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Error bound analysis of the stochastic parareal
algorithm

Kamran Pentland1 Massimiliano Tamborrino2 T. J. Sullivan1,3

March 13, 2023

Abstract. Stochastic parareal (SParareal) is a probabilistic variant of the popular parallel-in-
time algorithm known as parareal. Similarly to parareal, it combines fine- and coarse-grained
solutions to an ordinary differential equation (ODE) using a predictor-corrector (PC) scheme.
The key difference is that carefully chosen random perturbations are added to the PC to
try to accelerate the location of a stochastic solution to the ODE. In this paper, we derive
superlinear and linear mean-square error bounds for SParareal applied to nonlinear systems
of ODEs using different types of perturbations. We illustrate these bounds numerically on a
linear system of ODEs and a scalar nonlinear ODE, showing a good match between theory
and numerics.

Keywords. Parallel-in-time • stochastic parareal • error bounds • ordinary differential
equations
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1. Introduction

In recent years, there has been an increasing need to develop faster numerical integration
methods for a broad range of time-dependent ordinary, partial, and stochastic differential
equations (ODEs/PDEs/SDEs) that form the building blocks of mathematical models of real-
world systems. Advances in high performance computing have fuelled the development of new
parallel algorithms for solving such initial value problems (IVPs), with one particular area of
increasing focus being parallel-in-time (PinT) methods1. Given the causal nature of time, PinT
algorithms provide a way to, either iteratively or directly, simulate the solution states of an IVP
across the entire time interval of integration concurrently. Since the seminal work of Nievergelt
(1964), a variety of different PinT methods have been developed over the last 60 years—refer to
Gander (2015) and Ong and Schroder (2020) for reviews.

Of particular interest here is the increasingly popular multiple shooting-type/multigrid PinT
algorithm know as parareal (Lions et al., 2001). Dividing the time interval into N ‘slices’,
typically of fixed size ∆T , parareal iteratively combines solutions calculated by two serial
numerical integrators (one coarse- and one fine-grained) on each slice using a predictor-corrector
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(PC) scheme. Using N processors, one for each time slice, parareal runs the fine (expensive)
computations in parallel, locating a solution to the IVP in a fixed number of iterations k 6 N ,
after which one says the algorithm has ‘converged’. Parallel speedup from parareal is bounded
above by N/k and so, ideally, the algorithm finds a solution in k � N iterations. Since it was
proposed, parareal has been shown to provide speedup for a range of different IVPs in areas
ranging from molecular dynamics (Engblom, 2009; Legoll et al., 2020, 2022) to plasma physics
(Grigori et al., 2021; Samaddar et al., 2010, 2019)—refer to (Ong and Schroder, 2020, Sec. 2)
for an overview. Variants have also been developed to tackle issues with Hamiltonian systems
(Bal and Wu, 2008; Dai et al., 2013), task scheduling (Elwasif et al., 2011), and IVP stiffness
(Maday and Mula, 2020). Others, aimed at reducing the number iterations in parareal, have also
emerged. Approaches include learning the correction term in the PC using Gaussian process
emulators (Pentland et al., 2022b) and building the coarse solver using a Krylov subspace of the
set of PC solutions (Gander and Petcu, 2008).

The focus of this paper is the stochastic parareal algorithm (henceforth SParareal), developed
by Pentland et al. (2022a), in which random perturbations are added to the PC to increase
the probability of locating the solution to the IVP in fewer iterations. In each time slice,
M samples are taken from probability distributions constructed using different combinations
of coarse and fine solution information (known as “sampling rules”) and propagated forward
in time in parallel. From this set of perturbed solutions, the ones which generate the most
continuous (fine) trajectory in solution space, starting from the exact known initial condition, are
selected. Numerical simulations showed that as the number of samples increased, the probability
of locating the exact solution increased and so convergence would occur in fewer iterations
and therefore faster wallclock time. Numerical simulations also showed that, upon multiple
simulations of SParareal, one could obtain a distribution of solutions to the IVP which were
numerically accurate with respect to the serially located fine solution. Conrad et al. (2017) and
Lie et al. (2019, 2022) developed similar (non-time-parallel) numerical schemes in which they
perturb the solution states generated by serial numerical integrators to incorporate a measure of
uncertainty quantification in the solution of ODEs.

1.1. Contribution and outline

Deriving rigorous error bounds for SParareal (and other PinT methods in general) is important
in demonstrating that numerical solutions obtained in parallel are meaningful, accurate, and
that they can be compared to one another (Gander et al., 2022). The first convergence results
for parareal assumed that k was fixed, showing that the error of the scheme approached zero
as the time slice size ∆T → 0 (Bal, 2005; Bal and Maday, 2002; Lions et al., 2001). Here, we
are interested in studying how numerical errors behave when ∆T is fixed and the number of
iterations k grows. Gander and Vandewalle (2007) investigated this, deriving both linear and
superlinear error bounds for the scalar linear ODE problem on unbounded and bounded time
intervals, respectively. Following this, Gander and Hairer (2008) used the generating function
method to derive a superlinear bound for nonlinear systems of ODEs on bounded intervals.
Whereas work has been done to derive error bounds for parareal applied to certain SDEs (Bal,
2006; Engblom, 2009), where the IVP itself contains randomness, those results cannot be applied
here, as it is the SParareal scheme itself that contains randomness, not the solvers or the IVP.

In this paper, we extend the qualitative discussion of numerical convergence in Pentland
et al. (2022a) by making use of convergence analysis from both the parareal literature (see
above) and the sampling-based ODE solver presented in Lie et al. (2019). We derive explicit
mean-square error bounds for SParareal applied to nonlinear systems of ODEs (over a finite
time interval), using both state-independent and state-dependent perturbations. The rest of the
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paper is organised as follows. In Section 2, we set up the IVP and provide an overview of the
(classic) parareal algorithm. We then detail the SParareal scheme in Section 3, outlining how it
works and defining the (state-dependent) sampling rules. In Section 4, we begin by outlining
the assumptions on the fine and coarse integrators required to derive the error bounds. We first
consider the state-independent setting, where the random perturbations do not depend on the
current time step or iteration and are assumed to have bounded absolute moments. In this
setting we derive our main result (Theorem 4.6), a superlinear bound on the mean-square error
depending on the time step and iteration. Using this result, we can maximise the error over
time (fixing the iteration), to derive a linear error bound (Corollary 4.7). In the state-dependent
setting, we allow the perturbations to depend on the current state of the system, i.e. the coarse
and fine solution information at the current time step and iteration, to analyse the convergence
of the sampling rules proposed in the original work. We derive linear bounds (Corollaries 4.13
and 4.14) in this case. Following this, we verify these bounds by applying them numerically
to a linear system of ODEs and a nonlinear scalar ODE in Section 5. We conclude with some
brief remarks on the theoretical and numerical results and discuss possible directions for future
study in Section 6. In the Appendix, we provide some technical results used to derive the
aforementioned error bounds.

