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Abstract

Upper-limb prostheses are either too expensive for many consumers or

exhibit a greatly simplified choice of actions, this research aims to enable an

improvement in the quality of life for recipients of these devices. Previous

attempts at determining the hand shapes performed during activities of daily

living (ADL) provide a limited range of tasks studied and data recorded.

To avoid these limitations, motion capture systems and machine learning

techniques have been utilised throughout this study.

A portable motion capture system created, utilising a Leap Motion controller

(LMC), has captured natural hand motions during modern ADL. Furthering

the use of these data, a method applying optimisation techniques alongside

a musculoskeletal model of the hand is proposed for predicting muscle

excitations from kinematic data. The LMC was also employed in a device

(AirGo) created to measure joint angles, aiming to provide an improvement

to joint angle measurements in hand clinics.

Hand movements for 22 participants were recorded during ADL over

111 hours and 20 minutes - providing a taxonomy of 40 and 24 hand shapes

for the left and right hands, respectively. The predicted muscle excitations

produced joint angles with an average correlation of 0.58 to those of the

desired hand shapes. AirGo has been successfully employed within a hand

therapy clinic to measure digit angles of 11 patients.

A taxonomy of the hand shapes used in modern ADL is presented, high-

lighting the hand shapes currently more appropriate to consider during

upper-limb prostheses development. A method for predicting the muscle

excitations of the hand from kinematic data is introduced, implemented

with data collected during ADL. AirGo offered improved repeatability over

traditional devices used for such measurements with greater ease of use.
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Chapter 1

Introduction

Modern day upper-limb prostheses are either too expensive for many consumers

or provide a greatly simplified choice of actions available. The intended impact of

this research is to provide the knowledge of what is demanded from the human

hand during average typical everyday tasks. This aims to lead to improvements

in the quality of life for recipients of upper-limb prosthetic devices whilst also

offering a reduction in the cost. Consequential improvements to the quality of life

for the recipients would aid the adoption rate of these prosthetic devices and a

reduction to the cost would enable the offering of these devices to a greater number

of amputees. The objective of this study is to implement a, novel, portable motion

capture device to capture the natural hand motions of modern activities of daily

living (ADL). Alongside this the data collected has been inputted into a method

combining an existing musculoskeletal model and optimisation techniques to predict

the hand muscle excitations from kinematic data, aimed at aiding the development

of myoelectric-controlled prostheses, and a device for measuring the hand digit

joint angles has been proposed, aimed at improving the currently employed clinical

methods used. This chapter outlines the motivation for this work, the aims and

objectives and summarises the discussions of the succeeding chapters.
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1.1 Motivation

Modern day upper-limb prostheses do not support the requirements of many con-

sumers [1–4]. Grasp taxonomies presented in the literature [5–8] offer an insight into

the grasping actions performed during certain tasks, attempting to aid functional

imitations of the human hand. The latest taxonomy of grasps was introduced by

Feix et al. [8]; however, this only considered two professions (housekeepers and

machinists). Due to the limited range of activities studied in previous work, there is

a need for these taxonomies to be updated to include modern activities of daily living

(ADL) - such as the use of mobile phones and keyboards. The use of video recorded

data to shape previous taxonomies limits the possible length of the recordings, due

to the requirement to watch over the collected data; this has led to a limited amount

data being collected and used to create these taxonomies.

This study aims to update the currently accepted standard set of grasp taxonomies.

By providing this as an updated taxonomy of functional hand shapes, upper-limb

prostheses can be designed with new knowledge surrounding the importance of each

different hand shape. The results will highlight the functionality demanded from

the hand during an average typical day - a basic desire from the hand. Through the

utilisation of this information, upper-limb prostheses could potentially be developed to

ensure that this base level of functionality is met. With this improved functionality of

upper-limb prostheses, it is hoped that the quality of life for recipients will increase;

with improvements to rehabilitation time, ease of use and the adoption rate of

these devices among amputees. The proposed solution, using a motion capture

system to record the data, will offer the ability to collect more data, due to the

enabled application of machine learning techniques to process and analysis the data.

Furthermore, making this system portable removes the requirement for performing

such data collection within a fixed motion capture environment - allowing for the

recording of more natural ADL. The introduced portable motion capture system has

been validated against a state-of-the-art motion capture studio, to ensure confidence

in the collected hand motion data. This has also provided a validation of the Leap

Motion controller (LMC) for application in the acquisition of clinically relevant

measurements.

Knowledge of hand shapes performed in everyday life has not been used to determ-

ine the muscle excitations required. Extracting the muscle excitations performed

during collections of hand motions in ADL would provide aid to electromyography

(EMG) controlled upper-limb prostheses. A method which could predict the muscle

excitations occurring within kinematic data would enable the utilisations of exist-

ing data, collected during ADL, to provide muscle excitation measurements. This
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would indicate the shapes associated with expected EMG patterns within ADL. In

addition, a method predicting these muscle excitations from kinematic data would

enable the collection of muscle excitation data without a need for encumbering or

invasive devices to be place on the participant. The observed inaccuracy of current

measurement systems employed also supports the introduction of alternative means

for indicating muscle excitations.

In light of this, this study aims to provide the muscle excitations performed

during everyday activities of modern life. Within this work, in an attempt to further

utilise the kinematic data collected during ADL, a method combining an existing

musculoskeletal model [9] and optimisation techniques is introduced. The obtained

knowledge has been highlighted for the aid of myoelectric protheses. The introduced

method offers a means of capturing the muscle excitations occurring from, exclusively,

a single frame of kinematic data - information previously only obtainable through

contact or invasive devices. Ascertained knowledge of the muscle excitations of the

hand during common hand shapes aids upper-limb prostheses design for myoelectric

prostheses. From this knowledge, devices could be designed to cater for certain

cases of muscle excitation inputs. This would aid the quality of the responses

from myoelectric upper-limb prostheses, with known information supporting the

development of each movement produced by the prostheses. Furthermore, there is

the potential for cheaper development with use case limited prostheses, providing

the most used hand shapes for a reasonable cost performance balance.

During physiotherapy, acquiring the range of motion available to a patient is a

useful measure of progress. In the deployment of prosthetic hands, the measurement

of enabled hand movement is also key to evaluating these devices. Additionally,

evaluating the rehabilitation progress for users of full and partial prostheses provides

support during the recovery process. Currently a goniometer is used for most clinical

assessments; however, there is limited knowledge of the accuracy of this device and

it often fails to show agreement across different users. Furthermore, this method

requires contact between the patient and the observer, takes a significant amount of

time to complete a full collection of hand digit joint angles and requires expertise to

operate. Improvements to the repeatability of this method would provide confident

knowledge of patient progress. Knowledge of the accuracy of the method used

would provide a useful indication to the confidence allowed in the collected data. A

contactless system would reap several benefits - in particular, the removal of potential

contamination of the measurements. Faster collection times would result in an ability

to collect more information and see more patients within a set time. Additionally,

if the device was able to run with no expertise it would enable the completion of

measurements by the patients, independently from their clinical visit time. A means

to store and easily refer to collected observations would aid rehabilitation by enabling
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a fast indication of patient progress.

This study aims to provide improvements to measurements taken of the hand

digit joint angles, through further utilisation of the LMC. The LMC offers several

benefits to the, currently employed, goniometer: validation of the device highlights

a known accuracy, the results are repeatable, quick and no contact is required to

achieve a measurement of the joint angles. Additionally, this is able to aid in the

assessment of partial and full hand prostheses. Provided the structure of a complete

hand is presented, the LMC is able to capture motion data. This enables quick and

accurate evaluation of the quality of a prosthesis and rehabilitation progress. A

device (named AirGo) is introduced within this work, aiming to alleviate the issues

present in the application of manual goniometers for the collection of hand digit

joint angle measurements. This device provides a faster and more reliable means

for collecting measurements of patient hand digit joint angles, whilst remaining

contactless from the patient, within hand therapy clinics. Additionally, the operator

of the device does not require previous experience of the device - enabling the

ability for patients to perform their own measurements independent of their clinical

visit. Patient progress assessment is aided by the quick and easy referral of the

electronically stored measurements.

1.2 Aims and Objectives

The aims of this project and objectives by which these aims were achieved are as

shown below. These were created based on the project outline and findings from the

literature.

Aims:

� Create a means by which the quality of life of recipients of upper-limb prostheses

can be increased and the cost of the devices reduced.

� To ascertain the most commonly used hand motions in everyday tasks, including

the use of modern day technology.

� Provide a greater understanding of hand motion through mechanistic musculo-

skeletal modelling of the hand.

� Improve the clinical methods employed to obtain angular displacement meas-

urements for the hand digits.

Objectives:

� Collect and analyse motion capture data of the hand to provide an understand-

ing of the typical everyday hand motions.

4



Introduction

� Determine the common hand shapes performed in everyday activities and

compare these with previously developed taxonomies in the literature.

� Develop and implement a musculoskeletal model based technique to determine

muscle excitations from hand shapes observed in everyday life.

� Utilise motion capture technology to provide faster and more reliable measure-

ments of the hand digit angle than the current clinical standard.

1.3 Thesis Outline

This thesis discusses the biomechanical properties of the hand and analysis of the

hand shapes seen throughout regular ADL. The motivation, aims and objectives

have been achieved through the work presented in the following chapters.

Chapter 2, Background, reviews the current state-of-the-art in upper-limb

prosthetic devices and the capture and analysis of human hand motions. To begin,

the structure of the hand is presented, discussing the roles of each bone, joint and

muscle. A discussion of the development of upper-limb prostheses is provided. The

existing taxonomies of grasps are introduced and discussed. The current state-of-the-

art methods for the capture of hand motions are displayed. Following this the analysis

methods utilised in the literature are reviewed - with focus placed on developments

surrounding artificial intelligence (AI) and data manipulation techniques. Existing

models aimed to capture the intricacy of hand motions are identified and discussed.

The currently utilised measurement methods for muscle excitations are introduced and

their limitations promulgated. Subsequently, literature surrounding the deployment

of optimisation techniques are highlighted to aid their envisaged utilisation within a

prediction model. A review of the currently employed and suggested techniques for

joint angle measurements closes this chapter.

Chapter 3, Methodology, introduces the methods used the collection and ana-

lysis of hand motions. The chapter opens with a description of the proposed

alternatives to the current methods used for capturing the movement of the hands,

predicting muscle excitations from kinematic data and obtaining measurements

of hand joint angles. A detailed breakdown of the methods employed to collect

data is given. The methods used to analyse this collected data are also introduced,

highlighting the strengths and weakness for the use of each with the collected data.

A description of how the final results were displayed has been given - collecting

utilisable outputs to provide the outcome of the project.

Chapter 4, Analysis, examines the data collected and applies the, previously

described, analysis techniques. The results of validations undertaken for each of the

techniques employed are reviewed. Results of the analysis methods mentioned in the
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previous chapter are presented and the final results displayed. The validation and

evaluation results of several muscle excitation prediction methods are provided. The

results of a clinical trial undertaken for a new hand joint angle measurement device

are shown and discussed.

Chapter 5, Taxonomy of Functional Hand Shapes, discusses how the ob-

tained results could be used to influence a taxonomy of hand shapes. Current grasp

taxonomies are revisited, highlighting their similarities and any possible extensions

which could be made. The taxonomy of functional hand shapes developed from the

results of this project has been provided here. Comparisons are then drawn between

the the presented taxonomy and current state-of-the-art, observing any differences

and deducing the reasoning for such.

Chapter 6, Predicting Hand Muscle Excitations, reviews current muscu-

loskeletal hand models and presents the selected model for implementation with

optimisation techniques, to predict muscle excitations from kinematic data. A review

over the selected musculoskeletal model is given and the steps taken to implement

it reported. The selection of optimisation techniques chosen for this application is

highlighted, with each implementation described. The results obtained following

utilisation of the proposed prediction technique are transcribed and discussed.

Chapter 7, AirGo, highlights a novel device created for the measurement of hand

joint angles. A brief review of the current state-of-the-art has been given and a

proposed solution to the issues identified, named AirGo, presented. A revisit to the

validation results for the LMC and performed clinical trial, with AirGo, provide

argument for the deployment of this proposed device. The chapter closes with a

discussion of the presented device and currently employed methods.

Chapter 8, Conclusions and Future Work, summarises the results found and

discusses the potential future of the work performed.
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Chapter 2

Background

This chapter provides a study of the required background knowledge. The included

literature review examines existing ideas surrounding the motion of digits, provides a

look into the progress seen in upper-limb prostheses design, reviews the development

of grasp taxonomies throughout the literature, overviews potential techniques for

the capture and analysis of the human hand movements, displays the current state-

of-the-art models of the human hand and discusses the currently employed and

suggested methods for measuring hand joint angles in a clinical environment. Methods

introduced see their strengths and weaknesses highlighted, drawing conclusions of the

optimal devices and techniques for this project. The required technical knowledge is

presented, providing a detailed examination of the techniques employed to analyse

the data collected. Included in this discussion are the machine learning approaches

applied to highlight similarities within hand motion data and optimisation techniques

explored to provide fast, reliable and accuracy estimations of the muscle excitations

from singular frames of kinematic data. The utilisations of these described techniques

are then reported in Chapter 3 and the results of implementation shown in the

succeeding Chapter 4.
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2.1 The Human Hand

The human hand is a complex mechanism, consisting of several elements interacting

to enable the available range of motion. In a basic mechanical form the hand can be

considered as rigid bodies, the bones, rotated around a pivot, the joints, by pulleys,

the muscles and tendons. This interaction achieves 27 degrees of freedom (DoF)

with 27 bones and 27 muscles, of which 16 are extrinsic and nine are intrinsic. This

system of bones and muscles results in a vast capability for the hand - enabling a

plenitude functions.

Many studies have tried to describe the reasons for the dexterity achieved by the

human hand and recreate this ability in mathematical models [10–14]. Pons et al.

[10] define manipulation to require the independent control of the fingers. It is argued

that, though the independent flexion and extension of fingers may not be greatly

important in grasping, it is for manipulation. A study performed by Montagnani

et al. [11] tests the functionality of the human hand when different degrees of

freedom are imposed on it; finding that independent abduction and adduction is

more important than independent flexion and extension when grasping an object. In

this study digits were physically constrained to move as one to create hands with

varying degrees of freedom. It was also seen in this study that having an opposable

thumb present gave a measurable advantage when performing activities of daily living

(ADL). Research by Okada [12, 13] found that the introduction of abduction and

adduction in a robotic hand allowed for greater functionality (e.g. fastening a nut to

a bolt). This research supports the argument by Montagnani et al. that abduction

and adduction is an important function in the use of the hand. Additionally, when

testing different actuator configurations Tavakoli et al. [14] found that abduction

and adduction of the thumb increased the overall performance of the hand. It is clear

that there is a consensus in literature that, to adequately replicate the functionality

of the human hand, enabling manipulative interaction with the world around it,

independent control of the digit flexion and extension and abduction and abduction

are required.

2.1.1 Bones and Joints

Bones give a rigid structure to the body, they provide support and enable mobility.

The joints of the body act as fulcrums for these rigid structures to translate across

and rotate about.

The human hand consists of 27 bones, each labelled in Figure 2.1. The phalanges

(appropriately named distal, intermediate and proximal) and metacarpals form the
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digits. The wrist is comprised of carpal bones - eight bones forming the carpus. The

individual names of which have been deemed unimportant here. The hand attaches

to the lower arm at the distal ends of the radius and ulna. Though there is a lot of

complexity to the carpus the digits are simple rigid bodies with generalisable simple

hinges, this allows for basic robotic mimicking.

The three joint which connect the bones in each finger (digits two to five): meta-

carpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal

(DIP); for the thumb (digit one) this is: MCP and interphalangeal (IP). The joints

are secured through ligaments, a connective tissue which binds bone to bone. Three

joints connect the hand to the arm, the radiocarpal, ulnocarpal and distal radioulnar

joints. Additionally, there are several joints connecting the carpal bones, each with

labels derived from the connected bones - the individual naming of each has been

considered irrelevant for this project. Connecting the carpals to the metacarpals of

each digit are the carpometacarpal (CMC) joints. From here the collection of joints

within and around the wrist will be refereed to as the wrist joint, singularly. The

MCP of each finger has two DoF and the PIP and DIP one DoF each. The MCP of

the thumb exhibits four DoF and the IP one DoF. These with the six DoF of the

wrist joint provides the human hand with an overall 27 DoF. Each joint of the hand

can be seen described in Figure 2.1.

Figure 2.1: The bones and joints of the human hand [15].
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2.1.2 Muscles and Tendons

Muscles provide the mechanical work required to move the body. The force each

muscle is able to produce depends upon varying characteristics (length and velocity).

Tendons act as an anchor between muscle and bone, they provide a conduit for the

force from the muscles to be transferred to the bones.

The complex motions achieved by the human hand are actuated through the

combined activation of intrinsic and extrinsic muscles. Intrinsic muscles are found

within the hand structure and are, in general, responsible for the fine motor control

seen by the hand. Extrinsic muscles are found externally to the hand and tend

to produce larger motions, providing the gripping force possible by the hand. A

descriptive breakdown of the intrinsic and extrinsic muscle of the hand can be seen

in Tables 2.1 and 2.2, respectively. For simplicity, within these tables each digit

has been referenced as a relative number (one to five in lateral to medial order)

and similarly for the bones (one to four in proximal to distal order). The action

column provides the resultant motion due to the activation of the respective muscles,

with the digits and bones of these digits given this motion listed in the subsequent

columns. Figures 2.2 and 2.3 visually depict each of these muscles, providing the

location of each within the arm and hand.

Knowledge of extrinsic muscles is employed in prosthetic control and, with

knowledge of intrinsic muscles, for development, training and validation of models of

the hand. A price paid for examination of extrinsic muscles alone is their inability

to describe the finer motor functions of the hand, responsible only for the overall,

crude, motion. Due to their complex entanglement, intrinsic muscles are exceedingly

difficult to record using surface electromyographys (EMGs) - the crosstalk seen in

this area results in a near impossible to decode signal obtained with current surface

EMGs technology.
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Table 2.1: The extrinsic muscles of the human hand.

Name Action Digits Bones

Extensor Digitorum (ED) Extension 2 - 5 2 - 4

Extensor Indicis (EI) Extension 1 2 - 4

Extensor Digiti Minimi (EDM) Extension 5 2 - 4

Flexor Digitorum Superficialis (FDS) Flexion 2 - 5 2, 3

Flexor Digitorum Profundus (FDP) Flexion 2 - 5 2, 4

Flexor Pollicis Longus (FPL) Flexion 1 2, 3

Extensor Pollicis Longus (EPL) Extension 1 2 - 4

Extensor Pollicis Brevis (EPB) Extension 1 1, 2

Abductor Pollicis Longus (APL) Abduction 1 1

Table 2.2: The intrinsic muscles of the human hand.

Name Action Digits Bones

Opponens Pollicis (OP)
Rotation,

Flexion
1 1

Abductor Pollicis Brevis (APB) Abduction 1 1

Flexor Pollicis Brevis (FPB) Flexion 1 2

Opponens Digiti Minimi (ODM)
Rotation,

Flexion
5 1

Abductor Digiti Minimi (ADM) Abduction 5 1

Flexor Digiti Minimi Brevis (FDMB) Flexion 5 2

Lumbricals
Flexion;

Extension
2 - 5

2;

3, 4

Dorsal Interossei (DI) Abduction 2 - 5 1

Palmar Interossei (PI) Adduction 2 - 5 1

Similarly to ligaments, tendons are connective tissue. They are exceptionally

durable and act like cords transmitting force, enabling the muscles to move the bones

about and across the joints. There are two types of tendons: positional tendons,

providing support for the bones and muscles, and energy storing tendons, acting as

springs in aid of energy consumption during motion. The stretch experienced by

the tendons aids muscle force generation. Within the hands the tendons enable the

extrinsic muscle forces to affect the bones. From the forearm there are two groups of

tendons: flexor and extensor tendons. Flexor tendons are located on the palmar side

of the hand to enable digit flexion. Extensor tendons are located on the dorsal side

of the hand to enable digit extension. Within the hand, the tendons connecting the
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intrinsic muscles and bones provide structural support.

Figure 2.2: The extrinsic muscles of the human hand; displaying the left
forearm deep muscles from the palmar view (left) and dorsal view (right) [15].

Figure 2.3: The intrinsic muscles of the human hand; displaying the left
hand superficial muscles from the palmar view (left) and deep muscles from
the dorsal view (right) [15].

2.2 Upper-Limb Prostheses

Significant progress has been made since the conception of upper-limb prosthetic

devices, each step attempting to mimic the complex motions achieved by the hand

perfectly whilst remaining cost effective. A later move to electronically powered

prostheses improved user satisfaction but increased cost dramatically. Developments

in actuation strategies allowed for a small reduction in price, at the cost of perform-

ance. The conception of three-dimensional (3D) printing gave significant aid to the

development of prosthetic devices, introducing the first time for prostheses to be

even close to reasonable for younger amputees of lower income families to afford.

The prostheses outer bodies could be manufactured with ease at a significantly lower
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cost than previously; this meant changes in size could be accounted for whilst con-

serving the motors - the notoriously expensive component when replacing electronic

prostheses.

The first record of an upper-limb prosthetic device comes from Pliny the Elder

in 77, who documented an artificial hand worn by Marcus Sergius which was fashioned

to hold a shield after the lose of his hand in the second Punic War (218-201 B.C.) [16].

From this several similar ideas of passive prosthetics were conceived, most notably:

Götz von Berlichingen in 1509 [17] and Ambroise Paré in 1564 [18]. Few changes were

made until 1818, where a body powered upper-limb prostheses was introduced by

Peter Bailiff [19]. The introduced prostheses utilised the shoulder motions to provide

flexion and extension to the digits of the artificial hand. Body-powered devices rose

quickly in popularity and are still used to this day, significantly more comfortable

and practical than their first inception. Though usually unrealistic, aesthetically

and in motion, many amputees show a preference to body-powered devices due

to their design simplicity and robust nature, typically lasting longer and costing

less than their alternatives. In 1898 Giuliano Vanghetti wrote the first document

discussing the possibility of cineplastic operations, an amputation operation in which

the residual muscles and tendons are used to directly control the artificial limb [20].

