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Universal scaling of extinction 
time in stochastic evolutionary 
dynamics
Ching‑I Huang 1,2,3, Chun‑Chung Chen 4,5* & Hsiu‑Hau Lin 1*

Evolutionary dynamics is well captured by the replicator equations when the population is infinite 
and well‑mixed. However, the extinction dynamics is modified with finite and structured populations. 
Experiments on the non‑transitive ecosystem containing three populations of bacteria found that 
the ecological stability sensitively depends on the spatial structure of the populations. Based on the 
Reference–Gamble–Birth algorithm, we use agent‑based Monte Carlo simulations to investigate the 
extinction dynamics in the rock‑paper‑scissors ecosystem with finite and structured populations. 
On the fully‑connected network, the extinction time in stable and unstable regimes falls into two 
universal functions when plotted with the rescaled variables. On the two dimensional grid, the spatial 
structure changes the transition boundary between stable and unstable regimes but doesn’t change 
its extinction trend. The finding of universal scaling in extinction dynamics is unexpected, and may 
provide a powerful method to classify different evolutionary dynamics into universal classes.

The paramount question in evolution is how to maintain robust biodiversity in an ecosystem hosting mutually 
competing  species1–5. The opposite side of the same question is about extinction mechanism. Derived from the 
evolutionary game theory, replicator  equations6–11 deliver a deterministic description for population dynamics 
with frequency-dependent selection. The competitions between individuals of different species are described 
by the payoff  matrix12,13 in the game theory and the resultant replicative dynamics has been rather successful 
in many  ecosystems11. Despite of the general applicability with success, it is important to keep in mind that the 
replicative dynamics is limited to the well-mixed configurations in the infinite population limit.

What happens if the populations are finite and/or competitions between individuals occur on a network with 
specific spatial structure? Many  studies14–31 show that ecosystems with finite populations and/or on structured 
networks reveal significant deviations from the replicative dynamics. For instance, in a recent  study32 on the 
non-transitive rock-paper-scissors ecosystem containing three populations of Escherichia coli. They found that 
diversity is rapidly lost in the ecosystem when dispersal and interaction occur over relatively large spatial scales, 
while all species coexist when ecological competitions are localized. That is to say, the ecological stability seems 
to be weakened in the well-mixed populations. Their findings inspire us to explore the role of spatial structure 
in evolutionary dynamics.

In addition, there has been controversy over the effect of finite population in the rock-paper-scissors ecosys-
tem. Some  study33 shows that a critical population size Nc exists: For N > Nc , the infinite-population behavior is 
recovered, while for N < Nc , the stochastic fluctuations arisen from finite population drives the ecosystem toward 
extinction. On the other hand, the other  study34claims that the extinction time is always finite and the ecological 
stability needs to be defined by the trend of the extinction dynamics. The ecological stability of an ecosystem with 
finite population means that the extinction time grows exponentially with the population size, Tex ∼ exp(N/N∗) , 
where N∗ is some characteristic constant depending on the model details. This important conflict together with 
the previous experimental observations encourages us to investigate these issues by numerical simulations.

To put the discussions on firm ground, we concentrate on the non-transitive rock-paper-scissors 
 game35–37,37–56, known as a paradigm to illustrate the species biodiversity. Recent empirical investigations have 
identified several ecological systems as the rock-paper-scissors system including the coral reef  invertebrates57, 
the mating strategies of lizards in  California58, the bacterial game in vitro and in vivo32,59,60, the vertebrate 
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community in the high-Arctic tundra in  Greenland61 and the plant  communities62,63. These findings in nature 
make rock-paper-scissors game not only a theoretically interesting model but also a practical system to study.

In this Report, we use agent-based Monte Carlo simulations to investigate the extinction dynamics in the 
rock-paper-scissors ecosystem with finite and structured populations. Making use of numerical simulations, one 
can extract the extinction time in different regimes. However, for the finite and structured populations, the usual 
Moran  algorithm64,65 and its generalized  versions24,66,67 may not be appropriate. One shall turn to the evolutionary 
theory on  graphs21,68–70 to include the local mutual competitions. Following the same spirit, we introduce a local 
three-party Reference–Gamble–Birth (RGB) algorithm and perform the agent-based Monte Carlo simulations 
for the evolutionary dynamics. The RGB algorithm only requires local information in the stochastic processes 
and captures the network structure into account. And, it correctly reproduces the replicator dynamics when the 
populations are infinite and well-mixed.

