authors of the first three generations, who were active

between the early 12th and the early 13th century. We selected all songs

by these authors which bore metrical similarities with songs by authors of

any generation, to study the lasting influence and impact of texts composed

by authors of the first three generations on the whole corpus of Troubadour

songs. Thus, we obtained a data set with 312 authors and 761 songs, with 483

cases of contrafaction and 383 instances of more general metrical similarities.

It is important to remark that a database could never be complete since

most Occitan songbooks were only composed between the end of the 13th and

6This work is taken from [159], that I cowrote with Dr Stefano Milonia. The article dealt
with the identification of influential authors amongst Occitan troubadours and is part of a
larger project on reconstructing the complex network of relations between authors, patrons,
works, and political events in European Medieval Music.

7The structural correspondence between the number of syllables and melodic units, the
cross-examination of metrical schemes, the reuse of rhyme scheme, sounds, and words, and
the analysis of the compositions’ themes all contribute to the identification of a link, even as
lyrics in the manuscript sources are often not provided with musical notation. For a more
detailed discussion on how links between songs are established, see the Introduction in [159]
and the references within.

8The data set was compiled under the supervision of Stefano Milonia and is accessible at
https://medmus.warwick.ac.uk/contrafacta-page4?view=map.
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the beginning of the 14th century [9], and a non-quantifiable amount of works

are lost [159].

6.3.2 Data cleaning

Beyond the incompleteness of the data set, a more technical problem concerns

the uncertainty in the temporal information. As discussed in Section 2.5.3.1,

the construction of temporal networks requires that each link be provided with

precise temporal information about its onset and duration.

In the database, temporal indications are often vague and sometimes ab-

sent. To manage this uncertainty, it was necessary to adopt reasonable con-

ventions, summarised in the following steps:

1. If the composition date of a song was absent, we used the activity period

of its author. Note that also this may be an approximate time span.

2. If the temporal indications were vague, we used arbitrary but sensible

and consistent numeric translation: “Beginning of the 13th century” be-

came 1201-1210, “End of the 13th century” became 1291-1300, “Between

the 12th and the 13th century” became 1191-1220, and “Middle of the

13th century” became 1226-1275.

3. If there were multiple hypotheses about the composition date, we used

the most inclusive range (e.g., for “after 1194, and before 1198, around

1196” we used the range 1194-1198).

4. To ensure temporal consistency, if a contrafactum’s composition year

was given as a year range, we made sure that the lower end of the range

was larger than or equal to the composition year or lower end of the year

range of its model.

Applying these conventions allowed to provide each song in the data set with

a time interval in which it was composed (possibly a single year), and each

author with an approximate activity period, in a way that made the temporal

data self-consistent.

6.3.3 Networks of Authors’ Bodies of Work

6.3.3.1 Temporal Network Construction

We use the data to construct a temporal network in which each node represents

the body of works of an author, and each link represents the borrowing of the
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metric structure of a song. A node comes into existence in the first year of

the author’s reported activity period, and remains in the network thenceforth,

reflecting the fact that an author’s work keeps existing even after they stop

composing. We add a directed link from an author’s oeuvre to another’s for

each contrafactum the latter wrote based on a model by the former. When

two songs by different authors show metrical similarities but the direction of

the influence is unclear, we add a bidirectional link between the nodes.

Ideally, each link should be associated with the specific instant t when the

imitation was composed. As the temporal information about the composition

of a song is often provided only as a year range, say [t1, t2], one needs to make

a choice on how to fix the composition time t in this interval. Any choice,

deterministic or random, is in some way arbitrary, and in Section 6.3.3.5 we

discuss the effects of selecting t at the lower end of the interval, its upper end,

its mid-point, or uniformly at random in the interval. Here we present the

network obtained by fixing t as the lower end of the interval, that is t = t1.

6.3.3.2 Remarks on the construction

A few remarks are needed in order to appreciate the properties and limitations

of the above network model and its computational implementation.