This technique was first performed in surgery 1905 [21] and since there have been

several instances of these operations being performed [22–26]. Though pneumatics

was considered as a form of powering prosthetic devices, it was implemented in few

prostheses.

The first electronic hand prosthesis was published by Reinhold Reiter in the

early 1948 [27]. This device employed an EMG device as the feed forward control,

utilising electrical signals found from activation of residual muscles. The use of EMG

signals to control upper-limb prostheses quickly developed and presented numerous

variants. In 2006 Bitzer and Smagt showed how support vector machines can be

used to support control inputs from surface electromyography (sEMG) readings

[28]. In 2009 Castellini and Smagt utilise machine learning techniques, within an

sEMG controlled hand, in order to determine the desired digit position and force

[29]. Castellini and Smagt showed that this can form a reliable feed forward loop

for a prosthetic hand with high potential for improving the EMG control method.

Research on the application of pattern recognition in EMG prostheses aims to aid

the control of the hand [30, 31]. Though found to have adequate accuracy, the real

world application of this technique is questioned [32]. A study in 2019 developed an

EMG sensor which was shown to be more sensitive and faster then other options

for prosthetic hand control [33]. Locating useful muscle sites to collect accurate

EMG signals is sparse, hence this method is typically only applied to patients with

transradial amputation or wrist disarticulation.
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In 1978 De Luca [34] discussed the idea of using neuroelectric signals for the

feed-forward path in a prostheses. Though not proven to be an instant replacement

of other techniques, De Luca showed the possibilities in the utilising the nerves

of interest and argued the advantage over the common practice EMG technique.

In 2005 Zhou [35] examined the possibility of using targeted muscle reinnervation

(TMR) to improve the readings of intended movements, particular in areas dense in

muscle sites where sEMG suffers - as is with the arm and hand. A TMR transfers

residual nerves to alternative muscles, providing a biological amplifier in which the

new, targeted, muscle activity can be measured using sEMG. This allowed for access

to information not priorly available to sEMG devices and enabled the use of sEMG

after forequarter amputation, shoulder disarticulation and transhumeral amputation.

Studies since have increasingly supported the potential of TMR to improve EMG

control for multiple prosthetic hands [36–39].

The use of sEMG devices have shown several issues, most notably of which is the

high level of crosstalk and lack of information within superficial muscles. A study of

a first-in-man of implant EMG device displayed the potential of this technique [40].

The patient, previously having used sEMG, described the device as allowing for a

more natural and intuitive control. In 2021, Islam et al. [41] introduced a new, force-

invariant, feature extraction method for the control of upper-limb prostheses. The

method utilised the recorded amplitude changes and spatial correlation coefficients

of the EMG channels to provide feature extraction. This was able to demonstrate a

greater pattern recognition performance, higher accuracy, sensitivity and precision

when compared to alternative feature extraction methods. Additionally, the method

also exhibited a lower computational time and memory requirement over these

methods.

In addition to the use of EMG signals for prostheses control, electroenceph-

alography (EEG) devices have proven a possible control method for prostheses -

measuring signals originating in the brain. In 1999 Guger et al. [42] introduced the

use of a brain-computer interface with paralysed patients for controlling an external

hand. It was shown that, by imagining left and right hand movements, the user was

able to control a prosthetic hand with ample accuracy. Though it did not enable

full digit movements (only gross opening and closing motions of the hand) this

highlighted the potential of EEG control, arguing that this control method demands

less attention from the user compared to alternative options. A 2007 review [43]

of control strategies concludes that EEG control was not ready for practical use,

though it was stated that the experimental progress made was favourable. It was also

stated that more focus should be placed on the improving realism of the artificial

hand joints and sensory feedback options, with EMG and TMR strategies showing

the greatest potential for that time. Parr et al. [44] focus at how gaze training can
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impact the use of upper-limb prostheses. Gaze training was achieved through the

use of EEG and eye tracking devices, monitoring the brain and eye activity whilst

the user picked up an object. The users were trained to fixate on the object to

be grasped rather than the hand. After finding gaze training effectively reduces

cognitive burden (reducing learning time and fatigue) Parr et al. argues that it is

not the technology of prosthetic hands which requires attention but more the user

interaction strategies employed. Ruhunage et al. [45] utilised the strengths of both

EEG and EMG strategies in a hybrid system. This work introduced a successful

hybrid system, in which EMG was used for elbow control and the gross opening and

closing actions of the hand and EEG for prediction of the desired grip.

Actuation strategies for electronic devices became increasingly important - bearing

great responsibility for influences on cost and comfort. The creation of taxonomies

showing the common grasps performed through a typical day aids the understanding

of demands the hand undergoes. Methods for actuating artificial hands can then be

formed around what is discovered from these taxonomies. More effective actuation

strategies help improve the lifestyle of upper-limb prostheses users and more efficient

actuation strategies help reduce the costs of prosthetic devices. There have been

several new actuation strategies tried and tested in the literature, particularly

regarding underactuated prosthetic hands [14, 46–48].

It is typical in underactuated methods for each of the digits to be individually

actuated by a single actuator [46, 48]. Massa et al. [46] introduced an underactuated

prosthetic hand which mimicked the function of only three digits (the index finger,

middle finger and thumb). Each of the digits is controlled by a single motor, based on

the Shigeo Hirose Soft Gripper [49], to allow it to conform to any shaped object. This

research aimed to use the recent developments in mechatronics design to create a

simplified hand without sacrificing functionality. It was argued that the thumb-index

pinch capability gave the hand high functionality whilst being able to only include

few actuators controlled by a simple algorithm. More recently, Bullock and Dollar

[47] created a similar, underactuated, manipulator with only the index finger and

thumb. The study found the manipulator to be successful; it was able to work with

objects in over 50% of the normal working volume of the human hand, with only 3

actuators used. It was remarked that future work would include the addition of more

digits to increase functionality. In 2019 Jeong et al. [50] introduced a three DoF

finger underactuated prostheses, demonstrating adequate control characteristics. In

2020 Abayasiri et al. [51] introduced an underactuated prosthetic hand design, aimed

at improving performance in ADL. The underactuated device was able to perform

extension and flexion of all digits, adduction and abduction of the four fingers and

opposition and reposition of the thumb, opposed to the limited motions of other

underactuated devices.
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Tavakoli et al. [14] found the actuator configurations, for fixed numbers of

actuators, which gave the best performance. It was argued that the results of

this study could be useful when deciding upon the number of actuators and their

configuration needed when designing a prosthetic hand, showing the most effective

use of the actuators. Tavakoli et al. [48] argue in another paper that it is possible to

have a higher level of anthropomorphism in hands with fewer actuators, supporting

the research that has been undertaken in developing underactuated hand prostheses

[14, 46, 47].

It is evident that there have been several upper-limb prosthesis actuation strategies

suggested in the literature, many of which conclude in favour of underactuated

prosthetic hands.

Research has also been prominent in prostheses for partial hand (transmetacarpal)

amputations. The rise of of partial hand prostheses suffered most significantly from

the fact that the EMG signals of the wrist interfered with the desired extrinsic muscle

signals. Adewuyi et al. [52] studied how pattern recognition techniques could be

applied to a partial prosthetic hand. The results showed that this is realisable, though

the unpredictable nature of the wrist (still controlled by the user, opposed to the

prosthesis) decreased system reliability and gave cause for increased training times.

Earley et al. [53] explains how a classifier which switches between long and short

EMG analysis window lengths could be employed to overcome these problems. It

was argued that this dual window classifier had a significant positive affect. Earley et

al. also highlighted that, whenever possible, benefit can be found in the utilisation of

intrinsic, as well as extrinsic, muscles. Gaston et al. [54] later explained a procedure

which relocates intrinsic muscles to improve accessibility. This relocation allowed

for their use in the control of partial hand prostheses. Gaston et al. argued that

this migration of the intrinsic muscles, to a more proximal and superficial location,

improved EMG control.

Murali et al. [55] introduced a prosthetic device for partial hand loss, externally

powered in order to present a more anthropomorphically correct hand. Though

admitting to the need for several improvements Murali et al. argue for the potential

of the introduced device. Alturkistani et al. [56] provided a 3D printed passive

partial hand prosthetic for transmetacarpal amputation patients. Assessment of

this prosthetic was judged on the performance of grasps given in the taxonomy

presented by Feix et al. [57] and a lift test, showing sufficient grip strength with a

stable grasp and preferred over active prosthetic devices due to the compactness,

low weight and ease of attachment and detachment the prosthetic displayed. The

use of 3D printing in upper-limb prostheses manufacture allows for easier, cheaper

and quicker fabrication of devices sized precisely for varying individuals. Cuellar et
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al. [58] presented a 3D printed artificial hand which required no manual assembly

after printing. Aimed at developing countries, this simple and cost effective device

granted a body powered prosthetic to partial hand loss amputees.

Feedback loops, as a controller exclusively within the prosthesis or including

the user, have been studied to increase acceptability prosthetic hands. Controllers,

not including the user, moderate the applied force from a prosthetic hand, given

information of the hand and grasped object. These simple techniques aim to improve

the acceptability of prosthetic hands at a low cost. A 2020 review of sensory systems

with prosthetic hand devices argues that the progress made in the last 50 years is

clinically limited, though it was stated that recent pushes have seen some relevance

[3].

In 1998 Tufa et al. [59] presented an example of force based feedback system

controlling the pressure applied by the prosthetic hand, paired with an optical

detection system for preventing slipping. This feedback system was designed as a

controller element within the device - the user had no feedback. In 2009 Pasluosta et

al. [60] showed how a force sensing resistors, with a neural network, could allow for

a cost effective force control and slippage system. Again, this was a simple controller

element, not containing the user within the feedback loop.

The aforementioned feedback systems are solely controllers isolated within the

device. Increasing the visual feedback, beyond the physical artificial hand, is one

possible feedback method which enables the inclusion of the user within the control

loop. In 2012 Engeberg and Meek [61] introduced a device utilising a two coloured

light-emitting diode (LED) to indicate the gripping force, including the user visually

within the feedback system. This inexpensive, lightweight and low power feedback

device showed significant improvement, compared to no additional feedback, in

both the results of experiential tests and the user feedback. Research has also been

conducted to establish a proficient haptic feedback technique, typically employing

vibrotactile or transcutaneous electrical nerve stimulation (TENS) techniques.

Studies have displayed the possible feedback options, including the user in the

feedback path, with multiple feed forward controller options [62–66]. Ninu et al. [67]

studied which variables show statistical importance within a closed loop feedback

system. The subjects were able to estimate the grasping force when provided with

closing velocity feedback alone, indicating a lower importance for force feedback.

In addition to this, it was found that a vibrotactile feedback system could replace

visual feedback. Christiansen et al. [68] reviews visual and vibrotactile feedback

within an upper-limb prostheses. It is found that visual feedback as a greater impact

on performance than vibrotactile. However, it was noted that vibrotactile provided

assistance when the user could not see the target object and that the combination of
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both showed no negative effect on the overall system. A previous study by Stepp

and Matsuoka [69] noted an improvement when vibrotactile and visual feedback

was employed, compared to the use of visual feedback alone. Witteveen et al. [65]

highlighted that the inclusion of vibrotactile feedback improved grasping performance.

Concluding the study, it is insisted that further work is performed to ascertain the

impact of including feedback on the performance of ADL. A study in 2018, by Raveh

et al., [70] measured the performance improvement seen with vibrotactile feedback

on able bodies controlling an artificial hand with EMG signals. It was found that

the feedback added improves time to complete and accuracy of tasks performed -

concluding the importance of vibrotactile feedback when visual is not available. A

study assessing the importance of vibrotactile feedback in an underactuated arm

found that, though objectively visual was considered sufficient, subjectively patients

preferred the additional vibrotactile feedback [62].

In 2019 Battaglia et al. [66], noting the recent trends towards underactuated

prosthetic hands, aimed to asses possibility of adding proprioception to these devices.

Though the single signal feedback used was unable to inform the user of positional

information for each digit, it was able to provide an estimate of how open the hand

was. It was concluded that this provided a simple and easy to understand feedback,

giving some improvement to the quality of life for prosthetic hand users.

Upper-limb prostheses have shown significant improvements from their first

inception, from passive and simple arms [16–18] to complex, dexterous, hands

with feedback systems and advanced human control, with a notable desire to reduce

the cost for users [39, 45, 51, 58, 66]. Open Bionics create 3D printed prosthetic

arms, focusing on embracing the difference rather than viewing amputation as a

burden on lives. The efforts by Open Bionics has made a significant impact and

enabled children, as well as adults, to afford and use prosthetic hands with comfort.

The use of 3D printing as a manufacturing method has a large influence on younger

amputees as. Due to the typically rapid growth of children, many outgrow prostheses

at a rate unreasonable to afford - only requiring to print the body of the arm at a

low cost with growth. In 2019 Zheng et al. [71] reviews the control techniques and

design of upper arm prostheses from the prospective of the users, referring to a focus

group of 11 participants. The participants expressed most interest in improving the

dexterity and durability of the devices. Though understanding the advantage of

invasive control techniques many participants showed wariness. Zheng et al. argue

the importance of educating amputees around invasive techniques, alluding to these

control options as the likely next step. Despite these advancements it is still observed

that modern day upper-limb prostheses are either too expensive for many consumers

or have a greatly simplified choice of actions available [1–4].
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2.3 Grasp Taxonomies

In the literature there are several studies that have classified the range of hand grasps

performed by humans [6, 7, 57, 72–76]. These intend to aid the in the creation of

devices replicating the human hand motions; though typically focused on aiding

the design of manufacturing robotics, the consideration of these taxonomies during

the design of upper-limb prostheses and exoskeletons may severe to provide useful

information.

Schlesinger [5] was the first to attempt to organise human grasps into set categories,

these were: cylindrical, top, hook, palmar, spherical and lateral. This taxonomy can

be seen presented in Figure 2.4.

Figure 2.4: The grasp taxonomy introduced by Schlesinger [5].

Napier [6] later categorised each of the grasps into two categories, power and pre-

cision grasps. Following this Cutkosky [7] employed the same taxonomy, showcasing

the possible application to robot manipulators in manufacturing processes. This

taxonomy, with the divide of power and precision grasps discussed by Napier [6], is

shown in Figure 2.5.
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Figure 2.5: The grasp taxonomy introduced by Cutkosky [7].

More recently Feix et al. [57] reviewed the existing grasp taxonomies and gave

thoughts on an updated, simplified, taxonomy. It was found that there is a possibility

for 33 grasp types, given by the previous taxonomies, to be reduced to 17, more

general, grasp types - arguing that each cell of the taxonomy presented previously

[8] could be reduced to a standard grasp. The 33 grasps classified can be seen in

Figure 2.6.
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Figure 2.6: The grasp taxonomy introduced by Feix [8], as presented in [77].

It is typical in these research studies that housekeepers and machinists are chosen

as subjects for the study [72, 77, 78], this is because the combination of these

professions is seen to give the closest idea of the range of grasps used in normal

ADL. However, Vergara et al. [75] stated that these studies, only looking at two

professions, were biased, going on to study the grasps used in ADL. Vergara then used

a simplified taxonomy of nine grasps (from the 24 presented by Edwards et al. [79])

to categorise grasps of ADL, arguing the needlessness of complete, more rigorous,

taxonomies for ADL. A breakdown of the grasp applied in different activities was

also provided, showing that not all grasps could be applied to each ADL. Liu et al.

also presented a study focused on capturing the grasps performed in ADL [74]. It

was found that previously established taxonomies proved insufficient for application

to categorisation of grasps in ADL. Liu et al. suggested that taxonomies be written

with approachability, noting the intended motion, force, and stiffness - assisting for

robotics design.

Another limitation of these studies is the lack of consideration for gestures
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occurring during ADL. All of the observed studies reviewing the functionality of the

hand in everyday life consider grasps exclusively, yet there exists significant support

for the importance of gestures in the literature [80–97].

Kita introduced the Information Packaging Hypothesis [82], which states that

information is made available through gesturing - enabling access into the mind of the

speaker. This hypothesis follows that more gestures will be performed with increase

difficulty to conceptualise; in effect, that gesture aid the compartmentalisation

aspects of speech. This leads to aid in the use of spatio-motoric concepts during

speech. With this, it has been argued that gestures provide a window into the mind

of the speaker [83]. It is argued that gesturing and speech should be seen as a unified

system of communication, where gestures convey information in coordination with

the concurrent speech [84, 85]. In a study manipulating the conceptualisation loads of

picture description tasks, Melinger and Kita [86] showed that conceptualisation load

increases led to increases in gesture production. Furthering this, Hostetter et al. [87]

studied the amount of gestures produced in the responses of participants describing

dot patterns with or without the aid of a connecting shape. The participants gestured

in the exercises not including the shape, suggesting that more gestures were seen

when information was difficult to conceptualise. A study by Alibali et al. [88]

asked children to explain the difference between two presented items (Piagetian

conservation). The experiment saw that children gestured for assistance in defining

objects, with no indication that the gestures were in aid of speech production but

more the conceptualisation of the images being portrayed.

An alternative hypothesis for the use of gesturing during speech production, the

Lexical Retrieval Hypothesis (alternatively refereed to as Lexical Access Hypothesis)

[89–91], argues that gestures are performed to provide aid to lexical retrieval. This

hypothesis claims that gesturing produce linguistic stimuli, helping retrieve items from

mental lexicon. Subsequently, this hypothesis argues that gestures play a significant

role in the formulation of speech. One study by Chawla and Krauss [89] recorded

subjects answering questions regarding personal experiences, feeling and believes,

which were later recreated by actors from transcripts. It was observed that the

re-enactments showed gestures occurring later than that which would be suggestive of

lexical access, supporting that the gestures performed during the original recordings

were to aid vocalisation of mental lexicon. Furthering this study, an included second

experiment tested whether naive participants were able to discriminate between the

original recordings and those reproduced by the actors. Provided with either of the

audio or video recordings alone, the participants were able to predict correctly better

than chance. These results suggest that gesturing adds a noticeable authenticity

to comminations of a similar level to that of the spoken word. Rauscher et al. [90]

found that, when the ability to gesture was removed from participants, there was an
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increased difficulty to lexical access. The results of this study supported the belief

that gesturing aids in the access to mental lexicon. Showing further support, Pine

et al. [92] found that children were able to better formulate words when allowed

to gesture; this study followed the same methodology of testing prohibited and

unrestricted gesturing. A similar study by Pyers et al. [93] found that gesturing

reduces the cognitive load during hard lexical retrieval - where participants with no

gesturing inhibition were able to resolve more tip of the tongue word retrieval than

if there was restrictions placed on gesturing ability.

Alongside these hypotheses, studies have also seen the aid that gesturing provides

within learning environments. In 2019, Aussems and Kita [94] saw that watching a

description with gestures helped children remember that description, arguing that

the unified gesturing during task was able to facilitate the memory. In 2021, Ginns

and King [95] also showed that pointing whilst being taught helped leaners retain

that taught information. Lacombe et al. [96] observed that children with intellectual

difficulties were aided by gesturing, showing a preference to gesturing over speech

during communications. Further support for the inclusion of gesturing in daily life

was shown by Chiera et al. in 2022 [97]; this study observed that gestures appeared

frequently than pauses during speech, with the majority of those gestures being

classified as non-communicative. This further supports that gestures accompanying

speech are natural to humans and help during conversations - even if not directly

supporting conceptualisation or speech production [83, 97].

The literature holds substantial support for the unnoticed aid gesturing brings to

everyday life. The two hypotheses presented, the Information Packaging Hypothesis

and Lexical Retrieval Hypothesis, show significant support for the consideration

of gesturing during ADL. Whether they are in aid of conceptualising speech, with

Information Packaging Hypothesis arguing that gesture production increases when

conceptual demands increase, or formulating the speech, with Lexical Retrieval

Hypothesis arguing gesture production increases when lexical demands increase,

there is a clear aid brought to everyday life through the gestures performed.

This research aims to observe all of the hand shapes required for ADL. To achieve

this, observations of functional hands shapes were made, comprised of: gestures and

grasps. Each of these will be considered equally, though distinguishing each enables

comparisons to existing knowledge. A gesture was considered as a functional hand

shape not touching an object in a way to create a hold of that object, not indicative

of object manipulation. A grasp was seen as a gesture physically interacting with

tangible objects within the world of the user.
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2.4 Motion Capture Technology

In the most current studies of the hands, motion video cameras are used to record

the hands and the footage reviewed to determine the grasps performed [72, 74–76].

Typically a head-mounted video camera is placed on the subject and their hands

recorded over a set period of time. After the videos had been captured trained

raters would analyse each of them to determine how many times certain grasps were

performed. This method can lead to unreliable results due to the reliance put on the

judgements of the raters, manually labelling the data frame-by-frame. Many studies

try to reduce this unreliability by comparing the judgements made by several raters,

but this inherent limitation cannot be completely removed. This process is a long,

slow and tedious activity which can lead to errors. However, this is not always the

case and studies have also created novel methods for collecting the data.

In the study performed by Huang et al. [73] an unsupervised clustering technique

was used in order to autonomously determine the grasps performed. The study

showed this method to be very effective; it was stated that development should have

a significant impact, across multiple disciplines, in prehensile analysis. To validate

the method both choreographed and real life scenarios were used. The clusters

determined by this method were compared to those from the taxonomy introduced

by Cutkosky [7] and it was seen that it had created new groups as well as fitting

groups in the previous taxonomy. Du [98] create a mesh for a virtual hand to be

used in data collection for a virtual keyboard system.

It is typical for vision based motion capture systems to be used over other methods,

such as gloves. The main reason for this is the fact that placing sensors on the

hand, as is done with the motion capture gloves, encumbers movement, giving a less

natural hand motion. Another study, by Qi [99], utilised EMG devices to record

hand motion data and neural networks to determine the grasps performed, with

the assistance of a principal component analysis (PCA) algorithm. This resulted

in an accuracy of 95.1% with a recognition time of 0.19 seconds, highlighting the

possibility of automatic grasp classification to speed up grasp analysis.