1.2. Notation

Let E denote the expected value of a random variable. Variables u,v ∈ Rd will be d-dimensional
real-valued vectors unless otherwise stated. Denote the component-wise absolute value of
a vector as |u| = (|u1|, . . . , |ud|)ᵀ and the Hadamard (component-wise) product as u ◦ v =
(u1v1, . . . , udvd)ᵀ. Also note that u2 will correspond to component-wise squaring, i.e. u2 = u ◦u.
We let ‖u‖ denote the infinity (or uniform) norm, i.e. ‖u‖ = maxi=1,...,d |ui|. The d-dimensional
vector of ones and the identity matrix will be written as 1 and Id, respectively. Non-negative
constants will be denoted throughout by C1, C2,. . . .

2. The parareal scheme

In this section, we describe the IVP under consideration and define the classic parareal scheme.

2.1. Problem setup

Consider the following system of d ∈ N autonomous ODEs

du

dt
= f

(
u(t)

)
over t ∈ [t0, T ], with u(t0) = u0, (2.1)

where f : Rd → Rd is a nonlinear vector field, u : [t0, T ] → Rd is the time-dependent solution,
and u0 ∈ Rd is the initial value at time t0. We assume f is sufficiently smooth such that
(2.1) has a unique solution for all initial conditions of interest. We seek numerical solutions
Un ≈ u(tn) to the IVP (2.1) on a pre-defined mesh t = (t0, . . . , tN ), where tn = t0 + n∆T for
fixed ∆T = (T − t0)/N . N is the number of processors required for parareal to compute a
solution in parallel, i.e. one processor is assigned to each time slice [tn, tn+1], n = 0, . . . , N − 1.
Note that everything that follows extends to the nonautonomous case but is not discussed here
to simplify explanation and notation.
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Figure 2.1. First iteration of parareal that numerically approximates the exact solution (black
line), obtained via repeated serial applications of the fine solver, i.e. (2.2) in the
scalar case. The coarse initial guess found using G∆T (yellow lines and dots) is
followed by the parallel runs of F∆T from these guesses (blue lines). The coarse
predictions from G∆T (red lines) are then used in the prediction-correction update
(2.5) (red dots). Figure adapted from Pentland et al. (2022a) (Fig. 2).

2.2. The scheme

The parareal algorithm uses N processors and two deterministic numerical flow maps (solvers)
to locate solutions Uk

n , at iteration k and time tn, to system (2.1). These maps take an initial
state Uk

n at time tn and propagate it, over a time slice of size ∆T , to a terminal state Uk
n+1 at

time tn+1. The fine solver, denoted as the flow map F∆T : Rd → Rd, returns a terminal state
with high numerical accuracy at very high computational cost. The cost is high enough that
trying to use F∆T to solve (2.1) sequentially, i.e. calculate

Un+1 = F∆T (Un) for n = 0, . . . , N − 1, (2.2)

is computationally infeasible. The coarse solver, denoted similarly by G∆T : Rd → Rd, returns a
terminal state with a much lower numerical accuracy, at a smaller computational cost than F∆T .
Therefore, G∆T is fast and allowed to run serially at any time, whilst F∆T is expensive and must
only be run in parallel.

Definition 2.1 (Parareal). For the two numerical flow maps F∆T and G∆T described above, the
parareal scheme is given by

U0
0 = u0, (2.3)

U0
n+1 = G∆T (U0

n), 0 6 n 6 N − 1, (2.4)

Uk+1
n+1 = G∆T (Uk+1

n ) + F∆T (Uk
n)− G∆T (Uk

n), 0 6 k 6 n 6 N − 1. (2.5)

Parareal begins by propagating the exact initial condition (2.3) across [t0, tN ] serially using
G∆T (2.4). Each of the solution states found in (2.4) are then propagated in parallel using
F∆T . Equation (2.5), often referred to as the PC, is then run serially to update the solution
states at each tn. This process of propagating using F∆T and updating using the PC can be
repeated iteratively, stopping after k iterations, once a pre-specified stopping criterion is met.
The stopping criteria can take many different forms, one popular choice being that the time
slices up to tI are considered converged if

‖Uk
n −Uk−1

n ‖ < ε ∀n 6 I, (2.6)
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for some user-specified tolerance ε > 0. Once I = N , parareal is said to have converged in k
iterations. An illustration of the first iteration of parareal is given in Figure 2.1.

Remark 2.2. It is often assumed, and will be assumed in this paper, that F∆T , if it were
computationally feasible to apply serially over [t0, T ], returns the ‘exact’ solution to (2.1), i.e. it
returns Un+1 = u(tn+1) = F∆T (u(tn)), n = 0, . . . , N − 1. Therefore, after k iterations, parareal
returns the exact solution Uk

n = Un for k > n, meaning that parareal returns the exact solution
over [t0, T ] in at most N iterations—albeit achieving no parallel speedup in this case. This is an
important feature of parareal which is also preserved by SParareal.

3. The stochastic parareal scheme

In this section, we outline the SParareal scheme, how it works, and how we have slightly modified
the scheme, compared to the original formulation in Pentland et al. (2022a), to carry out the
error bound analysis in Section 4. Following this, we describe the sampling rules tested in the
original work.

3.1. The scheme

The intuition behind SParareal is to perturb the solution states Uk
n in the classic parareal scheme,

i.e. the PC (2.5), with some additive noise to reduce the number of iterations k taken until
the stopping tolerance (2.6) is met. Recall that a reduction in k by even a single iteration can
correspond to a large increase in numerical speedup—by approximately the runtime of a single
run of F∆T .

First, let us formally define the scheme.

Definition 3.1 (SParareal). For the two numerical flow maps, F∆T and G∆T , described in
Section 2, the stochastic parareal scheme is given by

U0
0 = u0, (3.1)

U0
n+1 = G∆T (U0

n), 0 6 n 6 N − 1, (3.2)

U1
n+1 = G∆T (U1

n) + F∆T (U0
n)− G∆T (U0

n), 0 6 n 6 N − 1, (3.3)

Uk+1
n+1 = G∆T (Uk+1

n ) + F∆T (Uk
n)− G∆T (Uk

n) + ξkn(Uk
n), 1 6 k 6 n 6 N − 1, (3.4)

where ξkn(Uk
n) are (possibly state-dependent) random variables. Note that ξkn(Uk

n) ≡ 0 when
n = k.

The first three stages of the scheme (3.1)-(3.3) are identical to the ‘zeroth’ and first iteration
of parareal. The exact initial condition (3.1) is propagated forward in time using the coarse
solver (3.2), then there is a first pass of the PC (3.3). Following this, the stochastic iterations
begin (3.4), whereby random perturbations, i.e. a single draw from the random variable ξkn(Uk

n),
are added to the PC solution. Notice that no random perturbation is added when n = k to
ensure that SParareal returns the exact solution up to time tk after k iterations, just as parareal
does, recall Remark 2.2. The reason the random perturbations are only included from iteration
k > 1 onward is because ξkn(Uk

n) may depend on solution information from iteration k − 1. In
Section 3.2, we will discuss the construction of these random variables in more detail. Note that
the parareal scheme (Definition 2.1) can be recovered by setting ξkn(Uk

n) ≡ 0 for n > k in (3.4).