Some of the songs in the database are tensos (dialogic compositions in

which different poets respond to each other in alternating stanzas), and thus

they have two or more authors. According to the network construction, if

an author writes a contrafactum of a tenso, there will be links connecting

each author of the tenso to the author of the contrafactum. Similarly, if the

contrafactum of a song is a tenso, then several links will connect the author

of the model to the authors of the contrafactum. Hence, there is no one-

to-one correspondence between a link in the network and a contrafactum.

The presence of tensos means that the act of writing a contrafactum is not

necessarily a binary relation betweeen two authors. Using simplicial complexes

[8] instead of networks may thus provide a better model for the connections

between the authors, but this goes beyond the scope of this analysis.

For the construction of the temporal network, we used the R package tsna

[26]. The package is one of the most advanced options available for the con-

struction and analysis of temporal networks, but does not currently allow for

a temporal network to be a multigraph at any time t. Hence, it does not dis-

tinguish whether an author has composed one or more contrafacta of models

by the same author in a given year. This potentially affects some network
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Active authors and new links by year

11
00

11
25

11
50

11
75

12
00

12
25

12
50

12
75

13
00

13
25

0

20

40

60

80

100

120

140

Year

A
u

th
or

s

Active authors

0

20

40

60

80

L
in

k
s

New links

Figure 6.5: Number of authors active (left) and contrafacta or songs with
metrical analogies composed (right) in each year.

measures that rely on link counts, such as degree and betweenness centrality.

However, the occurrence of duplicate links is relatively rare (less than one fif-

teenth of the total links), so the overall effects are limited. Closeness centrality

and the size of the reachability set, on the other hand, are unaffected by the

presence of duplicate links.

All this considered, we deem the network model valid for our scopes. The

final temporal network used in this study contains 312 nodes (one for each au-

thor’s body of work), and 1011 directed dynamic links representing similarities

between them, of which 580 signifying established evidence of contrafaction.

6.3.3.3 Temporal properties of networks of authors

Fig. 6.5 shows the number of authors who were active on a given year (contin-

uous line plot, scale on the right hand side of the y-axis) and the number of

new links in the temporal network (bar plot, scale on the left hand side of the

y-axis). The temporal trajectories of these quantities are strongly related, as

one would expected. The decrease in the number of authors who were active

after 1220 is partly due to the fact that this is the chronological limit of au-
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thors of the first three generation. Nonetheless we observe that compositions

of the earlier generations kept being re-purposed until the last years of the

troubadour era (1280-90).

6.3.3.4 Temporal influence measures

We use the above constructed temporal network to study the potential in-

fluence of a troubadour’s body of work on those of other troubadours. The

underlying assumption here is that an author who has imitated songs written

by others might have internalised some of their stylistic features, and thus

his subsequent compositions might be signed by the their influence. Thus, a

style propagates beyond the mere individual imitation, and is reflected in an

author’s body of work, and in the work of those who imitate his works, and

so on.

We display the network and the associated information in an interactive

widget at https://medmus.warwick.ac.uk/networks9. The user can search

the name of an author to highlight the corresponding node, together with all

its adjacent nodes or all nodes in its reachability set, thus allowing an intuitive

visualisation of the authors’ potential influence. Beyond focusing on a single

author in the network, one can choose to display different measures of influ-

ence of all authors using the size and the colour of the corresponding nodes,

thus obtaining a more holistic view on the network. The measures can be

chosen among out-degree, in-degree, size of the reachability set, closeness cen-

trality, and betweenness centrality, so to more easily identify authors of great

influence or receptivity according to the various criteria of vertex importance

described in Sections 2.5.2 and 2.5.3.2. The user can also choose to display all

potential connections, including metrical analogies, or established contrafacta

only. Some examples of the visuals produced with the above-described widget

for different centrality measures are shown in Figs. 6.6 and 6.7.