New developments have pushed for kinesiology recordings to be performed using

motion capture technology and numerically analysed; this has resulted in faster

analysis of larger amounts of data and, in turn, allowed for more data to be collected.

The upcoming gaming area that is of interest to this project is virtual reality (VR)

gaming; this has led to the introduction of many cheap and easily accessible motion

capture devices. The devices used in VR gaming commonly differ from research

focused motion capture devices due to the fact that they do not need markers. This

gives a less encumbered movement and allows for a much quicker and easier set
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up (providing the user with a more comfortable experience overall), however this

is at the cost of the accuracy of the data collected. More recently the accuracy of

these devices has greatly increased and they are becoming cheaper and more widely

available alternatives to the original devices used for research.

In this project a Leap Motion controller (LMC) [100] was used for the collection

of motion capture data of the hand during ADL; this is commercially available,

cheap, vision based system with no markers. There have been several research papers

studying the effectiveness of the LMC as a computer input device or motion capture

recording device [101–103]. Bachmann et al. [101] found that the LMC is limited as

an input device for everyday computer pointing tasks. Coelho and Verbeek [102]

tested an LMC against a mouse in pointing tasks in a 3D virtual environment. It

was seen that the mouse, again, outperformed the LMC. Guna et al. [103] argues

that the LMC cannot be used as a professional tracking system due to the limited

field of vision (the volume in which the LMC can capture the hands) observed and

inconsistent sampling frequency.

Bizzotto et al. [104] tests the the use of the LMC in controlling imaging during

live surgery. The research performed concluded that the LMC was an efficient

low-cost solution to controlling imaging devices during the surgery. It had less risk of

spreading infection in a surgical environment, as there would be no need to touch the

equipment, and reduced surgery time, as the surgeons no longer needed to change

their gloves to operate the imaging devices. In the literature the LMC has been

heavily tested for teaching and learning a great range of different sign languages

[105–110]. Potter et al. and Guardino et al. [105, 106] were both disappointed in

the application programming interface (API) of the LMC, arguing that it limits the

abilities of the controller from misleading labelling and requires further development.

Guardino et al. argue that the controller is beneficial due to the much greater

portability and affordability it displays, compared to alternative motion capture

methods used in research (such as Cyblerglove and Microsoft Kinect). Additionally,

in the study by Guardino et al. the authors found that the combination of an LMC

and a webcam has the potential to become a new method for teaching and learning

the American sign language. Mohandes [107] complains about field of vision and

possible occlusion caused when using one LMC. It is stated that further work will be

to test the use of two LMCs, one placed in front of the user and the other to their

side, in order to avoid occlusion. Despite the multiple arguments in the literature

against the LMC many do still support the potential of this device for research

and create methods of defeating the problems encountered. The LMC will still be

considered in this project due to the fact that it is a much cheaper and accessible

alternative to other methods, allowing quick preliminary data collection. Arguments

made against the API of the LMC have been considered but hold little value here,
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as the presented error were removable during data processing. The collection and

analysis of data were performed separately, meaning that the data can be correctly

labelled once converted to a local co-ordinate system, with clearly identified joints, if

required.

The method most commonly employed to study the human hand in use, capturing

a video recording of the hand in use and then watching the video, is a time consuming

process with potentially high error due to the subjective nature. For this study the

use of motion capture devices to collect kinematic data of the hand is considered over

the use of video cameras. The LMC is a markerless optical motion capture device

which uses three infra-red (IR) cameras to determine a 22-point virtual image of the

hand. The points of the hand captured by the LMC are as follows: the MCP joint,

IP joint and tip of the first digit, the MCP joints, PIP joints, DIP joints and tips of

the second to fifth digits, the centre point of the palm, the CMC joint and a point

opposite to the CMC joint in the medial direction. The LMC is supported within the

literature: proven effective for stroke rehabilitation and musculoskeletal simulation

[111–114] and literature reviewing the employment of an LMC for data collection

of hand kinematics provide confident support for the ability to collect clinically

meaningful data [115, 116]. Though the LMC has also received some criticism in

the literature [101, 103], it was used here due to the presented high portability,

providing an ability to be used during the normal everyday tasks performed by

the participant within comfortable environments for them, ability to work without

markers, leading to unencumbered movements, and non-invasive nature, resulting in

natural motions as the participant does not feel as if they are being watched in a

laboratory environment.

A Vicon motion capture system [117] at University Hospitals Coventry & War-

wickshire (UHCW) was used to validate the use of an LMC; this uses eight IR

cameras to locate reflective markers within the laboratory space. The high level of

accuracy and the fact that it suffers from occlusion far less than the LMC makes

it a worthy candidate for a data collection method. However, it is not without

limitations; the feeling of being watched due to the laboratory environment and

the markers encumbering movements leads to less natural motions being produced

by participants. This motion capture system will also be used to validate the data

collected by the LMC. Preliminary testing showed that the markers used do not

interfere with the data collected from LMC, allowing the use of the motion capture

system for evaluating the accuracy of the LMC.
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2.5 Motion Capture Analysis Techniques

Prior to analysis of large motion capture datasets, it is preferred to reduce these

data. Reductions can be made either in the amount of frames observed or the

dimensionality of the observations. Methods attempted and steps taken to reduce

the complexity of the data collected in this study are described here, as well as

any supporting use cases highlighted. Observations of the recorded data lead to

the extraction of only the frames presenting the desired information, reducing the

number of frame required for analysis. Reductions to the dimensionality of the data

would enable faster analysis; though this may include a loss of accuracy, due to the

limited information defining each observation.

In motion capture recording the dimensionality of the data is typically high, requir-

ing three dimensions for each of the features measured. Reducing this dimensionality

would allow for a simpler and quicker analysis of the data. Common methods used

to achieve dimensionality reduction are: PCA, t-distributed stochastic neighbour

embedding (t-SNE) and multi-dimensional scaling (MDS).

The PCA method [118] utilises singular value decomposition (SVD) [119, 120]

to determine new dimensions for a given dataset, forming the new dimensions such

that the high variation of the data is exhibited in a fewer number of dimensions.

This provide the potential for a vast amount of the information within a high

dimensionality dataset could possibly be described using three or less dimensions, a

dimensionality conceivable in physical space.

An employment of PCA starts by finding the centre of each dimension (providing

the centre of the dataset) - followed by a translation of the data such that these

centres are placed at the origin of each dimension. Each point is projected onto a

line which goes through this origin; PCA then attempts to maximise the sum of the

squared distances from the project point to this new origin. The line with the highest

sum of squared distances is selected as the first principal component, this sum of

squared distances gives the eigenvalue of the principal component and the square

root of this provides the singular value of SVD. The singular vector (eigenvector) for

this component can be calculated by creating a unit length vector from the origin

along this component line, the proportions of each gene which form this provide the

loading scores. Each of the next principal components are found, in turn, in the

same manner, remaining perpendicular to the first found principal component. The

PCA score can then be created by using the principal component lines found as axes

and the position of each data point along each of these axes being the position of the

projected point to this axis, seen when determining the principal components. Once

all of the principal components have been determined, the proportion of variation
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each of the components accounts for can be calculated by taking the ratio of the

eigenvalue for the component in question and sum of all eigenvalues,

variancei =
λi

λ1 + λ2 + . . .+ λN
,

where i is the component in question, λ is the eigenvalue for each of the components

and N is the total number of components found.

Scree plot display these values to aid in the identification of the necessary principal

components required to display the desired information. Observing a scree plot, the

optimal number of principle components to be considered would be highlighted from

a lessening in the gradient - indicating less variation change per principle component

included beyond that point. This can be considered as if looking at a cross-sectional

cut of a mountain, the scree of the mountain indicates a levelling out to the ground -

where there is less change in altitude as you progress.

Following the performance of a PCA, a loading can be created. This plots the

results of the product of the eigenvectors and square of the respective eigenvalue.

From a loading plot several pieces of information retaining to the introduced principle

components and original dimensions of the dataset can be observed. Reading the

absolute value of a variable along the axis of one of the principle components on the

loading plot provides the influence that variable has over the considered principle

component. This absolute value can range from zero to one, with a higher value

indicating a greater weight to that principle component. Additionally, the relative

positions of the lines drawn for each original dimension can be used to determine

correlations between dimensions. Lines which are within close angular proximity

imply a positive correlation, a 180 degrees divide between them shows a negative

correlation and dimensions 90 degrees apart are considered to have no correlation.

The uncorrelated multilinear PCA has been suggested for use with unsupervised

learning for recognition tasks [121]. A MATLAB function is provided for ease of

implementation. However, this technique has not been considered in this research

as there exists correlations between hand joint angles and the technique has shown

to provide an decreasing improvement, over PCA, past a dimensionality of 20 (the

recorded Cartesian data provides a dimensionality of 60) [121].

Following recordings of hand motions in ADL, PCA was employed to attempt to

aid computational complexity in analysis by reducing the dimensionality of the data.

A large reason for this choice is the fact that the effect an original dimension has

on the variation of the data seen by the principal components can be found. This

enables the ability to identify influential joints of the hand; considered insightful

information during analysis as it supports the possibility of classification from a
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select number of directly recorded values. Additionally, the deterministic approach of

PCA enables repeatability of the results, which was appealing when concerned with

the application to different collections of hand data - enabling comparable results,

without contamination.

The t-SNE method [122] attempts dimensional reduction by projecting the data

onto a single axis, whilst preserving the relative clustering of the data. In an

application of t-SNE the data are first placed onto the lower dimensional space in

a random order. The t-SNE then pulls observations, which are closer together in

the original space, together in the new space, whilst simultaneously pushing those

observations further from others they are further from in the original space. It

determines the similarity between points by creating a normal curve for each point,

centred on the observation considered Each of the other observations are then placed

on this curved, with the horizontal distance from the point representing the distance

between the two points in the original space. The value of the normal distribution

then provides the similarity of these observations. Once the similarities between each

observation have been found, the similarities are scaled to result in a sum of one,

pj|i =
e−|xi−xj |

2/2σ2
i∑n

k 6=i e−|xi−xk|
2/2σ2

i

,

where pj|i is the conditional probability indicating the degree in which point xi

would select point xj if the selection was proportional to their probability density

under an xi centred Gaussian and n is the total number of data points. This allows

for comparability in the results for different density of clusters within the data,

explaining the variance seen in the original dimensions with a lower number of

dimensions which still retain clarity of the original clusters. A binary search is used

to determine the value of σi, which provides a probability distribution with the fixed,

preset, perplexity value. The perplexity indicates the target number of neighbours

to the selected point during the calculation of similarity.

Similarly for the reduced dimensional space, the similarity can be determined

through the conditional probability,

qj|i =
e−|yi−yj |

2∑n
k 6=i e−|yi−yk|2

,

where y are the points, similarly to that seen in the original dimensional space, in

the new space. This provides a matrix of similarity scores for each of the points in

the original space. The steps to find the similarity matrix are then repeated for the

randomly placed points in the lower dimensionality space; in this execution, however,

Student t-distribution is used in place of the normal distribution. A t-distribution
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is used because of the higher tail ends, resulting in a larger separation of clusters

in the new dimensions. By moving each point iteratively, t-SNE converges towards

a new space similarity matrix representative of that from the original space, thus

preserving the information from the dataset whilst reducing the dimensions.

The t-SNE method converges towards matching similarity matrices by minimising

the Kullback-Leibler [123] divergence of the dimensions P and Q,

KL(P ||Q) =
∑
i 6=j

pi|j log
pi|j

qi|j
.

This is minimised with a gradient descent (GD) approach. The existence of multiple

local minima and nature of the GD optimisation technique leads to a relatively low

reproducibility when compared to a deterministic method, such as PCA.

Due to the transformations undertaken during an application of t-SNE, the effects

of the original dimensions on the variance within the data cannot be determined.

For this application, knowledge of the influence of the recorded dimensions over the

variation of the data would provide insightful information. The t-SNE has not been

applied to the collected data does not have the repeatability of PCA and cannot

display the influence of an original dimension on the variation of the results.

The MDS technique [124], also known as principal co-ordinate analysis (PCoA), is

used to visually identify similarities within data points of a dataset. The application

is similar to that of PCA, however, converts based on distances among the data

points, rather than correlations. These distances can be measured with a range of

methods, common of which include: Euclidean distance, log fold change, Manhattan

distance and Hamming distance. If the Euclidean distances are used to create the

distance matrix then the results of MDS would be identical to those from PCA.

The application PCA has been preferred over MDS due to indication of correla-

tions, which could find a use in application with prosthetic hands, and known joint

correlations placing confidence in the reduction capabilities of this technique.

The raw collected data provides hand motion data within the global space. For

the purposes of this research, the only information of interest from these data is the

shape of the hands in each frame - resulting in a benefit from transforming these

data into a local co-ordinate system. To achieve this all of the joints were translated

to place the wrist at the origin of the axes and then rotated such that the first digit

MCP joint aligns with the positive y direction and the positive x direction axis

describes the posterior to anterior of the hand. These rotational transformations

were achieved through the use of 3D rotation matrices. The rotation matrices for
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manipulating a vector in 3D space about the x, y and z axes by θ degrees are,

Rotx(θ) =

1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 , (2.1)

Roty(θ) =

 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 , (2.2)

Rotz(θ) =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (2.3)

During transformation to a local co-ordinate system, the θ described the difference

in the current position and local co-ordinate position for pairwise co-ordinates of

selected palm feature points.

Processing and analysis of the data required calculation of the joint angles for the

hand. Observations of the digit joint angles employ the vector dot product, described

by,

cos(θ) =
~a ·~b
|~a||~b|

, (2.4)

where θ is the angle observed between vectors ~a and ~b. The joint angle of a select

joint can be found by translating the joint in question, the joint next more distal

and that next more proximal such that the joint in question is at the origin of the

space and then calculating the angle between the more distal and more proximal

joints using the vector dot product.

Validation of methods attempted and evaluation of the results included the

examination of Euclidean distances between pairwise data points and correlations

of datasets. During these steps the Euclidean distance, d, has been calculated in

3D Cartesian space between two points, p1(x1, y1, z1) and p2(x2, y2, z2), through the

Pythagorean theorem,

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (2.5)

The correlation between two sets of data, in this study each representing hand shapes,

has been found using the Pearson correlation coefficient [125]. For two n dimensional

sets of data, x and y, with means x̄ and ȳ, respectively, the Pearson correlation
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coefficient of these samples, rxy can be found using,

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
.

2.6 Machine Learning Techniques

The collection of numerical data to describe the hand motions observed enables

the use of artificial intelligence (AI) to examine the measurements taken. These

recorded hand motion data can be inputted into a machine learning or deep learning

approach to provide classifications. The resultant classifications would reduce the

data into a manageable size, by highlighting similar hand shapes performed. These

final groupings can be manually assess and altered to form the final, presented,

taxonomy of hand shapes found within modern ADL. This analysis ability is lacking

from previous hand analysis research, resulting in long processing times and plausible

uncertainty in the obtained results.

2.6.1 Artificial Neural Networks

Artificial neural network (ANN) classifiers are a deep learning supervised machine

learning technique designed to closely share the architecture of the human neural

network, within the brain [126]. Through rigorous learning the networks develops

to provide knowledge from desired situations. These networks are made of neurons,

each existing with a value, and synapses, connecting these nodes commonly with a

weight. These are reinforcement learning techniques, typically, employed when a full

model cannot be built for the system. Through an input of information from the

environment and network development, ANNs can deduce an appropriate response.

Commonly, these outputs of the ANNs can relate to an input to a agent within the

studied environment or predictions of the scenario occurring within the environment;

in this case it being a prediction of the functional hand shapes occurring.

A generalised structure of an ANN can be seen in Figure 2.7. Here, X represents

the neurons for each dimension of the inputted dataset, H the neurons of a given

hidden layer, Y provides each of the possible predictions which can be made, w are

the weights given to each of the synapses and b the biases given to each neuron.

Each neuron node value is multiplied by the weight of the connecting synapse as it

passes and the biases are added to each of the values of the hidden layer neurons;

these weight and biases are adjusted through reinforced training of the ANN. The

input layer takes a given, unlabelled, data entry to be labelled with a predicted
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category, provided by the output layer. The output layer consists of all the possible

labels which can be predicted; in a pass of the network each label is given a value

and the highest value proposed as the prediction for the label of the inputted data.

During the design of an ANN, variations of multiple hidden layers are created and

configured to improve performance.

Figure 2.7: A generalised structure of a fully connected artificial neural
network.

After initialising with random numbers, the network evolves through the process

of continuously repeating input and outputs for one or more set scenarios, altering

the neuron weights and bias value each time. An ANN attempts to reduce the cost

function of the network, against a task, using backpropagation. This repetition

results in a increasing accuracy, though it would not be known how exactly the final

accuracy is achieved.

In an application of an ANN the inputs may be scaled to provide a consistency

in values, desirable when observations exist within multiple different dimensions.

During execution the output of one layer, x, is used as the input, z, to the next

- influenced by the weights, w, and biases, b, of the next neuron and the synapse

between. This can be mathematically represented by,

z =
n∑
i=1

(wixi) + b.

An activation function is then used definite the output of a neuron, provided an
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input from the previous layer. A commonly employed activation function for the

output layer is the sigmoid function,

ŷ = σ(z),

where ŷ is the predicted output value and the sigmoid function σ is defined by,

σ(x) =
1

1 + e−x
.

Within hidden layers it is common to see the ReLU function as the chosen activation

function, expressed by,

f(x) =

x, if x > 0,

0, otherwise,
.

To initiate, an ANN sets each of the weights and biases with randomised values.

The first pass begins with an input of a partial training dataset, noting the difference

between the predicted output labels and actual labels. Using a loss function, the

network then calculates the loss of this pass. The loss function provides a numerical

value to describe the averaged difference between the predicted label and known

labels for an input. During learning the training dataset is divided and passed

through the ANN in batches, a pass of the entire dataset is denoted as an epoch.

The aim of training a network is to minimise this loss for a provided, training,

dataset; to achieve this learning a GD method is utilised. Once calculated, the

gradient of the loss with respect to each weight and bias is then determined. As per

the GD method, these gradients are then multiplied by the set learning rate and the

results set as the new, receptive, weights and biases of the network. The repetition

of this process results in a convergence toward a network with tuned weights and

biases, able to provide accurate predictions for given inputs.

GoogLeNet is a highly regarded ANN developed by Google, proven to produce

accurate predictions of image groupings. GoogLeNet was first introduced in Septem-

ber 2014 [127], as a 22 layered convolutional neural network (CNN). For this project

GoogLeNet is used as an ANN attempt at classifying the collected data. In 1999

Friedrich et al. [128] applied a neural network, trained on grasps from the taxonomy

introduced by Cutkosky [7], to data glove recordings, showing around 90% accuracy.

Stanton et al. [129] employed an ANN to train a humanoid robot with positional

data, collected from a motion capture suit. This described how a robot could be

controlled, with no prior analytical or mathematical knowledge, utilising an ANN to

learn the movements. Stanton et al. also stated how a change in the target robot

would only require the network to be retrained, not redesigning a full descriptive
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model. In 2009 Miller [130] implemented the application of an ANN on gait motion

capture data. This method proved that an ANN could present autonomous and

accurate detection of gait events. In 2020 Corona et al. [131] utilised a pre-trained

ResNet-50 ANN to determine which grasp would be needed for object within a given

image. The model takes an inputted image and locates the objects within it, then

determining the shape and position of each. After which a taxonomy of 33 grasps

[57] is employed to predict the most suitable grasp to approach the objects. The

final stage then refines the hand shape and pose, forming the final output.

A measure taken to assess the performance of an ANN is the creation of a

confusion matrix for a set of test inputs [132]. Given an input dataset with known

labels, a confusion matrix can be created as a tabulated figure of the predicted labels

against the known actual labels for the data. Each possible label is assigned to a

row, defining the actual labels, and a column, defining the predicted labels. For

each observation, with known label, passed through the classification model, the

element defined by the predicted and true value of this observation is increased by

one. Accuracy ratings for each are labels are given along the rows and columns

assigned to each of these labels. Reviewing a plotted confusion matrix and observing

the overall accuracy defines the performance of the classification model. Further

details of where error has arisen can be extracted through the consideration of the

individual rows and columns.

2.6.2 Classification Algorithms

Statistical classification is another respected prediction tool, a supervised machine

learning technique which labels data frames with predictions from predetermined

categories. Initially the classification algorithm is trained with labelled data; once

trained the model can be applied to like datasets for predictions of the category of

each observation.

A k-nearest neighbours (KNN) classifier is a simple and effective classifier used

widely in the literature, initially arising from an armed forces technical report [133].

To provide predictions for given data the KNN classifier uses a similarity measure.

First it is trained with a training dataset to identify the correlations between distances

of data points and the labels of each. Once presented with an unlabelled set of data,

the classifier finds the closest known label to fit each observation.

Several different measures of distance may be employed; commonly used, and

implemented within this study, is the Euclidean distance. This distance can be
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calculated for an n-dimensional dataset through,

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2,

where d(x, y) presents the distance measure between datasets x and y, xi a component

of one dataset in the ith dimension and yi a component of the other dataset in the

ith dimension.

One use of KNN, seen in the literature, is to create clusters of object point

clouds in a working environment for obstacle avoidance in a robotic arm [134]. In

2008 Heumer et al. [135] utilised classification algorithms to determine the grasps

performed whilst participants wore a data glove - an early example of the use of

automatic classification for grasp analysis. The study showed positive results with

the application of the taxonomy presented by Schlesinger [5]. It was also highlighted

that the use of PCA gave a negligible impact on the resulting accuracy.

A confusion matrix can also be created after an application of a classifier, to

visualise the accuracy between predicted and known labels in validation or testing

datasets. Another measure for performance of a classification algorithm is the receiver

operating characteristic (ROC) and area under the curve (AUC) [136].

