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Abstract

In recent years, the manufacturing environment, driven by the growth of advanced tech-

nologies and the increasing demand for customised products, has becomes increasingly

competitive. In this context, manufacturing systems are now required to be more auto-

mated, flexible and reconfigurable. Thus, Autonomous Guided Vehicle (AGV), as a key

enabler of dynamic shop floor logistics, are being increasingly widely deployed into the

manufacturing sector for the lineside materials supplying, work-in-progress transporta-

tion, and finished products collection.

A large number of companies and institutions are researching on different AGV sys-

tems to integrate AGVs-based shop floor logistics with manufacturing equipment and

processes. However, these AGV systems are typically equipped with various commu-

nication protocols and utilise ad-hoc communication methods. They lack a generic

framework to integrate the AGV systems into the manufacturing systems with minimal

engineering effort and system reconfiguration. Current scheduling optimisation methods

for multiple AGVs in shop floor logistics now support effective task allocation, shortest

route planning, and conflict-free supervision, allocating the delivery tasks based on the

location and availability of AGVs. However, these current methods do not give enough

consideration to real-time operational information during the manufacturing process and

have difficulties in analysing the real-time delivery requests from manufacturing work

stations. This not only reduces the efficiency and flexibility of the shop floor logistics,
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but also significantly impacts on the overall performance of manufacturing processes.

This thesis presents a generic integration approach, called Smart AGV Management

System (SAMS), to support the integration of AGVs with manufacturing processes.

The proposed framework enables enhanced interoperability between AGVs-based shop

floor logistics and the manufacturing process through a generic data-sharing platform.

Moreover, a Digital Twin (DT)-based optimisation method is developed in SAMS that

can simulate and analyse the real-time manufacturing process to schedule AGVs for

optimising multiple objectives, including the utilisation of work stations, delivery Just-

in-time (JIT) performance, charging of AGVs and overall energy consumption.

This approach is experimentally deployed and evaluated from various perspectives to

identify its integration and optimisation capabilities during the reconfiguration and op-

erational phases. The results show that the proposed integration framework can enable

a more effective integration with manufacturing process compared to traditional inte-

gration methods. In addition, the results demonstrate that the proposed optimisation

method can schedule and reschedule AGV-based shop floor logistics when facing a range

of system disruptions.
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Chapter 1

Introduction

1.1 Research background

With the growth of advanced technologies and increasingly customised product demand,

the manufacturing environment has become volatile and highly competitive. Thus, man-

ufacturing systems are expected to be agile, flexible, and interoperable in order to carry

out production processes effectively. Manufacturing systems are required to adapt to

the production disturbance with minimal human intervention. With the emergence

of Industry 4.0 and the associated enabling technologies, such as Industrial Internet

of Things (IIoT), Cyber-Physical System (CPS), intelligent robotics, Artificial Intelli-

gent (AI) and DT, a smart shop floor can be realised where manufacturing systems can

be dynamically reconfigured in the event of a disturbance or change in product demands.

One of the important aspects of a smart shop floor is dynamically adaptable logistics.

In a smart shop floor, manufacturing systems and logistics are closely coupled through

end-to-end horizontal and vertical integration. The aim is to develop an intelligent,

1



flexible and collaborative manufacturing environment where work stations are efficiently

served by shop floor logistics, enabled by using real-time production process data.

The AGV is considered a key enabler of dynamically adaptable shop floor logistics,

which can be deployed to carry out versatile tasks on a manufacturing shop floor. Be-

cause of the AGVs’ advantages, including flexibility, cost reduction, reliability, safety,

productivity and easier manipulation, they are now widely deployed in the manufactur-

ing sector, and feature strongly in research papers from various academic fields. They are

often named differently based on their functionality and working situation, such as Au-

tonomous Indoor Vehicles (AIVs), Autonomous Intelligent Vehicles (AIVs), Autonomous

Mobile Robots (AMRs) and Unmanned Ground Vehicles (UGVs). In this thesis, the

name AGV is used, which in this context means a driverless indoor vehicle travelling

around work stations autonomously to support transportation on a factory shop floor.

At their early stage, AGVs were designed to follow pre-planned paths built with mag-

netic tapes or coloured stripes with limited flexibility[1]. With the advances in associated

technologies, AGVs can now self-navigate within a pre-mapped environment[2], which

offers greater flexibility and agility. Moreover, to build a highly flexible, responsive, and

productive manufacturing system, the AGVs are also implemented to integrate with

collaborative robots, pallet lifts, shelves, and conveyors to enable them to interact with

automated stations autonomously.

Furthermore, to manage cooperation among multiple AGVs in the same working envi-

ronment, fleet management software applications are developed to supervise and plan

AGVs routing, aiming to minimise the travel time, allocate suitable AGVs and plan

conflict-free paths. However, the current fleet managers cannot adequately analyse the

real-time manufacturing process to provide the appropriate schedules for AGVs, such as

optimising delivery time and allocating suitable tasks. The AGV-based logistics delivery

time, including earliness and lateness, can significantly impact the overall takt time of the
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manufacturing process [3]. For example, an early delivery service causes waiting of AGVs

and the poor utilisation of AGVs, while the lateness causes the related work station to

have to wait, leading to a loss in production. Thus, in the smart factory, integration of

multiple-AGV-based shop floor logistics with the Information Technology (IT)/ Opera-

tional Technology (OT) structure of the manufacturing process is essential. It provides

an opportunity to optimise the AGV-based logistics delivery services by analysing the

shop floor data and predicting the manufacturing behaviours.

Numerous works are reported in the literature which studied scheduling multiple AGVs

in manufacturing systems based on mathematical or simulation models of AGVs without

considering the overall real-time manufacturing process. However, due to the dramati-

cally increasing complexity of current manufacturing systems, these approaches are not

suitable for solving the scheduling problems and scenarios in which AGVs need to coop-

erate with various types of automation systems, such as standalone stations, robotics,

and conveyors. The scheduling methodology not only needs to consider the job prior-

ities but also needs to schedule the AGV dispatching time considering the takt time

of each work station. DT technology can be used to develop a virtual model of the

physical manufacturing system, which monitors and analyses live operational data and

simulates the overall manufacturing process in real-time or near real-time. The DT

method can provide the operational information of integrated AGV-based shop floor lo-

gistics and manufacturing process for scheduling/ re-scheduling the delivery services to

respond to the interruptions of the manufacturing system and maintain high production

performance.
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1.2 Problem definition

There are still some challenges of the current technology to efficiently optimise and

integrate the AGVs-based shop floor logistics with manufacturing systems.

Firstly, in the current AGV market, different AGV systems have different degrees and

forms of connectivity. For instance, the MiR AGV [4] is controlled through Representa-

tional state transfer (REST) Application Programming Interface (API), and the Omron

AGV [5] is controlled through its client. Their APIs-based software applications need to

be developed to integrate the AGV systems with the shop floor manufacturing systems.

Also, the current integration approaches are mainly focused on the physical interaction

between the AGV and work stations to achieve the product transporting. However,

this integration cannot properly support the control signals and data communication

between the AGV and work stations. Thus, a generic integration framework needs to be

developed to support the multiple AGVs cooperating with manufacturing systems, and

considering IT and OT convergence.

Secondly, the current AGV manufacturers have developed various software applications

to manage fleets of their AGVs. These applications focus on the traffic of AGV fleets,

the task allocation, and the behaviour of AGV movement. Also, due to the limited data

interaction between the AGVs and the manufacturing system, they lack the capability

to schedule the AGV delivery tasks by analysing the manufacturing process in real-time.

1.3 Research motivation

The high-level automation, seamless connectivity, information exchange, and big data

analytic in smart factory offer the potential to enable manufacturing systems to become
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more flexible, organised and intelligent. As one of the key components in the manufac-

turing system, AGV-based shop floor logistics is now being widely developed to support

raw material delivery, work-in-process delivery and finished products collection on the

shop floor. The AGV system provides an opportunity to create a flexibly and customis-

able intralogistics system with efficiency and reliable delivery services [6]. Especially, due

to the Coronavirus Disease 2019 (COVID-19) pandemic, more AGV systems have been

implemented into the manufacturing shop floor because of their autonomous capability

and the associated reduction of the human operators to help to keep social distancing

[7].

However, the current manufacturing system lacks the integration strategy to enable full

cooperation between the AGV systems and the manufacturing process, which is needed

to prevent the bottleneck in JIT delivery for production line-side supplying. The better

performance of JIT delivery can keep the manufacturing processes running smoothly,

reduce energy waste and improve the overall manufacturing system performance.

Thus, it is necessary to develop a generic framework for integrating AGV systems into

shop floor logistics to cooperate with automation stations in the manufacturing system.

Furthermore, the scheduling optimisation capability is significant in this framework to

monitor the progress of the manufacturing process and optimise the tasks of AGV to

improve the JIT delivery performance in shop floor logistics.

In this thesis, the SAMS is conceived to integrate AGVs with manufacturing systems

and to schedule the AGV tasks by considering the real-time manufacturing processes.

The SAMS can be deployed into the current manufacturing system to collect the oper-

ational information and integrate it with the Manufacturing Execution System (MES).

In the SAMS, a DT-based process simulation is created to replicate the manufacturing

process. A hybrid optimisation algorithm combined with the Non-dominated Sorting
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Genetic Algorithm II (NSGA-II) and DT-based Discrete-Event Simulation (DES) model

is designed to optimise the utilisation of AGVs and to schedule the AGV delivery tasks

or execute re-scheduling tasks when a production abnormality is captured. Thus, the

proposed methodology seeks to schedule the AGV-based shop floor delivery performance

by considering the real-time manufacturing process to increase productivity, flexibility,

utilisation of work stations and JIT performance.

1.4 Research questions and objectives

Based on the problem definition and the research motivation, three research questions

have been proposed below:

1) How have the AGV systems been integrated and optimised in the shop floor manu-

facturing system in the current industrial factory and research, and what are the short-

comings of the integration and optimisation methods?

2) How to improve the integration of AGV systems with the shop floor manufacturing

process to increase the flexibility of the manufacturing system?

3) How can the DT technology be used in the optimisation of the AGVs-based shop floor

logistics during the real-time manufacturing process for improving the overall production

Key Performance Indicators (KPIs)?

Driven by the research questions above, this research aims to develop a framework

to support the integration of the AGV systems with the manufacturing processes on

the shop floor. Also, this framework allows monitoring of the shop floor operational

information and the scheduling optimisation of the AGVs’ delivery tasks.
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Moreover, this research aims to optimise the performance of JIT line-side supply and

minimise the overall energy consumption of AGVs for saving the energy cost and improv-

ing the flexibility, reconfigurability, and agility of the shop floor logistics. The details of

the research objectives are illustrated below:

1. Identify the current challenges faced by AGV systems working on manufacturing shop

floors, and understand the research gaps.

2. Develop a framework that can support sharing the information between work stations,

AGVs, and human operators to fully integrate the AGV systems with the manufacturing

processes on the shop floor.

3. Design a scheduling optimisation methodology to optimise the scheduling of the

delivery tasks for AGVs in shop floor logistics and manage the charging threshold of

AGVs during product delivery.

4. Develop an engineering tool based on the proposed methodology and implement it

into a suitable shop floor manufacturing process to evaluate and identify its capabilities

and performance.

1.5 Research methodology

This thesis uses the Design Research Methodology (DRM) [8] to guide the research

design. The methodology is divided into four stages as follows:

1. Research Clarification

The research clarification stage is to identify a realistic objective for the research. The

literature in academics and industrial applications will be reviewed and critically anal-
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ysed to understand research problems and hypotheses, and to identify research gaps.

2. Descriptive Study I

In the descriptive study I stage, the author aims to better comprehend the current manu-

facturing situation and clarify ideas to improve the existing manufacturing performance.

These are reached through a thorough literature review and the author’s related research

experiences.

3. Prescriptive Study

In the prescriptive study stage, a comprehensive SAMS architecture-based methodology

is proposed, and all function modules in SAMS are described in detail. This methodology

improves the current manufacturing integration situation, optimising the integration of

AGV-based logistics with a flexible manufacturing system. Also, the proposed SAMS

architecture is further developed into a “plug-and-play” engineering application, which

is implemented and tested in the Integrated & Manufacturing Logistics rig, as described

in Chapters 4 - Case Study.

4. Descriptive Study II

In the descriptive study II stage, the application of the developed methodology in the

prescriptive study is evaluated. The application evaluation is to identify the application

accomplishment regarding the integration of AGV-based logistics with manufacturing

processes, and the resultant performance optimisation. It is carried out in Chapter 5 -

Evaluation of the Proposed Methodology.

The overview of DRM based research outline is shown in Figure 1.1.
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Figure 1.1: The overview of research methodology

1.6 Research outline

For this PhD research, the thesis structure is depicted in Table 1.1:
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Table 1.1: The thesis structure

Chapter Title Content Outcomes

1 Introduction
Summarise the research background,

motivation, focus and thesis structure.

Objectives and structure of

PhD research

2 Literature Review

Review the literature of manufactur-

ing system, AGV systems integration

and scheduling.

Research gaps

3 Methodology

Introduce the methodology of schedul-

ing the AGV-based shop floor logistics

in the manufacturing process

Research methodology and

framework

4 Case Study
Develop the software application and

carry out an experiment

Case study to validate the

proposed methodology

5 Evaluation
Evaluate the proposed methodology in

different scenarios

Evaluate the performance of

the proposed methodology

6
Conclusion and

Future work

Summarise the objectives and contri-

bution of research, and discuss the fu-

ture works

Contribution of presented

methodology and future re-

search plan

Chapter 1 introduces the overview of PhD research background, motivation, questions,

and objectives. Chapter 2 comprehensively reviews the literature on AGV development

and the integration of AGVs with manufacturing processes on the shop floor. Chapter 3

presents a methodology and framework to support the integration of AGV systems and

the optimisation of AGV task scheduling. In Chapter 4, the case studies are developed to

demonstrate the capability of the presented methodology. In Chapter 5, the performance

of the proposed methodology is evaluated in different scenarios. Finally, Chapter 6

discusses the contribution of this PhD research and future work.
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Chapter 2

Literature Review

2.1 Introduction

Nowadays, the manufacturing environment is more competitive and customised than ever

before. Flexibility and agility are becoming significant requirements for manufacturing

systems. With a high level of flexibility and agility, the manufacturing system can

be operated more optimally. AGVs have an important role to play to enable greater

flexibility in manufacturing systems. This is evident from the fact that its market is

globally growing at a fast pace in various sectors including manufacturing to provide

autonomous and flexible logistics systems. According to Research and Markets Report

[9] the global automated guided vehicle market was worth USD 2.5 billion in 2020 and is

projected to reach USD 13.2 billion by 2026. In parallel, the research on the integration

of AGVs in the manufacturing industry is also growing rapidly. The Clarivate Analytics

sources show the increase of the citations and publications with keywords, “shop floor

logistics” and “AGV” (Figure 2.1). Especially in the recent five years, there has been a

significant increase in interest in both the academic and industry fields.
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Figure 2.1: The literature review summary: a) Numbers of citations and publications
with keywords “shop floor logistics” over time. b) Numbers of citations and publications
with the keyword “AGV” over time.

The literature reviews cover the studies from the recent three decades (1995-2021). Sev-

eral keywords are considered to search the literature, including “AGV systems”, “de-

velopment of AGVs”, “applications of AGV in the manufacturing sector”, “integration
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of AGV systems”, “integration of manufacturing systems”, “fleet manager of AGVs”,

“scheduling of multiple AGVs”, “optimisation of AGV system on the shop floor” and

“digital twin in scheduling AGVs”, via Google Scholar and ResearchGate. These lit-

erature reviews are evaluated and published through these electronic databases: IEEE

Xplore, ScienceDirect, Directory of Open Access Journals, JSTOR, British Standards

Institution, Scopus, SciFinder, Web of Science, and ACM Digital Library. Additionally,

the library search of the University of Warwick is used to find related books, standards

and dissertations. Moreover, the Connect Paper [10] search engine is used to discover

the most relevant research and derivative works.

Thus, this chapter discusses: 1) a comprehensive review of the AGV-based shop floor

logistics; 2) a review of the scheduling methods for multiple AGVs; 3) a review of DT

technology in the scheduling of AGVs. The chapter identifies the gaps in optimally

scheduling AGV-based shop-floor logistics and its integration in manufacturing indus-

tries, and aims to provide a clear understanding of the state-of-the-art in DT-based

scheduling methodologies.

2.2 The state-of-the-art of AGV applications in the man-

ufacturing sector

The concept of smart factories providing high flexibility, agility, and efficiency has be-

come very prominent in recent years. Smart factories are expected to be able to self

optimise, adapt to interruptions and minimise human interventions [11]. The AGV is

considered a key enabler for the automation of versatile tasks in the intralogistics of

a smart factory. With the enhancement of navigation and control technologies, AGVs

are becoming widely deployed on shop floors for materials delivery and handling [12].
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Exploiting the AGVs’ potential for collaboration, robustness, and flexibility they have

started to replace the manual-forklift to reduce labour costs and improve manufacturing

efficiency.

2.2.1 The AGV applications in the manufacturing sector

In smart factories, manufacturing systems are required to be effective, responsive, and

flexible. Intelligent robots, like AGVs and collaborative robots, have an important role

to play in helping to achieve this, and they must be widely applied on the manufactur-

ing shop floor. AGVs can enable material handling systems and manufacturing systems

to integrate seamlessly to increase productivity and efficiency [13]. Recently, numerous

use cases have described the implementation of the AGV system into the manufactur-

ing environment. For example, in an automotive company in the Czech Republic [14],

AGVs collect finished car frames from the production line and deliver them to the ware-

house. Also, Theunissen et al. [15] developed an Radio-frequency Identification (RFID)

technology-based AGV system serving on a manufacturing shop floor to show the flexi-

bility of materials handling.

Mehami et al. [6] demonstrated multiple AGVs working in a factory internal logistics

system by using RFID technology for tracking and controlling the movement. In these

applications, the AGV system helps in reducing production time by delivering the shop

floor material for production lines in a short time. It has shown that the AGV based

logistic system makes the manufacturing industry more flexible, reconfigurable, and

customisable.

In the automotive manufacturing sector, AGVs can similarly enable more modular, au-

tomated, production processes in a smart shop floor environment [16]. In Slovakia [17],
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CEIT AGVs transport car engines, gearboxes, doors, and bodies during production and

connect all the main work stations in the shop floor factory. The AGV also replaces

traditional conveyor systems in the factory production line, improving system adapt-

ability and flexibility [18]. Moreover, in a highly automated factory AGVs can replace

manual trucks for material delivery [19]. Smart AGVs can track and transport items

between work stations to ensure the process is traceable, undisrupted and robust. In the

automotive industry assembly lines, Cech et al. [20] introduced the AGV system in a

car assembly line for irregular consumption materials delivery. It not only demonstrated

the efficiency improvement but also showed the challenge of implementing a large fleet

of AGVs. Also, Zhang et al. [21] designed a CPS-based control model to support to the

implementation of AGVs in the shop floor for materials handling. The overall production

efficiency was improved after involving the AGV system in shop floor logistics.

A large number of manufacturing companies are also adapting AGVs for various applica-

tions on their shop floors. Various use cases in manufacturing companies are enumerated

in Table 2.1
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Furthermore, the current AGVs are mainly navigated based on the Simultaneous Lo-

calisation and Mapping (SLAM) technology, by which the AGVs can map the shop

floor layout and localise themselves simultaneously. Thus, the AGVs are not limited

by the markers or lines, and they can travel around the shop floor environment with

more flexibility. AGVs are not only used to transport material, handle pallets or collect

the finished goods. As smart mobile robots, they are equipped with end-effectors to

autonomously interact with work stations or used as mobile work stations. An AGV

system was developed by Cronin et al. [31] to load and unload materials for conveyors.

This design helps the company keep competitive by increasing manufacturing produc-

tivity and building up a flexible shop floor. Also, Cronin et al. [32] reviewed the AGV

applications in manufacturing sectors and pointed out that the AGV connects the manu-

facturing cells more flexible than the conveyor production line. It indicates the necessity

of AGV-based shop floor logistics because it supports the connectivity and flexibility of

the manufacturing systems. Various application examples of AGV on a manufacturing

shop floor is shown in Figure 2.2

Figure 2.2: Examples of AGVs with different functionalities
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2.2.2 The advantages of implementing the AGV on the shop floor

Key advantages of deploying AGVs on a manufacturing shop floor are summarised below:

1) Cost reduction. AGVs can replace labour used for materials handling, which

reduces the yearly and indirect costs. An example from Kollmorgen [33] shows the cost

comparison between the manual forklift and AGVs in Figure 2.3. It shows that in this

particular case the AGV solution payback is one year and six months.

Figure 2.3: The comparison of yearly financial cost of manual forklift and AGVs

2) Reliability. In shop floor logistics, operational mistakes are often caused by a

wrong pick or destination delivery location, which could raise the unexpected breakdown

time in manufacturing [34]. GE Digital [35] reports that human errors cause 23% of

unplanned downtime. In contrast, AGV could keep aware and operate precisely after

being appropriately programmed. So AGV-based shop floor logistics can increase the
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reliability of production processes.

3) Flexibility. The shop floor layout does not limit AGVs, and AGVs can travel

dynamic paths during the delivery and handling of materials or products. AGVs can

be customised to perform various tasks such as quality checks, safety inspection and

materials handling. Moreover, the AGV system can replace the traditional conveyor

systems and adapts to the MES or manufacturing system, which helps AGVs deal with

dynamic delivery tasks. Thus, the AGV system can provide more flexible and dynamic

transportation workflows.

4) Safety. AGVs are designed and programmed to work in a safe manner. They are

equipped with safety sensors, such as laser scanners, cameras, ultrasonic sensors, and

bumpers so that they can be operated around humans and work stations safely and

collaboratively.

5) Productivity. Better reliability, flexibility and safety inevitably improve manu-

facturing productivity. From the manufacturing company use cases (mentioned in Ta-

ble 2.1) it is evident that AGVs can dramatically reduce product delivery times and keep

the longer working hours on the shop floor.

2.2.3 The key enabling technologies for integrating AGV on the shop

floor

On the shop floor, a number of advanced technologies, such as IIoT, CPS, intelligent

robotics, AI and DT, are deployed and integrated to establish an intelligent manufac-

turing environment with the aim of improving the performance, flexibility and agility

of manufacturing systems [36]. Also, in the smart factory, work stations are consid-

ered autonomous entities that can be operated independently, communicate with each
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other, and update the status and processes automatically [37]. The use of AGV as a

smart mobile robot with conflict-free routing and scheduling abilities to integrate with

the manufacturing process on the shop floor becomes of significant importance in such

a manufacturing environment. It can interact with autonomous stations, human opera-

tors, and production lines to achieve a high level of automation by transporting materials

and products on the shop floor.

Key aspects of the AGVs-based shop floor logistics include agility, flexibility, interop-

erability and intelligent decision-making, which enables efficient performance and lower

manufacturing costs compared to traditional shop floor logistics [38, 39]. According to a

recent study [40], these key technologies, including the Cyber-Physical Production Sys-

tems (CPPS), IIoT, DT, AGVs and Intelligent robots, are required to build this new

form of shop floor logistics.

1) CPPS

As one of the vital technologies on the shop floor, CPPS contain autonomous and coop-

erative components and subsystems. They are connected and communicate through all

levels of production, from the automated stations to the production and logistics [41].

Potential benefits of CPPS are in production process optimisation, product customisa-

tion, resource-efficient production, and human-centred production processes [42]. Thus,

the CPPS has been widely involved in manufacturing automation, and it stimulates to

the development of reconfigurability of autonomous machines and software control sys-

tems [43]. In recent years, a significant number of papers have been published on CPPS.

For example, Engelmann et al. [44] mentioned that CPPS contributes to increasing

the transparency of the manufacturing process by intelligent analysis of sensor data to

improve the Overall Equipment Effectiveness (OEE). Blume et al. [45] applied CPPS

to cooling towers of technical building services to improve system understanding and
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identify the critical factors for cooling tower performance.

However, there are still some challenges for implementing the CPPS on the shop floor.

Towers of Hanoi is presented by [46] to show the challenges in data sharing, functionality

sharing, and collaborative functionality testing. Similarly, Leitao et al. [47] stated

CPPS challenges in capacities, management, engineering, ecosystems, infrastructures,

and information systems.

2) DT

With computer simulation and 3D modelling development, simulation is becoming a

powerful technology for understanding and analysing dynamic manufacturing environ-

ments [48]. DT is one of the new simulation paradigms. It is a virtual copy of the

physical system and can potentially communicate with the physical world in real-time

[49]. Because of the implementation of IIoT technologies in the factory, a DT can access

physical system information, which can be used for monitoring assets and carrying out

process optimisation and predictive maintenance [50]. DT was first applied by NASA

to mirror the life of air vehicles for improving its physical model [51]. Tao and Zhang

[52] proposed a DT shop floor framework to support a high fidelity and continuous in-

terconnection between the shop floor and virtual world to achieve smart interaction and

intelligent control during manufacturing processes.

3)AGVs and Intelligent Robots

AGVs are becoming more flexible, intelligent, and cooperative. They can interact with

the human operator and even learn technical skills [52]. Today, AGVs and Intelligent

Robots are not only following pre-defined tasks, but they can also learn to carry out

tasks using artificial intelligence, e.g., machine learning, deep learning, and reinforcement

learning [53]. Many companies are researching AGVs and robots, such as Kuka, Omron,
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Universal Robots and Swisslog, to develop autonomous vehicle-based shop floor logistics

systems. Also, in the smart factory, the AGVs and robot systems are needed which are

capable of understanding the manufacturing processes via self-learning, self-optimisation

and self-maintenance to perform the appropriate actions [54].

In summary, these technologies are essential to AGV-based shop floor logistics. Cur-

rently, AGVs predominantly perform repetitive deliveries, reliably and productively,

and they can also offload the ergonomically-challenging work from human operators,

and carry out tedious tasks autonomously. However, these AGV solutions mostly work

on pre-defined delivery tasks, which cannot adapt to dynamic manufacturing processes.