Two major results are found in our numerical simulations. The first one is the universal scaling: the extinction 
time is always finite and falls onto the universal function when plotted with the rescaled variables. On the fully-
connected network, two universal functions for stable and unstable regimes are found and the phase transition 
between them corresponds to neutral (critical) dynamics where the extinction time shows power-law behavior. 
The unexpected universal scaling may provide a powerful method to classify ecosystems with different dynami-
cal behaviors into universal classes. The second major result is the notion of global payoff versus local payoff. 
On the two dimensional grid, the spatial structure changes the transition boundary between stable and unstable 
regimes but the universal function remains the same. This observation motivates us to introduce the notion of 
global payoff which turns out to be consistent with our numerical simulations. Our numerical simulations not 
only resolve the conflicting results in the previous  studies33,34 but also suggest a potential tool to classify different 
evolutionary dynamics by universal scaling.

Methods
Rock‑paper‑scissors game.  Here we consider the symmetric cyclic competitions between species A, B 
and C described by the payoff matrix

where the positive-definite parameter g denotes the gain in the cyclic competitions. The replicative dynamics 
of the ecosystem with populations NA , NB , NC for the species A, B, C is captured by the following differential 
equations,

where a(t) ≡ NA/N  is the frequency (relative population) of species A in the total population 
N = NA + NB + NC . The other frequencies b(t) ≡ NB/N and c(t) ≡ NC/N are defined in similar fashion. The 
parameter φ = (g − 1)(ab+ bc + ca) is the average fitness of the ecosystem.

The symmetric replicator  equations11,34 host a non-trivial fixed point (a∗, b∗, c∗) = ( 13 ,
1
3 ,

1
3 ) . If the gain is 

greater than unity, g > 1 , the flows around the fixed point is stable. On the other hand, if the gain is less than 
unity, g < 1 , the fixed point becomes unstable. At the critical gain gc = 1 , it corresponds to the zero-sum game 
and the flow around the fixed point is neutral. Therefore, according to the replicator equations, the ecosystem 
goes through a phase transition from the stable regime to the unstable one when the gain g is tuned through the 
critical point gc = 1.

RGB algorithm.  The above scenario is well known for the rock-paper-scissors game when the population is 
infinite and well-mixed. But, what happens when the population is finite and the competitions among different 
species occur on the network with specific spatial structure? To investigate these important issues, we utilized 
the agent-based Monte Carlo simulations. To incorporate the locality of mutual competitions on the reasonable 
ground, we introduce a local three-party Reference–Gamble–Birth (RGB) algorithm. For each RGB update, it 
consists four steps as shown in Fig. 1. In the RGB algorithm, the third-party Reference provides local survival 
standard and determines the death probability of Gamble.

The death matrix D plays a central role in RGB algorithm. Similar to payoff matrix, its matrix elements Dij 
defining the death probability for all possible competitions among species. The definition of death matrix indi-
cates that the death matrix share the same matrix dimension with the payoff matrix and all its matrix elements 
must sit inside the range 0 ≤ Dij ≤ 1 . In this section, we are going to show (i) the equivalent dynamics between 
replicator equations and the deterministic dynamics of stochastic updates in RGB algorithm in well-mixed and 
infinite populations; (ii) a simple scaling relation, i.e. D = P/s , to construct the death matrix D for RGB algorithm 
from an arbitrary negative payoff matrix P; (iii) extracting the extinction time (i.e. a simple scaling Tex = TRGB/s ) 
for a payoff matrix P by using the RGB algorithm.