The ROC is a graphical plot of the true positive rate against the false positive

rate. This is used to describe the performance of a binary classifier with two classes,

positive and negative. The true positive rate, also known as the sensitivity, is

the proportion of positive class observations correctly classified and false positive

rate, also known to be one minus the specificity, is the proportion of negative class

observations incorrectly classified. These rates can be expressed as,

TPR =
TP

TP + FN
,

and,

FPR =
FP

FP + TN
= 1− TNR,

where TP is the number of positive class observations correctly classified, FN is

the number of positive class observations incorrectly classified, FP is the number of

negative class observations incorrectly classified, TN is the number of negative class

observations correctly classified and TNR is the true negative rate, describing the

specificity of the model. For a non-binary classifier these rates can be simulated by

aggregating the correct and incorrect prediction for each class, enabling a relative

indication of classifier performance. In a binary classifier case the ROC is created

by first determining the sensitivity and specificity for a classifier threshold which
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classifier all observations as positive. As all positive observations would be classified

correctly and all negative observations would be classified incorrectly, this gives

both a true positive and false positive rate of one - indicating one end of the curve.

Next the threshold is adjusted such that one observation is classified as negative,

the sensitivity and specificity are calculated accordingly. This is continued until

the threshold classifies all of the observations as negative. This final sensitivity and

specificity, both of value zero, defines the other end of the curve.

The AUC is the area under the ROC curve, providing a comparable measure

between the performance of different classifiers. The AUC can be calculated from

the ROC using Simpson’s Rule [137].∫ b

a
f(x)dx ≈ b− a

6
[f(a) + 4f((a + b)/2) + f(b)],

where f(x) is the function of the curve for predicting area under and a and b are the

two points the area is to be predicted between, for the case of an ROC curve these

values are zero and one respectively.

2.6.3 Decision Tree Learning

Another method for classification is the creation of a decision tree. These methods

are a series of questions, aiming to propagate towards a predicted category for a

given input. This method was first seen formally introduced by Belson, in 1959

[138]. Despite being a simple to create and understand method this can still provide

accurate classifications to many problems.

Creation of a decision tree starts at the root node, working through the internal

nodes of each branch until the creation of a leaf node. Nodes are selected one after

another in the tree using an impurity measure, a common measure employed for

node selection is the Gini impurity [139]. The Gini impurity, IG, of a decision, d,

can be expressed by,

IG(d) = 1−
J∑
g=1

pd,g
2,

where J is total number of possible categorises the observation can be labelled under

and pd,g is probability of an observation being categorised in decision d with, known,

group g, expressed as,

pd,g =
Nd,g

Nd
,

where Nd,g is the number of observations categorised by decision d with, known,

group label g and Nd is the number of observations classified into decision d. For

each node, n, the Gini impurity, IG, is calculated using the weighted averaged of the
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Gini impurities of the decision from that node, expressed as,

IG(n) =

Dn∑
d=1

Nd

Nn
IG(d),

where Dn is the total number of decisions arsing from node n and Nn is the total

number of observations classified with node n. Working down the tree from the root

node determines each internal node, in turn, using the impurity measure; a leaf node

is selected if the current node decision has a lower impurity than the impurity of

another potential node applied after it. The tree creation finishes once all leaf nodes

have been formed.

A confusion matrix can also be made for a classifier to visualise accuracy between

predicted and known labels in a validation or testing set of data.

Decision tree classifiers are still used for a variation of classification tasks within

the literature [140–144]. Zhang et al. [141] used a decision tree classifier to design

a framework for gesture recognition using accelerometers and EMG sensors. In

2021, Pappalardo et al. [142] utilised a decision tree to identify causes of faults and

variable importance in a lane support system. After identifying drivers reliance on

lane identification systems as a cause of single vehicle and frontal crashes, this study

observed the ability to identify lane lines in the road of the system under different

conditions with varying parameters. Following collection, a decision tree was used to

provide assessment to the performance of each setting in the set scenarios. In a study

to identify cyberbullying texts, Yuvaraj et al. [143] proposed a novel deep decision

tree classifier. This classifier showed a greater classification accuracy than existing

classifiers and future work, extending on this, aims to employ this approach with real-

life high-dimensional data. Utilising a ensemble decision tree classifier, by Fraiwan

and Hassanin [144], was able to identify degenerative neuromuscular diseases from

gait motion data. The proposed solution was able to achieve a classification accuracy

of 99% for amyotrophic lateral sclerosis, Parkinson’s disease and Huntington’s disease.

2.6.4 Clustering Algorithms

Another machine learning technique often employed for the analysis of numerical

data is the application of clustering algorithms. These are an unsupervised learning

technique used to find clusters within the data without prior knowledge. There are

four commonly used types: centroid-based, density-based, distribution-based and

hierarchical.

To obtain clusters of hand motions in this study, indicative of the hand shapes

performed, a k-means algorithm has been utilised. The k-means algorithm [145–147]
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is a method of vector quantisation, comparing each data point to the centroids

(means) of current clusters - updating the clusters with each iteration. For this

reason, the k-means algorithm is labelled a centroid-based clustering algorithm. The

assigned value of k in this algorithm is simply the number of clusters the algorithm

creates.

In order to differentiate each of the observations into each of the k clusters the

k-means looks to minimise the distance between each data point and the repetitively

set cluster centre. This is achieved through optimisation of an object function, J ,

which provides a cost of each candidate solution,

J =

N∑
n=1

K∑
k=1

rn,k||xn − µk||2. (2.6)

where N is the total number of dimensions to the data points, K is the total number

of clusters desired, rn,k is a binary inductors of which cluster k data point n belongs

to (where rn,k ∈ [0, 1]), xn is the dimensional co-ordinates for each data point n in a

d-dimensional space (xn ∈ Rd) and µk is the centroid for cluster k, also belonging to

the same d-dimensional space (µk ∈ Rd). The binary cluster indicator, rn,k can be

expressed by,

rn,k =

1, if k = argminj ||xn − µj ||2,

0, otherwise.
(2.7)

To determine the minimum value of the objective function, J , the derivative is taken

and set to zero, as follows,

∇µkJ = 0 = 2

N∑
n=1

rn,k(xn − µk).

To optimise the problem numerically this equation can be solved for µk to give,

µk =

∑N
n=1 rn,kxn∑N
n=1 rn,k

. (2.8)

Using the update rules for the binary cluster indicator and cluster centroids,

provided by (2.7) and (2.8), receptively, the following steps are employed by the

k-means algorithm in order to converge towards a solution:

1. Initialise a set of µk.

2. Calculate rn,k using (2.7), with fixed µk.

3. Calculate µk using (2.8), with fixed rn,k.

4. Determine the new objective function, J , using (2.6).
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5. Repeat steps 2 to 4 until convergence of the objective function.

This can be seen as a special case of the expectation-maximisation algorithm [148] -

where the final two steps, alternated between to converge towards a final solution, can

be seen as the the E step and M step. Several studies employ a k-means algorithm as

a method to identify postures, described by the clusters, within whole body motions

[149–152].

Thong et al. [153] discuss the use of a machine learning clustering algorithm

(k-means++) for the analysis of the morphology of adolescent idiopathic scoliosis.

The study aimed to find new, clinically relevant, classification groups through the use

of machine learning techniques on 3D Cartesian co-ordinate data for 915 recordings

of spines. From these recordings, 11 subgroups, with clinically relevant significant

statistical differences, were found. This method has shown potential for simplifying

complex 3D spine models. Despite the success of this study, one limitation stated

was that higher quantities of data would be necessary for future development. This

study has highlighted that clustering is possible for biomechanical problems and

is primarily hindered by the limited amount of data that can be collected. In the

study performed by Huang et al. [73] an unsupervised clustering technique was used

in order to autonomously determine the grasps performed in first-person point-of-

view video recordings. The study showed this method to be very effective; it was

stated that the development of this should have a significant impact, across multiple

disciplines, in prehensile analysis. To validate the method both choreographed and

real life scenarios were used. The clusters determined by this method were compared

to the taxonomy introduced by Cutkosky [7] and it was seen that it had created

new groups as well as fitting the groups in this taxonomy. The results of this study

have shown that it is feasible to successfully perform machine learning on typically

collected hand motion data, providing meaningful results through an unsupervised

clustering technique. Thus, the potential of this method for hand-object interaction

and prehensile analysis has been presented.

The Calinski-Harabasz (CH) index [154] can be used to evaluate the performance

of a clustering implementation, in aid of selecting the number of clusters within the

data. This measure is determined by the ratio of inter- and intra-cluster dispersion.

Given an inter-cluster dispersion of Bk, from (2.9), and intra-cluster dispersion of

Wk, from (2.10), the CH index, CHi, can be calculated for a given number of clusters,

k, using (2.11),

Bk =
k∑
g=1

ng(cg − c)(cg − c)T , (2.9)

Wk =

k∑
g=1

∑
x∈Cg

(x− cg)(x− cg)T , (2.10)
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CHi =
tr(Bk)

k − 1

/
tr(Wk)

n− k
, (2.11)

where ng is the number of points in cluster g, cg is the centroid of cluster g, c is the

centroid of the entire dataset and Cg represents a set of data points within cluster

g. This index is quick to compute and provides a clear assessment of clustering

performance - higher values indicating clusters which are internally dense and

externally well separated.

Alternatively, the Davies-Bouldin (DB) index may be used to assess clustering

performance [155]. The DB index provides a measure of averaged similarity between

each cluster and that most similar to it. The lowest values of the DB index is zero,

with a lower value representing a greater clustering performance. This index, D, can

be calculated through,

D =
1

N

N∑
i=1

Di,

where N is the total number of clusters observed, i iterates each of these clusters

and Di, for each cluster i, is the maximum similarity measured between that cluster

and each of the clusters, provided by,

Di ≡ max(Di,j),

where Di,j is the similarity between clusters i and j (where i 6= j), calculated from,

Di,j =
Si + Sj
Mi,j

,

where Si is the intra-cluster dispersion for cluster i, Sj is intra-cluster dispersion for

cluster j and Mi,j is Euclidean distance between the cluster centroids for clusters i

and j. The centroid distance measure, Mi,j , can be calculated using,

Mi,j = ||Ai −Aj ||2 =

√√√√ N∑
k=1

|ai,k − aj,k|2,

where k iterates each of the components of the data and ai,k and aj,k are each the

kth element of clusters Ai and Aj , receptively. The inter- and intra-cluster distance

measures, Si and Sj , can be found with,

Sc =

√√√√ 1

Tc

Tc∑
c=1

|Xc,k −Ac|2,

where Tc gives the total number of observations within cluster c, Xk is kth element
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of cluster c and Ac provides the centroid of cluster c.

Another evaluation method which can be employed to determine the goodness

of a fit is the silhouette score [156]. This provides a value between negative and

positive one to describe how dispersed and clearly distinguished each cluster is from

the others. A value of negative one implies that the clusters are assigned incorrectly

and positive one shows that the clusters are distributed well and distinguished clearly.

Zero describes indifferent cluster, showing no significant differences between the

clusters. The value for the silhouette score can be calculated by,

score =
b− a

max(a, b)
,

where b is the average inter-cluster distance (the distance between the clusters) and

a is the intra-cluster distance (the distance between each point in the respective

clusters).

2.7 Models of the Human Hand

There is a significant amount of work performed to capture a digital model of the

human body. Though observation of the human hand is less common, there are still

exists several attempts to define the kinematics, observing the digit trajectory or joint

constraints, [157–163] and kinetics of the human hand, observing the resultant motion

from muscle activations, [9, 164–166]. Aristotle provided the first recorded insight

into understanding the bodies of animals as mechanical systems, using geometric

analysis to describe the actions of the muscles [167]. Early examples of dynamical

body analysis utilised photography to capture the data [168]. More recent studies

typically employ marker based motion capture systems [114, 169–173]. Models

describing the kinetics of the hand can be categorised as either solving an inverse

dynamics or forward dynamics problem. Inverse dynamics uses external forces and

the joint motions to attempt to predict the internal forces and torques which enable

the exhibited motion. The kinematic data inputs can be obtained with motion

capture systems and the kinetic force inputs from force plates or handheld force

measuring devices. Musculoskeletal models and prediction methods are used to

provide estimates of the states of the muscles. The opposite, forward dynamic

modelling, uses measured muscle activities to calculate the muscle forces and joint

torques, in order to formulate the joint motion that would result. In biomechanics

EMGs are used to capture muscle activations and, in turn, provide the muscle forces

and joint torques. Musculoskeletal models and EMG mapping scripts are used to

enable forward dynamics. There are many applications for these studies, including:
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myoelectric prostheses, exoskeletons, sports analysis, rehabilitation and ergonomic

design [172–177].

Inverse dynamic models of the upper-limb use kinematic data to create predictions

of the forces and torques acting on the joints. There have been several attempts

in the literature to utilise this technique [114, 178–182]. Of these, inverse dynamic

models have been used to examine upper-limb stresses during sporting activities [174–

176]. Furthermore, there have been several attempts to improve the measurement

techniques used during data collection for inverse dynamic models [169–171, 183].

In 1995, Happee and van der Helm [178] presented an early inverse dynamics model,

investigating fast goal directed arm movements. It was seen that the 95 element

muscle model could provide adequate measures in comparison to EMG recordings

overall, with only some results lacking in subject dependant EMG activities. In

2003, Rasmussen et al. introduced a musculoskeletal model of the human body,

AnyBody [179]. This demonstrated a versatile musculoskeletal model, intended for

use in ergonomic optimisation. Later, an LMC was integrated within this system

to provide a means of capturing data for the inverse dynamics of the hand [114].

Subsequent work then proceeded to fully integrate the hand within the framework

of AnyBody, using anatomical data from cadaveric specimens, to include all of the

intrinsic and extrinsic muscles of the hand and provide patient-specific scaling [180].

Under assessment with motion capture data, the model was able to demonstrate

adequate correlations. This allowed for the later application of this model in the

simulation of distal radius metaphyseal fracture healing [181]. In 2005, Tsang et

al. [182] introduced a musculo-tendon model of the hand and forearm for forward

and inverse dynamic simulations. This model was able to yield various correct

control solutions to an inverse problem, with it also demonstrating the ability to

filter to an optimal solution. The concluding notes of this study stated the possible

applications of the model within a clinical environment, identifying the muscles

required for unconstrained motions, and in animation, allowing for improvements to

synthesised hand animations. In order to allow for the unconstrained measurement

hand kinematics, Buczek et al. [169] introduced a six DoF hand model for use

during motion capture. Noting the limitations imposed from the use of joints

with one or two DoF, the model was created for six DoF measurements of digits.

Experiments concluded that the model worked well for motion capture applications,

providing results with ample accuracy for inverse dynamics. Furthering the potential

effectiveness of this model, it also showed an ability to identify when there had

been exposure to repetitive stress in a hand. A study by Bisseling and Hof [170]

examined artefacts from the impact on force sensors during inverse dynamic analysis

of the knee. The study attempted to remove these artefacts causing inaccuracies in

the assessment of body torques. Within this, variations to the cutoff frequency of
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a low-pass filter on the recorded positional data were explored. It was concluded

that filtering the force data on impact removed these artefacts. The results of this

study led to recommendations to not consider any relationship found with the peak

impact force and torque during clinical studies, as these were seen as artefacts in the

recordings. Though this study had focused on ground force plates and knee motion,

this method could hold the potential for adaptation to force sensors in hand contact

analysis. In 2022, Sterner et al. [171] introduced the possibility of using inverse

dynamics with body part masses calculated using dual energy X-ray absorptiometry

to predict baseball pitching arm kinetics in youths. Following the collection of upper

arm, forearm and hand masses using dual energy X-ray absorptiometry, segment

masses and kinetics were calculated using scaled masses. The new masses were

subsequently compared via paired t-tests and regression analysis. It was found

that the dual energy X-ray absorptiometry masses differed from previously used

scaled masses, with arguments made that there was higher patient specific accuracy

from these measurements. These new masses resulting in correlations being drawn

between shoulder and elbow kinetic parameters and body measurements, supporting

suggestions put forward from previous studies [174–176].

Forward dynamic models of the upper-limb use measured internal parameters

and kinetics to determine the current position of the hand and digits. Within

the literature there have been numerous attempts to employ this methodology in

musculoskeletal modelling, to provide a greater understanding and enable control of

the upper-limb [9, 172, 173, 184–186]. Alongside these, there have been attempts

to improve the means of data collection for the inputs to these models [187, 188].

Forward dynamic simulations have also been used to simulate scenarios which could

be dangerous or unwanted for real world experiments [177]. A musculoskeletal

model introduced by Wohlman and Murray, in 2012, [184] and later in improved by

McFarland et al., in 2022, [185] provided a forward simulation of the hand. The initial

intent of this model was to investigate the relationship between muscle forces and

thumb-tip endpoint force. This was achieved through modifications to an existing

model [186], adding definitions of the muscle-tendon paths and forces generation from

five intrinsic muscles. This study showed the importance of accurately defining the

axes of rotation for the thumb joint when simulating the endpoint forces produced

by muscle activations and highlighted the difference made to the muscle control

strategies and force transmissions when the wrist muscles were surgically altered.

Furthering this work, McFarland et al. [172] simulated maximum grip and pinch force

through the addition of a control framework combining forward dynamic simulations

with a simulated annealing optimisation. It was shown, through experimental data,

that the model could accurately provide the maximum grip force, yielding further

advancement of this model. In 2017, Blana et al. demonstrated control of a prosthetic
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hand through a forward dynamics hand model solely employing the extrinsic muscles

of the hand [9]. The model was shown to be able to operate in real time, provide

accurate grasp control and respond to alterations in gripping force [173]. In aid

of data collection for forward dynamic models, Nasr et al. [187] tested different

regression models for the mapping of sEMG signals. Four methods were tested:

ANN, recurrent neural network (RNN), CNN and region-based convolutional neural

network (R-CNN). It was found that the RNN model, taking inputs of filtered sEMG

and delayed kinematic data, was the most accurate for mapping estimation. This

method boasted a 96.4% regression accuracy for estimations of joint angle, velocity,

acceleration, torque and activation torque. Additionally, R-CNN was able to provide

accurate performance with delayed kinematics and raw EMG data, displaying an

average regression accuracy of 95.9% utilising these prediction measures. Conclusions

from this study argued the usefulness of this method for application in the forward

dynamic simulation of musculoskeletal models. In 2021, Hao and Nichols [188] tested

two existing contact models for determining finger contact mechanics, arguing that

finger contact mechanics are lacking in forward dynamic simulations of hand-object

iterations and are key to future developments in this area. Of particular note were the

alterations to friction which occurred as the contact area was changed. Both models

tested displayed an ability to perform well with the forces experienced during hand-

object contact, with each showcasing advantages over the other in different scenarios.

It was concluded that the inclusion of either is recommended in musculoskeletal

models of the hand. Several studies have used experimental testing to examine arm

reactions in response to forward falling in the elderly [189–192]. Through some of

these studies, it has been shown that the angle of the elbow has a high influence

on the ability to absorb impact energy and control the fall [189–191]. It was also

seen that muscle atrophy resulted in a lessening of the ability to arrest a forward fall

without sustaining damage [191]. A study by DeGoede et al. found that the impact

force on the hand was reduced by more than 40% upon decreasing the initial elbow

extension and velocity of the upper-limb, relative to the impact surface - proving a

link between the initial angle of the elbow and ability of the muscles to react timely

during a fall [189]. In 2003, DeGoede and Miller [177] introduced simulations to

examine the effects of different elbow extensions during falls. A move towards the

use of forward dynamic simulations in this area would reduce the necessity for real

world experiments of the unwelcome task. These forward dynamic simulations of

the upper-limb during falling were able to also draw the same conclusions as the

experimental studies [189–192] - showing potential of this method to replace the

necessity for real world experiments.

The kinematics of hand motion has been observed in several studies. In 1991,

Rijpkema [157] created an early computer animation of the hand for animating grasps -
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intended for grasp planning in robotic devices. A kinematic model of the middle finger

demonstrated the natural actuation of the digit could be mathematically defined

[158]. Though validated with experimental data from the functional excursions of

the muscles, the foundations of the analytically formed mathematical model of the

hand were simplifying assumptions. More recently, in 2014, Rahman et al. [159]

adopted a trajectory planning method to describe the movements of individual digits

of the hand. In this model the data are recorded with FlexiForce sensors and a

mathematical model of finger trajectory created using the Curve Fitting Toolbox

in MATLAB. This model uses the Denavit–Hartenberg method to perform the

kinematic analysis of the motion of each digit. Also of interest to the study of the

hand is how the motions of the joints correlate with each other. Identifying and

understanding any potential interconnected motions would aid in the design and

development of simulations and devices aiming to replicate the motions of the hand.

Within the literature a consensus has been formed that there exists a correlation

between the DIP and PIP joints [193–195]. Hahn et al. [193] used 3D ultrasound

based motion capture system to record opening and closing hand motions of 17 able

bodied participants. The results showed a close relationship between the DIP and

PIP joint motions, observing that one degree of PIP joint flexion caused an average

0.76 degrees of DIP joint flexion. This correlated motion was seen equally prominent

in dominant and non-dominant hands. These findings were later supported by the

work of Holgúın et al. [194], in a study assessing hand motion video recordings of 18

healthy volunteers. Furthering the understanding of the correlated motion observed,

Holgúın et al. also saw that the motion was lead by the PIP joint. Understanding

this correlation brings the possibility for simpler, yet amply effective, designs of

simulation models and hand prostheses.

Some studies aim to understand the constraints of the joints, which dictate

the possible motion seen from a kinematic study of the hand. Cobos et al. [160]

studied the constraints of the hand, following on to then create a model utilising

these constraints in the following year [161]. The constraints were modelled with

mathematical equations describing how certain digits are naturally pulled by the

motion of other digits. The kinematic model treated each of the joints in the

digits, bar the metacarpophalangeal of each of the fingers and carpometacarpal, as

revolute joints, the metacarpophalangeal of each of the fingers and carpometacarpal

of the thumb were treated as two revolute joints with their axes of rotation placed

perpendicular to each other. This model of the hand is relevant when designing

and developing a prosthetic hand as similar to a human hand as possible. A few

years later, Chen et al. [162] also explored the constraints of the hand and created a

mathematical model from these determined constraints. Chen et al. expanded on

the constraints given by Cobos et al. [160], exploring the different constraints seen
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when different grasps are performed, but, overall, both showed agreement regarding

the constraints and kinematic models proposed.