The scheme in Definition 3.1 looks slightly different to the one presented in Pentland et al.
(2022a), where random perturbations were instead incorporated via random variables, denoted
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by αk
n, in the correction term, i.e. equation (3.4) was instead written as

Uk+1
n+1 = G∆T (Uk+1

n ) + F∆T (αk
n)− G∆T (αk

n), 1 6 k 6 n 6 N − 1. (3.5)

The different state-dependent forms that αk
n can take are defined through the “sampling rules”

in Section 3.2. Also note that αk
n = Uk

n when n = k, which is equivalent to the condition
that ξkn(Uk

n) ≡ 0 when n = k in Definition 3.1. This version 3.5 of the scheme was designed
so that M > 1 samples could be drawn from each of the random variables αk

n to increase the
probability of locating the exact solution state Un in fewer iterations. From the sets of samples
generated at each tn, all having been propagated in parallel using F∆T and G∆T (recall (3.5)),
those generating the most continuous F∆T trajectory across [t0, tN ] were then chosen as the
“best” perturbations α̂k

n. Numerical experiments illustrated that increasing M led to further and
further reductions in k, albeit at the cost of requiring more processors, specifically O(MN) in
SParareal vs O(N) in parareal.

To enable us to carry out the convergence analysis, we move the random perturbations in
(3.5) outside the correction term, and express them using ξkn(Uk

n) in (3.4). This new scheme is
equivalent to the old scheme in the case where one sample (M = 1) is drawn at each time tn. To
obtain the appropriate values for ξkn(Uk

n)), we equate (3.4) and (3.5) to find

ξkn(Uk
n) =

(
F∆T (αk

n)− G∆T (αk
n)
)
−
(
F∆T (Uk

n)− G∆T (Uk
n)
)
. (3.6)

Using the scheme in Definition 3.1, we can derive error bounds for state-independent perturbations,
i.e. ξkn(Uk

n) = ξkn, that have bounded absolute moments. Using this result, we can then derive
corresponding bounds for the state-dependent sampling rules summarised in Table 3.1 using
relation (3.6). All of these bounds are derived assuming one sample (M = 1) is drawn from each
ξkn(Uk

n). The M sample case is much more complex and out of the scope of the present work.

3.2. Sampling Rules

The sampling rules presented by Pentland et al. (2022a) describe the probability distributions
that αk

n follow in the SParareal algorithm, see Table 3.1. These distributions were designed to
vary with both iteration k and time step n, so that as the solution states Uk

n get closer to Un,
their variances would decrease. The benefit of this property will be highlighted in Section 5. The
different rules were constructed to assess the performance of SParareal when the perturbations
had different distribution families, marginal means, or correlations.

Table 3.1. Sampling rules that the random variables αk
n follow. The quantities zkn ∼ N (0, Id)

and wk
n ∼ U([0, 1]d) are d-dimensional Gaussian and uniform random vectors, re-

spectively, whilst σk
n = |G∆T (Uk

n−1)− G∆T (Uk−1
n−1)|.

Sampling rule αk
n

1 F∆T (U
k−1
n−1) + (σk

n ◦ zk
n)

2 Uk
n + (σk

n ◦ zk
n)

3 F∆T (U
k−1
n−1) +

(√
3σk

n ◦ (2wk
n − 1)

)
4 Uk

n +
(√

3σk
n ◦ (2wk

n − 1)
)

Sampling rules 1 and 2 correspond to multivariate Gaussian perturbations with marginal
means F∆T (Uk−1

n−1) and Uk
n , respectively, and marginal standard deviations σk

n = |G∆T (Uk
n−1)−

6
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G∆T (Uk−1
n−1)|. The variable zkn ∼ N (0, Id) is a standard d-dimensional Gaussian random vector.

Sampling rules 3 and 4 correspond to perturbations following a multivariate uniform distribution
with the same marginal means and standard deviations as rules 1 and 2, respectively. The
variable wk

n ∼ U([0, 1]d) is a standard d-dimensional uniformly distributed random vector with
independent components. Note that Pentland et al. (2022a) considered both correlated and
uncorrelated random variables αk

n in their experiments, whereas here we carry out our analysis
only for the uncorrelated case for simplicity.

4. Error bound analysis

In this section, we analyse the mean-square error

ekn := E
[
‖u(tn)−Uk

n‖2
]

(4.1)

between the exact solutions u(tn) and the stochastic numerical solutions Uk
n located by the

SParareal scheme. We also define the maximal mean-square error (over time) at iteration k to be

êk := max
16n6N

{ekn}. (4.2)

Specifically, we analyse the mean-square error ekn for the nonlinear autonomous system of ODEs
in (2.1), first deriving superlinear (Theorem 4.6) and linear (Corollary 4.7) bounds using state-
independent perturbations in SParareal. Then, using these results, we derive linear bounds for
the state-dependent sampling rules 2 and 4 (Corollary 4.13) and 1 and 3 (Corollary 4.14). In
the following, we introduce some assumptions on the flow maps (Gander and Hairer, 2008) and
perturbations (Lie et al., 2019) required to derive the error bounds.

Assumption 4.1 (Exact flow map). The flow map F∆T solves (2.1) exactly such that

u(tn+1) = F∆T (u(tn)). (4.3)

This assumption is made for simplicity, since SParareal is essentially trying to locate the solution
that would be obtained by running the fine solver serially, i.e. (2.2), in parallel. If instead we
were to consider F∆T to be a numerical method with some (very small) numerical error with
respect to the exact solution, then the accuracy of F∆T would provide a lower bound on the
accuracy of the SParareal scheme as a whole.

Assumption 4.2 (Coarse flow map). The flow map G∆T is a one-step numerical method with
uniform local truncation error O(∆T p+1), for p > 1, such that

F∆T (u)− G∆T (u) = c1(u)∆T p+1 + c2(u)∆T p+2 + . . . , (4.4)

for u ∈ Rd and continuously differentiable functions ci(u). Taking the difference of (4.4)
evaluated at states u,v ∈ Rd, then applying norms and the triangle inequality, we can write

‖(F∆T (u)− G∆T (u))− (F∆T (v)− G∆T (v))‖ 6 C1∆T p+1‖u− v‖, (4.5)

where C1 > 0 is the Lipschitz constant for c1 and we absorb terms O(∆T p+2) into C1.

Assumption 4.3 (Lipschitz coarse flow). The flow map G∆T satisfies the Lipschitz condition

‖G∆T (u)− G∆T (v)‖ 6 LG‖u− v‖, (4.6)

for u,v ∈ Rd and Lipschitz constant LG > 0.

7
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Note that these assumptions do not restrict the choice of G∆T , as they are met when choosing
any Runge-Kutta or Taylor method (Hairer et al., 1993).

In addition to assumptions on the flow maps, we require an assumption on the absolute moments
of the (state-independent) random variables, which will be needed to prove Theorem 4.6.