In a single update, there are two possible ways to change the population size Ni of species i: (1) �Ni = 1 with 
probability Dkjxixjxk coming from the process of the decease of a species-k Gamble when contacting with a 

(1)P =
(

0 − 1 g
g 0 − 1
−1 g 0

)
,

(2)ȧ = (gc − b)a− φa,

(3)ḃ = (ga− c)b− φb,

(4)ċ = (gb− a)c − φc,
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Reference of species j and the random replacement of a Birth of species i, where k  = i . The death probability is 
Dkj in this case. (2) �Ni = −1 with probability Dijxixjxk coming from the process that a species-i Gamble dies 
during the interaction between a species-j Reference and a Birth of species-k is randomly chosen to fill the empty 
site, where k  = i . The death probability is Dij here. Weighting all possible competitions with the corresponding 
probabilities, the average change in populations after a single update takes the following form,

where �τ is the virtual time interval in the numerical simulation. However, within a realistic time interval �t , 
we expect the number of encountering events is proportional to the population size N24, i.e. �τ = N�t . Thus, 
the real time dynamics in the continuous limit when the population becomes infinite is

where xi = Ni/N denotes the frequency of species i. Defining di =
∑

j Dijxj as the frequency-dependent death 
probability of species-i and φd =

∑
i dixi as the average death probability of the entire populations, the real time 

deterministic RGB dynamics becomes

This is the death version of replicator equation with bi = 0 for all species. The RGB algorithm introduces selec-
tion among species by a death matrix, and therefore its deterministic dynamics is captured by the replicator 
equations without the birth terms.

Now, we can derive the relation between the death matrix in RGB algorithm and the payoff matrix in replica-
tor equations when frequency-dependent selection is taken into account. The gauge redundancy of the payoff 
matrix indicates the replicator equations remain invariant when adding a arbitrary constant to all elements in the 
payoff  matrix11. Based on the gauge redundancy, we consider a negative payoff matrix P with negative values for 
all matrix elements (i.e. Pij ≤ 0 for all i and j) without loss of generality. Because 0 ≤ Dij ≤ 1 , a proper rescaling 
factor is required to establish the equivalence between the payoff matrix Pij and the death matrix Dij . Introducing 
a proper rescaling factor s, which has a lower bound sm = max(|Pij|) defined by the payoff matrix, we define the 
death matrix from the negative payoff matrix as

(5)

�Ni

�τ
=
∑

k �=i

∑

j

Dkjxixjxk −
∑

k �=i

∑

j

Dijxixjxk

=
∑

j,k

(
Dkj − Dij

)
xixjxk ,

(6)
dxi

dt
=

∑

j,k

(
Dkj − Dij

)
xixjxk ,

(7)
dxi

dt
= −dixi + φdxi .

a b

c d

Figure 1.  Reference–Gamble–Birth (RGB) algorithm. Individuals are represented by filled grey circles and 
the network for mutual competitions is shown as grey lines. For each RGB update, it consists four steps as 
shown here. At first, a Gamble (G) is randomly picked from the entire populations. Next, an Reference (R), 
randomly chosen from the neighborhood, interacts with the Gamble and sets the bar for Gamble’s fate. The 
death probability of Gamble ( DGR ) in a single update, defined by the death matrix D, is solely determined 
by the species of Gamble and Reference. In the case of Gamble decease, a randomly chosen Birth (B) in the 
neighborhood reproduces and fills up the empty spot. The participating individuals of Reference, Gamble and 
Birth are highlighted by red, green and blue colors respectively and interact via the highlighted black links.
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In the case of frequency-dependent selection, fi =
∑

j Pijxj , we can rewrite the frequency-dependent death 
probability as di = −

∑
j Pijxj/s = −fi/s and the average death probability of the entire populations as 

φd = −
∑

i fixi/s = −φ/s . Thus, the deterministic dynamics of RGB algorithm then is related to the replicator 
equations by the rescaling factor s,

As shown in the above equation, the RGB algorithm generates a rescaled population dynamics of replicator 
equations with the rescaled fitness fi/s . The rescaled fitness in RGB algorithm reduces the strength of competi-
tion and therefore slows down the dynamics of replicator equations by a factor of s. Thus, the extinction time 
obtained by the numerical simulations should also be rescaled by the same factor, i.e. Tex = TRGB/s , accordingly 
to yield the extinction time of replicator equations.