Thus, the integration of the AGV systems with, potentially dynamically changing, the

manufacturing process is of great significance.

2.2.4 The integration of the AGV system on the shop floor

Considering the dynamics and flexibility of the shop floor, the integration of AGVs with

the manufacturing process is necessary. Recently, the customisation of AGV has been

considered by many manufacturers. For example, with the cooperation of Mechatronic

Production Systems Ltd [55] with Omron AIV [56] and the MiRGo [57] solutions, they

built customised top modules for AGV to interact with work stations in different ap-

plications by attaching the different modules to a standard AGV platform. However,

these solutions only considered mechanical interaction without data communication. To

achieve the communication between the top modules and the AGV platform, Sell et al.

[58] proposed an architecture to support the interconnection of control signals between

AGV and top modules. The hierarchical structure consisted of two-level of software

and three-level of hardware. Controller Area Network (CAN) and Universal Datagram

Protocol (UDP) were adapted for inter-module communication.
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Furthermore, the communication structure for connecting AGV systems with IT and OT

should also be considered. It can provide the shop floor data and work stations status

and help the AGV system to optimise its performance, such as task allocation, mission

schedule and AGV maintenance planning. The integration of flexible shop floor logistics

and manufacturing processes provides the potential to build a highly automated and dy-

namically configurable shop floor. In the traditional manufacturing system, the ISA-95

standard [59] has been implemented to aid the development of interfaces between man-

ufacturing systems. This standard describes a functional hierarchy-based automation

system architecture including the field level, control level, supervisory level, planning

level, and enterprise level. This architecture is shown in Figure 2.4.

Figure 2.4: The traditional automation systems architecture

However, under this traditional ISA-95 automation systems architecture, insufficient

data transaction has impacted the real-time interaction ability between the physical and

virtual worlds. That is because the shop floor operation data has to be collected and

analysed at the lower level and then transmitted to a higher level for process planning

and managing. It is necessary to migrate the traditional hierarchy-based architecture to
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a more interoperable and flexible architecture, thereby enabling end-to-end interaction

from physical devices to MES, Enterprise Resource Planning (ERP), process optimisa-

tion and AGV fleet management across different levels. Thus, a CPPS-based automation

system (shown in Figure 2.5) is introduced to build an interconnection platform, which

supports the data exchange both within the same level of automation systems and be-

tween different levels of control and planning.

Figure 2.5: CPPS-based automation system [60]

In the context of Industry 4.0, lots of institutional researchers and industrial consortia

have recommended this CPPS-based automation system for building an interoperable,

modular and flexible smart factory. For example, a generic architecture was proposed by

Trunzer et al. [61]. This architecture provides a flexible middleware that can be widely

implemented into different use cases for the interconnectivity in distributed systems.

Similarly, Saqlain et al. [62] presented an Internet of Things (IoT)-based Industrial

Data Management System (IDMS) framework to manage the manufacturing processes

data from several devices using state-of-the-art protocols. Also, these data can be anal-

ysed to improve productivity and prognosis in manufacturing production. In recent

years, a Smart Information Platform and Ecosystem (SIMPLE) framework has been
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demonstrated by Harrison et al. [63] to envision the connection in the smart factory

to connect the digital twins and physical assets throughout the whole lifecycle. These

generic communication platforms provide consistent and tight integrations in the man-

ufacturing process for data transaction and control system management.

Therefore, in this research work, a generic communication platform is developed and

implemented to enable the data transaction and interaction among sensors, AGVs, fleet

managers, MES/ ERP and the shop floor work stations beyond the limitation of hierar-

chical layers.

To build up the CPPS-based automation system and enable the integration of AGVs-

based shop floor logistics with a real-time manufacturing process monitoring capability,

the Asset Administration Shell (ASS) concept [64], which is defined by RAMI 4.0 (shown

in Figure 2.6), has been studied to deploy into the shop floor environment. It acts as

a digital representation of a wide range of shop floor information from various assets,

including the AGVs, work stations, IT systems, and plants, thereby enabling vertical

and horizontal integration in shop floors.

One of the implementations of ASS metamodel is based on the OPC Unified Architec-

ture (OPC UA), an industry communication protocol [65]. The OPC UA protocol can

support the Service-Oriented Architecture (SOA) communication and combine semantic

information for physical assets [66]. The contributions of OPC UA are mainly related

to the Information, Communication and Integration layers in RAMI 4.0 [67].
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Figure 2.6: RAMI 4.0 [68]

Based on the architecture of RAMI 4.0, the manufacturing industries have an opportu-

nity to merge the advanced technologies in aspects of IT, OT, digitalisation, automation

systems and digital twin to build a smart factory. For example, Stefan-Helmut Leitner

and Wolfgang Mahnke [69], from ABB Corporate, described OPC UA as a significant

factor to integrate Industry 4.0-based technologies into the shop floor, because OPC UA

simplifies the complex communication between the IT/ OT software, including MES,

ERP and Human-Machine Interface (HMI)s. OPC UA has been implemented into vari-

ous scenarios to build a smart factory. To be specific, W. Dai et al. [70] built an industrial

CPS model by combining OPC UA and IEC 61499. OPC UA works as a general data

transaction platform to support the communication between different automation equip-

ment and systems. Also, Schleipen et al. [67] applied OPC UA in different scenarios,

which were designed by using different approaches, architectures and software. OPC
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UA was used in these cases for defect tracking, data monitoring, information gathering

and cross-platform communication. These cases have shown the OPC UA’s flexibility,

transparency and adaptability.

Moreover, because of its distinguishing characterises, including reliability, scalability,

security, cross-platform ability and historical data accessibility, OPC UA is considered

to be used in automation systems for data monitoring and control. Seilonen et al. [71]

designed an aggregation server using OPC UA protocol and evaluated the sever in an

Flexible Manufacturing System (FMS) and mobile work station environments. Similarly,

an OPC UA and RAMI 4.0 based control interface was developed by Melo et al. [72].

The OPC UA interface combines RFID identification, functional programming, data

communication and real-time process monitoring through a standard and interoperable

method. Thus, it has shown the potential generic capability to share information between

different communication protocols. In this thesis, the OPC UA server is used to create a

generic data sharing framework that supports the integration of AGVs-based shop floor

logistics with manufacturing systems. In summary, significant research has been focused

on developing a communication platform to support the integration of AGVs with the

work stations and the IT/ OT infrastructures on the shop floor.

In order to create interoperability, virtualisation, and real-time capability in shop floor

logistics, not only the communication platform needs to be considered. Other key aspects

include implementing IIoT into the factory, developing intelligent manufacturing, and

integrating manufacturing systems [73].

1) Implementation of IIoT

The IIoT supports data sharing between the automated stations throughout the manu-

facturing process. It provides a capability for system management to achieve real-time
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production information analysis and dynamic decision-making on the shop floor. It

also supports the development of DT on the shop floor. The DT technology can be

used to pre-plan the shop floor layout and optimise the shop floor logistics and man-

ufacturing process by simulating and analysing the physical shop floor scenario. For

instance, Park et al. [74] applied an IIoT-based application into a micro smart factory

to build a digital twin of the factory model for operation monitoring, product tracking

and decision-making. Similarly, Kuts [75] utilised IIoT middleware to support the imple-

mentation of a digital twin of an industrial robot. The middleware supports a dual-way

synchronisation of the digital and physical worlds.

2) Development of intelligent manufacturing

Intelligent manufacturing merges the advanced technologies of IIoT, AGVs, intelligent

robots and HMIs to produce products in a customised way [76]. In intelligent man-

ufacturing, the shop floor logistics can perceive uncertain information and cooperate

with different work stations [77]. On the other hand, they can work independently and

autonomously to handle production processes and interruptions.

3) Integration of manufacturing systems

The system integration in a shop floor includes horizontal integration, vertical integra-

tion, and end-to-end integration. Horizontal integration of the shop floor means inte-

grating the devices, software, and services at the same level. Vertical integration is a

network-based manufacturing organisation from sensors/ actuators to production plan-

ning and automation systems through the different hierarchical levels [78]. End-to-end

integration describes the connection throughout the product lifecycle, from raw materi-

als to products [79], which can enable products to be processed with high quality and

high efficiency [14]. AGV can play an important role in connecting the work stations and
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operators by transporting the materials or products at the field level. For integrating the

AGVs into the shop floor, the vertical integration provides a potential opportunity for

AGV systems to access the manufacturing data and perform a better delivery service.

2.2.5 The limitation of current AGV system integration on the shop

floor

Currently, there are some limitations in deploying AGVs on a shop floor to cooperate

with manufacturing processes, as identified below :

1. To implement the AGV in shop floor logistics, extra IT infrastructure needs to

be developed based on the relevant equipment vendors’ connectivities and the

protocols of the industrial devices, such as Programmable Logic Controller (PLC)s,

robotics, and sensors. AGV systems cannot easily be integrated with the existing

manufacturing systems. Thus, the current AGV systems are typically not capable

of easy implementation and plug-and-play.

2. Current AGV systems have limited data access from the manufacturing systems

and thus have difficulty analysing and responding to the real-time manufacturing

processes. This reduces the flexibility of shop floor logistics, and even interrupts

manufacturing processes if AGVs cannot be appropriately scheduled.
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2.3 The state-of-the-arts of AGV scheduling

2.3.1 The fleet manager – the software to manage a fleet of AGVs

With the increasing need for flexibility and agility in manufacturing systems, the AGV,

as an intelligent mobile robot, is widely deployed in the warehouse and shopfloor lo-

gistics for delivery, handling, and distributing products. On the industrial shop floor,

managing and organising multiple AGVs working cooperatively and safely is essential.

Thus, a software application called fleet manager is developed to control and integrate

a fleet of AGVs by monitoring the AGVs’ position, tasks and battery level in order to

achieve collision avoidance, shortest routes, and task allocation. For example, the MiR

Fleet [80] was developed by Mobile Industrial Robots. It provides a centralised control

system to manage up to 100 AGVs. This fleet manager can prioritise and choose the

most suitable AGV based on the programmed missions by considering availability and

location. Moreover, many manufacturers have developed different fleet managers to en-

hance their multi-AGV capabilities of collaborative, flexible, and interactable operation

in various transport scenarios. The comparison of the fleet manager capabilities from

different AGV manufacturers is provided in Table 2.2
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In conclusion, these fleet managers still have limitations considering the integration,

scheduling, and optimisation of the multiple AGVs with the manufacturing process in

the shop floor environment. The drawbacks of the current fleet managers are summarised

in Table 2.3:
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2.3.2 The AGV scheduling approach in literature

In order to reduce the limitations of the fleet manager and organise multiple AGVs

working efficiently on the shop floor, the scheduling and path planning for fleets of

AGVs have been widely researched in the last decade [91–104].

In the early stage, the AGV scheduling algorithms focused on managing multiple AGVs

running in the same environment without conflicts by task assignment and path planning

[105]. For example, Gaskins and Tanchoco [106] developed a zero-integer based mathe-

matical model for optimising the AGV travelling path. In 1988, Daniels [107] combined

branch-and-bound theory and shortest path algorithm to design conflict-free routes for

complex AGV systems. Similarly, Qiu and Hsu [108, 109] presented a bi-directional

route algorithm for AGV to complete pick up and drop off jobs without conflicts.

Recently, enabled by improvements in digital technology, computer power, microchip

techniques, and software, scheduling and routing approaches now aim to achieve the in-

tegration and cooperation of AGV systems with manufacturing processes by minimising

machine waiting time, minimising energy consumption, optimising the manufacturing

processes and improving JIT performance.

In recent literature, the approaches to the scheduling of multiple AGVs with manufactur-

ing systems can be classified into three types: offline scheduling, online scheduling and

simulation-based scheduling. The offline scheduling methods are developed for schedul-

ing AGVs tasks based on the pre-defined manufacturing process. Machine and AGV

parameters are assumed to depend on historical data or manufacturer manuals. The

offline scheduling approach is usually implemented in the manufacturing system before

it starts. The online scheduling method can schedule the AGVs during the manufactur-

ing execution and aims to provide dynamic scheduling strategies as production status
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changes based on the abstracted mathematics models. As part of online scheduling, the

simulation-based scheduling approach has gained the attention of researchers [110]. It

converts the complex manufacturing scenario into a digital simulation model to anal-

yse and predict the production status, searching optimal or near-optimal scheduling

decisions.

2.3.3 Offline scheduling approaches

The offline scheduling methods can be divided into three main parts: 1) mixed-integer

non-linear programming; 2) divide-and-conquer algorithm; 3) heuristics search algo-

rithm. In the early stage, the scheduling algorithms were mainly applied to design

conflict-free routes for AGVs working in the manufacturing system. For example, Oboth

et al. [111] presented a route-generation approach providing conflict-free routes for AGVs

with different speeds. Also, the task assignment and idle AGVs positioning are consid-

ered in this approach. Demesure et al. [112] proposed a navigation method for AGVs

travelling in an FMS. This approach combined the priority negotiation and the motion

planner to minimise the operation completion time by supporting optimal resources and

conflict-free routes for AGVs. They [113] further designed decentralised motion planning

and scheduling method for AGVs. In this method, the presumed trajectories were firstly

planned by a central system to avoid collisions. Secondly, an overall conflict-free trajec-

tory was generated by combining the neighbours’ presumed plan and priority policies.

Similarly, Fontes et al. [114] used a new mixed-integer linear programming model to

address scheduling problems of machines and AGVs in an FMS. This model made inter-

connected decisions for work stations and AGVs. It was constrained by the completion

time of operation and delivery tasks. Fazlollahtabar [115] presented a minimum-cost

network flow (MCF) method to assign multi-AGV for inter-assembly lines and intra-

assembly lines. This method reduced the task completion time and organised resource
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assignments for every short-term window. However, for large-scale shop floor environ-

ments, the model becomes more complex, and these algorithms are difficult to schedule

the AGV systems.

With the increasing number of AGVs in the manufacturing environment, the decomposition-

based approach was applied to separate the problems into smaller parts. For instance,

Correa [116] proposed a divide-and-conquer method to address multiple AGVs dispatch-

ing and conflict-free routing problems. In this method, the scheduling problem was

converted into conflict-free routing based sub-problems and was solved by mixed-integer

programming. In similar, Nishi et al. [117] presented a mixed-integer model-based de-

composition approach to address the task scheduling and routing problems separately.

Moreover, Gelareh et al. [118] exploited a Lagrangian relaxation based decomposition

algorithm to minimise the overall production operation time by scheduling AGV deliv-

ery. However, this approach would rapidly lead to increased computing time when faced

with a complex manufacturing system, for example, a manufacturing process consists of

multi-stage work stations and a large number of AGVs.

Furthermore, heuristic and AI-based search algorithms are widely used to schedule AGVs

in manufacturing systems for finding a near-optimal solution in an acceptable timeframe.

For instance, Dang and Nielsen [119] proposed a heuristic-based Genetic Algorithm (GA)

to schedule the machines and AGVs in an FMS simultaneously. Meherabian et al. [120]

combined the NSGA-II and multi-objective particle swarm optimisation (MOPSO) to

solve a two-objective problem: 1) Total jobs processing time; and 2) FMS delay time.

Also, the environment parameters were considered as fuzzy in a mix-integer program-

ming model for imitating the physical shop floor environment. Similarly, Mousavi et al.

[121] developed a hybrid genetic algorithm and particle swarm optimisation (GA-PSO)

integrated mathematics model to schedule AGV tasks for optimising: 1) Total jobs oper-

ation time; 2) Number of AGV. To provide better performance for the same objectives,
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they [122] proposed a fuzzy hybrid GA-PSO algorithm later. Liu et al. [123] integrated a

multi-adaptive genetic algorithm (MAGA) with two adaptive genetic algorithms (AGA)

based on a multi-objective mathematical model. This model considered AGV charging

time and variable speed for scheduling multiple AGVs to optimise the makespan, the

number of AGVs and energy consumption. However, the offline scheduling methods only

can handle deterministic systems. For the dynamic manufacturing environment, they,

therefore, exhibit limitations in the scheduling of AGV tasks.

2.3.4 Online scheduling approaches

Online scheduling methods provide dynamic schedules for the AGVs and FMS during the

manufacturing processing to match demands from the customer or address the produc-

tion interruptions in time. In general, online schedulings are time-constraint approaches

which mean schedule solutions should be generated in a limited time. For example, Jin et

al. [124] designed a GA based method to solve dynamic multi-AGV scheduling problems

for a container terminal. It aimed to minimise the materials handling time of AGVs.

Weynes et al. [125] proposed a DynCNET protocol which was extended from standard

contract net (CNET) [126] to dynamically manage tasks for AGV transportation. The

DynCNET enables AGVs to switch assignments dynamically.

More recently, Wang et al. [127] developed an architecture based on a multi-agent system

(MAS) for real-time scheduling manufacturing in an IoT-enabled FMS. In this architec-

ture, the Bargaining-Game-based module was designed to optimise multiple objectives,

including production completion time, machine workload, and energy consumptions.

However, the Bargaining-Game-based method focuses on the short-term interest, which

means the results may be limited to a local optimal solution.
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Zhao et al. [128] established a multi-AGV-based unmanned smart factory. AGVs were

guided by magnetic tape, and the movement deviations of each AGV from this tape

were monitored and analysed based on the data from magnetic sensors, which helps the

AGVs drive over the tape steadily. Also, in this system, the A* algorithm was developed

to handle conflict-free routing and scheduling problems. Xue et al. [129] presented a

reinforcement learning algorithm to minimise the production makespan and jobs delay by

scheduling multiple AGVs tasks on the shop floor. The AGV system obtains and shares

the information with machines, so the control system can make the dynamic decision by

understanding the shop floor production status. However, this method requires a huge

amount of training time for its optimisation module, especially in a large-scale shop

floor environment. It also cannot reschedule multiple AGV in a short time when facing

unexpected events.

2.3.5 Simulation-based scheduling approaches

With increasing numbers of automated stations, on larger-scale shop floors, the simulation-

based scheduling method has become a more effective approach, especially for complex

and dynamic shop floor logistics. Thus, Lin et al. [130] proposed an L-GAOCBA

algorithm to schedule AGVs and machines on the shop floor using a Siemens Plant

Simulation-based simulation model. This model is used to evaluate the system perfor-

mance under uncertain factors. Similarly, Viharos et al. [131] developed a simulation

model by using a Siemens Plant Simulation to schedule the AGVs and assembly opera-

tions for minimising the manufacturing time. However, there is little literature focused

on the simulation-based scheduling methodology.

2.3.6 The classification of AGV scheduling algorithms
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Table 2.4: The literature of offline scheduling approaches

Authors/Ref Scheduling Algorithm Objective Mathematical model

Oboth et al.

[111]

Conflict-free

routing approach

Provide conflict-free routes

for multi-AGVs

Bi-directional single-

lane network model

Correa et al.

[116]

Divide and conquer

based hybrid

approach

Solve dispatching and

conflict-free routing

problems for AGVs

Mix-integer

programming model

Demesure et al.

[112]

Combination of a

scheduling motion

planner and a

priority-based

negotiation method

Minimise the tasks

processing time
Mobile agent model

Demesure

[113]

Decentralized

motion planning

and scheduling

approach

Provide overall

conflict-free

routes multiple

AGVs

Mathematical model

Fontes and

Homayouni

[114]

A novel MILP

model

inter-connected decisions

to minimise machines

operation time and

AGVs delivery time

MILP model

Fazlollahtabar

[115]

a minimum-cost

network flow

(MCF) method

optimised the task

completion time and

resource assignment.

MCF model

Continued on next page
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Table 2.4 – Continued from previous page

Authors/Ref Scheduling Algorithm Objective Mathematical model

Rashidi et al.

[132]

Extension of

standard Network

Simple Algorithm

(NSA+)

Scheduling AGVs in

container terminals to

meet delivery

requirements.

MCF model

Nishi et al.

[117]

A two-level

decomposition

algorithm

Minimise the total

weighted tardiness

of tasks

Mix-integer

programming model

Gelareh et al.

[118]

Lagrangian

relaxation based

decomposition

method

Minimise the operations

makespan

Mix-integer

programming model

Fazlollahtabar

et al.

[133]

A heuristic search

algorithm based

mathematical

programming

Minimise the penalty of

tardiness in a conflict-free

and JIT production

heuristic search

Udhayakumar

et al.

[134]

GA and Ant Colony

Optimization (ACO)

algorithm

Multi-objective for AGVs:

1) workload balance,

2) travelling time minimise

based on utilization

maximum condition

heuristic search

Yang et al.

[135]

Congestion

Prevention

Rule-based

Bi-level GA

Minimise makespan heuristic search

Continued on next page
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Table 2.4 – Continued from previous page

Authors/Ref Scheduling Algorithm Objective Mathematical model

Huang et al.

[136]

Hybrid strategies

of K1 and OA

Minimise the product

waiting time

Mix-integer

programming model

Sankar et al.

[137]

ParallelGA based

multi-objective

evolutionary

algorithm (MOEA)

Multiple objectives were

considered:1) maximise the

utilisation;

2) minimise the jobs

tardiness

heuristic search

Dang and

Nielsen

[119]

Heuristic-based

genetic algorithm

Minimise the time cost of

production tasks
heuristic search

Nageswararao

et al.

[138]

Binary particle

swarm Vehicle

Heuristic Algorithm

Minimise the mean

tardiness
heuristic search

Baruwa and

Piera [12]

A timed coloured

Petri net (TCPN)

method

Minimise the makespan

and job processing time
Heuristic search

Sanches et al.

[139]

Adaptive genetic

algorithm

Minimise the makespan

with a short computing time
Heuristic search

Nouri Driss

[140]

Hybrid heuristic

algorithm
Minimise the makespan Heuristic search

Continued on next page
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Table 2.4 – Continued from previous page

Authors/Ref Scheduling Algorithm Objective Mathematical model

He et al.

[141]

State-dependent part

input sequencing

approach, shortest

remaining processing

(SRPT), and

SPT dispatching rules.

Schedule the parts input

sequences, AGVs and

machines

Simulation Model

Tavakoli et al.

[142]
NSGA-II

Minimise the production

processing time and

AGVs’ idle time.

Heuristic search

Mehrabian

et al. [120]
NSGAII and MOPSO

Solve Two-objective problems:

1) Minimise total jobs

processing time;

2) Minimise delay time.

Heuristic search

Mousavi et al.

[121]

Hybrid GA-PSO

algorithm

Solve a two-objective

problem:

1) Minimise makespan;

2) minimise AGV number.

Heuristic search

Mousavi et al.

[122]

Fuzzy hybrid

GA-PSO algorithm

Solve a two-objective

problem:

1) Minimise makespan;

2) minimise AGV number.

Heuristic search

Zhong et al.

[143]

Hybrid GA-PSO

algorithm

Minimise the AGV delay

time during delivery.
Heuristic search

Continued on next page
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Table 2.4 – Continued from previous page

Authors/Ref Scheduling Algorithm Objective Mathematical model

Liu et al.

[123]

Integration of a MAGA

and two AGA

Multiple objectives:

1) makespan;

2) AGVs number;

3) AGV electricity consumption.

Heuristic search

Wang et al.

[144]

Bilevel heuristic

algorithm

Minimise AGVs energy

consumption
Heuristic search

Li et al.

[145]

An improved

harmony search

algorithm

Minimise 1) the standard

deviation of machine

waiting time.

2) AGV travel distance

Heuristic search

Zou et al.

[146]

Nearest neighbour-

based heuristic search

and discrete artificial

bee colony algorithm

Minimise:

1) AGV travel distance;

2) standard deviation of

machine waiting time

Heuristic search

Zhang and Li

[147]

Improved particle

swarm optimisation

algorithm

Minimise jobs makespan Heuristic search

Chawla et al.

[148]

Modified Memetic

Particle Swarm

Optimisation

(MMPSO) Algorithm

Minimise the AGV running

and waiting time
Heuristic search

Chen et al.

[149]
GA

Minimise production

processing time
Heuristic search

Continued on next page
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Table 2.4 – Continued from previous page

Authors/Ref Scheduling Algorithm Objective Mathematical model

Riazi et al.

[150]

Heuristic-based

Benders

decomposition

Solve AGVs conflict-free

routing and scheduling

problem

Heuristic search
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Table 2.5: The literature of online scheduling approaches

Authors/Ref Scheduling Algorithm Objective Mathematical model

Weyns et al.

[125]
DynCNET Protocol

Manage dynamical

assignments for AGVs
A novel framework

Wang et al.

[127]

Bargaining-game-based

scheduling approach

Multiple objectives:

1) makespan;

2) machine workload;

3) energy consumption.

A novel framework

Zhang et al.

[21]

CPS-based smart control

model

Minimise the processing

time and maximise the

AGVs delivery network

utilisation

A novel framework

Xue et al.

[129]

Reinforcement learning

approach

Minimise the job delay

and makespan
AI

Zhao et al.

[128]
A* algorithm

Solve the scheduling and

conflict-free routing

problem

AI

Sahin et al.

[151]

A PrometheusTM

based model

Scheduling machines and

AGVs simultaneously
A novel framework

Xu et al.

[152]

Double-level hybrid genetic

algorithm and

ant colony optimisation

(DLH-GA-ACO)

Minimise the production

time and minimise

AGV numbers

AI

Erol et al.

[153]

A negotiation mechanism-

based multi-agent

scheduling method

Scheduling machines and

AGVs simultaneously

A novel multi-agent

system (MAS)

based model

Continued on next page
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Table 2.5 – Continued from previous page

Authors/Ref Scheduling Algorithm Objective Mathematical model

Chawla et al.

[154]

Grey wolf optimisation

(GWO) algorithm

Multiple Objectives:

1) AGV workload;

2) AGV travel time

Heuristic search

Zheng et al.

[155]

Hormone regulation

-based approach (HRA)
Optimise makespan

Hormone-regulation

mechanism

Liu et al.

[156]

Combination of a

unidirectional graph

and A* algorithm

Planning conflict-free path

for multi-AGVs.

Topological map

model

Huang et al.

