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Abstract

Upper-limb prostheses are either too expensive for many consumers or
exhibit a greatly simplified choice of actions, this research aims to enable an
improvement in the quality of life for recipients of these devices. Previous
attempts at determining the hand shapes performed during activities of daily
living (ADL) provide a limited range of tasks studied and data recorded.
To avoid these limitations, motion capture systems and machine learning
techniques have been utilised throughout this study.

A portable motion capture system created, utilising a Leap Motion controller
(LMC), has captured natural hand motions during modern ADL. Furthering
the use of these data, a method applying optimisation techniques alongside
a musculoskeletal model of the hand is proposed for predicting muscle
excitations from kinematic data. The LMC was also employed in a device
(AirGo) created to measure joint angles, aiming to provide an improvement
to joint angle measurements in hand clinics.

Hand movements for 22 participants were recorded during ADL over
111 hours and 20 minutes - providing a taxonomy of 40 and 24 hand shapes
for the left and right hands, respectively. The predicted muscle excitations
produced joint angles with an average correlation of 0.58 to those of the
desired hand shapes. AirGo has been successfully employed within a hand
therapy clinic to measure digit angles of 11 patients.

A taxonomy of the hand shapes used in modern ADL is presented, high-
lighting the hand shapes currently more appropriate to consider during
upper-limb prostheses development. A method for predicting the muscle
excitations of the hand from kinematic data is introduced, implemented
with data collected during ADL. AirGo offered improved repeatability over

traditional devices used for such measurements with greater ease of use.
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Chapter 1

Introduction

Modern day upper-limb prostheses are either too expensive for many consumers
or provide a greatly simplified choice of actions available. The intended impact of
this research is to provide the knowledge of what is demanded from the human
hand during average typical everyday tasks. This aims to lead to improvements
in the quality of life for recipients of upper-limb prosthetic devices whilst also
offering a reduction in the cost. Consequential improvements to the quality of life
for the recipients would aid the adoption rate of these prosthetic devices and a
reduction to the cost would enable the offering of these devices to a greater number
of amputees. The objective of this study is to implement a, novel, portable motion
capture device to capture the natural hand motions of modern activities of daily
living (ADL). Alongside this the data collected has been inputted into a method
combining an existing musculoskeletal model and optimisation techniques to predict
the hand muscle excitations from kinematic data, aimed at aiding the development
of myoelectric-controlled prostheses, and a device for measuring the hand digit
joint angles has been proposed, aimed at improving the currently employed clinical
methods used. This chapter outlines the motivation for this work, the aims and

objectives and summarises the discussions of the succeeding chapters.
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1.1 Motivation

Modern day upper-limb prostheses do not support the requirements of many con-
sumers [1-4]. Grasp taxonomies presented in the literature [5-8] offer an insight into
the grasping actions performed during certain tasks, attempting to aid functional
imitations of the human hand. The latest taxonomy of grasps was introduced by
Feix et al. [8]; however, this only considered two professions (housekeepers and
machinists). Due to the limited range of activities studied in previous work, there is
a need for these taxonomies to be updated to include modern activities of daily living
(ADL) - such as the use of mobile phones and keyboards. The use of video recorded
data to shape previous taxonomies limits the possible length of the recordings, due
to the requirement to watch over the collected data; this has led to a limited amount

data being collected and used to create these taxonomies.

This study aims to update the currently accepted standard set of grasp taxonomies.
By providing this as an updated taxonomy of functional hand shapes, upper-limb
prostheses can be designed with new knowledge surrounding the importance of each
different hand shape. The results will highlight the functionality demanded from
the hand during an average typical day - a basic desire from the hand. Through the
utilisation of this information, upper-limb prostheses could potentially be developed to
ensure that this base level of functionality is met. With this improved functionality of
upper-limb prostheses, it is hoped that the quality of life for recipients will increase;
with improvements to rehabilitation time, ease of use and the adoption rate of
these devices among amputees. The proposed solution, using a motion capture
system to record the data, will offer the ability to collect more data, due to the
enabled application of machine learning techniques to process and analysis the data.
Furthermore, making this system portable removes the requirement for performing
such data collection within a fixed motion capture environment - allowing for the
recording of more natural ADL. The introduced portable motion capture system has
been validated against a state-of-the-art motion capture studio, to ensure confidence
in the collected hand motion data. This has also provided a validation of the Leap
Motion controller (LMC) for application in the acquisition of clinically relevant

measurements.

Knowledge of hand shapes performed in everyday life has not been used to determ-
ine the muscle excitations required. Extracting the muscle excitations performed
during collections of hand motions in ADL would provide aid to electromyography
(EMG) controlled upper-limb prostheses. A method which could predict the muscle
excitations occurring within kinematic data would enable the utilisations of exist-

ing data, collected during ADL, to provide muscle excitation measurements. This
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would indicate the shapes associated with expected EMG patterns within ADL. In
addition, a method predicting these muscle excitations from kinematic data would
enable the collection of muscle excitation data without a need for encumbering or
invasive devices to be place on the participant. The observed inaccuracy of current
measurement systems employed also supports the introduction of alternative means

for indicating muscle excitations.

In light of this, this study aims to provide the muscle excitations performed
during everyday activities of modern life. Within this work, in an attempt to further
utilise the kinematic data collected during ADL, a method combining an existing
musculoskeletal model [9] and optimisation techniques is introduced. The obtained
knowledge has been highlighted for the aid of myoelectric protheses. The introduced
method offers a means of capturing the muscle excitations occurring from, exclusively,
a single frame of kinematic data - information previously only obtainable through
contact or invasive devices. Ascertained knowledge of the muscle excitations of the
hand during common hand shapes aids upper-limb prostheses design for myoelectric
prostheses. From this knowledge, devices could be designed to cater for certain
cases of muscle excitation inputs. This would aid the quality of the responses
from myoelectric upper-limb prostheses, with known information supporting the
development of each movement produced by the prostheses. Furthermore, there is
the potential for cheaper development with use case limited prostheses, providing

the most used hand shapes for a reasonable cost performance balance.

During physiotherapy, acquiring the range of motion available to a patient is a
useful measure of progress. In the deployment of prosthetic hands, the measurement
of enabled hand movement is also key to evaluating these devices. Additionally,
evaluating the rehabilitation progress for users of full and partial prostheses provides
support during the recovery process. Currently a goniometer is used for most clinical
assessments; however, there is limited knowledge of the accuracy of this device and
it often fails to show agreement across different users. Furthermore, this method
requires contact between the patient and the observer, takes a significant amount of
time to complete a full collection of hand digit joint angles and requires expertise to
operate. Improvements to the repeatability of this method would provide confident
knowledge of patient progress. Knowledge of the accuracy of the method used
would provide a useful indication to the confidence allowed in the collected data. A
contactless system would reap several benefits - in particular, the removal of potential
contamination of the measurements. Faster collection times would result in an ability
to collect more information and see more patients within a set time. Additionally,
if the device was able to run with no expertise it would enable the completion of
measurements by the patients, independently from their clinical visit time. A means

to store and easily refer to collected observations would aid rehabilitation by enabling
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a fast indication of patient progress.

This study aims to provide improvements to measurements taken of the hand
digit joint angles, through further utilisation of the LMC. The LMC offers several
benefits to the, currently employed, goniometer: validation of the device highlights
a known accuracy, the results are repeatable, quick and no contact is required to
achieve a measurement of the joint angles. Additionally, this is able to aid in the
assessment of partial and full hand prostheses. Provided the structure of a complete
hand is presented, the LMC is able to capture motion data. This enables quick and
accurate evaluation of the quality of a prosthesis and rehabilitation progress. A
device (named AirGo) is introduced within this work, aiming to alleviate the issues
present in the application of manual goniometers for the collection of hand digit
joint angle measurements. This device provides a faster and more reliable means
for collecting measurements of patient hand digit joint angles, whilst remaining
contactless from the patient, within hand therapy clinics. Additionally, the operator
of the device does not require previous experience of the device - enabling the
ability for patients to perform their own measurements independent of their clinical
visit. Patient progress assessment is aided by the quick and easy referral of the

electronically stored measurements.

1.2 Aims and Objectives

The aims of this project and objectives by which these aims were achieved are as
shown below. These were created based on the project outline and findings from the

literature.
Aims:
e Create a means by which the quality of life of recipients of upper-limb prostheses
can be increased and the cost of the devices reduced.

e To ascertain the most commonly used hand motions in everyday tasks, including

the use of modern day technology.

e Provide a greater understanding of hand motion through mechanistic musculo-

skeletal modelling of the hand.

e Improve the clinical methods employed to obtain angular displacement meas-

urements for the hand digits.
Objectives:

e Collect and analyse motion capture data of the hand to provide an understand-

ing of the typical everyday hand motions.
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e Determine the common hand shapes performed in everyday activities and

compare these with previously developed taxonomies in the literature.

e Develop and implement a musculoskeletal model based technique to determine

muscle excitations from hand shapes observed in everyday life.

e Utilise motion capture technology to provide faster and more reliable measure-

ments of the hand digit angle than the current clinical standard.

1.3 Thesis Outline

This thesis discusses the biomechanical properties of the hand and analysis of the
hand shapes seen throughout regular ADL. The motivation, aims and objectives

have been achieved through the work presented in the following chapters.

Chapter 2, Background, reviews the current state-of-the-art in upper-limb
prosthetic devices and the capture and analysis of human hand motions. To begin,
the structure of the hand is presented, discussing the roles of each bone, joint and
muscle. A discussion of the development of upper-limb prostheses is provided. The
existing taxonomies of grasps are introduced and discussed. The current state-of-the-
art methods for the capture of hand motions are displayed. Following this the analysis
methods utilised in the literature are reviewed - with focus placed on developments
surrounding artificial intelligence (AI) and data manipulation techniques. Existing
models aimed to capture the intricacy of hand motions are identified and discussed.
The currently utilised measurement methods for muscle excitations are introduced and
their limitations promulgated. Subsequently, literature surrounding the deployment
of optimisation techniques are highlighted to aid their envisaged utilisation within a
prediction model. A review of the currently employed and suggested techniques for

joint angle measurements closes this chapter.

Chapter 3, Methodology, introduces the methods used the collection and ana-
lysis of hand motions. The chapter opens with a description of the proposed
alternatives to the current methods used for capturing the movement of the hands,
predicting muscle excitations from kinematic data and obtaining measurements
of hand joint angles. A detailed breakdown of the methods employed to collect
data is given. The methods used to analyse this collected data are also introduced,
highlighting the strengths and weakness for the use of each with the collected data.
A description of how the final results were displayed has been given - collecting

utilisable outputs to provide the outcome of the project.

Chapter 4, Analysis, examines the data collected and applies the, previously
described, analysis techniques. The results of validations undertaken for each of the

techniques employed are reviewed. Results of the analysis methods mentioned in the



Introduction

previous chapter are presented and the final results displayed. The validation and
evaluation results of several muscle excitation prediction methods are provided. The
results of a clinical trial undertaken for a new hand joint angle measurement device

are shown and discussed.

Chapter 5, Taxonomy of Functional Hand Shapes, discusses how the ob-
tained results could be used to influence a taxonomy of hand shapes. Current grasp
taxonomies are revisited, highlighting their similarities and any possible extensions
which could be made. The taxonomy of functional hand shapes developed from the
results of this project has been provided here. Comparisons are then drawn between
the the presented taxonomy and current state-of-the-art, observing any differences

and deducing the reasoning for such.

Chapter 6, Predicting Hand Muscle Excitations, reviews current muscu-
loskeletal hand models and presents the selected model for implementation with
optimisation techniques, to predict muscle excitations from kinematic data. A review
over the selected musculoskeletal model is given and the steps taken to implement
it reported. The selection of optimisation techniques chosen for this application is
highlighted, with each implementation described. The results obtained following

utilisation of the proposed prediction technique are transcribed and discussed.

Chapter 7, AirGo, highlights a novel device created for the measurement of hand
joint angles. A brief review of the current state-of-the-art has been given and a
proposed solution to the issues identified, named AirGo, presented. A revisit to the
validation results for the LMC and performed clinical trial, with AirGo, provide
argument for the deployment of this proposed device. The chapter closes with a

discussion of the presented device and currently employed methods.

Chapter 8, Conclusions and Future Work, summarises the results found and

discusses the potential future of the work performed.



Chapter 2
Background

This chapter provides a study of the required background knowledge. The included
literature review examines existing ideas surrounding the motion of digits, provides a
look into the progress seen in upper-limb prostheses design, reviews the development
of grasp taxonomies throughout the literature, overviews potential techniques for
the capture and analysis of the human hand movements, displays the current state-
of-the-art models of the human hand and discusses the currently employed and
suggested methods for measuring hand joint angles in a clinical environment. Methods
introduced see their strengths and weaknesses highlighted, drawing conclusions of the
optimal devices and techniques for this project. The required technical knowledge is
presented, providing a detailed examination of the techniques employed to analyse
the data collected. Included in this discussion are the machine learning approaches
applied to highlight similarities within hand motion data and optimisation techniques
explored to provide fast, reliable and accuracy estimations of the muscle excitations
from singular frames of kinematic data. The utilisations of these described techniques
are then reported in Chapter 3 and the results of implementation shown in the

succeeding Chapter 4.
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2.1 The Human Hand

The human hand is a complex mechanism, consisting of several elements interacting
to enable the available range of motion. In a basic mechanical form the hand can be
considered as rigid bodies, the bones, rotated around a pivot, the joints, by pulleys,
the muscles and tendons. This interaction achieves 27 degrees of freedom (DoF)
with 27 bones and 27 muscles, of which 16 are extrinsic and nine are intrinsic. This
system of bones and muscles results in a vast capability for the hand - enabling a

plenitude functions.

Many studies have tried to describe the reasons for the dexterity achieved by the
human hand and recreate this ability in mathematical models [10-14]. Pons et al.
[10] define manipulation to require the independent control of the fingers. It is argued
that, though the independent flexion and extension of fingers may not be greatly
important in grasping, it is for manipulation. A study performed by Montagnani
et al. [11] tests the functionality of the human hand when different degrees of
freedom are imposed on it; finding that independent abduction and adduction is
more important than independent flexion and extension when grasping an object. In
this study digits were physically constrained to move as one to create hands with
varying degrees of freedom. It was also seen in this study that having an opposable
thumb present gave a measurable advantage when performing activities of daily living
(ADL). Research by Okada [12, 13] found that the introduction of abduction and
adduction in a robotic hand allowed for greater functionality (e.g. fastening a nut to
a bolt). This research supports the argument by Montagnani et al. that abduction
and adduction is an important function in the use of the hand. Additionally, when
testing different actuator configurations Tavakoli et al. [14] found that abduction
and adduction of the thumb increased the overall performance of the hand. It is clear
that there is a consensus in literature that, to adequately replicate the functionality
of the human hand, enabling manipulative interaction with the world around it,
independent control of the digit flexion and extension and abduction and abduction

are required.

2.1.1 Bones and Joints

Bones give a rigid structure to the body, they provide support and enable mobility.
The joints of the body act as fulcrums for these rigid structures to translate across

and rotate about.

The human hand consists of 27 bones, each labelled in Figure 2.1. The phalanges

(appropriately named distal, intermediate and proximal) and metacarpals form the
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digits. The wrist is comprised of carpal bones - eight bones forming the carpus. The
individual names of which have been deemed unimportant here. The hand attaches
to the lower arm at the distal ends of the radius and ulna. Though there is a lot of
complexity to the carpus the digits are simple rigid bodies with generalisable simple

hinges, this allows for basic robotic mimicking.

The three joint which connect the bones in each finger (digits two to five): meta-
carpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal
(DIP); for the thumb (digit one) this is: MCP and interphalangeal (IP). The joints
are secured through ligaments, a connective tissue which binds bone to bone. Three
joints connect the hand to the arm, the radiocarpal, ulnocarpal and distal radioulnar
joints. Additionally, there are several joints connecting the carpal bones, each with
labels derived from the connected bones - the individual naming of each has been
considered irrelevant for this project. Connecting the carpals to the metacarpals of
each digit are the carpometacarpal (CMC) joints. From here the collection of joints
within and around the wrist will be refereed to as the wrist joint, singularly. The
MCP of each finger has two DoF and the PIP and DIP one DoF each. The MCP of
the thumb exhibits four DoF and the IP one DoF. These with the six DoF of the
wrist joint provides the human hand with an overall 27 DoF. Each joint of the hand

can be seen described in Figure 2.1.

JOINTS

Distal interphalangeal
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Proximal
interphalangeal
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Figure 2.1: The bones and joints of the human hand [15].
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2.1.2 Muscles and Tendons

Muscles provide the mechanical work required to move the body. The force each
muscle is able to produce depends upon varying characteristics (length and velocity).
Tendons act as an anchor between muscle and bone, they provide a conduit for the

force from the muscles to be transferred to the bones.

The complex motions achieved by the human hand are actuated through the
combined activation of intrinsic and extrinsic muscles. Intrinsic muscles are found
within the hand structure and are, in general, responsible for the fine motor control
seen by the hand. Extrinsic muscles are found externally to the hand and tend
to produce larger motions, providing the gripping force possible by the hand. A
descriptive breakdown of the intrinsic and extrinsic muscle of the hand can be seen
in Tables 2.1 and 2.2, respectively. For simplicity, within these tables each digit
has been referenced as a relative number (one to five in lateral to medial order)
and similarly for the bones (one to four in proximal to distal order). The action
column provides the resultant motion due to the activation of the respective muscles,
with the digits and bones of these digits given this motion listed in the subsequent
columns. Figures 2.2 and 2.3 visually depict each of these muscles, providing the

location of each within the arm and hand.

Knowledge of extrinsic muscles is employed in prosthetic control and, with
knowledge of intrinsic muscles, for development, training and validation of models of
the hand. A price paid for examination of extrinsic muscles alone is their inability
to describe the finer motor functions of the hand, responsible only for the overall,
crude, motion. Due to their complex entanglement, intrinsic muscles are exceedingly
difficult to record using surface electromyographys (EMGs) - the crosstalk seen in
this area results in a near impossible to decode signal obtained with current surface
EMGs technology.

10
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Table 2.1: The extrinsic muscles of the human hand.

Name Action Digits Bones
Extensor Digitorum (ED) Extension 2-5 2-4
Extensor Indicis (EI) Extension 1 2-4
Extensor Digiti Minimi (EDM) Extension 2-4
Flexor Digitorum Superficialis (FDS) Flexion 2-5 2,3
Flexor Digitorum Profundus (FDP) Flexion 2-5 2,4
Flexor Pollicis Longus (FPL) Flexion 1 2,3
Extensor Pollicis Longus (EPL) Extension 1 2-4
Extensor Pollicis Brevis (EPB) Extension 1 1,2
Abductor Pollicis Longus (APL) Abduction 1 1
Table 2.2: The intrinsic muscles of the human hand.
Name Action Digits Bones
Rotation,
Opponens Pollicis (OP) . 1 1
Flexion
Abductor Pollicis Brevis (APB) Abduction 1
Flexor Pollicis Brevis (FPB) Flexion 1 2
Opponens Digiti Minimi (ODM) Rotation, 5 1
Flexion
Abductor Digiti Minimi (ADM) Abduction
Flexor Digiti Minimi Brevis (FDMB) Flexion
Lumbricals Flexion; 2-5 %
Extension 3,4
Dorsal Interossei (DI) Abduction 2-5 1
Palmar Interossei (PI) Adduction 2-5 1

Similarly to ligaments, tendons are connective tissue. They are exceptionally
durable and act like cords transmitting force, enabling the muscles to move the bones
about and across the joints. There are two types of tendons: positional tendons,
providing support for the bones and muscles, and energy storing tendons, acting as
springs in aid of energy consumption during motion. The stretch experienced by
the tendons aids muscle force generation. Within the hands the tendons enable the
extrinsic muscle forces to affect the bones. From the forearm there are two groups of
tendons: flexor and extensor tendons. Flexor tendons are located on the palmar side
of the hand to enable digit flexion. Extensor tendons are located on the dorsal side

of the hand to enable digit extension. Within the hand, the tendons connecting the

11
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intrinsic muscles and bones provide structural support.
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Figure 2.2: The extrinsic muscles of the human hand; displaying the left
forearm deep muscles from the palmar view (left) and dorsal view (right) [15].
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Figure 2.3: The intrinsic muscles of the human hand; displaying the left
hand superficial muscles from the palmar view (left) and deep muscles from
the dorsal view (right) [15].

2.2 Upper-Limb Prostheses

Significant progress has been made since the conception of upper-limb prosthetic
devices, each step attempting to mimic the complex motions achieved by the hand
perfectly whilst remaining cost effective. A later move to electronically powered
prostheses improved user satisfaction but increased cost dramatically. Developments
in actuation strategies allowed for a small reduction in price, at the cost of perform-
ance. The conception of three-dimensional (3D) printing gave significant aid to the
development of prosthetic devices, introducing the first time for prostheses to be
even close to reasonable for younger amputees of lower income families to afford.

The prostheses outer bodies could be manufactured with ease at a significantly lower

12
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cost than previously; this meant changes in size could be accounted for whilst con-
serving the motors - the notoriously expensive component when replacing electronic

prostheses.

The first record of an upper-limb prosthetic device comes from Pliny the Elder
in 77, who documented an artificial hand worn by Marcus Sergius which was fashioned
to hold a shield after the lose of his hand in the second Punic War (218-201 B.C.) [16].
From this several similar ideas of passive prosthetics were conceived, most notably:
Go6tz von Berlichingen in 1509 [17] and Ambroise Paré in 1564 [18]. Few changes were
made until 1818, where a body powered upper-limb prostheses was introduced by
Peter Bailiff [19]. The introduced prostheses utilised the shoulder motions to provide
flexion and extension to the digits of the artificial hand. Body-powered devices rose
quickly in popularity and are still used to this day, significantly more comfortable
and practical than their first inception. Though usually unrealistic, aesthetically
and in motion, many amputees show a preference to body-powered devices due
to their design simplicity and robust nature, typically lasting longer and costing
less than their alternatives. In 1898 Giuliano Vanghetti wrote the first document
discussing the possibility of cineplastic operations, an amputation operation in which
the residual muscles and tendons are used to directly control the artificial limb [20].
This technique was first performed in surgery 1905 [21] and since there have been
several instances of these operations being performed [22-26]. Though pneumatics
was considered as a form of powering prosthetic devices, it was implemented in few

prostheses.

The first electronic hand prosthesis was published by Reinhold Reiter in the
early 1948 [27]. This device employed an EMG device as the feed forward control,
utilising electrical signals found from activation of residual muscles. The use of EMG
signals to control upper-limb prostheses quickly developed and presented numerous
variants. In 2006 Bitzer and Smagt showed how support vector machines can be
used to support control inputs from surface electromyography (sEMG) readings
[28]. In 2009 Castellini and Smagt utilise machine learning techniques, within an
sEMG controlled hand, in order to determine the desired digit position and force
[29]. Castellini and Smagt showed that this can form a reliable feed forward loop
for a prosthetic hand with high potential for improving the EMG control method.
Research on the application of pattern recognition in EMG prostheses aims to aid
the control of the hand [30, 31]. Though found to have adequate accuracy, the real
world application of this technique is questioned [32]. A study in 2019 developed an
EMG sensor which was shown to be more sensitive and faster then other options
for prosthetic hand control [33]. Locating useful muscle sites to collect accurate
EMG signals is sparse, hence this method is typically only applied to patients with

transradial amputation or wrist disarticulation.

13
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In 1978 De Luca [34] discussed the idea of using neuroelectric signals for the
feed-forward path in a prostheses. Though not proven to be an instant replacement
of other techniques, De Luca showed the possibilities in the utilising the nerves
of interest and argued the advantage over the common practice EMG technique.
In 2005 Zhou [35] examined the possibility of using targeted muscle reinnervation
(TMR) to improve the readings of intended movements, particular in areas dense in
muscle sites where sEMG suffers - as is with the arm and hand. A TMR transfers
residual nerves to alternative muscles, providing a biological amplifier in which the
new, targeted, muscle activity can be measured using sEMG. This allowed for access
to information not priorly available to SEMG devices and enabled the use of SEMG
after forequarter amputation, shoulder disarticulation and transhumeral amputation.
Studies since have increasingly supported the potential of TMR to improve EMG
control for multiple prosthetic hands [36-39).

The use of sSEMG devices have shown several issues, most notably of which is the
high level of crosstalk and lack of information within superficial muscles. A study of
a first-in-man of implant EMG device displayed the potential of this technique [40].
The patient, previously having used sEMG, described the device as allowing for a
more natural and intuitive control. In 2021, Islam et al. [41] introduced a new, force-
invariant, feature extraction method for the control of upper-limb prostheses. The
method utilised the recorded amplitude changes and spatial correlation coefficients
of the EMG channels to provide feature extraction. This was able to demonstrate a
greater pattern recognition performance, higher accuracy, sensitivity and precision
when compared to alternative feature extraction methods. Additionally, the method
also exhibited a lower computational time and memory requirement over these

methods.

In addition to the use of EMG signals for prostheses control, electroenceph-
alography (EEG) devices have proven a possible control method for prostheses -
measuring signals originating in the brain. In 1999 Guger et al. [42] introduced the
use of a brain-computer interface with paralysed patients for controlling an external
hand. It was shown that, by imagining left and right hand movements, the user was
able to control a prosthetic hand with ample accuracy. Though it did not enable
full digit movements (only gross opening and closing motions of the hand) this
highlighted the potential of EEG control, arguing that this control method demands
less attention from the user compared to alternative options. A 2007 review [43]
of control strategies concludes that EEG control was not ready for practical use,
though it was stated that the experimental progress made was favourable. It was also
stated that more focus should be placed on the improving realism of the artificial
hand joints and sensory feedback options, with EMG and TMR strategies showing

the greatest potential for that time. Parr et al. [44] focus at how gaze training can
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impact the use of upper-limb prostheses. Gaze training was achieved through the
use of EEG and eye tracking devices, monitoring the brain and eye activity whilst
the user picked up an object. The users were trained to fixate on the object to
be grasped rather than the hand. After finding gaze training effectively reduces
cognitive burden (reducing learning time and fatigue) Parr et al. argues that it is
not the technology of prosthetic hands which requires attention but more the user
interaction strategies employed. Ruhunage et al. [45] utilised the strengths of both
EEG and EMG strategies in a hybrid system. This work introduced a successful
hybrid system, in which EMG was used for elbow control and the gross opening and

closing actions of the hand and EEG for prediction of the desired grip.