The RGB algorithm has several advantages over the Moran process. First of all, only local information is 
involved in the stochastic process, more realistic than the need of global information for the Moran process. Sec-
ondly, the RGB algorithm reproduces the dynamics of frequency-dependent selection described by the replicator 
equations in infinite and well-mixed populations when the rescaling of time is restored properly. Finally, the the 
RGB algorithm takes the network structure into account, capturing the sensitive dependence of evolutionary 
dynamics in structured populations.

Results
Universal scaling in well‑mixed populations.  We perform agent-based Monte Carlo simulations to 
extract the mean extinction time. For each run, when one of the species goes extinct, we stop the simulated 
evolution and mark the time of extinction. The mean extinction time Tex(N , g) , depending on the population 
size N and the gain g defined in the payoff matrix, is computed by taking ensemble average of 10,000 runs in 
numerical simulations. We first focus on the well-mixed population, i.e. the fully connected network where 
every individual is connected to each other. It is rather remarkable that all numerical data can be collapsed onto 
the universal functions,

where �g ≡ |g − gc| denotes the deviation from the critical gain gc = 1 . As shown in Fig. 2, the numerical data 
for g > gc (stable regime) and g < gc (unstable regime) collapse onto the universal scaling functions F±(x) 
respectively. The exponent α = 1 can be extracted from extinction time of different population sizes at the critical 
point �g = 0 and the other exponent β = 1 is the optimal fitting to collapse all data with different N and g. In the 
following paragraphs, we would like to show that these scaling variables can be understood within the framework 
of the renormalization group (RG)71. But, it is worth mentioning that the scaling variable x = N(g − 1) agrees 
with the our expectation from population  genetics72 that the extinction time in finite populations will scale as 
the product of population size and selection strength.

Let us derive the scaling form of the extinction  time71 by RG analysis. Assuming the scaling dimensions for 
Tex , N and �g are dT , dN and dg respectively,

(8)Dij ≡ −Pij/s.

(9)
dxi

dt
=

(
fi − φ

)
xi/s.

(10)Tex(N , g) = NαF±
(
Nβ�g

)
,

(11)T̃ex(Ñ ,�g̃) =bdT Tex(N ,�g),

Figure 2.  Scaling functions of extinction time in well-mixed populations. Numerical results show three types 
of scaling forms (exponential, logarithm and linear) depending on the values of the local gain g. Plotted versus 
the scaling variable x ≡ N |g − gc| , the rescaled extinction time Tex/N falls onto two distinct scaling function 
F±(x) . The stable and unstable regimes are represented by the blue and red color systems while the critical point 
is represented by the green color.
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Thus, the extinction time takes the following scaling form,

Choose the rescaling factor properly so that bdNN = N0 , where N0 is some large number. The extinction time 
can be rewritten in terms of the rescaled variables,

Introducing two exponents α ≡ dT/dN and β ≡ −dg/dN , the above scaling relation can be cast in the elegant 
result in Eq. (10). Note that the scaling functions F±(x) for stable and unstable regimes are different but the 
exponents α and β are universal in the vicinity of the critical point.

The emergent universal scaling is highly non-trivial. For instance, extinction time of different population sizes 
at the critical point all collapse onto just one point (green dot in Fig. 2). Our numerical simulations show that 
the extinction time is always finite but the ecological stability can still be defined through the trend of extinction 
time. Plotted with the rescaled variables, stable and unstable regimes fall onto two universal functions F±(x) and 
can be differentiated without ambiguity. In general, the exact forms of the scaling functions F±(x) are difficult to 
obtain. However, its asymptotic form can be understood by the following arguments. Consider the stable regime 
first. In the asymptotic limit ( |x| = N |�g | ≫ 1 ), the extinction of the ecosystem arises from a chain of successive 
rare event against the flow back to the stable equilibrium. In the stable regime, the clusters within the correlation 
length are locally stable with a small probability p to go extinct. Suppose the typical size of the cluster is Nc so 
that there are roughly N/Nc clusters. The probability for the whole ecosystem to go extinct is thus pN/Nc = qN , 
where q = p1/Nc . In consequence, the extinction time grows exponentially with the population size N and the 
asymptotic form of F+(x) should be

Here A is some positive constant and N+ = 1/(A�g) is the characteristic constant for the exponential growth. 
In the unstable regime, the population decays exponentially, N(t) = Ne−γ t . The extinction time is usually esti-
mated by the criterion N(Tex) ≈ O(1) , leading to the logarithmic trend Tex ∼ lnN . The asymptotic form of the 
scaling function F−(x) thus takes the form,

The asymptotic forms in Eqs. 16, 17 has been derived in the previous  studies34 and agree with the numerical 
simulations presented in Fig. 2 rather well. Even though the asymptotic forms of the scaling functions can be 
understood rather well, the exact forms of the scaling functions F±(x) are difficult to obtain.