In Fig. 6.6, the size of each node displays its out-degree (the larger the node,

the larger the out-degree), while its brightness represents its in-degree (the

lighter the node, the larger its in-degree). This provides a simple visualisation

of an author’s influence in the overall network in terms of how many songs

his works have directly inspired (out-degree) and how much he borrowed from

others (in-degree). The lightest node at the centre of Fig. 6.6a represents Peire

Cardenal as the most receptive imitator of authors from the first to the third

9The R code to generate, visualise, and analyse the networks can be found at https:

//github.com/MatteoMazzamurro/contrafacta-networks/releases/tag/v1.1.0 [149].
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Network of Authors (out- and in-degree)

(a) Main component of the network of authors’ bodies of work.

Detail of Guillem de Berguedan

(b) Guillem de Berguedan’s connections

Figure 6.6: Network of authors’ oeuvres and their connections, based on the
practice of contrafaction (solid lines) and on general metrical analogies (dashed
lines). The size of a node is proportional to the number of contrafacta the cor-
responding author has inspired (plus metrical analogies), while its colour repre-
sents the number of contrafacta that the author’s body of work has produced
(plus metrical analogies): lighter shades denote larger values while darker
shades denote smaller values. In the zoomed-in view, connections of one of
the authors, Guillem de Berguedan, have been highlighted.
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generation. Fig. 6.6b shows what happens when one selects an author in the

widget, and zooms in to read the details of their connections. In this case, we

chose the author Guillem de Berguedan, and highlighted his adjacent nodes

for greater clarity. We notice that Guillem de Berguedan and Raimbaut III

d’Aurenga appear to have similar sizes, and thus a similar degree of influence

in terms of number of imitations of their works written by others, while Peirol

and Bernart de Ventadorn are the most influential in terms of contrafacta

inspired by their works and songs that can be connected to them by virtue

of metrical analogies. Furthermore, Bertran de Born is qualified by a lighter

colour, indicating that he has produced a greater number of imitations: he is

indeed the most notorious composer of sirventes in the troubadour tradition

and the main author of contrafacta among this selected group.

In Fig. 6.7, the size and the colour of nodes represent respectively their

out-degree and size of the time-respecting reachability set. Only established

links by contrafacta are shown. In Fig. 6.7a, we see the overall structure of

the main component of the network, with a large numbers of imitators whose

work was not imitated, a small group of authors whose works were widely

imitated, and an even smaller group of authors who were both very receptive

and influential. The lighter shade of Folquet de Marseilla in Fig. 6.7b reveals

that he had a potentially larger impact on the overall network, as his work has

indirectly reached a large number of authors, even if he is similar to Bertran

de Born in terms of the number of contrafacta inspired by their works. Note

also that Folquet has the largest reachability set in this group, as shown by

its light shade, in spite of the fact that Raimbaut de Vaqueiras’ songs have

proved very popular for direct imitations, as shown by its large size. Given

that both authors’ activity periods are similar, this difference is due to the

fact that authors who have imitated Raimbaut’s works further down the line

were probably relatively minor ones compared to those who imitated Folquet’s

works.

6.3.3.5 Robustness of the network measures

As mentioned in Section 6.3.3.1, the construction of the temporal network

of authors requires to make an arbitrary assumption on the year t in which

a contrafactum was composed within the year range [t1, t2] provided in the

data set. Potentially, this choice might impact the structure of the temporal

network and its node centrality measures.

To evaluate this impact, we start by considering the temporal networks N1,
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Network of Authors (out-degree and reachability set)

(a) Main component of the network of authors’ bodies of work.

Detail of Folquet de Marseilla

(b) Folquet de Marseilla’s connections

Figure 6.7: Network of authors’ bodies of work connected via the compositions
of contrafacta. The size of a node is proportional to the number of contrafacta
the corresponding author has inspired. The brightness of the colour of a node
represents the size of its time-respecting reachability set, that is the number
of authors he may have inspired with his work, directly or indirectly. In the
zoomed-in view, the connections of one of the authors, Folquet de Marseilla,
have been highlighted.
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N2, and N1,2, obtained by choosing t = t1, t = t2, and t = t1+t2
2 , respectively.

Note that the network N1 is the one considered in the above analysis.