[157]

Combination of admissible

and non-admissible

heuristic functions based

A* scheduling method

Minimise the makespan and

maximise machines utilisation
heuristic search

46



Table 2.6: The literature of simulation-based scheduling approaches

Authors/Ref Scheduling Algorithm Objective Mathematical model

Viharos et al.

[131]
Heuristic algorithm

Minimise the total

manufacturing time
Simulation model

Fu et al.

[158]

Combination of DES, frac-

tional factorial design

(FFD), and response

surface methodology

Determine the AGVs require-

ment in the manufacturing

system.

Simulation model

Chan et al.

[159]
Fuzzy-logic approach

Multiple objectives:

1) machines blocks;

2) processing time;

3) processing steps;

4) average flowtime.

A novel framework

Lin et al.

[130]

GA-based local search

with considering optimal

computing budget

allocation (L-GAOCBA)

Scheduling machine and AGV

simultaneously with a low

computation cost.

Simulation model
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In the literature on the scheduling algorithm for AGVs, the authors mostly focus on an optimi-

sation solution which is able to improve the performance of AGV deliveries, for example, reduce

the travel distance, minimise the AGV running time, and minimise the job makespan. However,

they do not prove this optimised result is a global optimisation result and there is no clear ev-

idence to show that by using their optimisation methods, a global optimisation solution can be

found within an acceptable time. Thus, it may confuse the readers when they try to use these

methods to search for a global optimisation solution.

Specially, In the literature on offline scheduling, the algorithm is easy to execute and is able to

handle multiple AGV situations, but due to its offline limitation, it cannot easily handle different

scenarios when the shop floor system changes. In the literature on online scheduling, most

algorithms are designed for low throughput and small systems with a few stations. And it could

cause more computing power when applied to a large-scale system. Furthermore, the authors

mostly use a simulation or lab-based scenario to evaluate their algorithms, thus it is difficult to

guarantee these algorithms perform similarly in the real industrial shop floor environment.

2.3.7 The challenges of current AGV scheduling approaches

As discussed in previous sections, a large number of research efforts have focused on scheduling

multiple AGVs-based shop floor logistics. Nevertheless, there is limited literature on scheduling

the AGVs tasks by considering the real-time manufacturing processes. Although, many AGV

manufacturers developed fleet management software to manage multiple AGVs by monitoring

location and status, prioritising delivery tasks, generating conflict-free routes, and providing

connectivity with other machines. They still lack the data collection and analysis ability through

which the AGV system can execute delivery tasks optimally.

In general, the offline-based scheduling algorithm was primarily investigated for handling static

shop-floor environments. The offline scheduling method optimises AGV performance by pre-

planning logistics schedules. However, the offline method cannot handle unexpected situations,

including machine breakdowns, human interruption, and new order demands.

More recently, with the increased flexibility of shop floor logistics and needs of customised prod-

ucts, the heuristic-search and AI algorithm-based online scheduling approach has been considered
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for dynamic scheduling of AGVs taking into account data collected from the shop floor in real-

time. The online solution can optimise the production schedule during manufacturing execution

and takes into account unpredicted events. It can continuously update the optimal solutions as

the operational information becomes available in the real-time process, which is very supportive

for scheduling the dynamic AGV delivery tasks. However, the mathematics model-based on-

line method increases the CPU loads by converting the operation information into the analytics

model during running time, also it has limitations in reproducing the real-time manufacturing

processes.

Because DT technology can be used to duplicate the physical assets to provide an optimal

scheduling solution by modelling, simulating and analysing real-time manufacturing processes

as part of the online scheduling solution, the DT-based scheduling method has been considered

recently to schedule AGVs in shop floor logistics.

2.4 DT-based shop floor logistics optimisation

2.4.1 The introduction of DT technology

With the increasing complexity of shop floor manufacturing processes, the DT-based approach

has been applied recently for analysing the shop floor manufacturing systems. The Digital Twin,

a conceptual model for Product Lifecycle Management (PLM), was first presented by Michael

Grieves in 2002 [160]. Digital twin refers to a high-fidelity virtual representation of the physical

objects built by a computer system through physical machine data and models to simulate the

machines real-time operations [161]. The digital twin connects with the physical automation

system using sensors, IoTs and real-time communication technology [162] to access and monitor

live operation data. Thus, in the virtual world, the complex production process can be simulated,

analysed, and predicted to optimise the product lifecycle and manufacturing process in a closed-

loop [163]. In Figure 2.7, the digital twin is demonstrated as a virtual duplication of a physical

shop floor.
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Figure 2.7: The example of the digital twin in smart factory[164]

As shown in Figure 2.7, the actuators and smart sensors were implemented into the production

line to monitor real-time machine information. The data is passed to virtual models for dupli-

cating the physical shop floor to combine the physical manufacturing system thoroughly with its

digital world.

The DT technology can help the manufacturing systems to optimise the production process by

supporting real-time monitoring, operation analysis, and production performance predictions.

Thus, it has gained a wide range of attention in the manufacturing sector [163]. As shown

in Figure 2.8, the DT converges the physical and virtual shop floor, including machine status,

robotics behaviour, and logistics, to collect comprehensive information and provide optimised

decisions for the shop floor service systems.
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Figure 2.8: The Digital Twin models in shop floor

2.4.2 DT technology in scheduling AGVs

Digital Twin technology has been researched for shop floor logistics in the last few years [165]

because of its benefit of investment cost reduction by using simulation to analyse the shop

floor logistics and predict potential bottlenecks. Bottani et al. [166] exploited a cheap and

suitable solution to optimise the AGV schedules by creating a DES-based DT. The DES model

simulates various scenarios of the AGV systems, including the validation of suitable scheduling

solutions and evaluation of the AGVs decision-making ability. However, due to the proposed

communication method (i.e., Machine-to-machine (M2M) logic) constraints in the real shop floor,

the author only focused on the DT model of AGVs without considering the overall manufacturing

process.

Similarly, Gyulai et al. [167] proposed a DES-based shop floor logistics system to analyse AGV

capacity planning and dispatch policy, which was successfully deployed on the shop floor with

the AGVs working as expected. Although the model and the simulation of the manufacturing

system cost more time to design and develop relative to alternative approaches, it could assess

alternative candidate solutions without disturbing the physical manufacturing system.
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Yan et al. [168] designed a DT model of the shop floor logistics to validate their proposed

optimisation algorithm. The improved GA method was proposed to solve the Flexible Job

Shop Problem (FJSP) on the shop floor and the DT model was built to verify the proposed

algorithm. However, the DT technology was only used to verify the optimisation results, without

the interaction with the actual shop floor logistics.

DT framework [169] supports the bidirectional communications between the physical and digital

systems. A DT model of shop floor systems shows: 1) the capability of offering a significant

user-friendly environment to analyse manufacturing systems; 2) the importance of bidirectional

communication during manufacturing process monitoring; 3) the capability of enabling the op-

erator to monitor and manage the manufacturing system remotely.

Although the literature concludes the importance of DT on the shop floor for the manufactur-

ing process and logistics scheduling, most of the existing works are focused on the framework,

concept, and solution validation. They are seldom applied the DT within the shop floor man-

ufacturing process and AGV-based logistics in practice. Actions need to be considered towards

implementing an enhanced DT for AGV-based logistics and the manufacturing process in order

to carry out real-time optimisation of overall shop floor logistics [165]:

1) IIoT and data hub-based data-sharing platforms on the shop floor need to be implemented

to enable real-time physical process monitoring and data gathering abilities for AGV systems

throughout the whole manufacturing process.

2) A data analytics module needs to be developed for analysing machine actions and duplicating

the physical behaviours for the DT model.

3) An optimisation and smart decision-making module needs to be developed and integrated

with the DT model to provide an optimal solution for the shop floor logistics and manufacturing

processes.

4) The engineering tool for creating a DT model of a physical shop floor environment needs to

be considered, for example, DES, continuous simulation and monte carlo simulation.
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2.4.3 DES

Due to the benefits of DES tools, such as the ability of powerful simulation, inexpensive sce-

nario analytics, and dynamic process modelling [170], the DES tools [171] are studied in the

manufacturing sector by integrating with physical shop floor data for initial investment analy-

sis, production pre-planning, system performance prediction and AGV-based shop-floor logistics

scheduling [172].

DES models can analyse and simulate the physical shop floor manufacturing systems, and can also

be combined with a mathematical algorithm to optimise the manufacturing process [173]. The

main benefit of DES is the opportunity to carry out the study of factory layout and production

throughput analysis without the physical factory implementation [174]. DES can be integrated

with physical shop floor systems and applied to a decision support system for improving the

manufacturing system KPIs [175].

For example, Khan [176] combined the WITNESS Horizon simulation with the data-driven

reengineering framework to analyse and verify the system changes. Later, Khan et al. [177]

optimised the production process by integrating the WITNESS Horizon-based DES with Khan-

Hassan-Butt (KHB) methodology. DES predicted that there was a 20% increase in the man-

ufacturing process output by using this method. Similarly, Avventuroso et al. [178] proposed

a simulation-based approach to design and analyse medical device production using AnyLogic.

The decision-making was able to provide better options for this large-scale production set-up and

design. Dorota et al. [179] used FlexSim to simulate the sleeves production line and combined it

with Value Stream Analysis (VSA) to optimise the process and improve the sleeves production

performance. Vysocky [180] designed a simulation model using WITNESS Horizon software to

evaluate optimisation solutions in materials flow. Integrating the DES with data analytics allows

the manager to evaluate the potential benefits of various solutions by predicting the production

performance. Thus, many studies are combining the data analysis with DES [181] to improve the

efficiency of the production process and to reduce the costs of physical shop floor implementation

[182].

Furthermore, many other DES vendors have been working in the manufacturing sectors for

system and process optimisation, for example, Siemens Plant Simulation, Simo and ARENA

[183–187]. There is a comparison of DES-based engineering tools shown in Table 2.8
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Providing good connectivity with external software, stable APIs, and a user-friendly design

environment, the WITNESS Horizon software is a well-established, capable, option to model,

simulate and optimise shop-floor scenarios. WITNESS is a discrete event simulation software

developed by Lanner Group Ltd. It is widely applied for simulating manufacturing processes

to predict system performance and support the factory planning optimisation [195]. It can

model the different elements in the aspect of discrete elements (e.g., parts, machines, vehicles,

tracks, etc.) and continuous elements (e.g., fluids) and simulate their working status, including

busy, processing, idle, blocked, set-up time, and waiting for labour. Moreover, via the “Object

Linking and Embedding (OLE) Automation Server”, the WITNESS software can be controlled

by external optimisation engine by using WITNESS Commands Language (WCL).

2.5 Chapter summary and research gap

In this chapter, the application of AGVs on the shop floor has been reviewed. The literature

review shows that the applications of AGV systems have rapidly increased for materials han-

dling. It indicates the importance of the integration of an AGV system into shop floor logistics,

production process planning and scheduling, and manufacturing performance optimisation.

Furthermore, the AGV scheduling and planning methodologies have been discussed and com-

pared critically in the context of offline, online and, especially, simulation-based methods. The

literature review shows that, in the last decade, many AGV suppliers and manufacturing com-

panies have researched the integration of AGVs with manufacturing systems by developing the

fleet manager, scheduling multi-AGV-based shop floor logistics.

Additionally, for improving the KPIs of the manufacturing process, for example, just-in-time,

OEE, energy costs, etc., the simulation-based method was considered to provide more accurate

optimisation results by simulating the physical shop floor manufacturing systems. In particular,

DT technologies enable duplication of a physical system into a virtual world by monitoring and

analysing the operational data. Thus, the DT technologies and the DT-based AGV scheduling

methods have been reviewed and categorised in Section 2.4.2. As one of the keys enabling

technology of the smart factory, the digital twin was widely researched from the perspectives of

3D modelling, product lifecycle management, factory pre-planning, and manufacturing scenario
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visualisation. Also, DES tools, as a cyber twin to implement the DT systems, are reviewed and

compared analytically in Section 2.4.3.

This chapter presents the current approaches for integrating the AGVs with manufacturing sys-

tems on the shop floor and has comprehensively compared the scheduling methods for multiple

AGVs. Moreover, DT-based AGV scheduling methodologies have been reviewed. This approach

will be adopted and implemented in this research for AGV-based shop floor logistics optimi-

sation. The research gaps identified through the literature review provided in this chapter are

summarised below:

1) Lack of a generic solution to support the integration of AGVs with the automation systems

on the shop floor. There is the need for a generic data-sharing platform that supports the

communication between the AGV system with work stations and management systems, such as

the PLCs, robots, energy monitors, sensors, shop floor database, MES and ERP. Moreover, this

solution should be able to support the operational information communication between the high-

level control systems (MES, ERPs, etc.), AGV-based shop floor logistics, and the work stations

in real-time.

2) Lack of a methodology to schedule the AGV-based shop floor logistics for raw materials

delivery, work-in-process delivery and finished products collection whilst considering the real-time

manufacturing process. Currently, the offline AGV scheduling methods are based on the static

factory environment, which cannot address unexpected events occurring in the manufacturing

process, such as new production orders, machine breakdowns, and product defects. Online AGV

scheduling methods mainly use mathematical models to describe the physical shop floor scenario,

with limitations inadequately duplicating the real-time manufacturing process.

Thus, the SAMS methodology, which will be described in the next chapter, is conceived by the

author to achieve the optimisation and integration of AGV-based shop floor logistics with the

manufacturing process.
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Chapter 3

Methodology

3.1 Introduction

The literature review has illustrated the challenges of the current shop floor logistics. They lack

a generic solution to support the integration of AGVs into the shop floor logistics, and they have

limitations in scheduling AGVs based on real-time manufacturing process data.

In this chapter, an innovative methodology, SAMS, is presented to enable seamless integration

of the AGVs system with the manufacturing process on the shop floor and carry out real-time

scheduling optimisation. The two main innovations and contributions of this methodology are:

1. Integration of AGV-based shop floor logistics with a manufacturing process. SAMS methodol-

ogy supports integrating multiple AGVs with shop floor manufacturing processes and associated

IT systems. The proposed system architecture allows communication among the AGV-based

shop floor logistics, automation systems (e.g., robotics, PLCs, autonomous stations, etc.), and

upper-level control systems (e.g., Advanced Planning and Scheduling (APS), MES, ERP, etc.)

through a central data-sharing platform to increase the flexibility, interoperability and traceabil-

ity of manufacturing process. Also, it can monitor the AGV status and real-time manufacturing

operation information, and supports intelligent decision-making by considering the system KPIs
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requirements.

2. DT-based real-time scheduling of AGVs for shop floor logistics. The SAMS methodology op-

timises and predicts the real-time manufacturing system performance by optimising the fleet size

of AGVs, scheduling of AGVs, and the charging plan of AGVs. A DES model is developed and

integrated with the proposed data-sharing platform to create a digital twin of the shop floor for

real-time manufacturing process monitoring and production performance prediction. Moreover,

through this digital twin model, SAMS can detect abnormalities, such the machine breakdown,

AGV breakdown, tools defects, and new customer requirements to re-generate scheduling strate-

gies for AGV-based shop floor logistics.

3.2 Methodology overview

There are many requirements of the smart factory, for instance, real-time manufacturing process

monitoring, flexible logistics systems, JIT production delivery and intelligent decision-making. To

meet these requirements, an innovative SAMS architecture, as shown in Figure 3.1, is proposed

to integrate the AGV-based shop floor logistics with manufacturing processes and high-level

management systems (e.g., MES, APS, ERP, etc.)
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Figure 3.1: Architecture of Smart AGV Management System

SAMS architecture consists of the M2M communication platform which enables the cyber-

physical integration, real-time interoperability among the work stations, AGVs, and system

controllers, the DT-based optimisation which supports the AGV delivery task scheduling, and

the smart decision-making which analyses and selects the optimised AGV schedules for the fleet

manager. In this way, the SAMS architecture is able to support shop floor logistics schedules by

analysing information of AGVs and automated stations and simulating AGV allocation scenarios.

The main innovation in the SAMS system is the development of the data transaction module and

the DT-based scheduling optimisation module. In the data transaction module, the OPC UA

Server is built to subscribe to the real-time operation information including the machine working

status, takt time, AGV delivery tasks and operation status. Also, the real-time information

can be stored in the database through the specific gateway (i.e., Structured Query Language

(SQL) gateway, IoT gateway and OPC Data Access (OPC DA) driver) for further data analytics.

Through this data transaction module, the AGV system can be integrated into the current

manufacturing system with a low engineering cost.

In the scheduling optimisation module, the DT model is created to capture the information from

the manufacturing system and duplicate the shop floor scenario for supporting the AGV-based
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shop floor logistics optimisation. Meanwhile, the DT model is able to feed back the optimised

AGV scheduling strategy to the physical shop floor and act on the workflow of shop floor logistics.

From this module, a group of AGV scheduling strategies are generated.

In the decision-making module, the operator is able to decide the best suitable scheduling strategy

from a list of optimised strategies for the AGV system based on the operator’s experience and

the manufacturing requirements. Take an example, there are three different scheduling strategies

provided by the DT-based optimisation module. Strategy-I aims to minimise the overall energy

cost of AGVs; Strategy-II aims to maximise the balance of all AGVs; and Strategy-III aims to

maximise the number of shipped products. If the priority objective of the shop floor for the

current shift is to maximise the number of shipped products, the operator is able to choose

Strategy-III manually through the HMI. Also, if the objective is changed in a different shift, the

scheduling strategy can be updated through the decision-making module.

To be clear, in the SAMS, the optimisation focuses on finding near-optimal scheduling strategies

which can support the smooth integration of AGVs with the manufacturing process to reach the

production KPIs, rather than searching for a global optimisation solution. During the running

manufacturing process, time is essential and searching for a global optimisation solution costs

time, and even it may cause the failure of optimisation because of the late reaction.

After applying the SAMS architecture on a shop floor, the real-time shop floor manufacturing

process optimisation is developed as a closed-loop. SAMS optimises the shop floor logistics along

with the whole manufacturing process to improve the production performance. The operation

mechanism is shown in Figure 3.2.

Figure 3.2: The operation mechanism of SAMS
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In this operation mechanism system, SAMS collects and monitors shop floor data to create a

digital twin environment. Also, SAMS allows analysing and predicting the physical production

performance and automatically adjusting schedules and configuration solutions. An overview of

the SAMS shop floor logistics schedule optimisation approach is depicted in Figure 3.3.

Figure 3.3: The running procedure of SAMS

The digital twin-based DES model simulates the manufacturing process and AGV-based shop

floor logistics to predict the production KPIs (e.g., the utilisation of AGVs and work stations, the

delivery JIT performance and the overall AGV energy consumptions) by analysing the different

decision parameters, including the number of AGVs, AGV dispatching time, and the AGV

charging threshold. If the predicted KPIs do not meet KPI requirements, the optimisation

engine will generate new schedules by changing decision parameters and pass to the DT model

for evaluation. Once the production KPIs meet with these KPIs requirements which are defined

by operators, the related decision parameter will send to shop floor MES and fleet manager of

AGVs by SAMS. The optimisation procedure starts when the real-time information is provided

by the physical shop floor.

To implement the SAMS methodology, three main modules are developed, namely the data

transaction module, the DT-based optimisation module, and the decision-making module, which

are introduced specifically in the following sections.
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3.3 Data transactional module

3.3.1 Introduction

In this section, the data transaction module is described. This module provides a real-time,

consistent and robust inter-communication among the physical shop floor manufacturing systems,

including work stations, AGVs, fleet manager, and IT/OT infrastructures, with the DT-based

scheduling optimisation module along with the whole manufacturing process. In this module,

the OPC UA server is used as a data-sharing platform to subscribe the operation information

from shop floors and publish the optimised schedules for AGV systems and shop floor MES. The

data transaction module as a middleware supports the real-time shop floor operation information

monitoring for SAMS, which also enables the optimisation and integration of AGV systems with

the manufacturing process on the shop floor.

3.3.2 Framework of data transactional module

In the data transaction module, an aggregation server is developed by using the OPC UA protocol

to enable the data transaction between the cyber and physical systems. Using this aggregation

server, the physical devices can publish the real-time status to update operation information, and

the manufacturing IT system (e.g., MES, ERP and fleet manager of AGVs.) can subscribe to

the optimised scheduling strategies for shop floor logistics scheduling and manufacturing process

optimisation. The OPC UA based data transaction architecture is shown in Figure 3.4.
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Figure 3.4: The framework of OPC UA-based data transactional module

The shop floor consists of various equipment (such as PLCs, robots, AGVs, smart sensors, RFIDs

and energy monitors), which publish their operation data to this OPC UA server. However, the

connection between the PLCs and OPC UA server is not direct. They usually require vendor de-

pendent engineering tools, like APIs, clients and hardware drivers. Specifically, drivers are needed

for various PLCs vendors, such as Siemens, Mitsubishi, Allen-Bradley ControlLogix Ethernet,

and Modbus Transmission Control Protocol/Internet Protocol (TCP/IP) Ethernet. For the fleet

manager, AGVs and collaborative robots, due to the limitation of the APIs, a middleware device

(e.g., NUC, Raspberry Pi and single-board Personal Computer (PC)) is necessary for developing

the OPC UA client to support the communication with the OPC UA server. To enable the

connectivity between these devices and the OPC UA server, in this thesis, the KEPServerEX-

based OPC UA server [196] is used to support data communication between PLCs, robotics and

IoTs on the shop floor. It is a simply OPC UA server that provides an interface to various

communication protocols.

The data required to carry out optimisation can be categorised into AGV related information,

work stations related information and products manufacturing information. The details of the

data are provided in Table 3.1, 3.2 and 3.3.
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Table 3.1: The AGV related information

Name Type Description Example

Number of AGVs Integer

The number of

AGVs on the shop

floor.

5 (units)

AGV loaded/ un-

loaded energy con-

sumption (AH/hr)

JSON String

The energy con-

sumption of AGVs

when it is loaded or

unloaded.

[{”AGV ID”:1,

”LoadedEnergy”:20.0,

”UnloadedEnergy”:7.0}]

AGV travel time

between stations(s)
JSON String

The time AGV

spends between

different work

stations.

[{”Start Station ID”: 1,

”Destination Station ID”: 2,

”Duration”: 40.5}]

AGV capacity

JSON String

The loading capac-

ity of each AGV
[{”AGV ID”:1,

”Capacity”: 1,

“ProductType”: “18650”,

“Loading unloadingTime”: 10.0,

”BatteryCapacity”:120.0,

”IdleEnergy”:5.0,

”ChargingRate”:35.0}]

AGV idle en-

ergy consumption

(AH/hr)

The energy con-

sumption of AGVs

when it is idle.

Battery capacity of

AGV (AH)

The maximum

battery capacity of

each AGV

AGV loading/ un-

loading time (s)

The time AGV

spends on load-

ing or unloading

products.

AGV Charging rate

(AH/hr)

The charging rate

of each AGV
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Table 3.2: The work stations related information

Name Type Description Example

Number of work

stations
Integer

The number of

work stations on

the shop floor

20 (units)

Map of station type

and ID
JSON String

Define the function

of every work sta-

tions

{Station:[ {” Type” : ”Welding”,

” ID” : 1}, {” Type” : ”Assembly”,

” ID” : 2} ]}

Cycle time of work

stations (s)
JSON String

The time of work

station spends to

manufacturing a

product.

{[{”ID” :1, ”CycleTime” : 80.5,

”Status” : ”Idle”},
{”ID” : 2, ”Cycle” : 50.9,

”Status” : ”Busy”}]}
Status of work sta-

tions
JSON String

The status of work

stations, including

idle, busy, block,

breakdown.
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Table 3.3: The products manufacturing related information

Name Type Description Example

Order Pool JSON String
The order queue

from MES.

{[{”Order ID”:1, ”Product-

Type”,18650},
{”Order ID”:2, ”Product-

Type”,26650}]}

Process Recipe JSON String

The sequence to

manufacture a

product defined by

MES

{Recipe:[{”ProductType” :

”18650”, ”StationType”: ”Lega-

cyLoop”,”sequence”:1},
{”ProductType” : ”18650”,

”StationType”: ”Launch”, ”se-

quence”:2},
{”ProductType” : ”18650”,

”StationType”: ”Weld-

ing”,”sequence”:3}]}

The AGV related information is fed to the OPC UA through Modbus TCP/IP protocol and

REST API over Hypertext Transfer Protocol (HTTP) from the fleet manager and individual

AGVs, and the work stations related information is collected from the station PLCs. The prod-

ucts manufacturing related information, such as the order pool and the process recipes, are ac-

cessed from MES. The optimised solution, such as the prioritised order, AGV delivery schedules

and charging plans, are published to fleet manager and shop floor MES via this OPC UA-based

data transaction module.

Furthermore, to comprehensively analyse the shop floor manufacturing data, predict the pro-

duction KPIs, such as the delivery JIT, utilisation of AGVs and work stations, and the overall

energy consumption, a database based on the Microsoft (MS) SQL server is built in the data

transaction module to store these shop floor historical operation data. The AGV, work sta-

tions and products order related historical and real-time information are stored in this database

by using JavaScript Object Notation (JSON) formatted payload and following pre-defined data

types which are shown in the above tables. Moreover, these historical data are used to verify

the accuracy of the DES model. Specifically, with the recorded operation information such as
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the AGV delivery schedules, work station cycle times, and AGV energy consumption, the DES

model is able to predict production KPIs. Afterwards, the recorded production KPIs and DES

predicted results can be cross-checked to validate the DES accuracy.

The data transaction module enables real-time operation information monitoring and historical

data storage. Thus, to convert the data between different communication protocols, the data

transaction module is implemented with: 1)a REST API to publish the AGV missions including

delivery tasks and charging threshold to its fleet manager. 2) an Open Database Connectivity

(ODBC) interface that allows creating a connection with the MS SQL server. 3) an OPC UA

client to subscribe to the updates from the OPC UA server and publish the changes to other

SAMS modules.