Actuation strategies for electronic devices became increasingly important - bearing
great responsibility for influences on cost and comfort. The creation of taxonomies
showing the common grasps performed through a typical day aids the understanding
of demands the hand undergoes. Methods for actuating artificial hands can then be
formed around what is discovered from these taxonomies. More effective actuation
strategies help improve the lifestyle of upper-limb prostheses users and more efficient
actuation strategies help reduce the costs of prosthetic devices. There have been
several new actuation strategies tried and tested in the literature, particularly

regarding underactuated prosthetic hands [14, 46-48].

It is typical in underactuated methods for each of the digits to be individually
actuated by a single actuator [46, 48]. Massa et al. [46] introduced an underactuated
prosthetic hand which mimicked the function of only three digits (the index finger,
middle finger and thumb). Each of the digits is controlled by a single motor, based on
the Shigeo Hirose Soft Gripper [49], to allow it to conform to any shaped object. This
research aimed to use the recent developments in mechatronics design to create a
simplified hand without sacrificing functionality. It was argued that the thumb-index
pinch capability gave the hand high functionality whilst being able to only include
few actuators controlled by a simple algorithm. More recently, Bullock and Dollar
[47] created a similar, underactuated, manipulator with only the index finger and
thumb. The study found the manipulator to be successful; it was able to work with
objects in over 50% of the normal working volume of the human hand, with only 3
actuators used. It was remarked that future work would include the addition of more
digits to increase functionality. In 2019 Jeong et al. [50] introduced a three DoF
finger underactuated prostheses, demonstrating adequate control characteristics. In
2020 Abayasiri et al. [51] introduced an underactuated prosthetic hand design, aimed
at improving performance in ADL. The underactuated device was able to perform
extension and flexion of all digits, adduction and abduction of the four fingers and
opposition and reposition of the thumb, opposed to the limited motions of other

underactuated devices.
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Tavakoli et al. [14] found the actuator configurations, for fixed numbers of
actuators, which gave the best performance. It was argued that the results of
this study could be useful when deciding upon the number of actuators and their
configuration needed when designing a prosthetic hand, showing the most effective
use of the actuators. Tavakoli et al. [48] argue in another paper that it is possible to
have a higher level of anthropomorphism in hands with fewer actuators, supporting
the research that has been undertaken in developing underactuated hand prostheses
14, 46, 47).

It is evident that there have been several upper-limb prosthesis actuation strategies
suggested in the literature, many of which conclude in favour of underactuated

prosthetic hands.

Research has also been prominent in prostheses for partial hand (transmetacarpal)
amputations. The rise of of partial hand prostheses suffered most significantly from
the fact that the EMG signals of the wrist interfered with the desired extrinsic muscle
signals. Adewuyi et al. [52] studied how pattern recognition techniques could be
applied to a partial prosthetic hand. The results showed that this is realisable, though
the unpredictable nature of the wrist (still controlled by the user, opposed to the
prosthesis) decreased system reliability and gave cause for increased training times.
Earley et al. [53] explains how a classifier which switches between long and short
EMG analysis window lengths could be employed to overcome these problems. It
was argued that this dual window classifier had a significant positive affect. Earley et
al. also highlighted that, whenever possible, benefit can be found in the utilisation of
intrinsic, as well as extrinsic, muscles. Gaston et al. [54] later explained a procedure
which relocates intrinsic muscles to improve accessibility. This relocation allowed
for their use in the control of partial hand prostheses. Gaston et al. argued that
this migration of the intrinsic muscles, to a more proximal and superficial location,

improved EMG control.

Murali et al. [55] introduced a prosthetic device for partial hand loss, externally
powered in order to present a more anthropomorphically correct hand. Though
admitting to the need for several improvements Murali et al. argue for the potential
of the introduced device. Alturkistani et al. [56] provided a 3D printed passive
partial hand prosthetic for transmetacarpal amputation patients. Assessment of
this prosthetic was judged on the performance of grasps given in the taxonomy
presented by Feix et al. [57] and a lift test, showing sufficient grip strength with a
stable grasp and preferred over active prosthetic devices due to the compactness,
low weight and ease of attachment and detachment the prosthetic displayed. The
use of 3D printing in upper-limb prostheses manufacture allows for easier, cheaper

and quicker fabrication of devices sized precisely for varying individuals. Cuellar et
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al. [58] presented a 3D printed artificial hand which required no manual assembly
after printing. Aimed at developing countries, this simple and cost effective device

granted a body powered prosthetic to partial hand loss amputees.

Feedback loops, as a controller exclusively within the prosthesis or including
the user, have been studied to increase acceptability prosthetic hands. Controllers,
not including the user, moderate the applied force from a prosthetic hand, given
information of the hand and grasped object. These simple techniques aim to improve
the acceptability of prosthetic hands at a low cost. A 2020 review of sensory systems
with prosthetic hand devices argues that the progress made in the last 50 years is
clinically limited, though it was stated that recent pushes have seen some relevance
[3].

In 1998 Tufa et al. [59] presented an example of force based feedback system
controlling the pressure applied by the prosthetic hand, paired with an optical
detection system for preventing slipping. This feedback system was designed as a
controller element within the device - the user had no feedback. In 2009 Pasluosta et
al. [60] showed how a force sensing resistors, with a neural network, could allow for
a cost effective force control and slippage system. Again, this was a simple controller

element, not containing the user within the feedback loop.

The aforementioned feedback systems are solely controllers isolated within the
device. Increasing the visual feedback, beyond the physical artificial hand, is one
possible feedback method which enables the inclusion of the user within the control
loop. In 2012 Engeberg and Meek [61] introduced a device utilising a two coloured
light-emitting diode (LED) to indicate the gripping force, including the user visually
within the feedback system. This inexpensive, lightweight and low power feedback
device showed significant improvement, compared to no additional feedback, in
both the results of experiential tests and the user feedback. Research has also been
conducted to establish a proficient haptic feedback technique, typically employing

vibrotactile or transcutaneous electrical nerve stimulation (TENS) techniques.

Studies have displayed the possible feedback options, including the user in the
feedback path, with multiple feed forward controller options [62-66]. Ninu et al. [67]
studied which variables show statistical importance within a closed loop feedback
system. The subjects were able to estimate the grasping force when provided with
closing velocity feedback alone, indicating a lower importance for force feedback.
In addition to this, it was found that a vibrotactile feedback system could replace
visual feedback. Christiansen et al. [68] reviews visual and vibrotactile feedback
within an upper-limb prostheses. It is found that visual feedback as a greater impact
on performance than vibrotactile. However, it was noted that vibrotactile provided

assistance when the user could not see the target object and that the combination of
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both showed no negative effect on the overall system. A previous study by Stepp
and Matsuoka [69] noted an improvement when vibrotactile and visual feedback
was employed, compared to the use of visual feedback alone. Witteveen et al. [65]
highlighted that the inclusion of vibrotactile feedback improved grasping performance.
Concluding the study, it is insisted that further work is performed to ascertain the
impact of including feedback on the performance of ADL. A study in 2018, by Raveh
et al., [70] measured the performance improvement seen with vibrotactile feedback
on able bodies controlling an artificial hand with EMG signals. It was found that
the feedback added improves time to complete and accuracy of tasks performed -
concluding the importance of vibrotactile feedback when visual is not available. A
study assessing the importance of vibrotactile feedback in an underactuated arm
found that, though objectively visual was considered sufficient, subjectively patients
preferred the additional vibrotactile feedback [62].

In 2019 Battaglia et al. [66], noting the recent trends towards underactuated
prosthetic hands, aimed to asses possibility of adding proprioception to these devices.
Though the single signal feedback used was unable to inform the user of positional
information for each digit, it was able to provide an estimate of how open the hand
was. It was concluded that this provided a simple and easy to understand feedback,

giving some improvement to the quality of life for prosthetic hand users.

Upper-limb prostheses have shown significant improvements from their first
inception, from passive and simple arms [16-18] to complex, dexterous, hands
with feedback systems and advanced human control, with a notable desire to reduce
the cost for users [39, 45, 51, 58, 66]. Open Bionics create 3D printed prosthetic
arms, focusing on embracing the difference rather than viewing amputation as a
burden on lives. The efforts by Open Bionics has made a significant impact and
enabled children, as well as adults, to afford and use prosthetic hands with comfort.
The use of 3D printing as a manufacturing method has a large influence on younger
amputees as. Due to the typically rapid growth of children, many outgrow prostheses
at a rate unreasonable to afford - only requiring to print the body of the arm at a
low cost with growth. In 2019 Zheng et al. [71] reviews the control techniques and
design of upper arm prostheses from the prospective of the users, referring to a focus
group of 11 participants. The participants expressed most interest in improving the
dexterity and durability of the devices. Though understanding the advantage of
invasive control techniques many participants showed wariness. Zheng et al. argue
the importance of educating amputees around invasive techniques, alluding to these
control options as the likely next step. Despite these advancements it is still observed
that modern day upper-limb prostheses are either too expensive for many consumers

or have a greatly simplified choice of actions available [1-4].
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2.3 Grasp Taxonomies

In the literature there are several studies that have classified the range of hand grasps
performed by humans [6, 7, 57, 72-76]. These intend to aid the in the creation of
devices replicating the human hand motions; though typically focused on aiding
the design of manufacturing robotics, the consideration of these taxonomies during
the design of upper-limb prostheses and exoskeletons may severe to provide useful

information.

Schlesinger [5] was the first to attempt to organise human grasps into set categories,
these were: cylindrical, top, hook, palmar, spherical and lateral. This taxonomy can

be seen presented in Figure 2.4.

HOOK or SNAP

PALMAR SPHERICAL GRASP LATERAL

Figure 2.4: The grasp taxonomy introduced by Schlesinger [5].

Napier [6] later categorised each of the grasps into two categories, power and pre-
cision grasps. Following this Cutkosky [7] employed the same taxonomy, showcasing
the possible application to robot manipulators in manufacturing processes. This
taxonomy, with the divide of power and precision grasps discussed by Napier [6], is

shown in Figure 2.5.
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Figure 2.5: The grasp taxonomy introduced by Cutkosky [7].

More recently Feix et al. [57] reviewed the existing grasp taxonomies and gave
thoughts on an updated, simplified, taxonomy. It was found that there is a possibility

for 33 grasp types, given by the previous taxonomies, to be reduced to 17, more

general, grasp types - arguing that each cell of the taxonomy presented previously

[8] could be reduced to a standard grasp. The 33 grasps classified can be seen in

Figure 2.6.
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Figure 2.6: The grasp taxonomy introduced by Feix [8], as presented in [77].

It is typical in these research studies that housekeepers and machinists are chosen
as subjects for the study [72, 77, 78], this is because the combination of these
professions is seen to give the closest idea of the range of grasps used in normal
ADL. However, Vergara et al. [75] stated that these studies, only looking at two
professions, were biased, going on to study the grasps used in ADL. Vergara then used
a simplified taxonomy of nine grasps (from the 24 presented by Edwards et al. [79])
to categorise grasps of ADL, arguing the needlessness of complete, more rigorous,
taxonomies for ADL. A breakdown of the grasp applied in different activities was
also provided, showing that not all grasps could be applied to each ADL. Liu et al.
also presented a study focused on capturing the grasps performed in ADL [74]. It
was found that previously established taxonomies proved insufficient for application
to categorisation of grasps in ADL. Liu et al. suggested that taxonomies be written
with approachability, noting the intended motion, force, and stiffness - assisting for

robotics design.

Another limitation of these studies is the lack of consideration for gestures
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occurring during ADL. All of the observed studies reviewing the functionality of the
hand in everyday life consider grasps exclusively, yet there exists significant support

for the importance of gestures in the literature [80-97].

Kita introduced the Information Packaging Hypothesis [82], which states that
information is made available through gesturing - enabling access into the mind of the
speaker. This hypothesis follows that more gestures will be performed with increase
difficulty to conceptualise; in effect, that gesture aid the compartmentalisation
aspects of speech. This leads to aid in the use of spatio-motoric concepts during
speech. With this, it has been argued that gestures provide a window into the mind
of the speaker [83]. It is argued that gesturing and speech should be seen as a unified
system of communication, where gestures convey information in coordination with
the concurrent speech [84, 85]. In a study manipulating the conceptualisation loads of
picture description tasks, Melinger and Kita [86] showed that conceptualisation load
increases led to increases in gesture production. Furthering this, Hostetter et al. [87]
studied the amount of gestures produced in the responses of participants describing
dot patterns with or without the aid of a connecting shape. The participants gestured
in the exercises not including the shape, suggesting that more gestures were seen
when information was difficult to conceptualise. A study by Alibali et al. [88]
asked children to explain the difference between two presented items (Piagetian
conservation). The experiment saw that children gestured for assistance in defining
objects, with no indication that the gestures were in aid of speech production but

more the conceptualisation of the images being portrayed.

An alternative hypothesis for the use of gesturing during speech production, the
Lexical Retrieval Hypothesis (alternatively refereed to as Lexical Access Hypothesis)
[89-91], argues that gestures are performed to provide aid to lexical retrieval. This
hypothesis claims that gesturing produce linguistic stimuli, helping retrieve items from
mental lexicon. Subsequently, this hypothesis argues that gestures play a significant
role in the formulation of speech. One study by Chawla and Krauss [89] recorded
subjects answering questions regarding personal experiences, feeling and believes,
which were later recreated by actors from transcripts. It was observed that the
re-enactments showed gestures occurring later than that which would be suggestive of
lexical access, supporting that the gestures performed during the original recordings
were to aid vocalisation of mental lexicon. Furthering this study, an included second
experiment tested whether naive participants were able to discriminate between the
original recordings and those reproduced by the actors. Provided with either of the
audio or video recordings alone, the participants were able to predict correctly better
than chance. These results suggest that gesturing adds a noticeable authenticity
to comminations of a similar level to that of the spoken word. Rauscher et al. [90]

found that, when the ability to gesture was removed from participants, there was an
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increased difficulty to lexical access. The results of this study supported the belief
that gesturing aids in the access to mental lexicon. Showing further support, Pine
et al. [92] found that children were able to better formulate words when allowed
to gesture; this study followed the same methodology of testing prohibited and
unrestricted gesturing. A similar study by Pyers et al. [93] found that gesturing
reduces the cognitive load during hard lexical retrieval - where participants with no
gesturing inhibition were able to resolve more tip of the tongue word retrieval than

if there was restrictions placed on gesturing ability.

Alongside these hypotheses, studies have also seen the aid that gesturing provides
within learning environments. In 2019, Aussems and Kita [94] saw that watching a
description with gestures helped children remember that description, arguing that
the unified gesturing during task was able to facilitate the memory. In 2021, Ginns
and King [95] also showed that pointing whilst being taught helped leaners retain
that taught information. Lacombe et al. [96] observed that children with intellectual
difficulties were aided by gesturing, showing a preference to gesturing over speech
during communications. Further support for the inclusion of gesturing in daily life
was shown by Chiera et al. in 2022 [97]; this study observed that gestures appeared
frequently than pauses during speech, with the majority of those gestures being
classified as non-communicative. This further supports that gestures accompanying
speech are natural to humans and help during conversations - even if not directly

supporting conceptualisation or speech production [83, 97].

The literature holds substantial support for the unnoticed aid gesturing brings to
everyday life. The two hypotheses presented, the Information Packaging Hypothesis
and Lexical Retrieval Hypothesis, show significant support for the consideration
of gesturing during ADL. Whether they are in aid of conceptualising speech, with
Information Packaging Hypothesis arguing that gesture production increases when
conceptual demands increase, or formulating the speech, with Lexical Retrieval
Hypothesis arguing gesture production increases when lexical demands increase,

there is a clear aid brought to everyday life through the gestures performed.

This research aims to observe all of the hand shapes required for ADL. To achieve
this, observations of functional hands shapes were made, comprised of: gestures and
grasps. Each of these will be considered equally, though distinguishing each enables
comparisons to existing knowledge. A gesture was considered as a functional hand
shape not touching an object in a way to create a hold of that object, not indicative
of object manipulation. A grasp was seen as a gesture physically interacting with

tangible objects within the world of the user.
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2.4 Motion Capture Technology

In the most current studies of the hands, motion video cameras are used to record
the hands and the footage reviewed to determine the grasps performed [72, 74-76].
Typically a head-mounted video camera is placed on the subject and their hands
recorded over a set period of time. After the videos had been captured trained
raters would analyse each of them to determine how many times certain grasps were
performed. This method can lead to unreliable results due to the reliance put on the
judgements of the raters, manually labelling the data frame-by-frame. Many studies
try to reduce this unreliability by comparing the judgements made by several raters,
but this inherent limitation cannot be completely removed. This process is a long,
slow and tedious activity which can lead to errors. However, this is not always the

case and studies have also created novel methods for collecting the data.

In the study performed by Huang et al. [73] an unsupervised clustering technique
was used in order to autonomously determine the grasps performed. The study
showed this method to be very effective; it was stated that development should have
a significant impact, across multiple disciplines, in prehensile analysis. To validate
the method both choreographed and real life scenarios were used. The clusters
determined by this method were compared to those from the taxonomy introduced
by Cutkosky [7] and it was seen that it had created new groups as well as fitting
groups in the previous taxonomy. Du [98] create a mesh for a virtual hand to be

used in data collection for a virtual keyboard system.

It is typical for vision based motion capture systems to be used over other methods,
such as gloves. The main reason for this is the fact that placing sensors on the
hand, as is done with the motion capture gloves, encumbers movement, giving a less
natural hand motion. Another study, by Qi [99], utilised EMG devices to record
hand motion data and neural networks to determine the grasps performed, with
the assistance of a principal component analysis (PCA) algorithm. This resulted
in an accuracy of 95.1% with a recognition time of 0.19 seconds, highlighting the

possibility of automatic grasp classification to speed up grasp analysis.

New developments have pushed for kinesiology recordings to be performed using
motion capture technology and numerically analysed; this has resulted in faster
analysis of larger amounts of data and, in turn, allowed for more data to be collected.
The upcoming gaming area that is of interest to this project is virtual reality (VR)
gaming; this has led to the introduction of many cheap and easily accessible motion
capture devices. The devices used in VR gaming commonly differ from research
focused motion capture devices due to the fact that they do not need markers. This

gives a less encumbered movement and allows for a much quicker and easier set
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up (providing the user with a more comfortable experience overall), however this
is at the cost of the accuracy of the data collected. More recently the accuracy of
these devices has greatly increased and they are becoming cheaper and more widely

available alternatives to the original devices used for research.

In this project a Leap Motion controller (LMC) [100] was used for the collection
of motion capture data of the hand during ADL; this is commercially available,
cheap, vision based system with no markers. There have been several research papers
studying the effectiveness of the LMC as a computer input device or motion capture
recording device [101-103]. Bachmann et al. [101] found that the LMC is limited as
an input device for everyday computer pointing tasks. Coelho and Verbeek [102]
tested an LMC against a mouse in pointing tasks in a 3D virtual environment. It
was seen that the mouse, again, outperformed the LMC. Guna et al. [103] argues
that the LMC cannot be used as a professional tracking system due to the limited
field of vision (the volume in which the LMC can capture the hands) observed and

inconsistent sampling frequency.

Bizzotto et al. [104] tests the the use of the LMC in controlling imaging during
live surgery. The research performed concluded that the LMC was an efficient
low-cost solution to controlling imaging devices during the surgery. It had less risk of
spreading infection in a surgical environment, as there would be no need to touch the
equipment, and reduced surgery time, as the surgeons no longer needed to change
their gloves to operate the imaging devices. In the literature the LMC has been
heavily tested for teaching and learning a great range of different sign languages
[105-110]. Potter et al. and Guardino et al. [105, 106] were both disappointed in
the application programming interface (API) of the LMC, arguing that it limits the
abilities of the controller from misleading labelling and requires further development.
Guardino et al. argue that the controller is beneficial due to the much greater
portability and affordability it displays, compared to alternative motion capture
methods used in research (such as Cyblerglove and Microsoft Kinect). Additionally,
in the study by Guardino et al. the authors found that the combination of an LMC
and a webcam has the potential to become a new method for teaching and learning
the American sign language. Mohandes [107] complains about field of vision and
possible occlusion caused when using one LMC. It is stated that further work will be
to test the use of two LMCs, one placed in front of the user and the other to their
side, in order to avoid occlusion. Despite the multiple arguments in the literature
against the LMC many do still support the potential of this device for research
and create methods of defeating the problems encountered. The LMC will still be
considered in this project due to the fact that it is a much cheaper and accessible
alternative to other methods, allowing quick preliminary data collection. Arguments
made against the API of the LMC have been considered but hold little value here,
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as the presented error were removable during data processing. The collection and
analysis of data were performed separately, meaning that the data can be correctly
labelled once converted to a local co-ordinate system, with clearly identified joints, if

required.

The method most commonly employed to study the human hand in use, capturing
a video recording of the hand in use and then watching the video, is a time consuming
process with potentially high error due to the subjective nature. For this study the
use of motion capture devices to collect kinematic data of the hand is considered over
the use of video cameras. The LMC is a markerless optical motion capture device
which uses three infra-red (IR) cameras to determine a 22-point virtual image of the
hand. The points of the hand captured by the LMC are as follows: the MCP joint,
IP joint and tip of the first digit, the MCP joints, PIP joints, DIP joints and tips of
the second to fifth digits, the centre point of the palm, the CMC joint and a point
opposite to the CMC joint in the medial direction. The LMC is supported within the
literature: proven effective for stroke rehabilitation and musculoskeletal simulation
[111-114] and literature reviewing the employment of an LMC for data collection
of hand kinematics provide confident support for the ability to collect clinically
meaningful data [115, 116]. Though the LMC has also received some criticism in
the literature [101, 103], it was used here due to the presented high portability,
providing an ability to be used during the normal everyday tasks performed by
the participant within comfortable environments for them, ability to work without
markers, leading to unencumbered movements, and non-invasive nature, resulting in
natural motions as the participant does not feel as if they are being watched in a

laboratory environment.

A Vicon motion capture system [117] at University Hospitals Coventry & War-
wickshire (UHCW) was used to validate the use of an LMC; this uses eight IR
cameras to locate reflective markers within the laboratory space. The high level of
accuracy and the fact that it suffers from occlusion far less than the LMC makes
it a worthy candidate for a data collection method. However, it is not without
limitations; the feeling of being watched due to the laboratory environment and
the markers encumbering movements leads to less natural motions being produced
by participants. This motion capture system will also be used to validate the data
collected by the LMC. Preliminary testing showed that the markers used do not
interfere with the data collected from LMC, allowing the use of the motion capture

system for evaluating the accuracy of the LMC.
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2.5 Motion Capture Analysis Techniques

Prior to analysis of large motion capture datasets, it is preferred to reduce these
data. Reductions can be made either in the amount of frames observed or the
dimensionality of the observations. Methods attempted and steps taken to reduce
the complexity of the data collected in this study are described here, as well as
any supporting use cases highlighted. Observations of the recorded data lead to
the extraction of only the frames presenting the desired information, reducing the
number of frame required for analysis. Reductions to the dimensionality of the data
would enable faster analysis; though this may include a loss of accuracy, due to the

limited information defining each observation.

In motion capture recording the dimensionality of the data is typically high, requir-
ing three dimensions for each of the features measured. Reducing this dimensionality
would allow for a simpler and quicker analysis of the data. Common methods used
to achieve dimensionality reduction are: PCA, t-distributed stochastic neighbour
embedding (t-SNE) and multi-dimensional scaling (MDS).

The PCA method [118] utilises singular value decomposition (SVD) [119, 120]
to determine new dimensions for a given dataset, forming the new dimensions such
that the high variation of the data is exhibited in a fewer number of dimensions.
This provide the potential for a vast amount of the information within a high
dimensionality dataset could possibly be described using three or less dimensions, a

dimensionality conceivable in physical space.

An employment of PCA starts by finding the centre of each dimension (providing
the centre of the dataset) - followed by a translation of the data such that these
centres are placed at the origin of each dimension. Each point is projected onto a
line which goes through this origin; PCA then attempts to maximise the sum of the
squared distances from the project point to this new origin. The line with the highest
sum of squared distances is selected as the first principal component, this sum of
squared distances gives the eigenvalue of the principal component and the square
root of this provides the singular value of SVD. The singular vector (eigenvector) for
this component can be calculated by creating a unit length vector from the origin
along this component line, the proportions of each gene which form this provide the
loading scores. Each of the next principal components are found, in turn, in the
same manner, remaining perpendicular to the first found principal component. The
PCA score can then be created by using the principal component lines found as axes
and the position of each data point along each of these axes being the position of the
projected point to this axis, seen when determining the principal components. Once

all of the principal components have been determined, the proportion of variation
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each of the components accounts for can be calculated by taking the ratio of the

eigenvalue for the component in question and sum of all eigenvalues,

Ai
A+ X+ AN

variance; =

where 7 is the component in question, A is the eigenvalue for each of the components

and N is the total number of components found.

Scree plot display these values to aid in the identification of the necessary principal
components required to display the desired information. Observing a scree plot, the
optimal number of principle components to be considered would be highlighted from
a lessening in the gradient - indicating less variation change per principle component
included beyond that point. This can be considered as if looking at a cross-sectional
cut of a mountain, the scree of the mountain indicates a levelling out to the ground -

where there is less change in altitude as you progress.

Following the performance of a PCA, a loading can be created. This plots the
results of the product of the eigenvectors and square of the respective eigenvalue.
From a loading plot several pieces of information retaining to the introduced principle
components and original dimensions of the dataset can be observed. Reading the
absolute value of a variable along the axis of one of the principle components on the
loading plot provides the influence that variable has over the considered principle
component. This absolute value can range from zero to one, with a higher value
indicating a greater weight to that principle component. Additionally, the relative
positions of the lines drawn for each original dimension can be used to determine
correlations between dimensions. Lines which are within close angular proximity
imply a positive correlation, a 180 degrees divide between them shows a negative

correlation and dimensions 90 degrees apart are considered to have no correlation.