Additionally, studies have attempted to capture the motions exhibited by the

wrists. In 2016 Rainbow et al. [196] reviewed the existing literature surrounding the

kinematics of the wrist. This study focused on the early rehabilitation of radiocarpal

injuries; the study resulted in ideas for a dynamical treatment of carpal injuries which

can be tailored for each individual patient, based on the research performed in wrist

kinematics. Murgia et al. [163] used marker-based optical motion capture to collect

everyday use of the wrist in cyclical tasks. The study finds that the wrist kinematics

of healthy subjects, during ADL using cyclical tasks, was able to be described by

simple rotations about the axes of a co-ordinate system defined by the markers. The

possible use of EMG for determining the motion of the wrist is argued by Jiang et

al. [164], arguing seen effectiveness based on the fact that myoelectric control from

the wrist in unilateral transradial amputess would become more intuitive. Lemay

and Crago [165] employ forward dynamic modelling to provide a simulation of the

forearm and wrist motions, using a Hill-type model of muscles to replicate these

motion of the upper-limb. Constraints were imposed on the motion of the joints in

the form of passive torques, determined from experimental results. It was commented

that the model was able to correctly determine the direction of the torque vectors at

the wrist; however, it was seen that it predicted much greater torques than those

measured when stimulating the paralysed muscles of one tetraplegic subject.

Though limited, there exists attempts to review the kinetics of the human hand.

A musculoskeletal model introduced by Blana et al. [9] showed the capability of

prosthetic hand control with only extrinsic muscles in real time. Later the model was

reviewed and simulations of use in prosthetic control reported [173]. The findings

showed that: model provided the accuracy required for grasp control, the simulation

was proven to be of an adequate speed for use in real world (with the consideration of

a loop involving the hardware and a user) and demonstrated an ability to respond to

alterations in the gripping force whilst the user held an object. This model employed

force dynamic principles to determine the joint angles of the hand from muscle

excitations measured using sEMG sensors. In 2021, Smirnov et al. [197] used a light

gradient boosting machine and fully connected ANN to applied machine learning

in the approximation of moment arms and muscle length relationships for provided

hand postures. This technique showed low application errors for both approximations

and provided confidence in the potential from applications of machine learning with

musculoskeletal models of the human hand.

The musculoskeletal model of the hand presented by Blana et al. [9] has been

employed within a muscle excitation prediction method presented. For application
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of the model and understanding of the musculoskeletal model was required. This

model is a forward dynamics model, utilising known muscle activations to determine

the joint angles of the hand. As presented by van den Bogert [198], a first-order

Rosenbrock method [199] is used to advance the output of the model (included in

which are the digit joint angles) one time step, provide a set of muscle excitations at

that next time step.

The Rosenbrock methods are stiff differential equations employed to solve ordinary

differential equations. Given a vector of the musculoskeletal model state variables

(the joint angles, joint angular velocities, contractile element lengths and muscle

activations), x, and a vector of the muscle excitations, u, at the next time step, the

musculoskeletal model [9] and Rosenbrock method can be used to calculate the joint

angles for the given muscle excitations, at time step h seconds advanced from the

occurrence of the current joint angle,

∆x =

(
δf

δx
+

1

h
· δf
δẋ

)−1(δf
δẋ
· ẋn − f(ẋn, ẋn, u̇n)− δf

δu
· (un+1 − un)

)
, (2.12)

xn+1 = xn + ∆x, (2.13)

ẋn+1 =
∆x

h
,

where n is the current iteration number, f(xn, ẋn, un) is the dynamics imbalance of

the system (provided as an output from the musculoskeletal model) and δf
δx , δf

(δẋ and δf
δu

are the Jacobians of the system (also provided as an output from the musculoskeletal

model). Given an initial state, xn, derivative, ẋn and muscle excitations at that

time step, un, the model can simulate future states, h seconds away, provided the

knowledge of muscle excitations at that, next, time step (un+1).

Blana et al. utilised this model to provide control of a prosthetic hand [173].

The hand begun in an equilibrium position, providing the initial xn and un. The

sEMG signals were recorded during the movements performed by the hand. These

sEMG recordings were then normalised and mapped onto the muscle activations;

this information was used to determine the each of the muscle excitations during

hand motion, utilised as un+1. Inputting this obtained knowledge into (3.1) would

determine xn+1, from which the first 16 elements can be extracted to provide the

joint angles of the hand. These joint angles were then sent to the prosthetic hand,

resulting in an animation of the prosthetic hand equal to that of the observed hand.

This is then repeated through several user hand movements, updating xn, ẋn and

un every h seconds and recalculating xn+1 given each un+1.
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2.8 Determining Muscle Excitations

Knowledge of the muscle excitations performed aids the development of upper-limb

prostheses and exoskeletons; further to this, recordings of muscle excitations can

be utilised to provide previously unknown information during surgeries, enable

alternative options for motion capture and aid in patient assessment. A clear option

for obtaining the muscle excitations performed is through direct measurements,

employing EMG sensors, [29, 141, 173, 200, 201].

Intramuscular EMG readings allow for a direct measurement of the muscle

activations. However, employment of this technique requires the use of invasive

sensors and readings are depend on the placement of these sensors. The use of sEMG

devices enables the capture of these muscle activation without need for an invasive

strategy. This technique also suffers from dependencies on sensor placement and is

prone to contamination from crosstalk between muscles, arising from the difficulty

to isolate a single muscle observed from the skin surface.

Though limited supporting literature exists, it is feasible to make predictions of the

muscle excitations from kinematic data alone [202, 203]. It is clear that a prediction

method would not be able to provide the level of accuracy offered by experimental

measurements; however, small increases to the accuracy of these methods would

occur as musculoskeletal models of the hand and prediction techniques improve in

fidelity. Vast amount of kinematic records of hand motions exist; the application of

predictive models could potentially provide an indication of the muscle excitations

occurring within these existing data, without the need for additional data collection.

Given that hand can only take on a finite number of hand shapes, adding to a

database of known muscle excitations for certain hand shapes would make future

queries quicker and easier - accuracy to the desired hand shape can be provided

when no existing hand shape exactly matches.

Measurements of muscle activity are acquired through invasive or sEMG recordings.

Signal decomposition of these recording is then required to assign muscle activations

to the appropriate motor units (MUs). There are several strategies employed to

achieve this, with new methods proposed often [204, 205]. In 2006, De Luca et al.,

introduced a means for the decomposition of sEMG signals [204]. This utilised AI

to decompose the signal into the action potentials of the constituent MUs. When

compared to a needle sensor, the sEMG with autonomous decomposition achieved an

accuracy ranging between 75 and 91% - this was increased to over 97% with manual

intervention. Despite this high accuracy, it was observed that the MU yield was lower

than that of the needle sensors; this highlights an inconsistency with the real world

and would need remedying before this method is seen to be acceptable. The future
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work proposed was to improve accuracy further and, more importantly, attempt to

provide an increase MU yield. This study has shown success but has only been tested

with orbicularis oculi, platysma and tibialis anterior muscles; there is a potential

for the theory to transfer to the hand, but this is difficult to conclude without

further tests - especially as the muscles which were tested are larger than those

seen around the hand, making for easier placement of the sEMGs. Upon comparing

high-density sEMG recordings to an invasive technique, Holobar et al. found the

use of sEMGs to be a valid method for the assessment of MU behaviour during

low-force contractions [205]. In this study the tibialis anterior, biceps brachii and

abductor digiti minimi muscles were observed and invasive pairs of wire electrodes

were used to capture the bipolar intramuscular EMG signals. The decomposition

of the sEMG provided strong similarities to a state-of-the-art intramuscular EMG

technique, showing further feasibility of the use of sEMG. The tibialis anterior and

biceps brachii results showed adequate R-squared values, but those from the abductor

digiti minimi were not able to produce similar confidence - thus this approach would

need improvement and further testing before it can be confidently employed with

sEMG recordings from the hand.

Aiming to aid minimally invasive spinal surgery, in 2010 Uribe et al. [206] reviewed

the the possible uses of EMG for intraoperative neurophysiological monitoring. It

was seen that the applications of EMG during transpsoas lateral surgical approaches

reduced complication rates from 30% to less than 1%. This research concludes by

arguing for the significance of EMG during minimally invasive surgical procedures,

stating the additional safety provided and highlighting the importance of the safe

passage granted during the minimally invasive lateral retroperitoneal approach. In

2021, Sugiarto et al. [207] proposed a means for the reduction of end-to-end latency in

VR systems utilising EMG readings, inertial measurement unit (IMU) measurements

and a predictive model trained through deep learning. This intervention could

alleviate issues arising from the use of VR applications, most notably: motion

sickness. To achieve this, pre-processed EMG and IMU readings were inputted into

a trained prediction model to provide an accurate prediction of the head orientation

at that time. The proposed method was found suitable for use in VR applications

which exhibited high-intensity or abrupt movements on the users.

In 2009, Castellini and van der Smagt [29] noted the lacking capabilities of hand

prostheses control and proposed a novel means of achieving this. Here, ANNs,

support vector machines and regression algorithms were employed to provide control

of a prosthetic hand using sEMG measurements. The methods used classifications of

hand shapes to provide predictions of the digit joint angles and forces in a presented

scenario. The proposed solution was able to provide control of a prosthetic hand to a

greater degree of accuracy than the state-of-the-art, at the time, was able to provide.
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Within this study only a single subject was tested, resulting in no ability to evaluate

inter-subject reliability for this method. This subject was able-bodied and the study

mentioned that it would be difficult to train the model on amputees, as it requires

synced hand responses to the muscle activations to train the model. It was suggested

that in these scenarios the desired motions could be performed with the other hand.

However, this would not be the same as the tested method, leading to uncertainty in

the application of this, and provides no tactile feedback from the contact, resulting in

a potential for less than realistic outcomes. Though these limitations exist, the study

was able to show success with the tested subject. If a way of training this control

technique with amputees was found, it could be utilised but would require retraining

for each individual. Though limited, this does show a possibility of this method

in aiding upper-limb prosthesis control. Zhang et al. [141] utilised accelerometers

and EMG sensors to provide a framework for hand gesture recognition, aiming the

implementation at classification of Chinese sign language. To achieve this a decision

tree and multi-stream hidden Markov model was used to classify the accelerometer

and EMG readings. This work achieved a gesture recognition accuracy of 98%, finally

concluding with the possible applications of this method in multiple areas of gesture

study. In this study only one hand was observed, though the Chinese sign language

can employ both hands. The future work highlighted understands this flaw, as well

as the lack of consideration for gaze, facial expression and body posture. There was

also a desire to collect more data, for a more robust gesture recognition method.

In 2021, Khomami presented an algorithm for Persian sign language recognition

utilising IMU and sEMG measurements [200]. Through the employment of a KNN

classifier, the proposed method was able to achieve an average accuracy of 96%.

However, the small dataset of 20 signs performed by inexperienced volunteers limits

the conclusions of this study. These volunteers had only been taught the signs at the

time of the study and provided a mixed range of habits and speeds, which influenced

the accuracy of the algorithm and limited the quantity and quality of the available

training data. Further testing of hand signs would be required before adoption of

this method is considered, with the hope that they are performed by experienced

subjects to ensure quality in the collected data. These, among other works on sign

language recognition, help form a database of recorded practical hand shapes and

highlight potential means of collecting gesture data [141, 200, 208, 209]. A review

of ANN and linear discriminant analysis for the classification of hand motion from

EMG signals [201] found both to be a feasible means of classification of EMG signals.

This work aimed to aid myoelectric prostheses, providing a means to determine

the desired hand shapes from EMG measurements. During collection, surface and

intramuscular EMG data were recorded. The implemented ANN was proposed as

the technique for classification as it was able to achieve an averaged accuracy of 95%,
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across two datasets. The future work stated the desire to test more classification

techniques and investigate the ability of pattern recognition methods in aiding the

end accuracy. Through the presented current understanding and possible future

developments, this ability to classify EMG signals shows the potential for improving

upper-limb prostheses control.

The ability to predict muscle estimations would enable the utilisation of non-

invasive measurement strategies, and existing kinematic data collections, to ap-

proximate muscle excitation data. The literature is sparse but there exists some

attempts to achieve this. Attempts to predict muscle excitations from kinematic data

in the literature are limited and typically associate with the lower-limb [202, 203].

Zaman et al. [202] aimed to provide analysis of muscle forces during heavy lifting

given, exclusively, kinematic data. This was achieved through the combination of

a predictive skeletal model and OpenSim modelling. The skeletal model predicts

the motion, ground reaction force and centre of pressure during the motion, which

are inputted into OpenSim to simulate the motion and analyse the muscle forces.

The study outlined a predictive model for the analysis of lower-limb muscle forces.

Though using a 3D musculoskeletal model, only the sagittal plane data were given in

the predictive model; because of this, the results do not capture internal rotations,

abduction or adduction. Furthermore this study lacks experimental support for

the results obtained. Additionally disadvantaging, this study provided full body

motion muscle predictions without the arms and hands. In spite of these limitations,

this study has shown the feasibility of the application of predictive musculoskeletal

modelling. Manzano and Serrancoĺı [203] looked at replicating EMG recordings

from kinematic data alone. The correlation coefficients between the predicted and

experimental EMG signals were higher than 0.7 for ten out of the 11 muscles tested,

leading to the conclusion that the utilised method provides confident predictions of

EMG signals. The findings support the use of this technique for real time, accurate,

prediction of lower-limb EMG readings. One limitation of this, however, is that only

11 muscles of one leg were tested with one task (running). As synergies between

kinematics and EMG signals have been seen to be task specific [210, 211], only

testing one task limits the robustness of this method. Due to this, future work was

stated as to focus on the collection of varying tasks, in order to learn the synergies

of each. Though limited to the tested cases, a framework for EMG data predictions

was provided within this study - showcasing feasibility for the creation of these

predictions. No literature attempting to predict the muscle activations of the hand

from single frames of kinematic data, exclusively, were found.
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2.9 Optimisation Techniques

It was decided that a muscle excitation prediction technique developed should be

focused on application with the data collected and, therefore, would be a use of an

existing model with an optimisation technique to find the muscle activations, from

ADL, using the collected, kinematic, data. As seen previously, little work exists in

this area, with no present work for the hand. Different optimisation techniques were

attempted and each are described subsequently.

2.9.1 Genetic Algorithm

The genetic algorithm (GA) method was first shown implemented by Holland in

1975 [212]. This technique was designed to solve problems by a means similar to the

development of living organisms, mimicking the mechanics of evolution and natural

selection. The intentions of this techniques was to solve problems where deterministic

algorithms were too costly.

A GA implementation is initialised with a predetermined or randomised set

(population) of initial candidate solutions (chromosomes) comprised of variable

elements (genes). Each chromosome of the population is then evaluated to determine

their cost. A loop is then begun, first selecting the parent members. For parent

selection here a roulette wheel selection method was used. To perform a roulette

wheel selection the summation of the costs of all the chromosomes is calculated and

the percentage of this total which each chromosome occupies is calculated. These

chromosomes are sorted in ascending order and the cumulative sum of the cost

percentage for each is calculated. A uniformly distributed random number (U(0, 1))

is then created and compared to the cumulative sum for each chromosome, the first

of these above the random number generated is identified as a parent.

Following the selection of the parents (parent1 and parent2), children (child1 and

child2) are created using a crossover function,

child1(i) = α(i)parent1(i) + (1− α(i))parent2(i),

child2(i) = (1− α(i))parent1(i) + α(i)parent2(i),

where α(i) ∼ N(0, σ2c ) and the index variable, i, indicates the gene of the chromosome

considered. Parent selection can alter exploitation, giving influence to candidate

solutions closer to the optimal value. Exploitation influences the ability of the

technique to quickly converge on a known minimum, a high exploitation offers fast

convergence to a prediction with lower cost but with a higher risk of the output
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being a local minimum.

Gene mutation applies a random mutation to a random selection of the children.

In this application,

flag(i) =

true, if U(0, 1) < µ,

false, otherwise,

child(flag) = child(flag) +m(flag),

were used to mutate the children; where µ is the preset mutation rate, m is a set of

normally distributed values with a mean of zero and variance of σ2m (m ∼ N(0, σ2m))

and the index variable, i, cycles through the genes of each chromosome. Gene

mutation can alter exploration, allowing random mutations to the population in

order to maintain a large search region. Exploration describes the ability of the

technique to find new possible minima, a high exploration results in a lower risk

of convergence towards a local minimum. A balance between exploration and

exploitation is key to a fast convergence to the optimal solution.

Following mutation the members are tested against the set lower and upper

bounds, limited within these if they are found outside of them. The new population

is then evaluated, calculating the cost of each chromosome. The population is sorted

in descending order of cost and any members past the set population size are removed

from the end, until the desired population size is reached. The best solution found is

compared to a preset threshold after each iteration, if it found above this value then

the loop continues from parent selection with the new population.

The use of GA has spread wide in the literature, displaying high levels of support

for use [213–218]. In 2003, van Soest and Casius [213] showcased the abilities of GA

with biomechanical engineering problems, concluding the advantage of GA in solving

high-dimensional, non-smooth or discontinuous datasets. Nair et al. [214] combined

a GA and non-linear finite element analysis to estimate the material parameters of

intact ventricular myocardium, arguing the challenges faced with this in the fast due

to the highly non-linear material behaviour. The effectiveness of this technique was

demonstrated by determining the unknown material parameters of a 3D model of

the heart with an exponential hyperelastic material law; the algorithm was able to

converge to parameters within 5% of the true values. In a two-dimensional (2D)

model, the optimised material parameters were found within 0.5% of the true values.

The method was concluded to be a robust method for estimating myocardial material

parameters in 2D and 3D modelling.

In 2021, Wang et al. [215] looked into the use of a GA to generate assistive torque

for an ankle exoskeleton. The GA optimised torques were found superior in control

and ability to adapted to muscle efficiency, when compared to a proportional assistive
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torque method. You et al. [216] employed a GA to aid tendon-transfer. Noticing

the aid given by a passive implanted device during ECRL-to-FDP tendon-transfer

surgery, this study aimed to determine the optimal geometry and location for this

device. It was seen that the optimised device provided an 11 times increase in

finger kinematics, displaying only a 0.9% decrease in joint toque, when compared to

biomechanical function enabled by the current suture-based surgery.

Recent studies have employed GAs for increasing the influence of individuals in

social networks [217] and as aid to medical administration systems for scheduling

medical treatment [218].

2.9.2 Particle Swarm Optimisation

Particle swarm optimisation (PSO) was first introduced in 1995 by Kennedy and

Eberhart [219]. The PSO method was introduced as an optimisation technique for

non-linear functions. The method utilises observations made of the movement of

flocks of birds and schools of fish seen in social models. This method was described

similarly to that of birds finding food, with no previous knowledge of the location of

the food the birds work socially to determine the location. The communication and

learning seen between members of a population formed the basis of the communication

and learning technique employed between particles in the swarm during PSO, though

individually unintelligent it is the communication which allows intelligent learning

from the swarm.

Following changes, an improved version was presented by Poli et al. [220]. This

paper reviewed the uses of PSO and observed growth in research, highlighting any

alterations to be made highlighted by researchers. Most notable alteration was the

addition of an inertial weight proposed by Shi and Eberhart in 1998 [221]. The

update to the velocity of a particle were presented in terms of the previous velocity,

personal best and global best. In consideration of these forces, the change in velocity,

acceleration, can be written as,

∆~vi = ~fi − (1− ω)~vi,

where ~vi denotes the velocity vector of particle i, ~fi the force acting on it as

combination of the personal and global best terms and ω the inertial weight given.

This constant 1− ω acts as if it is a friction coefficient and enables adjustments to

the movement of particles by varying ω. The improved model was considered for

implementation within this research.

A PSO implementation is initialised with a predetermined or randomise set initial

candidate solutions. Each particle is tested in the function to be minimised, the
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outputted result from inputting each particle provides a cost of that particle. After

each iteration the results are compared to the stored personal best of each particle

and the global best and updated if a new best solution is found.

Given the current position, velocity vector, personal best and global best of each

particle their is then calculated using,

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1),

where ~xi is the position of particle i, t denotes the current time step, ~vi provides the

velocity of particle i.

The velocity vector, for particle i, is calculated using,

~vi(t+ 1) = ω~vi(t) + r1c1(~pi(t)− ~xi(t)) + r2c2(~g(t)− ~xi(t)),

where ω the preset inertial weight used to give influence to the velocity component,

r are random uniformly distributed values between zero and one (r U(0, 1)), c are

adjustable acceleration coefficients used to weight the effect of the personal and

global best, ~p represents the personal best position found and ~g represents the global

best position found. The velocity equation consists of terms referred to as: the

inertia ω~vi(t), the cognitive component r1c1(~pi(t)− ~xi(t)) and the social component

r2c2(~g(t)− ~xi(t)). It can be seen that the inertia term provides influence on the next

position from the velocity of the particle, the cognitive term gives influences from

the knowledge of the best solution from the particle alone and the social component

that knowledge from the swarm as a collective.

Weighting can be given to the personal and global best scores to alter exploration

and exploitation. Exploration describes the ability of the swarm to find new possible

minima, a high exploration results in a lower risk of convergence towards a local

minima. Exploitation influences the ability of the swarm to quickly converge on a

known minima, a high exploitation offers fast convergence to a prediction with lower

cost but with a higher risk of the output being a local minima. A balance between

exploration and exploitation is key to a faster convergence to an optimal solution.

Many biomechanical studies have employed the PSO technique [222–227]. Schutte

et al. [222] tested the use of optimisation algorithms in solving biomechanical

based problems, arguing the difficulty of these problems due to the likely high

noise, multiple local minima and possible design variable scaling that could occur.