Table 6.1 shows the statistical properties of the in-degree and forward

reachability for N1 and N2: their maximum value, mean, and standard de-

viations. The values for N1,2 are similar, and thus were omitted. Table 6.2

shows the difference between the measures when comparing node by node the

networks N1 and N2, in terms of the largest difference, the mean of the differ-

ences, and their standard deviation. These measures are shown for both the

case in which only links corresponding to contrafacta are considered and that

in which links representing metrical analogies are also included.

Choosing the year of composition t at the beginning or at the end of the

proposed range has negligeable effect on the in-degree; the impact on the

forward reachability is larger on certain nodes, which is to be expected given

the cumulative nature of this metric, but still contained overall.

Table 6.1: Statistics of centrality measures for N1 and N2

Measure Analogies? N1 mean N2 mean N1 sd N2 sd N1 max N2 max
in-degree no 1.737 1.731 3.133 3.03 36 34
in-degree yes 3.058 3.026 5.08 4.917 45 42

reachability no 5.676 5.978 17.156 18.167 131 118
reachability yes 54.984 55.462 89.281 89.484 271 247

Table 6.2: Statistics of the differences in centrality measures for N1 and N2

Measure Analogies? mean N1 −N2 std deviation N1 −N2 max N1 −N2

in-degree no 0.006 0.212 2
in-degree yes 0.032 0.350 3

reachability no -0.302 3.200 30
reachability yes -0.478 35.297 196

To further test robustness, we also employ a non-deterministic approach.

For each contrafactum or metrical analogy, we assign the creation date t by

sampling a year uniformly at random within its range [t1, t2]. We repeat this

operation one hundred times, each time obtaining a creation time for each

link. We thus construct one hundred potentially different temporal networks.

For each network, and for each node, we compute the reachability. We finally

compute the coefficient of variation of the reachability of each node, that is

the ratio of the standard deviation of the reachability for this node across the

one hundred networks, and its mean.

When only contrafacta links are considered, the maximum coefficient of

variation is 2.135, showing a large variability of reachability for this node, and

thus a strong impact of the date selection procedure on the node. Yet, the
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mean coefficient of variation is 0.047, indicating that the impact of the date

selection on reachability is very limited on average. When metrical analogies

are also included, the largest coefficient of variation is 1.486, whilst the mean

is 0.10, again indicating that the impact of the date selection procedure on

single nodes may be large, but it is small on average.

6.3.4 Networks of Regions

Regions in Occitania

Figure 6.8: Approximate borders of Occitan regions in the database, superim-
posed to modern departments of France. Some regions (noticeably Italia and
Catalogna-Rossiglione) extend beyond the limits of modern France.

We aggregate the interactions between authors on the basis of the authors’

area of origin to create a network of cultural exchanges between nine regions in

Occitania (see Fig. 6.8): Alvernia, Vélay, Gévaudan, Vivarais (AVGV); Cata-

logna, Rossiglione (CR); Guascogna, Comminges, Agenais (GCA); Italia (IT);

Limosino, Marche (LM); Linguadoca, Contea di Foix (LCF); Poitou, Sain-

tonge, Périgord (PSP); Provenza, Delfinato, Viennese, Valentinese (PDVV);

and Quercy, Rouergue (QR).

The circle plot in Fig. 6.9a shows the intensity of the interactions between

all pairs of regions. Each sector on the exterior annulus corresponds to a
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Cultural exchanges in Occitania based on contrafacta
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(a) All interactions by contrafacta.
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(b) Main interactions by contrafacta only.