Global payoff matrix in structured populations.  Now we turn to the extinction dynamics on the 2D 
grid. As explained in the previous paragraphs, only local neighbors participate in each RGB updates. It is striking 
that the biodiversity is enhanced due to the spatial structure of the network: the extinction time always follows 
the exponential trend as shown in Fig. 3. Even in the extreme case g = 0 , the stability of the cyclic-competing 
ecosystem is still protected by the grid structure. Is the extinction time described by the same scaling function as 
in the well-mixed case? The answer, after finding appropriate rescaled variable, turns out to be positive.

Even though the phase boundary between stable and unstable regimes are modified by the spatial structure 
of the network, the universal functions remain the same. We are thus inspired to introduce the notion of global 
payoff matrix as explained below. Local population dynamics generated by local interactions depends on the 
payoff matrix parametrized by the local gain g. But, the extinction time is a global property: even with the same 
local gain g, the 2D grid and the fully-connected network (well-mixed population) give different results. Because 
the fully-connected network looks the same either locally or globally, it is invariant under renormalization-group 
transformation and serves as a good reference. In RG analysis, the partition function is kept invariant to extract 
the renormalized coupling  constants71. Here we adopt the same method and introduce the global gain G on an 
arbitrary network via the relation

where the superscript FC stands for “fully-connected”. That is to say, the extinction time for the local gain g on 
the considered network is set equal to that for the global gain G on the fully-connected network. According to 
the definition, g = G on the fully-connected network, reflecting the fact that local and global properties are the 
same in the well-mixed population. In our numerical simulations, the asymptotic limit is approximated by the 
largest population size in available simulations. To accurate the mapping, the characteristic constant in universal 
scaling function ( F+ ) is used to defined the global payoff matrix on the 2D grid. The mapping between G and g 
on the 2D grid is carried out numerically (shown in Fig. 4). The red line ( G = g ) represents the trivial relation for 

(12)Ñ =bdNN ,

(13)�g̃ =bdg�g .

(14)T̃ex(b
dNN , bdg�g) = bdT Tex(N ,�g).

(15)
Tex(N ,�g) = b−dT T̃ex(b

dNN , bdg�g)

= (N/N0)
dT/dN T̃ex[N0,�g(N/N0)

−dg /dN ].

(16)F+(x) ∼ eAx → Tex ∼ NeN/N+ .

(17)F−(x) ∼
ln x

x
→ Tex ∼ lnN .

(18)lim
N→∞

Tex(N , g) = lim
N→∞

TFC
ex (N ,G),



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22403  | https://doi.org/10.1038/s41598-022-27102-0

www.nature.com/scientificreports/

the fully-connected network. All data sit in the stable regime (blue background) and confirm that the dynamics 
on the 2D grid is always ecologically stable with G > 1 . The mapping between the local and the global gains in 
the 2D grid reveals strong renormalization due to the spatial structure of the network. The global gain provides 
a convenient method to compare the effects of population structures on the extinction time.

The global gain G turns out to be the appropriate rescaled variable. When plotted with the global gain, the 
extinction time on the 2D grid collapse onto the same scaling function F+(x) as shown in Fig. 5. Because the 
instability of the ecosystem is wiped out by the grid structure, the other branch F−(x) does not show up. The 
reappearance of universal scaling indicates that the population structure only renormalizes the phase boundary 
but the underlying extinction behavior remains the same.

