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ABSTRACT
In this paper, we investigate data movement-reducing and
communication-avoiding optimizations and their practicable imple-
mentation for large-scale unstructured-mesh applications. Utilizing
the high-level abstraction of the OP2DSL for the unstructured-mesh
class of codes, we reason about techniques for reduced communi-
cations across a consecutive sequence of loops – a loop-chain. The
careful trade-off with increased redundant computation in place of
data movement is analyzed for distributed-memory parallelization.
A new communication-avoiding (CA) back-end for OP2 is designed,
codifying these techniques such that they can be applied automati-
cally to any OP2 application. The back-end is extended to operate
on a cluster of GPUs, integrating GPU-to-GPU communication
with CUDA, in combination with MPI. The new CA back-end is
applied automatically to two non-trivial applications, including the
OP2 version of Rolls-Royce’s production CFD application, Hydra.
Performance is investigated on both CPU and GPU clusters on
representative problems of 8M and 24M node mesh sizes. Results
demonstrate how for select configurations the new CA back-end
provides between 30 – 65% runtime reductions for the loop-chains
in these applications for the mesh sizes on both an HPE Cray EX sys-
tem and an NVIDIA V100 GPU cluster. We model and examine the
determinants and characteristics of a given unstructured-mesh loop-
chain that can lead to performance benefits with CA techniques,
providing insights into the general feasibility and profitability of
using the optimizations for this class of applications.

CCS CONCEPTS
• Computing methodologies → Massively parallel algo-
rithms; Model development and analysis; • Applied computing
→ Aerospace.
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1 INTRODUCTION
The end of frequency scaling in the middle of the last decade has
led processor architectures to move towards increasingly massively
parallel designs. As a result, modern processors have featured a pro-
liferation of arithmetic capability in the form of increasing discrete
processor cores, both on traditional CPUs as well as accelerator
devices such as GPUs. For example, the number of processor cores
on a high-end CPU currently has close to 100 cores, while GPUs are
designed with even more parallelism; over 2000 “cores”, albeit cores
that are comparatively much simpler. Large-scale clusters of these
devices have reached hundred-thousands to millions of cores as can
be seen from the recently unveiled exascale supercomputers. How-
ever, the speed of memory and network channels interconnecting
the processors and system/device memories have largely lagged
behind, leading to significant memory bandwidth bottlenecks. As
a result, the performance of many conventional algorithms, opti-
mized for floating-point operations, has stalled. Developing algo-
rithms with reduced data movement, or communication-avoiding
(CA) algorithms have therefore become an intense area of research
(e.g. [14, 33]). The underlyingmotivation of these works is to exploit
the significantly high computing capability of these processors in
place of communications, aiming to obtain higher performance.

The main challenge in adopting communication-avoiding opti-
mizations or techniques in real-world applications is the significant
effort and difficulty in implementing them and the subsequent main-
tenance of the code. The specific optimizations are highly-complex
and involved, usually obfuscating the source code with platform-
specific low-level features. A large body of work has developed the
underlying theory for CA techniques including tiling [18, 27, 29]
and reduced distributed-memory systems communications [13, 18].
Compile time application of these, such as optimizations based on
the polyhedral model [16, 31] have been developed within com-
piler frameworks such as LLVM’s Polly [12] and Pochoir [30]. An-
other strand of works such as by Demmel et al. [9, 10] have suc-
cessfully developed libraries that applications can use to access
CA-optimized numerical methods. More recently, domain-specific
languages (DSLs) and similar high-level frameworks have demon-
strated a pathway in applying these exotic optimizations to larger
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non-trivial applications. Key DSLs with CA capabilities include
Firedrake [15] for unstructured-mesh-based FE applications and
OPS [27] and Devito [19] for structured-mesh-based applications.

The underlying goal of this paper is to examine and apply key
data movement-reducing techniques to large-scale, real-world ap-
plications. To this end, we build upon previous work by Luporini et
al [17] bringing together techniques for reducing datamovement for
the unstructured-mesh applications class, codifying them through
the OP2 DSL [20], an embedded domain-specific language for de-
veloping unstructured-mesh applications. We begin with a focus
on distributed-memory parallel execution and then its combina-
tion with on-node parallelization on many-core (GPU) processors.
A new CA back-end for OP2 is designed such that any applica-
tion using OP2 can utilize the optimizations. The new back-end
is then applied to our main application of interest, Hydra, a pro-
duction computational fluid dynamics (CFD) application used for
aero-engine design at Rolls-Royce plc. More specifically, we make
the following contributions:

• We design a new CA back-end for the OP2 DSL, focusing
on its distributed-memory parallel operation and reason
about techniques for reducing the number of MPI messages
exchanged during the execution of a sequence of consecutive
loops, a loop-chain. A key new feature of the back-end is its
ability to run standard loops over unstructured-mesh sets
interspersed with selected loop-chains with CA to obtain
the best overall performance of the application (Section 3).
• The performance of loop-chains with CA is analytically mod-
eled. We investigate the careful trade-off of increasing com-
putations at shared MPI halos to satisfy loop dependencies
in place of data movement via message passing. The analytic
model provides insights to characterize the loop-chains and
reason about whether a given loop-chain will benefit from
the CA back-end of OP2 (Section 3.2).
• The distributed-memory back-end is extended to work on
GPU clusters leveraging reduced MPI message passing when
executing on a cluster of GPUs, enabling lower overheads in
GPU-to-GPU communication with CUDA (Section 3.3).
• Finally, the CA back-end is applied to Hydra, using its re-
cently re-engineered OP2 version [21], OP2-Hydra for use
cases, with mesh sizes of 8M and 24M. Benchmarking is
carried out on the ARCHER2 supercomputer, an HPE Cray
EX system with AMD EPYC 7742 cores and the Cirrus GPU
cluster with NVIDIA V100 GPUs at EPCC (Section 4).

Results indicate significant performance gains: up to 65% on se-
lect node counts on ARCHER2 (CPU) and Cirrus (GPU) clusters.
However, they also point to the need of carefully selecting which
loop-chains have CA optimizations turned on, as in some chains
they lead to performance degradation over the non-CA version.
To our knowledge the practical implementation of CA techniques
for large-scale applications, particularly for large production codes
such as Hydra from the unstructured-mesh domain, are limited in
literature, not to mention benchmarking and performance analysis
on both multi-core (CPU) and many-core (GPU) cluster systems.
Reasoning about the viability and profitability of these optimiza-
tions for real-world codes is also novel, particularly through the
development of an analytic model. Our work provides insights

into the key determinants and characteristics of a given general
unstructured-mesh loop-chain that can lead to performance benefits
with CA optimizations. These insights, we believe are more broadly
applicable, even to applications developed without OP2. On the
other hand, the work also demonstrates how a high-level abstrac-
tion framework such as OP2 can seamlessly deliver these complex
and exotic code transformations to real-world applications without
affecting the science source, maintaining performance portability.

2 BACKGROUND
2.1 Communication-avoiding Algorithms
Communication-avoiding algorithms have a rich literature with
reducing data movement identified as a fundamental optimization.
Out of these techniques, improving data locality by restructuring
loops or rescheduling loop iterations, generally known as tiling
or loop-blocking, have long been well understood [32]. The the-
oretical underpinnings of these loop transformations have been
comprehensively described through the polyhedral model [7].