It was seen that PSO performed comparatively well in the test situation. It was

also shown theoretically that PSO was insensitive to design viable scaling and

proven practically - as a result PSO was argued to be more suited to biomechanical

optimisation problems. A review of PSO by Saini et al. [223] found the technique to
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be able to work well in a high-dimensional search space when used as human motion

tracking from video sequences, a very challenging task. This work was later updated

with an implementation of hierarchical multi-swarm cooperative PSO for human

motion tracking [224]. Though fought with several limitation, Saini et al. argue

the capabilities of this technique and possible uses in low-cost robust tracking from

stroke rehabilitation in clinics.

Kwolek et al. [225] presented a method employing PSO for markerless human body

tracking to provide robust and accurate results, using a Vicon system as a ground

truth. Chang et al. [226] implemented PSO as part of a technique to determine key

frames in human motion capture data, providing experimental results supporting the

use of this method in the presented context. Rokbani [227] showed how PSO could

reasonably generate the gait of a bipedal robot, showing the techniques capability to

handle 3D data efficiently.

2.9.3 Gradient Descent

The GD method was first introduced by Cauchy in 1847 [228]. It was first introduced

as a method for solving systems of simultaneous equations, suggested as a means

of determining the movement of a star with great precision. The concept of this

method is to take large steps towards an optimal solution when far away from it and

then increasingly smaller steps as the method converges towards the solution.

An implementation of the GD method begins with random or pre-decided initial

conditions. This method utilises the derivatives of the loss function; typically

considered as the sum of the squared residuals (the difference between observed and

predicted joint angles). These derivatives are used in aid of determining the lowest

possible sum of squared residuals. If multiple variables exist within the problem then

derivatives are taken with respect to each. If there are two or more variables to the

equation considered and, therefore, derivatives of that function, these derivatives are

labelled as the gradient. The gradient is used to descend to the lowest point in the

loss function (commonly found by the sum of squared residuals) - providing the name

gradient descent. The derivative of the sum of squared residuals is then multiplied by

a learning rate to determine size of step taken; when considering multiple variables,

this step is performed simultaneously for each.

In a case where the equation for the problem is not known, numerical differentiation

can be applied to provide an estimate of the gradient at each iteration [229, 230].

The, commonly applied, central difference numerical method can be defined with,

df(x)

dx
≈ f(x + h)− f(x− h)

2h
, (2.14)
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where f(x) is the function to be differentiated with respects to variable x and h is

the step size between the two observed inputs into the function (where h� 1). The

stopping criteria for this method can be either a preset threshold value of the step

size or a maximum number of iterations.

The following set of procedures are performed by gradient descent when imple-

mented:

1. Determine the gradient of the loss function considered.

2. Assign initial parameters.

3. Find gradient of those parameters.

4. Calculate the step size by multiplying the learning rate by the calculated

gradient, for each parameter.

5. Calculate new parameters by subtracting the step size from the current can-

didate solution.

6. Repeat steps 3 to 5 until the minimum step size or maximum number of steps

have been reached.

The use of the GD method is prominent in the literature, showing support in

biomechanics [231–233] as well as other fields of study [234, 235]. Todorov and Li

[231], in a study of biological movements, utilised the GD approach to optimise the

control of a two-link arm model. Desapio et al. [232] employed the GD method for

minimising muscle activations of a three DoF model of the human arm, aimed to aid

robotic and biomechanical design. In 2021, Wu et al. [233] applied the GD method

to enable a transfer of EMG data from one patient to another, enabling an increase

to the learning speeds in the control of human-machine interface (HMI) devices.

2.9.4 Brute-Force Search

An alternative method considered was the implementation of a brute-force search

across all possible solutions. A brute-force search is an exhaustive search technique

which systematically enumerates all possible candidate solutions to a problem. This

would be quick to design but would require an excessive amount of time to execute,

as it tests the output of every possible input.

The length of time can vary dramatically depending on the number of elements

in the solution vector and the resolution desired. Given n as the number of elements

in the solution vector, in which each element can take one of two states, then the

number of combinations required in a brute-force search would be 2n. Changes to

the number of possible states for each element of this vector alters this equation

to sn, where s denotes the total number of possible states for each element. If a

higher resolution is required the increments between each candidate solution tested
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must be reduced. Increasing the total number of states and rewriting the previous

equation in terms of the incremented value between these states, i, gives the total

number of combinations as (1 + 1/i)n. It can be seen that as the number of elements

increases and the incremented value is reduced this total number of combinations

rises exponentially.

The following steps can be used to easily create all possible combinations of the

candidate solution vector, enabling an exhaustive search of all possible attempts:

1. Initialise with a candidate solution vector in which all elements are set to the

minimum value.

2. Increase one of the elements by the increment value, repeating this each iteration

until the maximum of that element is reached.

3. This element is then reset and the next element raised by one increment.

4. The first element to be increased is then increased again each iteration until it

has reached the maximum value, where it is reset again.

5. The next element is raised by one increment again and the first element reset.

6. These steps are repeated until all of the elements of the candidate solution

have reached their maximum value, implying all possible combinations have

been considered.

Though it is seen as an inefficient search mechanisms, brute-force search has still

found use in recent studies [236, 237]. In 2018, Alagoz [236] demonstrated use of

brute-force search for the stabilisation of closed loop control systems. In 2021, Susuki

et al. [237] used a greedy algorithm and brute-force search to determine the optimal

amplitude and phase of transducers in an array in order to produce a desired sound

field - support was shown for the application of a brute-force search due to the linear

computational time and ease of implementation.

2.10 Clinical Assessment of the Human Hand

The range of motion possible by the hand joints are an important tool for assessing

patient progress during rehabilitation [238]. The currently employed technique (a

goniometer), however, are lacking in accuracy and repeatability; in particular the

finer motions of the hand are not observed accurately by this method and it has

shown limited agreement between different observers [239, 240]. There have been

many attempts to improve upon the current method within the literature with new

methods [241–244] and devices [116, 245–248].

The traditionally used and long standing state-of-the-art device for digit joint

angle measurements is a goniometer; though the use of this device is vast, there
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exists little support for this device in the literature. Lewis et al. [239] tested

the use of a goniometer in measuring the range of motion for the middle finger

in 20 healthy participants, each measured by seven raters. This study looked to

observed the inter- and intra-rater reliability when using goniometer for digit angle

measurements. It was concluded that using the same clinician to measure a patient

in different visits is clinically reliable, but changing the clinician would lead to

significant contamination of the measurements between recordings. McVeigh et

al. [240] compared measurements taken with a goniometer, visual assessment and

radiographs of the hand. The goniometer measurements and visual assessments

were completed by 40 observers were used (a collection of hand surgeons and hand

therapists) and the radiographs were obtained by radiographers, as control data.

This found that neither of the goniometer and visual assessments measurements could

reproduce the angles obtained from the radiographs within five degrees. Additionally,

it was seen that the goniometer and visual assessment provided similar accuracy

for the measured joints, expect for the PIP joint, where the goniometer provided a

better accuracy - both were also seen to have a high level of inter-observer variability.

Attempts at rectifying any inherent issues with goniometers are prevalent in liter-

ature, aiming to increase accuracy with alternative measuring methods or introduce

a new device. In 2009, Carter et al. [241], studied three different measurement

techniques for using a manual wrist goniometer in a cadaveric study. A hand surgeon

and hand therapist took measurements and were compared to to digitally obtained

angle measurements from fluoroscopic images. The three methods tested showed

similar accuracy, within seven degrees of the fluoroscopic image angles. Blonna et

al, in 2012, [242] showed that, when observing the angle of the elbow, an experi-

enced observer was able to visually estimate this high accuracy, in comparison with

a goniometer measurement. This also showed the visual estimates to provide an

averaged intraclass correlation coefficient (ICC) of 0.95.

In 2018, Hancock [243] compared the accuracy of knee angle measurements

obtained with five differing techniques; these techniques were: a digital inclinometer, a

short goniometer, a long goniometer, smartphone application and visual estimation. It

was seen that the short goniometer and visual estimation provided the least accuracy

(with a minimum significant difference of 14 degrees) and the digital inclinometer

was found to provide the greatest accuracy (with a minimum significant difference

of six degrees). The digital inclinometer also provided the benefit of contactless

measurements. In 2019, Shamsi et al. [244] compared an electro-goniometer and

manual goniometer in measuring the knee angle. This study showed that an electro-

goniometer offered a greater ICC, when compared to a manual goniometer. From

the obtained results, it was concluded that a manual goniometer is still acceptable

for clinical evaluations, as it is easy to be employed, though an electro-goniometer
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should be employed if a greater accuracy and reliability is required.

Given the large increase in motion capture and visual assessment technology, it is

not surprising that there is a lot of literature surrounding the introduction of new

computer based hand joint angle measurement devices. In 2015, Krause et al. [245]

introduced a mobile application for 2D analysis of the hip, knee and ankle motions,

in the sagittal plane. When compared to a Vicon 3D motion capture system, the

introduced technique was found to provide clinically viable measurements - showing

a mean difference across all angles measured of 5.2 degrees. In 2016, Williams et al.

[246] introduced a glove able to output the angular displacement of each joint. The

accuracy of this device was found compatible to currently used goniometers and the

glove was proposed for clinical use in hand digit angle measurements.

In 2018, Nizamis et al. [116] investigated the use of the LMC for hand joint

angle measurements with 20 healthy participants, 12 of which where also used for

test-retest analysis. There was disagreement between the measurements obtained

by the two methods, though the LMC showed a superior test-retest reliability and

time taken. It was suggested that some of the disagreement could be due to the fact

that the goniometer measures the flexion of the dorsal side of the digits, whereas the

LMC measures the angle between the centres of the joints - leading to a potential

difference appear due to the thicknesses of the hands measured. In the setup tested

for one hand, the goniometer took 32 to 65 minutes to measure the joint angles and

the LMC took seven to 22 minutes - it was noted that the LMC would also be able

to measure two hands at once and that the rater was inexperienced in both setups.

This study provides evidence for the support of utilising the LMC for clinical hand

joint angle measurements. Utilising a Vicon marker-based motion capture setup,

Reissner et al. [247] compared a goniometer and 3D motion analysis for hand joint

angle measurements. Motion capture was able to show a higher test-retest agreement

- demonstrating superior repeatability of results. It was argue that a goniometer

had to place for every joint to complete the remeasurements, taking a significantly

longer time, and this interaction with the subject could lead to contamination of the

measurements - supporting the use of a motion capture based joint angle measuring

system.

In 2020, Zhao et al.[248] compared the use of smartphone photography and go-

niometers for digit joint angle measurements. The study found that smartphone

photography was a valid and reliable method, holding comparable accuracy and

precision to a goniometer even when present to inexperienced users. The imple-

mentation of this method would enable home assessment, as many people have a

smartphone, and shows great promise for aiding clinical assessment, providing a

potential reduction to clinical visits if simply implemented alongside current therapy
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routines. The presented increase in computer based patient data measurements and

analysis creates a demand for methods to store these data securely and perform quick

and accurate analysis to further aid patient focused treatments. Nadian-Ghomesh et

al. [238] introduced a hierarchical, AI-driven, internet of things (IoT) for storage

and assessment of patient data securely and reliably. The introduced, novel, machine

learning technique was able to identify range of motion as a indicator for analysing

patient progress during rehabilitation and provided help to clinicians when creating

personalised treatment plans for patients.

There is agreement across studies within the literature that the goniometer lacks

the desirable accuracy and reliability for capturing measurements of the joint angles

of the hand [239, 240]. Though the consensus tends towards acceptance of the

goniometer for clinical assessment, it has been shown to provide measurements

of equal accuracy to visual assessment in several studies [240, 242, 243]. There

have been several attempts to rectify this lack of accuracy with new measurement

techniques, many offering appealing potential improvements over the current employ

manual goniometers [116, 245, 246, 248]. Furthermore, movement to an electronic

platform from these introduced methods offers the use of quicker and more reliable

patient assessment methods [238].
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Methodology

In light of the weaknesses seen in previous techniques discussed within Chapter 2, a

novel method for data collection has been designed. Previous studies of hand motion

suffer due to a limited range of activities studied or unnatural motions arising from

encumbering devices, these issues have been remedied in the introduced design. The

out of sight, portable, device described here records Cartesian motion data, this

enables analyse through machine learning algorithms - allowing for a larger amount

of data to be collected and analysed in the same time. Each of the novel methods

introduced have been validated against the state-of-the-art in the respective areas.

Control hand shape data, to support the analysis performed, has been collected.

The methods employed to modify existing musculoskeletal model are also discussed

here. A device has been conceived for faster, easier, safer and more accurate hand

joint angle measurements within clinics, named AirGo. The techniques employed for

the analysis of everyday activities motion data are also discussed here. Biomedical

& Scientific Research Ethics Committee (BSREC) approval has been granted for a

study involving 20-30 participants to be performed using the created portable motion

capture system and for the collection of choreographed hand motions in a Vicon

motion capture studio (reference: REGO-2018-2210). The clinical trial of AirGo

was approved by the Research Ethics Committee, for a study of up to 20 patients

(reference: 18/NE/0174). The supporting documents for these ethical approvals can

be seen in Appendix A. The implementation and results of these discussed methods

can be seen in Chapter 4; the final output of which are accordingly distributed among

Chapters 5, 6 and 7.
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3.1 Proposed Solutions

Following the discussions of the previous chapter, proposed solutions to the limitations

of the current state-of-the-art are introduced here. The existing methods used to

capture the activities of the hand during activities of daily living (ADL) are limited

in the amount of data collect and range of activities observed. The solution proposed

to circumvent these issues is the application of a portable markerless motion capture

system, utilising a Leap Motion controller (LMC), and analysis methods performed

employing machine learning techniques.

Current research shows no existence of extracting the muscle excitations of the

hand from kinematic data exclusively. The proposed solution, to introduce predictions

of hand muscle excitations from kinematic data, entails the combination of an existing

musculoskeletal model and optimisation techniques.

The current clinical method employed to measure the hand digit joint angles is

slow and unreliable, with an uncertainty to the accuracy of the results achieved. In

light of these issues, the proposed method for hand digit joint angles measurements

is a markerless motion capture based system, employing the LMC. This device is

able to capture more reliable data significantly quicker, within a known degree of

accuracy.

3.1.1 Portable Hand Motion Capture

The method most commonly employed to study the human hand in use, capturing a

video recording of the hand in use and then watching the video, is a time consuming

process with potentially high error due to the subjective nature. For this study the

use of motion capture devices to collect three-dimensional (3D) kinematic data of

the hand is considered over the use of video cameras - enabling the deployment of

machine learning techniques for the analysis of the collected data.

The LMC is a markerless optical motion capture device which uses three infra-red

(IR) cameras to determine a 22-point virtual image of the hand. The points of

the hand captured by the LMC are as follows: the metacarpophalangeal (MCP)

joint, interphalangeal (IP) joint and tip of the first digit, the MCP joints, proximal

interphalangeal (PIP) joints, distal interphalangeal (DIP) joints and tips of the

second to fifth digits, the centre point of the palm, the carpometacarpal (CMC) joint

and a point opposite to the CMC joint in the medial direction. The LMC is supported

within the literature: proven effective for stroke rehabilitation and musculoskeletal

simulation [111–114] and literature reviewing the employment of an LMC for data

collection of hand kinematics provide confident support for the collection of clinically
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meaningful data [115, 116]. Though the LMC has also received some criticism in

the literature [101, 103], it has been used here due to the high portability potential

offered, providing an ability to be used during the normal everyday tasks performed

by the participants within comfortable environments for them, the fact that it

captures motion data without markers, leading to unencumbered movements, and

the resultant non-invasive nature of the device, resulting in natural motions as the

participant does not feel as if they are being watched in a laboratory environment.

A portable motion capture system, for the collection of hand motion data in

everyday activities, has been created. This system utilises an LMC, Intel i3 Next

Unit of Computing (NUC), external battery (2-Power 19 V, 27 Ah), GoPro head

strap, LMC GoPro mount, bespoke NUC case and small shoulder carry bag. An

exploded diagram of the NUC, battery and bespoke case can be seen in Figure 3.1,

with the completed system shown in Figure 3.2. The NUC is a small form factor

computer, measuring just over 10 × 10 × 2.5 cm; in this study the NUC7i3DNBE

model has been used. The 3D printed, bespoke case holds the NUC and battery and

is placed in the small shoulder bag - to be carried by the participant. Connected to

the NUC is the LMC, this is held in place on the forehead of the participant using

the GoPro head strap with a bespoke 3D printed mount. To transfer the data a

Kingston DataTraveler 50 16 GB universal serial bus (USB) Flash Drive was used.

The total price of the items used to form the motion capture system was (at time

of purchase) £521.61. Though all pieces are commercially available, the interfacing

of these with one another has resulted in a portable motion capture system not

previously available. The advantages this system provides over a marker-based

motion capture laboratory are: the significant price reduction, portability, ability to

capture natural and unencumbered movements, non-invasive and contactless nature

and support seen within the literature - collectively resulting in an appealing motion

capture system. The advantages this system provides over the video recordings are:

a reduction in the time to analysis large collections of data, the elimination of human

error during analysis, the ability to apply quantitative analysis and a wider range of

available analysis techniques.
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Figure 3.1: An exploded diagram of the portable data collection system,
with reference scale.
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Figure 3.2: The portable system components.

The LMC was chosen in the end as it provides: the ability to record without the

need of placing anything on the hands of the user, a low form factor and weight

allowing it to move freely and easily be made portable, the potential to last several

hours with a carefully selected recording device, a USB connection which allows

compatibility with most recording devices, comparatively low cost and a known

clinically reliable source of hand motion data. Most importantly, the non-contact

nature of the device allows the participant to perform natural and unencumbered

movements throughout their day.

A GoPro head strap was chosen to fix the LMC to the forehead of the participant

because the environments it is designed to operate within are far harsher than the
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one this system is expected to operate within and has a standardised fixing point

which is easy to 3D print a component for. The i3 NUC was chosen as it is the

smallest device that was found able to meet the minimum requirements of the LMC.

A 4 GB random access memory (RAM) module was used to meet the requirements

of the LMC and 16 GB of storage was added to be able to store the files of the data

collected. The 19 V external battery was chosen in order to be able to power the

NUC whilst in use due to the predicted runtime of seven to eight hours - confirmed

with real world tests. This length of time is appropriate for the environment the

system is used in, a typical working day being eight hours. The NUC and battery,

housed within the case, weigh approximately 1 kg and can fit in a small shoulder bag

for the participant to carry during data collection. The bag chosen provides a perfect

fit for the system and sits comfortably on the participant, the completed system

can be seen in use in Figure 3.3. A USB flash drive must be used to transfer the

data collected on the NUC to a computer for it to be analysed so that the NUC can

remain disconnected from the internet, for security reasons. When compared against

a Vicon motion capture system with choreographed hand shaped, the portable motion

capture system was found to collect data within a mean of 14.2 mm.
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Figure 3.3: The portable system, as typically worn by a participant.

A case has been 3D printed for holding the NUC during data collection, as seen

in in Figure 3.2. The 3D printing of the case for data collection allowed a single

structure to be accurately formed, resulting in a case that will stay together well

and, with a low infill, be light weight. However, due to the fact that tall thin objects

tend to not be appropriate for 3D printing, the ventilation holes for the battery case

warped. Despite this error the battery case has still been considered structurally

stable enough whilst in the shoulder bag. Overall, this case is perfect for protecting

the NUC during data collection as it is light weight and structurally strong. Laser

cutting was considered for creating a case. Though this made the case easier to

produce and did not fail at the vents, the result was found to not be as sturdy as

the 3D printed case.
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During collect a JavaScript (JS) script within a Hypertext Markup Language

(HTML) file stores a string of comma-separated numerical positional co-ordinates

under the variable name outputString. The use of HTML allows for easy running

on NUC and saving of the recorded data, it sees no draw backs for use with the

LMC on this device. The data which is saved, each iteration, is as follows: a frame

identification number (a global frame), an LMC frame identification number (a frame

local to the LMC), the global time, the total time the device has been recording,

the cumulative time each hand has been visible for in this occurrence, a confidence

rating in the location and shape of the hand, the 3D Cartesian co-ordinates for the

elbow and wrist and each of the joints and the tips for the digits. The final size of

of outputString Every ten minutes outputString is saved as a comma-separated

values (CSV) file on the i3 NUC, after which outputString is reset to a blank string.

If the battery was to become fully depleted, or the i3 NUC crash, savings up to a

window of 10 minutes before this will still be stored. If the LMC was to become

unplugged the script pauses and can be resumed by plugging back in.

During early recordings with the portable motion capture system it was seen that

it could not last as long as theorised (and desired), it was seen that the system would

become very hot during collection. In response to this the battery was separated

from the NUC and place in a separated location within the bag, creating a mild heat

shield. After testing this was found to be appropriate to allow the system to collect

for the theorised (and desired) time (at least six hours).

When deciding on which device to use for motion capture of the hand multiple

options were considered, each being seen described in table 3.1. The table was

created at time of the decision - all of the models considered, their specifications and

prices are as such. The LMC was selected as the device for motion capture of the

hands during ADL following comparison of the specifications of the devices listed.

The LMC offers an affordable collection device with a high potential runtime and

versatile data transfer method.
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Table 3.1: A comparison table of potential hand motion capture devices.

Device Resolution Runtime
Data

Transfer
Price

Leap Motion Controller Unknown
Computer

dependent
USB £75

Vicon Motion Capture

System
0.15 mm Infinite

Ethernet

cable
£100,000+

Manus VR 3 degrees 3-6 hours
2.4 GHz

Wireless
£1,000

CyberGlove III 1 degree 2 hours WiFi/USB £10,000+

VRgluv Unknown Unknown
2.4 GHz

Wireless
£800

Perception Neuron
0.02

degrees
3.5 hours

WiFi/USB/

Micro-SD

card

£1,000

Captoglove 1 degree 10 hours
Bluetooth/

USB
£375

After concluding on the use of the LMC for data collection a device to power it

and collect the recorded data was needed. For this several small computers were

examined, along with the possible power sources which could be used with them.