Assumption 4.4 (Bounded absolute moments of ξkn). For q > 0, r̃ ∈ N ∪ {∞}, and C2 > 0
independent of n, k, and ∆T , the r-th absolute moments of ξkn(Uk

n) satisfy

E
[
‖ξkn‖r

]
6
(
C2∆T q+ 1

2
)r
, 1 6 r 6 r̃. (4.7)

This assumption enables flexibility in defining the state-independent perturbations, in the sense
that it does not require that the random variables be independent, identically distributed,
or centred (Lie et al., 2019). It also means that each ξkn could follow a different probability
distribution, with the only requirement being that they share a common maximal bound on
their absolute moments with respect to the norm. Note that we assume ∆T < 1 without loss of
generality here, so that for increasing q, the perturbations get smaller and smaller. For ∆T > 1,
we can simply take q to be negative.

These assumptions will enable us to derive error bounds in the state-independent and state-
dependent cases (using sampling rules 2 and 4). The sampling rule 1 and 3 case requires the
following as well.

Assumption 4.5 (Lipschitz exact flow). The flow map F∆T satisfies the Lipschitz condition

‖F∆T (u)−F∆T (v)‖ 6 LF‖u− v‖, (4.8)

for u,v ∈ Rd and constant LF > 0.

4.1. State-independent perturbations

In this section, we derive error bounds for SParareal when using the state-independent perturba-
tions ξkn(Uk

n) = ξkn.

Theorem 4.6 (Superlinear error bound for state-independent perturbations). Suppose the SParareal
scheme (3.1)-(3.4) with ξkn(Uk

n) = ξkn satisfies Assumptions 4.1, 4.2, 4.3 and 4.4. Then, the
mean-square error (4.1) of the solution to the nonlinear ODE system (2.1) at iteration k and
time tn satisfies

ekn 6 DA
k−1

n−k∑
`=0

(
`+ k − 1

`

)
B` + Λ

k−2∑
j=0

n−(j+1)∑
`=0

(
`+ j

`

)
AjB`,

for 2 6 k < n 6 N and constants A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), Λ =
C2

2∆T 2q+1(2 + ∆T−1), and D = Aê0.

Proof. Using (3.4), that F∆T is the exact solver (4.3), and adding and subtracting G∆T (u(tn)),
we see that

ek+1
n+1 = E

[
‖F∆T (u(tn))−

(
G∆T (Uk+1

n ) + F∆T (Uk
n)− G∆T (Uk

n) + ξkn(Uk
n)
)
± G∆T (u(tn))‖2

]
= E[‖W1 +W2 +W3‖2],

where W1, W2, and W3 are given by

W1 = F∆T (u(tn))− G∆T (u(tn))−
(
F∆T (Uk

n)− G∆T (Uk
n)
)
,

W2 = G∆T (u(tn))− G∆T (Uk+1
n ),

W3 = −ξkn.

8
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Then, using the triangle inequality and (A.1) for the cross terms (Engblom, 2009, Sec. 4.2), we
obtain

ek+1
n+1 6 (1 + δ−1

1 + δ−1
2 )E[‖W1‖2] + (1 + δ1 + δ−1

3 )E[‖W2‖2] + (1 + δ2 + δ3)E[‖W3‖2]. (4.9)

Using (4.5), we can bound

E[‖W1‖2] 6 C2
1∆T 2(p+1)ekn. (4.10)

Applying the Lipschitz condition (4.6), we obtain

E[‖W2‖2] 6 L2
Ge

k+1
n . (4.11)

Using (4.7) with r = 2, we obtain

E[‖W3‖2] 6 C2
2∆T 2q+1. (4.12)

Plugging (4.10)-(4.12) into (4.9) and choosing δ1 = ∆T , δ2 = 1, and δ3 = ∆T−1, we obtain the
double recursion

ek+1
n+1 6 Ae

k
n +Bek+1

n + Λ, e1
n+1 6 D +Be1

n, (4.13)

where A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), Λ = C2
2∆T 2q+1(2 + ∆T−1), and D = Aê0.

Solving (4.13) using the generating function method in Lemma B.1 (see Appendix), we obtain
the result. �

One can make alternative choices for δ1, δ2, and δ3, however, the choices given in the proof
above seem to yield the smallest error bounds. If we were to maximise (4.13) over n, we obtain
the following linear error bound in the case that B < 1, i.e. LG < (1 + 2∆T )−1/2.

Corollary 4.7 (Linear error bound for state-independent perturbations). Suppose the SParareal
scheme (3.1)-(3.4) with ξkn(Uk

n) = ξkn satisfies Assumptions 4.1, 4.2, 4.3 and 4.4. Then, the
maximal mean-square error (4.2) of the solution to the nonlinear ODE system (2.1) at iteration
k satisfies

êk 6 ê1

(
A

1−B

)k−1

+
Λ

1−B

k−2∑
j=0

(
A

1−B

)j

, if B < 1,

for 2 6 k 6 N and constants A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), and Λ =
C2

2∆T 2q+1(2 + ∆T−1).

Proof. Following the proof of Theorem 4.6, we maximise (4.13) over n to obtain

êk+1 6 Ãêk + Λ̃, (4.14)

where

Ã =
A

1−B
and Λ̃ =

Λ

1−B
.

Solving recursion (4.14) with initial condition ê1, we obtain the desired result. �

9
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Remark 4.8. The bounds in Theorem 4.6 and Corollary 4.7 hold for 2 6 k < n 6 N due to
the design of the SParareal scheme. We can recover the bound for iteration k = 1 (which is
deterministic) by solving the second recursion in (4.13) with initial value e1

1 = 0 such that

e1
n 6 ê

0A
n−2∑
i=0

Bi, 1 6 n 6 N. (4.15)

For the case when k = n, the numerical error is zero, as F∆T will have propagated the exact
initial condition at t0 forward k times without any perturbations, just like parareal (recall
Remark 2.2).

Remark 4.9. The bound in Theorem 4.6 (similarly for Corollary 4.7) can be written as

ekn 6 Ck,n max{∆T (2p+1)k,∆T 2q}, (4.16)

where Ck,n is a function of n and k. Assuming ∆T < 1 and that Ck,n is non-increasing in k, the
accuracy of SParareal should increase with each iteration proportional to the local truncation
error of G (i.e. the term ∆T (2p+1)k) up until the errors induced by the perturbations (i.e. ∆T 2q))
become dominant. We illustrate this property numerically in Section 5.

Remark 4.10. As ∆T → 0, both error bounds go to zero as expected, as can be seen clearly in
(4.16). The intuition being that as ∆T → 0, the local truncation error of G∆T goes to zero, i.e.
it ‘becomes’ the exact flow map F∆T , see (4.5).

Remark 4.11. If we send q →∞ (assuming ∆T < 1), the second moments of the random variables
vanish and we recover the classic parareal scheme. This can be seen in both Theorem 4.6 and
Corollary 4.7, where Λ vanishes as q →∞, leading to bounds similar to those for classic parareal.
These bounds are not identical to those calculated by Gander and Vandewalle (2007), Gander
and Hairer (2008), and Gander et al. (2022) because we are working with the mean-square error,
not the (mean) absolute error.