The uncorrelated multilinear PCA has been suggested for use with unsupervised
learning for recognition tasks [121]. A MATLAB function is provided for ease of
implementation. However, this technique has not been considered in this research
as there exists correlations between hand joint angles and the technique has shown
to provide an decreasing improvement, over PCA, past a dimensionality of 20 (the

recorded Cartesian data provides a dimensionality of 60) [121].

Following recordings of hand motions in ADL, PCA was employed to attempt to
aid computational complexity in analysis by reducing the dimensionality of the data.
A large reason for this choice is the fact that the effect an original dimension has
on the variation of the data seen by the principal components can be found. This
enables the ability to identify influential joints of the hand; considered insightful

information during analysis as it supports the possibility of classification from a
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select number of directly recorded values. Additionally, the deterministic approach of
PCA enables repeatability of the results, which was appealing when concerned with
the application to different collections of hand data - enabling comparable results,

without contamination.

The t-SNE method [122] attempts dimensional reduction by projecting the data
onto a single axis, whilst preserving the relative clustering of the data. In an
application of t-SNE the data are first placed onto the lower dimensional space in
a random order. The t-SNE then pulls observations, which are closer together in
the original space, together in the new space, whilst simultaneously pushing those
observations further from others they are further from in the original space. It
determines the similarity between points by creating a normal curve for each point,
centred on the observation considered Each of the other observations are then placed
on this curved, with the horizontal distance from the point representing the distance
between the two points in the original space. The value of the normal distribution
then provides the similarity of these observations. Once the similarities between each

observation have been found, the similarities are scaled to result in a sum of one,

e~ lzi—=;|*/20¢

n —lxi—x|2 /202’
D € Tl 20

Djli =

where p;; is the conditional probability indicating the degree in which point z;
would select point x; if the selection was proportional to their probability density
under an x; centred Gaussian and n is the total number of data points. This allows
for comparability in the results for different density of clusters within the data,
explaining the variance seen in the original dimensions with a lower number of
dimensions which still retain clarity of the original clusters. A binary search is used
to determine the value of ¢;, which provides a probability distribution with the fixed,
preset, perplexity value. The perplexity indicates the target number of neighbours

to the selected point during the calculation of similarity.

Similarly for the reduced dimensional space, the similarity can be determined

through the conditional probability,

o—lvi—y;|?

qj)i = n i —a 20
Zk#e [yi —yk|

where y are the points, similarly to that seen in the original dimensional space, in
the new space. This provides a matrix of similarity scores for each of the points in
the original space. The steps to find the similarity matrix are then repeated for the
randomly placed points in the lower dimensionality space; in this execution, however,

Student t-distribution is used in place of the normal distribution. A t-distribution
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is used because of the higher tail ends, resulting in a larger separation of clusters
in the new dimensions. By moving each point iteratively, t-SNE converges towards
a new space similarity matrix representative of that from the original space, thus

preserving the information from the dataset whilst reducing the dimensions.

The t-SNE method converges towards matching similarity matrices by minimising
the Kullback-Leibler [123] divergence of the dimensions P and @,

p
KL(P|IQ) =Y pijjlog —2.
i#] il
This is minimised with a gradient descent (GD) approach. The existence of multiple
local minima and nature of the GD optimisation technique leads to a relatively low

reproducibility when compared to a deterministic method, such as PCA.

Due to the transformations undertaken during an application of t-SNE, the effects
of the original dimensions on the variance within the data cannot be determined.
For this application, knowledge of the influence of the recorded dimensions over the
variation of the data would provide insightful information. The t-SNE has not been
applied to the collected data does not have the repeatability of PCA and cannot

display the influence of an original dimension on the variation of the results.

The MDS technique [124], also known as principal co-ordinate analysis (PCoA), is
used to visually identify similarities within data points of a dataset. The application
is similar to that of PCA, however, converts based on distances among the data
points, rather than correlations. These distances can be measured with a range of
methods, common of which include: Euclidean distance, log fold change, Manhattan
distance and Hamming distance. If the Euclidean distances are used to create the
distance matrix then the results of MDS would be identical to those from PCA.

The application PCA has been preferred over MDS due to indication of correla-
tions, which could find a use in application with prosthetic hands, and known joint

correlations placing confidence in the reduction capabilities of this technique.

The raw collected data provides hand motion data within the global space. For
the purposes of this research, the only information of interest from these data is the
shape of the hands in each frame - resulting in a benefit from transforming these
data into a local co-ordinate system. To achieve this all of the joints were translated
to place the wrist at the origin of the axes and then rotated such that the first digit
MCP joint aligns with the positive y direction and the positive z direction axis
describes the posterior to anterior of the hand. These rotational transformations

were achieved through the use of 3D rotation matrices. The rotation matrices for
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manipulating a vector in 3D space about the z, y and z axes by 6 degrees are,

1 0 0
Rot,(0) = |0 cos(f) —sin(9)] , (2.1)
[0 sin(d) cos(f) |
[ cos(0) 0 sin(6)]
Rot,(8) = 0 1 0 |, (2.2)
| —sin(d) 0 cos(6)]

[cos(f) —sin(6) 0]
Rot.(0) = |sin(f) cos(f) 0] . (2.3)
0 0o 1]

During transformation to a local co-ordinate system, the 6 described the difference
in the current position and local co-ordinate position for pairwise co-ordinates of

selected palm feature points.

Processing and analysis of the data required calculation of the joint angles for the
hand. Observations of the digit joint angles employ the vector dot product, described
by,

S
Sl

cos(f) = , (2.4)

SR
et

where 6 is the angle observed between vectors a and b. The joint angle of a select
joint can be found by translating the joint in question, the joint next more distal
and that next more proximal such that the joint in question is at the origin of the
space and then calculating the angle between the more distal and more proximal

joints using the vector dot product.

Validation of methods attempted and evaluation of the results included the
examination of Euclidean distances between pairwise data points and correlations
of datasets. During these steps the Euclidean distance, d, has been calculated in
3D Cartesian space between two points, p1(x1,y1, 21) and pa(x2,y2, 22), through the

Pythagorean theorem,

d=/(za —21)? + (Y2 — 11)? + (22 — 21)2. (2.5)

The correlation between two sets of data, in this study each representing hand shapes,
has been found using the Pearson correlation coefficient [125]. For two n dimensional

sets of data, x and y, with means ¥ and g, respectively, the Pearson correlation
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coefficient of these samples, 7, can be found using,

R ¥/ 1 Gt [T N
VL@ -2 (v — 9)?

2.6 Machine Learning Techniques

The collection of numerical data to describe the hand motions observed enables
the use of artificial intelligence (AI) to examine the measurements taken. These
recorded hand motion data can be inputted into a machine learning or deep learning
approach to provide classifications. The resultant classifications would reduce the
data into a manageable size, by highlighting similar hand shapes performed. These
final groupings can be manually assess and altered to form the final, presented,
taxonomy of hand shapes found within modern ADL. This analysis ability is lacking
from previous hand analysis research, resulting in long processing times and plausible

uncertainty in the obtained results.

2.6.1 Artificial Neural Networks

Artificial neural network (ANN) classifiers are a deep learning supervised machine
learning technique designed to closely share the architecture of the human neural
network, within the brain [126]. Through rigorous learning the networks develops
to provide knowledge from desired situations. These networks are made of neurons,
each existing with a value, and synapses, connecting these nodes commonly with a
weight. These are reinforcement learning techniques, typically, employed when a full
model cannot be built for the system. Through an input of information from the
environment and network development, ANNs can deduce an appropriate response.
Commonly, these outputs of the ANNs can relate to an input to a agent within the
studied environment or predictions of the scenario occurring within the environment;

in this case it being a prediction of the functional hand shapes occurring.

A generalised structure of an ANN can be seen in Figure 2.7. Here, X represents
the neurons for each dimension of the inputted dataset, H the neurons of a given
hidden layer, Y provides each of the possible predictions which can be made, w are
the weights given to each of the synapses and b the biases given to each neuron.
Each neuron node value is multiplied by the weight of the connecting synapse as it
passes and the biases are added to each of the values of the hidden layer neurons;
these weight and biases are adjusted through reinforced training of the ANN. The
input layer takes a given, unlabelled, data entry to be labelled with a predicted
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category, provided by the output layer. The output layer consists of all the possible
labels which can be predicted; in a pass of the network each label is given a value
and the highest value proposed as the prediction for the label of the inputted data.
During the design of an ANN, variations of multiple hidden layers are created and

configured to improve performance.

Input Layer Hidden Layer Output Layer

Figure 2.7: A generalised structure of a fully connected artificial neural
network.

After initialising with random numbers, the network evolves through the process
of continuously repeating input and outputs for one or more set scenarios, altering
the neuron weights and bias value each time. An ANN attempts to reduce the cost
function of the network, against a task, using backpropagation. This repetition
results in a increasing accuracy, though it would not be known how exactly the final

accuracy is achieved.

In an application of an ANN the inputs may be scaled to provide a consistency
in values, desirable when observations exist within multiple different dimensions.
During execution the output of one layer, x, is used as the input, z, to the next
- influenced by the weights, w, and biases, b, of the next neuron and the synapse

between. This can be mathematically represented by,
n
z = Z(wle) +b.
i=1
An activation function is then used definite the output of a neuron, provided an
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input from the previous layer. A commonly employed activation function for the

output layer is the sigmoid function,

§=o(2),

where 7 is the predicted output value and the sigmoid function o is defined by,

1
1+e’

o(x) =

Within hidden layers it is common to see the ReLLU function as the chosen activation
function, expressed by,
x, if x>0,

fz) =

0, otherwise,

To initiate, an ANN sets each of the weights and biases with randomised values.
The first pass begins with an input of a partial training dataset, noting the difference
between the predicted output labels and actual labels. Using a loss function, the
network then calculates the loss of this pass. The loss function provides a numerical
value to describe the averaged difference between the predicted label and known
labels for an input. During learning the training dataset is divided and passed

through the ANN in batches, a pass of the entire dataset is denoted as an epoch.

The aim of training a network is to minimise this loss for a provided, training,
dataset; to achieve this learning a GD method is utilised. Once calculated, the
gradient of the loss with respect to each weight and bias is then determined. As per
the GD method, these gradients are then multiplied by the set learning rate and the
results set as the new, receptive, weights and biases of the network. The repetition
of this process results in a convergence toward a network with tuned weights and

biases, able to provide accurate predictions for given inputs.

GoogLeNet is a highly regarded ANN developed by Google, proven to produce
accurate predictions of image groupings. GooglLeNet was first introduced in Septem-
ber 2014 [127], as a 22 layered convolutional neural network (CNN). For this project
GoogleNet is used as an ANN attempt at classifying the collected data. In 1999
Friedrich et al. [128] applied a neural network, trained on grasps from the taxonomy
introduced by Cutkosky [7], to data glove recordings, showing around 90% accuracy.
Stanton et al. [129] employed an ANN to train a humanoid robot with positional
data, collected from a motion capture suit. This described how a robot could be
controlled, with no prior analytical or mathematical knowledge, utilising an ANN to
learn the movements. Stanton et al. also stated how a change in the target robot

would only require the network to be retrained, not redesigning a full descriptive
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model. In 2009 Miller [130] implemented the application of an ANN on gait motion
capture data. This method proved that an ANN could present autonomous and
accurate detection of gait events. In 2020 Corona et al. [131] utilised a pre-trained
ResNet-50 ANN to determine which grasp would be needed for object within a given
image. The model takes an inputted image and locates the objects within it, then
determining the shape and position of each. After which a taxonomy of 33 grasps
[57] is employed to predict the most suitable grasp to approach the objects. The
final stage then refines the hand shape and pose, forming the final output.

A measure taken to assess the performance of an ANN is the creation of a
confusion matrix for a set of test inputs [132]. Given an input dataset with known
labels, a confusion matrix can be created as a tabulated figure of the predicted labels
against the known actual labels for the data. Each possible label is assigned to a
row, defining the actual labels, and a column, defining the predicted labels. For
each observation, with known label, passed through the classification model, the
element defined by the predicted and true value of this observation is increased by
one. Accuracy ratings for each are labels are given along the rows and columns
assigned to each of these labels. Reviewing a plotted confusion matrix and observing
the overall accuracy defines the performance of the classification model. Further
details of where error has arisen can be extracted through the consideration of the

individual rows and columns.

2.6.2 Classification Algorithms

Statistical classification is another respected prediction tool, a supervised machine
learning technique which labels data frames with predictions from predetermined
categories. Initially the classification algorithm is trained with labelled data; once
trained the model can be applied to like datasets for predictions of the category of

each observation.

A k-nearest neighbours (KNN) classifier is a simple and effective classifier used
widely in the literature, initially arising from an armed forces technical report [133].
To provide predictions for given data the KNN classifier uses a similarity measure.
First it is trained with a training dataset to identify the correlations between distances
of data points and the labels of each. Once presented with an unlabelled set of data,

the classifier finds the closest known label to fit each observation.

Several different measures of distance may be employed; commonly used, and

implemented within this study, is the Euclidean distance. This distance can be
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calculated for an n-dimensional dataset through,

where d(x,y) presents the distance measure between datasets = and y, x; a component
of one dataset in the i*" dimension and y; a component of the other dataset in the

i*® dimension.

One use of KNN, seen in the literature, is to create clusters of object point
clouds in a working environment for obstacle avoidance in a robotic arm [134]. In
2008 Heumer et al. [135] utilised classification algorithms to determine the grasps
performed whilst participants wore a data glove - an early example of the use of
automatic classification for grasp analysis. The study showed positive results with
the application of the taxonomy presented by Schlesinger [5]. It was also highlighted

that the use of PCA gave a negligible impact on the resulting accuracy.

A confusion matrix can also be created after an application of a classifier, to
visualise the accuracy between predicted and known labels in validation or testing
datasets. Another measure for performance of a classification algorithm is the receiver
operating characteristic (ROC) and area under the curve (AUC) [136].

The ROC is a graphical plot of the true positive rate against the false positive
rate. This is used to describe the performance of a binary classifier with two classes,
positive and negative. The true positive rate, also known as the sensitivity, is
the proportion of positive class observations correctly classified and false positive
rate, also known to be one minus the specificity, is the proportion of negative class

observations incorrectly classified. These rates can be expressed as,

TP

TPR = 75 N

and,
FP

“FP+TN

where TP is the number of positive class observations correctly classified, FN is

FPR =1—-TNR,

the number of positive class observations incorrectly classified, FP is the number of
negative class observations incorrectly classified, TN is the number of negative class
observations correctly classified and TNR is the true negative rate, describing the
specificity of the model. For a non-binary classifier these rates can be simulated by
aggregating the correct and incorrect prediction for each class, enabling a relative
indication of classifier performance. In a binary classifier case the ROC is created

by first determining the sensitivity and specificity for a classifier threshold which
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classifier all observations as positive. As all positive observations would be classified
correctly and all negative observations would be classified incorrectly, this gives
both a true positive and false positive rate of one - indicating one end of the curve.
Next the threshold is adjusted such that one observation is classified as negative,
the sensitivity and specificity are calculated accordingly. This is continued until
the threshold classifies all of the observations as negative. This final sensitivity and

specificity, both of value zero, defines the other end of the curve.

The AUC is the area under the ROC curve, providing a comparable measure
between the performance of different classifiers. The AUC can be calculated from
the ROC using Simpson’s Rule [137].

b —a
[ s x 250 @) 470 0)/2) O

where f(x) is the function of the curve for predicting area under and a and b are the
two points the area is to be predicted between, for the case of an ROC curve these

values are zero and one respectively.

2.6.3 Decision Tree Learning

Another method for classification is the creation of a decision tree. These methods
are a series of questions, aiming to propagate towards a predicted category for a
given input. This method was first seen formally introduced by Belson, in 1959
[138]. Despite being a simple to create and understand method this can still provide

accurate classifications to many problems.

Creation of a decision tree starts at the root node, working through the internal
nodes of each branch until the creation of a leaf node. Nodes are selected one after
another in the tree using an impurity measure, a common measure employed for
node selection is the Gini impurity [139]. The Gini impurity, I, of a decision, d,

can be expressed by,
J
Ig(d)=1-> pag’,
g=1

where J is total number of possible categorises the observation can be labelled under
and pg 4 is probability of an observation being categorised in decision d with, known,

group g, expressed as,
Nag

Ny’

where Ny, is the number of observations categorised by decision d with, known,

Pd,g =

group label g and Ny is the number of observations classified into decision d. For

each node, n, the Gini impurity, I, is calculated using the weighted averaged of the
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Gini impurities of the decision from that node, expressed as,

where D, is the total number of decisions arsing from node n and NN,, is the total
number of observations classified with node n. Working down the tree from the root
node determines each internal node, in turn, using the impurity measure; a leaf node
is selected if the current node decision has a lower impurity than the impurity of
another potential node applied after it. The tree creation finishes once all leaf nodes

have been formed.

A confusion matrix can also be made for a classifier to visualise accuracy between

predicted and known labels in a validation or testing set of data.

Decision tree classifiers are still used for a variation of classification tasks within
the literature [140-144]. Zhang et al. [141] used a decision tree classifier to design
a framework for gesture recognition using accelerometers and EMG sensors. In
2021, Pappalardo et al. [142] utilised a decision tree to identify causes of faults and
variable importance in a lane support system. After identifying drivers reliance on
lane identification systems as a cause of single vehicle and frontal crashes, this study
observed the ability to identify lane lines in the road of the system under different
conditions with varying parameters. Following collection, a decision tree was used to
provide assessment to the performance of each setting in the set scenarios. In a study
to identify cyberbullying texts, Yuvaraj et al. [143] proposed a novel deep decision
tree classifier. This classifier showed a greater classification accuracy than existing
classifiers and future work, extending on this, aims to employ this approach with real-
life high-dimensional data. Utilising a ensemble decision tree classifier, by Fraiwan
and Hassanin [144], was able to identify degenerative neuromuscular diseases from
gait motion data. The proposed solution was able to achieve a classification accuracy

of 99% for amyotrophic lateral sclerosis, Parkinson’s disease and Huntington’s disease.

2.6.4 Clustering Algorithms

Another machine learning technique often employed for the analysis of numerical
data is the application of clustering algorithms. These are an unsupervised learning
technique used to find clusters within the data without prior knowledge. There are
four commonly used types: centroid-based, density-based, distribution-based and

hierarchical.

To obtain clusters of hand motions in this study, indicative of the hand shapes

performed, a k-means algorithm has been utilised. The k-means algorithm [145-147]
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is a method of vector quantisation, comparing each data point to the centroids
(means) of current clusters - updating the clusters with each iteration. For this
reason, the k-means algorithm is labelled a centroid-based clustering algorithm. The
assigned value of k in this algorithm is simply the number of clusters the algorithm

creates.

In order to differentiate each of the observations into each of the k clusters the
k-means looks to minimise the distance between each data point and the repetitively
set cluster centre. This is achieved through optimisation of an object function, J,

which provides a cost of each candidate solution,

N K
T=> ragllen — el (2.6)

n=1 k=1

where N is the total number of dimensions to the data points, K is the total number
of clusters desired, 7, ;, is a binary inductors of which cluster k& data point n belongs
to (where ry, 1, € [0,1]), 2, is the dimensional co-ordinates for each data point n in a
d-dimensional space (z,, € R?) and py, is the centroid for cluster &, also belonging to
the same d-dimensional space (1 € R%). The binary cluster indicator, Tn,k Can be
expressed by,

1, if k = argmin;||x, — u;||?

i=1 syl =l 2.7

0, otherwise.

To determine the minimum value of the objective function, J, the derivative is taken

and set to zero, as follows,

N
Vi =0= 2Zrn,k(xn — LK)

n=1

To optimise the problem numerically this equation can be solved for u; to give,

N
= A=t T, (2.8)
anl rnzk

Using the update rules for the binary cluster indicator and cluster centroids,
provided by (2.7) and (2.8), receptively, the following steps are employed by the
k-means algorithm in order to converge towards a solution:

1. Initialise a set of uy.

2. Calculate ry, ;, using (2.7), with fixed py,.

3. Calculate p, using (2.8), with fixed ry, k.

4. Determine the new objective function, J, using (2.6).
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5. Repeat steps 2 to 4 until convergence of the objective function.

This can be seen as a special case of the expectation-maximisation algorithm [148] -
where the final two steps, alternated between to converge towards a final solution, can
be seen as the the E step and M step. Several studies employ a k-means algorithm as
a method to identify postures, described by the clusters, within whole body motions
[149-152].

Thong et al. [153] discuss the use of a machine learning clustering algorithm
(k-means++) for the analysis of the morphology of adolescent idiopathic scoliosis.
The study aimed to find new, clinically relevant, classification groups through the use
of machine learning techniques on 3D Cartesian co-ordinate data for 915 recordings
of spines. From these recordings, 11 subgroups, with clinically relevant significant
statistical differences, were found. This method has shown potential for simplifying
complex 3D spine models. Despite the success of this study, one limitation stated
was that higher quantities of data would be necessary for future development. This
study has highlighted that clustering is possible for biomechanical problems and
is primarily hindered by the limited amount of data that can be collected. In the
study performed by Huang et al. [73] an unsupervised clustering technique was used
in order to autonomously determine the grasps performed in first-person point-of-
view video recordings. The study showed this method to be very effective; it was
stated that the development of this should have a significant impact, across multiple
disciplines, in prehensile analysis. To validate the method both choreographed and
real life scenarios were used. The clusters determined by this method were compared
to the taxonomy introduced by Cutkosky [7] and it was seen that it had created
new groups as well as fitting the groups in this taxonomy. The results of this study
have shown that it is feasible to successfully perform machine learning on typically
collected hand motion data, providing meaningful results through an unsupervised
clustering technique. Thus, the potential of this method for hand-object interaction

and prehensile analysis has been presented.

The Calinski-Harabasz (CH) index [154] can be used to evaluate the performance
of a clustering implementation, in aid of selecting the number of clusters within the
data. This measure is determined by the ratio of inter- and intra-cluster dispersion.
Given an inter-cluster dispersion of By, from (2.9), and intra-cluster dispersion of
Wi, from (2.10), the CH index, CHi, can be calculated for a given number of clusters,
k, using (2.11),

k
By = nyleg—)(eg— ), (2.9)
g=1

k
Wy = Z Z (x —cg)(x —cg)7, (2.10)

g=lzeCy
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. tr(By) [tr(Wy)
CHi = k:—l/n—k:’ (2.11)

where ng4 is the number of points in cluster g, ¢4 is the centroid of cluster g, c is the
centroid of the entire dataset and Cy represents a set of data points within cluster
g. This index is quick to compute and provides a clear assessment of clustering
performance - higher values indicating clusters which are internally dense and

externally well separated.

Alternatively, the Davies-Bouldin (DB) index may be used to assess clustering
performance [155]. The DB index provides a measure of averaged similarity between
each cluster and that most similar to it. The lowest values of the DB index is zero,
with a lower value representing a greater clustering performance. This index, D, can

be calculated through,

where N is the total number of clusters observed, i iterates each of these clusters
and D;, for each cluster ¢, is the maximum similarity measured between that cluster

and each of the clusters, provided by,
D; = max(D; ;),

where D; ; is the similarity between clusters ¢ and j (where ¢ # j), calculated from,

SZ‘+SJ'

Dij = M .
i,J

where S; is the intra-cluster dispersion for cluster 7, S; is intra-cluster dispersion for
cluster j and M; ; is Euclidean distance between the cluster centroids for clusters ¢

and j. The centroid distance measure, M; ;, can be calculated using,

N
Mij = [|Ai = Ajlly = | D laig — ajel®,
k=1

where k iterates each of the components of the data and a;;, and a;; are each the
kM element of clusters A; and Aj, receptively. The inter- and intra-cluster distance

measures, S; and S, can be found with,

where T, gives the total number of observations within cluster ¢, Xy is k™ element

41



Background

of cluster ¢ and A, provides the centroid of cluster c.

Another evaluation method which can be employed to determine the goodness
of a fit is the silhouette score [156]. This provides a value between negative and
positive one to describe how dispersed and clearly distinguished each cluster is from
the others. A value of negative one implies that the clusters are assigned incorrectly
and positive one shows that the clusters are distributed well and distinguished clearly.
Zero describes indifferent cluster, showing no significant differences between the

clusters. The value for the silhouette score can be calculated by,

b—a

score = 7max(a, D)’

where b is the average inter-cluster distance (the distance between the clusters) and
a is the intra-cluster distance (the distance between each point in the respective

clusters).

2.7 Models of the Human Hand

There is a significant amount of work performed to capture a digital model of the
human body. Though observation of the human hand is less common, there are still
exists several attempts to define the kinematics, observing the digit trajectory or joint
constraints, [157-163] and kinetics of the human hand, observing the resultant motion
from muscle activations, [9, 164-166]. Aristotle provided the first recorded insight
into understanding the bodies of animals as mechanical systems, using geometric
analysis to describe the actions of the muscles [167]. Early examples of dynamical
body analysis utilised photography to capture the data [168]. More recent studies
typically employ marker based motion capture systems [114, 169-173]. Models
describing the kinetics of the hand can be categorised as either solving an inverse
dynamics or forward dynamics problem. Inverse dynamics uses external forces and
the joint motions to attempt to predict the internal forces and torques which enable
the exhibited motion. The kinematic data inputs can be obtained with motion
capture systems and the kinetic force inputs from force plates or handheld force
measuring devices. Musculoskeletal models and prediction methods are used to
provide estimates of the states of the muscles. The opposite, forward dynamic
modelling, uses measured muscle activities to calculate the muscle forces and joint
torques, in order to formulate the joint motion that would result. In biomechanics
EMGs are used to capture muscle activations and, in turn, provide the muscle forces
and joint torques. Musculoskeletal models and EMG mapping scripts are used to

enable forward dynamics. There are many applications for these studies, including;:
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myoelectric prostheses, exoskeletons, sports analysis, rehabilitation and ergonomic
design [172-177].