In summary, this OPC UA-based data transaction module works as an intermediate layer to

connect the shop floor manufacturing systems with the optimisation module. In this way, It can

collect and monitor the real-time shop floor operation information for the DT-based optimisation

module to optimise the shop floor logistics. Moreover, it can transfer the optimised logistics

schedules and order sequences to the fleet manager of AGVs and MES to keep the manufacturing

process productive and efficient.

3.4 DT-based optimisation module

3.4.1 Introduction

This section presents the DT-based optimisation module. The aim of this module is to optimise

the AGV-based shop floor logistics during the manufacturing process by simulating and analysing

the shop floor manufacturing systems.

In this module, the DES-based simulation modelling software is used to create a DT model of the

shop floor environment for simulating and predicting the production process and KPIs, such as

the utilisation of AGVs, delivery JIT performance and energy consumption. Moreover, a hybrid

optimisation method combining an NSGA-II algorithm and a DES model is implemented to find

the suitable logistics schedules and the best AGV charging threshold. The framework of this
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optimisation module is depicted in Figure 3.5.

Figure 3.5: The framework of the optimisation module

The optimisation module employs the DT technology to replicate the physical shop floor man-

ufacturing process and support the scheduling decision-making, such as raw material delivery

schedules, work-in-process product delivery schedules and finished goods collection schedules.

This module is composed of three main components: data analysis, process simulation and shop

floor logistics optimisation. These three parts are integrated seamlessly to provide near-optimal

scheduling strategies by monitoring, analysing and simulating the real-time manufacturing pro-

cess.

3.4.2 Data analysis

The data analysis section collects the real-time operational data from the shop floor, analyses

their distribution trend, and feeds them into the process simulation section and optimisation

section for real-time shop floor logistics optimisation. The data analysis section collects the shop

floor historical data from the database located in the data transaction module. This data is

used to analyse the distribution trend of work stations cycle time and the energy consumption

of AGVs which are applied to generate the DT model of the shop floor manufacturing system in
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the process simulation section.

To subscribe to the real-time information from AGVs and work stations on the shop floor, the

data analysis section needs access to the OPC UA server located in the data transaction module.

A python-based OPC UA client is created in the data analysis section. At the same time, a

subscription mechanism is built up to monitor the updates of AGV information including the

running status, charging status and energy consumptions, and the updates of work stations

status including cycle time and working status, as well as the changes of line-side buffer status.

Also, a python-based SQL client is developed to collect the shop floor historical data from the

database established in the data transaction module. In the data analysis section, the one-sample

Kolmogorov-Smirnov Test(KS Test) [197] has been used to assess the distribution trend of these

data. The one-sample KS Test is a nonparametric test to analyse the relationship between

the hypothesis Cumulative Distribution Function (CDF) and the data set CDF. For instance,

based on the historical distribution trend of machine cycle time, AGV energy consumptions

and charging rate, they are analysed to follow a normal distribution. As a result, the data

analysis section combines the real-time and historical data to predict the distribution trend of

the machine cycle time, AGV energy consumptions and charging rate during the manufacturing

process. Then, the data analysis section feeds this predicted operation information, including

AGV operational data, order information and machine operational status, into the DT model.

To update the real-time and predicted manufacturing process information for the DT model,

a python-based ‘OLE Automation Controller’ is created. Thus, the data analysis section can

provide real-time manufacturing information, including the process information and system in-

terruptions, to keep the accuracy of DT simulation.

Meanwhile, the data analysis section monitors the operation information of the shop floor by

subscribing to the OPC UA server during the manufacturing process. Once a machine or AGV

breaks down, the abnormalities can be detected and then the data analysis section feeds the

changes into the DT model to update the digital environment. Also, when MES generates a

new product order list, the data analysis section can send it to the optimisation section for

re-scheduling shop floor logistics to improve the production KPIs like JIT performance, energy

consumptions and utilisation of working stations.
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3.4.3 Optimisation problem description

In this section, a battery pack assembly line scenario is carried out to explain the optimisation

problem. In this scenario, the raw materials and work-in-progress products are transported

between stations by multiple AGVs following the specific manufacturing recipes. It is notable

that each product should be passed through every station, which is instructed by the battery

pack assembly recipe. It is presumed that each product has a requested arrival time for every

work station. Thus, the JIT means a product has been delivered to the right work station at

the requested time without earliness or lateness. The two main objectives of real-time AGV

schedules optimisation are: 1) to maximise the performance of JIT (i.e., minimise the error of

earliness/lateness); 2) to minimise the overall AGV energy consumptions.

A schematic diagram of the battery assembly is illustrated in Figure 3.6. This scenario consists

of five stages workstations: 1)Station I, where the battery pack frames are placed initially by

an operator; 2)Station II, the battery cells are assembled into a pack by using industrial robots

connected via a conveyor system; 3) Station III, the battery pack is welded at this station; 4)

Station IV, the battery pack is inspected for quality check by a camera-based vision system; 5)

Station V, the battery pack is packed and stored at this station. All the AGVs are waiting at

the Parking Area for new delivery tasks. In the AGV recharging procedure, the AGV need to

drive to the charging station once the battery level is lower than the threshold. Additionally,

AGVs park at the Parking Area after completing the last delivery task. The empty battery packs

are delivered by AGV from Launch Station and are assembled through each station following

the pre-define assembly recipe until they are delivered to Packing Station. The robotics insert

the battery cells at Legacy Loop, and once the battery cell runs out, the AGVs are requested

to deliver a new pack of battery cells from the warehouse. The battery packs are collected

and transported to the next station via AGVs, depending on the schedule generated by the

optimisation module. For the AGV travelling in the shop floor area, the working area map is

pre-defined in the AGV control system, and the collision-free routing is continuously supervised

and planned by a control system embedded in the AGV system.
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Figure 3.6: A schematic of battery assembly line model

3.4.4 Optimisation problem formulation

The explanation of mathematics notations for the shop floor logistics problems is given in Ta-

ble 3.4
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Table 3.4: The list of notations

Notation Description

Sets

S Set of work stations

T Set of tasks

N Set of AGVs

Indices

s Index of work station, s ∈ {1, 2, ..., S}

t Index of production task, t ∈ {1, 2, ..., T}

n Index of AGV, n ∈ {1, 2, ..., N}

Parameters

Qno The weight of AGV n without load

Qijnt The weight of AGV n with loads,

when travels between station i and j for task t

α Earliness cost penalty coefficient

β Lateness cost penalty coefficient

PTts Processing time of task t at working station s

Ci Delivery completion time of task t

Ri Delivered request time of task t

Sts Starting time of task t at working station s

Dts Completion time of task t at working station s

disij Distance between work station i and j, also, i ̸= j

rt Release time of the task t into the system

Decision Variables

Mts 1 if work station s working on task t, otherwise 0

Xijnt 1 if AGV n travels between work station i and j

for task t, otherwise 0

The two main objectives functions are considered in this mathematical model, defined as below:
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• Objective function 1: to minimise the cost of total AGV delivery earliness (i.e., the time of

AGV waiting at the working station because of the delivery early arrival) and lateness (i.e.,

the time of working station waiting for the material because of the delivery late arrival).

f1 =

|T |∑

i=1

α ·max{0, Ri − Ci}+
|T |∑

i=1

β ·max{0, Ci −Ri} (3.1)

In the formulation, the earliness and lateness penalty cost vary in the different scenarios,

and the values are decided based on the situation and the KPI requirements of the man-

ufacturing system. However, in general, the lateness has more impacts on manufacturing

performance because it may stop the overall production process.

• Objective function 2: to minimise the overall energy consumption of AGVs, and it is

considered via the execution states and travelling distances. The formulated as below:

f2 =

S∑

i=1

S∑

j=1

T∑

t=1

N∑

n=1

disijXijntF (Qno +Qijnt) (3.2)

Where F (Qn0 +Qijnt) means the energy consumption rate relationship with loads of AGV

at a unit travel distance.

To describe constrains in the shop floor logistics and assembly process, the objectives are bound

by the following constraints:

St(s+1) ≥ Dts, t = 1, ..., T, s = 1, ..., S (3.3)

Sts − S(t−1)s ≥ PT(t−1)s, t = 1, ..., T, s = 1, ..., S (3.4)

St1 ≥ rt, t = 1, ..., T (3.5)
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max{
T∑

t=1

Xijnt} = 1, i = 1, ..., S, j = 1, ..., S, n = 1, ..., N (3.6)

Xijnt,Mts ∈ 0, 1,i = 1, ..., S, j = 1, ..., S, t = 1, ...T, s = 1, ..., S, n = 1, ..., N (3.7)

In these constraint equations, Constraint (3.3) ensures that, for an individual task, the task

cannot be started before it has been completed in the previous station. Constraint (3.4) ensures

that a machine can only process one task at a time. Constraint (3.5) enforces that, for any task,

the first assembly process only can be started after the raw product has been delivered to the

shop floor. Constraint (3.6) emphasises that an AGV can only execute one delivery task at a

time. Constraint (3.7) shows the binary nature of decision variables.

3.4.5 Optimisation problem assumptions

The assumptions made to carry out optimisation are listed below:

• The manufacturing recipes are pre-defined in the shop floor database, and AGV follows

the recipe to deliver products or materials.

• The product order information is continuously published to the optimisation module in

real-time.

• A machine only can process one job at the same time.

• Considering the fast charging period and the lifetime of the AGV battery, the charging

threshold of AGV has to be assigned between 20% to 80%.

• AGV loading capacity is fixed and limited.

• The AGV fleet has enough capacity to cover all delivery jobs.

• The AGV cannot be requested when the remaining battery level cannot support the AGV

to complete the new task and travel back to charging stations.

• The AGV only can execute one delivery job at a time.
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3.4.6 Process simulation

In the scheduling optimisation module, a process simulation section is developed to duplicate the

physical shop floor environment using digital twin technology. The process simulation section

simulates the shop floor manufacturing process by combining the real-time operation information

with a DES model, which provides an opportunity to replicate and analyse the complex shop

floor logistics and production processes, especially for the prediction of manufacturing system

KPIs.

Manufacturing KPIs are a group of quantifiable metrics that manufacturing companies usually

use to assess their overall manufacturing performance [198]. Commonly used shop floor KPIs in-

clude the utilisation of AGV, utilisation of work stations, energy consumption, workload balance,

JIT performance of shop floor logistics, finished product quality, etc.

In the process simulation section, the DT model of the physical manufacturing process is created

using the DES tool (i.e., WITNESS Horizon). It provides predicted KPIs based on the real-time

production process information passed by the data analysis section. These KPIs are fed to the

optimisation section to carry out schedule optimisation by optimising AGV dispatch time and

the charging threshold of AGVs.

The information required to develop the DES model is shown in Figure 3.7. The system configu-

ration parameters include: i) number of work stations; ii) number of AGVs in shop floor logistics;

iii) distance between different work stations, AGV parking area, charging stations and shop floor

warehouse; iv) mapping of work station and job types; v) manufacturing recipes. These parame-

ters are pre-defined in the simulation model. The real-time manufacturing process data include:

i) cycle time of each work station for various product variants; ii) status of each work stations,

(e.g., breakdown, execution and idle); iii) AGV travel time between different work stations; iv)

energy consumption rate of AGVs during different states (i.e., idle, loaded and unloaded); v)

charging rate of AGVs; vi) order pool from MES. These real-time operation information are

constantly updated from the shop floor through the OPC UA server whose data scan rate is up

to 100Hz and are fed to the DES model after being processed by the data analysis section.
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Figure 3.7: The information details for the DES-based DT model

The real-time operational information fed to the DES model and the simulation of the physical

manufacturing process significantly increase the accuracy of the performance prediction. To

predict the process data, like the cycle time of work stations, energy consumption and charging

rate of AGV, the historical and real-time data from the database (via data transaction module)

are analysed by the data analysis section. For example, the cycle time of the work station is

analysed following a normal distribution curve [199], and the distribution parameter (i.e., mean

and standard deviation) is calculated to predict the cycle time which is updated to the DES

model.

To evaluate the performance of the simulated shop floor manufacturing process, the KPI evaluator

is implemented through a group of equations, shown in Table 3.5:

Table 3.5: The KPIs for optimisation

KPIs Equations Description

Shipped

products

Number of finished products −
Failed products

The total number of good

products.

JIT cost of

shop floor lo-

gistics

Referred from Equation (3.1)

The cost of JIT with con-

sideration of earliness and

latenes.

Energy con-

sumption of

AGVs

Referred from Equation (3.2)

The total energy con-

sumption of AGVs under

various actions.

Once the simulation of the DES model is completed, these equations are triggered to calculate
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the KPIs of this simulated process, and these KPIs are published to the optimisation section for

further evaluation and optimisation.

3.4.7 Optimisation section

3.4.7.1 NSGA-II-based optimisation method

The meta-heuristic based optimisation algorithm is widely used in the scheduling problem [200].

The NSGA-II [201], an evolutionary optimisation algorithm, is developed based on GA [202]

and NSGA [203]. It aims to solve multiple objective problems with an acceptable computational

complexity (O(MN2), where M is the number of objective and N is the size of population).

NSGA-II was proposed in 2002 by Deb et al. [201] with a fast computational and elitist ca-

pability. Also, NSGA-II shows better performance when solving several optimisation problems,

especially a two-objective optimisation problem, compared to other multi-objective evolutionary

algorithms (MOEAs). NSGA-II has been applied in many manufacturing scheduling problems

recently to find the near-optimal or optimal solutions efficiently [142, 204–210]. For example, Ak-

bar and Irohara [205] presented a modified NSGA-II variant by using different decoding schemes

to minimise the overall makespan and maximise the balance of the workload. They concluded

that the NSGA-II is the fittest algorithm to solve the scheduling problems compared to other

methods, like SPEA2. Also, Souier et al. [210] applied NSGA-II into an AGV real-time routing

problem in FMS to maximise system reliability and minimise system deadlocks considering the

workload and machine utilisation. The authors claimed that NSGA-II provided better perfor-

mance in routing optimisation compared with that of classical GA. Similarly, Bandyopadhyay

and Bhattacharya [211] proposed that NSGA-II could be used for machine schedules to address

three objectives: 1) minimise the tardiness costs; 2) minimise the deterioration costs; 3) minimise

the overall makespan. Their simulation results showed high efficiency of NSGA-II. Yusoff et al.

[212] presented a summary of NSGA-II advantages in the machine’s operations, including the

traditional and modern machine operation, and concluded its reliable capability of simultaneous

multi-objective optimisation.

Please note, the DES software provides a built-in optimiser which tests the different parameter

changes of the model. And it can indicate the optimisation solution based on the objective
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function from the model builder. However, some of the built-in optimisers use an exhaustive

algorithm to find the best solution, which causes a large compute complexity in a large-scale

system. And most of the built-in optimisers could not handle multiple-objective optimisation.

The optimised results have to be analysed by external data analytics software. Moreover, the

built-in optimiser and the DES model have to be run on the same PC. Thus, the optimiser

cannot be executed parallelly in another powerful PC or server. It could limit the efficiency of

the optimisation process in a large-scale shop floor manufacturing system.

Therefore, in the optimisation section, the NSGA-II is selected to maximise the JIT performance

of logistics and minimise the overall AGVs energy consumption by optimising dispatch time

of AGVs for material delivery/collection and charging threshold. Taking the complexity of

shop floor manufacturing operations into consideration, the mathematical model cannot fully

reflect shop floor scenarios. However, the DT-based DES model can duplicate the shop floor

environments and predict the production KPIs. Therefore, in this thesis, the fitness functions

of NSGA-II are calculated by using a DES-based process simulation engine. The flowchart

for generating fitness function results is shown in Figure 3.8. In the initialisation step, the DES

model is set up with pre-defined manufacturing process parameters and shop floor manufacturing

process scenarios. Once the initial run is executed, the system configuration parameters and

updated real-time machine and AGV information are fed into the models. When the scenario

simulation is complete, the predicted cost of JIT and energy consumptions of AGVs are calculated

by the DES-based fitness function and then these KPIs are returned to the optimisation section

for the current generation evaluation. The overview of process steps for the modified NSGA-II

optimisation method is given in Figure 3.9.
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Figure 3.8: The workflow for DES-based fitness function
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Figure 3.9: The workflow for modified NSGA-II
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3.4.7.2 Proposed NSGA-II

The NSGA-II-based optimisation mechanism is presented in this section for scheduling AGV

dispatching time and charging thresholds. In the proposed algorithm, the fitness functions are:

1) The cost of JIT delivery. 2) The energy consumption of AGVs. These function results are

obtained from the DES-based process simulation section. The pseudo-codes for obtaining the

fitness function results are shown in Table 3.6.

Table 3.6: The pseudo-codes of the fitness function

Algorithm 1 Obtain the manufacturing system KPIs from the DES-based process simula-

tion engine

Input: The real-time manufacturing process information and the decision variables

Output: The manufacturing process KPIs: cost of JIT and cumulative energy consumption

of AGVs

Pseudo-code of the Fitness Function

1: Initialise the system parameters: cycle time, AGV travel time, energy costs

2: Update the decision variables: AGV calling time of each station, charging threshold

3: Starting the DES simulation

4: while (the DES simulation is running) do

5: Check the DES simulation status

6: end while

7: f1 < − cost of delivery JIT

8: f2 < − energy consumption of AGVs

9: Return f1, f2

The algorithm variables and constraints, including the decision parameters, the variable number,

boundaries, fitness functions and termination conditions are defined. The initial population is

then generated based on pre-defined constraints and is evaluated using fitness functions. The

parents are selected by sorting the non-domination Pareto ranking and crowding distance. Fol-

lowing this, the new generation is reproduced by the selection, elitism, crossover and mutation
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processes. The KPIs of the manufacturing system, like the cost of JIT delivery and energy

consumption of AGVs, are the objectives to be optimised. The algorithm is terminated once

reaching the target value is reached. Also, the algorithm stops reproducing when the maximum

number of generations is reached. The pseudo-code of the proposed NSGA-II algorithm is shown

in Table 3.7.

Table 3.7: The pseudo-codes of the proposed NSGA-II

Algorithm 2 Proposed NSGA-II

1: Initialise the optimisation parameter, algorithm variables and constraints.

2: Initialise the populations.

3: Evaluate the initial populations by using Algorithm 1

4: while (fitness function results do not reach the stopping conditions)

or (iteration < MaxGeneration) do

5: Children < − Population(select, crossover, and mutation)

6: Score (Population, Children) by using Algorithm 1

7: Non-domination front ranking and crowding distance sorting

8: Selected < − Select the parents from sorted Pareto Front and Crowding distance

9: Evaluate the Selected Population fitness by using Algorithm 1

10: end while

11: Output the best solutions: AGV dispatch time and charging threshold of AGVs

3.4.7.3 Initialising Algorithm Parameters

Each generation is split into two segments: the AGV dispatch time and charging thresholds of

AGV. Figure 3.10 shows two examples of the population structure.
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Figure 3.10: Two examples of the population structure

In example 1, the manufacturing system includes four local battery cell buffers, and example 2

consists of six local battery cell buffers. The left-hand side array illustrates the AGV dispatch

time for each buffer depending on its remaining battery cells, for example, in this scenario, 80

indicates that the first local battery cell buffer requests a new pack of battery cells delivery when

only 80 battery cells are left. The right-hand side array represents the charging thresholds for

AGV, which comprises two parts: 1) Alert level, for instance, 0.3 means when AGV battery

percentage is lower than 30%, the AGV is called to re-charge if the charging station has free

space, otherwise the AGV can carry on its delivery tasks. 2) Alarm level, for example, 0.2 means

when AGV battery percentage is lower than 20%, the AGV must be re-charged and cannot carry

on any new delivery task.

3.4.7.4 Initialising population

The first population is created by using a uniform distribution based random generator. The

first part of the population are consecutive integers starting from 1, and the population size is

considered by the number of local buffers. The second part contains two non-integer values,

and they are between 0.2 and 0.8. Also, the Alert level is always higher or equal to the Alarm

level. The NSAG-II algorithm constraints, including the number, the types and the boundaries

of variables, are set up depending on these conditions.
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3.4.7.5 Generate the child population

The new generation is created using selection, crossover, and mutation [201].

1) Selection: The parents are selected using the stochastic universal selection algorithm (see

[213]) to produce the child population.

2) Crossover: In this step, the two groups of selected parents are combined to generate the

next generation. The crossover genes are chosen randomly from parents, and the coordinate

of these genes are the same in both parents. The crossover fraction decides the number

of crossover children population. Here is an example to show the crossover strategy in

Figure 3.11.

Figure 3.11: The example of crossover strategy

3) Mutation: The mutation procedure keeps genes diverse while producing offspring. The

Gaussian distribution ([214]) is used for generating a mutation child population from par-

ents’ genes. Figure 3.12 shows an example of a mutation.
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Figure 3.12: The example of mutation strategy

3.4.7.6 Fast non-dominated and crowding distance sorting

In this step, all objective results of the current population are calculated, and the non-dominated

[215] solutions are considered.

1) The population and child population are combined and scored for all fitness functions.

2) Identify all different Pareto fronts. The lower rank Pareto front solutions are better or

equal to those in the higher rank Pareto fronts. Moreover, the lower rank Pareto front

has a higher chance to be selected as the new parent population. An example of Pareto

front-ranking is shown in Figure 3.13.
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Figure 3.13: An example of Pareto front-ranking

3) Select the population from the lower rank Pareto front solutions until the population size

is over the limitation. Then, reduce the population of the last selected Pareto front by

crowding selection, for instance, in Figure 3.13. The Pareto front 1 has the lowest rank,

and Pareto Front 3 has the highest rank. There are four solutions in Pareto front 1, four

in Pareto front 2, and five in Pareto front 3. If the population size is ten, The Pareto front

1 and the Pareto front 2 are selected as new parents. The Pareto front 3 population will

be reduced by using crowing distance sorting to meet the population size requirement.

4) Crowding Distance Sorting. Firstly, the closeness of each solution to its nearest neighbours

in the same Pareto front is sorted. For example, in Figure 3.13, the closeness of solution i

in Pareto Front 3 is:

id =

n∑

j=1

(|f i+1
j − f i−1

j |) (3.8)

where, id is the closeness of individual i, f i+1
j and f i−1

j are fitness function (fj) values

of the individual i + 1 and i − 1. While, for the individual at the extreme position, the

crowding distance is assigned as infinity.

Then, these closenesses are sorted. To keep the diversity of the population, the selection
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starts from the individual with a higher crowding distance until the population size is

reached.

5) Elitism. The new population is generated from selected the Pareto front with lower rank

and individuals with higher crowding distance. The elitism schema is described in Fig-

ure 3.14.

Figure 3.14: The elitism schema of the NSGA-II [201]

3.4.7.7 Evaluation and iteration

The generated population are evaluated by the fitness function that is calculated using the

DT model. Producing the new generations is terminated when the production KPIs meet the

manufacturing system requirement or the generation number reaches the pre-defined maximum

generation.

3.4.8 Communication structure of these three sections

In the optimisation module, the AGV-based shop floor logistics deliveries are scheduled or re-

scheduled by combining an NSGA-II algorithm with a DT model considering the real-time man-

ufacturing process. Firstly, the process scenarios and system configuration parameters are con-

figured in the DES tool to create the production process simulation model. Secondly, the initial
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schedule plans and real-time shop floor information are updated in the DES model. Then, pre-

dicted production KPIs are generated using the input schedules and sent to the optimisation

section. An NSGA-II algorithm is used in the optimisation section to optimise the shop floor

logistics performance by maximising the JIT delivery performance and minimising the energy

consumption of AGVs simultaneously.

Additionally, when an interruption happens during the manufacturing process, for instance, a

machine breakdown, AGV breakdown, or a new customer order occur on the shop floor, it is

updated into the process simulation section via the data analysis section. Then the process

simulation engine triggers the re-schedule mechanism by updating the DES model and optimi-

sation conditions to reduce the effects of the interruptions on the overall manufacturing process.

The data flow between the process simulation section and optimisation section is illustrated in

Figure 3.15.

Figure 3.15: The data flow between the process simulation and optimisation

The communication architecture for data sharing between these three sections is shown in Fig-

ure 3.16.
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Figure 3.16: The communication architecture between three sections

The DT-based DES model simulates the real-time shop floor production process and provides

the predicted production KPIs for the optimisation using OLE automation protocol [216]. The

OLE automation server transfers the factory configuration parameters, real-time production

process information, predicted KPIs and WCL commands between the process simulation and

optimisation. In the optimisation section, the traditional NSGA-II algorithm is modified by

integrating with the DT-based process simulation model to provide the optimised scheduling

strategies for Decision-making module.
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3.5 Decision-making module

The Decision-making module is the decision element of SAMS to analyse the optimised scheduling

strategies received from the optimisation module. It combines the system KPIs requirement or

operator’s advice to generate the final optimal schedule for controlling the AGVs delivery via the

fleet manager and feeding the manufacturing process plans into the system management through

the OPC UA server. The overview of the decision-making module is shown in Figure 3.17.

Figure 3.17: The overview of the Decision-making module

As shown in Figure 3.17, the decision-making module consists of three functional parts:

1) User interface creates the interaction between the operator and SAMS to enable access the

human advice for improving the manufacturing system performance;

2) Decision-making combines the requirement of KPIs and optimised schedules to generate a

suitable solution for AGVs and shop floor manufacturing systems.

3) Communication creates a connection with the fleet manager of AGVs and OPC UA server to

assign tasks for shop floor logistics and production processes. The details are explained below

session.
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1) User interface

Firstly, a dashboard panel is developed, it shows the real-time manufacturing process and schedul-

ing strategies generated from the optimisation module, including: 1) status of AGVs, 2) status

of work stations, 3) current KPIs of the overall manufacturing process, 4) the list of suggested

AGV scheduling strategies. This information update rate is set up to every 1 second, which can

help operators to understand the manufacturing process in real-time.

Secondly, a manual control panel is implemented in the user interface. The two features are

achieved in this control panel:

(i) The debug feature. The operator can manually manipulate the AGVs movement and

process the delivery tasks, including creating a new task, skipping and deleting existing

tasks for debugging the AGV-based logistics or production processes.