Remark 4.12. If we additionally assume that the random variables ξkn are centred, i.e. E[ξkn] = 0,
and work in the 2-norm, i.e. ‖u‖22 = 〈u,u〉 =

∑d
i=1 u

2
i , in the proof of Theorem 4.6, we can write

(4.9) as

ek+1
n+1 6 (1 + δ−1

1 )E[‖W1‖2] + (1 + δ1)E[‖W2‖2] + E[‖W3‖2] + 2E[〈W1,W3〉] + 2E[〈W2,W3〉],

where the final two terms are equal to zero by independence of W1 and W2 with W3 and using the
fact that each ξkn is centred. Continuing the proof, we obtain the same bounds for Theorem 4.6
and Corollary 4.7 with slightly altered constants A = C2

1∆T 2p+2(1 + ∆T−1), B = L2
G(1 + ∆T ),

Λ = C2
2∆T 2q+1, and D = Aê0.

4.2. State-dependent perturbations (sampling rules)

We now use the previous results to derive the corresponding error bounds for the state-dependent
sampling rules defined in Table 3.1.

Corollary 4.13 (Linear error bound for state-dependent sampling rules 2 and 4). Suppose the
SParareal scheme (3.1)-(3.4) satisfies Assumptions 4.1, 4.2 and 4.3, with ξkn(Uk

n) defined using
sampling rule 2 or 4. Then, the maximal mean-square error (4.2) of the solution to the nonlinear
ODE system (2.1) at iteration k satisfies

êk 6 ê0

[
A+ Λ1 +

√
(A+ Λ1)2 + 4Λ2(1−B)

2(1−B)

]k
, if B < 1,

10
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for 2 6 k 6 N and constants A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), Λ1 =
C2

1∆T 2p+2L2
G(1 + ∆T−1), and Λ2 = C2

1∆T 2p+2L2
G(1 + ∆T ).

Proof for sampling rule 2. The proof follows in the same fashion as Theorem 4.6. Instead of
using the bound (4.12), we obtain, using (3.6) and applying (4.5),

E[‖W3‖2] 6 C2
1∆T 2(p+1)E[‖αk

n −Uk
n‖2]. (4.17)

Substituting in αk
n for sampling rule 2 (Table 3.1) we get

E[‖W3‖2] 6 C2
1∆T 2(p+1)E[‖σk

n ◦ zkn‖2]

6 C2
1∆T 2(p+1)E[‖σk

n‖2]E[‖zkn‖2]

6 C2
1∆T 2(p+1)L2

GE[‖Uk
n−1 −Uk−1

n−1‖
2].

The second inequality follows by Cauchy-Schwarz and independence of σk
n and zkn. The third

follows by plugging in σk
n, applying (4.6), and noting that E[‖zkn‖2] = 1. Next, we add and

subtract u(tn−1) inside the expectation and then apply (A.1), with δ = ∆T , to get

E[‖W3‖2] 6 C2
1∆T 2(p+1)L2

G
(
(1 + ∆T−1)ekn−1 + (1 + ∆T )ek−1

n−1

)
. (4.18)

Using the new bound for E[‖W3‖2] in (4.9), we obtain the double recurrence

ek+1
n+1 6 Ae

k
n +Bek+1

n + Λ1e
k
n−1 + Λ2e

k−1
n−1, (4.19)

where A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), Λ1 = C2
1∆T 2p+2L2

G(1 + ∆T−1), and
Λ2 = C2

1∆T 2p+2L2
G(1 + ∆T ). Maximising over n, we obtain

êk+1 6 Ãêk + B̃êk−1, (4.20)

where

Ã =
A+ Λ1

1−B
and B̃ =

Λ2

1−B
.

Recursion (4.20) can be solved using Lemma B.2 (see Appendix), resulting in the desired bound.
�

Proof for sampling rule 4. The proof follows in the same way as the proof for sampling rule 2,
except that E[‖

√
3(2wk

n − 1)‖2] = 1 is used in place of E[‖zkn‖2] = 1. �

Corollary 4.14 (Linear error bound for state-dependent sampling rules 1 and 3). Suppose the
SParareal scheme (3.1)-(3.4) satisfies Assumptions 4.1, 4.2, 4.3 and 4.5, with ξkn(Uk

n) defined
using sampling rule 1 or 3. Then, the maximal mean-square error (4.2) of the solution to the
nonlinear ODE system (2.1) at iteration k satisfies

êk 6 ê0

[
A+ Λ1 + Λ3 +

√
(A+ Λ1 + Λ3)2 + 4Λ2(1−B)

2(1−B)

]k
, if B < 1,

for 2 6 k 6 N and constants A = C2
1∆T 2p+2(2 + ∆T−1), B = L2

G(1 + 2∆T ), Λ1 =
2C2

1∆T 2p+2L2
G(1 + ∆T−1), Λ2 = 2C2

1∆T 2p+2(L2
G(1 + ∆T ) + 2L2

F ), and Λ3 = 4C2
1∆T 2p+2.

11
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Proof for sampling rule 1. The proof follows in the same fashion as Corollary 4.13. Substituting
αk

n for sampling rule 1 (Table 3.1) in (4.17), we get

E[‖W3‖2] 6 C2
1∆T 2(p+1)E[‖F∆T (Uk−1

n−1)−Uk
n + σk

n ◦ zkn‖2]

6 2C2
1∆T 2(p+1)

(
E[‖F∆T (Uk−1

n−1)−Uk
n‖2]︸ ︷︷ ︸

1st Term

+E[‖σk
n ◦ zkn‖2]︸ ︷︷ ︸

2nd Term

)
. (4.21)

The second inequality follows by applying (A.1) with δ = 1. To bound the first term in (4.21),
we add and subtract F∆T (u(tn−1)) inside the expectation and apply (A.1) again with δ = 1,
obtaining

1st Term 6 2
(
E[‖F∆T (Uk−1

n−1)−F∆T (u(tn−1))‖2] + E[‖F∆T (u(tn−1))−Uk
n‖2]

)
6 2
(
L2
Fe

k−1
n−1 + ekn

)
.

The second inequality follows by applying the Lipschitz condition (4.8) and recalling that F∆T is
the exact solver (4.3). The second term in (4.21) can be bounded as in (4.18) in Corollary 4.13,

2nd Term 6 L2
G
(
(1 + ∆T−1)ekn−1 + (1 + ∆T )ek−1

n−1

)
.

Combining both terms in (4.21), we obtain

E[‖W3‖2] 6 Λ1e
k
n−1 + Λ2e

k−1
n−1 + Λ3e

k
n,

where Λ1 = 2C2
1∆T 2p+2L2

G(1 + ∆T−1), Λ2 = 2C2
1∆T 2p+2(L2

G(1 + ∆T ) + 2L2
F), and Λ3 =

4C2
1∆T 2p+2. Using the new bound for E[‖W3‖2] in (4.9), we obtain the following recurrence

ek+1
n+1 6 (A+ Λ3)ekn +Bek+1

n + Λ1e
k
n−1 + Λ2e

k−1
n−1, (4.22)

where A = C2
1∆T 2p+2(2 + ∆T−1) and B = L2

G(1 + 2∆T ). Maximising over n, we obtain

êk+1 6 Ãêk + B̃êk−1, (4.23)

where

Ã =
A+ Λ1 + Λ3

1−B
and B̃ =

Λ2

1−B
.