Many frameworks and libraries have been developed based on
the polyhedral model. Key works include PLuTo [8], a fully auto-
matic polyhedral program optimization system, Polly [12], an LLVM
framework for high-level loop and data locality optimizations,
Pochoir [30], a compiler and runtime system for implementing sten-
cil computations on multicore processors and PolyMage [22] and
Halide [25] which specifically targets image processing pipelines.
All these works create polyhedra – multi-dimensional sub-iteration
spaces, within loops with static, regular access patterns/dependen-
cies. Such loops can be readily viewed as iterations over a structured
mesh with regular stencils defining the dependency neighborhood.
The extension of these algorithms to distributed-memory systems
requires them to account for the dependencies in the loop nests
when the iteration space is spread over a number of processes, or
disparate memory areas. This leads to the need for those dependen-
cies to be satisfied through communications of extra halo layers.
These extensions have been developed for several of the aforemen-
tioned frameworks, for PLuTo in [6] and Distributed Halide in [11].
However, applying these optimizations, particularly the ideas of the
polyhedral model for unstructured-mesh applications are limited in
literature as a consequence of the added complexity of managing the
irregular dependencies of the unstructured-mesh. The dependence
structure arises due to their characteristic indirect memory accesses,
specifically indirect increments (e.g. D[map[i]] += f(...)) and
indirect reads, through explicit connectivity mappings [17]. The
dependence analysis needs to be done via mappings, as opposed
to the static dependence neighborhoods (e.g. specified by a stencil)
commonly exploited in general static loop optimizations. As such,
the analysis is significantly more involved and needs to be carried
out dynamically at runtime, as demonstrated by Luporini et al. [17]
based on the loop-chain abstraction introduced in [14].

2.2 Loop-chain Abstraction and Sparse Tiling
A loop-chain is a sequence of consecutive loops without any global
synchronisation points (such as global reductions) in between loops,
specified or annotated with information to facilitate runtime de-
pendency analysis. The information should be provided by the
programmer or automatically derived from the code either through
a code parser or a DSL’s API. This information then enables us to
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Figure 1: Example unstructured-mesh with nodes, edges and quadri-
lateral cells (data values in parenthesis)

1 for (int t = 0; t < tmax; t++) { //main iteration loop
2 ...
3 // loop over edges, updating nodes: update residuals
4 for (int iter = 0; iter < nedges; iter++) {
5 int mapidx1 = en[it*2+0]; int mapidx2 = en[it*2+1];
6 res[2*mapidx1+0] += pres[2*mapidx1+0]-pres[2*mapidx1+1];
7 res[2*mapidx1+1] += pres[2*mapidx2+0]-pres[2*mapidx2+1];
8
9 res[2*mapidx2+0] += pres[2*mapidx2+1]-pres[2*mapidx2+0];
10 res[2*mapidx2+1] += pres[2*mapidx1+1]-pres[2*mapidx1+0];
11 }
12
13 // loop over edges, updating nodes: calculate edge flux
14 for (int iter = 0; iter < nedges; iter++) {
15 int mapidx1 = en[it*2+0]; int mapidx2 = en[it*2+1];
16 int mapidx3 = ec[it*2+0]; int mapidx4 = ec[it*2+1];
17
18 flux[2*mapidx1+0] += res[2*mapidx1+0]*cw[4*mapidx3+0]
19 - res[2*mapidx1+1]*cw[4*mapidx3+1];
20
21 flux[2*mapidx1+1] += res[2*mapidx2+1]*cw[4*mapidx3+2]
22 - res[2*mapidx1+0]*cw[4*mapidx3+3];
23
24 flux[2*mapidx2+0] += res[2*mapidx2+1]*cw[4*mapidx4+2]
25 - res[2*mapidx1+0]*cw[4*mapidx4+3];
26
27 flux[2*mapidx2+1] += res[2*mapidx1+0]*cw[4*mapidx4+0]
28 - res[2*mapidx1+1]*cw[4*mapidx4+1];
29 }
30 ...
31 }

Figure 2: Example 2-loop-chain

reason about the dependencies of the sequence of the loops col-
lectively. For loop-chains over unstructured-meshes, as detailed
in [17], a sparse tiling schedule can be created from the analysis,
providing an execution ordering of the iterations over the mesh.
This ordering which is semantically equivalent to the original can
then be used to carry out the loop iterations. For example, consider
the two sequential loops detailed in Figure 2, over the unstructured-
mesh shown in Figure 1. The mesh consists of nodes, edges and
cells, where a loop over edges, updating the nodes, at each end
of the edge would require explicit connectivity information speci-
fied by a mapping of edges-to-nodes, en. Two such loops, occurring
within a larger time-marching iterative loop, are illustrated in lines
4-11 (update) and 14-29 (edge_flux) in Figure 2. Both the loops
increment data held on the nodes, res and flux respectively, in-
directly via the mapping array en. The edge_flux loop indirectly
reads data, cell wights (cw), held on the two cells next to an edge, via
the mapping edges-to-cells, ec. The update and edge_flux loops
taken consecutively can be viewed as a loop-chain with two parallel
loops and specified using the OP2 DSL’s API [20] as in Figure 3.

Using the definition in [17] the loop-chain can be defined as
follows:
• Loop-chain L = 𝐿0, 𝐿1, ..., 𝐿𝑛−1, an ordered sequence of
𝑛 loops : update, edge_flux where 𝑛 = 2, declared as
op_par_loops.

1 inline void update (double* res1, double* res2, double* pres1,
2 double* pres2) {
3 res1[0] += pres1[0]-pres1[1]; res1[1] += pres2[0]-pres2[1];
4 res2[0] += pres2[1]-pres2[0]; res2[1] += pres1[1]-pres1[0];
5 }
6
7 inline void edge_flux (double* flux1, double* flux2, double* res1,
8 double* res2, double* cw1, double* cw2) {
9 flux1[0] += res1[0]*cw1[0] - res1[1]*cw1[1];
10 flux1[1] += res2[1]*cw1[2] - res2[0]*cw1[3];
11
12 flux2[0] += res2[1]*cw2[2] - res1[1]*cw2[3];
13 flux2[1] += res1[0]*cw2[0] - res1[1]*cw2[1];
14 }
15
16 op_set nodes = op_decl_set(nnode, "nodes");
17 op_set edges = op_decl_set(nedge, "edges");
18 op_set cells = op_decl_set(ncell, "cells");
19
20 op_map e2n = op_decl_map(edges, nodes, 2, en, "e2n");
21 op_map e2c = op_decl_map(edges, cells, 2, ec, "e2c");
22
23 op_dat dres = op_decl_dat(nodes, 2, "double", res, "res" );
24 op_dat dpres = op_decl_dat(nodes, 2, "double", pres, "pres");
25 op_dat dcw = op_decl_dat(cells, 4, "double", cw, "cw" );
26 op_dat dflux = op_decl_dat(nodes, 2, "double", flux, "flux");
27
28 for (int t = 0; t < tmax; t++) { //main iteration loop
29 ...
30 // loop over edges, updating nodes: update residuals
31 op_par_loop(update, "update", edges,
32 op_arg_dat(dres, 0, e2n, 2, "double", OP_INC ),
33 op_arg_dat(dres, 1, e2n, 2, "double", OP_INC ),
34 op_arg_dat(dpres, 0, e2n, 2, "double", OP_READ ),
35 op_arg_dat(dpres, 1, e2n, 2, "double", OP_READ ));
36
37 // loop over edges, updating nodes: calculate edge flux
38 op_par_loop(edge_flux,"edge_flux", edges,
39 op_arg_dat(dres, 0, e2n, 2, "double", OP_READ),
40 op_arg_dat(dres, 1, e2n, 2, "double", OP_READ),
41 op_arg_dat(dcw, 0, e2c, 4, "double", OP_READ),
42 op_arg_dat(dcw, 1, e2c, 4, "double", OP_READ),
43 op_arg_dat(dflux, 0, e2n, 2, "double", OP_INC ),
44 op_arg_dat(dflux, 1, e2n, 2, "double", OP_INC ));
45 ...
46 }