Inverse dynamic models of the upper-limb use kinematic data to create predictions
of the forces and torques acting on the joints. There have been several attempts
in the literature to utilise this technique [114, 178-182]. Of these, inverse dynamic
models have been used to examine upper-limb stresses during sporting activities [174—
176]. Furthermore, there have been several attempts to improve the measurement
techniques used during data collection for inverse dynamic models [169-171, 183].
In 1995, Happee and van der Helm [178] presented an early inverse dynamics model,
investigating fast goal directed arm movements. It was seen that the 95 element
muscle model could provide adequate measures in comparison to EMG recordings
overall, with only some results lacking in subject dependant EMG activities. In
2003, Rasmussen et al. introduced a musculoskeletal model of the human body,
AnyBody [179]. This demonstrated a versatile musculoskeletal model, intended for
use in ergonomic optimisation. Later, an LMC was integrated within this system
to provide a means of capturing data for the inverse dynamics of the hand [114].
Subsequent work then proceeded to fully integrate the hand within the framework
of AnyBody, using anatomical data from cadaveric specimens, to include all of the
intrinsic and extrinsic muscles of the hand and provide patient-specific scaling [180].
Under assessment with motion capture data, the model was able to demonstrate
adequate correlations. This allowed for the later application of this model in the
simulation of distal radius metaphyseal fracture healing [181]. In 2005, Tsang et
al. [182] introduced a musculo-tendon model of the hand and forearm for forward
and inverse dynamic simulations. This model was able to yield various correct
control solutions to an inverse problem, with it also demonstrating the ability to
filter to an optimal solution. The concluding notes of this study stated the possible
applications of the model within a clinical environment, identifying the muscles
required for unconstrained motions, and in animation, allowing for improvements to
synthesised hand animations. In order to allow for the unconstrained measurement
hand kinematics, Buczek et al. [169] introduced a six DoF hand model for use
during motion capture. Noting the limitations imposed from the use of joints
with one or two DoF, the model was created for six DoF measurements of digits.
Experiments concluded that the model worked well for motion capture applications,
providing results with ample accuracy for inverse dynamics. Furthering the potential
effectiveness of this model, it also showed an ability to identify when there had
been exposure to repetitive stress in a hand. A study by Bisseling and Hof [170]
examined artefacts from the impact on force sensors during inverse dynamic analysis
of the knee. The study attempted to remove these artefacts causing inaccuracies in

the assessment of body torques. Within this, variations to the cutoff frequency of
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a low-pass filter on the recorded positional data were explored. It was concluded
that filtering the force data on impact removed these artefacts. The results of this
study led to recommendations to not consider any relationship found with the peak
impact force and torque during clinical studies, as these were seen as artefacts in the
recordings. Though this study had focused on ground force plates and knee motion,
this method could hold the potential for adaptation to force sensors in hand contact
analysis. In 2022, Sterner et al. [171] introduced the possibility of using inverse
dynamics with body part masses calculated using dual energy X-ray absorptiometry
to predict baseball pitching arm kinetics in youths. Following the collection of upper
arm, forearm and hand masses using dual energy X-ray absorptiometry, segment
masses and kinetics were calculated using scaled masses. The new masses were
subsequently compared via paired t-tests and regression analysis. It was found
that the dual energy X-ray absorptiometry masses differed from previously used
scaled masses, with arguments made that there was higher patient specific accuracy
from these measurements. These new masses resulting in correlations being drawn
between shoulder and elbow kinetic parameters and body measurements, supporting

suggestions put forward from previous studies [174-176].

Forward dynamic models of the upper-limb use measured internal parameters
and kinetics to determine the current position of the hand and digits. Within
the literature there have been numerous attempts to employ this methodology in
musculoskeletal modelling, to provide a greater understanding and enable control of
the upper-limb [9, 172, 173, 184-186]. Alongside these, there have been attempts
to improve the means of data collection for the inputs to these models [187, 188].
Forward dynamic simulations have also been used to simulate scenarios which could
be dangerous or unwanted for real world experiments [177]. A musculoskeletal
model introduced by Wohlman and Murray, in 2012, [184] and later in improved by
McFarland et al., in 2022, [185] provided a forward simulation of the hand. The initial
intent of this model was to investigate the relationship between muscle forces and
thumb-tip endpoint force. This was achieved through modifications to an existing
model [186], adding definitions of the muscle-tendon paths and forces generation from
five intrinsic muscles. This study showed the importance of accurately defining the
axes of rotation for the thumb joint when simulating the endpoint forces produced
by muscle activations and highlighted the difference made to the muscle control
strategies and force transmissions when the wrist muscles were surgically altered.
Furthering this work, McFarland et al. [172] simulated maximum grip and pinch force
through the addition of a control framework combining forward dynamic simulations
with a simulated annealing optimisation. It was shown, through experimental data,
that the model could accurately provide the maximum grip force, yielding further

advancement of this model. In 2017, Blana et al. demonstrated control of a prosthetic
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hand through a forward dynamics hand model solely employing the extrinsic muscles
of the hand [9]. The model was shown to be able to operate in real time, provide
accurate grasp control and respond to alterations in gripping force [173]. In aid
of data collection for forward dynamic models, Nasr et al. [187] tested different
regression models for the mapping of SEMG signals. Four methods were tested:
ANN, recurrent neural network (RNN), CNN and region-based convolutional neural
network (R-CNN). It was found that the RNN model, taking inputs of filtered sSEMG
and delayed kinematic data, was the most accurate for mapping estimation. This
method boasted a 96.4% regression accuracy for estimations of joint angle, velocity,
acceleration, torque and activation torque. Additionally, R-CNN was able to provide
accurate performance with delayed kinematics and raw EMG data, displaying an
average regression accuracy of 95.9% utilising these prediction measures. Conclusions
from this study argued the usefulness of this method for application in the forward
dynamic simulation of musculoskeletal models. In 2021, Hao and Nichols [188] tested
two existing contact models for determining finger contact mechanics, arguing that
finger contact mechanics are lacking in forward dynamic simulations of hand-object
iterations and are key to future developments in this area. Of particular note were the
alterations to friction which occurred as the contact area was changed. Both models
tested displayed an ability to perform well with the forces experienced during hand-
object contact, with each showcasing advantages over the other in different scenarios.
It was concluded that the inclusion of either is recommended in musculoskeletal
models of the hand. Several studies have used experimental testing to examine arm
reactions in response to forward falling in the elderly [189-192]. Through some of
these studies, it has been shown that the angle of the elbow has a high influence
on the ability to absorb impact energy and control the fall [189-191]. It was also
seen that muscle atrophy resulted in a lessening of the ability to arrest a forward fall
without sustaining damage [191]. A study by DeGoede et al. found that the impact
force on the hand was reduced by more than 40% upon decreasing the initial elbow
extension and velocity of the upper-limb, relative to the impact surface - proving a
link between the initial angle of the elbow and ability of the muscles to react timely
during a fall [189]. In 2003, DeGoede and Miller [177] introduced simulations to
examine the effects of different elbow extensions during falls. A move towards the
use of forward dynamic simulations in this area would reduce the necessity for real
world experiments of the unwelcome task. These forward dynamic simulations of
the upper-limb during falling were able to also draw the same conclusions as the
experimental studies [189-192] - showing potential of this method to replace the

necessity for real world experiments.

The kinematics of hand motion has been observed in several studies. In 1991,

Rijpkema [157] created an early computer animation of the hand for animating grasps -
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intended for grasp planning in robotic devices. A kinematic model of the middle finger
demonstrated the natural actuation of the digit could be mathematically defined
[158]. Though validated with experimental data from the functional excursions of
the muscles, the foundations of the analytically formed mathematical model of the
hand were simplifying assumptions. More recently, in 2014, Rahman et al. [159]
adopted a trajectory planning method to describe the movements of individual digits
of the hand. In this model the data are recorded with FlexiForce sensors and a
mathematical model of finger trajectory created using the Curve Fitting Toolbox
in MATLAB. This model uses the Denavit-Hartenberg method to perform the
kinematic analysis of the motion of each digit. Also of interest to the study of the
hand is how the motions of the joints correlate with each other. Identifying and
understanding any potential interconnected motions would aid in the design and
development of simulations and devices aiming to replicate the motions of the hand.
Within the literature a consensus has been formed that there exists a correlation
between the DIP and PIP joints [193-195]. Hahn et al. [193] used 3D ultrasound
based motion capture system to record opening and closing hand motions of 17 able
bodied participants. The results showed a close relationship between the DIP and
PIP joint motions, observing that one degree of PIP joint flexion caused an average
0.76 degrees of DIP joint flexion. This correlated motion was seen equally prominent
in dominant and non-dominant hands. These findings were later supported by the
work of Holguin et al. [194], in a study assessing hand motion video recordings of 18
healthy volunteers. Furthering the understanding of the correlated motion observed,
Holguin et al. also saw that the motion was lead by the PIP joint. Understanding
this correlation brings the possibility for simpler, yet amply effective, designs of

simulation models and hand prostheses.

Some studies aim to understand the constraints of the joints, which dictate
the possible motion seen from a kinematic study of the hand. Cobos et al. [160]
studied the constraints of the hand, following on to then create a model utilising
these constraints in the following year [161]. The constraints were modelled with
mathematical equations describing how certain digits are naturally pulled by the
motion of other digits. The kinematic model treated each of the joints in the
digits, bar the metacarpophalangeal of each of the fingers and carpometacarpal, as
revolute joints, the metacarpophalangeal of each of the fingers and carpometacarpal
of the thumb were treated as two revolute joints with their axes of rotation placed
perpendicular to each other. This model of the hand is relevant when designing
and developing a prosthetic hand as similar to a human hand as possible. A few
years later, Chen et al. [162] also explored the constraints of the hand and created a
mathematical model from these determined constraints. Chen et al. expanded on

the constraints given by Cobos et al. [160], exploring the different constraints seen
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when different grasps are performed, but, overall, both showed agreement regarding

the constraints and kinematic models proposed.

Additionally, studies have attempted to capture the motions exhibited by the
wrists. In 2016 Rainbow et al. [196] reviewed the existing literature surrounding the
kinematics of the wrist. This study focused on the early rehabilitation of radiocarpal
injuries; the study resulted in ideas for a dynamical treatment of carpal injuries which
can be tailored for each individual patient, based on the research performed in wrist
kinematics. Murgia et al. [163] used marker-based optical motion capture to collect
everyday use of the wrist in cyclical tasks. The study finds that the wrist kinematics
of healthy subjects, during ADL using cyclical tasks, was able to be described by
simple rotations about the axes of a co-ordinate system defined by the markers. The
possible use of EMG for determining the motion of the wrist is argued by Jiang et
al. [164], arguing seen effectiveness based on the fact that myoelectric control from
the wrist in unilateral transradial amputess would become more intuitive. Lemay
and Crago [165] employ forward dynamic modelling to provide a simulation of the
forearm and wrist motions, using a Hill-type model of muscles to replicate these
motion of the upper-limb. Constraints were imposed on the motion of the joints in
the form of passive torques, determined from experimental results. It was commented
that the model was able to correctly determine the direction of the torque vectors at
the wrist; however, it was seen that it predicted much greater torques than those

measured when stimulating the paralysed muscles of one tetraplegic subject.

Though limited, there exists attempts to review the kinetics of the human hand.
A musculoskeletal model introduced by Blana et al. [9] showed the capability of
prosthetic hand control with only extrinsic muscles in real time. Later the model was
reviewed and simulations of use in prosthetic control reported [173]. The findings
showed that: model provided the accuracy required for grasp control, the simulation
was proven to be of an adequate speed for use in real world (with the consideration of
a loop involving the hardware and a user) and demonstrated an ability to respond to
alterations in the gripping force whilst the user held an object. This model employed
force dynamic principles to determine the joint angles of the hand from muscle
excitations measured using sEMG sensors. In 2021, Smirnov et al. [197] used a light
gradient boosting machine and fully connected ANN to applied machine learning
in the approximation of moment arms and muscle length relationships for provided
hand postures. This technique showed low application errors for both approximations
and provided confidence in the potential from applications of machine learning with

musculoskeletal models of the human hand.

The musculoskeletal model of the hand presented by Blana et al. [9] has been

employed within a muscle excitation prediction method presented. For application
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of the model and understanding of the musculoskeletal model was required. This
model is a forward dynamics model, utilising known muscle activations to determine
the joint angles of the hand. As presented by van den Bogert [198], a first-order
Rosenbrock method [199] is used to advance the output of the model (included in
which are the digit joint angles) one time step, provide a set of muscle excitations at

that next time step.

The Rosenbrock methods are stiff differential equations employed to solve ordinary
differential equations. Given a vector of the musculoskeletal model state variables
(the joint angles, joint angular velocities, contractile element lengths and muscle
activations), x, and a vector of the muscle excitations, u, at the next time step, the
musculoskeletal model [9] and Rosenbrock method can be used to calculate the joint
angles for the given muscle excitations, at time step h seconds advanced from the

occurrence of the current joint angle,
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where n is the current iteration number, f(z,4p, u,) is the dynamics imbalance of
the system (provided as an output from the musculoskeletal model) and %, (%b and %
are the Jacobians of the system (also provided as an output from the musculoskeletal
model). Given an initial state, x,, derivative, &, and muscle excitations at that
time step, u,, the model can simulate future states, h seconds away, provided the

knowledge of muscle excitations at that, next, time step (tp.1).

Blana et al. utilised this model to provide control of a prosthetic hand [173].
The hand begun in an equilibrium position, providing the initial x,, and u,. The
sEMG signals were recorded during the movements performed by the hand. These
sEMG recordings were then normalised and mapped onto the muscle activations;
this information was used to determine the each of the muscle excitations during
hand motion, utilised as wu,.1. Inputting this obtained knowledge into (3.1) would
determine x,.1, from which the first 16 elements can be extracted to provide the
joint angles of the hand. These joint angles were then sent to the prosthetic hand,
resulting in an animation of the prosthetic hand equal to that of the observed hand.
This is then repeated through several user hand movements, updating z,,, &, and

uy, every h seconds and recalculating x,.1 given each 1.
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2.8 Determining Muscle Excitations

Knowledge of the muscle excitations performed aids the development of upper-limb
prostheses and exoskeletons; further to this, recordings of muscle excitations can
be utilised to provide previously unknown information during surgeries, enable
alternative options for motion capture and aid in patient assessment. A clear option
for obtaining the muscle excitations performed is through direct measurements,
employing EMG sensors, [29, 141, 173, 200, 201].

Intramuscular EMG readings allow for a direct measurement of the muscle
activations. However, employment of this technique requires the use of invasive
sensors and readings are depend on the placement of these sensors. The use of sSEMG
devices enables the capture of these muscle activation without need for an invasive
strategy. This technique also suffers from dependencies on sensor placement and is
prone to contamination from crosstalk between muscles, arising from the difficulty

to isolate a single muscle observed from the skin surface.

Though limited supporting literature exists, it is feasible to make predictions of the
muscle excitations from kinematic data alone [202, 203]. It is clear that a prediction
method would not be able to provide the level of accuracy offered by experimental
measurements; however, small increases to the accuracy of these methods would
occur as musculoskeletal models of the hand and prediction techniques improve in
fidelity. Vast amount of kinematic records of hand motions exist; the application of
predictive models could potentially provide an indication of the muscle excitations
occurring within these existing data, without the need for additional data collection.
Given that hand can only take on a finite number of hand shapes, adding to a
database of known muscle excitations for certain hand shapes would make future
queries quicker and easier - accuracy to the desired hand shape can be provided

when no existing hand shape exactly matches.

Measurements of muscle activity are acquired through invasive or sk MG recordings.
Signal decomposition of these recording is then required to assign muscle activations
to the appropriate motor units (MUs). There are several strategies employed to
achieve this, with new methods proposed often [204, 205]. In 2006, De Luca et al.,
introduced a means for the decomposition of SEMG signals [204]. This utilised Al
to decompose the signal into the action potentials of the constituent MUs. When
compared to a needle sensor, the sEMG with autonomous decomposition achieved an
accuracy ranging between 75 and 91% - this was increased to over 97% with manual
intervention. Despite this high accuracy, it was observed that the MU yield was lower
than that of the needle sensors; this highlights an inconsistency with the real world

and would need remedying before this method is seen to be acceptable. The future
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work proposed was to improve accuracy further and, more importantly, attempt to
provide an increase MU yield. This study has shown success but has only been tested
with orbicularis oculi, platysma and tibialis anterior muscles; there is a potential
for the theory to transfer to the hand, but this is difficult to conclude without
further tests - especially as the muscles which were tested are larger than those
seen around the hand, making for easier placement of the sSEMGs. Upon comparing
high-density sEMG recordings to an invasive technique, Holobar et al. found the
use of SEMGs to be a valid method for the assessment of MU behaviour during
low-force contractions [205]. In this study the tibialis anterior, biceps brachii and
abductor digiti minimi muscles were observed and invasive pairs of wire electrodes
were used to capture the bipolar intramuscular EMG signals. The decomposition
of the sEMG provided strong similarities to a state-of-the-art intramuscular EMG
technique, showing further feasibility of the use of sSEMG. The tibialis anterior and
biceps brachii results showed adequate R-squared values, but those from the abductor
digiti minimi were not able to produce similar confidence - thus this approach would
need improvement and further testing before it can be confidently employed with
sEMG recordings from the hand.

Aiming to aid minimally invasive spinal surgery, in 2010 Uribe et al. [206] reviewed
the the possible uses of EMG for intraoperative neurophysiological monitoring. It
was seen that the applications of EMG during transpsoas lateral surgical approaches
reduced complication rates from 30% to less than 1%. This research concludes by
arguing for the significance of EMG during minimally invasive surgical procedures,
stating the additional safety provided and highlighting the importance of the safe
passage granted during the minimally invasive lateral retroperitoneal approach. In
2021, Sugiarto et al. [207] proposed a means for the reduction of end-to-end latency in
VR systems utilising EMG readings, inertial measurement unit (IMU) measurements
and a predictive model trained through deep learning. This intervention could
alleviate issues arising from the use of VR applications, most notably: motion
sickness. To achieve this, pre-processed EMG and IMU readings were inputted into
a trained prediction model to provide an accurate prediction of the head orientation
at that time. The proposed method was found suitable for use in VR applications

which exhibited high-intensity or abrupt movements on the users.

In 2009, Castellini and van der Smagt [29] noted the lacking capabilities of hand
prostheses control and proposed a novel means of achieving this. Here, ANNs,
support vector machines and regression algorithms were employed to provide control
of a prosthetic hand using SEMG measurements. The methods used classifications of
hand shapes to provide predictions of the digit joint angles and forces in a presented
scenario. The proposed solution was able to provide control of a prosthetic hand to a

greater degree of accuracy than the state-of-the-art, at the time, was able to provide.
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Within this study only a single subject was tested, resulting in no ability to evaluate
inter-subject reliability for this method. This subject was able-bodied and the study
mentioned that it would be difficult to train the model on amputees, as it requires
synced hand responses to the muscle activations to train the model. It was suggested
that in these scenarios the desired motions could be performed with the other hand.
However, this would not be the same as the tested method, leading to uncertainty in
the application of this, and provides no tactile feedback from the contact, resulting in
a potential for less than realistic outcomes. Though these limitations exist, the study
was able to show success with the tested subject. If a way of training this control
technique with amputees was found, it could be utilised but would require retraining
for each individual. Though limited, this does show a possibility of this method
in aiding upper-limb prosthesis control. Zhang et al. [141] utilised accelerometers
and EMG sensors to provide a framework for hand gesture recognition, aiming the
implementation at classification of Chinese sign language. To achieve this a decision
tree and multi-stream hidden Markov model was used to classify the accelerometer
and EMG readings. This work achieved a gesture recognition accuracy of 98%, finally
concluding with the possible applications of this method in multiple areas of gesture
study. In this study only one hand was observed, though the Chinese sign language
can employ both hands. The future work highlighted understands this flaw, as well
as the lack of consideration for gaze, facial expression and body posture. There was
also a desire to collect more data, for a more robust gesture recognition method.
In 2021, Khomami presented an algorithm for Persian sign language recognition
utilising IMU and sEMG measurements [200]. Through the employment of a KNN
classifier, the proposed method was able to achieve an average accuracy of 96%.
However, the small dataset of 20 signs performed by inexperienced volunteers limits
the conclusions of this study. These volunteers had only been taught the signs at the
time of the study and provided a mixed range of habits and speeds, which influenced
the accuracy of the algorithm and limited the quantity and quality of the available
training data. Further testing of hand signs would be required before adoption of
this method is considered, with the hope that they are performed by experienced
subjects to ensure quality in the collected data. These, among other works on sign
language recognition, help form a database of recorded practical hand shapes and
highlight potential means of collecting gesture data [141, 200, 208, 209]. A review
of ANN and linear discriminant analysis for the classification of hand motion from
EMG signals [201] found both to be a feasible means of classification of EMG signals.
This work aimed to aid myoelectric prostheses, providing a means to determine
the desired hand shapes from EMG measurements. During collection, surface and
intramuscular EMG data were recorded. The implemented ANN was proposed as

the technique for classification as it was able to achieve an averaged accuracy of 95%,
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across two datasets. The future work stated the desire to test more classification
techniques and investigate the ability of pattern recognition methods in aiding the
end accuracy. Through the presented current understanding and possible future
developments, this ability to classify EMG signals shows the potential for improving

upper-limb prostheses control.

The ability to predict muscle estimations would enable the utilisation of non-
invasive measurement strategies, and existing kinematic data collections, to ap-
proximate muscle excitation data. The literature is sparse but there exists some
attempts to achieve this. Attempts to predict muscle excitations from kinematic data
in the literature are limited and typically associate with the lower-limb [202, 203].
Zaman et al. [202] aimed to provide analysis of muscle forces during heavy lifting
given, exclusively, kinematic data. This was achieved through the combination of
a predictive skeletal model and OpenSim modelling. The skeletal model predicts
the motion, ground reaction force and centre of pressure during the motion, which
are inputted into OpenSim to simulate the motion and analyse the muscle forces.
The study outlined a predictive model for the analysis of lower-limb muscle forces.
Though using a 3D musculoskeletal model, only the sagittal plane data were given in
the predictive model; because of this, the results do not capture internal rotations,
abduction or adduction. Furthermore this study lacks experimental support for
the results obtained. Additionally disadvantaging, this study provided full body
motion muscle predictions without the arms and hands. In spite of these limitations,
this study has shown the feasibility of the application of predictive musculoskeletal
modelling. Manzano and Serrancoli [203] looked at replicating EMG recordings
from kinematic data alone. The correlation coefficients between the predicted and
experimental EMG signals were higher than 0.7 for ten out of the 11 muscles tested,
leading to the conclusion that the utilised method provides confident predictions of
EMG signals. The findings support the use of this technique for real time, accurate,
prediction of lower-limb EMG readings. One limitation of this, however, is that only
11 muscles of one leg were tested with one task (running). As synergies between
kinematics and EMG signals have been seen to be task specific [210, 211], only
testing one task limits the robustness of this method. Due to this, future work was
stated as to focus on the collection of varying tasks, in order to learn the synergies
of each. Though limited to the tested cases, a framework for EMG data predictions
was provided within this study - showcasing feasibility for the creation of these
predictions. No literature attempting to predict the muscle activations of the hand

from single frames of kinematic data, exclusively, were found.
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2.9 Optimisation Techniques

It was decided that a muscle excitation prediction technique developed should be
focused on application with the data collected and, therefore, would be a use of an
existing model with an optimisation technique to find the muscle activations, from
ADL, using the collected, kinematic, data. As seen previously, little work exists in
this area, with no present work for the hand. Different optimisation techniques were

attempted and each are described subsequently.

2.9.1 Genetic Algorithm

The genetic algorithm (GA) method was first shown implemented by Holland in
1975 [212]. This technique was designed to solve problems by a means similar to the
development of living organisms, mimicking the mechanics of evolution and natural
selection. The intentions of this techniques was to solve problems where deterministic

algorithms were too costly.

A GA implementation is initialised with a predetermined or randomised set
(population) of initial candidate solutions (chromosomes) comprised of variable
elements (genes). Each chromosome of the population is then evaluated to determine
their cost. A loop is then begun, first selecting the parent members. For parent
selection here a roulette wheel selection method was used. To perform a roulette
wheel selection the summation of the costs of all the chromosomes is calculated and
the percentage of this total which each chromosome occupies is calculated. These
chromosomes are sorted in ascending order and the cumulative sum of the cost
percentage for each is calculated. A uniformly distributed random number (U(0,1))
is then created and compared to the cumulative sum for each chromosome, the first

of these above the random number generated is identified as a parent.

Following the selection of the parents (parent; and parents), children (child; and

childy) are created using a crossover function,
childy (i) = a(i)parent; (i) + (1 — a(i))parentsa(i),

childy (i) = (1 — «a(i))parenty (i) + a(i)parents (i),

where (i) ~ N(0,02) and the index variable, i, indicates the gene of the chromosome
considered. Parent selection can alter exploitation, giving influence to candidate
solutions closer to the optimal value. Exploitation influences the ability of the
technique to quickly converge on a known minimum, a high exploitation offers fast

convergence to a prediction with lower cost but with a higher risk of the output
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being a local minimum.

Gene mutation applies a random mutation to a random selection of the children.
In this application,
true if U(0,1) <
flagliy = § " TV D <k

false, otherwise,
child(flag) = child(flag) + m(flag),

were used to mutate the children; where p is the preset mutation rate, m is a set of
normally distributed values with a mean of zero and variance of o2, (m ~ N(0,02,))
and the index variable, i, cycles through the genes of each chromosome. Gene
mutation can alter exploration, allowing random mutations to the population in
order to maintain a large search region. Exploration describes the ability of the
technique to find new possible minima, a high exploration results in a lower risk
of convergence towards a local minimum. A balance between exploration and

exploitation is key to a fast convergence to the optimal solution.

Following mutation the members are tested against the set lower and upper
bounds, limited within these if they are found outside of them. The new population
is then evaluated, calculating the cost of each chromosome. The population is sorted
in descending order of cost and any members past the set population size are removed
from the end, until the desired population size is reached. The best solution found is
compared to a preset threshold after each iteration, if it found above this value then

the loop continues from parent selection with the new population.