(ii) The scheduling suggestion feature. Based on the real-time manufacturing process and the

working experiences, the operator can manually select a suitable scheduling solution from

a list of scheduling strategies.

The functions of the user interface are shown in Figure 3.18

Figure 3.18: Functions of the user interface

2) Decision-making
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In the decision-making section, the ruled-based decision engine is created. The rule definition is

shown in Table 3.8

Table 3.8: The example of rule definition

Condition Action Description

A list of scheduling strate-

gies are generated

Select one optimal solution

for AGV systems

One suitable solution for AGVs

need to be selected.

User input is detected
Select one solution following

the operator instruction

The operator can select a suit-

able solution based on their ex-

perience.

User input timeout
Select one solution based on

defined KPIs requirements

The system will select one solu-

tion automatically.

One scheduling solution is

selected

Send the scheduling to the

AGV fleet manager

The scheduling will be encoded

to AGV tasks and sent to the

fleet manager.

The workflow for the decision-making is shown in Figure 3.19
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Figure 3.19: The workflow of decision-making

3) Communication

The communication part is implemented to handle the delivery message with the fleet manager

of AGVs and update the manufacturing process information with system management through

the OPC UA-based data transaction module.

Thus, the two-communication mechanism is applied in this part:

(i) REST API Client. The API of the fleet manager contains a large group of API end-
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points, which is designed by using the HTTP protocol to request the data or post a new

mission. Thus, a REST API client is implemented to connect with the fleet manager of

AGVs for posting the delivery task at the right time.

(ii) OPC UA Client. It enables communications between the decision-making module with

OPC UA server. This client publishes the optimised schedules for system management to

enable production traceability via the OPC UA-based data transaction module.

3.6 Chapter summary

This chapter presents a methodology to integrate and optimise AGV-based shop floor logistics

with the manufacturing process. Various functional modules of SAMS, including the data trans-

action module, optimisation module and decision-making module, are presented in detail. SAMS

is integrated with MES/APS and the fleet manager of AGVs to monitor real-time manufactur-

ing process information and provide scheduling strategies. In the SAMS, the delivery time and

charging threshold of AGVs can be optimised and be updated automatically when e.g. the pro-

duction demand change. The communication among SAMS, shop floor work stations and MES

is carried out using the OPC UA server. The interoperability of the OPC UA server allows

SAMS to track the real-time manufacturing process information, such as status of work stations,

distribution trend of work stations’ cycle time, the energy consumption of AGVs, tasks of AGVs,

and progress on production.

Furthermore, the hybrid of NASG-II and DT-based optimisation method is elucidated. The DT

model duplicates the physical shop floor manufacturing process by updating attributes of model

elements, and the NASG-II algorithm provides a multi-objective optimisation capability with an

acceptable computation complexity. The presented optimisation module generates a list of AGV

scheduling strategies considering the real-time manufacturing process to optimise the shop floor

JIT delivery and the overall energy consumption. Especially when the manufacturing system is

interrupted, a new group of delivery schedules can be re-generated from the optimisation section.

Alternatively, a human operator can choose an optimal scheduling strategy through the build-in

user interface and broadcasted system performance dashboard. Once the scheduling scheme is

decided, the delivery tasks will be assigned to the fleet manager of AGVs, and the updated
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schedule will be sent to MES.
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Chapter 4

Case Study

4.1 Introduction

In this chapter, the proposed SAMS methodology is validated through a case study. The aim

of the proposed methodology focuses on optimising and integrating the AGVs-based shop floor

logistics with the manufacturing process. The case study describes the implementation of the

proposed methodology into a battery assembly process. Then the scheduling of multiple AGVs-

based shop floor logistics, especially the dispatching time and charging threshold of AGVs, is

optimised by using the proposed methodology.

4.2 Case study background

This case study was implemented on the Integrated Manufacturing & Logistics (IML) demonstra-

tor built by the Automation Systems Group (ASG) in the International Manufacturing Centre

(IMC) engineering hall. It is used for demonstrating a cylindrical-cell-based battery pack as-

sembly process, including packing battery cells into modules, followed by battery pack assembly,

spot welding, and inspection. Also, the AGV systems are developed to execute the work-in-
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progress delivery and collection in this shop floor logistics. Thus, this system has the modularity

and reconfigurability to adapt to multiple automation stations for demonstrating Industry 4.0

based technologies, including CPS, DT, robotics, virtual engineering, PLC auto-code generation,

AGV-based logistics, and cloud-based engineering services. In this case study, the SAMS software

application integrates the AGVs with the automatic battery assembly process and optimises the

AGVs delivery schedules.

The overall battery assembly process contains five different types of work stations plus AGV-

based shop floor logistics:

1) Launch station. The battery assembly process starts from this station. Operators are in-

structed via HMI to assemble the trays and update RFID tags in preparation for the battery

assembly process. Once a pallet tray is placed on a trolley, it is ready to be delivered to legacy

loop through AGV;

2) Legacy loop. A roller-based conveyor system is used to transport the pallet passing through

four robot stations. The first two robot stations insert the battery cells for battery modules,

after which a pick-and-place unit fits the lids to modules, and then the modules are assembled

into battery packs using a collation robot;

3) Welding station. The robot in this station is fitted with a welding tool. Different welding

processes are performed depending on the battery pack’s RFID tag information;

4) Inspection station. A camera-based inspection head is mounted on this robot to analyse the

quality of the battery packs via visualisation. The station is shown in Figure 4.1;

5) Packing station. This stores the finished products;

6) AGV. MiR100-AGV, which supports the shop floor logistics, is shown in Figure 4.1. It provides

collection and delivery services for work stations.

The IML deployed various legacy and agile manufacturing systems, for example, conveyor system-

based tradition cellular manufacturing [217] and AGVs-based shop floor logistics.
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Figure 4.1: The inspection station

Figure 4.2: The overview of the IML demonstrator
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Two types of battery cells (i.e., 18560 and 26650) can be assembled into battery packs during the

battery assembly process. Each battery pack includes six battery modules, which are collated by

a robot in the legacy loop. Also, MiR100 AGVs are integrated to deliver/collect products between

work stations. They are differential-drive autonomous indoor vehicles and have the capability

of self-navigation, dynamic route plan and obstacle avoidance via SLAM-based navigation and

onboard sensors, such as laser scanners, odometry sensors, Inertial Measurement Unit (IMU)

and 3D cameras.

The layout of the IML is shown in Figure 4.2. The automated battery assembly process starts

from the Launch Station where the battery brackets are placed via a manual operator, then

the brackets are transported to the Legacy Loop where the battery cell is inserted, and the

battery module is assembled by robot stations. Once the battery module is assembled, they

are transported to the welding station for connecting battery cells and to the inspection sta-

tion for a final quality check. Finally, the battery pack are transported to Packing Station.

The process of the automated battery assembly in the IML has been recorded in the link:

https://vimeo.com/387503412?embedded=true&source=vimeo logo&owner=96799118.

During the battery assembly process, the proposed optimisation method is executed to optimise

the overall performance of AGV-based shop floor logistics. Specifically, the dispatch time of AGVs

for battery cells and pack delivery/collection, the charging threshold of AGVs are optimised

with consideration of the real-time battery assembly process information for improving the JIT

performance of shop floor logistics, minimising the overall energy consumption of AGVs and

maximise the number of shipped battery packs. The input and output variables of the proposed

optimisation module are shown in Figure 4.3.
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Figure 4.3: Input and output parameters of the optimisation model

4.3 Case study implementation

4.3.1 SAMS software application implementation

The SAMS software application and the database server are deployed on a PC with IntelR

CoreTM with 32GB RAM and I9 18-core 3.0 GHz processors. This PC is connected with work

stations and AGVs through a WIFI-enabled route. The data sharing between these elements is

shown in Figure 4.4.
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Figure 4.4: The information sharing of this case study

These elements are connected to the same local network, thus, the SAMS is able to subscribe

to the real-time shop floor logistics and manufacturing process information and to support the

AGVs-based shop floor logistics scheduling when necessary, which is detailed in Table 3.1, 3.2,

3.3. Also, the sequence of the communication between these elements is described in Figure 4.5.
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Figure 4.5: The Unified Modelling Language diagram

In this Unified Modelling Language (UML) activity diagram, the communication sequence of

SAMS and shop floor automation systems has been illustrated. To monitor the real-time battery

assembly process, the subscriptions between SAMS and work stations, AGV systems and shop

floor MES are created first. When the abnormality is detected by SAMS, it will trigger the

rescheduling process to generate a list of new scheduling strategies for AGV systems.

4.3.2 Database implementation

To store shop floor layouts, pre-defined process recipes and analysed real-time operation, infor-

mation of work stations, MES and AGV is stored in a SQL server-based database, the database

schema is shown in Figure 4.6.
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Figure 4.6: The database schema

Based on this schema, the SAMS database is created. Specifically, the cycle time of the work

stations and the energy-related information (including charging time, energy consumption rate) of

the AGV are used by the data analysis section to analyse the distribution trend. This information

will be fed into the DES model to simulate the real-time battery assembly process.

4.3.3 Real-time operational data collection implementation

The real-time operational data is collected through the KEPSeverEX-based OPC UA server.

The real-time operation information of the work stations (shown in Figure 4.7 and Table 4.1),

including work station status, actuator state, PLC status, safety information, AGV docking

information and RFID-based battery pack tracking data, and the AGV information (shown in

Figure 4.8), including the location, destination, running status and battery level are subscribed

by this server.
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Figure 4.7: The real-time data of work stations

Table 4.1: Key tags information of inspection stations

Tags Type Description

MES IS Pallet Request Bool The request signal from IS

MES IS Pallet Release Bool The release signal from IS

MES IS Acknowledge Request Bool Acknowledge signal from MES

MES IS Acknowledge Release Bool Acknowledge signal from MES

Trolley At Dock Bool AGV arrivals signal

Next Station Integer The next station for AGV

Global Part Status Integer Assembled battery pack status

Inspection Status Index Integer Inspection Station Status
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Figure 4.8: The real-time data of AGVs

In Table 4.1, the key tags information for the inspection station is shown. For the other work

stations (i.e. launch stations, legacy loop stations, welding stations, packing stations), similar

operational information is subscribed. In Figure 4.8, the tags of one AGV are illustrated, and the

same operational information from other AGVs are considered. For this real-time information

from the work stations and AGVs, the cycle time of stations, work status of stations, travel time

of AGVs, status of AGVs, energy consumption rate and charging rate of AGVs can be analysed

for simulating the real-time battery assembly process.

4.3.4 DES model implementation

In this case study, the WITNESS Horizon software [218] is used to duplicate the physical shop

floor manufacturing process and AGV-based shop floor logistics for generating predicted produc-

tion KPIs for the optimisation section. The WITNESS Horizon supports the process modelling,

analysis and optimisation, and can help the engineering cost-effectively pre-plan the shop floor

layout [219]. The WITNESS Horizon provides a user-friendly interface in which the operator

can customise the manufacturing environment and production process efficiently. Also, because

of the WCL [220] protocol, the system database, real-time data server and optimisation soft-

ware can interact with WITNESS Horizon software for better decision-making in the shop floor

planning and real-time logistics scheduling.

To build the DES model of the battery assembly process, the following assumptions are consid-

ered:

1) The shop floor layout and the work stations’ locations are fixed, which means route dynamic
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planning is not considered.

2) An AGV can only perform one delivery task at one time.

3) In this case study, the battery assembly process time was set to one single shift which is 8

hours of continuous operation.

4) In this case study, the two levels of charging threshold were specified for the AGVs. If the

battery percentage of AGV is lower than the alert threshold, it can carry on with a new task or

drive to the charging station depending on the station occupancy and demand list. However, if

the battery percentage is lower than the alarm threshold, the AGV is required to drive to the

charging station and cannot be assigned a new task.

5) For the energy consumption of AGVs, based on the current electrical price in west midlands,

per KWH electricity costs 19.6p.

The cost of energy = energy consumption of AGV ∗ 0.196 (4.1)

6) Both earliness and lateness of battery delivery could cause the energy waste of the work

stations and AGVs. Thus, the penalty of earliness and lateness (referring to equation 3.1) can

be set by considering the energy waste of work stations and AGVs. In this case study, the work

stations’ power is 4.4KW (220V and 20A) and AGVs’ power is 0.36KW (24V and 15A). Thus,

the cost of JIT is calculated:

The cost of JIT = earliness time ∗ 0.36 + lateness time ∗ 4.4 (4.2)

7) The cycle time of work station, the parameters of AGVs, including the travel time between

stations, energy consumption rate, charging rate, and unloading/loading time are predicted

through the combination of historical data in the database and the real-time information from

the OPC UA server.

8) This case study contains 4 launch stations, 4 battery cell buffers, 4 legacy loops, 4 welding

stations, 4 inspection stations, 4 packing stations, 6 AGVs and 4 charging stations. Please
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note, the cycle time of legacy loops is two to three times as long as other work stations, which

could cause an unbalanced workload at work stations. In this case study, the objectives are

focused on minimising the cost of JIT, energy consumption and maximising shipped battery

packs. Nevertheless, the overall workload balance of work stations will be considered in further

research.

The WITNESS Horizon-based DES model of the battery assembly process is shown in Figure 4.9.

Additionally, the KEPServerEX scanning rates are set up as 10ms for subscribing to the updates

of physical systems. Thus, it can inform the operational information changes to the DES model

for updating timely. In the DES model, the priority of the delivery task is designed based

on the recipe of the battery assembly process, which means the priority sequence of this case

study is packing station, inspection station, welding station, legacy loop, and launch stations. For

example, when the packing station and inspection station request one AGV at the same, this AGV

will be assigned to travel to the packing station firstly. It is notable that the simulation process

will terminate if the decision variables do not fit with the simulation during the optimisation

process, and the production KPIs and these decision variables will be neglected.

Figure 4.9: The WITNESS model of battery pack assembly process

In this figure, five stages of work stations are designed, including four Launch Stations (LS), four

Legacy Loops (LL), four Welding Stations (WS), four Inspection Stations (IS) and four Packing

Stations (PS). They are shown as blue blocks in the model. The AGVs are drawn in orange/black
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blocks and the green tracks are their travelling path. The “AGV demand list” which is on the

right side of the model means the real-time tasks for AGVs.

4.3.5 Optimisation model implementation

In the optimisation, the hybrid NSGA-II combines the NSGA-II algorithm and the DES-based

process simulation. The hybrid NSGA-II is run with the physical battery assembly process

concurrently to find the near-optimal AGV dispatch time for each work station. According to

Figure 4.9 and the layout of the shop floor, the configuration of the optimisation problem consists

of:

1) The number of decision variables: 22 variables are assigned, including different AGV dispatch

time for 16 work stations and 4 battery cell buffers, 1 AGV charging alert threshold and 1 AGV

charging alarm threshold.

2) The number of objectives: 3 objectives, including the number of the shipped battery packs,

the overall energy consumption of AGV (Equation 4.1)s and the cost of JIT (Equation 4.2) are

considered.

3) The number of constraints: 1 condition – the charging alert threshold needs to be constrained,

and it should be larger or equal to the charging alarm threshold.

4) The type of decision variables: The decision variables are separated into 2 groups. The AGV

dispatching time for each battery cell buffer is in an integer type, while the AGV dispatching

time for each work station are in a float type. The charging thresholds are the percentage of the

remaining battery in the AGV, they are in a float type.

5) The objective function: It is a function to control the DES model and collect the production

KPIs from simulation. In this function, the decision variables are transferred to the DES model

as model elements inputs.

6) The optimisation direction: maximise or minimise the objective functions.

7) The stopping criteria: the optimisation process terminated when it reaches the maximum
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number of generations which is set to 100 in this case study. A definition of the optimisation

model by using Python is shown in Figure 4.10.

Figure 4.10: The configuration of the optimisation problem

To define the objective function of the NSGA-II, the “Fitness Function” is created to set up

the parameters in the DES model, trigger the simulation and subscribe to the prediction KPIs

results. Firstly, the WITNESS client is defined to build the connection with the WITNESS

model, and the SQL client is created to enable data access from the SQL database. The codes

are shown in Figure 4.11.

Figure 4.11: The initialisation of the objective function

Then, the work station information including cycle time, working status and the number of work

stations are initialised through the data from the database and fed into the WITNESS model via

its client. The part of codes of work station information initialisation are shown in Figure 4.12.
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Figure 4.12: The initialisation of work stations information for the WITNESS model

After the work station information is configurated, the optimisation parameter including the

dispatching time of AGV for each station and the charging threshold will be updated into the

WITNESS model. The codes of the setup for the optimisation parameter are shown in Fig-

ure 4.13.
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Figure 4.13: The setup of optimisation parameters for the WITNESS model

Once the pre-setting step is completed, the WITNESS model will be triggered to start the

simulation. Meanwhile, the simulation status will be monitored to figure out when the simulation

is completed. Please note, in this study, if the simulation time is longer than 5 seconds, the

simulation will be terminated. The simulation usually takes 3 seconds, and the simulation time

could be longer than normal, due to the wrong combination of optimisation parameters. The

codes of this part are shown in Figure 4.14.
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Figure 4.14: The codes for starting and monitoring the simulations

When the simulation is completed, the predicted KPIs, including the cost of JIT, the energy

consumption of AGVs and the number of shipped products, will be collected and returned to the

NSGA-II optimisation function block. Also, the relationship between the charging alert threshold

and the charging alarm threshold will be returned as a second parameter for comparison with

constraint conditions. The data analytics after the simulation is shown in Figure 4.15.

Figure 4.15: The data analytics after the simulation
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Specifically, the simulation of the automated battery assembly process can be impacted by the

information of work stations, AGVs, and the combination of the dispatching time of AGVs for

each station. Therefore, it is important to create an error handler to deal with the abnormality

in the objective function. The codes are shown in Figure 4.16.

Figure 4.16: The error handler

In this error handler, the objective function will return the infinity value (Note: it is a large

number, 999, in the code) for the cost of JIT and energy consumption of AGVs, and 0 for the

shipped battery pack. And -1 will be returned for comparison with the constraint condition.

Because in the definition of the optimisation problem, the constraints are defined to be greater

than 0. Thus, this group of results will be neglected when choosing feasible solutions.

When the integration of the proposed method and physical process is completed, the optimisation

module can update the real-time shop floor information into the DES model, and start searching

the near-optimal AGV delivery schedules by cross-checking with the predicted production KPIs.

As soon as the delivery schedule and AGV charging plans are decided, they are transferred to the

MES and fleet manager of AGVs. As a result, a closed-loop-based optimisation system is built

to minimise the logistics cost of JIT, the overall energy consumption of AGVs and maximise the

number of shipped battery packs. The optimisation working flow of the proposed methodology

is summarised in Figure 4.17.

114



Figure 4.17: The working flow of the proposed methodology

4.3.6 Decision-making implementation

The battery assembly process contains five types of standalone work stations, and their requests

are analysed and responded simultaneously. The overall process recipe, shown in Figure 4.18,

is complex and challenging to follow without the proposed methodology. However, in this case

study, the proposed method with interoperability and real-time decision-making capability plays

a significant role in supporting the integration of AGV systems with the battery assembly process.
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Figure 4.18: The workflow of the battery assembly process

To follow this battery assembly process recipe, shown in Figure 4.18, the JSON format-based

logic rules are defined, shown in Figure 4.19.

116



Figure 4.19: JSON format-based logic rules

4.3.7 User interface implementation

The user interface is a part of the decision-making module displayed on a monitor which is

connected to the SAMS software application-embedded PC. Through this user interface, the

operator can monitor the real-time battery assembly process and shop floor logistics status

through the “OPC Variable”, shown in Figure 4.20. The left side shows the information of

the stations and AGVs. The right-side circles mean the current state of its linked information.

Additionally. the red circle is false, and the green circle is true. For example, the “Legacy Loop

Pallet Trolley Request” is a battery trolley request signal from Legacy Loop, and the red circle

shows the current state is false, which means the Legacy Loop does not request the battery

117



trolley.

Figure 4.20: The battery assembly process monitoring panel of the user interface

Furthermore, the operator can manually control the AGVs for training or debugging the AGV-

based shop floor delivery service via the “AGV” section, shown in Figure 4.21. In the “AGV

Manual Control” session, the name of the AGV, actions, and destinations can be selected sepa-

rately to manually operate the AGVs. Also, the current state of AGV, including current position,

destination, allocated status, loading status, availability and in-working status, can be monitored

in this section.
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Figure 4.21: The manual control panel for shop floor logistics

4.4 Case study results

4.4.1 Pre-phasing data analysis result

In the data analysis section, the real-time operational information of each work station, including

its PLCs, buffer sensors, RFIDs and actuators, are subscribed and analysed to understand its

work status and cycle time. For example, as shown in Figure 4.22, the real-time operational data

of the inspection station are subscribed. The data analysis section calculates its cycle time and

stores this in the database.
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Figure 4.22: The process of analysing the cycle time of the inspection station

In Figure 4.23, the histograms of the cycle time for the inspection station and welding station

is shown. A normal distribution is concluded to represent the cycle time of these stations based

on the historical data from the database:

CT ∼ N (µ, σ2) (4.3)

Where the µ is the average of cycle time (CT ), and the σ means the standard deviation of these

cycle times. The µ and σ are different in the different distribution trends. In this case study,

these parameters are analysed for every work stations, and they are fed into the DES model.

The database includes more than 5000 sampling data for each work station.
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Figure 4.23: The distribution trend of cycle time (inspection station and welding sta-
tions)

4.4.2 Real-time information battery assembly process

To visualise the real-time battery assembly process, including the working status of stations and

the state of AGVs, a user interface is designed, shown in Figure 4.24. It helps operators to

track the sequence of the battery assembly process. Also, the operational information, including

the tags of OPC UA, availability of AGVs, and the steps of battery assembly, is shown in this

interface for process monitoring.
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Figure 4.24: The real-time process of the battery assembly

4.4.3 Optimisation results

Based on the design of the optimisation section, the optimisation algorithm converges after

around 100 times simulation runs. Thus, the AGV scheduling optimisation process takes 5 ± 1

mins. According to the assumption in section 4.3.4, the overall battery assembly process is set

as 8 hours based on the time scale of the DES model. The results of optimisation are displayed

in Figure 4.25. To determine the relationship among the three objectives, one example of the

relationship between the cost of JIT and the overall energy cost of AGVs is shown in Figure 4.26.
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Figure 4.25: The optimisation results of three objectives

123



Figure 4.26: The Pareto Fronts

In this Pareto Front figure, each blue dot represents a feasible schedule strategy, and the red

line means an example of a Pareto-efficient frontier. For example, Point A is not on the Pareto

frontier, because it is dominated by Point B and C. Therefore, considering the minimal energy

consumption and cost of JIT, the strategies of Points B and C are better than those of Point

A. After the optimisation of the scheduling optimisation module, this group of feasible solutions

will be sent to the decision-making module. Through this module, the best suitable scheduling

strategy can be chosen for the shop floor logistics based on the operator’s advice or the pre-

defined system KPI requirements. For instance, the operator considers the minimisation of the

AGV energy consumption, so the strategy of Point D can be selected for scheduling the AGVs

delivery tasks. This Pareto Front only shows the relationship between the cost of JIT and the

energy consumption of AGV. If the shipped number of the battery pack needs to be considered,
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the new Pareto Front can be extracted from Figure 4.25.

4.5 Chapter summary

In this case study, a five-stage work stations-based battery assembly scenario is presented. The

proposed methodology is implemented through five processes, including creating a database,

building up an OPC UA server, designing a DES model, developing an optimisation model and

structuring the rules-based decision. The results show that the proposed methodology is able to

analyse the real-time operational information of work station and AGV and provide them to the

DES model for process simulation. Moreover, The SAMS software application is able to visualise

the real-time battery assembly process for operators and it can optimise the delivery scheduling

and charging threshold for AGVs with consideration of multiple objectives.
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Chapter 5

Evaluation of the Proposed

Methodology

5.1 Introduction

In this chapter, the proposed SAMS methodology is evaluated through comparisons of its inte-

gration capability with the traditional integration method and its optimisation capability under

different system disturbances. The case study chapter has validated that the proposed method-

ology is able to support the integration and optimisation of AGV-based shop floor logistics in a

battery assembly process. This chapter firstly compares the integration capability of the proposed

methodology with the traditional integration method. Then, this chapter evaluates the optimi-

sation performance of the proposed methodology under three different system disturbances. The

results show the proposed methodology is able to optimise the dispatching time and the charging

threshold of AGVs to improve the overall performance of manufacturing systems.
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5.2 Evaluation of the integration capability of the pro-

posed methodology

In the case study, demonstrated in Section 4.3.3, the KEPSeverEX-based OPC UA server is

applied to integrate the AGV-based shop floor logistics and manufacturing processes. Through

this server, the SAMS software application is able to monitor the real-time operational data of

the overall shop floor.

With the traditional integration method, to understand the operation information of work sta-

tions, a connection gateway to access the data from their PLCs, sensors and actuators is necessary.

This case study contains five different types of automation stations which are controlled by PLCs

and robotics, including Siemens, Schneider, Rockwell, SMC robotics and Festo gantry systems.

Thus, to build this connection gateway, different communication protocols, including ProfiNet,

EtherNet/IP and Modbus, need to be considered. It would require developing a gateway for

integrating the battery assembly system with AGVs. However, because of the capability of the

proposed methodology, the steps for system integration and configuration have been significantly

reduced. Operators only need basic OPC UA knowledge to link the work stations information

with the OPC UA server through tags. Comparison details of the steps and skills requirements

are shown in Tables 5.1 and 5.2.
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Table 5.1: The steps and skill requirements of the traditional integration method

Steps for integration Skill requirements

Develop an Software Development Kit

(SDK) to share the data with AGVs
Advanced programming and AGV skills

Configure the PLC tag which contained the

related machine information
Basic PLC skills

Configure the PLC communication func-

tion modules
Advance PLC skills

Develop PLC function blocks which can

publish the data to the AGV system
Advanced programming and PLC skills

Develop a client to integrate AGV with a

specific PLC vendor
Advanced programming and PLC skills

Table 5.2: The steps and skill requirements of the SAMS integration method

Steps for integration Skill requirements

Develop an SDK to share the data with

AGVs
Advanced programming and AGV skills

Define the OPC UA server tags which con-

tained the related machine information
Basic OPC UA skills

Develop an OPC UA client to integrate

AGV with the OPC UA server
Advanced programming skills

In the traditional integration method, because of the changing of the PLC controllers and robotics

in different manufacturing systems, the connection gateway needs to be re-developed based on

the new systems to integrate AGV systems with different manufacturing processes. Thus, the

integration steps, including configuring PLC tags, developing the PLC communication function

module and developing the PLC programme to publish data, need to work through repeatedly.