Figure 3: 2-loop-chain in OP2 API

• Iteration spaces S = 𝑆0, 𝑆1, ..., 𝑆𝑚−1, a collection of disjoint
iteration spaces representing mesh element types : edges,
nodes and cells,𝑚 = 3, declared as op_sets.
• Explicit connectivity between iteration spacesM = 𝑀0, 𝑀1,
..., 𝑀𝑜−1, where 𝑀 : 𝑆𝑖 → 𝑆𝑎

𝑗
is a map with arity 𝑎 : en and

ec, 𝑜 = 2, declared as op_maps. For example, en has an arity
of 2, mapping an edge to two nodes.
• Access descriptors, one or more 2-tuples of the form of
<𝑀 , mode> associated with a loop 𝐿𝑖 where 𝑀 is a map
indicating indirect access or ID (identity mapping) indicat-
ing direct access on data (specified by op_dats in OP2) de-
fined on the iteration space of the loop. mode is the mode
of data access, read (OP_RW), write (OP_WRITE) or increment
(OP_INC). In OP2, the access descriptors are defined using
the op_arg_dat API.

The above definition provides information to carry out an inspec-
tion or analysis phase to create a set of tiles, i.e. the aforementioned
sparse tiling schedule. The schedule will guarantee those data de-
pendencies are not violated such that each tile can be executed in
its entirety without any data access to/from outside the tile. Execut-
ing a tile 𝑇𝑖 entails executing all the iterations from 𝐿0 belonging
to that tile, followed by all the iterations in that tile for 𝐿1 and
so on up to 𝐿𝑛−1. Then the next tile 𝑇𝑖+1 is executed in a similar
manner, continuing this pattern of execution until all the tiles have
been completed. It is important to note that sparse tiling assumes
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that the order of execution of loop iterations does not affect the
final result, at least within machine precision. This encompasses
a large number of explicit numerical schemes, particularly when
solving PDEs in numerical simulation applications. For the full
description of the loop-chaining abstraction and the development
of sparse tiling inspection/execute phases, we refer the reader to
Luporini et al. [17].

The dependency analysis allows to exploit communication-
avoidance at two levels of parallelism. On a distributed-memory
parallel level, as we will demonstrate, the idea would be to move
all communications to the beginning of the loop-chain, eliminat-
ing per-loop halo exchanges between neighboring processes, in
place of a larger aggregated message. In this case, each mesh par-
tition held by an MPI process can be thought of as a single “tile”,
which will be executed without halo exchanges within the loop-
chain. On a shared-memory multi-threaded parallelization level,
the idea would be to select sufficiently sized tiles allowing to keep
a working set of data in the fast cache memory of processors re-
ducing the number of accesses from/to slower main memory per
loop. The implementation of these ideas within OP2, creating a
new communication-avoiding back-end and applying it to large-
scale unstructured-mesh applications, investigating performance,
form the main contribution of this paper. We will (1) initially codify
sparse tiling for distributed-memory execution and then (2) extend
it for GPU clusters integrating the back-end to work with CUDA
code generated by OP2.

2.3 Related Work
Sparse tiling from [17] has been previously used in Firedrake [15],
a high-level DSL framework for the automated solution of finite
element computations. It requires problems to be specified in the
Unified Form Language (UFL) [5]. The specification is then used to
generate parallel executables on multi-core CPU nodes and clusters.
In [17], both shared-memory and distributed-memory sparse tiling
are implemented in Firedrake and the performance of a seismic
exploration benchmark application, Seigen is evaluated on a CPU
cluster. In contrast, in this paper, we demonstrate the performance
of sparse tiling in a significantly larger (≈100K LoC F90,≈500 loops),
production application, Hydra on both CPU and GPU cluster sys-
tems. A new analytic performance model is also developed to gain
insights into the performance behaviour with CA.

3 A COMMUNICATION-AVOIDING BACK-END
FOR OP2

OP2 uses an owner compute model for parallelizing computations
on a distributed memory parallel system [20]. In this model, the
unstructured-mesh, defined by mappings and data is partitioned
among several processes so that each process owns some of the
mesh elements. A process will only perform computations to up-
date elements in their own partitions but will require data from
elements in other partitions held in separate processes, specifically
at the boundaries of the partitions. Thus, copies of data held in
foreign partitions need to be communicated following the standard
“halo” exchange mechanisms when using a message passing parallel
implementation.

Figure 4 illustrates this halo setup and configuration in OP2,
where the back-end separates the iteration space such that it’s

Set core export halo import halo
exec non-exec exec non-exec

X edges 0,1,3,4,6 2 - 5,8,9 -
X cells 0,1,2,4,5 - 0,4,5 - 3,7,8
Y edges 7,10,11 5,8,9 - 2 -
Y cells 3,6,7,8 - 3,7,8 - 0,4,5

Figure 4: OP2 partitioning over two MPI ranks and resulting halos on
each rank [20]

Figure 5: Halo layer with depth 1

Figure 6: op_dat and op_map data structures with (a) single and (b)
multiple halo levels

segmented into: (1) core set of iterations that do not need to access
halo data, (2) an export halo consisting of mesh data to be sent from
the local process to some foreign process and (3) an import halo
consisting of mesh data received from some foreign process. The
elements in the import and export halos are further separated into
two groups depending on whether redundant computations will be
performed on them. For example, in the mesh in Figure 4, a loop
over edges updating cells will require edges no: 5,8 and 9 executed
on rank X to update cells no: 4 and 5 (i.e. an import execute halo,
ieh). However, a loop over edges reading data on cells will require
cells 0,4 and 5 imported onto rank Y (i.e. an import non-execute
halo, inh). The inh is essentially a read-only halo. These then have
a corresponding export execute (eeh) and export non-execute (enh)
halos on each of the local processes.