The use of GA has spread wide in the literature, displaying high levels of support
for use [213-218]. In 2003, van Soest and Casius [213] showcased the abilities of GA
with biomechanical engineering problems, concluding the advantage of GA in solving
high-dimensional, non-smooth or discontinuous datasets. Nair et al. [214] combined
a GA and non-linear finite element analysis to estimate the material parameters of
intact ventricular myocardium, arguing the challenges faced with this in the fast due
to the highly non-linear material behaviour. The effectiveness of this technique was
demonstrated by determining the unknown material parameters of a 3D model of
the heart with an exponential hyperelastic material law; the algorithm was able to
converge to parameters within 5% of the true values. In a two-dimensional (2D)
model, the optimised material parameters were found within 0.5% of the true values.
The method was concluded to be a robust method for estimating myocardial material

parameters in 2D and 3D modelling.

In 2021, Wang et al. [215] looked into the use of a GA to generate assistive torque
for an ankle exoskeleton. The GA optimised torques were found superior in control

and ability to adapted to muscle efficiency, when compared to a proportional assistive
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torque method. You et al. [216] employed a GA to aid tendon-transfer. Noticing
the aid given by a passive implanted device during ECRL-to-FDP tendon-transfer
surgery, this study aimed to determine the optimal geometry and location for this
device. It was seen that the optimised device provided an 11 times increase in
finger kinematics, displaying only a 0.9% decrease in joint toque, when compared to

biomechanical function enabled by the current suture-based surgery.

Recent studies have employed GAs for increasing the influence of individuals in
social networks [217] and as aid to medical administration systems for scheduling

medical treatment [218].

2.9.2 Particle Swarm Optimisation

Particle swarm optimisation (PSO) was first introduced in 1995 by Kennedy and
Eberhart [219]. The PSO method was introduced as an optimisation technique for
non-linear functions. The method utilises observations made of the movement of
flocks of birds and schools of fish seen in social models. This method was described
similarly to that of birds finding food, with no previous knowledge of the location of
the food the birds work socially to determine the location. The communication and
learning seen between members of a population formed the basis of the communication
and learning technique employed between particles in the swarm during PSO, though
individually unintelligent it is the communication which allows intelligent learning

from the swarm.

Following changes, an improved version was presented by Poli et al. [220]. This
paper reviewed the uses of PSO and observed growth in research, highlighting any
alterations to be made highlighted by researchers. Most notable alteration was the
addition of an inertial weight proposed by Shi and Eberhart in 1998 [221]. The
update to the velocity of a particle were presented in terms of the previous velocity,
personal best and global best. In consideration of these forces, the change in velocity,

acceleration, can be written as,
AUZ' = fZ — (1 — w)vi,

where v: denotes the velocity vector of particle 4, f; the force acting on it as
combination of the personal and global best terms and w the inertial weight given.
This constant 1 — w acts as if it is a friction coefficient and enables adjustments to
the movement of particles by varying w. The improved model was considered for

implementation within this research.

A PSO implementation is initialised with a predetermined or randomise set initial

candidate solutions. Each particle is tested in the function to be minimised, the
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outputted result from inputting each particle provides a cost of that particle. After
each iteration the results are compared to the stored personal best of each particle

and the global best and updated if a new best solution is found.

Given the current position, velocity vector, personal best and global best of each

particle their is then calculated using,
zi(t +1) = @it) + vilt + 1),

where a?, is the position of particle 4, ¢ denotes the current time step, 12 provides the

velocity of particle 1.
The velocity vector, for particle 4, is calculated using,

— —

vi(t +1) = woi(t) + rier (pit) — zi(1)) + raca(g(t) — zi(t)),

where w the preset inertial weight used to give influence to the velocity component,
r are random uniformly distributed values between zero and one (r U(0,1)), ¢ are
adjustable acceleration coefficients used to weight the effect of the personal and
global best, 5 represents the personal best position found and 5 represents the global
best position found. The velocity equation consists of terms referred to as: the
inertia wv;(t), the cognitive component 71¢1(p;(t) — #;(t)) and the social component
raca(g(t) — z;(t)). Tt can be seen that the inertia term provides influence on the next
position from the velocity of the particle, the cognitive term gives influences from
the knowledge of the best solution from the particle alone and the social component

that knowledge from the swarm as a collective.

Weighting can be given to the personal and global best scores to alter exploration
and exploitation. Exploration describes the ability of the swarm to find new possible
minima, a high exploration results in a lower risk of convergence towards a local
minima. Exploitation influences the ability of the swarm to quickly converge on a
known minima, a high exploitation offers fast convergence to a prediction with lower
cost but with a higher risk of the output being a local minima. A balance between

exploration and exploitation is key to a faster convergence to an optimal solution.

Many biomechanical studies have employed the PSO technique [222-227]. Schutte
et al. [222] tested the use of optimisation algorithms in solving biomechanical
based problems, arguing the difficulty of these problems due to the likely high
noise, multiple local minima and possible design variable scaling that could occur.
It was seen that PSO performed comparatively well in the test situation. It was
also shown theoretically that PSO was insensitive to design viable scaling and
proven practically - as a result PSO was argued to be more suited to biomechanical

optimisation problems. A review of PSO by Saini et al. [223] found the technique to
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be able to work well in a high-dimensional search space when used as human motion
tracking from video sequences, a very challenging task. This work was later updated
with an implementation of hierarchical multi-swarm cooperative PSO for human
motion tracking [224]. Though fought with several limitation, Saini et al. argue
the capabilities of this technique and possible uses in low-cost robust tracking from

stroke rehabilitation in clinics.

Kwolek et al. [225] presented a method employing PSO for markerless human body
tracking to provide robust and accurate results, using a Vicon system as a ground
truth. Chang et al. [226] implemented PSO as part of a technique to determine key
frames in human motion capture data, providing experimental results supporting the
use of this method in the presented context. Rokbani [227] showed how PSO could
reasonably generate the gait of a bipedal robot, showing the techniques capability to
handle 3D data efficiently.

2.9.3 Gradient Descent

The GD method was first introduced by Cauchy in 1847 [228]. It was first introduced
as a method for solving systems of simultaneous equations, suggested as a means
of determining the movement of a star with great precision. The concept of this
method is to take large steps towards an optimal solution when far away from it and

then increasingly smaller steps as the method converges towards the solution.

An implementation of the GD method begins with random or pre-decided initial
conditions. This method utilises the derivatives of the loss function; typically
considered as the sum of the squared residuals (the difference between observed and
predicted joint angles). These derivatives are used in aid of determining the lowest
possible sum of squared residuals. If multiple variables exist within the problem then
derivatives are taken with respect to each. If there are two or more variables to the
equation considered and, therefore, derivatives of that function, these derivatives are
labelled as the gradient. The gradient is used to descend to the lowest point in the
loss function (commonly found by the sum of squared residuals) - providing the name
gradient descent. The derivative of the sum of squared residuals is then multiplied by
a learning rate to determine size of step taken; when considering multiple variables,

this step is performed simultaneously for each.

In a case where the equation for the problem is not known, numerical differentiation
can be applied to provide an estimate of the gradient at each iteration [229, 230].

The, commonly applied, central difference numerical method can be defined with,

A(@) _ fwm) — fw—h)
dx 2h ’

(2.14)
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where f(z) is the function to be differentiated with respects to variable x and h is
the step size between the two observed inputs into the function (where h < 1). The
stopping criteria for this method can be either a preset threshold value of the step

size or a maximum number of iterations.

The following set of procedures are performed by gradient descent when imple-

mented:

1. Determine the gradient of the loss function considered.

2. Assign initial parameters.

3. Find gradient of those parameters.

4. Calculate the step size by multiplying the learning rate by the calculated

gradient, for each parameter.

5. Calculate new parameters by subtracting the step size from the current can-

didate solution.

6. Repeat steps 3 to 5 until the minimum step size or maximum number of steps

have been reached.

The use of the GD method is prominent in the literature, showing support in
biomechanics [231-233] as well as other fields of study [234, 235]. Todorov and Li
[231], in a study of biological movements, utilised the GD approach to optimise the
control of a two-link arm model. Desapio et al. [232] employed the GD method for
minimising muscle activations of a three DoF model of the human arm, aimed to aid
robotic and biomechanical design. In 2021, Wu et al. [233] applied the GD method
to enable a transfer of EMG data from one patient to another, enabling an increase

to the learning speeds in the control of human-machine interface (HMI) devices.

2.9.4 Brute-Force Search

An alternative method considered was the implementation of a brute-force search
across all possible solutions. A brute-force search is an exhaustive search technique
which systematically enumerates all possible candidate solutions to a problem. This
would be quick to design but would require an excessive amount of time to execute,

as it tests the output of every possible input.

The length of time can vary dramatically depending on the number of elements
in the solution vector and the resolution desired. Given n as the number of elements
in the solution vector, in which each element can take one of two states, then the
number of combinations required in a brute-force search would be 2". Changes to
the number of possible states for each element of this vector alters this equation
to s, where s denotes the total number of possible states for each element. If a

higher resolution is required the increments between each candidate solution tested
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must be reduced. Increasing the total number of states and rewriting the previous
equation in terms of the incremented value between these states, i, gives the total
number of combinations as (14 1/7)". It can be seen that as the number of elements
increases and the incremented value is reduced this total number of combinations

rises exponentially.

The following steps can be used to easily create all possible combinations of the

candidate solution vector, enabling an exhaustive search of all possible attempts:

1. Initialise with a candidate solution vector in which all elements are set to the
minimum value.
2. Increase one of the elements by the increment value, repeating this each iteration

until the maximum of that element is reached.
3. This element is then reset and the next element raised by one increment.

4. The first element to be increased is then increased again each iteration until it
has reached the maximum value, where it is reset again.

5. The next element is raised by one increment again and the first element reset.

6. These steps are repeated until all of the elements of the candidate solution
have reached their maximum value, implying all possible combinations have

been considered.

Though it is seen as an inefficient search mechanisms, brute-force search has still
found use in recent studies [236, 237]. In 2018, Alagoz [236] demonstrated use of
brute-force search for the stabilisation of closed loop control systems. In 2021, Susuki
et al. [237] used a greedy algorithm and brute-force search to determine the optimal
amplitude and phase of transducers in an array in order to produce a desired sound
field - support was shown for the application of a brute-force search due to the linear

computational time and ease of implementation.

2.10 Clinical Assessment of the Human Hand

The range of motion possible by the hand joints are an important tool for assessing
patient progress during rehabilitation [238]. The currently employed technique (a
goniometer), however, are lacking in accuracy and repeatability; in particular the
finer motions of the hand are not observed accurately by this method and it has
shown limited agreement between different observers [239, 240]. There have been
many attempts to improve upon the current method within the literature with new
methods [241-244] and devices [116, 245-248].

The traditionally used and long standing state-of-the-art device for digit joint

angle measurements is a goniometer; though the use of this device is vast, there
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exists little support for this device in the literature. Lewis et al. [239] tested
the use of a goniometer in measuring the range of motion for the middle finger
in 20 healthy participants, each measured by seven raters. This study looked to
observed the inter- and intra-rater reliability when using goniometer for digit angle
measurements. It was concluded that using the same clinician to measure a patient
in different visits is clinically reliable, but changing the clinician would lead to
significant contamination of the measurements between recordings. McVeigh et
al. [240] compared measurements taken with a goniometer, visual assessment and
radiographs of the hand. The goniometer measurements and visual assessments
were completed by 40 observers were used (a collection of hand surgeons and hand
therapists) and the radiographs were obtained by radiographers, as control data.
This found that neither of the goniometer and visual assessments measurements could
reproduce the angles obtained from the radiographs within five degrees. Additionally,
it was seen that the goniometer and visual assessment provided similar accuracy
for the measured joints, expect for the PIP joint, where the goniometer provided a

better accuracy - both were also seen to have a high level of inter-observer variability.

Attempts at rectifying any inherent issues with goniometers are prevalent in liter-
ature, aiming to increase accuracy with alternative measuring methods or introduce
a new device. In 2009, Carter et al. [241], studied three different measurement
techniques for using a manual wrist goniometer in a cadaveric study. A hand surgeon
and hand therapist took measurements and were compared to to digitally obtained
angle measurements from fluoroscopic images. The three methods tested showed
similar accuracy, within seven degrees of the fluoroscopic image angles. Blonna et
al, in 2012, [242] showed that, when observing the angle of the elbow, an experi-
enced observer was able to visually estimate this high accuracy, in comparison with
a goniometer measurement. This also showed the visual estimates to provide an

averaged intraclass correlation coefficient (ICC) of 0.95.

In 2018, Hancock [243] compared the accuracy of knee angle measurements
obtained with five differing techniques; these techniques were: a digital inclinometer, a
short goniometer, a long goniometer, smartphone application and visual estimation. It
was seen that the short goniometer and visual estimation provided the least accuracy
(with a minimum significant difference of 14 degrees) and the digital inclinometer
was found to provide the greatest accuracy (with a minimum significant difference
of six degrees). The digital inclinometer also provided the benefit of contactless
measurements. In 2019, Shamsi et al. [244] compared an electro-goniometer and
manual goniometer in measuring the knee angle. This study showed that an electro-
goniometer offered a greater ICC, when compared to a manual goniometer. From
the obtained results, it was concluded that a manual goniometer is still acceptable

for clinical evaluations, as it is easy to be employed, though an electro-goniometer
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should be employed if a greater accuracy and reliability is required.

Given the large increase in motion capture and visual assessment technology, it is
not surprising that there is a lot of literature surrounding the introduction of new
computer based hand joint angle measurement devices. In 2015, Krause et al. [245]
introduced a mobile application for 2D analysis of the hip, knee and ankle motions,
in the sagittal plane. When compared to a Vicon 3D motion capture system, the
introduced technique was found to provide clinically viable measurements - showing
a mean difference across all angles measured of 5.2 degrees. In 2016, Williams et al.
[246] introduced a glove able to output the angular displacement of each joint. The
accuracy of this device was found compatible to currently used goniometers and the

glove was proposed for clinical use in hand digit angle measurements.

In 2018, Nizamis et al. [116] investigated the use of the LMC for hand joint
angle measurements with 20 healthy participants, 12 of which where also used for
test-retest analysis. There was disagreement between the measurements obtained
by the two methods, though the LMC showed a superior test-retest reliability and
time taken. It was suggested that some of the disagreement could be due to the fact
that the goniometer measures the flexion of the dorsal side of the digits, whereas the
LMC measures the angle between the centres of the joints - leading to a potential
difference appear due to the thicknesses of the hands measured. In the setup tested
for one hand, the goniometer took 32 to 65 minutes to measure the joint angles and
the LMC took seven to 22 minutes - it was noted that the LMC would also be able
to measure two hands at once and that the rater was inexperienced in both setups.
This study provides evidence for the support of utilising the LMC for clinical hand
joint angle measurements. Utilising a Vicon marker-based motion capture setup,
Reissner et al. [247] compared a goniometer and 3D motion analysis for hand joint
angle measurements. Motion capture was able to show a higher test-retest agreement
- demonstrating superior repeatability of results. It was argue that a goniometer
had to place for every joint to complete the remeasurements, taking a significantly
longer time, and this interaction with the subject could lead to contamination of the
measurements - supporting the use of a motion capture based joint angle measuring

system.

In 2020, Zhao et al.[248] compared the use of smartphone photography and go-
niometers for digit joint angle measurements. The study found that smartphone
photography was a valid and reliable method, holding comparable accuracy and
precision to a goniometer even when present to inexperienced users. The imple-
mentation of this method would enable home assessment, as many people have a
smartphone, and shows great promise for aiding clinical assessment, providing a

potential reduction to clinical visits if simply implemented alongside current therapy
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routines. The presented increase in computer based patient data measurements and
analysis creates a demand for methods to store these data securely and perform quick
and accurate analysis to further aid patient focused treatments. Nadian-Ghomesh et
al. [238] introduced a hierarchical, Al-driven, internet of things (IoT) for storage
and assessment of patient data securely and reliably. The introduced, novel, machine
learning technique was able to identify range of motion as a indicator for analysing
patient progress during rehabilitation and provided help to clinicians when creating

personalised treatment plans for patients.

There is agreement across studies within the literature that the goniometer lacks
the desirable accuracy and reliability for capturing measurements of the joint angles
of the hand [239, 240]. Though the consensus tends towards acceptance of the
goniometer for clinical assessment, it has been shown to provide measurements
of equal accuracy to visual assessment in several studies [240, 242, 243]. There
have been several attempts to rectify this lack of accuracy with new measurement
techniques, many offering appealing potential improvements over the current employ
manual goniometers [116, 245, 246, 248]. Furthermore, movement to an electronic
platform from these introduced methods offers the use of quicker and more reliable

patient assessment methods [238].

62



Chapter 3

Methodology

In light of the weaknesses seen in previous techniques discussed within Chapter 2, a
novel method for data collection has been designed. Previous studies of hand motion
suffer due to a limited range of activities studied or unnatural motions arising from
encumbering devices, these issues have been remedied in the introduced design. The
out of sight, portable, device described here records Cartesian motion data, this
enables analyse through machine learning algorithms - allowing for a larger amount
of data to be collected and analysed in the same time. Each of the novel methods
introduced have been validated against the state-of-the-art in the respective areas.
Control hand shape data, to support the analysis performed, has been collected.
The methods employed to modify existing musculoskeletal model are also discussed
here. A device has been conceived for faster, easier, safer and more accurate hand
joint angle measurements within clinics, named AirGo. The techniques employed for
the analysis of everyday activities motion data are also discussed here. Biomedical
& Scientific Research Ethics Committee (BSREC) approval has been granted for a
study involving 20-30 participants to be performed using the created portable motion
capture system and for the collection of choreographed hand motions in a Vicon
motion capture studio (reference: REG0O-2018-2210). The clinical trial of AirGo
was approved by the Research Ethics Committee, for a study of up to 20 patients
(reference: 18/NE/0174). The supporting documents for these ethical approvals can
be seen in Appendix A. The implementation and results of these discussed methods
can be seen in Chapter 4; the final output of which are accordingly distributed among
Chapters 5, 6 and 7.
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3.1 Proposed Solutions

Following the discussions of the previous chapter, proposed solutions to the limitations
of the current state-of-the-art are introduced here. The existing methods used to
capture the activities of the hand during activities of daily living (ADL) are limited
in the amount of data collect and range of activities observed. The solution proposed
to circumvent these issues is the application of a portable markerless motion capture
system, utilising a Leap Motion controller (LMC), and analysis methods performed

employing machine learning techniques.

Current research shows no existence of extracting the muscle excitations of the
hand from kinematic data exclusively. The proposed solution, to introduce predictions
of hand muscle excitations from kinematic data, entails the combination of an existing

musculoskeletal model and optimisation techniques.

The current clinical method employed to measure the hand digit joint angles is
slow and unreliable, with an uncertainty to the accuracy of the results achieved. In
light of these issues, the proposed method for hand digit joint angles measurements
is a markerless motion capture based system, employing the LMC. This device is
able to capture more reliable data significantly quicker, within a known degree of

accuracy.

3.1.1 Portable Hand Motion Capture

The method most commonly employed to study the human hand in use, capturing a
video recording of the hand in use and then watching the video, is a time consuming
process with potentially high error due to the subjective nature. For this study the
use of motion capture devices to collect three-dimensional (3D) kinematic data of
the hand is considered over the use of video cameras - enabling the deployment of

machine learning techniques for the analysis of the collected data.

The LMC is a markerless optical motion capture device which uses three infra-red
(IR) cameras to determine a 22-point virtual image of the hand. The points of
the hand captured by the LMC are as follows: the metacarpophalangeal (MCP)
joint, interphalangeal (IP) joint and tip of the first digit, the MCP joints, proximal
interphalangeal (PIP) joints, distal interphalangeal (DIP) joints and tips of the
second to fifth digits, the centre point of the palm, the carpometacarpal (CMC) joint
and a point opposite to the CMC joint in the medial direction. The LMC is supported
within the literature: proven effective for stroke rehabilitation and musculoskeletal
simulation [111-114] and literature reviewing the employment of an LMC for data

collection of hand kinematics provide confident support for the collection of clinically
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meaningful data [115, 116]. Though the LMC has also received some criticism in
the literature [101, 103], it has been used here due to the high portability potential
offered, providing an ability to be used during the normal everyday tasks performed
by the participants within comfortable environments for them, the fact that it
captures motion data without markers, leading to unencumbered movements, and
the resultant non-invasive nature of the device, resulting in natural motions as the

participant does not feel as if they are being watched in a laboratory environment.

A portable motion capture system, for the collection of hand motion data in
everyday activities, has been created. This system utilises an LMC, Intel i3 Next
Unit of Computing (NUC), external battery (2-Power 19 V, 27 Ah), GoPro head
strap, LMC GoPro mount, bespoke NUC case and small shoulder carry bag. An
exploded diagram of the NUC, battery and bespoke case can be seen in Figure 3.1,
with the completed system shown in Figure 3.2. The NUC is a small form factor
computer, measuring just over 10 x 10 x 2.5 cm; in this study the NUC7i3DNBE
model has been used. The 3D printed, bespoke case holds the NUC and battery and
is placed in the small shoulder bag - to be carried by the participant. Connected to
the NUC is the LMC, this is held in place on the forehead of the participant using
the GoPro head strap with a bespoke 3D printed mount. To transfer the data a
Kingston DataTraveler 50 16 GB universal serial bus (USB) Flash Drive was used.
The total price of the items used to form the motion capture system was (at time
of purchase) £521.61. Though all pieces are commercially available, the interfacing
of these with one another has resulted in a portable motion capture system not
previously available. The advantages this system provides over a marker-based
motion capture laboratory are: the significant price reduction, portability, ability to
capture natural and unencumbered movements, non-invasive and contactless nature
and support seen within the literature - collectively resulting in an appealing motion
capture system. The advantages this system provides over the video recordings are:
a reduction in the time to analysis large collections of data, the elimination of human
error during analysis, the ability to apply quantitative analysis and a wider range of

available analysis techniques.
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L 50 mm,

Figure 3.1: An exploded diagram of the portable data collection system,
with reference scale.
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Figure 3.2: The portable system components.

The LMC was chosen in the end as it provides: the ability to record without the
need of placing anything on the hands of the user, a low form factor and weight
allowing it to move freely and easily be made portable, the potential to last several
hours with a carefully selected recording device, a USB connection which allows
compatibility with most recording devices, comparatively low cost and a known
clinically reliable source of hand motion data. Most importantly, the non-contact
nature of the device allows the participant to perform natural and unencumbered

movements throughout their day.

A GoPro head strap was chosen to fix the LMC to the forehead of the participant
because the environments it is designed to operate within are far harsher than the
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one this system is expected to operate within and has a standardised fixing point
which is easy to 3D print a component for. The i3 NUC was chosen as it is the
smallest device that was found able to meet the minimum requirements of the LMC.
A 4 GB random access memory (RAM) module was used to meet the requirements
of the LMC and 16 GB of storage was added to be able to store the files of the data
collected. The 19 V external battery was chosen in order to be able to power the
NUC whilst in use due to the predicted runtime of seven to eight hours - confirmed
with real world tests. This length of time is appropriate for the environment the
system is used in, a typical working day being eight hours. The NUC and battery,
housed within the case, weigh approximately 1 kg and can fit in a small shoulder bag
for the participant to carry during data collection. The bag chosen provides a perfect
fit for the system and sits comfortably on the participant, the completed system
can be seen in use in Figure 3.3. A USB flash drive must be used to transfer the
data collected on the NUC to a computer for it to be analysed so that the NUC can
remain disconnected from the internet, for security reasons. When compared against
a Vicon motion capture system with choreographed hand shaped, the portable motion

capture system was found to collect data within a mean of 14.2 mm.
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Figure 3.3: The portable system, as typically worn by a participant.

A case has been 3D printed for holding the NUC during data collection, as seen
in in Figure 3.2. The 3D printing of the case for data collection allowed a single
structure to be accurately formed, resulting in a case that will stay together well
and, with a low infill, be light weight. However, due to the fact that tall thin objects
tend to not be appropriate for 3D printing, the ventilation holes for the battery case
warped. Despite this error the battery case has still been considered structurally
stable enough whilst in the shoulder bag. Overall, this case is perfect for protecting
the NUC during data collection as it is light weight and structurally strong. Laser
cutting was considered for creating a case. Though this made the case easier to
produce and did not fail at the vents, the result was found to not be as sturdy as

the 3D printed case.
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During collect a JavaScript (JS) script within a Hypertext Markup Language
(HTML) file stores a string of comma-separated numerical positional co-ordinates
under the variable name outputString. The use of HTML allows for easy running
on NUC and saving of the recorded data, it sees no draw backs for use with the
LMC on this device. The data which is saved, each iteration, is as follows: a frame
identification number (a global frame), an LMC frame identification number (a frame
local to the LMC), the global time, the total time the device has been recording,
the cumulative time each hand has been visible for in this occurrence, a confidence
rating in the location and shape of the hand, the 3D Cartesian co-ordinates for the
elbow and wrist and each of the joints and the tips for the digits. The final size of
of outputString Every ten minutes outputString is saved as a comma-separated
values (CSV) file on the i3 NUC, after which outputString is reset to a blank string.
If the battery was to become fully depleted, or the i3 NUC crash, savings up to a
window of 10 minutes before this will still be stored. If the LMC was to become

unplugged the script pauses and can be resumed by plugging back in.

During early recordings with the portable motion capture system it was seen that
it could not last as long as theorised (and desired), it was seen that the system would
become very hot during collection. In response to this the battery was separated
from the NUC and place in a separated location within the bag, creating a mild heat
shield. After testing this was found to be appropriate to allow the system to collect

for the theorised (and desired) time (at least six hours).

When deciding on which device to use for motion capture of the hand multiple
options were considered, each being seen described in table 3.1. The table was
created at time of the decision - all of the models considered, their specifications and
prices are as such. The LMC was selected as the device for motion capture of the
hands during ADL following comparison of the specifications of the devices listed.
The LMC offers an affordable collection device with a high potential runtime and

versatile data transfer method.
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Table 3.1: A comparison table of potential hand motion capture devices.