Spatial and temporal correlations on the grid.  To explore the different dynamics arisen from the 
network structure, it is helpful to study the spatial and temporal correlation functions,

where the summation is over all species, X = A,B,C . The random variable X(r, t) = 1 when the species X is spot-
ted at the distance r and in the later time t. Otherwise, its value is zero. The ensemble average 〈X(r, t)X(0, 0)〉 meas-
ures the probability of finding the same species with the space-time separation (r, t) and equals 〈X(r, t)〉〈X(0, 0)〉 
if no correlation is present. The cross-species correlation functions are neglected here because they reflect the 
same trend as observed in C(r, t).

The spatial and temporal dependences of the correlation function is shown in Fig. 6. The spatial correlation 
is short-ranged with correlation length ξ ≈ 3.3 (lattice unit) for g = 1 . The data fits the usual exponential decay 

(19)C(r, t) ≡
∑

X

�X(r, t)X(0, 0)� − �X(r, t)��X(0, 0)�,

Figure 3.  Enhanced ecological stability on 2D grid. Differnt from the phase transition observed in the fully-
connected network (well-mixed population), the extinction time on the 2D grid always follows the exponential 
trend even for g � 1 where the average local payoff g − 1 is negative. The spatial structure gives rise to non-
trivial normalization on the local payoff matrix and enhances the biodiversity on the 2D grid.

Figure 4.  Global payoff on the 2D grid. In spatial games, the local evolutionary dynamics is generated by the 
local payoff matrix. However, the global ecological stability is not directly reflected by the local payoff matrix due 
to the renormalization from the network structure. Referencing with the fully-connected network, the global 
gain G can be extracted by equating the characteristic constant of the extinction time. The mapping between the 
local gain g and the global gain G not only highlights the renormalization of the payoff matrix but also provides 
clear evidence for robust biodiversity ( G > 1 ) in 2D grid.
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Figure 5.  Universal scaling with the global gain. Choosing the scaling variable x = N |G − Gc| , the data for 
the extinction time in the 2D grid collapse onto the same scaling function as found in the fully-connected 
network. For comparison, one observes the universal function (the blue color system) in Fig. 2 is the same as 
that presented here.
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Figure 6.  Correlation functions and the snapshots. The correlation function on the 2D grid is computed at 
g = 1 with a large population size N = 10, 000 to reduce the unnecessary statistical errors. (a) The spatial 
correlation function describes the population distribution in space and signals the tendency for pattern 
formation. The numerical data is well fitted by the standard exponential decay, Ase

−s/ξ with the amplitude 
As = 0.596 and correlation length ξ = 3.344 . Short correlation length and no oscillation in the spatial 
correlation indicate no pattern formation, agreeing with incoherent spiral wavelets observed in numerical 
simulations. (b) The temporal correlation is captured by At cos(ωt + φ)e−t/τ (red curve) with amplitude 
At = 0.218 , oscillatory frequency ω = 0.183 , phase shift φ = 0.215 and correlation time τ = 37.75 . The 
oscillation is due to competitions between clusters of different species, showing alternating dominance of each 
species in temporal sequence. (c) The snapshots of the ecological system at four different stages: initial, steady, 
pre-extinct and extinct states. In the initial state, the populations of all species are randomly distributed. After a 
short time (compare with the extinction time Tex ), the population profile enters the steady phase, characterized 
by emergence and demise of incoherent spiral wavelets. The ecosystem spends most of its lifetime in the steady 
phase before entering the pre-extinct state where a spiral wave comparable to the system size happens to take 
over and threatens the biodiversity. The pre-extinct state only lasts for a short period of time. Then, extinction 
sets in with one species eliminated completely.
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rather well and implies no long-ranged pattern formation in the 2D grid. The temporal correlation is more 
subtle – it shows non-trivial oscillations ω ≈ 0.18 with a relatively long correlation time τ ≈ 37.8 . There exists 
clear oscillatory signature before the temporal correlation damps out. This oscillation in the steady state is not 
predicted in the replicative dynamics. Because the initial configuration is randomly sampled, the population 
size of each species is the same at the beginning. According to the replicator equations, the initial condition sits 
right on the fixed point and the dynamics is trivially static – no oscillation at all. One may cautiously argue that, 
due to statistical fluctuations, the initial condition is not exactly on the fixed point. Straightforward analysis 
leads to an intrinsic oscillation frequency ω0 = (g + 1)/2