3.1 Multi-layered Halo Data Structure
In OP2, the mesh data in op_maps and op_dats are held in 1D arrays
with the core, export and import halos structured as illustrated
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Algorithm 1: OP2 loop execution

Input: op_par_loop 𝑙 over set 𝑆𝑙
Result: Execute loop

1 MPI_Isend(eeh, enh);
2 MPI_Irecv(ieh, inh);

3 foreach iteration I ∈ 𝑆𝑐
𝑙
do

4 execute_iteration(I);
5 end foreach

6 MPI_Wait(eeh, enh, ieh, inh);

7 foreach iteration I ∈ 𝑆𝑒
𝑙
, 𝑆𝑖

𝑙
do

8 execute_iteration(I);
9 end foreach

Algorithm 2: Loop-chain execution with CA

Input: Loop-chain, L = {𝐿0, ..., 𝐿𝑛−1 }, op_dats, D used in L
Result: Execute loop-chain with CA

// Find op_dats requiring halo syncs: Dℎ ⊆ D
1 Dℎ ← halo_exch_dats(D,< 𝑀, mode >, L);

// Compute #halo layers required for each loop in L

2 HL𝑙 ← calc_halo_layers(L,Dℎ);

// Find core, exec & non-exec halo #iters for loops in L

3 S𝑐
𝑙
, Sℎ

𝑙
, S𝑛

𝑙
← calc_iters(S𝑙 , HL𝑙 );

// Rearrange and renumber multi-layered core, eeh & enh

// for each op_dat 𝑑 ∈ Dℎ

4 S𝑒𝑒ℎ ,S𝑒𝑛ℎ ← restructure_elements(Dℎ , HL𝑙 , S
𝑐
𝑙
, Sℎ

𝑙
, S𝑛

𝑙
);

5 𝑚𝑒𝑒ℎ+𝑒𝑛ℎ ← create_grouped_msg(Dℎ , S𝑒𝑒ℎ ,S𝑒𝑛ℎ);

6 MPI_Isend(𝑚𝑒𝑒ℎ+𝑒𝑛ℎ);
7 MPI_Irecv(𝑚𝑖𝑒ℎ+𝑖𝑛ℎ);

8 foreach loop l ∈ L do
9 foreach iteration I ∈ 𝑆𝑐

𝑙
do

10 execute_iteration(I);
11 end foreach
12 end foreach

13 MPI_Wait(𝑚𝑒𝑒ℎ+𝑒𝑛ℎ ,𝑚𝑖𝑒ℎ+𝑖𝑛ℎ);

14 foreach loop l ∈ L do
15 foreach iteration I ∈ Sℎ

𝑙
do

16 execute_iteration(I);
17 end foreach
18 end foreach

Figure 7: Halo layer with depth 2

Figure 8: Grouped halo array
in Figure 6(a). This ordering then enables latency hiding where the
loop iterations in an op_par_loop, corresponding to the core can
be carried out while halo exchanges are in-flight as these iterations
do not access halo data. This latency-hiding algorithm is detailed
in Alg 1. OP2 exchanges the ieh and inh in separate messages.
After all the messages have been sent/received, execution over
execute halos can be performed. In an op_par_loop, halos for an
op_dat are exchanged only if (1) it is indirectly accessed as a read
(OP_READ) or a read/write (OP_RW) and (2) it has been modified by a
preceding loop, i.e. the halos need updating. A dirty-bit is used to
keep track of when an op_dat is updated (by an OP_RW, OP_WRITE
or an increment, OP_INC) in a loop.

The OP2 halos described above essentially maintain the data
dependencies required to execute each process’s partition indepen-
dently in parallel. Explicit messages are exchanged to update/sync
the halos when carrying out computations in each op_par_loop.
The dependency neighborhood for a single loop, therefore, can

Algorithm 3: calc_halo_layers

Input: Loop-chain, L = {𝐿𝑛−1, . . . , 𝐿0 }, op_dats requiring halo syncs, Dℎ , their access
descriptors, <𝑀 , mode>, loops where op_dats (∈ Dℎ ) are accessed, A

Dℎ

Output: Halo extensions, HE for loops in loop-chain, L

// Calculate halo extension for individual op_dats in loops

1 foreach op_dat D ∈ Dℎ do

2 ℎ𝑎𝑙𝑜_𝑒𝑥𝑡 ← 0; 𝑖𝑛𝑑_𝑟𝑑 ← 𝑓 𝑎𝑙𝑠𝑒 ; // True for indirect read

3 foreach loop l ∈ L do // Iterate from loop n-1 to 0

4 𝐻𝐸𝐷𝑙
← 1;

5 if 𝐷𝑙<𝑀 , mode> ≠ 𝑁𝑈𝐿𝐿 && 𝑙 ∈ A𝐷𝑙
then

6 if ind_rd && (mode = OP_WR | | mode = OP_INC | | mode = OP_RW) then
7 𝐻𝐸𝐷𝑙

← ℎ𝑎𝑙𝑜_𝑒𝑥𝑡 + 1; ℎ𝑎𝑙𝑜_𝑒𝑥𝑡 ← 0;
8 𝑖𝑛𝑑_𝑟𝑑 ← 𝑓 𝑎𝑙𝑠𝑒 ; continue;
9 end if

10 if 𝑀 ≠ ID && (mode = OP_RD | | mode = OP_RW) then
11 ℎ𝑎𝑙𝑜_𝑒𝑥𝑡 ← ℎ𝑎𝑙𝑜_𝑒𝑥𝑡 + 1; 𝐻𝐸𝐷𝑙

← ℎ𝑎𝑙𝑜_𝑒𝑥𝑡 ;
12 𝑖𝑛𝑑_𝑟𝑑 ← 𝑡𝑟𝑢𝑒 ; continue;
13 end if

14 if 𝑀 = ID && (mode = OP_RD | | mode = OP_RW) then
15 𝐻𝐸𝐷𝑙

← 1; ℎ𝑎𝑙𝑜_𝑒𝑥𝑡 ← 0;
16 𝑖𝑛𝑑_𝑟𝑑 ← 𝑓 𝑎𝑙𝑠𝑒 ; continue;
17 end if

18 end if

19 end foreach

20 end foreach

// Calculate effective halo extension for loops

21 foreach loop l ∈ L do

22 𝐻𝐸𝑙 = max(𝐻𝐸
Dℎ
𝑙

) ;

23 end foreach

be viewed as a halo layer with a depth of 1 (see Figure 5). As de-
tailed in [17], in a loop chain with 𝑛 loops, syncs per loop can be
eliminated if a large dependency neighborhood, maximally a layer
with depth of 𝑛 can be communicated at the start of the loop-chain
and computed over, redundantly to update the mesh elements to
satisfy the dependencies, that would have otherwise been updated
as a halo exchange. Thus for the loop-chain with 2 loops detailed
in Figure 3, a halo depth of 2 needs to be maintained as shown
in Figure 7.

The maximum depth of 𝑛 is required only when in a loop-chain,
𝐿0, 𝐿1, . . . , 𝐿𝑛−1, each loop 𝐿𝑖 updates an op_dat 𝑑 and the next
loop 𝐿𝑖+1 read or read/writes to 𝑑 . This leads to iteration spaces
that decrease in size for each loop in the loop-chain. Specifically,
to compute 𝐼 iterations of the last loop in the loop-chain, 𝐿𝑛−1, the
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loops, 𝐿𝑛−1, 𝐿𝑛−2, . . . , 𝐿0 should be iterating over 𝐼 plus halo depths
of 1, 2, . . . , 𝑛 respectively. This algorithm is detailed in Alg 2. In
the main inspection/setup phase, halo_exch_dats identifies the
op_dats for halo exchange based on their access mode and dirty-bit
value as discussed above. Then, calc_halo_layers compute the
number of halo layers required for each loop in the loop-chain
L. Its analysis is detailed in Alg 3. Next, calc_iters (in Alg 2)
computes the iteration counts within the core and halo layers,
while restructure_elements separates each halo layer into core
and eeh as shown in Figure 6(b) and renumbers mappings of core,
eeh and enh accordingly. OP2’s halo data structure was extended
to support this multi-layered halo setup. The loop-chain executes
core followed by 𝑒𝑒ℎ𝑛−1 to 𝑒𝑒ℎ0, then all the import halos 𝑖𝑒ℎ0 to
𝑖𝑒ℎ𝑛−1 (see lines 8-18 in Alg 2). Given a loop-chain, Alg 3 calculates
the minimum halo extension required for each op_dat in each loop
according to its individual data access patterns. Then, the maximum
halo extension required for a loop is obtained based on the halo
extensions calculated for each individual op_dat in the loop, finally
making the loop’s halo extension effective for all the op_dats in
the loop.