And the time and cost of system integration could be increased if the new system becomes more

complex with more PLCs and robotics.
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However, compared with the traditional integration method, the SAMS integration method dra-

matically reduces the complexity of the system integration process and it requires a significantly

lower level of skills. Moreover, when the shop floor layout and manufacturing scenario are

updated, the proposed generic integration does not require re-developing the communication

gateway and relevant function blocks. It only needs to re-link the machine information with

SAMS with a low engineering cost.

5.3 Evaluation of the optimisation capability of the pro-

posed methodology

5.3.1 Evaluation criteria and method

In order to evaluate the optimisation performance of the proposed methodology, three main

production KPIs are considered, which are shown in Table 5.3. The details of the calculation

formulations are explained in Table 3.5. The control variable method is applied. Two scenarios

are analysed in the following sections. All variables, including the number of work stations,

AGVs, and charging stations, the battery assembly recipes and process time, of the two cases

are the same except for the application of SAMS.

Table 5.3: The quality criteria for evaluation

Criteria Description

Cost of JIT
The punctuality of the AGV-based shop floor logistics

delivery

AGV energy consumption
The overall energy cost of AGVs during the manufac-

turing process

Number of shipped products The number of finished products

From the optimisation result of Figure 4.26, the JIT cost and the energy consumption of AGV

conflict with each other. in this way, the Euler distance method is involved here to find suitable
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solutions from a group of feasible results, shown in Figure 4.25, for scheduling the AGVs in the

battery assembly process.

Dis(f1, f2) = a · ( f1
x − f1

min

f1
max − f1

min

)2 + b · ( f2
x − f2

min

f2
max − f2

min

)2 (5.1)

Where the Dis (f1, f2) means the Euler distance between two objective functions, and the

minimal Euler distance is the optimal solution. The f1
max and f1

min are the maximum and

minimum value of the first objective function, and the f2
max and f2

min are the maximum and

minimum values of the second objective function. The a and b are the gain weights of the two

objective functions. For example, in the manufacturing company, the JIT and the shipped of

good quality products are usually more important than the energy consumption, the gain weights

of these criteria can be adjusted to higher than others to find a suitable solution. The value of

the a and b are decided at the decision-making module depending on the overall production KPI

requirements or decisions from the human operators. The final optimal solution can be chosen

from a list of feasible solutions and then be passed to the fleet manager and the MES.

5.3.2 Evaluation results of optimisation performance

The production performances with and without applying the proposed methodology are com-

pared in three aspects, the cost of JIT, energy consumption (EC) of AGVs and the required

number of shipped battery packs. And their related financial costs are calculated following

Equation 4.1. The specific data of three scenarios are detailed in Table 5.4. As is mentioned

in Section 4.3.4, 6 AGVs, 4 charging stations are used to build the shop floor logistics in two

situations. In scenario I, the “first come, first service (FCFS)” scheduling principle is considered,

which means the AGV will deliver one task at a time and the task that has been waiting for the

longest is delivered first. In scenario II, a list of feasible solutions is generated by SAMS (See

Figure 4.25). Then, considering the JIT cost, the energy consumption of AGVs and the number

of shipped battery packs via Equation 5.1. The results below are selected.
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Table 5.4: Comparison of three criteria with and without applying the proposed method

Scenario I (using FCFS)
Scenario II (using SAMS)

Solution I Solution II

Cost of JIT(KWH) 22.536 (£4.42) 20.83(£4.08) 18.80(£3.68)

EC (KWH) 7.40(£1.45) 7.24(£1.41) 7.28(£1.43)

battery pack (Unit) 161 161 161

Scenario I shows a high cost of JIT, which means the working stations waste time and energy

waiting for AGV work-in-process delivery instead of working on assembly battery packs. How-

ever, after scheduling the AGV system with the proposed methodology, Scenario II is able to

show different solutions with a better performance in the cost of JIT and the AGV energy con-

sumption when the same number of battery packs are assembled. For example, in this table,

Solution I shows the result with the minimised the EC of AGVs, and Solution II shows the

results with the minimised cost of JIT. Thus, the operator can select the suitable one for the

AGV-based shop floor logistics via SAMS.

Another comparison example is given in Table 5.5. It is assumed that 161 units of battery packs

are required for assembling per day. the normal scenario without SAMS still requires 6 AGVs

and 4 charging stations. While the number of AGV and charging stations reduce following the

scheduling strategy generated by the proposed methodology, thereby helping to reduce the initial

investment cost of the shop floor logistics.

Table 5.5: Comparison of with and without applying the SAMS

Number of AGV Number of charging station

Without SAMS 6 4

with SAMS 5 2
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5.3.3 Evaluation results of abnormality handling performance

To evaluate the disturbance handling capability of the proposed methodology, three common

abnormalities are discussed in the following section. For Disturbance I and II, it is assumed that

161 units of battery packs are required for assembling per day.

Disturbance I – AGV breakdown

In this disturbance situation, one AGV in the parking area is intentionally shut down during the

battery assembly process. The SAMS identifies the abnormality by monitoring the information

on the OPC UA server. Thus, it triggers the re-scheduling procedures by updating the AGV

number in the DES model and re-generating the AGV delivery schedules depending on the

current assembly process. Finally, it generates a new group of scheduling strategies within 5

minutes along with the running assembly process. The comparison results of the scenario with

and without applying SAMS are depicted in Table 5.6.

Table 5.6: Comparison results under AGV breakdown situation

Scenario I (without SAMS) Scenario II (with SAMS)

Cost of JIT(KWH) 23.83(£4.67) 19.99 (£3.92)

EC (KWH) 6.48 (£1.27) 6.28 (£1.23)

battery pack (Unit) 150 161

In Scenario I, the cost of JIT has increased, which means the shop floor logistics has been

significantly affected by the shortage of AGVs; and the number of the finished battery pack are

reduced. While in Scenario II, after applying the SAMS, the threshold of AGV has been modified

to a lower level to adapt to the new situation, which keeps AGV working for a long period before

travelling to the charging station. Also, the dispatch time of AGV for each station are adjusted

to reduce the waiting time of the work station. Thus, the assemble performance still can keep on

a better level with a similar cost of JIT and a relatively lower cost in AGV energy consumption,

resulting in the finished battery packs meeting the required number.
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Disturbance II – work station breakdown

Another common disturbance of the battery assembly process is the work station breakdown.

In this disturbance case, the fourth machine of launch stations, legacy loops, welding stations,

inspection stations and packing stations are intentionally taken out of service. After the battery

assembly process starts for 1 hour and 25 minutes, the machines break down, and they are out

of service for 3 hours and 20 minutes. During the battery assembly process, the new scheduling

solutions are generated by the proposed methodology to meet the daily battery pack requirement,

161 units. The comparison results are shown in Table 5.7.

Table 5.7: Comparison results under machines breakdown situation

Scenario I (without SAMS) Scenario II (with SAMS)

Cost of JIT(KWH) 16.79 (£3.29) 9.323 (£1.83)

EC (KWH) 7.09 (£1.38) 6.84 (£1.34)

battery pack (Unit) 154 161

In scenario I, the machine breakdown causes an impact on the number of the shipped battery

pack which reduces to 154. However, in scenario II, the dispatch time of AGV for each station

has been rescheduled to help the work station to reduce its waiting time, which reduces the

impact of machine breakdowns. Thus, the proposed method is able to complete the required

number of completed battery packs, when compared with the case without machine breakdowns.

Disturbance III – New order requirement

The daily demand for the battery pack could be changed if the customer requests more products.

In this disturbance case, the battery pack of one day shift (8 hours) is increased to 170. The

shop floor with SAMS software application can easily update its assembly pace by changing the

AGV dispatching time, while the system without SAMS cannot adapt to this demand increases.

The comparison results are shown in Table 5.8.
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Table 5.8: Comparison results facing new order requirement

Scenario I (without SAMS) Scenario II (with SAMS)

Cost of JIT(KWH) 22.54 (£4.42) 18.16 (£3.56)

EC (KWH) 7.40 (£1.45) 7.24 (£1.41)

battery pack (Unit) 161 170

From the results, the scenario I cannot handle the increase in the number of the battery pack.

However, in scenario II, the new scheduling strategies are applied for the AGVs, in which the

charge thresholds are lower than normal to keep AGV continuous working for a longer period,

and the new dispatch time of AGV leads to shorter waiting of work stations. In this way, it

helps to increase the speed of the overall assembly process. Thus, the proposed method is able

to complete the new order requirement with a slight increase in energy consumption.

Please note, the results for the cost of JIT, and EC of AGVs in the different system distribution

only shows the assembly performance under its disturbance situation. The solutions cannot be

compared across different distribution situations, because the parameters of AGVs and work

machines are different. For instance, the cost of JIT, in the Disturbance II—work station break-

down, is the least one, but it doesn’t mean this system has better performance, it is because less

work station is involved when calculating the cost of JIT. And, actually, this system has a less

throughput of shipped battery packs compared to the throughput of the normal systems.

5.4 Chapter summary

In this chapter, the SAMS capability of the integration and scheduling optimisation for AGV-

based shop floor logistics has been evaluated by comparing them with the traditional solutions’

under different situations. As discussed in Chapter 2, there is a lack of a generic solution

to integrate the AGVs with the manufacturing process, and current scheduling methods are

difficult to optimise the AGV-based shop floor logistics with the real-time manufacturing process.

Therefore, the SAMS architecture is created to fill these gaps. To sum up, this chapter validates

and evaluates the performance of SAMS as below:
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1. The integration evaluation shows that the proposed methodology can support the integration

of the AGV system into the shop floor with higher productivity compared to the traditional

integration method. With the proposed methodology, the redeployment of the shop floor logis-

tics into different manufacturing processes becomes much easier, with a potentially significant

reduction in engineering costs.

2. The optimisation evaluation validates the real-time AGV scheduling capabilities by optimising

the AGV dispatching time and charging threshold to minimise the cost of delivery JIT, overall

AGV energy consumption and maximising the number of shipped battery packs. Moreover, the

proposed methodology re-schedules the AGVs to help the battery assembly process meet its daily

target even when facing system disturbances.
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Chapter 6

Conclusion

6.1 Introduction

In this chapter the research gaps, research contributions and recommendations for future work are

discussed. At the beginning of the research, the author observed that AGVs offer the potential

to increase the efficiency of product delivery in shop floor logistics. However, it is currently not

easy to effectively and efficiently integrate an AGV system with existing manufacturing processes,

and to manage and optimise the AGV tasks in the context of a real-time manufacturing process.

Thus, the objectives of this thesis are outlined as below:

1. Identify the current challenges of AGV systems working in shop floor manufacturing sys-

tems and understand the research gaps.

2. Develop a generic framework that can support information sharing among work stations,

AGVs and operators to integrate AGV systems with the current manufacturing system on

the shop floor.

3. Design a scheduling optimisation methodology to optimise the number of AGVs, the

scheduling of AGV delivery and the charging plans considering multiple objectives: i)

to maximise the performance of delivery JIT, which means minimise the cost of lateness
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and earliness; ii) to minimise the overall energy cost of AGV systems; and iii) to maximise

the number of shipped products.

4. Develop a software application and implement it into the shop floor manufacturing system

to evaluate and identify its capabilities and performance.

In summary, Objective 1 identifies the research gaps and clarifies the current drawbacks of inte-

grating and managing multiple AGVs with the manufacturing system. A novel SAMS methodol-

ogy is proposed to achieve Objective 2 and Objective 3, which is the main innovative contribution

of this research. Moreover, Objective 4 validates and evaluates the performance of the SAMS

methodology via a case study.

6.2 Summary of research gaps

Regarding Objective 1, the literature shows the rapid increase in the application of AGVs

to shop floor manufacturing systems, their potential advantages and current limitations. AGV

systems can significantly improve the flexibility, reconfigurability, modularity and safety of the

shop floor manufacturing environment through dynamic point-to-point delivery and autonomous

driving, instead of the fix-path conveyor systems and manual forklifts. However, the literature,

Section 2.2 shows that current integration solutions mainly focus on the physical interaction

between AGVs and work stations. Whilst basic integration is now typically achieved, current

AGV systems have difficultly in responding effectively to the real-time manufacturing system

requirements.

Section 2.3 shows that the integration and scheduling methods have been explored and developed

for many years in both academic and industrial fields to promote cooperation between AGV based

shop floor logistics and automation systems. However, Section 2.3.7 concludes that the current

AGV scheduling applications struggle to effectively optimise the tasks of the AGVs and the

real-time manufacturing process simultaneously.

Based on the literature, the following research gaps have been identified:

1. The lack of a generic integration framework to support the cooperation between AGVs and
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manufacturing systems. This framework should not only monitor and assign the tasks for

AGVs but also allow the data and control information interaction among AGV systems,

the high-level system manager and automation systems during the manufacturing process.

2. The lack a scheduling optimisation method to organise the delivery schedules of AGVs

based on the real-time manufacturing process. This method needs to schedule the de-

livery of multiple AGVs by considering the running information of the manufacturing

process for improving the production KPIs. Also, it should be able to react to unexpected

cases/interruptions during the manufacturing process by re-scheduling the tasks of AGVs.

6.3 Research contributions

In this thesis, the author has presented a novel architecture, Smart AGV Management System,

to support the integration of AGV systems with manufacturing systems and to optimise the

scheduling of AGVs’ delivery tasks during the manufacturing process, which is described in

Chapter III. The main innovations and contributions of this research are summarised below and

in the related sections in this thesis, which have been referred for evidence:

1. With regard to Objective 2, a generic framework is proposed to support the integration

of AGV-based shop floor logistics with the manufacturing process. This contribution has

been achieved by:

• The proposed SAMS methodology. In this methodology, the OPC UA server-based

data transaction module is implemented. This module allows data sharing among the

AGVs, work stations, IoT enabled devices (e.g., energy monitors, RFIDs, sensors)

and MES (Section 3.2, Figure 3.1, Section 3.3, Figure 3.4, Section 4.3.3).

• Through the proposed methodology, the AGVs are able to be generically and seam-

lessly integrated with the current manufacturing system on the shop floor more easily

and with higher productivity comparing to the traditional integration methods (Sec-

tion 5.2).

2. With regard to Objective 3, a real-time scheduling method is proposed to optimise the
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AGV delivery tasks during the manufacturing process. This contribution has been achieved

by:

• An optimisation method proposed combining the DES-based DT model and the

NSGA-II algorithm (Section 3.4, Figure 3.5).

• Through this method, real-time manufacturing information is collected to simulate

the real-time manufacturing process, optimising the performance of overall manufac-

turing systems (Section 4.3.4).

3. Considering Objective 4, a SAMS software application is developed and implemented into

the shop floor for supporting the optimisation and integration of AGVs with manufacturing

processes. This contribution has been demonstrated and evaluated by

• The SAMS software application is developed to support the integration of AGVs

with a battery assembly process (Section 4.3).

• The proposed methodology has the potential to rapidly reduce integration time com-

paring to the traditional integration method (Section 5.2).

• The proposed methodology is able to schedule the AGV dispatch time and charging

threshold by considering the overall manufacturing KPIs (Section 4.4.3).

• The proposed methodology can generate new scheduling strategies for AGVs when

facing system disturbances (Section 5.3).

6.4 Future work

Although the objectives have been successfully addressed and the integration and optimisation

performance of the SAMS architecture have been validated through the case study, there are still

some areas that need further research.

1. The next step of work is to further develop the SAMS software application, such as the

user interface, application design and test runs under different operating systems.
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2. To implement the SAMS into different industrial factory environments. In this way, the

feasibility and functionality of the SAMS software application can be further evaluated

and can be adapted to various requirements on the shop floor.

3. To improve the accuracy of the digital twin model, the complex event processing (CEP)

engine can be considered in further research. The CEP engine can support the analysis and

detect the pattern of machine operation events, thereby providing more accurate machine

cycle time prediction for the digital twin model.

4. A reinforcement learning-based optimisation algorithm should be considered in future re-

search. Each action of AGV delivery affects the overall manufacturing process performance.

Thus, the reinforcement learning method can be used to schedule the AGV delivery tasks

for optimising production KPIs.

5. A web server-based information sharing function should be implemented. This function

would allow operators and customers remote access to relevant real-time SAMS system

information.
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[17] T. Gregor, M. Krajčovič, and D. Wiecek, “Smart connected logistics,” Procedia Engineer-

ing, vol. 192, pp. 265–270, 2017.

[18] L. Ribas-Xirgo, J. M. Moreno-Villafranca, and I. F. Chaile, “On using automated guided

vehicles instead of conveyors,” in 2013 IEEE 18th Conference on Emerging Technologies

& Factory Automation (ETFA), pp. 1–4, IEEE, 2013.

[19] A. Fellan, C. Schellenberger, M. Zimmermann, and H. D. Schotten, “Enabling communica-

tion technologies for automated unmanned vehicles in industry 4.0,” in 2018 International

Conference on Information and Communication Technology Convergence (ICTC), pp. 171–

176, IEEE, 2018.

142
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Abstract—Autonomous Guided Vehicles (AGVs) are considered
as one of the key enablers of smart factories which make possible
smart and flexible transportation of pallets and material on shop-
floor. However, existing AGV fleet management solutions often
suffer from poor integration with real-time manufacturing oper-
ations information systems, which negatively affects scheduling of
AGVs. To exploit the full potential of AGVs in achieving just-in-
time (JIT) transportation, there is a need for intelligent AGV fleet
management system which not only integrate with manufacturing
information technology (IT) and operational technology (OT)
but also provide prediction for the shop-floor logistic based
on real-time manufacturing operations information to optimize
scheduling of AGVs. This paper presents an approach for a Smart
AGV Management System (SAMS), which combines the real-time
data analysis and digital twin models that can be deployed within
complex manufacturing environments for optimized scheduling.
For a proof of concept, a case study of a line side supply of
components to a manual assembly station is presented.

Keywords—Smart AGV Management System, Smart Factory,
Digital Twin, shop-floor logistics scheduling, Real-time data
analytics, Prediction

I. INTRODUCTION

The smart factory represents an ongoing evolution from
traditional factories to a fully connected, flexible and recon-
figurable systems that can learn, self-adapt and self-optimize
in real or near real-time to frequently changing product and
production requirements. One of the key distinguishing feature
of the smart factory is the ‘lot size one’ manufacturing.

For large volume customized production, such as auto-
motive manufacturing, ‘lot size one’ implies that both line-
side supply of auxiliary components and transportation of
parts/pallets to stations will require greater flexibility and
agility. This necessitates change in structure of traditional mass
production systems, for example, several production stations,
which are needed to produce a product, are not considered as
one unit any more [1] [2]. Fig. 1 shows layout of a traditional
production line and the smart factory.

In the smart factory, stations are considered as autonomous
stand-alone units. Such autonomous units can work indepen-
dently and can be added, removed and reconfigured without
disrupting the production line. This allows a high degree of
flexibility in terms of adapting factories to changing business
requirements. However, this requires a flexible shop-floor

Fig. 1. Illustration of the traditional production line and Smart Factory
production system [2]

logistic which could be dynamically optimised in runtime with
changing requirements for material and pallet transportation.

AGVs are widely considered as one of the key enablers of
flexible logistic on shop-floor [2]. They can move products
and materials with no pre-defined routes. A large number of
commercially available AGVs provide self-guided navigation
system to find their routes to get to target workstations.

In the manufacturing industry, AGVs have to work in
an integrated manner with both humans and machines. This
makes communication between AGVs, machines and operators
of a significant importance, which enables AGVs to work with
foresight and optimise scheduling based on specific circum-
stances. Even though fleet managers based AGV systems have
been applied in manufacturing for more than half a century [3],
existing fleet managers primarily focus on the AGV routing
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and localisation without consideration of the use of digital twin
models and real time manufacturing operations information to
optimise scheduling for just in time delivery of materials.

This paper presents an approach for a Smart AGV Man-
agement System (SAMS), which combines the real-time data
analysis and digital twin models that can be deployed within
complex manufacturing environments for optimised schedul-
ing. SAMS collect real-time manufacturing operations data
such as throughput rate, availability and utilisation of both
production stations and AGVs to predict and optimise schedule
for material delivery. For a case study, the approach is used
for optimisation of material delivery schedule for manual
assembly station of a small scale battery assembly line.

II. STATE OF ART

A. Digital Twin

The concept of a digital twin was introduced in 2003 at
University of Michigan Executive Course on Product Lifecycle
Management (PLM) by Dr. Michael Grievers [4]. In the
context of manufacturing systems, a digital twin is a computer
based virtual representation of physical systems built up from
machine data models and simulation models [5]. Digital twins
can be connected to physical assets that enable live monitoring
as well as prediction and dynamic optimisation of performance
of manufacturing processes [6] [7].

In the context of this paper, digital twin models provide an
opportunity, not just for the planning phase, but also to predict
material delivery schedule based on real time data from the
shop floor to optimise scheduling of the AGV fleet. By doing
this, the manufacturing processes will become more efficient,
as the AGV scheduling will have already been optimised using
the connected digital twin.

The use of digital twin models for AGVs has been proposed
by a number of researchers. For example, in 2017, Bottani [8]
has presented a concept for AGVs being implemented in a
shop floor logistics environment using digital twin and showed
that this is effective for simulating AGVs and optimizing
schedules. According to CEIT, the use of digital twin for
AGVs will affect up to 80% of the costs of layout and mapping
preparations [9].

B. Fleet Mangers for AGVs

Fleet managers are commonly used for supervisory control
and scheduling fleet of AGVs in industrial environments.
They are mainly aimed at reducing transportation time of
parts and products by optimising routes and allocation of
appropriate AGV to a task. For example, an agent-based fleet
manager for AGV operation control was designed in 2008
[10]. In this fleet manager, an algorithm was included to
find the conflict-free and minimum time path under the AGV
path networks. Simulation capabilities to evaluate various
scenarios within this fleet manager offers an efficient and
validated solution for AGVs running in large and complex flow
networks. A warehouse based AGV fleet manager model was
presented by Dimitrios [11], the approach can help AGVs to be
embedded into existing manufacturing systems and optimize

intra-logistics operations (e.g. less damage of products, and
optimized energy consuming). A cloud robotics architecture-
based fleet manager was proposed in [12]. In this architecture,
the robotics and factory sensor information were consolidated
to provide the live views of the whole warehouse to the AGVs.

Recently, advanced fleet managers have been developed by a
number of AGV manufacturers. For example, Kollmoegen fleet
manager by Comau [13] uses multiple navigation systems.
The route planning is based on the laser system and the fix
marks (like tapes, magnetic tags, and reflectors) as these help
to provide the highly precise routes. In Swisslog, KUKA [14]
and BA Systèmes [15], the fleet manager provides the real-
time routing and job scheduling by looking at the factors of
the environment such as the required destination and the traffic
on routes in order to reduce the overall travel time. In the SGV
manager, JBT [16], and the AGV supervision system, Gebo
Cermex [17], the operation and travel routing historical data
analysis is carried out to improve the AGVs performance in
manufacturing processes. Dematic [18] has AGV management
software which includes the benefit of being able to choose
the most suitable AGV for the job by looking at the work
flow and re-evaluating assignments. The Vehicle Manager
(VM) from Savant Automation [19] includes manufacturing
operation data collection and historical data based processing.
VM can process the devices(sensors, data input terminals or
PLCs) available information for assigning the AGVs tasks.

To meet the smart factory requirements, there is still a
lack of capabilities to collect and analyse real time data from
machines and factory information systems to connect with the
respective Digital Twins.

C. Summary

Although various advantages of Digital Twin based manu-
facturing systems have been described, there remains a lack
of Digital Twin based tools and methodology, to support
scheduling prediction and decision making, in production
lines.

The cooperation between AGVs and the automation ma-
chines, human operators and factory information systems is
vital. Even though AGVs supervised by fleet managers already
deployed in manufacturing since long, the fleet manager
related literature focus more on the AGV traffic flow system
without consideration of the build to sequence, and JIT issues
or the operation information from production environment.

Furthermore, from the Smart Factory perspective, the data
analytics is important in the production environment. Present
fleet managers still lack the technologies that could enable the
monitoring of real-time information about the manufacturing
process.

III. METHODOLOGY

In order to meet the Smart Factory requirements in shop
floor logistics, such as real-time operation information analy-
sis, working process prediction, JIT, an AGV system architec-
ture with SAMS as a core is proposed in this paper as shown
in Fig. 2

265

Authorized licensed use limited to: University of Warwick. Downloaded on October 01,2021 at 09:29:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. The architecture of AGV system

In this architecture, SAMS is a key part and has the
following characteristics to deliver its objectives: interop-
erability, cooperation, information integration, decentralized
organisation, dynamic execution, cyber-physical integration,
and human-software-hardware cooperation [20]. The software
based SAMS consists of RFID technology, IoT environment,
fault tolerance, real-time SCADA, information prediction, and
digital twin.

The key novelty proposed in this paper is the data analysis
and connectivity with digital twins. The modules of SAMS
are shown in Fig. 3. SAMS consists of six main modules:
communication module, data storage module, data processing
module, Digital Twin module, decision making module and
human machine interface module.

Fig. 3. The architecture of Smart AGV Management System

1) Communication module. This module is designed
based on industrial network protocols. This allows con-
nectivity with the shop floor local network to collect
information from shop floor devices / machines (e.g.
robot arms, PLCs, energy monitors, IoT devices). The
collected data is then converted to Smart AGV Manager
readable data format through this module. For example,
the communication between SAMS and a weighing
scale system is based on ModBus TCP/IP protocol,
and shared on the OPC Unified Architecture (OPC
UA) based platform. The sensors data, AGVs missions,
and execution commands are transferred and updated
through this module.