Figure 6.9: Directed networks of Occitan regions based on the production
of contrafacta: arrows points from the regions where the authors of models
were from to regions where the authors of their contrafacta were from. The
thickness of the arrows represent the number of contrafacta, and is taken as
an indication of literary influence.
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region. The sector’s angle represents the proportion of all connections in

the data set either starting or ending in that region, i.e., the proportion of

contrafacta or models in the data set that were composed by authors from

that region. It is clear that in some regions, such as PDVV, and AVGV, the

practice of contrafaction was more prolific than in others, such as QR and

GCA. Inside the annulus, the thickness of the arrows between different sectors

corresponds to how many contrafacta authors from the region at the head of

the arrow have composed based on models by authors from the region at its

tail. For greater clarity, Fig. 6.9b highlights only the main connections. Some

of the most intense connectivity is between authors within the same region,

for instance in PDVV and AVGV, GCA, or LCF; or neighbouring regions,

such as PDVV with AVGV and IT, AVGV with LM with LCF. In other cases,

though, intense exchanges are found also between non-neighbouring regions,

such as PSP and LCF or AVGV, or CR and IT.

To analyse the spatial pattern of literary influences weaved by the practice

of contrafaction, we fitted the entropy-maximisation model from eq. (2.2) to

this system of interactions. We used the distance between the centroids of the

regions as the “cost” of interactions and the region’s total lyric production

as its “population” and “benefit” of interacting with it. The best choice of

the parameter β in terms of mean square error of the prediction turns out

to be just β = 0, indicating that distance does not play a strong role on the

interactions. In other words, the cultural interactions between these regions

are dominated by factors other than their physical distance.

Perhaps not surprisingly, this is not the case when we analyse the produc-

tion of tensos (Fig. 6.10). The authors who worked closely together in the

composition of these collaborative lyrics, indeed, were for the greatest part

originally from the same region or neighbouring regions (such as LCF with

PDVV and QR, or IT with PDVV, see Fig. 6.10b).

In Fig. 6.11, we show in greater detail the evolution of the main interactions

in time, cumulatively (Figs. 6.11a, 6.11c, 6.11e), and in selected ten-year-long

intervals (Figs. 6.11b, 6.11d, 6.11f).

From Fig. 6.11a, we can see that a large number of contrafacta were orig-

inally produced in GCA based on models by authors from the same region.

In 1180-1190, LCD joined GCA as the most productive region (Fig. 6.11b),

but LCD’s interaction were much more heterogeneous, as its models were

imitated in neighbouring regions (PDVV, CR) and non-neighbouring regions

(PSP) alike. By 1210 (Fig. 6.11c), the heart of the troubadour period, the
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Cultural exchanges in Occitania based on tensos
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(b) Main interactions by tensos only.

Figure 6.10: The network of Occitan regions based on the production of tensos
by authors from each region. The arrows pointing from a region to itself are
thicker than in the case of interactions by contrafacta.

general structure of exchanges was already very similar to its final configura-

tion. AVGV and PDVV establish themselves as the main areas of production

of contrafacta, with the former being, just as LM and PSP, also an important

source of models (Fig. 6.11d). In 1220-1230, (Fig. 6.11f), authors from IT

produce a large number of contrafacta, based on models from neighbouring

PDVV, and to a lesser extent, AVGV; slowly increasing its share in the total

production (Fig. 6.11e), that would further increase by the end of the period.

We complement the analysis of the cumulative networks by shifting our

attention from the total production to its heterogeneity via a study of the

temporal evolution of the entropy of interactions in Fig. 6.12. Overall (black

line with diamond), the interactions between the regions tended to become

more heterogeneous until the central period (1200-1210), plateauing for a cou-

ple of decades before experiencing again a small increase. When we look at

individual regions and where their models proved influential, we see that songs

by authors from AVGV and LCF were already imitated in a large number of

regions by the 1190’s and these two regions remained amongst the top three

in terms of heterogeneity ever since. The years leading to 1210 saw several

regions increase their heterogeity: with PDVV reaching its peak at the turn

of the century and GCA, LM and GCA all witnessing an increase in their in-

teraction entropy values before stagnating. After 1230, a last wave of changes

in the heterogeneity is observed as QR and IT see their songs being imitated
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Evolution of cultural exchanges in Occitania based on contrafaction
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Figure 6.11: Temporal evolution of the network of Occitan regions based on
the production of contrafacta by authors from each region.
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Interaction entropy of Occitan regions
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Figure 6.12: Temporal evolution in the interaction entropy of the network
of Occitan regions. Recall that the weight of a link connecting a region to
another one is equal to the number of contrafacta that authors from the latter
have composed based on models by authors from the former.

by more than one region for the first time, which leads to positive entropy.