To further reduce the number of messages exchanged for the
whole loop-chain, the halos frommultiple loops and op_dats are or-
ganized into a structure where a single message to be sent/received
per MPI rank can be constructed (line 5 in Alg 2) as illustrated in
Figure 8. Alg 2 also does latency hiding where the core iterations of
each loop in the chain are first executed while halos are in flight. Af-
ter completing send/receives, iterations in the multiple halo layers
are executed.

3.2 Analytic Model for Loop-chain Performance
An analytic performance model for reasoning about the runtimes
of OP2 loops and an equivalent loop-chain executed with the
communication-avoiding setup can be developed based on a pa-
rameterization of loop characteristics, communication patterns and
machine properties. Considering the execution of a single OP2
loop, 𝑙 as detailed in Alg 1, its runtime can be modeled by (i) the
time taken for computing 𝑆𝑐

𝑙
(core) and 𝑆𝑒

𝑙
+ 𝑆𝑖

𝑙
(execute halo) num-

ber of iterations, (ii) time taken to synch/communicate halos, mi-
nus any overlap of computation and communication. If we note
𝑆𝑒
𝑙
+ 𝑆𝑖

𝑙
= 𝑆ℎ

𝑙
= 𝑆1

𝑙
to indicate that this is execution over a single

halo layer, then the time taken by an OP2 loop is given by:

𝑇𝑜𝑝2,𝑙 = 𝑀𝐴𝑋 [ 𝑔𝑙𝑆𝑐𝑙 , 2𝑑𝑙𝑝𝑙 (𝐿 +𝑚
1
𝑙
/𝐵) ] + 𝑔𝑙𝑆1𝑙 (1)

Here, 𝑔𝑙 is the compute time for one iteration of the loop body,
𝑑𝑙 is the number of op_dats with halos to be synced, 𝑝𝑙 is the
maximum number of neighboring processes to communicate halos
with per MPI process.𝑚1

𝑙
is the maximum message size (in bytes)

sent to a neighbor for either 𝑒𝑒ℎ or 𝑒𝑛ℎ halos. The superscript 1
indicates the number of halo layers exchanged (1 is the default for
OP2 loops). The multiplier 2 accounts for the time for sending a
separate message for eeh and enh. The maximum message size and
number of neighbors per MPI process are only known at runtime
after the mesh partitioning [20]. The maximum is used for each of
the components above to model the critical path of the runtime,
where for example we assume that the halo exchange cost between
processes only completes as the slowest exchange between a pair
of processes. 𝐿 and 𝐵 are the latency and bandwidth of the network

respectively. Then, the time taken for 𝑛 number of OP2 loops in a
loop-chain L is simply the sum of the time taken by the individual
loops:

𝑇𝑜𝑝2,L =

𝑛−1∑︁
𝑙=0

𝑇𝑜𝑝2,𝑙 (2)

When the loop-chain is executed with the communication-
avoidance setup using the multi-layered halo data structures, a
single grouped halo message is exchanged per neighbor process.
This and the execution steps in Alg 2 lead to a total runtime of the
full loop-chain:

𝑇𝑐𝑎,L = 𝑀𝐴𝑋


𝑛−1∑︁
𝑙=0

𝑔𝑙𝑆
𝑐
𝑙
, 𝑝 (𝐿 +𝑚𝑟 /𝐵 + 𝑐)

 +
𝑛−1∑︁
𝑙=0

𝑔𝑙𝑆
ℎ
𝑙

(3)

As detailed in Alg 2, 𝑆ℎ
𝑙
includes iterations from the execute halos of

multiple levels for each loop. The message size,𝑚𝑟 is the maximum
grouped message size sent to each neighbor, which combines both
the eeh and enh into a single message, as discussed before. 𝑟 (where
𝑟 ≤ 𝑛) indicates the maximum number of halo layers required to
carry out the CA algorithm for the loop-chain. Thus,𝑚𝑟 is given
by :

𝑚𝑟 =

𝑛−1∑︁
𝑙=0

( 𝑑𝑙−1∑︁
𝑑=0

(
𝑆
𝑒𝑒ℎ,ℎ𝑙
𝑑

+ 𝑆𝑒𝑛ℎ,ℎ𝑙
𝑑

)
× 𝛿

)
(4)

Here, 𝑑𝑙 is the number of halo synching dats in loop 𝑙 , ℎ𝑙 is the halo
extension for loop 𝑙 , 𝑆𝑒𝑒ℎ,ℎ𝑙

𝑑
- eeh size up to level ℎ𝑙 of the set on

which the data set 𝑑 is defined, 𝑆𝑒𝑛ℎ,ℎ𝑙
𝑑

- enh size of level ℎ𝑙 . Not
all enh levels up to ℎ𝑙 are packed into the message, only the levels
updated are included. Given that a larger number of messages are
grouped for communication, an additional compute cost (a packing
and unpacking cost) 𝑐 is added to communication per neighbor.
Finally, 𝑝 is the maximum number of neighbors communicated by
a process, when exchanging the grouped message and 𝛿 is the size
of a data element of the op_dat 𝑑 in bytes.

From equations (2) and (3), we can see that the CA version saves
time to communicate with the single message sent per neighbor,
but this gain only becomes applicable when the time to compute
the core iterations, 𝑔𝑙𝑆𝑐𝑙 is smaller than the communication time
due to the latency hiding setup of the execution. Thus, we can hy-
pothesize that any performance gains would more likely appear at
high processor counts (i.e. at large machine size) in a strong scaling
scenario, when the core iterations per partition (one partition is
assigned per process in OP2) is smaller. The communication time
further depends on the maximum number of halo layers 𝑟 determin-
ing the message size𝑚𝑟 . If 𝑟 is significantly smaller than 𝑛, then
the gains are likely to be large. However, any performance gains
from faster communications can be diminished if the sum of the
times to execute over the multiple halos given by

∑𝑛−1
𝑙=0 𝑔𝑙𝑆

ℎ
𝑙
in (3)

is significantly larger than the sum of times to execute over a single
halo region given by𝑔𝑙𝑆1𝑙 in (2). Hence, again the maximum number
of halo layers involved in the CA execution of the loop-chain makes
a significant impact.

3.3 Cluster of GPUs
Extending the CA distributed-memory execution to a cluster of
GPUs can also be carried out, given that OP2 code-generates CUDA
with MPI. In the GPU CA version, the halos are transferred via
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Figure 9: OP2 Code Generation with CA
MPI, by first copying it to the host over the PCIe bus. This imple-
mentation does not utilize NVIDIA’s GPUDirect [23] technology
for transferring data between the GPUs. Instead, a communica-
tion pipeline is setup, allowing for maximum overlap of kernels,
memcopy, communication and core computations. We found that
this performs better than GPUDirect, which in many cases did not
run simultaneously with the computing kernels. Again the multi-
layered halo setup will remain the same, but an extra data copy
from host to device and vice versa will occur during halo exchange
as detailed before. This cost can be approximated by a larger com-
munication latency Λ replacing 𝐿 in equation (3). Additionally, 𝑔𝑙
will need to be estimated for a GPU.