√
3 near the fixed point. The sensitive dependence on 

the local gain g is not found in the numerics. Thus, the temporal oscillation must come from a different origin.
The situation is close to the nematic  phase73 where the correlation in one direction (temporal) is stronger 

than the other (spatial). One can picture the whole system is roughly divided into many spiraling units of linear 
size ξ . Each unit generates local spiral waves but never synchronizes into the global spiral due to interactions 
with the wavefronts of other neighboring units. Because the spiral unit is local, its oscillation cannot be captured 
by the usual replicative dynamics which works for uniformly mixed populations. This picture purveys a simple 
explanation why the biodiversity is greatly enhanced in the 2D grid. Suppose the probability for a spiral unit to 
go out is p. The interactions among the units ignite or suppress the neighboring ones. Thus, the probability for 
the complete extinction Pex requires all units to go out at the same time, Pex ≈ pN/ξ2 , where N/ξ 2 is roughly the 
number of spiraling units. The extinction is proportional to the reciprocal of Pex,

where N+ = ξ 2/| ln p| . The exponential trend of the extinction time arises from the concurrent decease of 
the spiraling units. Although complete understanding of the evolutionary dynamics on the 2D grid is not yet 
achieved, the snap shots in Fig. 6 supports the qualitative picture proposed here.

Discussion
Two major results are found in the agent-based Monte Carlo simulations. The first one is the emergence of uni-
versal scaling. The second one is the renormalized global payoff due to spatial structure of the network. While 
our numerical results clearly support the above conclusions, a rigorous proof remain open at the point of writing. 
In fact, some other numerical  study74 on the cooperation in social games also found that the rescaled extinction 
time follows universal scaling. However, their emphasis is in the neutral regime (critical phenomena) where 
the power law reigns. But, in the rock-paper-scissors game we studied here, we find the phase transition can be 
collapsed onto two universal curves when plotted in terms of the rescaled variables. This is quite unexpected 
and shows that the universal scaling works not just in the neutral regimes (or equivalently, the criticality). Thus, 
our conclusions are stronger and can serve as an important method to classify different dynamical trends for 
ecosystems with finite populations.

One can try to understand the extinction trends qualitatively by the dynamics of the biodiversity indicator 
χ(t) ≡ a(t)b(t)c(t) . When the population is infinite and well-mixed, its dynamics can be derived from the 
replicator equation,

where Ŵ(a, b, c) = 1− 3(ab+ bc + ca) > 0 due to the constraint a+ b+ c = 1 for the positive-definite frequen-
cies. It is clear that the drift flows toward extinction ( χ = 0 ) for g < 1 while the ecosystem is stable for g > 1 . 
At the critical value g = 1 , the drift disappears and the flow is neutral.

Now consider the effect of finite population. At the critical point g = 1 , the biodiversity indicator is no longer 
a constant of motion but suffers an O(1/N) drift toward  extinction34. The exponential trend for g > 1 can be 
understood as a chain of successive rare events against the flow while the logarithmic trend for g < 1 is the direct 
consequence of the exponential decay due to the drift toward extinction. Right at the critical point g = 1 , the 
neutral drift implies the absence of any characteristic time scale and thus hints for the emergence of the universal 
scaling. Detail calculations for the fluctuation-induced drift leads to the extinction time Tex ∼ N and explains 
the exponent α = 1 . However, it remains an open question why the classification of the dynamics can be readily 
described by the scaling arguments developed for phase transitions in thermostatistics.

The 2D grid posts even more challenging puzzles. The success of applying global gain G to collapse all data 
onto the same scaling function is encouraging for further studies along the route of renormalization-group tech-
niques. This shall provides an independent check on the relation between G and g, which is obtained numerically 
in our study here. The plausible coarse-graining in the time domain is further supported from the prolonged 
correlation time in the temporal correlation. The renormalization group may also provide more information 
about the exponents and the scaling functions.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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(20)Tex ∼
1

Pex
≈ p−N/ξ2 → Tex ∼ eN/N+ ,

(21)
dχ

dt
= (g − 1)Ŵ(a, b, c)χ ,
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