Data
Device Resolution Runtime Price
Transfer
. Computer
Leap Motion Controller =~ Unknown USB £75
dependent
Vicon Motion Capture . Ethernet
0.15 mm Infinite £100,000+
System cable
2.4 GHz
Manus VR 3 degrees 3-6 hours ] £1,000
Wireless
CyberGlove II1 1 degree 2 hours WiFi/USB  £10,000+
2.4 GHz
VRgluv Unknown Unknown . £800
Wireless
0.02 WiFi/USB/
Perception Neuron ' 3.5 hours  Micro-SD £1,000
degrees
card
Bluetooth/
Captoglove 1 degree 10 hours USB £375

After concluding on the use of the LMC for data collection a device to power it
and collect the recorded data was needed. For this several small computers were
examined, along with the possible power sources which could be used with them.
Table 3.2 shows a breakdown of all of the devices considered for this purpose. The
table was created at time of the decision being made - all models considered, their
specifications and prices as such. The NUC, powered with a 2-Power battery, was
chosen for the: comparatively low price for an i3 processor, fact that it has an
i3 processor, customisable RAM and storage options, possibility of higher voltage
input (provided the battery can accommodate) and small form factor compared to
alternative i3 options. In the table a NUC with 2 GB DDR3 RAM and an Intel
Optane M.2 16 GB storage have been considered, as these are the desired components
- though these options can be altered. Additional to this the 2-power battery provides
a suitably long enough runtime for the desired application and is light weight when
compared to alternative devices with similar specification. The existing knowledge
that these have been tried and tested together and with the LMC provide comfort in
their selection. The NUC and 2-Power battery were chosen, following a review and
comparison of these listed specifications. These devices were shown offer reasonable
specifications for their price and allowed for the desired collection time; additionally,

it was know that the Intel i3 processor is able to support the LMC.
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Table 3.2: A comparison table of potential recording devices.

Device Battery
. On- Required Supplied .
Name CPU RAM Operating Board USB Voltage/ Size Weight Price Name Voltage/ Estlrgated Size Weight Price
Systems Ports Runtime
Storage Current Current
20V/38, Lo 206 x
MaxOak  12V/2.5A, 0 MOUTS g5 1.256 kg £120
5V/2.1A, (50AR/3A) .00 o
I 1 N I 113 2 GB i 4 101.6 SV/1A
r{te UC Intel i3 [ Linux/ 16 GB X 12-24V/ 6 X 500 g £995 24V /2.5A,
(7i3DNBE) (7100U)  (DDR3)  Windows USB 3.0 10A 101.6 x 10V/3.4A. . 118 x
25 mm 2-Power  16V/4A, Ah"“rZA 114 x 620 g £120
5V /1A, (27Ah/3.4A) 22 mm
5V/2.1A
20V/3A, . 206 x
MaxOak  12V/2.5A, ours 935 x 1.256 kg £120
5V/2.1A, (50Ah/3A) .00
5V/1A
13 hours 167 x
u
EasyAcc 5V/4.8A (26Ah/2A) 80 x 454 g £43
Linux/ 101.9 x 9,12,16,19 22 mm
Jaguar Intel Atom 2 GB 3 X i PR
i 4. . P dd 182.8 x
One Plus  (23735F) (DDR3L) Android/16GB  ygpyq  BV/2A - B0 X ste £73 Tiracde  20V/4.5A, 115 hours 1" o 558 & s
Windows . Pro2 5V/2.5A, (23Ah/2A) 15.2 mm
5V/1A
10 ho 170 X
urs
RavPower 5V /2.4A (20Ah/2A) 80 x 476 g £35
20 mm
Anker 168 x
.8 h
Power-  5V/4.8A 7 BAE"”Z 58 X 463 g £30
Core (15.6Ah/2A) 22 mm
9,12,16,19
UDOO ,124,16,19,
Intel . 120 x Poweradd 182.8 X
L 3 X . 11.5 h
X86 Celeron <D4D%]§’L) W,m:X/ 32 GB UsB 30 12V/3A 85 x 116 g £130 Pilot 20V/4.54, (23Ah;’;25) 124.4 x 558 g £75
ADVANGCED  (N3160) indows : 24.5 mm Pro2 5V/2.5A, 15.2 mm
PLUS SV/1A
DOO 1 120 x P dd 9,12,16,19, 182.8 x
U Inte : oweras .
L 3 x . 11.5 b 5
X86 Pentium (DSDigL) W‘ln:x/‘ 32 GB USB 3.0 12V/3A 85 x 116 g £200 Pilot 20V/4.5A, (23Ah‘;’2“1§5) 124.4 x 558 g £75
ULTRA (N3710) ndows : 24.5 mm Pro2 5V/2.5A, 15.2 mm
5V/1A
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20V/3A, 95 1 206 x
12V/2.5A, ours
MaxOak 5V/é,1A, (50Ah/3A) 316?51011(11 1.256 kg £120
5V/1A
167
13 hours x
EasyAcc 5V/4.8A (26Ah/2A) 80 x 454 g £43
I 1 1 x 88 0.12.16.19 22 mm
nte . X
L B 3. ,12,16,19,
LattePanda — y\ 2 GB inux/ e USB3O on 70 x 55 g £68 Poweradd  20v/45A. 115 hours 1528 X
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The results of the analysis on data collected with this described system can be

seen in Section 4.2, with the final results achieved shown in Chapter 5.

3.1.2 Predicting Muscle Excitations from Kinematic Data

There is limited literature focusing on the estimation of muscle excitations from
kinematic data alone, with none prevalent for the hand. Proposed is a combination of
optimisation techniques and an existing musculoskeletal model to converge toward a
prediction of the muscle excitations of the hand which reproduce the joint angles with
a minimised difference to the inputted hand shape - implying the closest prediction
of the muscle excitations performed to create the given hand shape. This allows
for the prediction of muscle excitations of the hand from kinematic data collected,

enabling further extraction of information from many existing collections of data.

In order to determine the muscle excitations from kinematic data the musculo-
skeletal model presented by Blana et al. [9] was implemented alongside a number of
optimisation techniques. For each candidate solution, the set of muscle excitations
are inputted into the musculoskeletal model and the joint angles in this scenario
calculated. These joint angles are then compared to the known joint angles of the
desired hand shape and an optimisation technique attempts to reduce the error
between the outputted and desired joint angles. For this several different optimisa-
tion techniques were tested, as stand alone techniques and in tandem with others:
genetic algorithm (GA), particle swarm optimisation (PSO), gradient descent (GD)
and brute-force search. A GA technique has been selected as a well established
method for optimisation. A PSO technique has been selected for the superior time
performance it tends to show over a GA, with similar resultant accuracy. A GD
method has been selected in aid other optimisation techniques, following applica-
tion of the optimisation technique, to quickly converge closer towards a minimum
more accurately. A brute-force search has been selected for the exhaustive search
powers provided, though resulting in long computational time taken it does provide

confidence in the results obtained.

The techniques described in Section 2.9 were implemented to utilise the equations
of the musculoskeletal model for the calculation of the joint angles from the candidate
solution muscle excitations. The joint angles produced by a set of muscle excitations,
u, can be found by evaluating the candidate solution with the musculoskeletal model.

To achieve this, (2.12) and (2.13) were combined to provide,

—1
Tpil = T + (gi + % : gi) (gixn - f(xnal‘n’un) - % : (un+1 - un)) . (31)

Candidate solutions can be inputted as u,+1 and the equilibrium hand shape, with
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known state variables, derivatives of the state variables and muscle excitations,
used as xz,, &, and u,. This assumes that the hand shape presented occurred
h seconds after the hand was in the equilibrium. For this application, the time
step, h, was selected to be 0.01 seconds, in line with the working range specified
for the musculoskeletal model [9]. The found joint angles can then be compared to
the recorded, desired, joint angles and the performance of the candidate solution

evaluated with a cost function.

The determined hand shapes of ADL were in 3D Cartesian form. In order to be
comparable to the output of the musculoskeletal model and, hence, work with the
optimisation techniques these data must be converted into joint angles equivalent to
those outputted by the musculoskeletal model. For each joint angle to be calculated
the following were used: the joint in question, the more distal joint and that more
proximal. These sets of co-ordinates were converted into a two-dimensional (2D)
co-ordinate system and the desired angle found through the application of the vector
dot product, found using (2.4). The 2D co-ordinate system was created by a local
plane through the considered digit, formed such that the axis of flexion rotation was
normal to that plane. Pictured from the medial side of the hand, the metacarpal bone
of the considered digit was used to create one axis of the 2D co-ordinate system and
the anterior to posterior direction through the hand was used to form the other. This
can be seen visually described, for the second digit of the right hand, in Figure 3.4.
In this diagram the flexion angles of the PIP and DIP joints have been depicted by
Oprp and Op;p, respectively. The difference between the desired and output sets of
joint angles provide a cost function to be minimised through the use of optimisation

techniques.

Figure 3.4: A diagrammatic representation of the calculated joint flexion
angles for digits two to five.
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In order to compare the candidate solutions a cost function is required. Here
a function which finds the joint angles for a set of muscle excitations, from the
musculoskeletal model, and compares this output to the joint angles of the desired
hand shape was created. For GA, PSO and GD methods a fitness scaling technique
was employed to aid convergence. Fitness scaling considers an exponential decrease
in the cost as the technique converges towards a solution. This provides an increased

influence of those with a lower cost. To achieve this,

16

COStscaled = Z (mrec(i) - mcalc(i))2 ) (32)
=1

was implemented to calculate the joint angle disagreement cost for each candidate
solution. In this equation, x,¢. are the 16 joint angles determined from the recorded
data and x.q. are the calculated joint angles, outputted from the musculoskeletal
model. The further this cost reduces the greater the agreement between the angles
of the predicted hand shape and the angles of the inputted hand shape becomes;
in turn, the likelihood of the correct muscle excitations being obtained increases.
During a brute-force search fitness scaling adds little benefit to identifying the best
solution found and, therefore, the cost function for each input combination was
defined to be the summation of the absolutes of the differences between the resultant

and desired joint angles,
16
CcoStlinear = Z |mrec(i) - mcalc(i” . (33)
i=1

Alongside reducing the difference between predicted hand shape and recorded
hand shape joint angles, the cost function considering the summation of the muscle
excitations predicted has been implemented. This aims to provide an implementation
of muscle redundancies without knowledge of the external forces acting on the

inputted shapes. This cost function was defined by,

18

COStmuscies = »_ u(i), (3.4)

=1

where u(i) is the predicted muscle excitation for muscle i. This means of muscle
redundancy implementation was not ideal but was limited by the requirement to only
utilise kinematic data. The focus of this cost was to encourage the model to converge
towards a solution using the minimal number of muscle excitations possible. In turn,
the method is coaxed into utilising excitations only from the optimal muscles in this
situation; showing little to no excitations from the redundant muscles, as would be

expected in the real world.
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In order to implement the functions (3.2), (3.3) and (3.4) with the optimisation
techniques, a single, tunable, cost function was created. The results of these cost
functions, following an iteration of the observed optimisation technique, were ma-
nipulated to form the terms of this overall cost function. To start, the costs were
normalised; achieved by multiplying each element from the array of muscle excitations
by the maximum of the joint angle differences. In doing this, a balance ratio of
the cost components can be formed - removing the possibility of one component
taking greater influence over the other due to inherently different scales of values.
The weighting of this ratio was then altered in an attempt to provide the most
accurate predictions of the muscle excitations. In order to obtain this knowledge, the
parameters of the cost function were made tunable; here, the powers and coefficients
of the components making up the cost were selected as the tuning parameters. Tuning
the powers of the terms within the cost function provides control over the influence
that each component has on the rate of convergence during optimisation. Tuning
the coeflicients to these terms enables alterations to the ratio of influence each has
over the resultant cost. Hyperparameter tuning of each optimisation method has

been achieved by implementing the following cost function,
_ P P
cost = (1 - COStangles +Cy - COStmuscles” 5 (35)

where costypgies is the cost function associated with the resultant joint angle error,
CcoStmuscles 1s the summation of the predicted muscle excitations and C and P are,
respectively, the coefficients and powers for the costyngies and costpyscies terms,
respectively denoted by 1 and 2. In this cost function, costgpges provided an
assessment of joint angle agreement, between the inputted and the outputted hand
shapes, and cost,,ysces attempted to enforce consideration of muscle redundancies.
For implementation of this cost function with the optimisation techniques, cost,pngies
was that defined in (3.2) for GA, PSO and GD and (3.3) for a brute-force search.
For all methods, cost,yscies Was that explained by (3.4).

Upon first implementation, the ratio of the influences from the summation of
the muscle excitations and summation of the joint angle differences, as well as the
powers that each should be raised to, was unknown. Hyperparameter tuning of the
cost functions (3.2) or (3.3), for the appropriate techniques, and (3.4) was applied in
an attempt to obtain individualised cost functions for each of the tested optimisation
methods. Within MATLAB, an array holding each of the coefficients and powers,
C4, Cy, P and Py, was created. This enables the use of an optimisation method to

be used to modify each of these parameters in relation to each other, with respect to
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a single cost function. Here, the cost function was set to be,

v
costiuning = Z(l — Ry), (3.6)

i=1

where V' is the number of validation hand shapes tested and R; is the correlation
between the known and predicted muscle excitations for the validation hand shape 3.
To this effect, the cost is minimised when the correlation is one - a perfect match
between the predicted and known muscle excitations. By minimising this cost,
the methods converge towards reasonably high muscle excitation and joint angle

correlations in applications with the provided validation hand shapes.

In order to tune these parameters PSO was used, as this had provided a superior
balance of speed and accuracy in testing. The time taken for this optimisation to
run was of significant consideration, as within each of the passes it was required
to run the tested muscle prediction optimisation script for each of the population
members. Within MATLAB there are several customisable options provided for
the built-in PSO function, for this implementation the following were considered:
FunctionTolerance, MaxIterations, MaxStalllterations, 0ObjectiveLimit,
SelfAdjustmentWeight, SocialAdjustmentWeight and SwarmSize. From these,
FunctionTolerance, MaxIterations, MaxStallIterations and ObjectivelLimit
are stopping criteria, each influencing the decision of whether the swarm has converged
on a solution. Of these, FunctionTolerance provides the value which if the output
is seen as lower than for MaxStallIterations number of iterations the PSO will
stop and declare the input with the lowest found cost at that time to be the optimal
solution. The MaxIterations gives the total number of iterations allowed before the
PSO is terminated. The ObjectiveLimit parameter sets the value such that if the
observed output of the cost function is below, then the PSO application terminates.
The SelfAdjustmentWeight and SocialAdjustmentWeight give weight to the best
position seen by the particle in question and that of the entire population of particles,
respectively, when determining the next position vector. The SwarmSize value sets
the number of particles which make up the population of the swarm. The following

settings were used during hyperparameter tuning:
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Table 3.3: The parameters selected for the optimiser hyperparameter tuning
application of a particle swarm optimisation technique.

Parameter Value

FunctionTolerance le-10
MaxIterations 50
MaxStallIterations 20

Objectivelimit le-10
SelfAdjustmentWeight 2
SocialAdjustmentWeight 2
SwarmSize 25

Here, FunctionTolerance and ObjectiveLimit were set to these extreme values
to remove their influence over the termination of this tuning. Because of this,
MaxIterations was likely to terminate the optimisation process, with testing proving
50 to be adequate for creating large accuracy improvements within a reasonable run
time. A population size of 25 was chosen to allow for a large pool of particles to be
tested whilst retaining an appropriate computational time for the parameter tuning.
These settings were chosen to provide a balance between the time taken and the

required level of accuracy of the end results.

Following the parameter optimisation using PSO, a GD method was also applied
to provide a quick means of further improving the tuned parameter values. For this a
learning rate of 0.01 and numerical differentiation step size of 0.4, defined as h from
(2.14), were used over ten iterations. These values were selected from the results of
preliminary tests with GD, showing to provide a superior balance between the speed
of convergence and resultant accuracy of the tuned optimisation techniques, and on
the pragmatic grounds that computational time was of great importance during this
implementation. The speed of GD provided a further descent to a found minimum
with a relatively lower computational time than would be required to continue with

PSO, or other optimisation methods.

During validation of the LMC, it was seen that the recordings of more proximal
joints showed greater agreement with the state-of-the-art motion capture system
that the device was tested against. Considering this and that the end goal was to
predict muscle excitations for data collected using the LMC, it was seen as preferable
to give higher consideration for more proximal joints when determining the cost of a
prediction. To achieve this, the results of validation of the LMC have been selected
to weight the influence of each joint on the progression of the optimisation methods.
The degree of influence for each joint has been calculated through the following

concepts:

€ = {emcpa Epip, edip}7
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a= {%)m:max(e)},

o~ {2 )

where €,,0p, €pip and eg;, are the positional errors, found during validation of the
LMC, of MCP, PIP and DIP joints respectively. Here, a was calculated to give the
relative agreement of each joint recorded by the LMC to the state-of-the-art motion
capture system. This result was normalised, to give a’, for ease of compatibility with
the cost function. Normalising this similarity score to the maximum value observed
means that the joints which provided the most confidence during validation are able
to influence the cost with no alteration, whereas joints showing lower confidence have
less influence over the resultant cost. The average positional error for each joint set
was used as this provides the most direct measure of confidence in the data recorded
by the LMC.

Following the convergence of the employed optimisation technique, the difference
between the desired and found joint angles for each hand shape were calculated and
presented. Additionally, the mean difference for each hand and the overall mean
difference were calculated and displayed. The the predicted joint angles were found
by inputting the predicted muscle excitations into the utilised muscle model. The
correlation between these predicted and desired joint angles was also observed, in
an attempt to further assess ability of the technique to provide accurate muscle

excitations.

To provide a visual aid, wire frame hands were plotted taking on the desired and
found joint angles in a 3D grid within MATLAB. To achieve this each digit was
assigned a co-ordinate along the z-axis and each bone set a length it would appear
along the y-axis. The joint angles were imposed on the hands from a position with
the digits extended and the thumb also adducted. The flexion of the joints (the
joint angles) were used to rotate the bones about the z-axis, with the abduction of
the thumb represented by a rotation of the first digit in the z-axis. To ensure these
rotations did not cause a deformation of the bones, the length of each bone before
and after the transformation were observed - resulting in any potential deformation
being highlighted.

As an additional visual aid, providing a easily visualised comparison of the final
output and the original taxonomy, Blender [249] was used to provide line art images
of the hands experiencing the outputted joint angles. Comparing this to the line art
image of the desired hand shape enables visual assessment of the performed. This
was achieved with identical techniques to the creation the original taxonomy using
Blender, described in Section 3.5.10, and, therefore, provided a visual representation

of the hand shape identical to that from the original taxonomy. Additionally, the
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observations of these predicted hand shapes enables the characterisation of the
muscle excitations - even if these are not deemed to present the desired hand shape
utilisation of the results may still be possible. Visual assessment is important as it
may be that the joint angle values of two hand shapes are not close, or close, but,
when observed in the real world, they could be considered to be close, or not close,

enough to provide equivalent functionality.

The following steps were performed in application to determine the muscle

excitations of a given frame of Cartesian data:

1. Convert the Cartesian data into joint angles of each digit.

2. Begin optimisation with random candidate solutions, recording the output as
the predicted muscle excitations.

3. Input the predicted muscle excitations into muscle model to determine joint
angles from this prediction.

4. Calculate difference in joint angles of the inputted and predicted hand shapes,

providing the error from this application.

5. Use outputted joint angles to form Blender images, for visual assessment.

The process employed for validation and evaluation method for each technique
employed can be seen in Section 3.6, with the results of which in Section 4.3. Further
details on the implementation and execution of these techniques can be found in in
Chapter 6.

3.1.3 AirGo

The currently employed clinical method for measuring the hand digit joint angles
is a goniometer. This device has been seen to produce measurements with low
repeatability and high variations across different users, with uncertain accuracy and
long measurement times. Considering these limitations, a device has been created
(named AirGo) which utilises the LMC to provide measurements of the angular
displacement of the hand digits from markerless motion capture data. This proposed

solution allows for fast collection of consistence measurements with a known accuracy.

The AirGo is an hand joint angle measuring decide, utilising the LMC; a non-
contact measurement device, quicker and more accurate than current methods. A
white, five millimetres thick, acrylic was laser cut and curved to create the platform
for the LMC to be attached to - shown in Figure 3.5. The design includes a means
to adjust the height of the LMC, so that the device can be made level with the hand
of the patient; this assists the LMC in detection of the hand.
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L 100 mm,

(a) The front view of the second iteration of (b) The rear view of the second iteration of
the stand for AirGo. the stand for AirGo.

Figure 3.5: The front and rear views of the second iteration of the stand for
AirGo.

A HTML file with embedded JS scripts was used to extract joint positional data
from LMC, perform joint angle calculations and display the relevant information.
Several steps are performed with each frame of the LMC. Information is extracted
from the LMC through the application programming interface (API), as with previous
devices described. In the first instance the bones connecting the joint of interest
are translated, such that the joint in centred at the origin of the Cartesian co-
ordinate system. After which the dot product is employed to calculate the joint
angle, in radians; which is later converted to degrees for easier understanding. The
angle calculated is stored to be later used in a smoothing function. This function
detects and removes anomalies as the data is collected (considered as three standard
deviations away from the mean) and, if not, tests to see if a new maximum flexion
has been reached. If there is a new maximum it replaces the previous maximum
of that joint and the script continues, if not then the script simply continues. The

screen displayed can be seen in Figure 3.6. A live visualisation of the presented hand
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allows the users to ensure that the hand has been detected correctly by the device.
Additionally to this, gauges displaying the current and maximum angle of the joints
are present, enabling patient motivation. This screen includes an input box for the
patient ID and “Set”, “Save” and “Reset” buttons. The “Set” and “Reset” buttons
set the currently viewed hand as the unaffected hand, for the affected to be compared
against, and refresh the HTML file (clearing any data collected), respectively. Once
the “Save” button has been pressed the date, time, patient ID and table of maximum

joint angles seen is saved to a text file.

AirGo HD, ver. 1.2 Patient ID: save || Reset

Digit:| Thumb Midde | Ring || Litte

.L\’—\\:
N

Figure 3.6: The second iteration of the display for the AirGo system.

Within a clinical environment this device would be placed on a table, with the
LMC facing the patient. The height of the LMC within the device can be set so that
the centre of the LMC lines up with the centre of the hand of the patient, this is
not necessary but helps with LMC during collection and provides the best position
for allowing any possible drifting of the hand which may occur. Once the patient is

ready the AirGo can be started and the steps as described in Section 3.3.4 performed.

The methods employed to analyse the system can be seen in Section 3.7, the
results of which are shown in Section 4.4. Further details of the system and a

discussion of the obtained results can be found in Chapter 7.

3.2 Validation of the Portable Motion Capture System

The portable motion capture system should be validated before it is used to collect
during ADL. For this a set number of choreographed hand shapes would be performed

whilst measuring with both the portable motion capture system and a state-of-the-

83



Methodology

art motion capture system, for this the Vicon motion capture studio at University
Hospitals Coventry & Warwickshire (UHCW) was chosen. The control hand shapes
decided to form these choreographed motions are shown in Figure 3.7. From published
work by Feix et al. [57] 12 hand shapes have been selected to detail range of possibility
of hand shapes. The choice was performed manually by grouping similar hand
shapes with minimal visual or functional significant difference, leaving 12 groups
of hand shapes, from which 12 hand shapes were decided upon to define each of
these groupings. The use of predetermined grasps to train classification techniques
provides confidence for the application of these techniques with the collected data.
These 12 hand shapes allow for a good range of hand shapes to fit hand motion data

to.

Two Finger Hook Two Finger Pinch Three Finger Pinch Four Finger Pinch

Closed Pinch

Planar Pinch Point Rest Thumb Up

Figure 3.7: A collection of line art images of the control hand shapes.

The Vicon motion capture system at UHCW was used to collect the control hand
shapes with a state-of-the-art marker based-motion capture system. Eight Vicon
Vero 2.2 cameras were arranged around the subject as shown in Figure 3.8. These
were moved onto a two by two by two metre frame, focusing the capture volume
on the top and bottom of the area the subject was placing their hand. On each
camera an array of IR light-emitting diodes (LEDs) with a 330 Hz refresh rate and
resolution of 2.2 MP. These create a 3D search space and scan for reflective markers

to indicate a point of interest in that space.
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Figure 3.8: The capture space for hand motion capture with a Vicon motion
capture system.

The reflective markers used were Vicon three millimetre hemisphere facial markers,
placed on the hand to replicate the joints recorded by the LMC; this arrangement
and the labelling given can be seen in Figure 3.9. These labels have been assigned in
a manner such that the collected data will align with that collected with the portable
motion capture system - as a result, some maybe not agree with the true joint names.
A Vicon Active Wand V2 IR wand was used to calibrate the cameras in the space
and provide an origin to the space. Due to the low placement of some cameras (to
capture the digits when the hand is closed), the origin could not be placed on the
ground; it was seen as unimportant where the origin of the captured space was, as
the interest was in the hand shapes and not the hand position in space. All collected
data localised to wrist during processing. A computer with Windows 10, 16 GB
RAM and a Intel Xeon E5-1620 processor, running Vicon Nexus 2.11, was used to
collect the data. No model was produced for the hand within the software, as only

the labelled marker relative positions were of interest.
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Figure 3.9: The labelled marker positions for hand motion capture with a
Vicon motion capture system.

The collection of these controls has been achieved with the use of a HTML file,
embedded with a JS script, and folder of hand shape images. The script is initialised
with a single start button on the screen; this button removes itself from the page
once pressed, displaying the hand shape, to be performed, and the hand shape label.
For three seconds before each hand shape the resting position is displayed, this
ensures that the LMC will have time to settle, as to not be disturbed by previous
readings, and means that the transition is made from an alike hand shape each time,
removing influence of the previous hand shape on the current. The script used to
collect data with the portable motion capture system has been embedded within the

HTML to enable the recording of the hand motion during this collection. Data are
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stored as string in outputString during the display of each hand shape. Each hand
shape is displayed twice, with each occurrence being displayed for six seconds. Before
displaying the resting position outputString is saved with a filename congruent

with the hand shape and outputString reset to a blank string.