2) Data Storage module. This module is designed to
provide a database for both knowledge and information.
The shop floor machines (e.g. smarts sensors, PLCs,
IoT devices) and operation data is stored. This data is
accessed by other modules of SAMS.

3) Data Processing module. This module is implemented
based on the real-time data analysis and prediction
technology, in which the operation information is sensed,
monitored, analysed and evaluated. For example, a
weighing scale is monitored and the quantity of ma-
terials is updated in every half a second, and the RFID
tags equipped materials boxes are monitored to check
that a right material is presented to a station.

In future, the authors plan to include machine break
time, maintenance time, and tools replacement time as
additional considerations for material usage and delivery
prediction.

4) Digital Twin module. This module has two parts (DES
optimiser and AGV simulator) for building the digital
production lines in the virtual world to simulate the
manufacturing process before being deployed into the
real factories. The DES optimizer is for prediction
simulation which represents the real life production flow
and process, and depends on the time-based engine
for scheduling processes. The AGV simulator is for
analysing and optimising schedule and the number of
AGVs.

5) Decision-making module. This module works as a
brain of SAMS. It collects the sensors information from
database in the data storage module every second, and
presents a visualisation of the quantity of materials for
operators. Based on the rate of materials usage, the
operator working cycle time is predicted. Meanwhile,
through comparison with the AGV travelling time, pre-
dicted cycle time, and ERP requirements, the dynamic
threshold is generated as per Equation 1, for triggering
AGV calls.

NT = PR ·Ndiff · TAGV (1)

Where NT is the threshold value for triggering AGV
delivery call, PR is the data polling rate from server,
Ndiff is the value differences between two times data
polling, also the PR and Ndiff is regarded as the
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production cycle time. TAGV is the AGV travelling time
from warehouse to designated position, which is con-
sidered to be different during difference labour working
periods, including the shop floor peak time, break time,
and off working time. In the future research, to consider
multi-AGVs, the priority of the assignments and AGV
arrangement is to be taken into account.

6) Human Machine Interface module. In this module,
requirements of materials are fed back to the operator,
which is assigned by the upper level execution systems.
The parts tracking information and warning messages
are shown on the dashboard of the operations human
machine interface (HMI) based on the data processing
module analysed results. For example, in this paper, the
different colour codes are shown by RGB-LED ring
for reminding and warning. The HMI is developed in
MATLAB, which displays the remaining materials in
real-time (refreshing every second), dynamic threshold
value, and the operator guidance related instructions.
This interface is for visualising SAMS assignments and
operation process information.

SAMS helps to integrate the different physical systems (e.g.
sensors, weighing scales, AGVs) into the same workspace,
and cooperate with each other. It not only focuses on the AGV
assignment scheduling, but also contributes to the manufactur-
ing process synchronisation and machine to machine (M2M)
communication. SAMS based AGV system will play a key role
in the smart factory which is expected to run autonomously.

IV. USE CASE

The use case is based on a manual assembly station of a
battery manufacturing line. Manual assembly stations often
have varying cycle time and often suffer from unsteady mate-
rial replenishments. To address this, an AGV and Smart AGV
Manager is deployed to delivers batteries just in time to a man-
ual assembly station of the automation system demonstrator,
at the University of Warwick.

A. AGV Used for Demonstration

In this use case, an Omrons AGV (Pioneer LX) was used to
achieve the integration with a manufacturing processes. The
Omron Adept mobile robot is an autonomous vehicle, which
is designed to execute self-navigation, obstacle avoidance and
self-dynamic route planning [21]. The mapping technology
was implemented by Mapper3 software based on simultaneous
localization and mapping (SLAM) algorithms. So the AGV
firstly travels around the factory to update the unknown
environment and track its location at the same time. This map
can be used for all the AGVs which are deployed into the same
factory, during routes and paths planning. Also, the forbidden
areas can be configured and manipulated by the operator.

B. Weighing Scale System

A microcontroller based weighing scale system has been
developed to monitor number of batteries, check material
identification (RFID), and relay this information to the Smart

AGV Manager through data storage module.A compression
load cell is used to weigh the battery box. This single point
load cell (model 1042) is manufactured by Huntleigh1, the
maximum loading is 3 kg, the resolution is 1 g, and the
output voltage is linear to the input weight. The weighing scale
consist of four components the load cell with high-resolution
Analog-to-Digital Converter (ADC), Automatic Identification
(Auto-ID) with RFID, display, and data processing. This
system is based on NXP 1769 microcontroller manufactured
by NXP2, which collects the materials weights from load cell
and converts to a string format. An industrial PC polls and
publish the data through an RS-485 based interface every 0.5
second to the OPC UA server, which is the database in this
use case. The data include material weight, box ID, and cycle
time information.

C. Communication and Information Sharing of the AGV Sys-
tem with Weighing Scale System

In this use case, the OPC Unified Architecture (OPC UA)
embedded KEPServer software is used. It supports the Modbus
TCP/IP Ethernet which, is a commonly used communication
channel for IoT devices. The smart sensors data, the real-
time AGV status and manual station operation information
for SAMS system are channelled through OPC UA. The
communication between the different components used in this
study is shown in Fig. 4.

Fig. 4. The architecture of AGV system’s communication

D. Experiment

The AGV system is set up in advance based on the demon-
strator areas and connected with AGV client, which is running
on a PC, via Wi-Fi. The battery weighing scale system is
installed at the manual station, and connected with OPC UA
server through Ethernet.

Firstly, the weight of a battery box and a single cell is
recorded by the weighing scale system, which is used to cal-
culate the number of batteries in the box in runtime. The AGV

1http://www.vpgtransducers.com/
2https://www.nxp.com/products/processors-and-microcontrollers/arm-

based-processors-and-mcus/lpc-cortex-m-mcus/lpc1700-cortex-m3/512kb-
flash-64kb-sram-ethernet-usb-lqfp100-package:LPC1769FBD100
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travelling time between two stations is trained for computing
the AGV trigger time. The Smart AGV Manager uses real-time
data and recorded training information to calculate operator
working cycle time and set a dynamic threshold for triggering
battery delivery task.

The ERP requirements based on the number of cells re-
quired per module is assigned to Smart AGV Manager. The
experimental setup is illustrated in Fig. 5.

Fig. 5. Experimental Setup

As shown in Fig. 5 the battery assembly process is carried
out at the manual station. When the number of cells in the
box reaches the dynamic threshold, which is calculated by
data processing module in SAMS, the AGV is triggered for
replenishing cells. At the same time, AGV feedbacks the
travelling information (e.g. velocity, x-y related coordinates,
powers, destinations) to Smart AGV Manager. When AGV
arrives at the manual station, it wait for the operator replacing
the empty batteries box on the platform and loading the full
battery box on the weighing scale. Once the task is completed,
the AGV travels back to the warehouse with empty box.

V. CONCLUSION AND FUTURE

The paper presents an approach for optimising the schedul-
ing of AGVs system and close integration with a manufactur-
ing process using SAMS. The use case shows integration of
the Smart AGV Manager based control system integrating with
IoT devices, AGV, and manual assembly process. The pre-
sented approach can improve the manufacturing performance
and efficiency by optimising line side supply of material.

In the future, the experimental setup will be extended to
integrate multiple AGVs with machines (e.g. robot arm, PLC,
smart sensors), other IoT devices and the digital twin to
evaluate the performance of this approach using more complex
AGV assignments.
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Abstract: Autonomous guided vehicles (AGVs) are driverless material handling systems used
for transportation of pallets and line side supply of materials to provide flexibility and agility in
shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to
their complex nature associated with the multiple part types and alternate material transfer routings.
This paper presents a decision support system capable of supporting shop-floor decision-making
activities during the event of manufacturing disruptions by automatically adjusting both AGV and
machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete
event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration
and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal
production schedules prioritising the just-in-time (JIT) material delivery performance and energy
efficiency of the material transportation. The performance of the proposed system is tested on
the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick.
The results showed that the developed system can find the near-optimal solutions for production
schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor
decision-making activities effectively and rapidly.

Keywords: internet-of-things; flexible manufacturing systems; shop-floor logistics; industry 4.0;
autonomous guided vehicles; decision support systems

1. Introduction

In today’s highly competitive and uncertain manufacturing environment, agility and flexibility
are two key factors that manufacturing systems need to possess to operate optimally and to adapt to
manufacturing disturbances with minimal human intervention. Along with the recent advancements
in Industry 4.0 and related technologies, a rapid configuration of manufacturing systems can be
achieved through the dynamic planning of shop-floor logistics, real-time optimisation of manufacturing
schedules and customised production requirements [1–3]. In this context, autonomous guided vehicles
(AGVs) became an appropriate enabler to perform versatile jobs in manufacturing shop-floors. In recent
years, AGVs are increasingly deployed on shop-floors to replace human labour for material handling
and/or transportation jobs with an uncompromised performance [4]. This is due to their ability to
help increase the manufacturing efficiency and productivity owing to their flexibility and agility [5].

In Flexible Manufacturing Systems (FMSs) with AGV based material transportation, the due time
of AGVs including their earliness and lateness is significantly important in satisfying both the expected
overall takt time and production cost [6,7]. Earliness leads AGVs to wait in idle, whereas lateness
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puts human operators and machines in temporary wait state which results in loss of production [8].
To overcome such a challenge, an optimal dispatch time of AGVs including both start time of operations
for jobs at each machine in production stages and precedence relation constraints is required [9].
The previous literature concluded that the efficiency of AGV fleet management highly depends on
the selection of dispatching and routing mechanisms as well as the overall integration of the AGV
and machine schedules [10]. The overall integration of AGV and machine scheduling dramatically
increases the complexity of FMS scheduling, as it does not only involve the job operation sequencing,
but also the assignment of material handling tasks to corresponding AGVs by considering the arrival
and departure time of vehicles [11–13]. This is particularly difficult as a consequence of nature in
predicting the AGV transportation times as the conflicts and interferences among AGVs often cannot
be neglected. As a result, there is an increasing need for IT tools to schedule/reschedule FMSs based on
the integrated machine and AGV operations to rapidly respond to various manufacturing disruptions
to operate in an optimal manner [14–16].

This paper presents the Smart AGV Management System (SAMS) aiming to integrate real-time
shop-floor monitoring and analytics systems with production schedules of machines and AGVs
to support shop-floor decision-making activities during the event of manufacturing disruptions.
The SAMS and its system architecture were initially proposed in [17]. In this paper, we extend the SAMS
architecture by adding a set of novel decision-support capabilities. Towards this aim, an architectural
decision-support layer is designed and developed to support shop-floor decision-making at the event
of manufacturing disruptions (e.g., machine breakdowns). The SAMS architecture includes a discrete
event simulation (DES) model as the digital replica of the FMS under consideration, in which field-level
Internet-of-Things (IoT) enabled production data are streamlined and used to enhance the accuracy of
the operational behaviours of the entities defined within DES models. In the proposed framework,
the production schedule is produced based on both the real-time demand information and resource
status information with the help of a Mixed-Integer Nonlinear Programming (MINLP) using Genetic
Algorithm (GA) integrated with the DES model. The proposed system can actively sense and transfer
production abnormality information to the production management system, such that a rescheduling
instruction can be released as a response action. The proposed system is deployed in the Integrated
Manufacturing Logistics (IML) demonstrator developed by Automation Systems Group (ASG) at
WMG, University of Warwick. The IML is a full-scale FMS integrating logistics with manufacturing
operations. This system showcases Industry 4.0 methods, and encompasses both new production
systems and legacy equipment within a series of advanced manufacturing scenarios, which is being
used for both research and training with a range of industrial partners. The implementation of
this research is expected to increase the productivity and flexibility for manufacturing systems by
improving shop-floor decision-making efficiency.

The rest of the paper is structured as follows. Section 2 reviews the related literature on the
offline and online FMS scheduling approaches and outlines the research gaps. Section 3 presents
the overall architecture of the proposed decision support system and data communication protocols.
Section 4 details the integrated shop-floor scheduling optimisation approach. Section 5 presents the
implementation of the proposed decision support system on the IML demonstrator, and discusses the
results and the validity of the approach. Section 6 concludes the paper and outlines the future work.

2. Literature Review

In this study, by mainly following the taxonomy proposed by [4], applied methods on the FMS
scheduling are grouped into two, i.e., (i) offline methods and (ii) online (real-time-based) methods.
Offline methods are used to schedule FMS operations based on the entire production planning,
in which all product components are assumed to be available prior to the start of the production.
Online (real-time-based) methods, in contrast, aim at scheduling manufacturing operations at the
execution phases, in which shop-floor scheduling decisions are required as the manufacturing system’s
status changes. Applied methods on the offline scheduling can be further divided into the following
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categories: (i) the exact methods, (ii) heuristics, and (iii) simulation-based methods [18]. The exact
solution methods aim at achieving the global optimum. [19]. Demesure et al. [20] proposed an AGV
navigation approach for FMSs based on the combined use of a motion planner and a priority-based
negotiation algorithm. Fontes and Homayouni [21] addressed the integrated scheduling of machines
and AGVs in an FMS. In their approach, the FMS scheduling problem is approached using a novel
mixed-integer linear programming model, where chained decisions for both machines and AGVs are
connected through the completion time-constraints. Fazlollahtabar [22] proposed an AGV scheduling
optimisation approach based on the minimum-cost network flow (MCF) algorithm. The approach
optimises weighted completion time of tasks for each short-term window by formulating the problem
of task and resource assignment as an MCF problem during each short-term scheduling.

Heuristics and meta-heuristics-based search methods are often used in scheduling of FMSs.
Dang and Nielsen [23] presented a genetic algorithm-based scheduling optimisation approach for
AGV based FMSs. Nageswararao et al. [24] proposed a scheduling approach simultaneously optimising
both machine and AGV schedules, based on the implementation of binary particle swarm optimisation
approach and vehicles assignment heuristic utilising the rebuts factor maximization function and
mean tardiness. Huang et al. [25] proposed an AGV scheduling strategy using both admissible and
non-admissible heuristic functions and a production-specific search scheme. The approach is aimed
at minimising the makespan and maximising the average machine utilisation and tested on a set of
randomly generated FMSs generated using Petri nets. In a similar study, Baruwa and Piera [4] proposed
an AGV scheduling strategy evaluating all possible AGV scheduling scenarios without the imposition
of a specific dispatching rule. The strategy is based on a hybrid heuristic search method, called any-time
layered search (ALS), optimising the AGV schedules based on both the makespan and the exit time of
the last job of the system. Sanches et al. [26] propose a simultaneous production schedule optimisation
approach for both machines and AGVs using an adaptive genetic algorithm minimising the makespan
with low running time. Mehrabian et al. [8] developed a two-objective mathematical programming
model, i.e., due dates and processing time, integrating flow shop scheduling and AVG routing in
an FMS. The model is studied using two meta-heuristics algorithms, i.e., non-dominated Sorting
Genetic Algorithm, and a multi-objective particle swarm optimisation approach. Mousavi et al. [27]
proposed a mathematical AGV scheduling model integrated with evolutionary algorithms to optimise
the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while
considering the AGVs’ battery charge. Zhong et al. [28] investigated an integrated scheduling problem
of a multi-AGV based system with conflict-free path planning using a Hybrid Genetic Algorithm-Particle
Swarm Optimization (HGA-PSO) algorithm. Rahman et al. [29] proposed a meta-heuristics-based
scheduling approach to minimise the cycle time and total tardiness in a robotic assembly line with
multiple AGVs. Wang et al. [30] aimed at improving energy consumption and production efficiency
of AGV transportation using a bi-level heuristic algorithm. Liu et al. [31] proposed a multi-objective
mathematical optimisation model based on the combination of two Adaptive Genetic Algorithms (AGA)
and a Multi-Adaptive Genetic Algorithm (MAGA).

Online (real-time) scheduling approaches allow manufacturing companies to dynamically
schedule their production systems to match the desired customer demands promptly. These approaches
are, in general, time-constraint methods in which a limited amount of computation time is provided
to generate a set of optimal scheduling solutions [4]. Please note that these methods can be either
static or dynamic. Weyns et al. [32] developed a dynamic task assignment protocol, called DynCNET,
allowing a flexible task assignment approach that can cope with the operational system dynamics.
The proposed protocol is an extension of contract net protocol, CNET (see [33]), allowing AGVs’ task
assignments dynamically. Another approach, proposed by Chan et al. [34], is a real-time expert system
for scheduling parts in an FMS based on two fuzzy-logic based decision-making/selection rules. Wang
et al. [35] proposed a multi-agent-based real-time scheduling architecture, called MARS, for IoT-enabled
FMSs. The MARS allows dynamic scheduling based on the coordination of real-time status of AGVs
carried out by “bargaining-game-based negotiation mechanism” and optimises scheduling targets, such as
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the makespan, the critical machine workload and the total energy consumption. Zhang et al. [36]
developed a cyber-physical system based smart production control model for shop-floor material
handling and transportation. TF et al. [37] proposed a reinforcement learning-based method for
dynamic multi-AGV flow-shop schedules aiming at minimising both the average job delays and
the total makespan. Zhao et al. [38] developed a dynamic scheduling system for multi-AGV based
smart factories. Sahin et al. [39] developed a multi-agent-based expert system with agent-to-agent
communication and negotiations for simultaneous scheduling of both machines and AGVs in a
manufacturing system operating under dynamic manufacturing constraints. Their system is based on
the Prometheus methodology (see [40]), and is modelled in the JACK agent-based systems development
tool. Xu et al. [41] developed an intelligent logistics scheduling model and execution method for
AGVs. Their approach is based on the mode of “request-scheduling-response”, and is integrated with
Internet-of-Things (IoT) systems to meet the shop-floor demands in real time. The solution method is
based on the combined use of a double-level hybrid genetic algorithm and ant colony optimisation
(DLH-GA-ACO).

The literature review showed us that many research works are aiming to optimise FMS production
schedules with and without considering production uncertainties and abnormalities such as machine
breakdowns and sudden customer demand changes. In general, most of these studies investigate FMS
schedules based on a static factory environment, thereby providing offline FMS scheduling approaches.
The exact solution approaches can be very promising in finding the global optimum; however, they can
be computationally very costly due to the vehicle routing problem being proven to be NP-hard [42].
Heuristics-based can be considered as useful tools; in particular, production performance is the main
priority in terms of completion time [43]. Nevertheless, these methods have problems with trapping
in local minima and equilibrium attraction. Meta heuristics optimisation algorithms, on the other
hand, can be a useful solution for this, as these methods involve mechanisms to avoid getting trapped
in local minima. Simulation-based approaches offers what-if analyses that can be used to select the
best solution among alternatives. The online (real-time) solution methods are very helpful in solving
dynamic AGV routing problems. These methods continuously update the solution space as more
information exposed or available in real time. Table 1 summarises the literature review.

Table 1. A summary of the related literature review.

Type Examples Strengths Weaknesses

Offline [4,8,20,20–31,44–57] Handles scheduling complexity Inflexibility
scheduling Low CPU overloads Deterministic behaviours

Requires task arrival information
Subjected to a limited execution time

Online [32–35,37–39,41] Handles unpredictable workloads Reduced utilisation of resources
scheduling CPU overloads are harder to detect

3. Smart AGV Management System (SAMS)

In this section, the Smart AGV Management System (SAMS) is presented for real-time scheduling
optimisation for both AGVs and machines within an FMS. The decision support system connects
the Integrated Manufacturing and Logistics (IML) demonstrator rig to DES models, and enables
the collection and monitoring of real-time operational information, and prediction and optimisation
of the job schedules for: manufacturing processes, and materials delivery and product collection
activities. Moreover, the proposed system implements the allocation of AGVs in different workstations,
including legacy production loops, standalone autonomous stations and manual operations stations,
in shop-floor logistics under the smart factory background. An overview of the SAMS architecture is
depicted in Figure 1. In this section, the digital layer of the SAMS is introduced in detail, while other
two layers are briefly discussed. Please note that a detailed information about the physical and
data-transaction layers can be found in [17].
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Figure 1. The SAMS architecture.

3.1. Physical and Data-Transaction Layers

The bottom two layers of the SAMS are solely responsible for collecting and transferring the
real-time production data from IoT-enabled sensing devices in the manufacturing shop-floor to digital
layer and vice versa. In the physical layer, two levels of monitoring are considered, i.e., workstation
level and system level. Within these monitoring levels, IoT devices, including energy monitor and
smart buffer sensors, are implemented on the machines, and three kinds of information, i.e., energy
consumption information, machine status information and cycle-time information, are collected from
the IoT-enabled field-devices within the production line. This information includes: cycle-time of
each machine job, time of each transportation job between two machines, cycle-time for each loading
and unloading operation, AGV charging time, AGV energy consumption in each transportation job,
status of machines and AGV (i.e., breakdown, run). Cycle time for both stations and system is sensed
through the RFID system, whereas machine status information, and products tracking information
for different monitoring levels are captured directly from the function blocks (FB) employed within
the Programming Logic Controllers (PLCs). Moreover, machine energy consumption information is
directly collected from IoT-enabled smart energy meters.

In the SAMS, real-time data sharing between system modules is based on the OPC-UA protocol
(see [58,59]). The OPC-UA is a machine to machine (M2M) communication protocol enabling both
connectivity and interoperability among different physical and digital components. The real-time data
sharing allows the SAMS to monitor and analyse the operational information from shop-floor devices
and machines, such as: robots, PLCs, AGVs, and other IoT-enabled field devices, through the industry
network. As an example, battery cell buffers based on the IoT-enabled weight scale are monitored,
and the quantity of battery cells is updated into OPC-UA server in real time. In addition, battery packs
equipped with an RFID tag are tracked by the SAMS to auto-correct the AGVs transporting in real-time.
The SAMS database is created in a data transaction layer for storing shop-floor machines and operation
data, such as: machine cycle time, AGV energy consumption, and production life-cycle information.
The collected data can also be accessed by other supervisory systems for further production key
performance indicator (KPI) assessments.

3.2. Digital Layer

Manufacturing KPIs are a set of metrics that can be used by manufacturing enterprises to evaluate
the success of their manufacturing operations in meeting the performance targets [60]. These metrics
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include but are not limited to cost, flexibility, energy, (just-in-time) JIT material delivery performance,
quality, etc. In the SAMS, the digital layer is mainly developed for the prediction of production KPIs
based on a real-time data management system and a DES model coupled with KPI evaluation schemes
and heuristics optimisation algorithms.

The real-time data management system is developed as a software plug-in updating operational
DES parameters using the real-time production data stored within a time-series database. Currently,
the developed system updates the following information within the DES model: (i) cycle time
information for each manufacturing process, (ii) AGV travelling time and (iii) AGV energy consumption
for each material transfer event, (iv) the charging time for each AGV, and (v) the demand. Although
this approach provides a noticeable increase in prediction accuracy of DES models, it is planned as a
future work to replace the real-time data management system with a complex event processing (CEP)
engine to provide a better resolution in identifying and anticipating the relationships between the
shop-floor events. The DES model uses the historical data captured from the physical layer to define
individual operational parameters represented as a probability distribution function (PDF). It also
receives the real-time status information of both machines and AGVs from the corresponding PLCs
through the OPC-UA connection. Currently, two types of status information are defined, i.e., available
and not available. The KPI evaluator sub-module is embedded within the DES Model describing
the definitions and algorithms for the real-time production KPIs. These KPIs can be published
into a MATLAB optimiser add-on for further evaluation through the OLE Automation Controller
communication protocol.

In this research, DES models are built in the WITNESS Simulation Software [61]. The WITNESS
DES tool helps engineers to model, analyse and optimise manufacturing processes, so that they can
make decisions under a risk-free environment [62]. In general, the WITNESS Simulation Software can
build customised manufacturing systems and production processes, and can be connected by external
software and databases remotely through WITNESS Command Language (WCL) [63]. It is currently
used by various manufacturing companies. For example, Ford UK integrates this software into its
assembly line, and has achieved a 10% increase in the production capacity [64]. The WITNESS is capable
of generating and analysing production KPIs, such as average material flow time, production cycle time
and average AGV energy consumption. In this research, the DES simulations are performed to obtain
the production KPIs streamlining into the optimisation engine through OLE Automation Protocol [65].
The OLE Automation Server acts as a data-interface, where commands and the data are transmitted
between the WITNESS Simulation Software and the optimisation engine. The communication
architecture is depicted in Figure 2.

The optimiser module is responsible for scheduling and re-scheduling both machine and AGV
tasks based on evolutionary optimisation algorithms, KPI predictions and real-time resource status
information. In the scheduling/rescheduling process, first, the real-time resource status information
stored in the time-series database is checked, and the corresponding values are updated within the
DES model. Then, a new scheduling instruction is released based on the KPI values obtained from the
DES model prioritising the JIT material delivery performance. A mixed-integer Genetic Algorithm
(GA) is used in the optimisation of the shop-floor logistics by minimising the JIT error and AGV energy
consumption at the same time. Moreover, when a manufacturing disruption occurs, e.g., machine
breakdown, the rescheduling mechanism will be triggered to reduce the influence of the disruption,
thereby improving the overall production efficiency. In the proposed approach, the decision-making
and optimisation modules cooperate to generate the optimal scheduling strategies, and to feed back
to the manufacturing execution system (MES) located in the physical-layer. The Decision-making
module mainly focuses on the dynamic scheduling strategies under varying production requirements.
In such a way, production KPIs predicted by the DES model are evaluated by managers with respect to
requirements before being deployed into the MES.
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Figure 2. The real-time data communication architecture.