3.4 Automatic Code-generation
The integration of CA optimizations to OP2 is done such that any
application developed with the OP2 API can immediately utilize
the new capabilities without modifications to the high-level source.
The only addition to OP2’s existing automatic code-generation pro-
cess [20] (as detailed in Figure 9) is the use of a configuration file
specifying the list of loops to be chained in the application. The
file details loop names, loop count and maximum halo extension of
loops. The OP2 code-generator was extended so that it can auto-
matically generate the loop-chain execution template in Alg. 2 for
these selected loops. The generated code is human-readable, similar
to all code generated by OP2. Finally, the code can be compiled
using a conventional compiler linking the new CA back-end library
to generate the executable to run on the selected hardware.

4 PERFORMANCE
We now investigate the performance of the communication-
avoiding back-end, applying it to two existing applications devel-
oped with OP2 : (1) a representative CFD mini-app, MG-CFD [24]
used for benchmarking and co-design and (2) the recently developed
OP2 version of Hydra, OP2-Hydra [21], a large-scale production
CFD application used at Rolls-Royce plc.

Performance is benchmarked on two systems, namely the HPE
Cray EX system, ARCHER2 and the SGI/HPE 8600 GPU cluster,
Cirrus both located at EPCC UK. Table 1 briefly details the key
hardware and system setup of these two systems. Each ARCHER2
node consists of two AMD EPYC 7742 processors each with 64 cores
(128 total cores) arranged in an 8×NUMA regions per node (16 cores
per NUMA region) configuration [4]. Each node is equipped with
256 GB of memory. The nodes are interconnected by an HPE Cray

Table 1: Systems Specifications

System ARCHER2 Cirrus
HPE Cray EX [4] SGI/HPE 8600 GPU Cluster [3]

Processor AMD EPYC 7742 Intel Xeon Gold 6248
@ 2.25 GHz (Cascade Lake) @ 2.5 GHz

+ NVIDIA Tesla
V100-SXM2-16GB GPU

(procs×cores) 2×64 2×20 + 4×GPUs
/node
Mem/node 256 GB 384 GB + 40GB/GPU
Interconnect HPE Cray Slingshot Infiniband

2×100 Gb/s FDR, 54.5 Gb/s
bi-directional/node

OS HPE Cray LE (SLES 15) Linux CentOS 7
Compilers GNU 10.2.0 nvfortran (nvhpc 21.2)
Flags -O2 -eF -fPIC CUDA 11.6 and sm_70 -O2 -Kieee
MPI Cray MPICH 8.1.23 MPT 2.25

Slingshot, 2×100 Gb/s bi-directional per node network. The GNU
compiler collection version 10.2.0 was used on ARCHER2 with
compiler flags noted in the table. The Cirrus GPU cluster consists
of 4×V100 GPUs per node configuration, each node also consisting
of 2×Intel Xeon Gold 6248 (Cascade Lake) processors, each with 20
cores (40 total cores). A node has 384GB main memory and a single
V100 GPU has 16GB global memory [3].

4.1 MG-CFD
MG-CFD [24] is a 3D unstructured multi-grid, finite-volume compu-
tational fluid dynamics (CFD) mini-app for inviscid-flow, developed
by extending the CFD solver in the Rodinia benchmark suite. The
mini-app implements a 3D finite volume solution of the Euler equa-
tions for inviscid, compressible flow over an unstructured grid. The
application uses multi-grid for accelerating the convergence of the
solution. MG-CFD has been converted to use the OP2 API and its
performance has been previously benchmarked in [28]. For our
experiments, we use the NASA Rotor 37 meshes, which represent
the geometry of a transonic axial compressor rotor, widely used for
validation in CFD.

4.1.1 Synthetic Loop-chains: As discussed in Section 3, an OP2 loop
will exchange MPI halos for an op_dat if it is to be indirectly read
(OP_READ or OP_RW) in a loop, but has been modified (OP_WRITE,
OP_INC or OP_RW) in a preceding loop. In this case, we note the
op_dat’s halos as dirty at the start of the loop, triggering an MPI
halo exchange before accessing halo values for computation. As
such, two consecutive loops, the first modifying an op_dat followed
by a second reading the same data indirectly will be our target ac-
cess pattern (i.e. access descriptor in the loop-chain abstraction),
for applying sparse tiling. However, consecutive loops with the
above access descriptor do not exist in MG-CFD. Nevertheless, the
relatively small size and simplicity of MG-CFD meant that we could
add a synthetic sequence of loops to create the required setup. We
are then able to create arbitrarily extendable loop-chains with the
above target access pattern allowing to examine the limits of a sin-
gle loop-chain and observe its consequent performance, reasoning
with the performance model. The new loops introduced to MG-
CFD consists of two loops [1], similar in structure to Figure 3. The
first, update kernel modifies the op_dat, dres through an indirect
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Table 2:MG-CFD on ARCHER2 - Model Components: OP2 comms (
∑(2𝑑𝑝𝑚1 )) - CA comms (𝑝𝑚𝑟 ) in bytes, OP2 core iterations (

∑(𝑆𝑐 )) - CA core
iterations (

∑(𝑆𝑐 )), OP2 halo iterations (
∑(𝑆1 )) - CA halo iterations (

∑(𝑆ℎ )) and performance gain% of CA over OP2

#Nodes #Loops
8M Mesh 24M Mesh

OP2 CA Gain% OP2 CA Gain%∑(2𝑑𝑝𝑚1 ) ∑(𝑆𝑐 ) ∑(𝑆1 ) 𝑝𝑚𝑟 ∑(𝑆𝑐 ) ∑(𝑆ℎ ) ∑(2𝑑𝑝𝑚1 ) ∑(𝑆𝑐 ) ∑(𝑆1 ) 𝑝𝑚𝑟 ∑(𝑆𝑐 ) ∑(𝑆ℎ )
4

2 877600 96494 14408 1763200 90460 42292 -17.56 2776200 340060 32220 5497800 325105 99731 -5.47
8 3510400 385976 57632 1763200 258408 169168 -2.65 11104800 1360240 128880 5497800 1029981 398924 6.30
32 14041600 1543904 230528 1763200 351631 676672 15.62 44419200 5440960 515520 5497800 1681473 1595696 2.66

16
2 365400 23148 5850 747600 20962 17485 -2.50 1006720 82868 13344 2039840 77673 38976 -20.50
8 1461600 92592 23400 747600 47264 69940 10.85 4026880 331472 53376 2039840 217854 155904 -4.20
32 5846400 370368 93600 747600 49646 279760 26.00 16107520 1325888 213504 2039840 283708 623616 16.47

64
2 168360 5658 2260 356160 4783 7277 -9.70 406080 20154 5348 825600 18125 16183 -8.76
8 673440 22632 9040 356160 8285 29108 15.98 1624320 80616 21392 825600 41653 64732 7.83
32 2693760 90528 36160 356160 8295 116432 34.45 6497280 322464 85568 825600 44690 258928 31.65

Figure 10:MG-CFD CA performance with 8M (left) and 24M (right) mesh on ARCHER 2

Figure 11:MG-CFD CA performance with 8M (left) and 24M (right) mesh on Cirrus

increment, OP_INC operation while iterating over the edges. Thus,
dres becomes dirty at the end of this loop. The second, edge_flux
kernel, indirectly reads dres. edge_flux kernel is, in fact, a replica
of the most time-consuming loop in MG-CFD, compute_flux_edge
which has the same access modes (full kernels not shown in Fig-
ure 3.). This enables us to make an effective comparison between
reducing communications, i.e. no halo exchanges in the second loop
and the consequent increase in the (redundant) computations over
the larger depth halos in the first loop.