Following data collection and the reduction to only including functional hand
shape frames in the dataset, each frame was transformed into a pre-set local co-
ordinate system. To begin with, the current frame was centred at the wrist and the
second digit metacarpal bone was chosen as the y-axis. Next, the hand was rotated
about the y-axis such that a positive direction along the z-axis described a lateral to
medial direction across the wrist. The z-axis was then created normal to these two
axes, so that a positive direction was defined by the posterior to anterior direction of
the hand. The resultant local co-ordinate system can be seen in Figure 3.10. The
angle differences for each of these bones, between the initial recorded frame positions
and the desired axes locations, were calculated using (2.1), (2.2) and (2.3) and the

subsequent rotations were achieved through applications of (2.4).

Figure 3.10: The local co-ordinate system chosen to represent the hand
during data processing.

See Section 3.3.2 for steps taken to collect data and Section 3.4 for the subsequent

analysis performed and results.

Additional to the validation of the portable motion capture system, these control
hand shapes were used to form the training data of supervised analysis techniques.
In order to perform analysis using machine learning, labelled hand shape data were
needed; supplanting the necessity to inspect and manually label a large pool of data
a control experiment has been designed. Two MATLAB scripts were employed to

sort the control data recorded and combine each with the appropriate labels: one
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allocated each recording to the correct folder of hand shape datasets and the next

added each, labelled, dataset to the classifier training dataset.

3.3 Data Collection

Here, the prescribed steps followed in order to collect the control hand shapes,
validate the portable motion capture system, collect hand motion data during ADL
and integrate the AirGo system into a hand therapy clinic are expressed. These
steps collect the data required to: train and assess analysis techniques, evaluate
the accuracy of the portable motion capture system, determine the hand shapes
occurring during ADL and observe the capability of the AirGo system within a
clinical environment. An outlined functional hand shape definition is provided by the
conclusion of rumination around the effects of definition variation on the coefficient

of determination and standard deviation.

3.3.1 Control Hand Shapes

To support analysis of the data collected with the portable motion capture system,
controls of known hand shapes must be captured. A large amount of labelled data
would allow for the training of supervised machine learning techniques and validation
of all analysis methods accuracies. The participant was asked to perform the 12
control hand shapes, shown in Figure 3.7. The set up simply requires a computer

with the LMC connected and the bespoke script open.

Hand shape controls were collected through the performance of the following

these steps, per participant:

1. Participant completes a practice run of each hand shape, with no timer; this is
to ensure that the participant was certain about the hand shapes as they were
asked to perform.

2. Participant places their hand vertically above the LMC (approximately 20 cm
away from the device).

3. Press "Begin” on the file - each hand shape to be mimicked will then be
displayed in turn.

4. Once complete the script stops (displaying that it has finished) and may be

closed.

Following the recording of the control data, each recording were combined to
make a full collection of each hand shape, using the methods aforementioned in
Section 3.2. Subsequently the data became training data (for classification techniques)

and validation data (for classification and clustering methods).
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3.3.2 Portable Motion Capture System Validation

In order to ensure that the portable motion capture system provides the accuracy
required it was validated against the current state-of-the-art in recording. For this
the Vicon motion capture studio within UHCW has been chosen. The control hand
shapes, introduced in Section 3.2, were used to provide choreographed hand shapes
for the user to follow. The Vicon motion capture system is a marker-based motion
capture system - the participant were required to wear small markers during data
collection. Preliminary testing showed that these markers do not disrupt the IR
sensors of the LMC. The reflective markers were placed on dorsal side of the joints
recorded by the LMC, with placement to match the points recorded by the LMC.
Preparation requires both systems to be initiated and the Vicon markers to be placed

on the hand. Three recordings were taking in each session to improve reliability.

The following steps were performed per participant, with parallel recordings using

the portable motion capture system and Vicon motion capture studio:

1. Place markers in the specified locations on the hand of the participant.

2. Fit the headband, with LMC secured to it, and i3 NUC, in the carry bag with
the external battery, to the participant.

3. Start the portable motion capture system and begin recording within Vicon

Nexus.
4. Ask the participant to reproduce the hand shapes presented to them.

5. Repeat the experiment three times then stop the recording and remove the

equipment.

Analysis techniques performed on the collected data are described in the sub-

sequent section, Section 3.4. The results of this analysis are presented in Section 4.1.

3.3.3 Activities of Daily Living

The capture of hand motions during everyday activities gives insight into typical
hand shapes used during ADL. The results of this were used to feed data to the
taxonomy of hand shape and muscle excitation prediction model, aiming to assist
an everyday upper limb prostheses owner. The equipment used is designed to be as
non-intrusive as possible, and for that reason the set up process is also designed to be
as simple as possible. To begin data collection it is only required that the device is
attached to the participant and the LMC examined and calibrated using an external
monitor, there is no need for measurements to be taken or any additional items to
be placed on the participant. An external monitor allows access to the vision of the
LMC and enables the ability to apply adjustments to the calibration of the LMC;
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such settings include the likely distance the hands would be seen at (to aid the LMC

in finding the hand) and the orientation of the device.

Approval has been granted by the Biomedical & Scientific Research Ethics Com-
mittee (BSREC) at the University of Warwick for the execution of this data collection
(approved on 4" October 2018 under the BSREC reference REGO-2018-2210). The

decided steps for data collection are as follows:

1. Fit the headband, with the LMC secured to it, and the i3 NUC, in the carry
bag with the external battery, to the participant.

2. Plug the i3 NUC into an external monitor and ask the participant to undertake
a few basic tasks they would perform regularly to test the recognition of their
hands.

3. Go over what is required from the participant once data collection has begun.

4. Open the HTML script, in a browser, on the i3 NUC and disconnect the

external monitor.
5. Leave the participant to carry out their day, as if the LMC was not there.
6. Once the experiment has ended, stop the i3 NUC from recording further data

and remove the bag and headband from the participant.

Analysis techniques performed on the collected data are described in the sub-
sequent section, Section 3.5. The results of this analysis can be seen in Section 4.2,

with the final taxonomy presented and discussed in Chapter 5.

3.3.4 AirGo Clinical Trial

A clinical trial, performed in parallel with the UHCW occupational hand therapy
clinic, was established in order to collect data for real world validation of AirGo.
To begin the AirGo was set up ready for the patients, as described previously -
Section 3.1.3. Throughout the recording the live view of the hand is compared to
the real hand to ensure recording consistency with the real world. Here the normal
AirGo script was used, which saving only the final maximum value seen upon pressing

“Save”.

The below steps were employed, per patient, following their appointment with

the occupational health therapist:

1. Patient places elbow of the unaffected arm on table, with their upper arm

vertically upright.
2. Adjust the height of the LMC until centred with the hand.

3. Patient is asked to close the presented hand as far as they are comfortable
with.
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4. Once the angles displayed appropriately represent the behaviour of the patient

press “Save”.
5. Patient places elbow of the affected arm on table, as with previous hand.
6. Adjust the height of the LMC, if necessary.

7. Patient is asked to close the presented hand as far as they are comfortable
with.

8. Once the angles displayed appropriately represent the behaviour of the patient

press “Save”.

Two methods were used to analyse the effectiveness of AirGo using the data
collected during the clinical trial. The first method attempted was comparing the
hands of each patient, to establish whether the recording provide the sensitivity
required to at least detect hand injuries, and the second was testing individual
patient progress, to determine whether development could be observed with AirGo.
Further details of these employed methods can be found in Section 3.7. The results

of the clinical trail can be found in Section 4.4.

3.4 Analysis of Portable Motion Capture System Valid-

ation Data

In order to conclude on the validity of the portable motion capture system the data
collected from both this system and a state-of-the-art in hand motion tracking must
be compared and their correlation examined. After collecting the data, using the
methods described in Section 3.3.2 the following steps where taken to determine the
validity of the LMC from these data.

The Cartesian based motion data of the hand collected with both devices was each
transformed to be described within a local environment (centred at the wrist joint
with the metacarpal of the index finger fixed to the y-axis in the positive direction).
This local co-ordinate system is described by Figure 3.10 and was achieved by the
rotations described in Section 3.2. After localisation of the data, the Vicon data were
scaled such that the MCP joints matched their respective joints from the portable
motion capture system data. Scaling was achieved in all axes by observing the ratio
between the second digit MCP joint and the fifth digit MCP joint positions for both
datasets. The differences between each of the MCP locations of the Vicon and LMC
data were then observed to ensure that the scaling was applied appropriately and the
relative 3D differences between each joint of the Vicon data were checked to ensure
no deformation had occurred during the transformation of these data. Provided that

both of these checks showed that no errors had occurred, the disagreement between
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the two datasets was calculated. Frames where matched between the Vicon and
portable motion capture system data by observing the time collected and filename,
respectively. The data from each method was visualised and manually examined to
ensure no anomalies where present in either; if required, anomalies where removed,

and the remaining data averaged.

Analysis included calculating the Euclidean distances between each point of
both recordings and the differences in the angles calculated for each joint of both
recordings, within a local environment and with scaling applied. For each of the
joints of the second to fifth digits and the IP joint of the first digit, the flexion angle
was calculated in the plane depicted by Figure 3.4. This created a 2D co-ordinate
system in the plane of rotation for each of the joints. In this plane, the equation
(2.4) was applied to calculate the joint angles under consideration. Here, a was set to
be the vector of the proximal phalanx bone for calculations of p;p and the vector
of the middle phalanx bone for calculations of fp;p and b was set to be the vector of
the middle phalanx bone for calculations of 8p;p and the vector of the distal phalanx
bone for calculations of fp;p. The flexion and abduction angles of the first digit
CMC joint were calculated in the planes shown in Figures 3.11 and 3.12, respectively.
In each respective plane, the equation (2.4) was again applied to calculate the joint
angle. Here, a was set to be the vector of the first digit metacarpal bone and b
was set to be the vector of the second digit metacarpal bone during calculation of
both 67 and 6,,. Both the calculations for Euclidean distances and angle differences
were performed individually for each joint. This enabled the total difference to be
fond whilst also allowing for each of the joints and digits to be analysis individually.
Displaying the output of this analysis would provide and average error in the distance
from the portable motion capture system as well as being able to identify any of
the digits or joint which results in the greatest increase in this error. This provides
comfort in the results of low error digits and joints whilst highlighting those with

higher error to be considered with more caution.
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Figure 3.11: A diagrammatic representation of the calculated flexion angle
of the carpometacarpal joint.

Figure 3.12: A diagrammatic representation of the calculated abduction
angle of the carpometacarpal joint.

3.5 Analysis of Activities of Daily Living Recordings

Following collection, with the portable motion capture system, the data are then
loaded into MATLAB and reduced to only include frames in which the hands have
been recorded by the LMC. Within this, remaining, data the hands are localised, to
be centred at the wrist, and the transitional frames removed - leaving, exclusively,
frames in which functional hand shapes have been performed. These remaining hand
shape frames become the inputs to the k-means++ algorithm; therefore, calculating

the cluster centroids would effectively represent the commonly performed hand
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shapes. Plotting these centroids visualises the hand shapes deemed, by the k-means
algorithm, to be able to categorise each frame of the raw data. These centroids have
a possibility of being merged to form the final groupings. Analysis of these final
hand shape groupings found (the taxonomy) highlights the importance of the hand
shapes seen in ADL by these participants - observing those most often occurring

and those held, on average, for the longest period of time.

To determine capabilities to discriminate hand shapes, machine learning techniques
considered were tested with recordings of the control hand shapes shown in Figure 3.7.
These data were collected in the same manner as the validation of the portable motion
capture system , with save file names identifying the hand shape labels. Following
collection, the data were loaded into MATLAB as a table variable, using the file
names loaded to provide the hand shape label of the final column. The recording
of the hand shapes was then randomly permutated and divided into training and
testing data. This provided the required labelled data for training and evaluating

the performance of the machine learning techniques employed.

The supervised learning techniques were trained using these recordings of the
control hand shapes, totalling 26,071 frames of hand motion data and were tested
using 6,518 frames from the same dataset. The performance of the k-means++
clustering algorithm was assessed using the entire dataset of 32,589 frames - due to

the fact that training is not necessary for this, unsupervised, technique.

Analysis methods considered, as well as details on the chosen clustering algorithm

and subsequent merger of outputs, are given in the following sections.

3.5.1 Determining Functional Hand Shape Occurrences

In order to find the commonly occurring hand shapes within the data collected
with the portable motion capture system these data must first be reduced to only
contain the frames of functional hand shapes. By removing all other frames the
analysis techniques used can be implemented efficiently to cluster exclusively frames

of functional hand shapes, aiding in the speed and accuracy of the performed analysis.

Firstly the data are loaded into MATLAB from the recorded CSV file, after
which the columns of the data are extracted into separated variables labelled with
their associated joint names. For this the columns holding the z, y and z Cartesian
co-ordinates of each joint are stored in a variable labelled with that hand, digit and
joint as their name. Next all frame in which the hand is not seen are removed from
their respective variables. To achieve this the rows (frames) of the index MCP joint
are queried to see if they contain a NaN value, if so the frame is identified as empty

for that hand and removed from all variables of that hand. The joint extension of
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digits two to five, at each frame, were determined through the use of the vector dot
product within the 3D co-ordinate system utilising the previous and next joint. To
accommodate for the flexion and extension and abduction and adduction possibility
of the thumb CMC the thumb CMC and MCP with the index MCP were transformed
into a a local 2D co-ordinate system; for extension the y and z co-ordinates were
used and for abduction the z and y co-ordinates were used. Given the set up of the
hand shapes in the previous local co-ordinate system these new 2D local co-ordinates
systems are set up so that implementing the vector dot product provides the desired

angle in that situation. The vector dot product was found as described by (2.4).

The reduced data are the labelled as either belonging to a functional hand shape
or transitional frame group, determined from the calculated joint angles. In order to
categorise frames into transitional or functional hand shape frames a definition of a
functional hand shape was necessary. This definition was decided to be as follows:
a position in which each joint is held within one degree for one second or longer.
A hand shape is then formed by averaging the group of frames which fall within
this definition. This definition was initially decided based on pragmatic grounds
and supported by numerous analysis attempts with various definitions; more relaxed
rules (more than one degree or one second) resulted in a longer computational time
and a higher number of anomalies appearing in the final data, though more tighter
rules (less than one degree or one second) showed a loss in valid hand shapes during
the reduction process. Frames that fall outside of this definition where considered

transitional frames, simply transitioning to another hand shape.

Figure 3.13 displays the influences of this definition over the average R-squared
value, the coefficient of determination, and standard deviation of the resulting hand
shape clusters. Each plot was created from the average, between the left and right
hands, of the averaged, across the clusters formed, R-squared values, between the
observations of each cluster and their respective centroids, and standard deviations,
of the observations within the clusters. On each plot, the changes to the degree
each joint angle much stay within are described by the top z-axis and alterations
to the length of time all joints must remain within this angle along the bottom.
The frame numbers used defined half a second, one second and two seconds of time,
derived from the average frame rate of the collected data. In Figure 3.13a the effects
on the averaged R-squared, from the variations defined, are depicted. From this,
support is shown for the selected degrees the joint angles must remain within, as
this selection produces the greatest R-squared value. Though there exists a dramatic
increase in the R-squared values as the hold length was increased, this was a result
of the limited observations provided for clustering - presenting dense clusters of
limited information. The effects these alterations also had on the standard deviation

observed are described by Figure 3.13b. This plot supports the claim that the
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high R-squared values, achieved by increases to the hold duration, are only a result
of sparse observations in dense clusters. The large reduction seen in the standard
deviation implies that less of the recorded variation has been captured by the clusters,
indicative of a limited amount of information available. A visual examination of the
resultant clusters, formed under each of the varied conditions, further supported the

use of the aforementioned functional hand shape definition.

Functional Hand Shape Definition Effects on Functional Hand Shape Definition Effects on
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Figure 3.13: The effects observed from alterations to the functional hand
shape definition.

As discussed in Section 2.3 these functional hand shapes can be divided into two
categorises: gestures and grasps. A gesture would be considered as a functional hand
shape which does hold a tangible object within space. A grasp would be considered
a variant of this, physically interacting with the tangible world. Though these
categorises of functional hand shapes are known to exist, the numerical kinematic
data collected does not allow for a definitive answer to which hand shape belongs
to either, as it would be unable to identify interactions in the world (outside of

hand-on-hand contact).

The data were then transformed into a local co-ordinate system. This was done
by finding the position of the wrist joint and subtracting this from all of the joints
(localising the hand with the wrist as the origin) and then rotating the joints using
3D rotation matrices, described by (2.1), (2.2) and (2.3), to align the second digit
MCP with the positive y direction axis and so that the positive z direction axis
describes the lateral to medial direction. The z-axis was then placed normal to both

of these, describing the posterior to anterior direction of the hand. The resultant local
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co-ordinate system is depicted in Figure 3.10. Analysis within a local co-ordinate
system is employed as the spatial location of the hand has no relevance here, it is
the shape of the hand which prerequisites the desired information. This creates a
local co-ordinate system with the wrist position as the origin, the index MCP along
one axis, the normal to the anatomical position of the hand along another axis and

the remaining axis perpendicular to both of the others.

When running multiple recordings from different participants the data are stored
in a temporary MATLAB data file, the workspace cleared of the current participant
specific variables and the next participant loaded, to reduce the demand on the
RAM of the computer. Following the loading and reduction of all recorded data
the output is then saved to reduce the time needed next time. After completing
these steps the analysis was then performed to determine the information related to
dataset, including: reducing the dimensions, finding possible correlations, observing
joint activity, grouping commonly performed hand shapes and determining the

characteristics of these grouped hand shapes.

3.5.2 Principal Component Analysis

As a means of reducing the dimensional complexity of the data principal component
analysis (PCA) was considered. With a large amount of data with 60 dimensions
analysis could be made fast and easier with a reduction to the dimensions. When
considering joint angles the dimensionality is reduced greatly, though still containing
a significant number of dimensions. Though the large reductions commonly found
with PCA may lose descriptive elements needed in such vast amounts of data it was
considered and assessed due to the simplicity it could provide. The PCA technique
was chosen for dimension reduction over heatmaps, t-distributed stochastic neighbour
embedding (t-SNE) and multi-dimensional scaling (MDS) due to the vast amount
of information which can be extracted with just one application, the fact that this
works well for high dimensional data, the likely high collinearity in a dataset of hand
shapes and ease of implementation. Greater detailed explanations of PCA and the

alternative dimension reduction methods can be seen in Section 2.5.

Within MATLAB there is a built-in function for performing PCA, pca. To
perform PCA the angles of the joints at each frame were calculated and inputted
into the built-in MATLAB PCA function. From this function the variance of each
principle component (the eigenvalues of the covariance matrix of the input) can
also be extracted, enabling the creation of a scree plot. A scree plot displays the
eigenvalues of each of the principal components against that component number; in
plotting this the ideal number of components to used would be highlighted by the plot

levelling out (as would be scree at the base of a mountain). The principle component
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coefficients for this PCA performed were obtained from the applied function, enabling
the creation of a loading plot. Through the loading plot the influence the original
dimensions have on plotted principal components can be examined. This helps
identify trends in the original data (with correlations being highlighted) as well as
any possible groupings formed within the reduced dimensional frame of possibly one,

two or three dimensions.

Application of PCA on the collected data may provide some benefits. Following
a reduction of the dataset from this, any analysis methods performed after would
be quicker due to the lower number of dimensions which would need to be included.
Additionally, employment of PCA would enable a means of identifying trends within
the, expectedly correlated, data. Despite the appealing advantages of this technique,
there are limitations which must be considered. A reduction in dimensions enables
faster analysis but at the cost of a loss of information defining the data. Loss of these
dimension identifiers would be a hindrance as it would limit the analysis which could
be performed on interactions between the hand joints. Any reduction in dimensions
could help with future time sensitive analysis, but here processing time was not of
significant concern. Due to this, PCA was considered for correlation identification

but not any potential dimensional reductions.

A successful reduction in dimensions would allows for more analysis techniques to
be possible to employ. A large enough reduction could allow for manual analysis, or
crude search algorithms, for the grouping of similar data. This reduction would also
reduce the computational complexity, requiring less time to complete any analysis
methods. Though it may loose accuracy this could be a good alternative analysis
method for when speed is required. Additional to these, the outputs possible from
a PCA could identify trends and correlations within the data otherwise not seen.
Highlighting these trends will provide knowledge of how the digits of the hand
comparatively interact with one another during ADL; this could lead to identifying
potential possibilities in terms of complexity reductions in upper-limb prosthetic
devices. Reductions in hand complexity by linking the motion of digits lessens the
need for the individual actuation of each digit. This could provide a reduction in
the cost of the devices and create easier means of production, with a controlled loss
of accuracy during replication of hand motions. By combining the motions of only

highly correlated joints, a low loss of motion replication accuracy would be ensured.

3.5.3 Joint Angle Correlations

By observing the correlations of the joint angles throughout the recordings information
of aid in the development of upper-limb protheses could be obtained. Knowledge of

any correlations of joint angles during ADL will allow a simplification of prosthetic
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hand joints, reducing computational complexity and possibly actuation requirements.
It is already known that some joints of the hand move without user input through
their constraints to other joints; by observing joint angle correlations within the
collected data, the joints these constrains apply to and how they move in union
would be indicated. Additionally, any joints commonly activated in cohesion would
be highlighted.

Upon calculating all joint angles at each frame and reducing these to only where
functional hand shapes are occurring, the correlation between the joint angles can
be visualised through the use of the built-in MATLAB function plotmatrix. This
function displays scatter plots of each of the columns of the dataset (in this case
set to be the joint angles) against each other. In doing this any joint which behave
similarly (are correlated) would be highlighted, as well as those acting independently
of others being able to be identified. Additionally, loading plots from a joint angle
PCA analysis can be used to highlight any significant correlations between the

recorded joint angles.

An awareness of this information during upper-limb prostheses development could
enable a simplification of the devices. The knowledge could allow for the pairing of
certain digits, simplifying actuation needs and computational complexity of the code
used. This technique would be implemented over the complete recorded dataset and
final taxonomy. A digit could be found to possess only one, two or three positions,
irrespective of the other digits, or could be found to move identically to others,
reducing the actuation needs of an upper-limb prostheses. This would potentially
save time and money during the development and production of upper-limb prostheses
whilst maintaining a similar functionality of the hand. The potential offers of the

results of this method warrant application.

3.5.4 Joint and Digit Activity

From the data collected another piece of information that could be extracted is
a ranking of which digits moved the most during these recordings of ADL. This
would indicate an importance on certain digits, whilst highlighting an unimportance
of others. Additional to the guidance provided by the taxonomy of hand shapes
common to ADL, this would enforce the importance to the digits most utilised during

ADL for aid with development of upper-limb prostheses.

Following the calculation of the joint angles at each frame the change in each joint
angle other a set range of frames could be determined. To avoid contamination of the
results minor movements, either from the hand or LMC, which are not attributed to a

conscious movement by the participant were not considered. In order to achieve this
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joint angles which changed by more than one degree over 20 frames were considered
exclusively. The summation of these occurrences for each joint allows for the most

to least active joint and digit to be determined and presented.

Using this method each joint and digit activity was observed. To display the
outcomes of this analysis method the results were simply displayed as an output
text, ranking the most moved digits to least moved for the left and right hands. A

bar chart was also outputted for visual aid.

3.5.5 Artificial Neural Networks

An artificial neural network (ANN) is a classification algorithm designed to mimic
neural networks, forming a deep learning supervised machine learning technique.
An ANN consists of neurons connected by synapses, typically, over several layers,
referred to as hidden layers, between the input and output layer. The input layer
takes a set framework of data and the output layer assigns confidence values to each
of the possible classification categories. Further details on ANNs can be found within
Section 2.6.1. Here, GoogLeNet and a, created, bespoke ANN have been consider
for the classification of hand shapes within recorded data. GooglLeNet has been
chosen as a well establish network which has demonstrated high levels of accuracy in
image classification. A bespoke ANN has been created for the collected data, in an
attempt to provide high levels of classification with a faster computation time than
GoogLeNet.

GoogLeNet has been chosen to use here; it is a very well establish neural network
for image classification. GoogLeNet has 22 layers and takes an input image of
224-by-224 pixels; due to this input requirement, the 3D Cartesian data collected
was converted into the demanded data format and size. An example of an image of a
hand shape created for input into the GoogLeNet model can be seen in Figure 3.14.
Despite the need to convert the data into images, GoogLenet has been chosen as a
potential method for analysis due to the presented superior performance and the
fact that it is already a well established network. For this reason it has been applied
here for classification during preliminary assessment of the data, providing a quick
test for the existence of expected hand shapes within the data, and as a means to
draw comparisons between the recorded data and previous taxonomies, highlighting
the rate at which hand shapes from previous taxonomies appear within the recorded
data. The following steps were employed in preparation for training a network:
record the hand with a note of which hand shape is being performed, group these
hand shapes into the appropriate folders and then create an image for each frame
from the data of the recordings. Once trained and validated, the network could be

applied to the data collected using the portable motion capture system - data from
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everyday activities.

/
/%

Figure 3.14: An example of a GoogLeNet input image for a point gesture.

During initial training the weights of the first ten layers were frozen (i.e. could
not be altered during training) to aid training time; however, in the end all layers
were trained (unfrozen). The training process of the GoogLeNet network included
10 epochs with a total of 13,036 images of the control hand shapes. One epoch
describes one pass of the entire training dataset of observations through the ANN

during training.

MATLARB scripts were created to handle the data conversion of the recordings
(from Cartesian co-ordinates to a 224-by-224 pixel image) and training of the network.
From the 3D Cartesian data a 3D binary space can be formed, in which the joints
are registered as high. A bound of 224 pixels, around the hand, in all three axes is
applied. From this two of the directions (in this case the z and y) can be utilised as
locators for points on the image and the third (z) for alterations to the colour of
the points, representing the depth into the image. This process see the creation of
image describing each frame whilst retaining the information of Cartesian 3D data.
Lines were constructed between points describing connected joints, forming an image
of a hand skeleton, to aid edge detection during the ANN application. These were
achieved by extracting the depth of and distance between the two points and plotting
several points between these to fill the gap. Following the depth changes between
the points ensured a line consistent with the changing colour gradient. The interval
of filling was chosen to ensure that a gap did not occur along any line. Creating a
fading circular pattern around each data point was attempted in preliminary analysis
to assist the networks, though to no avail. A simple MATLAB script, with the
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desired training settings, was then created which takes an object, containing data
from the folders of images (imageDatastore), of the hand shapes to be studied (a
collection of folders named as labels to the images within them) and inputted into

GoogLeNet, as training or testing data.