Remark that neither of these regions become a major source of models, but a

small number of songs by authors from QR are imitated throughout eastern

Occitania, making the region’s influence one of the most heterogeneous.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we studied the structure and evolution of historical systems of

cities using entropy-based approaches.

We analysed fundamental morphological aspects of the systems: the dis-

tribution of city sizes, the spatial organisation of their locations, and the pop-

ulation density and land use of their surrounding territories (Chapter 4). We

discussed the impact of changes in the transport infrastructure on intercity

distances and potential interactions, and how to capture this via updated

measures of morphological polycentricity (Chapter 5). We looked at dynam-

ics of the population distribution, social connectivity, and diffusion of ideas

and innovations, discussing the opportunities and limitations of new and old

forms of data in representing them (Chapter 6).

In doing so, we expanded and refined existing entropy measures and an-

alytical tools. We proposed normalisation formulae for the first degree-based

entropy of graphs, based on its extremal values for graphs subject to size

and/or order constraints, thus improving its interpretation as a measure of

uniformity of the degree sequence of a graph (Chapter 3). We defined local

entropy: a spatial entropy measure for raster data that indicates, for each cell,

how heterogeneous a quantity of interest is in its surroundings (Chapter 4).

We introduced the normalised first degree-based entropy of the disc graphs as

a tool to analyse the clustering of point processes (Chapters 4 and 5).

We illustrated our methods through examples of systems of cities in differ-

ent places and historical periods. We discussed to what extent the Shannon

entropy of city sizes in the main European powers from 1300 to 1850 was cor-

related to the main political events of the time. We performed a similar study

179



of the local entropy of the land use and population density in Italy, the British

Isles and South Asia from 1700 to modern day, highlighting that the strongest

structural changes happened in periods when new technological innovations

were being adopted, whilst the correlation with political event was feebler.

We analysed the spatial arrangement of English and Welsh towns in the 19th

century, modelling its increasing clustering, and showing that railways made

the system less balanced overall with respect to travel time, whilst allowing,

in general, greater heterogeneity of connectivity at the city level.

We studied the spatial-temporal dynamics of social media activity using

geo-tagged Tweets in London, discussing the limitations in adopting homoge-

neous point process models, and describing the heterogeneity of the distribu-

tion of Tweets via the entropy of cell counts. We studied the properties of

transport, social, and cultural links between different localities via the world-

wide network of flights, the Hungarian social network iWiW, and the literary

imitations between medieval Occitan troubadours, respectively. We discussed

the difficulties of adopting an entropy maximisation model for the intercity

social connectivity in iWiW, despite the similarity of the problem with that of

computing spending flows between localities. We showed that distance does

not seem to have a major impact on the networks of cultural exchanges via the

practice of contrafactum in Medieval Occitania, whilst it is more influential

on the interactions via tensos.

We conclude the thesis highlighting some limitations of our work and dis-

cussing future research directions.

7.2 Limitations and future work

The research expounded in this thesis presents a number of limitations that

open it to future expansion and improvement.

Minimum of the first degree-based graph entropy for graphs of ar-

bitrary order and size. In Section 3.3, we determined the graphs attain-

ing minimum entropy amongst all graphs with n nodes and m edges, when

n− 1 ≤ m ≤ 2n− 3, and provided numerical observations, and limits for the

case of large n and m, but we did not solve the problem for arbitrary n and

m. We believe that some of the ideas introduced in the thesis, such as the

function hc(G) in Definition 14, may be helpful to deal with the general case.

Nonetheless, the problem remains difficult, as it depends on determining a
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closed formula for the number ℓ(n) of non-standard minimal-entropy graphs

(see Section 3.3.4).

Population data sets. Our comparative study of the entropy of historical

city sizes is hindered by the high level of uncertainty in historical popula-

tion estimates and by the scarce compatibility of different data sets (Sec-

tion 4.1.1). These can be considered, to some extent, inevitable limitations.