Table 3.2 shows a breakdown of all of the devices considered for this purpose. The

table was created at time of the decision being made - all models considered, their

specifications and prices as such. The NUC, powered with a 2-Power battery, was

chosen for the: comparatively low price for an i3 processor, fact that it has an

i3 processor, customisable RAM and storage options, possibility of higher voltage

input (provided the battery can accommodate) and small form factor compared to

alternative i3 options. In the table a NUC with 2 GB DDR3 RAM and an Intel

Optane M.2 16 GB storage have been considered, as these are the desired components

- though these options can be altered. Additional to this the 2-power battery provides

a suitably long enough runtime for the desired application and is light weight when

compared to alternative devices with similar specification. The existing knowledge

that these have been tried and tested together and with the LMC provide comfort in

their selection. The NUC and 2-Power battery were chosen, following a review and

comparison of these listed specifications. These devices were shown offer reasonable

specifications for their price and allowed for the desired collection time; additionally,

it was know that the Intel i3 processor is able to support the LMC.
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Table 3.2: A comparison table of potential recording devices.

Device Battery

Name CPU RAM
Operating
Systems

On-
Board
Storage

USB
Ports

Required

Voltage/

Current

Size Weight Price Name

Supplied

Voltage/

Current

Estimated
Runtime

Size Weight Price

Intel NUC

(7i3DNBE)
Intel i3
(7100U)

2 GB
(DDR3)

Linux/

Windows
16 GB

4 ×
USB 3.0

12-24V/

10A

101.6 ×
101.6 ×
25 mm

500 g £225

MaxOak

20V/3A,
12V/2.5A,
5V/2.1A,
5V/1A

16.5 hours
(50Ah/3A)

206 ×
135 ×
33 mm

1.256 kg £120

2-Power

24V/2.5A,
19V/3.4A,
16V/4A,
5V/1A,
5V/2.1A

8 hours

(27Ah/3.4A)

118 ×
114 ×
22 mm

620 g £120

Jaguar

One Plus

Intel Atom
(Z3735F)

2 GB
(DDR3L)

Linux/

Android/

Windows

16 GB
3 ×

USB 2.0
5V/2A

101.9 ×
64.5 ×
1.6 mm

54 g £73

MaxOak

20V/3A,
12V/2.5A,
5V/2.1A,
5V/1A

25 hours
(50Ah/3A)

206 ×
135 ×
33 mm

1.256 kg £120

EasyAcc 5V/4.8A
13 hours

(26Ah/2A)

167 ×
80 ×

22 mm
454 g £43

Poweradd
Pilot
Pro2

9,12,16,19,

20V/4.5A,

5V/2.5A,

5V/1A

11.5 hours

(23Ah/2A)

182.8 ×
124.4 ×
15.2 mm

558 g £75

RavPower 5V/2.4A
10 hours

(20Ah/2A)

170 ×
80 ×

20 mm
476 g £35

Anker
Power-
Core

5V/4.8A
7.8 hours

(15.6Ah/2A)

168 ×
58 ×

22 mm
463 g £30

UDOO
X86

ADVANCED
PLUS

Intel
Celeron
(N3160)

4 GB
(DDR3L)

Linux/

Windows
32 GB

3 ×
USB 3.0

12V/3A

120 ×
85 ×

24.5 mm
116 g £130

Poweradd
Pilot
Pro2

9,12,16,19,

20V/4.5A,

5V/2.5A,

5V/1A

11.5 hours

(23Ah/2A)

182.8 ×
124.4 ×
15.2 mm

558 g £75

UDOO
X86

ULTRA

Intel
Pentium
(N3710)

8 GB
(DDR3L)

Linux/

Windows
32 GB

3 ×
USB 3.0

12V/3A

120 ×
85 ×

24.5 mm
116 g £200

Poweradd
Pilot
Pro2

9,12,16,19,

20V/4.5A,

5V/2.5A,

5V/1A

11.5 hours
(23Ah/2A)

182.8 ×
124.4 ×
15.2 mm

558 g £75
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LattePanda
(2G/32G)

Intel
Atom

(Z8350)

2 GB
(DDR3L)

Linux/

Windows
32 GB

1 ×
USB 3.0,

2 ×
USB 2.0

5V/2A

88 ×
70 ×

25 mm
55 g £68

MaxOak

20V/3A,
12V/2.5A,
5V/2.1A,
5V/1A

25 hours

(50Ah/3A)

206 ×
135 ×
33 mm

1.256 kg £120

EasyAcc 5V/4.8A
13 hours

(26Ah/2A)

167 ×
80 ×

22 mm
454 g £43

Poweradd
Pilot
Pro2

9,12,16,19,

20V/4.5A,

5V/2.5A,

5V/1A

11.5 hours

(23Ah/2A)

182.8 ×
124.4 ×
15.2 mm

558 g £75

RavPower 5V/2.4A
10 hours

(20Ah/2A)

170 ×
80 ×

20 mm
476 g £35

Anker
Power-
Core

5V/4.8A
7.8 hours

(15.6Ah/2A)

168 ×
58 ×

22 mm
463 g £30

GPD
Pocket

Intel
Atom

(X7-Z8750)

8 GB
(LPDDR3)

Linux/

Windows
128 GB

1 ×
USB 3.0,

1 ×
USB Type-C

N/A

182 ×
109 ×

19.9 mm
503 g £380 Internal N/A

12 hours
(7Ah)

N/A N/A N/A

GPD
Pocket 2

Intel M3
(7Y30)

4 GB
Linux/

Windows
128 GB

2 ×
USB 3.0,

1 ×
USB Type-C

N/A

181 ×
113 ×
8 mm

465 g £415 Internal N/A
10 hours
(6.8Ah)

N/A N/A N/A

13”
Laptop

Varied More than
4 GB

Linux/

Windows

More than
256 GB

Varied N/A 13” More than
1 kg

More than
£500

Internal N/A
5-10
hours

N/A N/A N/A
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The results of the analysis on data collected with this described system can be

seen in Section 4.2, with the final results achieved shown in Chapter 5.

3.1.2 Predicting Muscle Excitations from Kinematic Data

There is limited literature focusing on the estimation of muscle excitations from

kinematic data alone, with none prevalent for the hand. Proposed is a combination of

optimisation techniques and an existing musculoskeletal model to converge toward a

prediction of the muscle excitations of the hand which reproduce the joint angles with

a minimised difference to the inputted hand shape - implying the closest prediction

of the muscle excitations performed to create the given hand shape. This allows

for the prediction of muscle excitations of the hand from kinematic data collected,

enabling further extraction of information from many existing collections of data.

In order to determine the muscle excitations from kinematic data the musculo-

skeletal model presented by Blana et al. [9] was implemented alongside a number of

optimisation techniques. For each candidate solution, the set of muscle excitations

are inputted into the musculoskeletal model and the joint angles in this scenario

calculated. These joint angles are then compared to the known joint angles of the

desired hand shape and an optimisation technique attempts to reduce the error

between the outputted and desired joint angles. For this several different optimisa-

tion techniques were tested, as stand alone techniques and in tandem with others:

genetic algorithm (GA), particle swarm optimisation (PSO), gradient descent (GD)

and brute-force search. A GA technique has been selected as a well established

method for optimisation. A PSO technique has been selected for the superior time

performance it tends to show over a GA, with similar resultant accuracy. A GD

method has been selected in aid other optimisation techniques, following applica-

tion of the optimisation technique, to quickly converge closer towards a minimum

more accurately. A brute-force search has been selected for the exhaustive search

powers provided, though resulting in long computational time taken it does provide

confidence in the results obtained.

The techniques described in Section 2.9 were implemented to utilise the equations

of the musculoskeletal model for the calculation of the joint angles from the candidate

solution muscle excitations. The joint angles produced by a set of muscle excitations,

u, can be found by evaluating the candidate solution with the musculoskeletal model.

To achieve this, (2.12) and (2.13) were combined to provide,

xn+1 = xn +

(
δf

δx
+

1

h
· δf
δẋ

)−1(δf
δẋ
ẋn − f(xn, ẋn, un)− δf

δu
· (un+1 − un)

)
. (3.1)

Candidate solutions can be inputted as un+1 and the equilibrium hand shape, with
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known state variables, derivatives of the state variables and muscle excitations,

used as xn, ẋn and un. This assumes that the hand shape presented occurred

h seconds after the hand was in the equilibrium. For this application, the time

step, h, was selected to be 0.01 seconds, in line with the working range specified

for the musculoskeletal model [9]. The found joint angles can then be compared to

the recorded, desired, joint angles and the performance of the candidate solution

evaluated with a cost function.

The determined hand shapes of ADL were in 3D Cartesian form. In order to be

comparable to the output of the musculoskeletal model and, hence, work with the

optimisation techniques these data must be converted into joint angles equivalent to

those outputted by the musculoskeletal model. For each joint angle to be calculated

the following were used: the joint in question, the more distal joint and that more

proximal. These sets of co-ordinates were converted into a two-dimensional (2D)

co-ordinate system and the desired angle found through the application of the vector

dot product, found using (2.4). The 2D co-ordinate system was created by a local

plane through the considered digit, formed such that the axis of flexion rotation was

normal to that plane. Pictured from the medial side of the hand, the metacarpal bone

of the considered digit was used to create one axis of the 2D co-ordinate system and

the anterior to posterior direction through the hand was used to form the other. This

can be seen visually described, for the second digit of the right hand, in Figure 3.4.

In this diagram the flexion angles of the PIP and DIP joints have been depicted by

θPIP and θDIP , respectively. The difference between the desired and output sets of

joint angles provide a cost function to be minimised through the use of optimisation

techniques.

Figure 3.4: A diagrammatic representation of the calculated joint flexion
angles for digits two to five.
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In order to compare the candidate solutions a cost function is required. Here

a function which finds the joint angles for a set of muscle excitations, from the

musculoskeletal model, and compares this output to the joint angles of the desired

hand shape was created. For GA, PSO and GD methods a fitness scaling technique

was employed to aid convergence. Fitness scaling considers an exponential decrease

in the cost as the technique converges towards a solution. This provides an increased

influence of those with a lower cost. To achieve this,

costscaled =
16∑
i=1

(xrec(i)− xcalc(i))2 , (3.2)

was implemented to calculate the joint angle disagreement cost for each candidate

solution. In this equation, xrec are the 16 joint angles determined from the recorded

data and xcalc are the calculated joint angles, outputted from the musculoskeletal

model. The further this cost reduces the greater the agreement between the angles

of the predicted hand shape and the angles of the inputted hand shape becomes;

in turn, the likelihood of the correct muscle excitations being obtained increases.

During a brute-force search fitness scaling adds little benefit to identifying the best

solution found and, therefore, the cost function for each input combination was

defined to be the summation of the absolutes of the differences between the resultant

and desired joint angles,

costlinear =

16∑
i=1

|xrec(i)− xcalc(i)| . (3.3)

Alongside reducing the difference between predicted hand shape and recorded

hand shape joint angles, the cost function considering the summation of the muscle

excitations predicted has been implemented. This aims to provide an implementation

of muscle redundancies without knowledge of the external forces acting on the

inputted shapes. This cost function was defined by,

costmuscles =
18∑
i=1

u(i), (3.4)

where u(i) is the predicted muscle excitation for muscle i. This means of muscle

redundancy implementation was not ideal but was limited by the requirement to only

utilise kinematic data. The focus of this cost was to encourage the model to converge

towards a solution using the minimal number of muscle excitations possible. In turn,

the method is coaxed into utilising excitations only from the optimal muscles in this

situation; showing little to no excitations from the redundant muscles, as would be

expected in the real world.

76



Methodology

In order to implement the functions (3.2), (3.3) and (3.4) with the optimisation

techniques, a single, tunable, cost function was created. The results of these cost

functions, following an iteration of the observed optimisation technique, were ma-

nipulated to form the terms of this overall cost function. To start, the costs were

normalised; achieved by multiplying each element from the array of muscle excitations

by the maximum of the joint angle differences. In doing this, a balance ratio of

the cost components can be formed - removing the possibility of one component

taking greater influence over the other due to inherently different scales of values.

The weighting of this ratio was then altered in an attempt to provide the most

accurate predictions of the muscle excitations. In order to obtain this knowledge, the

parameters of the cost function were made tunable; here, the powers and coefficients

of the components making up the cost were selected as the tuning parameters. Tuning

the powers of the terms within the cost function provides control over the influence

that each component has on the rate of convergence during optimisation. Tuning

the coefficients to these terms enables alterations to the ratio of influence each has

over the resultant cost. Hyperparameter tuning of each optimisation method has

been achieved by implementing the following cost function,

cost = C1 · costanglesP1 + C2 · costmusclesP2 , (3.5)

where costangles is the cost function associated with the resultant joint angle error,

costmuscles is the summation of the predicted muscle excitations and C and P are,

respectively, the coefficients and powers for the costangles and costmuscles terms,

respectively denoted by 1 and 2. In this cost function, costangles provided an

assessment of joint angle agreement, between the inputted and the outputted hand

shapes, and costmuscles attempted to enforce consideration of muscle redundancies.

For implementation of this cost function with the optimisation techniques, costangles

was that defined in (3.2) for GA, PSO and GD and (3.3) for a brute-force search.

For all methods, costmuscles was that explained by (3.4).

Upon first implementation, the ratio of the influences from the summation of

the muscle excitations and summation of the joint angle differences, as well as the

powers that each should be raised to, was unknown. Hyperparameter tuning of the

cost functions (3.2) or (3.3), for the appropriate techniques, and (3.4) was applied in

an attempt to obtain individualised cost functions for each of the tested optimisation

methods. Within MATLAB, an array holding each of the coefficients and powers,

C1, C2, P1 and P2, was created. This enables the use of an optimisation method to

be used to modify each of these parameters in relation to each other, with respect to
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a single cost function. Here, the cost function was set to be,

costtuning =
V∑
i=1

(1−Ri), (3.6)

where V is the number of validation hand shapes tested and Ri is the correlation

between the known and predicted muscle excitations for the validation hand shape i.

To this effect, the cost is minimised when the correlation is one - a perfect match

between the predicted and known muscle excitations. By minimising this cost,

the methods converge towards reasonably high muscle excitation and joint angle

correlations in applications with the provided validation hand shapes.

In order to tune these parameters PSO was used, as this had provided a superior

balance of speed and accuracy in testing. The time taken for this optimisation to

run was of significant consideration, as within each of the passes it was required

to run the tested muscle prediction optimisation script for each of the population

members. Within MATLAB there are several customisable options provided for

the built-in PSO function, for this implementation the following were considered:

FunctionTolerance, MaxIterations, MaxStallIterations, ObjectiveLimit,

SelfAdjustmentWeight, SocialAdjustmentWeight and SwarmSize. From these,

FunctionTolerance, MaxIterations, MaxStallIterations and ObjectiveLimit

are stopping criteria, each influencing the decision of whether the swarm has converged

on a solution. Of these, FunctionTolerance provides the value which if the output

is seen as lower than for MaxStallIterations number of iterations the PSO will

stop and declare the input with the lowest found cost at that time to be the optimal

solution. The MaxIterations gives the total number of iterations allowed before the

PSO is terminated. The ObjectiveLimit parameter sets the value such that if the

observed output of the cost function is below, then the PSO application terminates.

The SelfAdjustmentWeight and SocialAdjustmentWeight give weight to the best

position seen by the particle in question and that of the entire population of particles,

respectively, when determining the next position vector. The SwarmSize value sets

the number of particles which make up the population of the swarm. The following

settings were used during hyperparameter tuning:
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Table 3.3: The parameters selected for the optimiser hyperparameter tuning
application of a particle swarm optimisation technique.

Parameter Value

FunctionTolerance 1e-10

MaxIterations 50

MaxStallIterations 20

ObjectiveLimit 1e-10

SelfAdjustmentWeight 2

SocialAdjustmentWeight 2

SwarmSize 25

Here, FunctionTolerance and ObjectiveLimit were set to these extreme values

to remove their influence over the termination of this tuning. Because of this,

MaxIterations was likely to terminate the optimisation process, with testing proving

50 to be adequate for creating large accuracy improvements within a reasonable run

time. A population size of 25 was chosen to allow for a large pool of particles to be

tested whilst retaining an appropriate computational time for the parameter tuning.

These settings were chosen to provide a balance between the time taken and the

required level of accuracy of the end results.

Following the parameter optimisation using PSO, a GD method was also applied

to provide a quick means of further improving the tuned parameter values. For this a

learning rate of 0.01 and numerical differentiation step size of 0.4, defined as h from

(2.14), were used over ten iterations. These values were selected from the results of

preliminary tests with GD, showing to provide a superior balance between the speed

of convergence and resultant accuracy of the tuned optimisation techniques, and on

the pragmatic grounds that computational time was of great importance during this

implementation. The speed of GD provided a further descent to a found minimum

with a relatively lower computational time than would be required to continue with

PSO, or other optimisation methods.

During validation of the LMC, it was seen that the recordings of more proximal

joints showed greater agreement with the state-of-the-art motion capture system

that the device was tested against. Considering this and that the end goal was to

predict muscle excitations for data collected using the LMC, it was seen as preferable

to give higher consideration for more proximal joints when determining the cost of a

prediction. To achieve this, the results of validation of the LMC have been selected

to weight the influence of each joint on the progression of the optimisation methods.

The degree of influence for each joint has been calculated through the following

concepts:

e = {emcp, epip, edip},
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a =
{m
e

∣∣∣m = max(e)
}
,

a′ =

{
a

max(a)

}
,

where emcp, epip and edip are the positional errors, found during validation of the

LMC, of MCP, PIP and DIP joints respectively. Here, a was calculated to give the

relative agreement of each joint recorded by the LMC to the state-of-the-art motion

capture system. This result was normalised, to give a′, for ease of compatibility with

the cost function. Normalising this similarity score to the maximum value observed

means that the joints which provided the most confidence during validation are able

to influence the cost with no alteration, whereas joints showing lower confidence have

less influence over the resultant cost. The average positional error for each joint set

was used as this provides the most direct measure of confidence in the data recorded

by the LMC.

Following the convergence of the employed optimisation technique, the difference

between the desired and found joint angles for each hand shape were calculated and

presented. Additionally, the mean difference for each hand and the overall mean

difference were calculated and displayed. The the predicted joint angles were found

by inputting the predicted muscle excitations into the utilised muscle model. The

correlation between these predicted and desired joint angles was also observed, in

an attempt to further assess ability of the technique to provide accurate muscle

excitations.

To provide a visual aid, wire frame hands were plotted taking on the desired and

found joint angles in a 3D grid within MATLAB. To achieve this each digit was

assigned a co-ordinate along the x -axis and each bone set a length it would appear

along the y-axis. The joint angles were imposed on the hands from a position with

the digits extended and the thumb also adducted. The flexion of the joints (the

joint angles) were used to rotate the bones about the x -axis, with the abduction of

the thumb represented by a rotation of the first digit in the z -axis. To ensure these

rotations did not cause a deformation of the bones, the length of each bone before

and after the transformation were observed - resulting in any potential deformation

being highlighted.

As an additional visual aid, providing a easily visualised comparison of the final

output and the original taxonomy, Blender [249] was used to provide line art images

of the hands experiencing the outputted joint angles. Comparing this to the line art

image of the desired hand shape enables visual assessment of the performed. This

was achieved with identical techniques to the creation the original taxonomy using

Blender, described in Section 3.5.10, and, therefore, provided a visual representation

of the hand shape identical to that from the original taxonomy. Additionally, the
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observations of these predicted hand shapes enables the characterisation of the

muscle excitations - even if these are not deemed to present the desired hand shape

utilisation of the results may still be possible. Visual assessment is important as it

may be that the joint angle values of two hand shapes are not close, or close, but,

when observed in the real world, they could be considered to be close, or not close,

enough to provide equivalent functionality.

The following steps were performed in application to determine the muscle

excitations of a given frame of Cartesian data:

1. Convert the Cartesian data into joint angles of each digit.

2. Begin optimisation with random candidate solutions, recording the output as

the predicted muscle excitations.

3. Input the predicted muscle excitations into muscle model to determine joint

angles from this prediction.

4. Calculate difference in joint angles of the inputted and predicted hand shapes,

providing the error from this application.

5. Use outputted joint angles to form Blender images, for visual assessment.

The process employed for validation and evaluation method for each technique

employed can be seen in Section 3.6, with the results of which in Section 4.3. Further

details on the implementation and execution of these techniques can be found in in

Chapter 6.

3.1.3 AirGo

The currently employed clinical method for measuring the hand digit joint angles

is a goniometer. This device has been seen to produce measurements with low

repeatability and high variations across different users, with uncertain accuracy and

long measurement times. Considering these limitations, a device has been created

(named AirGo) which utilises the LMC to provide measurements of the angular

displacement of the hand digits from markerless motion capture data. This proposed

solution allows for fast collection of consistence measurements with a known accuracy.

The AirGo is an hand joint angle measuring decide, utilising the LMC; a non-

contact measurement device, quicker and more accurate than current methods. A

white, five millimetres thick, acrylic was laser cut and curved to create the platform

for the LMC to be attached to - shown in Figure 3.5. The design includes a means

to adjust the height of the LMC, so that the device can be made level with the hand

of the patient; this assists the LMC in detection of the hand.
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(a) The front view of the second iteration of
the stand for AirGo.

(b) The rear view of the second iteration of
the stand for AirGo.

Figure 3.5: The front and rear views of the second iteration of the stand for
AirGo.

A HTML file with embedded JS scripts was used to extract joint positional data

from LMC, perform joint angle calculations and display the relevant information.