Due to the high computational demand of creating images for input into GoogLe-
Net, a bespoke ANN was designed to input Cartesian co-ordinate hand motion data.
This ANN was crated using the feedforwardnet function of MATLAB. This was
given input characteristics to match the Cartesian co-ordinate data, specified using
the configure function. In this implementation the network was created with ten
hidden layers. The created network was then trained using the MATLAB train
function, inputting the labelled training control hand shape data. This trained net-
work was validated by a pass of the labelled test control hand shape data. This offers
a great potential in fast implementation and execution, compared to GoogLeNet -
though this approach does not offer the confidence of a well established network,

such as GoogLeNet.

This was not implemented for the creation of a final analysis due to the limitations
of it only grouping known hand shapes. However, this technique has been used to
evaluate the ability of LMC to provide reliable data, during preliminary assessments,
and to test the results of existing grasp taxonomies against the hand motion data
recorded during ADL.

3.5.6 K-Nearest Neighbours Classification

Classification algorithms are supervised machine learning techniques. These tech-
niques are trained with pre-labelled data and then provided unlabelled data to classify
into the previously seen categories. The k-nearest neighbours (KNN) classifier has
been used within this study; this classifier uses a similarity measure between the
provided data and known labels to predict the label for the provided, unlabelled, data.
Following a comparison of the inputted data to the known labels, the KNN classifier
outputs predictions of the labels based on the similarity between the inputted data
and the data with known labels.

The use of a classification algorithm was also attempted to label hand shapes
within the collected data. As with the use of ANNSs, this method allows for another
means of preliminary analysis of the data collected as well as identifying trends with
previous taxonomies. MATLAB classification learning app was utilised to train and
export a model, which was then implemented to make predictions of hand shape
occurrences within frames of data. Recordings of the control hand shape were used

as training and validation data, divided as previously specified. Once validated, the
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trained classifiers could be applied to the data collected with the portable motion
capture system. Multiple classifiers were tested and the KNN subspace ensemble

classifier selected due to the high accuracy found possible with this during testing.

The use of a classification algorithm allows for the grasps of existing taxonomies to
be found with confidence in the data, supporting or arguing against their results. Once
training data has been recorded it is easy to implement within MATLAB due to built-
in app. Another advantage over other analysis techniques is the instant resultant
accuracy available after training the algorithm. However, unlike unsupervised
machine learning technique the training and validation data does need to be labelled.
Considering the high dimensionality and vast number of frames from hand motion
capture data an automated labelling method would be difficult to apply and manually
labelling the data would be a long and tedious process. An automated approach
could be applied, though this would reduce confidence in the results; anomalies are
possible and can be removed, but for confidence the data would need to be checked
back. Additionally this training and testing data needs to be recorded and limits
the ability of the classifier, as it can only classify what it has been trained on. The
purpose of this project is to update existing taxonomies with modern, new, hand
shapes, so the inability to highlight new hand shapes limits the use of this method

here significantly.

The classifier was trained use control train data and validated using control test
data, with a 80:20 randomised split of training:testing data. During preliminary
testing it was found that some hand shapes where not differentiate with the single
classifier. A second classifier was run to improve prediction of the four finger pinch
and closed hook, this was trained inputting only control train data of the four finger
pinch and closed hook. A receiver operating characteristic (ROC) curve was used to

evaluate the results.

This was not implemented for the creation of a final analysis due to the limitations
of it only grouping known hand shapes, has been used to evaluated the LMC in
providing reliable data and testing against existing taxonomies. Providing previously
identified hand shapes as training data allows for confirmation of the findings from
previous taxonomies, and potential support that the data collected with the LMC
were appropriate. Additionally, this method has the potential to identify specific
hand shapes in sets of data, enabling a potential reduction of a dataset to the object
grasping or gesturing frames. As more data are added to the training set, it will
become possible to identify more hand shapes and will enable greater customisation

of the resultant groupings.
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3.5.7 Decision Tree Learning

A decision tree queries an input through multiple layers to classify it into predeter-
mined categories. A manual decision tree could be easily implemented by deciding
the features of each hand shape and testing each in turn. Unlike other techniques
which are formed from data obtained with the portable motion capture system, these
definitions are purely what would be expected when that hand shape is performed
(it assumes the system provides perfect data within the expected hand shapes. The
application of a manually implemented decision tree classifier allows for categorisa-
tion into known labelled data whilst retaining control of the inner workings of the

technique, enabling the customisation and addition of observed features.

This could quickly reveal comparisons between existing grasp taxonomies, where
the expected hand shape is know, but would struggle with the identification of new
functional hand shapes. With a manual implementation, hand shapes falling outside
of the labelled categories could be highlighted, however other analysis techniques
would need to be employed to provide a grouping for these. Similar to ANNs and
classification algorithms, employment of this technique enables options for preliminary
analysis of the collected data and the ability to test these data against previous
taxonomies. Thresholds for the descriptors (open and closed) would need to be set,
with limited knowledge of an ideal definition. Given labelled training data these
thresholds could be learned through a learning process, training and testing the
decision tree on a set of labelled control data. This would require training data to be
obtained each time a hand shape is added, however refining a decision tree thresholds

using this method would improve accuracy and remove a need of human judgement.

In order to form a decision tree manually the following must be determined: a
structure running through the decisions, a set of characteristics able to define and
differentiate the inputs and a list of hand shapes and their defining characteristics.
One possible method of implementation would be to use if statements with minimal
to no else statements. The script would evaluate each statement line-by-line and
assign a confidence in each hand shape for every input. This would be simple to
implement and expand as more hand shapes are considered. Another method, closer
resembling a decision tree, would be to group hand shapes similarities and link
decisions. This method could be set up to run consecutively through the possible
hand shapes but would make the set up and addition of new hand shapes more
complex. Joint angles were decided to be the main characteristics used to define each
of the possible outcomes of the decision tree, simplified down to just defining whether
a digit is open or closed. For the thumb this was found to not be enough, due to the
possible flexion and extension and abduction and adduction motions, and, therefore,

spatial information of the thumb tip relative to other part of the hand was used
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alongside the joint extension. Though increasing the complexity of implementation
it was seen as easier than defining hand shapes with the thumb abduction. Multiple
methods could be used to define, allowing for vast customisation options - though
with a likely increase of the complexity in the creation of the decision tree. To test
the manual decision tree capability the control hand shapes were defined by the
characteristic aforementioned stated. These were chosen as they closely resemble
grasps found in previous taxonomies and as they were being used as controls in
other analysis techniques trailed, providing a fair comparable test of the analysis
techniques. Table 3.4 shows an example set of the implementation of the 12 control
hand shapes within a manual decision tree. In this table the first column describes
the hand shape and the following represent the descriptors for implementation of
decision tree learning. The abbreviation DNM was used when the position of that
digit does not matter. In the occurrence of a tip of one digit being close to another,

this was is denoted by stating just the names of those digits.
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Table 3.4: The suggested features for defining the previously control hand
shapes within a decision tree.

Hand Shape  Thumb Index Middle Ring Little
Half Half
2 finger hook Half open Closed Closed
open open
Index
2 finger pinch and DNM DNM DNM DNM
middle
Index,
) middle
3 finger pinch d DNM DNM DNM DNM
an
ring
Index,
middle,
4 finger pinch ring DNM DNM DNM DNM
and
little
Half Almost Almost
Closed hook Almost closed Almost closed
open closed closed
Closed pinch Index DNM Closed Closed Closed
Half Half Half
Open hook Half open Half open
open open open
Open pinch Index DNM Open Open Open
Straight
Planar pinch under Open Open Open Open
fingers
. Closed- Closed-
Point DNM Open Closed-Half
Half Half
Rest Out Open Open Open Open
Thumb up Out Closed Closed Closed Closed

The optimal value for the degrees, defining whether a digit is opened or closed,

was determined through the implementation of a PSO and brute-force search. A

PSO technique was chosen for fast performance and high accuracy. A brute-force

search was attempted due to the known search power. The PSO application was

provided lower and upper bounds of zero and 90 degrees, respectively, for both

the open and closed values. The full search area was provided to the PSO as the

faster computational time display by this method allows for a wider search area.
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Though the brute-force search takes a considerable longer computational time, this
time was reduced by implementing a two stage search method. To perform this,
the brute-force search initially looks within a wide search area with large step sizes
between candidate solutions. After which, the search was reduced to an area around
the found best performing candidate solution with a smaller step size. This allows for
a reduction in the computational time of implementation whilst retaining the search
power of the brute-force search. The brute-force search first looked between zero and
45 degrees for the opened value and 45 and 90 degrees for the closed values, both
with intervals of five degrees. The results of this were next used to create an input
for the second application, taking five degrees above and below the found values and
intervals of one degree as the next search input for the brute-force search. This style
of training works similarly to a greedy algorithm, with first pass dictating choices
for second. As with greedy algorithms, given the limitations imposed on the second
search, there could exist a greater solution outside of this search area. This method
of training, in this application, has been considered appropriate as it is unlikely that

multiple minima exist within the problem.

Though offering some potential with the collected data this analysis technique
was not used. The time needed to create the tree with no knowledge the ideal
setting makes this method unappealing. Though use could be found as a comparison
method for grasps found in existing taxonomies, classification algorithms have been
a preference for their ease of implementation and reliable results. Due to the manual
implementation of this classifier, customisation is high and defining hand shapes
by joints characteristic, rather than the digits, could allow for more accuracy but
would increase implementation time. Following an understanding of the collected
data through alternative analysis methods, manually created decision trees could be
employed to test future datasets or previous collections; the manual editing allows

for customisation to specific desires through these assessments.

3.5.8 K-Means Clustering

Clustering algorithms are unsupervised learning techniques, employed to determine
classifications within the data with no prior knowledge of potential groupings to be
found. For this study a k-means++ algorithm has been utilised. This is a centroid-
based clustering algorithm - providing clusters based on the proximity of data points.
As the data collected was in Cartesian co-ordinate form, using a proximity measure
to cluster these data provides a well suited means of determining trends within these
data. The classifications would allow for observations of congruency with previously
known hand shapes, validating their existence. Additionally, the aim to ascertain

unfamiliar hand shapes of modern ADL from these data indicates the need for an
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unsupervised learning technique.

A built-in MATLAB k-means function was used to cluster the data. The ability of
this clustering methods was inspected using a collection of control hand shapes. For
this, a k value of 12 was used - persuaded by the 12 types of hand shapes that would
be expected within these data. Once the clusters had been formed, their centroids
could be used to envision how the average hand shape of each cluster would appear.
Once validated, the clustering algorithm was confidently implemented with the data
collected during ADL.

A k-means++ algorithm was chosen for the computational speed and ease of
implementation it demonstrates. Though this algorithm lacks a guarantee of the
output accuracy, a custom test can be introduced to ensure a set accuracy is met for
the results - exploiting the speed and ease of running multiple k-means++ algorithms
in a single run. The k-means++ algorithm is a k-means algorithm with an improved
initialisation technique to increase the speed a reliability of the algorithm. To initialise
the k-mean++ algorithm randomly selects one point as a single centroid for the data,
the squared Euclidean distances between this and all of the other data points are
then calculated and the data point with the largest squared distance selected as
an additional centroid. Once the initially inputted desired k value is reached the
initialisation for a k-means algorithm has been achieved and the k-means algorithm
can run. This initialisation process, compared to a randomised initialisation, can
increase the computation cost of initialisation, but the subsequent application of
the k-means algorithm will converge faster - reducing the overall run time. A more
detailed description can be seen in Section 2.6.4. The algorithm has been set up to
repeat the clustering 100,000 times, with a new initial cluster centroid each time,
and output the attempt with the lowest sum of Euclidean distances between the

data points in each cluster and their respective centroids.

To asses the clustering performance under variations to the number of clusters
three standard measures have been tested: the Calinski-Harabasz (CH) index, Davies-
Bouldin (DB) index and silhouette score. The CH index and silhouette score both
provide an indication of how well dispersed and distinguished each cluster is. The
DB index shows the similarity between each cluster and that within closest proximity.
The combination of each of these methods serves to highlight a optimal number of
clusters, to be found from a clustering algorithm implementation. Each of these
methods were implemented using the built-in MATLAB function evalclusters -

specifying the appropriate evaluation method upon each call.

A looping process was created in order to determine an optimal k value for this
implementation. The mean distance from all points in cluster to their centroid (mean

points-centroid distance) was used as a performance measure of each k value, found
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by observing the mean of the Euclidean distance from each joint of each data point
within a cluster to their respective centroid point and then taking the mean of all of
these. The equation described by (2.5) was used to calculate the Euclidean distance
between the pairwise data. A k value would be considered optimal if this result is
below threshold of 15 mm and that of the value above it over this threshold. Once
the final clustering has been completed the same method was employed to evaluated

the resultant clusters.

It was found to be slow when increasing the k value by one each iteration, taking
excessively long computational time as the amount of recorded data increased. In
an attempt to decrease this time taken a variable k increment was applied. As the
clusters were known to be, at least close to, 60 and 30 for the left and right hands,
respectively, from previous attempts these where used as the starting values of k.
The k increment was set to five until the clustering gave a higher than desired mean
points-centroid distance, when it was reduced to two. With a k increment of two the
value of k was reduced until the clustering provided a mean points-centroid distance
lower than the desired value, from which k was increased by one each iteration until
the optimal k value was found. When each iteration was completed the k value was
stored in one of two arrays depending on whether the resultant mean points-centroid
distance falls higher or lower than the desired value. Both the high and low results
were stored, though only low would be necessary as it is not possible for a high
variable to be repeat with this set up - storing high could later help during debugging.
The changes of k increment were performed by dividing the previous increment by
two and taking the floor value, once the desired mean points-centroid distance was
passed with a k increment value of one it was known that the previous k value was

optimal.

A flowchart depiction of the k value selection process can be seen in Figure 3.15.
Within this flowchart, inc is the incremental step taken by k each iteration, k is the
number of clusters, distance is the mean points-centroid distance and threshold
preselected threshold value for the mean points-centroid distance. Utilisation of
this method to determine the optimal number of clusters provides confidence that
the outputted centroids will represent the original data within the set threshold
value, allowing control over the information loss when creating the taxonomy of hand

shapes.
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Figure 3.15: A flowchart of the process used to determine the optimal number
of clusters for a k-means clustering algorithm.
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This was the method used to categorise the common hand shapes found in ADL.
Once a predicted hand shape had been assigned for each frame of the collected data,

the results were further analysed as described in Section 3.5.10.

3.5.9 Merger of Groupings

Once a machine learning technique has been applied and the data collected grouped,
the centroids of these groups provides a taxonomy of hand shapes. Though high-
lighting many unique functional hand shapes it was found that in reality some of
these hand shapes found could be considered the same, leading to redundancies in
the taxonomy. The data has been reduced greatly from the many frames collected
to a manageable number, from this manual reduction could be performed if desired.
To automate this process as well, allowing for the entire analysis to be automated, a
merger script was made. This script calculates the Euclidean differences between
all of the points for each of the cluster centroids and merges any which would likely

appear similar to any observer.

A merger of similar hand shapes was performed, rather than altering the stopping
credentials of the k value selection process, in order to preserve the minimal accuracy
loss maintained during that procedure. Reviewing Figure 3.13 shows the selected
k value, on the grounds shown, provides the best balance of the evaluation values
tested. Alterations to the search definitions resulted in a lack of hand shapes being
captured within each cluster or a lower explained variation in the clusters found,
resulting in significant losses of information in one singular process. On pragmatic
grounds, a visual observation of the results from the employed k selection method
showed a variation in hand shapes with little repetition - other definitions provided

an observable high repetition rate or limitations in the hand shapes captured.

The merger script utilises the calculated Euclidean norm between each point of
all of the cluster centroids to assess similarities in the cluster. Initially all of the
clusters are repeated using a nested for loop (repeating one to the total number of
clusters in two for loops) and the Euclidean norms of each point in the two clusters
calculated. If all of these Euclidean norms are found to be below a set threshold
these hand shapes would be considered similar and labelled as such. When the
clusters compared are the identical cluster the process is skipped to the next without
consideration. The labelled clusters are stored within a cell array, with each cell
holding the labels of the cluster numbers to be merged together. The merger of
hand shapes considered similar would entail: the Cartesian co-ordinates of these
hand shapes averaged to form a new merged hand shape, all of hand shapes labelled
throughout the original data are relabelled to the new merged hand shape number,

their occurrences count combined, the number of frames they occur within combined,
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the percentage of functional hand shape frames the hand shape belong to combined

and the average frame length recalculated.

A threshold of 30 mm was chosen to imply that two hand shapes would be
considered similar, this was decided from several tests comparing the outputs of
the merging script with manual reduction. Figure 3.16 shows the results of testing
different merger threshold distances on the found clusters. These plots display the
results for merger distances of 17 to 55 mm; these were the points at which the
merger either had no effect on the founding clusters or grouped all of the hand shapes

into one singular cluster, respectively.

Figure 3.16a shows how the intra-cluster distance changes with a varied threshold,
calculated by the averaged distances between each data point and their respective
centroid. This enables a check that the found clusters still accurately represent the
data frames grouped within them, displaying the spread of the original hand shape

frames from the respective centroids.

In figure 3.16b the changes of a varied merger threshold on the inter-cluster
dispersion are displayed, calculated by the averaged distance of each cluster centroid
from all the of the data no captured within that cluster. This measure provides
an indication of variation across the clusters, ensuring clusters are unique and that

there is low hand shape repetition seen in the final results.

Figure 3.16¢ indicates the changes in average cluster standard deviation with
a varying threshold value, measured by averaging the standard deviations of each
of the clusters. This provides another measure of the spread within each cluster,

ensuring that the final centroids found are representative of the data within them.

Figure 3.16d displays how the coefficient of determination for the centroids and
clustered points alters during threshold variation; this was calculated by taking the
average of the correlation of each cluster centroid and each respective point in that
cluster and then averaging these results. This highlights the agreement observed
within each of the clusters, providing another measure to ensure that similar data
remain within the same cluster and that no data are captured in a cluster with too

high a disagreement.

The 30 mm threshold was concluded as the best balance of the studied character-
istics, displaying inter- and intra-cluster characteristics. With this choice, there still
remained a low variation within these resultant groupings, implying only similar hand
shapes are captured within each grouping. Additionally, there were large distances
across the groupings, showing that the variation of data was not diminished by these
groupings and that only similar hand shapes had been grouped. As this measure

identifies the amount of available information remaining following the grouping,
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there was a lot of weight given to it during the selection of a merger threshold. This
highlighted the performance of a 30 mm threshold value. Additionally, increases
past this value saw the correlation of the classified hand shapes and respective
cluster centroids decrease; the 30 mm choice was still able to keep a high agreement
between the clustered data and cluster representatives. Visual analysis supported
these findings, showing the removal of repeated hand shapes without unnecessary
grouping of hand shapes which were not similar when the merger was applied with a

30 mm threshold value.
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Figure 3.16: The observed effects of varying the merger threshold value on

the cluster characteristics.
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This technique was performed following the k-mean++ clustering of the data
collected with the portable motion capture system, producing the finalised taxonomy
of functional hand shapes used in ADL. As the resultant data takes an identical
structure to the k-means++ output the same evaluation methods and means of
displaying the results can be used. This finalised taxonomy of hand shapes would

then be visually represented as described in Section 3.5.10.

3.5.10 Displaying Results

Following the application of methods determining the taxonomy it must then be
visually represented in an understandable way to create the final taxonomy of hand
shapes used in ADL. This was achieved by plotting each point of the centroids
graphically. These centroids provided an averaged value for each of the data points
for each cluster - therefore describing the common hand shapes found within the
data. For each hand shape, the total number of occurrences and the total number
of frames it appears for was found. The percentage of the data each hand shape
occupies and the number of frames (and, hence, time) each is held for on average can
be calculated. This analysis provides an understanding of the importance of each
hand shape found in ADL. The amalgamation of the final groupings of hand shapes
and analysis of each of these groups results in a functional hand shape taxonomy

labelled with key information regarding each of the hand shapes.

The taxonomy was initially represented by wire frame images on the hand, this
can be seen in Figure 3.17. This was created by connecting select points of the hand
joint co-ordinates in a Cartesian system. As can be seen, in this form the hand
shape is difficult to make out from a limited number of 2D images and, therefore, a
different method was eventually chosen to display the final taxonomy. One advantage
of this display method is the ability to add a scale to the axis, providing a further
assessment of the hand shape characteristics during analysis; however, for the

purposes of displaying a final taxonomy this does not add any value.

114



Methodology

(a) A wire frame image of an opened hand. (b) A wire frame image of an closed hand.

Figure 3.17: The original, wire frame style, visual means to displaying the
hand shapes within the taxonomy of hand shapes, plotted in MATLAB.

In order to create more visually descriptive images of the hand for the taxonomy
Blender was used to render freestyle line art images from a model of the hands.
An example of the style used to create the taxonomy can be seen in Figure 3.18.
This showed more descriptive capabilities with just a single image and was able
to distinguish all hand shapes whilst maintaining a single camera angle. The
joint rotations were determined from calculations employing the vector dot product
between the adjacent bones, performed using (2.4). To produce these images the
joint angles were calculated from the Cartesian locations of the cluster centroids and
then inputted into a Python script which rotates each bone of the armature of the
Blender hand model accordingly. An image could then be rendered and used a the
representing image of that cluster centroid (and, in turn, hand shape) within the

final taxonomy.

(a) A line art image of an opened hand. (b) A line art image of an closed hand.

Figure 3.18: The final, line art style, visual means to displaying the hand
shapes within the taxonomy of hand shapes, rendered in Blender.

Additional data associated with each hand shape within the taxonomy, such as

the number of occurrences and average time of each occurrence, are determined
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within MATLAB and display within a table.

3.5.11 Evaluation of Analysis

To ensure trust in the results of the analysis performed the outputs must be evaluated.
As a k-means++ clustering algorithm, followed by an automated merger of similar
hand shapes, has been chosen for the main analysis the final output of these processes
was evaluated. Creation of CH, DB and silhouette graphs can be used to determine
an acceptable range of k for a k-means++ algorithm prior to implementation. The
steps taken to optimise the k values to have a data-centroid differences of below
15 mm ensures the resultant clusters describe the full recorded data within 15 mm.
Following clustering and merge, the steps taken to find the data-centroid differences,

as well as the R-squared and standard deviations, are tested on the resultant clusters.

The CH index [154], a method commonly employed to determine the optimal num-
ber of resultant clusters from an unsupervised learning algorithm, was implemented
to provide confidence in the acceptable values of k. The CH index calculates the ratio
of the sum of inter-cluster and intra-cluster dispersion to provide an indication of
how dense the clusters are and how well separated each is from the others. Alongside
this the DB index [155] has also been calculated for varied numbers of clusters. The
DB index provides a measure of the similarity between clusters in close proximity,
resulting in a measure inversely proportional to the performance of each clustering
observed. Additionally, the silhouette score [156] has been taken for the same range
of cluster numbers. This score describe how dispersed and clearly distinguished each

cluster is, resulting in a measure indicative of clustering performance.

As described in Section 3.5.8, steps have been taken to ensure that a k value
with data-centroid differences greater than 15 mm is not used. This keeps the
clusters representing the total data within 15 mm despite the large reduction in data
obtained during clustering. Following both the k-means++ clustering and merger of
these resultant clusters the data-centroid differences, R-squared values and standard

deviations of these groupings are found.

The differences measured are calculated identically to that for determining an
optimal value of k. The data-centroid difference was calculated by taking the average
of averaged pairwise distances between each observation in a cluster and the respective
centroid. This provided a clear measure of how dispersed the clusters are and, in
turn, how well the centroids formed represent the data collected. Reductions to this
measured distance are implicit of a closer representation of all of the hand shapes

seen during ADL by the centroid.

The R-squared value is a percentage measure of fit between two variables, dis-
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playing how well the observed variables describe each other. Taking the average of
this measure per cluster, comparing each observation in a cluster to the respective
centroid, shows how well the cluster centroid describes the observations within that
cluster. A higher R-squared value would indicate a better agreement between the

cluster observations and their respective centroids.

Standard deviation of a dataset shows how dispersed that data are around the
mean. Taking the average of the standard deviations of each clusters found provided
a measure of how dispersed the observations of a clusters are around their respective
centroids. A higher averaged standard deviation would imply the existence of more

dispersed clusters, with centroids less representative of the observations made during
ADL.

The R-squared values and standard deviations are found through the use of built-in
MATLAB functions (corrcoef and std), from these functions the R-squared values
can be calculated by taking the square of the correlation coefficients and the standard
deviation is provided directly, respectively. The corrcoef function provides the
linear correlation coefficients of the columns of the inputted matrices; in this case this
is the cluster centroids and all of the hand shapes within that respective cluster. The
results of these are then averaged and then squared to find the R-squared value for
each cluster. The std function returns the standard deviations of the columns of the
present array (in this case joint Cartesian locations), here for each frame within the
cluster the standard deviation between the joint Cartesian locations and that of the
cluster centroids were found and then averaged to find the overall average standard
deviation for each cluster. Determining the data-centroid differences provides the
knowledge of how accurately the original data are being represented by the groups
outputted. The R-squared values and standard deviations, respectively, provide an

indication of how closely correlated and how dispersed the clusters are.

3.6 Analysis of Muscle Excitation Techniques

The selected optimisation techniques for predicting muscle excitations from kinematic
data were assessed, in order to determine the best for proposed solution. The cost
function, given by (3.5), was tailored to each predictive model through alterations
to the terms of this equation in order to minimise a tuning cost, set as (3.6). This
hyperparameter tuning was achieve by inputting hand shapes with known muscle
excitations, displayed in Figure 3.19. To assess the performance of these techniques
validation and evaluation methods were employed. To validate each of the methods,
for use in the prediction of muscle excitations, the resultant muscle excitations

obtained by each, inputting a hand shape with known muscle excitations, were
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compared to the known muscle excitations. To evaluate the capability of each
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