Indeed, though some data sets (including the employed [127]) have attempted

to harmonise data from several sources, their data can only be considered

reliable on average and not at the individual city level.

Another limitation is the greater focus on Europe than on other regions,

primarily due to our greater familiarity with European history and languages,

which simplified the consultation of sources. Other areas around the world

have long (in fact longer) traditions of collecting relatively accurate popula-

tion data through censuses, for instance China [79]. Data sets of city-level

data do exist, such as an atlas of walled cities and urban extent [219], not dis-

similar to [107]. Their analysis and comparison would be extremely enriching.

This would require building more expert local knowledge and intuition.

Local entropy. Our definition of local entropy for raster in Section 4.3,

employs neighbourhoods Cn
i,j , which act as observation windows around a

cell. For now, these observation windows are defined according to a pseudo-

Euclidean metric that ignores the presence of public infrastructure, and thus

may not correspond to the actual accessibility of a city’s surrounding territory

from the perspective of an inhabitant. Refined definitions using isochrones

would provide a more intuitive description and reflect the change in the mean-

ing of “neighbouring territory” when transport technology is taken into ac-

count, in line with our discussion in Section 5.2.

Entropy and energy considerations in point process modelling of set-

tlement locations. In Section 4.4.5, we already discussed the limitations of

modelling the location of new English and Welsh cities via an inhomogeneous

Matérn cluster process, and provided possible solutions to some of its issues.

In particular, we mentioned that, although satisfactory for most cases, the

model fails to account for the repulsion between towns at small distance. A

composite model in which the points in the clusters are distributed according

to a Gibbs hard-core process might help solve the issue, at the expense of a
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more complex fitting procedure.

One interesting aspect of employing an Gibbs hard-core process to model

the interactions between towns is that this model is intrinsically connected

to entropy maximisation of the total energy of the process (i.e., the sum of

the interactions), as hinted at in Section 2.5.1.1. A further exploration of the

concept of energy in patterns of town locations could open a fruitful research

direction.

Normalisation of graph entropies for transportation networks. In

real-world transportation networks, a settlement’s location and the maximum

range and speed of transport technology have a strong influence on its potential

connections and thus on its entropy. This is of special interest when studying

phenomena, such as commuting, that are heavily influenced by travel time.

A more appropriate normalisation constant for the entropy of interactions

within a certain travel time t in Section 5.2 could be log(n(v, t)), where n(v, t)

is the number of nodes attainable from v, given its location and t. Similarly,

limitations in the flying range of airplanes mean that direct links between some

extremely far airports are not technically possible or at least commercially vi-

able with current technology, and this may impact an airport’s connectivity

(Section 5.1). This calls for an even more careful normalisation of the first

degree-based graph entropy, with conditions on the maximum degree in the

graph, or, even more ambitiously, given an arbitrary majorising sequence for

the degree sequence.

Multi-modality and real travel conditions in the computation of

travel time. In our computation of travel time between 19th century English

and Welsh towns Section 5.2, we considered geographical distance divided by

the stagecoach speed as a baseline and complemented it with distance along

the railway network divided by an estimate of the average railway speed in

the year of study. This approach has a number of limitations. First, it tacitly

assumes the presence of direct stagecoach roads between towns and ignores

their conditions (for instance, their steepness). Secondly, it ignores variations

in train travel speed, train frequency, cost, line capacity, line transfer times,

and time needed by a typical person to reach a station along the actual street

network of the towns. Lastly, it ignores the presence of alternative means of

transport, such as ferries or waterway, and thus the effects of multi-modality.

Our study aimed to provide a proof of concept, and any improvement in
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these directions would contribute to strengthen it. The aforementioned Brad-

shaw’s Monthly Railway and Steam Navigation Guides provide detailed train

timetables for Britain from 1839 to 1961; transforming them into machine-

readable data would greatly benefit our study, as well as any other study

on historical transport networks and intercity interactions. The Cambridge

Group for the History of Population and Social Structure, who created and

published the railway data sets used in this thesis, also created multi-modal

transport networks for Britain at various points in time. Whilst not all of

this data is readily accessible, enquiries or collaborations with the group could

allow further expansion of our work.