Recursion (4.23) can be solved using Lemma B.2 (see Appendix), resulting in the desired bound.
�

Proof for sampling rule 3. The proof follows in a similar fashion to the proof for sampling rule
1, with E[‖

√
3(2wk

n − 1)‖2] = 1 being used in place of E[‖zkn‖2] = 1. �

Remark 4.15. In Section 5, we can observe the behaviour of ekn (not just êk) for each of the
sampling rules by solving the recursions (4.19) and (4.22) numerically. We do this by replacing
the inequality with an equality, i.e. upper bounding the error estimate.

5. Numerical Experiments

Here, we present some experiments to compare the theoretical bounds derived in Section 4 with
the errors generated by running SParareal numerically. MATLAB code to reproduce the results
below can be found at https://github.com/kpentland/StochasticPararealAnalysis.
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5.1. System of linear ODEs

In the following experiments, we solve the linear system of ODEs

du

dt
= Qu over t ∈ [0, T ], with u(0) = u0, (5.1)

where Q ∈ Rd×d. This system has the exact solution u(t) = u0e
Qt, where eQt =

∑∞
i=0(Qt)i/i! is

the matrix exponential.

First, we examine the superlinear and linear bounds derived in Theorem 4.6 and Corollary 4.7,
respectively, by running SParareal numerically with state-independent Gaussian perturbations

ξkn ∼ N (0,∆T 2q+1Id), q > 0. (5.2)

We solve (5.1) with d = 100 and T = 2, discretising the time interval into N = 20 time slices
so that ∆T = 0.25. We construct the matrix of coefficients Q such that B < 1 and also select
initial conditions u0 ∈ [−5, 5]d. We use the exact solver F∆T (u) = ueQ∆T and the forward Euler
method G∆T (u) = (Id +Q∆T )u. In Figure 5.1, we plot the maximal theoretical bounds êk and
numerical errors of SParareal as a function of k for different values of q when B < 1. These
results illustrate how the errors decrease as k increases (except when q = 0), up until the error
induced by the perturbations become dominant—exactly the effect described in Remark 4.9. For
all considered values of q, the error for k > 2 has a hard lower bound of O(∆T 2q+1), i.e. the
error cannot go below the second moments of the perturbations (indicated by the dashed black
line in each case). By altering Q and running the same experiment, we see similar effects in the
B > 1 case, see Figure 5.2.

It can be seen that, regardless of B, using the state-independent perturbations may not be
optimal because of the lower bound forced upon the errors. If they are to be used, then they
would need to be chosen such that the second moments are smaller than the accuracy of the
solutions sought. This approach, however, may not yield accelerated convergence over the classic
parareal scheme. To avoid this (and the lower bound on accuracy), the perturbations need to be
state-dependent and therefore able to adapt, i.e. the second moments need to decrease with k and
scale with n. In Figure 5.3, we illustrate how the second moments of the perturbations used in the

(a) q = 0 (b) q = 5 (c) q = 10

Figure 5.1. Theoretical bounds vs. numerical errors for SParareal applied to the linear system of
ODEs (5.1) (with B < 1) using state-independent Gaussian perturbations (5.2). The
superlinear bound (Theorem 4.6) is given in blue, the linear bound (Corollary 4.7) in
red, the numerical error in black, and ∆T 2q+1 in dashed black. Each plot corresponds
to a different level of Gaussian noise: (a) q = 0, (b) q = 5, and (c) q = 10. Numerical
errors were calculated by averaging over 500 independent realisations of SParareal.
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(a) q = 0 (b) q = 5 (c) q = 10

Figure 5.2. Theoretical bounds vs. numerical errors for SParareal applied to the linear system
of ODEs (5.1) (with B > 1) using state-independent Gaussian perturbations (5.2).
The superlinear bound (Theorem 4.6) is given in blue, the numerical error in black,
and ∆T 2q+1 in dashed black. Each plot corresponds to a different level of Gaussian
noise: (a) q = 0, (b) q = 5, and (c) q = 10. Numerical errors were calculated by
averaging over 500 independent realisations of SParareal.

state-dependent sampling rules decrease with k throughout the SParareal simulation, comparing
these to the fixed second moments of the Gaussians (5.2) for each q ∈ {0, 5, 10} (dashed lines).
Using the sampling rules enables SParareal to sample from probability distributions that begin
to “contract” around the exact solution states as the simulation progresses, i.e. as k increases.
This results in high solution accuracy in very few iterations, as will be shown in Figure 5.4.

It should be noted that we could have also chosen a different distribution other than the
Gaussian from which to sample each state-independent ξkn, as long as Assumption 4.4 is satisfied.

For example, choosing uniformly distributed perturbations ξkn ∼ U [−
√

3∆T q+ 1
2 ,
√

3∆T q+ 1
2 ]d

yielded almost identical results (not shown).

Next, we plot the linear bounds for perturbations defined by the sampling rules, i.e. Corol-
lary 4.13 and Corollary 4.14, against the corresponding numerical errors in Figure 5.4 (for the

Figure 5.3. Largest second moments (over n) of ξkn(Uk
n) fo the sampling rules 1 to 4 (light blue,

brown, purple, and green respectively) and the Gaussian perturbations (5.2) for
q ∈ {0, 5, 10} (dashed black), plotted against iteration number k. Second moments
for the sampling rules were calculated by averaging over 500 independent realisations
of SParareal.
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(a) Sampling rules 2 and 4 (b) Sampling rules 1 and 3

Figure 5.4. Theoretical bounds vs. numerical errors for SParareal applied to the linear system
of ODEs (5.1) (with B < 1) using the state-dependent sampling rules. (a) The
linear bound in Corollary 4.13 is shown in red, the numerically solved recursion
(4.19) in blue, and the numerical errors for sampling rules 2 and 4 in brown and
green, respectively. (b) The linear bound in Corollary 4.14 is shown in red, the
numerically solved recursion (4.22) in blue, and the numerical errors for sampling
rules 1 and 3 in light blue and purple, respectively. Numerical errors were calculated
by averaging over 500 independent realisations of SParareal.

B < 1 problem). We observe that the linear bounds are not that tight due to the maximisation
over n required to derive them. However, by solving recursions (4.19) and (4.22) numerically
(recall Remark 4.15), we observe a tighter bound on the error. All that is required to calculate
these “numerical” bounds are the errors at the ‘zeroth’ iteration (obtained from SParareal itself
by just running G), errors at the first iteration (recall (4.15)) and the constants C1 and LG . Note

Figure 5.5. Expected number of iterations k taken to reach stopping tolerance ε (2.6) for
SParareal applied to the linear system (5.1) (with B < 1). Results plotted using
SParareal with each sampling rule (see legend) and the Gaussian perturbations (5.2)
for q ∈ {0, 5, 10, 25} (dashed black lines). E[k] calculated by averaging k over 500
independent realisations of SParareal.
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that the numerical errors for sampling rules 2/4 and 1/3 overlap because the perturbations used
in each scheme have almost identical second moments (recall Figure 5.3).