This 2-loop chain is enclosed within an outer loop whereby set-
ting its iteration count nchains, we can create longer loop-chains
to explore performance [1]. With nchains = 1, the execution of the
loop chain, according to Alg 2 will not result in a reduction in the
number of MPI messages exchanged. However, for nchains > 1,
taking the resulting sequence of loops as a single loop-chain and
applying Alg 2, we can see how multiple halo exchanges can be
combined into a single larger message. We use this configuration
to explore the performance on ARCHER2 and Cirrus clusters.

4.1.2 ARCHER2 Results: Figure 10 presents the execution times
(min. of at least 5 runs each, CoV < 0.01) of MG-CFD on ARCHER2
for a mesh size of 8M and 24M. The reported runtime is the time
taken by the main iteration loop. We have not included the constant
cost for the inspection phase, which gets amortized (and negligible)
for a larger number of main iterations as it is typical for real-world
applications. Note the log scale of the y-axis. For both cases, we
compare the original OP2, and the CA runtimes for loop-chains
with loop counts𝑛 = 2, 4, ..., 32. For each run, we utilized the full 128
cores/node (128 MPI procs/node). Additionally, to obtain the best
partitions per process, i.e. smallest MPI halos and least number of
neighbors per process, we used the k-way partitioner routine from
the ParMETIS library. Increasing 𝑛 from 2 to 32 will result in the
original OP2 loops exchanging 16× more messages per neighbor.
Only a single message is exchanged in the CA version. However,
the grouped halo message size,𝑚𝑟 for CA can potentially contain
a maximum of 𝑛 halo layers. According to the data access patterns
of the synthetic loop-chain, 𝑟 is set to 2, for our benchmarking.
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Table 3: OP2-Hydra loop-chains with multiple halo layers (𝐻𝐸𝑙 >= 1)

loop-chain: weight (loop count = 5)

Parallel loop (𝑙 ) Iter. set (𝑆) Access modes and halo ext. 𝐻𝐸𝑙

mode𝑞𝑜 𝐻𝐸𝑞𝑜

sumbwts bnd INC 2 2
periodsym pedges RW 1 1
centreline cbnd WRITE 2 2
edgelength edges RW 2 2
periodicity pedges RW 1 1

loop-chain: period (loop count= 6)

Parallel loop (𝑙 ) Iter. set (𝑆) Access modes and halo ext. 𝐻𝐸𝑙

mode𝑞𝑜 𝐻𝐸𝑞𝑜 mode𝑣𝑜𝑙 𝐻𝐸𝑣𝑜𝑙

negflag pedges - 1 RW 2 2
limxp edges RW 2 READ 1 2
periodicity pedges RW 1 - 1 1
limxp edges RW 2 READ 1 2
periodicity pedges RW 1 - 1 1
negflag pedges - 1 RW 1 1

loop-chain: gradl (loop count = 2)

Parallel loop (𝑙 ) Iter. set (𝑆) Access modes and halo ext. 𝐻𝐸𝑙

mode𝑞𝑝 𝐻𝐸𝑞𝑝 mode𝑞𝑙 𝐻𝐸𝑞𝑙

edgecon edges INC 2 INC 2 2
period pedges RW 1 RW 1 1

We investigate the performance for the case where the number of
op_dats exchanged remains constant at 2 per loop-chain. While
this scenario is synthetic, as illustrated in [27] for structured-mesh
codes, it is a prevalent case we see in real-world applications. The
same was observed for Hydra, an unstructured-mesh code, but
within much smaller loop-chains (see Section 4.2).

For both the 8M and 24M meshes, better runtimes can be seen
at higher node counts with CA. The performance gains are also
larger for higher loop counts. This aligns with the insights from
the model, where the CA version is saving on the number of mes-
sages sent without an increase in the message size. Up to 35% faster
runtimes can be seen with CA, compared to the original OP2. Em-
pirical measurements for the above runs provide further evidence
for the performance trends. Table 2 details the computation and
communication model component factors for the 8M and 24Mmesh
execution with MG-CFD on ARCHER2. These were obtained by
recording the message sizes and number of MPI neighbours for each
tested configuration and substituting these values into the analytic
model. Per-node, the amount of data communicated among the
neighbours increases in the OP2 version (

∑(2𝑑𝑝𝑚1)) when increas-
ing the loop count but remains constant in the CA version (𝑝𝑚𝑟 ).
The amount of core computations (

∑(𝑆𝑐 )) which are performed
while the halo exchange is in progress, is always smaller for the
CA execution, compared to OP2. However, the number of compu-
tations over the halos which are performed after the halo exchange
is always higher in the CA version. At increasing node counts, we
can see the core computations reducing for both OP2 and CA and
communication cost becoming dominant. For the 8M mesh, the
dominance of communication and hence better performance with
CA due to reduced communications starts appearing from 1 node
at the 8 loop count configuration. Then again for 4 nodes at the 16

Table 4: OP2-Hydra loop-chains with single halo level (𝐻𝐸𝑙 = 1).

loop-chain: vflux (loop count = 2)

Parallel loop (𝑙 ) Iteration set (𝑆) Halo exchanged datasets 𝐻𝐸𝑙

initres nodes - 1
vflux_edge edges qp, xp, ql,qmu, qrg 1

loop-chain: iflux (loop count = 2)

Parallel loop (𝑙 ) Iteration set (𝑆) Halo exchanged datasets 𝐻𝐸𝑙

initviscres nodes - 1
iflux_edge edges qrg 1

loop-chain: jacob (loop count = 3)

Parallel loop (𝑙 ) Iteration set (𝑆) Halo exchanged datasets 𝐻𝐸𝑙

jac_period pedges jac, jaca 1
jac_centreline cbnd - 1
jac_corrections bnd jac 1

loop count. For the 24M mesh, this starts at a higher node count, 4
nodes with 4 loop count config.
4.1.3 Cirrus GPU Cluster Results: The same problem sizes were
solved using CUDA code generated with OP2 plus the CA back-end
on the Cirrus GPU cluster and those results are detailed in Figure 11
(CoV < 0.005). The problems were executed on nodes from 1 to 16
each node with 4×NVIDIA V100 GPUs. Each GPU was allocated 1
MPI process. Results again show similar trends to those observed
in ARCHER2. However, now the performance gains are achievable
even at lower node and loop counts (1.4% on 1 node, i.e. 4 GPUs).
At 16 nodes, we see 42% faster runtimes for loop counts of 32.

4.2 OP2-Hydra
Our second application is the OP2 version of Rolls-Royce’s Hydra
CFD application [21, 26]. Hydra is a full-scale production applica-
tion developed for modeling various aspects of turbomachinery
design. It is an unstructured-mesh finite-volume solver for the com-
pressible Reynolds-Averaged Navier-Stokes (RANS) equations in
their steady and unsteady formulation (RANS/URANS). It uses a
5-step Runge-Kutta method for time-marching, with multi-grid and
block-Jacobi preconditioning. Here, we again use the same 8M and
24M node NASA Rotor 37 meshes. OP2-Hydra consists of around
500 parallel loops with significantly more complex computations
performed on the mesh than the loops in MG-CFD.