The limits of Spatial Interaction Models with historical data and

parameter choice for most likely interaction. The qualitative nature

of the fitting in Section 5.2.5 is certainly a limitation of difficult solution,

in absence of complete, quantitative data on migration. Historical data on

migration flows may be available at the county level at best, which makes it

impossible to verify finer-grained connections in our network.

The fact that London occupies such a special position in the British system

of cities also poses a challenge in the definition of a network via a Spatial Inter-

action Model with minimal assumptions. The migration flows, indeed, seem

to follow the rule: if there is an attractive location nearby, migrate there,

otherwise migrate to London. A realistic model would need to assign Lon-

don a special premium, thus imposing some functional form on the predicted

interactions. Substituting population size with data on economic activity, as

predicted in Wilson’s original model, might help with this challenge, but, as

far as we are aware, such data is not generally available at such a capillary

resolution.

Another limitation worth mentioning is the complex interplay between lo-

cal migration and international emigration, or, more generally, interactions

within a system and the interactions of a system with the outside. By draw-

ing a boundary around a set of cities, we isolate them from the rest of the

world, which is an unsatisfactory but necessary assumption. In the case of

England and Wales, for example, we inevitably neglect the intense emigration

that these nations were facing in the 19th century and their impact on inter-

county or inter-town migration.

Inhomogeneous models for Tweets. Modelling the locations of geo-tagged
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Tweets in London, we only tested homogeneous models in an attempt to keep

the models as general and assumption free as possible. This approach led to a

satisfactory modelling only in a minority of cases and in a limited area of the

city. If one is interested in more accurate fitting, at the expense of simplicity

and generality, inhomogeneous models are required. Based on our analysis,

these ought to include spatial covariates such as population density, account

for the street networks, and be applied to a data set that links Tweets to

individual users, so to be able to satisfactorily address the issue of repeated

points. Future models should also exploit the well-developed theory of spatio-

temporal point processes [76].

Network of contrafacta. Our current work on cultural exchanges between

Occitan regions looked at the first three generations of troubadours and at

the practice of contrafactum (Section 6.3). In the future, we plan to extend it

to other troubadour generations and incorporate weighted edges proportional

to objective measures of similarity of the musical imitations to better capture

the degree of relatedness between troubadours’ bodies of works.

Potential interactions beyond spatial interaction models. The mul-

tiplication of virtual interactions opportunities in the modern world, though

not quite spelling the once popular notion of “death of distance”, make the

assumptions of the spatial interaction models less solid, as the ratio between

cost and benefit of a physical interaction now is less clear and need to be more

carefully calibrated. Furthermore, the entropy maximisation principle rests

on the assumption that individuals movements at the basis of cities interac-

tions can be modelled as those of particles, identical and deprived of agency.

More realistic models of interactions should attempt to include considerations

on individuals’ skills, socio-economic conditions, as well as the complexity of

intentionality and decision making, to achieve a truly human-centred perspec-

tive on intercity interactions.

Alternative notions of entropy. In this thesis, we have studied the struc-

ture and evolution of systems of cities through the lenses entropy, to which

we have given primarily a statistical-mechanical and information-theoretical

interpretation. We would like to conclude the thesis by mentioning that alter-

native notions of entropy do exist and have been applied to the study of cities.

A particularly interesting one comes from ecology and sees cities as dissipative
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systems that maintain their structure only by drawing in energy and resources,

increasing the randomness and entropy in their host environment [181]. As it

has been highlighted in [176], these studies are rather speculative, not techni-

cal, and based on the questionable assumption that the world is an isolated

system. A rigorous exploration of the role that systems of cities may play

in regulating the internal structure of individual cities and managing their

entropy resonates with ours “philosophical” remarks from Section 2.4.3 and

would be a fascinating line of research to pursue.
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