In Figure 5.5, we compare the performance of the state-independent and -dependent perturba-
tions by plotting the expected number of iterations E[k] taken to reach a pre-defined stopping
tolerance ε, recall (2.6). We observe that, on average, the sampling rules reach tolerance in fewer
iterations than the state-independent perturbations. The sampling rules also outperform classic
parareal, which can be observed by comparing them to the state-independent perturbations
for q = 25, for which perturbations are so small that SParareal is practically deterministic (i.e.
parareal). Recall that reducing k by even a few iterations can significantly increase parallel
speedup. The other advantage of using SParareal is that it returns a distribution of solution
trajectories upon multiple realisations, instead of a single solution trajectory as parareal does,
which can be interpreted as some form of uncertainty quantification over the solution to the IVP.

5.2. Scalar nonlinear ODE

In the following experiments, we solve the scalar nonlinear equation

du

dt
=
√
u2 + 2 over t ∈ [−1, 1], with u(−1) = 5. (5.3)

This equation has exact solution u(t) =
√

2 sinh(t + 1 + sinh−1(5/2)). We solve (5.3) using
SParareal with N = 20 time slices (thus ∆T = 0.1), exact solver F∆T (u) =

√
2 sinh(∆T +

sinh−1(u/
√

2)), and forward Euler G∆T = u+ ∆T
√
u2 + 2.

Figure 5.6 illustrates a good match between the superlinear bound (Theorem 4.6, B > 1)
and the numerical errors when using SParareal and the Gaussian perturbations (5.2). One
can see that at k = 0 the error is quite large, O(101), and so even when using the forward
Euler method for G∆T , the SParareal error decreases rapidly (for sufficiently large q). Given the
bounds in Corollary 4.13 and Corollary 4.14 only hold when B < 1, we again solve the respective
recursions (4.19) and (4.22) numerically, obtaining a good match between theory and numerics
when using the sampling rules (see Figure 5.7). Figure 5.8 illustrates the performance of the
state-independent perturbations and the sampling rules for varying stopping tolerance. As it
did for the system of linear ODEs, using SParareal with state-dependent perturbations is more

(a) q = 1 (b) q = 5 (c) q = 10

Figure 5.6. Theoretical bounds vs. numerical errors for SParareal applied to the nonlinear
scalar ODE (5.3) (with B > 1) using state-independent Gaussian perturbations
(5.2). The superlinear bound (Theorem 4.6) is given in blue, the numerical error
in black, and ∆T 2q+1 in dashed black. Each plot corresponds to a different level
of Gaussian noise: (a) q = 1, (b) q = 5, and (c) q = 10. Numerical errors were
calculated by averaging over 500 independent realisations of SParareal.
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(a) Sampling rules 2 and 4 (b) Sampling rules 1 and 3

Figure 5.7. “Numerical” bounds vs. numerical errors for SParareal applied to the nonlinear
scalar ODE (5.3) (with B > 1) using the state-dependent sampling rules. (a) The
numerically solved recursion (4.19) is shown in blue and the numerical errors for
sampling rules 2 and 4 in brown and green, respectively. (b) The numerically solved
recursion (4.22) is shown in blue and the numerical errors for sampling rules 1 and 3
in light blue and purple, respectively. Numerical errors were calculated by averaging
over 500 independent realisations of SParareal.

effective than with the state-independent perturbations, regardless of the value of chosen value of
q for the Gaussian perturbations (recall that parareal can be recovered when choosing q > 25).

Figure 5.8. Expected number of iterations k taken to reach stopping tolerance ε (2.6) for
SParareal applied to the nonlinear scalar ODE (5.3) (with B > 1). Results plotted
using SParareal with each sampling rule (see legend) and the Gaussian perturbations
(5.2) for q ∈ {0, 5, 10, 25} (dashed black lines). E[k] calculated by averaging k over
500 independent realisations of SParareal.
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6. Conclusions

The SParareal algorithm solves IVPs by perturbing solutions from the classic (deterministic)
parareal scheme using a single sample drawn from a pre-specified probability distribution. This
probabilistic time-parallel scheme generates stochastic solutions to the IVP. In this paper, we
analyse the error of these stochastic numerical solutions by deriving mean-square error bounds
for SParareal, equipped with different types of perturbations, applied to systems of nonlinear
ODEs.

In Section 4, we make assumptions about the fine (F∆T ) and coarse (G∆T ) numerical integrators
used by SParareal, namely that F∆T returns the exact solution to the ODE and that G∆T has
uniform local truncation error and satisfies a Lipschitz condition. Error bounds were then derived
for two types of random perturbation, one in which the random variables do not depend on the
current state of the system (state-independent) and one in which they do (state-dependent). In
the state-independent case, where specific upper bounds were assumed on the second moments
of the random variables, we derived both superlinear (Theorem 4.6) and linear (Corollary 4.7)
bounds on the mean-square error. In the state-dependent case, where a number different
perturbations were defined according to “sampling rules” (from the the original work), we
derived linear bounds on the errors (see Corollaries 4.13 and 4.14).

In Section 5, we illustrate these bounds, comparing them to the errors generated by running
SParareal numerically. We demonstrate a good match between the theoretical bounds and
numerical errors for systems of linear ODEs (Section 5.1) and a scalar nonlinear ODE (Section 5.2).
Using the state-independent perturbations, we observed tight superlinear and linear bounds
with respect to the numerical errors. However, because these perturbations do not adapt with
iteration k and time step n, their practical usage faced limitations. They encoded a hard lower
bound on solution accuracy (of the order of the size of the second moments, see Remark 4.9)
and more iterations were typically required to reach stopping tolerance for larger perturbations.
Instead, the sampling rules, shown to adapt with both k and n, did not suffer from these issues,
as was previously discussed in Pentland et al. (2022a). The derivation of the linear bounds
for the sampling rules did, however, require multiple applications of the Peter-Paul inequality,
resulting in less tight bounds compared to those found in the state-independent case. Tighter
bounds were observed by solving the double recursions (4.19) and (4.22) numerically. In addition,
these linear bounds required the constant B to be less than one (restricting its use to problems
where the Lipschitz constant for G∆T is smaller than one) and that F∆T be Lipschitz continuous
for sampling rules 1 and 3 (an additional restriction). In the future, it would be interesting to
see if these restrictions can be avoided or whether one can derive bounds without the Lipschitz
assumptions.

As high performance computing technology advances, the demand for faster and more accurate
time-parallel integration methods will increase. With SParareal, we have seen that introducing
“local” perturbations into an existing time-parallel scheme can enable convergence in fewer
iterations (using the sampling rules) and can, on average, result in higher accuracy solutions
(refer to numerical experiments in Pentland et al. (2022a)). Following multiple realisations of
SParareal, these solutions can form a measure of uncertainty, i.e. a “global” distribution, over
the true solution, the accuracy of which can be estimated by the error bounds derived in this
paper. Further work is required to investigate whether similar bounds can be derived for the
originally presented SParareal scheme (where M samples can be taken from the probability
distributions instead of just one) which is able to locate solutions with increasing accuracy and
numerical speedup when increasing numbers of samples are taken. In addition, in most practical
applications, the exact flow map F∆T is unknown and so it would be advantageous to investigate
what happens when one relaxes this assumption, taking F∆T to be a numerical flow map.
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F. Legoll, T. Lelièvre, and U. Sharma. An adaptive parareal algorithm: Application to the
simulation of molecular dynamics trajectories. SIAM J. Sci. Comput., 44(1):B146–B176, 2022.
ISSN 1064-8275. doi:10.1137/21M1412979.