3.3. Shop-Floor Decision-Support

The decision support module integrates the SAMS to the existing Products Order System and
MES to provide a real-time decision-support functionality during the production process. In the SAMS,
the AGV scheduling and production sequences are generated and updated automatically depending
on the pre-configured KPI priorities or the manufacturing station change. The integration between
the existing systems and the SAMS architecture is done via OPC-UA machine to machine (M2M)
communication protocol. The Products Order System used in the experiments is developed by the ASG
at WMG, University of Warwick. The implementation details and architecture of this system will be the
focus of a future manuscript. The SAMS receives the products order information and customer request
updates from the Products Order system and uses this information along with real-time production
data to generate a set of production schedules. On the other hand, the OPC-UA connects the SAMS
with the MES to monitor the real-time machine states and to track the production processes. The system
monitors the real-time production performance, e.g., run-time energy consumption, deviations in
process cycle times and overall tardiness. When production abnormalities occur, the SAMS releases
a re-scheduling scheme by considering the current machine utilisation and pre-defined KPI targets,
such as machines working balance, the average energy consumption and Just-in-Time material delivery
performance. The optional scheduling strategies can be chosen by the decision support system about
the targeted system KPIs. Alternatively, managers can choose an optimal scheduling strategy through
the application HMI and broadcasted KPI dashboards. Once the optimal strategy is selected, the job
schedule is sent to the MES system for its execution. Please note that the interoperability of the decision
support system allows it to access the system database/server directly. The overview of decision
support components of the SAMS is shown in Figure 3.
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Figure 3. The main components of the decision support system.

4. Optimisation Approach

In this section, a flow-shop problem is prepared for the IML demonstrator’s factory logistics.
The IML is composed of several stages in which machines in the same stage perform identical
manufacturing operations. The raw products follow a specific production sequence, and are
transported between stages through a number of AGVs. Products are delivered into the packaging area
as they are packed as a final product. Please note that each product must go through all production
stages one by one in order to finish the entire assembly. It is assumed that every job has a pre-defined
due time, and a JIT delivery error occurs if the job is completed after or before its due date (i.e., earliness
and lateness). The objective of the problem is to find the near-optimal production schedules including
both machines and AGVs that can minimise the total earliness/lateness cost as well as overall energy
consumption of AGV operations, simultaneously.

A schematic representation of the presented shop-floor logistics problem is given in Figure 4.
The IML shop-floor has a tiered flow-shop layout consisting of several stages: including AGV docking
area, warehouse, packing area, and work machines area, etc. All AGVs are waiting in the docking
area for delivery tasks. Depending on the battery status, AGVs can be recalled back to the docking
area for battery recharging. In addition, the AGV parks at the docking station after the completion
of the last delivery job if no further jobs are available to the AGV. Raw products are distributed to
stations from the warehouse via AGVs, and they are processed through every machine stage until
they are delivered to the packing area. These products are transported from one station to another
through AGVs based on the delivery schedules generated by the SAMS. AGVs use predefined paths
between shop-floor areas, and collisions within each path are continuously monitored and avoided by
a supervisory control system.
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Figure 4. A schematic for the IML shop-floor logistics problem.

4.1. Problem Formulation

The mathematical notations for the presented shop-floor logistics problems are given in Table 2.
The established mathematical model composed of two objective functions, described as follows.

Min( f ) = { f1, f2} (1)

• Objective function 1: aims to minimise the total cost associated with the earliness and lateness of
the scheduled jobs, and formulated as below.

f1 =
|T|
∑
i=1

αmax{0, di − Ci}+
|T|
∑
i=1

βmax{0, Ci − di} (2)

Please note that the authors report based on their project experiences from seat and car
manufacturing projects that, overall manufacturing performance, in general, tends to be more
affected by the lateness of the jobs. Hence, it is often penalised more than the earliness of the jobs.
However, the penalty costs for both earliness and lateness should be configured based on the
factory and user requirements.

• Objective function 2: stands for the minimisation of the total energy consumption associated with
the AGV loading and cumulative travel distances, and formulated as follows:

f2 =
S

∑
i=1

S

∑
j=1

T

∑
t=1

NAGV

∑
n=1

disijXijntF(Qno + Qijnt) (3)

where F(Qno + Qijnt) represents the energy consumption rate related to AGV weights and
travel distance.
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Table 2. Notations.

Notation Description

Sets

S Set of stations
T Set of production jobs
NAGV Set of AGVs
W Set of workstages
Sw Number of stations in stage w

Indices

s Index of station, s ∈ {1, 2, ..., S}
t Index of production job, t ∈ {1, 2, ..., T}
n Index of AGV, n ∈ {1, 2, ..., NAGV}
w Index of workstage, w ∈ {1, 2, ..., W}
sw Index of station in stage w, sw ∈ {1, 2, ..., Sw}
Parameters

Qno The weight of no load AGV n
Qijnt The weight of AGV n loaded, when travelling between station i and j for job t
α Earliness cost penalty coefficient
β Lateness cost penalty coefficient
PTtsw Processing time of job t allocated to s in stage w
dt Due date of job t
Ct Completion date of job t
Stsw Starting time of job t at station s in stage w
Dtsw Completion time of job t at station s in stage w
disij Distance between station i and j, also, i 6= j
rt Release time of the job t into the system

Decision Variables

Mtsw 1 if machine sw working on job t, else 0
Xijnt 1 if AGV n travels between station i and j for job t, else 0

• These objectives are subjected to the following constraints:

Sts(w+1) ≥ Dtsw,

t = 1, ..., T, w = 1, ..., W, s = 1, ..., Sw
(4)

Stsw − S(t−1)sw ≥ PT(t−1)sw,

t = 1, ..., T, w = 1, ..., W, s = 1, ..., Sw
(5)

max{
Sw

∑
s=1

Mtsw} = 1, t = 1, ..., T, w = 1, ..., W (6)

Sts1 ≥ rt, t = 1, ..., T, s = 1, ..., S1 (7)

max{
T

∑
t=1

Xijnt} = 1,

i = 1, ..., S, j = 1, ..., S, n = 1, ..., NAGV

(8)

Xijnt, Mtsw ∈ 0, 1

i = 1, ..., S, j = 1, ..., S, s = 1, ..., Sw,

t = 1, ...T, w = 1, ..., W, n = 1, ..., NAGV

(9)
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In the above equations, constraint (4) is used to ensure that the precedence relations between
stages of a job for every AGVs is not breached. Constraint (5) ensures that multiple jobs cannot
be performed by a machine at a time. Constraint (6) is used to fulfil the requirement that a job
cannot be performed more than one machine in a stage. Constraint (7) enforces the time difference
between start time of machine in the first stage and the release time of the jobs that are assigned
to them must be equal or greater zero. Constraint (8) ensures that an AGV cannot perform more
than one material transportation task at a time. Constraint (9) states the variables’ binary nature.

4.2. Assumptions

The following are the assumptions in formulating the model:

• The parameters of machines, including: set up time and processing time are known and based on
continuously updated historical production data;

• The parameters of AGVs, including: energy consumption rate, battery capacity and travelling
speed are known and based on continuously updated historical production data;

• The demand information is continuously updated in real time;
• Machine output buffers have a fixed capacity limit;
• The AGV fleet capacity is enough to cover all transportation jobs;
• The AGV will not be called by the machine when the machine output buffer is empty.

4.3. Genetic Algorithm Based Solving Method

A meta-heuristics algorithm is widely applied for searching the global optimal solution for
scheduling problems [66]. In this article, a mixed-integer GA, which is one of evolutionary optimisation
algorithms imitating the natural selection and genetics [67], is chosen to search the near-optimal machine
jobs sequence and the AGV distribution rules for battery assembly processes performing within the IML.
The GA has been used to solve a wide variety of combinatorial optimisation problems and obtained
optimal or near-optimal results efficiently. The GA examples for FMS scheduling optimisation problems
include: [68–73]. The data-flow between optimisation module and the DES model is given in Figure 5.
The flow chart of GA-based optimisation approach consisting of the following steps is shown in Figure 6.
In the proposed approach, the arrival products sequence and AGV distribution rules for each arrival
parts are the input for the DES model, whereas production KPIs are considered as outputs.

Figure 5. The data-flow between the optimisation module and the DES model.
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Figure 6. The flow-chart of the approach.

4.4. Genetic Algorithm

This section presents a GA based optimisation method for AGV and machine jobs schedules
in FMSs. The GA method is based on the approach proposed in [74]. In the optimisation approach,
fitness function is considered to include: shop-floor processing time, AGV energy consumptions,
and machine utilisations mainly derived from the DES simulation. First, a group of initial population
is created by the GA algorithm, which are then evaluated through the fitness functions. Following
this, a new generation population is created through the selection, crossover, and mutation processes,
in which the elitists of current generation are passed to the next populations. The manufacturing
processes KPIs: just-in-time performance and cumulative AGV energy consumption are defined as
objectives to be improved. The algorithm also stops when the maximum number of generations or
number of stall generations are reached. The detail of the GA based optimisation method’s pseudo
code is shown in Algorithm 1.
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Algorithm 1 Genetic Algorithm pseudo-code.
Pseudo-code of the GA

1: Initialise the populations;
2: Evaluate the initial population through fitness function;
3: for (iteration < MaxIteration) do

4: while (not meet the stopping criteria) do

5: Select the elitists for next generation;
6: Crossover
7: Mutation
8: end while
9: Evaluate the new population fitness;

10: end for
11: Output the best solutions;

4.4.1. Initialising Parameter

In this article, each generation is separated into two segments representing the product sequence
and AGV distribution strategies. Figure 7 shows the population structures of two examples. The first
example includes a system consisting of three products and four work stages, each having four
identical workstations performing operations for three different arrival products, whereas the second
example consists of three work stages, five production jobs, and four identical workstations in each
stage. The left-hand side in Figure 7, the encoding rule represents non-integer optimisation parameters
that are used to define the product sequence to be released from the warehouse. According to this rule,
the product sequence is determined based on weighted cumulative cycle times of product variants.
This is characterised by cycle times of each product variant at each machine stage and corresponding
machine stage weight coefficients. The right-hand side represents the AGV task distribution sequence
to be followed by AGVs. This dictates AGVs to transport materials from one stage to another by
following the encoding rule.

Figure 7. Two examples of the population structure.

4.4.2. Initialising Population

The initial population is generated based on the uniform random generator. The first part of
variables is in the range of 0 to 1, and the size of their population is considered to be equal with the
number of machine stages. In the second part, the size is taken as equal to the product of machine
stages number and arrival products number, and the values are limited by the station number in each
stage. Therefore, the lower bounds, upper bounds, the number of variables, and the list of integer
values are set up to meet these constraints.
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4.4.3. The New Generate Population Generating

The new generations are produced by using selection, elitism, crossover, and mutation.

• Selection: The stochastic universal selection strategy (see [75]) is used to select parents for
producing the next generators. In the stochastic uniform selection, all parents are laid on a
line. The algorithm follows the line, and moves to the next point at an equal step size. At each
movement, the algorithm chooses the current point as the parent for the next generation. The first
step is also a uniform random number, which is smaller than the step size.

• Elitism : All the individuals are sorted based on the fitness values. The first Ne (Equation(10)) best
individuals are chosen and passed to the next generation directly. This step guarantees that the
best fitness values can survive in the next generation:

Ne = 5% ∗ PopulationSize (10)

• Crossover: Crossover is generated by combining the two parents together. The genes from parents
are chosen randomly for crossover, and genes coordinates are the same for both parents, and the
crossover children population is specified by the crossover fraction Pc. These rules are applied
into both parts of parents. Figure 8 shows an example of crossover strategy.

Figure 8. An example of crossover strategy.

• Mutation: Mutation is also an important way to create the next generation in GA for genes diversity.
The algorithm generates the mutation children from the parents’ genes by choosing a random
number from the Gaussian distribution (see [76]). An example of mutation is demonstrated in
Figure 9.

Figure 9. An example of mutation strategy.
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4.4.4. Evaluation and Iteration

The current generation population is evaluated by the fitness function. The iteration of creating
new generations is terminated once the fitness performance meets the requirement, or the iteration
number reaches the maximum iteration limits.

5. Case Study

The case study is implemented in the IML demonstrator at the University of Warwick.
IML is designed as a discrete-part automation system assembling battery-packs for electric vehicles.
The battery assembly process includes customised battery packs from a single battery cell, such as:
18650, 26650. IML deploys a variety of legacy and agile systems—a traditional conveyor based system
represents traditional cellular manufacturing practice [77], while autonomous stations, connected by
AGVs for battery pack welding and vision based inspection, represent an Industry 4.0 based example
of responsive manufacturing. Figure 10 shows a section of the IML rig. The case study shows the
optimisation methodology to improve the manufacturing performance of battery assembly process.

Figure 10. An example material transportation within the IML rig: An AGV is carrying battery cells to
the Legacy Loop Assembly Machine in the Stage One where battery modules are assembled.

5.1. Overview of the Experiments

The case study describes a battery assembly process based on the IML demonstrator prototype.
The production is modelled and simulated via a DES model. The model’s input values are fed
by the proposed optimisation model, and the predicted of KPI values are served as feedback,
thereby indicating a closed-loop system for improving the battery assemble process JIT performance.
The assembly system is separated into four stages, including the Legacy Loop Assembly stage,
Welding Stage, Inspection Stage, and Packing Stage. Cycle time and machine tool changing time are
predefined from the historical data from the IML demonstrator. In addition, AGV speed, AGV charging
time, and AGV running time are assigned as AGV attributes based on the MiR100 servicing in the
IML demonstrator. In stage One and Three, the battery cell insertion and nut assembly operations are
carried out, respectively. These operations require raw materials such as module baskets and nuts.
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Stages Two and Four perform welding and inspection processes, respectively. Materials between each
stage are delivered and collected by AGVs. Customer orders are recorded by a web-based products
order system. Once an order is issued, this information will be published to the OPC-UA server. In the
OPC-UA server, the data from IML demonstrator rig, e.g., PLC registers and I/O, buffer sensors status,
and product RFIDs information are recorded. When an order arrives, the decision support system
optimises the arrival product sequence and AGV schedules. Once the system finishes the optimisation
process, it will broadcast a list of optimised solutions and corresponding production KPIs on the
system HMI which can be accessed by system managers or operators to manually choose the proper
solution. As soon as a solution is selected, the decision support system will pass this information to the
MES application, written in C language, to assign the defined task to corresponding working stations
and MiR fleet manager.

In the experiment, 30 jobs are designed to be processed. These jobs are separated into 20 different
categories. Each job has four processes, and each stage of the process has four parallel machines.
In the experiments, the simulation run-time is set as 25,000 s. Please note that the simulation is forced
to terminate when the time runs out, and KPI values will not be recorded. The DES model and
embedded GA-based optimisation algorithm are concurrently run to find the Pareto-optimal design
space. There are two stopping criteria for GA: (i) stop by reaching the maximum number of generations
(1000) and (ii) stop by max stall generations (30). Moreover, the production target time is set as 4 h
per shift, including 3.75 h (135,000 s) processing time and 0.25-h break time. The input parameters are
separated into two parts: the first four indicate non-integer parameters, i.e., weights of each machine
stage, which the arrival parts sequence can be derived from; the rest of 120 integer values are AGV
distribution rules for every arriving part. They are converted as arrival parts attributions and transfer
to the WITNESS simulation model. Moreover, the production KPIs are collected as outputs to the
optimisation model.

To evaluate the re-scheduling performance of the proposed framework, machine breakdown
scenarios were also introduced. In those experiments, after 4000 s of overall process time, two machines
were intentionally shut down and process stops. The SAMS is expected to detect the abnormality by
solely monitoring the PLC status and resources cycle times. Once the fault information is received by
the SAMS, the re-schedule procedure starts. This process involves updating the DES model, executing
the simulation for the remaining tasks, and re-allocates the tasks between system resources as soon as
a re-schedule among the solution set is approved. After 40 min (2400 s) of hypothetical repair time,
the broken machines were back to operation. The SAMS initiates a second re-scheduling process and
feeds the new set of solutions into MES application for the approval.

The following assumptions were made during the experiments:

• The shop-floor layout and AGV routing paths were fixed.
• Charging threshold for AGV is set at 20%. If the battery level is lower than 20%, the AGV needs

to park at the charging station for re-charge. When AGV battery is fully charged, it will be ready
for the new task.

In the experiments, the initial machine parameters, including: setup time and cycle time, and AGV
average speeds, non-stop travelling time, and charging time, are collected from the shop-floor through
IoT-enabled data collection devices. For instance, the RFID tags are used for tracking battery pallets and
calculating the commuting time between each station, energy monitors are attached at each workstation
to collect the energy consumption, and PLC function blocks are programmed to calculate machines
and robots cycle times. In addition, these data are fed into the OPC UA server through Modbus
TCP/IP protocol. The DES model is implemented in WITNESS software, and the optimisation engine
is achieved through MATLAB programming language. The experiments presented here are deployed
on a PC with Intel(R) Xeon(R) with a 32 GB RAM and I7 8-core 3.8 GHz processors. Please note
that the average time for each process simulation within the DES environment is recorded as 5 ± 1 s.
Based on the experiments, the GA converges around 200 simulation runs. This indicates a total
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scheduling optimisation run about 11 ± 3 min (including decision-support and communication with
MES). Please note that this is based on the experiments we carried out with simple machine breakdown
scenarios at the IML.

Figure 11 shows the histograms of the job processing times for selected machine operations.
A uniform normal distribution is selected to represent these job processing times based on the data
stored in the time-series database:

PT ∼ N (µ, σ2) . (11)

where the µ means the average processing time(PT), and σ means the standard deviation of these
collected processing time. The µ and σ changes with different jobs. In this case study, both parameters
(µ, σ) for each job are analysed, and then updated in the DES software. Please note that the time-series
database includes more than 5000 sampling points for each operation.

Figure 11. Example of job processing time distribution.

5.2. Results

The result for static job scheduling problem is given in Figure 12, showing the relationship of
the tardiness of the material delivery and the average AGV energy consumption. It has been found
that AGV energy consumption and JIT material delivery performance are two conflicting outputs.
Hence, an optimal scheduling strategy is required. In this research, the relative Euler distance method
is chosen to find the near-optimal solutions for AGV and machine jobs scheduling:

Dis( f1, f2) =

(
( f 1

x − f 1
min)

( f 1
max − f 1

min)

)2

+

(
( f 2

x − f 2
min)

( f 2
max − f 2

min)

)2

(12)

In the equation given above, the Dis( f1, f2) represents the Euler distance between two objective
functions, and the minimum value is considered as the best solution in this paper. f 1

max and f 1
min

represent the minimum and maximum value of 1st objective function, respectively, and f 2
max and f 2

min
represent the minimum and maximum value of 2nd objective function. Once the solution parameters
for the Euler distance are set, the best solution for machine jobs schedule and AGV distribution rules
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can be attained. In this way, multiple solutions can be provided based on different KPIs requirements,
including AGV blocking time, machines utilisation balance, and parts waiting time in the buffer, etc.
Figure 13 depicts the Gantt chart for the best solution including both machine and AGV schedules for
static job scheduling experiments.

Figure 12. The Pareto Front.

Figure 13. Gantt Chart (Normal/planned events).

To evaluate the efficiency of the proposed system, its performance is compared with a static
First-In-First-Out (FIFO) and five Shortest Processing Time (SPT) based dispatching methods. In the
FIFO-based dispatching approach, the first arrival product is delivered to the nearest machine, and be
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processed first. On the other hand, SPT-based method prioritises the product with the shortest
processing time. Here, five different SPT-based scheduling rules, i.e., the SPT based on the cycle-time
for each stage and the SPT based on the overall product cycle-time. The performance comparison is
given in Table 3. According to the results, a large tardiness improvement is recorded for the proposed
approach. It is also noted that a slight increase in AGV energy consumption (EC) performance
is achieved.

Table 3. Comparison of the implemented scheduling approaches.

Solutions
Normal Events Two Machines Breakdown

Tardiness EC Tardiness EC

Proposed Scheduling 300.4484 (Earliness) 701.4404 218.6914 (Earliness) 704.9327

FIFO Scheduling 1575.7169 (Earliness) 577.4241 4657.8487 (Lateness) 701.1848

SPT based on 1st Stage 1103.9 (Earliness) 585.7565 14,968 (Lateness) 997.0096

SPT based on 2nd Stage 679.377 (Earliness) 607.6007 13,708 (Lateness) 923.2472

SPT based on 3rd Stage 1223.6 (Earliness) 612.8167 9681.7 (Lateness) 833.9795

SPT based on 4th Stage 1179.2 (Earliness) 613.1612 15,750 (Lateness) 1150.4

SPT based on overall Stage 1710.9 (Earliness) 576.6980 13,956 (Lateness) 944.900

Two production scenarios with manufacturing disruptions are also set up to evaluate the
re-scheduling capability of the proposed approach. In these scenarios, the fourth machines in
Stage 2 and Stage 3 are intentionally broken down. The breakdown is set from 4000 s to 6400 s,
lasting for 40 min. Meanwhile, the re-scheduling strategies are generated by the SAMS to meet the JIT
requirements with an acceptable AGV energy consumption rate. The results (Table 3) showed that
the SPT and FIFO-based methods are unable to handle manufacturing interruptions, although they
are capable of providing acceptable performance under normal operational conditions. The proposed
approach is able to effectively re-schedule AGV and machine schedules subjected to production
abnormalities, and provides a significantly better tardiness performance. Please note that all methods
have similar results for AGV energy consumption rates.

5.3. Discussion

With the recent advancement in the Industry 4.0 systems and technologies, the decision-support
systems became a vital enabler in ensuring global competitiveness of manufacturing enterprises. In the
related literature, there are a few-number of works involving the simulation-based decision-support
systems within the context of manufacturing systems engineering. Some examples include: [78–81].
Contrary to exact methods, the simulation-based approaches provide timely decisions due to reduced
computational complexity. However, these methods are often criticised due to accuracy problems [82].
In this research, the SAMS architecture is modified to overcome this challenge. To minimise the prediction
errors of the static DES models used within the SAMS, IoT-enabled historical data are streamlined
into the DES models to enhance their prediction capabilities. In addition to this, an evolutionary
optimisation algorithm (i.e., GA) is employed in a multi-objective optimisation problem to deal with
the scheduling complexity while avoiding getting trapped in the local minima. The interoperability
of the proposed system is demonstrated using OPC-UA industrial M2M communication protocol.
Moreover, the decision-support capabilities of the approach are demonstrated on case studies where
a set of near-optimal re-scheduling solutions are promptly provided to shop-floor managers upon
the event of manufacturing disruption via a human–machine interface. The results showed that the
proposed approach can help to improve the performance of the system in terms of just-in-time delivery
performance, the average utilisation of the system resources, average queue times, and energy efficiency
of AGV transportation.
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The Lanner’s WITNESS DES software provides an object-oriented modelling approach for AGV
material transportation. The model has a pre-defined AGV routing topology that ensures that AGVs
do not collide against each other. A deadlock consists of a model state in which the AGVs are
simultaneously waiting for any other AGV to perform a task and no AGV can change its current
state. Effectively, this locks the model, and prevents the completion of the simulation run. During the
initial modelling stages, which involves identifying potential issues, we observed that the possibility
of deadlock occurrence when an AGV tries to access to the storage locations. This is because the access
to the storage location was done using a bi-directional path with a single unit capacity. This allows
only one AGV to cross this path at any time with another AGV waiting on the other end of the path
and there is no space for the first AGV to exit. It is important to note that this type of deadlock
should be avoided during the simulation. To prevent this issue, we introduced two unidirectional
paths across the routing topology. This, in fact, can be considered as a crude simplification of the
real system. However, since the IML demonstrator under consideration has a very low number of
AGVs, this situation rarely occurs in the real system. Therefore, it is assumed that the addition of
two unidirectional paths in the simulation model has a negligible impact on the results. Please note
that, for systems with complex layouts and/or a high number of AGVs, more sophisticated deadlock
prevention algorithms and mechanisms should be employed. Some examples include: [83–87].

The proposed approach, however, has certain limitations that need to be addressed. Firstly, in its
current form, the SAMS operates with limited data. As future work, to fully exploit the advantages of
the concept of Big Data Analytics, more IoT-enabled data will be streamlined into the SAMS and a
complex event processing engine will be employed to process those streams. This will provide a better
understanding of the relationships among various shop-floor activities and will help to improve the
predictive analytics capabilities of the approach. Another important limitation is the prediction errors
arising due to the real-time behaviours of AGVs. The proposed SAMS provides a set of scheduling
alternatives based on the simulation optimisation results. The selected schedule and corresponding
AGV job assignments are then fed to the MES and further MiR fleet manager. The MiR fleet manager
is an industrial control system for AGVs providing a collision-free routing with shortest travel times.
The fleet manager assigns tasks to AGVs depending on their location, energy levels, etc. This manager
has an in-built traffic control mechanism offering the coordination of critical zones with multiple robot
intersections and hence providing a collision free routing. Additionally, MiR AGVs have collision
sensors and in-built cartographer SLAM algorithms to prevent any real-time collision issues. AGVs can
autonomously decide and manoeuvre outside of their pre-defined path to avoid any type of collisions.
It is important to note that there might be differences in the AGV path since the WITNESS models
have pre-defined routes unlike the MiR fleet manager. In the experiments, we observed a difference
between completion time of shop-floor jobs and DES simulation results (up to 7.1%) because of logistics
uncertainties. This limitation of the SAMS will be addressed as future work by employing a better
information-mirroring mechanism between cyber and physical domains. The graphical user interface
used in the SAMS decision-support system only broadcasts a list of solutions to be selected on the HMI
screens. As future work, a new dashboard with varying visualisation options will be developed to
provide a better decision-support to shop-floor decision-makers. Lastly, the communication between
the proposed systems and MES and Enterprise Resource Planning (ERP) systems will be enhanced
using web-services to provide a more industry-ready deployable solution.

6. Conclusions

In this paper, a decision-support system capable of providing multiple scheduling solutions as
a response to manufacturing disruptions was introduced. The system uses IoT-enabled production
data to enhance the accuracy of the digital replica of the FMS under consideration. In the event of a
manufacturing disruption, the system automatically detects the production anomaly and releases a
set of re-scheduling strategies aiming to satisfy both maximised just-in-time delivery performance
and minimised AGV energy consumption on time. The system was tested on a real industrial case
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study, and the results showed that the system is helpful to managers for the decision-making at the
operational level.
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