A number of loop-chains were identified to target CA optimiza-
tions. Table 3 and Table 4 detail six loop-chains selected for our
benchmarking. The first three chains (Table 3), weight, period
and gradl are loop-chains which require multiple layers of halos
for the execution. The constituent loops, their iteration set, access
modes of op_dats that require halo exchanges and required max
halo layers for each loop are detailed in the tables. The last three
loop-chains (Table 4) require only a single layer of halos. However,
these loop-chains consist of the most time-consuming loops in Hy-
dra [26]. The relative costs or the proportional contributions of the
loop-chains to the total runtime of Hydra are vflux 18%, iflux 5%,
gradl 8% and jacob 2%. The loop-chains, weight and period are
inside the setup phase and outside the main time-marching loop.

4.2.1 ARCHER2 Results: Performance of each loop-chain on up
to 128 nodes (16k cores) is detailed in Figure 12 (CoV < 0.08). This
is the cumulative time taken by each loop-chain for 20 iterations
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Figure 12: Hydra CA performance with 8M (left) and 24M (right) mesh on ARCHER 2

Figure 13: Hydra CA performance with 8M (left) and 24M (right) mesh on Cirrus

of the main time-marching loop. Hydra’s default partitioner based
on the recursive inertial bisection of the mesh is used in all these
experiments. Results indicate that the loop-chains with the highest
communication reduction, period and jacob showed performance
improvements with CA - 42% and 40% on 64 nodes for the 8M prob-
lem, respectively. weight loop-chain showed performance gains
only with 8M mesh with a maximum of 14% on 128 nodes due to
its communication reduction not being adequate enough to outper-
form the computation increase with 24M mesh. Other loop-chains,
executing them as individual OP2 loops gave the best performance.
Again the insights from the model as in Table 5, align with these
results where loop-chains with higher communication reduction
preferably with large loop counts tend to break-even the balance
of computations vs communications performance.

4.2.2 Cirrus GPU Cluster Results: On Cirrus (Figure 13) (CoV <

0.07), the gains from CA are larger, with loop-chains vflux, iflux
and jacob performing up to 42%, 31% and 68% faster on the node
counts benchmarked. We see a majority of loop-chains getting a
speedup with CA on the GPU cluster compared to the CPU cluster
ARCHER2.

Loop-chains with a higher communication reduction compared
to the increased redundant computation due to added halo ex-
tensions show performance gains in Hydra. The communication
reduction and the total core size for latency hiding of period is
significantly higher than that of weight, giving it a higher perfor-
mance gain as indicated through the model in Table 5. Loop-chains
such as iflux and vflux which reduce the number of messages
with a grouped halo, perform latency hiding with core execution,
but with no reduction of communication are unlikely to give perfor-
mance gains on CPU clusters. However, they show improvements
on GPU clusters due to cutting down on host-device communica-
tions. Loop-chains such as gradl which cause an increase in both

Table 5: Hydra loop-chains (LCs) on ARCHER2: 8M Mesh - Model
Components

LC
(#
Lo

op
s)

#N
od

es 8M Mesh

OP2 CA

LC
G
ai
n%

Co
m
m

Re
du

c.%
Co

m
p

In
c.%∑(2𝑑𝑝𝑚1 )∑(𝑆𝑐 )∑(𝑆1 ) 𝑝𝑚𝑟 ∑(𝑆𝑐 )∑(𝑆ℎ )

w
ei
gh

t(5
)

4 31694400 50206 37538 21051360 50184 135189 3.57 33.58 72.23
16 16387200 13045 19346 8610624 13045 62767 -6.42 47.46 69.18
64 5121792 3458 6616 2154240 3458 23373 11.01 57.94 71.69

pe
rio

d(
6) 4 51063200 93122 75076 3508560 93089 271347 3.11 93.12 72.33
16 26401600 22652 38692 1435104 22652 128252 35.16 94.56 69.83
64 8251776 5434 13232 359040 5434 47115 42.35 95.64 71.92

vfl
ux

(2
) 4 59867200 62842 16674 59867200 62842 16674 -9.11 0.00 0.00

16 30953600 15403 7360 30953600 15403 7360 -11.58 0.00 0.00
64 9674496 3737 2686 9674496 3737 2686 -0.44 0.00 0.00

gr
ad
l(2

) 4 52824000 46548 27106 105256800 46537 123131 -141.71 -99.26 77.99
16 27312000 11326 13353 43053120 11326 55039 -288.51 -57.63 75.74
64 8536320 2717 4651 10771200 2717 20065 -302.87 -26.18 76.82

ja
co
b(
3) 4 89800800 3658 10432 45780800 3658 10432 25.59 49.02 0.00

16 46430400 1719 5993 23670400 1719 5993 4.57 49.02 0.00
64 14511744 741 1965 7398144 741 1965 40.61 49.02 0.00

communication and computation tend to degrade the performance
even with a sufficiently large number of latency hiding core com-
putations and grouped halos. On the other hand, loop-chains such
as jacob which reduce communication with latency hiding and no
computation increase always tend to give performance gains.

In general, there is a message size increase and message count
decrease in the CA version. However, it does not change the load
balance of the tasks divided among the processes compared to
the OP2 version. Message exchange between processes is always
associated with message packing and unpacking costs. CA/OP2
message packing cost ratio is equivalent to the CA/OP2 total halo
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message sizes ratio. However, the OP2 version does not suffer from
a message unpacking cost since the messages related to a particular
dataset are directly copied to the relevant dataset array when re-
ceiving the message. But there is an additional message unpacking
cost for the CA version when copying the data elements of multiple
datasets received in the same message to relevant dataset arrays.
However, this unpacking cost becomes negligible due to the chunk
memcopy operations performed on the received messages in the
CA version compared to the multiple message exchange cost of the
OP2 version.

5 CONCLUSION
In this paper, we have presented the implementation of data
movement-reducing and communication-avoiding optimizations
for large-scale unstructured-mesh applications. The runtime anal-
ysis of a loop-chain for creating sparse-tiling schedules and their
extension to distributed-memory parallelization as detailed by Lu-
porini et al. [17] is implemented through the OP2 DSL. The new
back-end in OP2 for communication-avoidance (CA), codifies these
techniques such that they can be applied automatically to any OP2
application. The careful trade-off with increased redundant com-
putation in place of data movement was analyzed for distributed-
memory parallelization using a representative CFD mini-app and
Hydra, a production CFD code from Rolls-Royce. The performance
trade-offs were modeled analytically, examining the determinants
and characteristics of a given unstructured-mesh loop-chain that
can lead to performance benefits with CA techniques. Performance
benchmarks were carried out on a large HPE Cray EX system and
an NVIDIA V100 GPU cluster.

Results show that loop-chains with higher communication re-
duction compared to its computation increase, are generally the
ones with higher loop counts, provide increasingly bigger perfor-
mance gains. This is true for both CPU and GPU clusters. For such
loop-chains, the balance of computations to communications also
begins to favour the CA-optimized version at larger node counts.
We see 30 – 65% runtime reductions. However, identifying such
profitable loop-chains would be the challenge in real-world ap-
plications. As we see from Hydra, several such chains could be
targeted. Nevertheless, the use of OP2’s new CA back-end allowed
us to elicit the best performance for Hydra without changing the
large science source, maintaining performance portability. Future
work will explore the performance of further large-scale production
applications on a wider range of hardware with code generated
through OP2. We will also move to further automate the code-gen
process with lazy-evaluation [27]. The new CA back-end for OP2
is available as open-source software at [2] and the loop-chained
MG-CFD is available at [1].
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