H. C. Lie, A. M. Stuart, and T. J. Sullivan. Strong convergence rates of probabilistic inte-
grators for ordinary differential equations. Statistics and Computing, 29:1265–1283, 2019.
doi:10.1007/s11222-019-09898-6.

H. C. Lie, M. Stahn, and T. J. Sullivan. Randomised one-step time integration methods for
deterministic operator differential equations. Calcolo, 59(1):13, 2022. doi:10.1007/s10092-022-
00457-6.

J. L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps
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A. Standard results

Here we state some results that we make repeated use of.

Lemma A.1 (Peter-Paul Inequality). For any u,v ∈ Rd and δ > 0, we have that

2‖u‖‖v‖ 6 δ‖u‖2 + δ−1‖v‖2. (A.1)

Theorem A.2 (Binomial Theorem). For |x| < 1 and some m ∈ N, we have that

1

(1− x)m
=
∞∑
i=0

(
i+m− 1

i

)
xi. (A.2)

B. Generating Function Method

Here, we solve two recurrence relations using generating functions. These two variable (“double”)
recurrences crop up often in convergence analysis involving parareal (and other PinT) algorithms
and have been used in a number of settings—refer to Gander and Hairer (2008), Carrel et al.
(2022), and Gander et al. (2022) for examples.

Lemma B.1. Let ekn be a non-negative sequence and A,B,D,Λ ∈ R be non-negative constants.
If ekn satisfies

ek+1
n+1 6 Ae

k
n +Bek+1

n + Λ, e1
n+1 6 D +Be1

n, (B.1)

for 2 6 k < n 6 N and ek0 = 0 ∀k > 0, then

ekn 6 DA
k−1

n−k∑
`=0

(
`+ k − 1

`

)
B` + Λ

k−2∑
j=0

n−(j+1)∑
`=0

(
`+ j

`

)
AjB`.

Proof. For k > 1, define the generating function for ekn as

gk(x) =
∞∑
n=1

eknx
n. (B.2)

Multiply (B.1) by xn+1 and sum from n equals zero to infinity to obtain

∞∑
n=0

ek+1
n+1x

n+1 6 A
∞∑
n=0

eknx
n+1 +B

∞∑
n=0

ek+1
n xn+1 + Λ

∞∑
n=0

xn+1,

∞∑
n=0

e1
n+1x

n+1 6 D
∞∑
n=0

xn+1 +B

∞∑
n=0

e1
nx

n+1.

Using (B.2), binomial theorem (A.2), and recalling that ek0 = 0 ∀k > 0, we can write these
expressions as

gk+1(x) 6
Ax

1−Bx
gk(x) +

Λx

(1− x)(1−Bx)
, g1(x) 6

Dx

(1− x)(1−Bx)
,

for |x| < 1, which can be solved iteratively to give

gk(x) 6
( Ax

1−Bx

)k−1 Dx

(1− x)(1−Bx)
+

Λx

(1− x)(1−Bx)

k−2∑
j=0

( Ax

1−Bx

)j
.
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Re-arranging terms, this can be written as

gk(x) 6 DAk−1xk
( 1

1−Bx

)k 1

(1− x)
+ Λ

k−2∑
j=0

Ajxj+1
( 1

1−Bx

)j+1 1

1− x
.

The first term can be expressed as

DAk−1xk
( 1

1−Bx

)k 1

(1− x)
= DAk−1xk

( ∞∑
i=0

(
i+ k − 1

i

)
(Bx)i

)( ∞∑
i=0

xi

)

= DAk−1xk
∞∑

m=0

(
m∑
`=0

(
`+ k − 1

`

)
B`

)
xm

= DAk−1
∞∑
n=k

(
n−k∑
`=0

(
`+ k − 1

`

)
B`

)
xn.

The first line follows by applying (A.2) twice, the second line using the Cauchy product, and the
third by setting n = m+ k. The second term can be expressed as

Λ

k−2∑
j=0

Ajxj+1
( 1

1−Bx

)j+1 1

1− x
= Λ

k−2∑
j=0

Ajxj+1

( ∞∑
i=0

(
i+ j

i

)
(Bx)i

)( ∞∑
i=0

xi

)

= Λ

k−2∑
j=0

Ajxj+1
∞∑

m=0

(
m∑
`=0

(
`+ j

`

)
B`

)
xm

= Λ
∞∑

n=j+1

(
k−2∑
j=0

n−(j+1)∑
`=0

(
`+ j

`

)
AjB`

)
xn.

These steps follows as they did for the first term, except that we now set n = m+ j + 1 instead
of n = m+ k in the last step. Combining these expressions we get

gk(x) =

∞∑
n=1

eknx
n 6 DAk−1

∞∑
n=k

(
n−k∑
`=0

(
`+ k − 1

`

)
B`

)
xn + Λ

∞∑
n=j+1

(
k−2∑
j=0

n−(j+1)∑
`=0

(
`+ j

`

)
AjB`

)
xn.

Equating the coefficients in xn on both sides of the inequality we obtain the bound. �

The initial condition for the recursion (B.1) can be written differently depending on the
available information, i.e. one could instead use e1

n+1 6 D := ê1, slightly altering the final bound
obtained.

Lemma B.2. Let êk be a non-negative sequence and Ã, B̃ ∈ R be non-negative constants. If êk

satisfies

êk+1 6 Ãêk + B̃êk−1, (B.3)

with initial conditions ê0 and ê1, then

êk 6 ê0

[
Ã+

√
Ã2 + 4B̃

2

]k
.
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Proof. Define the following generating function for êk:

g(x) =

∞∑
k=0

êkxk.

Multiply (B.3) by xk+1 and sum from k equals one to infinity to obtain

∞∑
k=1

êk+1xk+1 6 Ã
∞∑
k=1

êkxk+1 + B̃

∞∑
k=1

êk−1xk+1.

Shifting indices, rearranging, and using the initial conditions we get

g(x) =

∞∑
k=0

êkxk 6
ê0(1− Ãx) + ê1x

1− Ãx− B̃x2
.

Expanding the right hand side in powers of xk, the coefficients give us

êk 6
1

2
√
Ã2 + 4B̃

[
(Ãê0 + ê0

√
Ã2 + 4B̃ − 2ê1)λk1 + (−Ãê0 + ê0

√
Ã2 + 4B̃ + 2ê1)λk2

]
,

where

λ1,2 =
Ã±

√
Ã2 + 4B̃

2
.

Without loss of generality, we use that λ1 > λ2 to simplify the bound and obtain

êk 6 ê0λk1,

which yields the desired result. �
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