Several steps are performed with each frame of the LMC. Information is extracted

from the LMC through the application programming interface (API), as with previous

devices described. In the first instance the bones connecting the joint of interest

are translated, such that the joint in centred at the origin of the Cartesian co-

ordinate system. After which the dot product is employed to calculate the joint

angle, in radians; which is later converted to degrees for easier understanding. The

angle calculated is stored to be later used in a smoothing function. This function

detects and removes anomalies as the data is collected (considered as three standard

deviations away from the mean) and, if not, tests to see if a new maximum flexion

has been reached. If there is a new maximum it replaces the previous maximum

of that joint and the script continues, if not then the script simply continues. The

screen displayed can be seen in Figure 3.6. A live visualisation of the presented hand
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allows the users to ensure that the hand has been detected correctly by the device.

Additionally to this, gauges displaying the current and maximum angle of the joints

are present, enabling patient motivation. This screen includes an input box for the

patient ID and “Set”, “Save” and “Reset” buttons. The “Set” and “Reset” buttons

set the currently viewed hand as the unaffected hand, for the affected to be compared

against, and refresh the HTML file (clearing any data collected), respectively. Once

the “Save” button has been pressed the date, time, patient ID and table of maximum

joint angles seen is saved to a text file.

Figure 3.6: The second iteration of the display for the AirGo system.

Within a clinical environment this device would be placed on a table, with the

LMC facing the patient. The height of the LMC within the device can be set so that

the centre of the LMC lines up with the centre of the hand of the patient, this is

not necessary but helps with LMC during collection and provides the best position

for allowing any possible drifting of the hand which may occur. Once the patient is

ready the AirGo can be started and the steps as described in Section 3.3.4 performed.

The methods employed to analyse the system can be seen in Section 3.7, the

results of which are shown in Section 4.4. Further details of the system and a

discussion of the obtained results can be found in Chapter 7.

3.2 Validation of the Portable Motion Capture System

The portable motion capture system should be validated before it is used to collect

during ADL. For this a set number of choreographed hand shapes would be performed

whilst measuring with both the portable motion capture system and a state-of-the-
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art motion capture system, for this the Vicon motion capture studio at University

Hospitals Coventry & Warwickshire (UHCW) was chosen. The control hand shapes

decided to form these choreographed motions are shown in Figure 3.7. From published

work by Feix et al. [57] 12 hand shapes have been selected to detail range of possibility

of hand shapes. The choice was performed manually by grouping similar hand

shapes with minimal visual or functional significant difference, leaving 12 groups

of hand shapes, from which 12 hand shapes were decided upon to define each of

these groupings. The use of predetermined grasps to train classification techniques

provides confidence for the application of these techniques with the collected data.

These 12 hand shapes allow for a good range of hand shapes to fit hand motion data

to.
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Figure 3.7: A collection of line art images of the control hand shapes.

The Vicon motion capture system at UHCW was used to collect the control hand

shapes with a state-of-the-art marker based-motion capture system. Eight Vicon

Vero 2.2 cameras were arranged around the subject as shown in Figure 3.8. These

were moved onto a two by two by two metre frame, focusing the capture volume

on the top and bottom of the area the subject was placing their hand. On each

camera an array of IR light-emitting diodes (LEDs) with a 330 Hz refresh rate and

resolution of 2.2 MP. These create a 3D search space and scan for reflective markers

to indicate a point of interest in that space.
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Figure 3.8: The capture space for hand motion capture with a Vicon motion
capture system.

The reflective markers used were Vicon three millimetre hemisphere facial markers,

placed on the hand to replicate the joints recorded by the LMC; this arrangement

and the labelling given can be seen in Figure 3.9. These labels have been assigned in

a manner such that the collected data will align with that collected with the portable

motion capture system - as a result, some maybe not agree with the true joint names.

A Vicon Active Wand V2 IR wand was used to calibrate the cameras in the space

and provide an origin to the space. Due to the low placement of some cameras (to

capture the digits when the hand is closed), the origin could not be placed on the

ground; it was seen as unimportant where the origin of the captured space was, as

the interest was in the hand shapes and not the hand position in space. All collected

data localised to wrist during processing. A computer with Windows 10, 16 GB

RAM and a Intel Xeon E5-1620 processor, running Vicon Nexus 2.11, was used to

collect the data. No model was produced for the hand within the software, as only

the labelled marker relative positions were of interest.
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Figure 3.9: The labelled marker positions for hand motion capture with a
Vicon motion capture system.

The collection of these controls has been achieved with the use of a HTML file,

embedded with a JS script, and folder of hand shape images. The script is initialised

with a single start button on the screen; this button removes itself from the page

once pressed, displaying the hand shape, to be performed, and the hand shape label.

For three seconds before each hand shape the resting position is displayed, this

ensures that the LMC will have time to settle, as to not be disturbed by previous

readings, and means that the transition is made from an alike hand shape each time,

removing influence of the previous hand shape on the current. The script used to

collect data with the portable motion capture system has been embedded within the

HTML to enable the recording of the hand motion during this collection. Data are
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stored as string in outputString during the display of each hand shape. Each hand

shape is displayed twice, with each occurrence being displayed for six seconds. Before

displaying the resting position outputString is saved with a filename congruent

with the hand shape and outputString reset to a blank string.

Following data collection and the reduction to only including functional hand

shape frames in the dataset, each frame was transformed into a pre-set local co-

ordinate system. To begin with, the current frame was centred at the wrist and the

second digit metacarpal bone was chosen as the y-axis. Next, the hand was rotated

about the y-axis such that a positive direction along the x -axis described a lateral to

medial direction across the wrist. The z -axis was then created normal to these two

axes, so that a positive direction was defined by the posterior to anterior direction of

the hand. The resultant local co-ordinate system can be seen in Figure 3.10. The

angle differences for each of these bones, between the initial recorded frame positions

and the desired axes locations, were calculated using (2.1), (2.2) and (2.3) and the

subsequent rotations were achieved through applications of (2.4).

Figure 3.10: The local co-ordinate system chosen to represent the hand
during data processing.

See Section 3.3.2 for steps taken to collect data and Section 3.4 for the subsequent

analysis performed and results.

Additional to the validation of the portable motion capture system, these control

hand shapes were used to form the training data of supervised analysis techniques.

In order to perform analysis using machine learning, labelled hand shape data were

needed; supplanting the necessity to inspect and manually label a large pool of data

a control experiment has been designed. Two MATLAB scripts were employed to

sort the control data recorded and combine each with the appropriate labels: one
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allocated each recording to the correct folder of hand shape datasets and the next

added each, labelled, dataset to the classifier training dataset.

3.3 Data Collection

Here, the prescribed steps followed in order to collect the control hand shapes,

validate the portable motion capture system, collect hand motion data during ADL

and integrate the AirGo system into a hand therapy clinic are expressed. These

steps collect the data required to: train and assess analysis techniques, evaluate

the accuracy of the portable motion capture system, determine the hand shapes

occurring during ADL and observe the capability of the AirGo system within a

clinical environment. An outlined functional hand shape definition is provided by the

conclusion of rumination around the effects of definition variation on the coefficient

of determination and standard deviation.

3.3.1 Control Hand Shapes

To support analysis of the data collected with the portable motion capture system,

controls of known hand shapes must be captured. A large amount of labelled data

would allow for the training of supervised machine learning techniques and validation

of all analysis methods accuracies. The participant was asked to perform the 12

control hand shapes, shown in Figure 3.7. The set up simply requires a computer

with the LMC connected and the bespoke script open.

Hand shape controls were collected through the performance of the following

these steps, per participant:

1. Participant completes a practice run of each hand shape, with no timer; this is

to ensure that the participant was certain about the hand shapes as they were

asked to perform.

2. Participant places their hand vertically above the LMC (approximately 20 cm

away from the device).

3. Press ”Begin” on the file - each hand shape to be mimicked will then be

displayed in turn.

4. Once complete the script stops (displaying that it has finished) and may be

closed.

Following the recording of the control data, each recording were combined to

make a full collection of each hand shape, using the methods aforementioned in

Section 3.2. Subsequently the data became training data (for classification techniques)

and validation data (for classification and clustering methods).
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3.3.2 Portable Motion Capture System Validation

In order to ensure that the portable motion capture system provides the accuracy

required it was validated against the current state-of-the-art in recording. For this

the Vicon motion capture studio within UHCW has been chosen. The control hand

shapes, introduced in Section 3.2, were used to provide choreographed hand shapes

for the user to follow. The Vicon motion capture system is a marker-based motion

capture system - the participant were required to wear small markers during data

collection. Preliminary testing showed that these markers do not disrupt the IR

sensors of the LMC. The reflective markers were placed on dorsal side of the joints

recorded by the LMC, with placement to match the points recorded by the LMC.

Preparation requires both systems to be initiated and the Vicon markers to be placed

on the hand. Three recordings were taking in each session to improve reliability.

The following steps were performed per participant, with parallel recordings using

the portable motion capture system and Vicon motion capture studio:

1. Place markers in the specified locations on the hand of the participant.

2. Fit the headband, with LMC secured to it, and i3 NUC, in the carry bag with

the external battery, to the participant.

3. Start the portable motion capture system and begin recording within Vicon

Nexus.

4. Ask the participant to reproduce the hand shapes presented to them.

5. Repeat the experiment three times then stop the recording and remove the

equipment.

Analysis techniques performed on the collected data are described in the sub-

sequent section, Section 3.4. The results of this analysis are presented in Section 4.1.

3.3.3 Activities of Daily Living

The capture of hand motions during everyday activities gives insight into typical

hand shapes used during ADL. The results of this were used to feed data to the

taxonomy of hand shape and muscle excitation prediction model, aiming to assist

an everyday upper limb prostheses owner. The equipment used is designed to be as

non-intrusive as possible, and for that reason the set up process is also designed to be

as simple as possible. To begin data collection it is only required that the device is

attached to the participant and the LMC examined and calibrated using an external

monitor, there is no need for measurements to be taken or any additional items to

be placed on the participant. An external monitor allows access to the vision of the

LMC and enables the ability to apply adjustments to the calibration of the LMC;
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such settings include the likely distance the hands would be seen at (to aid the LMC

in finding the hand) and the orientation of the device.

Approval has been granted by the Biomedical & Scientific Research Ethics Com-

mittee (BSREC) at the University of Warwick for the execution of this data collection

(approved on 4th October 2018 under the BSREC reference REGO-2018-2210). The

decided steps for data collection are as follows:

1. Fit the headband, with the LMC secured to it, and the i3 NUC, in the carry

bag with the external battery, to the participant.

2. Plug the i3 NUC into an external monitor and ask the participant to undertake

a few basic tasks they would perform regularly to test the recognition of their

hands.

3. Go over what is required from the participant once data collection has begun.

4. Open the HTML script, in a browser, on the i3 NUC and disconnect the

external monitor.

5. Leave the participant to carry out their day, as if the LMC was not there.

6. Once the experiment has ended, stop the i3 NUC from recording further data

and remove the bag and headband from the participant.

Analysis techniques performed on the collected data are described in the sub-

sequent section, Section 3.5. The results of this analysis can be seen in Section 4.2,

with the final taxonomy presented and discussed in Chapter 5.

3.3.4 AirGo Clinical Trial

A clinical trial, performed in parallel with the UHCW occupational hand therapy

clinic, was established in order to collect data for real world validation of AirGo.

To begin the AirGo was set up ready for the patients, as described previously -

Section 3.1.3. Throughout the recording the live view of the hand is compared to

the real hand to ensure recording consistency with the real world. Here the normal

AirGo script was used, which saving only the final maximum value seen upon pressing

“Save”.

The below steps were employed, per patient, following their appointment with

the occupational health therapist:

1. Patient places elbow of the unaffected arm on table, with their upper arm

vertically upright.

2. Adjust the height of the LMC until centred with the hand.

3. Patient is asked to close the presented hand as far as they are comfortable

with.
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4. Once the angles displayed appropriately represent the behaviour of the patient

press “Save”.

5. Patient places elbow of the affected arm on table, as with previous hand.

6. Adjust the height of the LMC, if necessary.

7. Patient is asked to close the presented hand as far as they are comfortable

with.

8. Once the angles displayed appropriately represent the behaviour of the patient

press “Save”.

Two methods were used to analyse the effectiveness of AirGo using the data

collected during the clinical trial. The first method attempted was comparing the

hands of each patient, to establish whether the recording provide the sensitivity

required to at least detect hand injuries, and the second was testing individual

patient progress, to determine whether development could be observed with AirGo.

Further details of these employed methods can be found in Section 3.7. The results

of the clinical trail can be found in Section 4.4.

3.4 Analysis of Portable Motion Capture System Valid-

ation Data

In order to conclude on the validity of the portable motion capture system the data

collected from both this system and a state-of-the-art in hand motion tracking must

be compared and their correlation examined. After collecting the data, using the

methods described in Section 3.3.2 the following steps where taken to determine the

validity of the LMC from these data.

The Cartesian based motion data of the hand collected with both devices was each

transformed to be described within a local environment (centred at the wrist joint

with the metacarpal of the index finger fixed to the y-axis in the positive direction).

This local co-ordinate system is described by Figure 3.10 and was achieved by the

rotations described in Section 3.2. After localisation of the data, the Vicon data were

scaled such that the MCP joints matched their respective joints from the portable

motion capture system data. Scaling was achieved in all axes by observing the ratio

between the second digit MCP joint and the fifth digit MCP joint positions for both

datasets. The differences between each of the MCP locations of the Vicon and LMC

data were then observed to ensure that the scaling was applied appropriately and the

relative 3D differences between each joint of the Vicon data were checked to ensure

no deformation had occurred during the transformation of these data. Provided that

both of these checks showed that no errors had occurred, the disagreement between
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the two datasets was calculated. Frames where matched between the Vicon and

portable motion capture system data by observing the time collected and filename,

respectively. The data from each method was visualised and manually examined to

ensure no anomalies where present in either; if required, anomalies where removed,

and the remaining data averaged.

Analysis included calculating the Euclidean distances between each point of

both recordings and the differences in the angles calculated for each joint of both

recordings, within a local environment and with scaling applied. For each of the

joints of the second to fifth digits and the IP joint of the first digit, the flexion angle

was calculated in the plane depicted by Figure 3.4. This created a 2D co-ordinate

system in the plane of rotation for each of the joints. In this plane, the equation

(2.4) was applied to calculate the joint angles under consideration. Here, ~a was set to

be the vector of the proximal phalanx bone for calculations of θPIP and the vector

of the middle phalanx bone for calculations of θDIP and ~b was set to be the vector of

the middle phalanx bone for calculations of θPIP and the vector of the distal phalanx

bone for calculations of θDIP . The flexion and abduction angles of the first digit

CMC joint were calculated in the planes shown in Figures 3.11 and 3.12, respectively.

In each respective plane, the equation (2.4) was again applied to calculate the joint

angle. Here, ~a was set to be the vector of the first digit metacarpal bone and ~b

was set to be the vector of the second digit metacarpal bone during calculation of

both θfl and θab. Both the calculations for Euclidean distances and angle differences

were performed individually for each joint. This enabled the total difference to be

fond whilst also allowing for each of the joints and digits to be analysis individually.

Displaying the output of this analysis would provide and average error in the distance

from the portable motion capture system as well as being able to identify any of

the digits or joint which results in the greatest increase in this error. This provides

comfort in the results of low error digits and joints whilst highlighting those with

higher error to be considered with more caution.
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Figure 3.11: A diagrammatic representation of the calculated flexion angle
of the carpometacarpal joint.

Figure 3.12: A diagrammatic representation of the calculated abduction
angle of the carpometacarpal joint.

3.5 Analysis of Activities of Daily Living Recordings

Following collection, with the portable motion capture system, the data are then

loaded into MATLAB and reduced to only include frames in which the hands have

been recorded by the LMC. Within this, remaining, data the hands are localised, to

be centred at the wrist, and the transitional frames removed - leaving, exclusively,

frames in which functional hand shapes have been performed. These remaining hand

shape frames become the inputs to the k-means++ algorithm; therefore, calculating

the cluster centroids would effectively represent the commonly performed hand
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shapes. Plotting these centroids visualises the hand shapes deemed, by the k-means

algorithm, to be able to categorise each frame of the raw data. These centroids have

a possibility of being merged to form the final groupings. Analysis of these final

hand shape groupings found (the taxonomy) highlights the importance of the hand

shapes seen in ADL by these participants - observing those most often occurring

and those held, on average, for the longest period of time.

To determine capabilities to discriminate hand shapes, machine learning techniques

considered were tested with recordings of the control hand shapes shown in Figure 3.7.

These data were collected in the same manner as the validation of the portable motion

capture system , with save file names identifying the hand shape labels. Following

collection, the data were loaded into MATLAB as a table variable, using the file

names loaded to provide the hand shape label of the final column. The recording

of the hand shapes was then randomly permutated and divided into training and

testing data. This provided the required labelled data for training and evaluating

the performance of the machine learning techniques employed.

The supervised learning techniques were trained using these recordings of the

control hand shapes, totalling 26,071 frames of hand motion data and were tested

using 6,518 frames from the same dataset. The performance of the k-means++

clustering algorithm was assessed using the entire dataset of 32,589 frames - due to

the fact that training is not necessary for this, unsupervised, technique.

Analysis methods considered, as well as details on the chosen clustering algorithm

and subsequent merger of outputs, are given in the following sections.

3.5.1 Determining Functional Hand Shape Occurrences

In order to find the commonly occurring hand shapes within the data collected

with the portable motion capture system these data must first be reduced to only

contain the frames of functional hand shapes. By removing all other frames the

analysis techniques used can be implemented efficiently to cluster exclusively frames

of functional hand shapes, aiding in the speed and accuracy of the performed analysis.

Firstly the data are loaded into MATLAB from the recorded CSV file, after

which the columns of the data are extracted into separated variables labelled with

their associated joint names. For this the columns holding the x, y and z Cartesian

co-ordinates of each joint are stored in a variable labelled with that hand, digit and

joint as their name. Next all frame in which the hand is not seen are removed from

their respective variables. To achieve this the rows (frames) of the index MCP joint

are queried to see if they contain a NaN value, if so the frame is identified as empty

for that hand and removed from all variables of that hand. The joint extension of
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digits two to five, at each frame, were determined through the use of the vector dot

product within the 3D co-ordinate system utilising the previous and next joint. To

accommodate for the flexion and extension and abduction and adduction possibility

of the thumb CMC the thumb CMC and MCP with the index MCP were transformed

into a a local 2D co-ordinate system; for extension the y and z co-ordinates were

used and for abduction the x and y co-ordinates were used. Given the set up of the

hand shapes in the previous local co-ordinate system these new 2D local co-ordinates

systems are set up so that implementing the vector dot product provides the desired

angle in that situation. The vector dot product was found as described by (2.4).

The reduced data are the labelled as either belonging to a functional hand shape

or transitional frame group, determined from the calculated joint angles. In order to

categorise frames into transitional or functional hand shape frames a definition of a

functional hand shape was necessary. This definition was decided to be as follows:

a position in which each joint is held within one degree for one second or longer.

A hand shape is then formed by averaging the group of frames which fall within

this definition. This definition was initially decided based on pragmatic grounds

and supported by numerous analysis attempts with various definitions; more relaxed

rules (more than one degree or one second) resulted in a longer computational time

and a higher number of anomalies appearing in the final data, though more tighter

rules (less than one degree or one second) showed a loss in valid hand shapes during

the reduction process. Frames that fall outside of this definition where considered

transitional frames, simply transitioning to another hand shape.

Figure 3.13 displays the influences of this definition over the average R-squared

value, the coefficient of determination, and standard deviation of the resulting hand

shape clusters. Each plot was created from the average, between the left and right

hands, of the averaged, across the clusters formed, R-squared values, between the

observations of each cluster and their respective centroids, and standard deviations,

of the observations within the clusters. On each plot, the changes to the degree

each joint angle much stay within are described by the top x -axis and alterations

to the length of time all joints must remain within this angle along the bottom.

The frame numbers used defined half a second, one second and two seconds of time,

derived from the average frame rate of the collected data. In Figure 3.13a the effects

on the averaged R-squared, from the variations defined, are depicted. From this,

support is shown for the selected degrees the joint angles must remain within, as

this selection produces the greatest R-squared value. Though there exists a dramatic

increase in the R-squared values as the hold length was increased, this was a result

of the limited observations provided for clustering - presenting dense clusters of

limited information. The effects these alterations also had on the standard deviation

observed are described by Figure 3.13b. This plot supports the claim that the
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high R-squared values, achieved by increases to the hold duration, are only a result

of sparse observations in dense clusters. The large reduction seen in the standard

deviation implies that less of the recorded variation has been captured by the clusters,

indicative of a limited amount of information available. A visual examination of the

resultant clusters, formed under each of the varied conditions, further supported the

use of the aforementioned functional hand shape definition.
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Figure 3.13: The effects observed from alterations to the functional hand
shape definition.

As discussed in Section 2.3 these functional hand shapes can be divided into two

categorises: gestures and grasps. A gesture would be considered as a functional hand

shape which does hold a tangible object within space. A grasp would be considered

a variant of this, physically interacting with the tangible world. Though these

categorises of functional hand shapes are known to exist, the numerical kinematic

data collected does not allow for a definitive answer to which hand shape belongs

to either, as it would be unable to identify interactions in the world (outside of

hand-on-hand contact).

The data were then transformed into a local co-ordinate system. This was done

by finding the position of the wrist joint and subtracting this from all of the joints

(localising the hand with the wrist as the origin) and then rotating the joints using

3D rotation matrices, described by (2.1), (2.2) and (2.3), to align the second digit

MCP with the positive y direction axis and so that the positive x direction axis

describes the lateral to medial direction. The z -axis was then placed normal to both

of these, describing the posterior to anterior direction of the hand. The resultant local
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co-ordinate system is depicted in Figure 3.10. Analysis within a local co-ordinate

system is employed as the spatial location of the hand has no relevance here, it is

the shape of the hand which prerequisites the desired information. This creates a

local co-ordinate system with the wrist position as the origin, the index MCP along

one axis, the normal to the anatomical position of the hand along another axis and

the remaining axis perpendicular to both of the others.

When running multiple recordings from different participants the data are stored

in a temporary MATLAB data file, the workspace cleared of the current participant

specific variables and the next participant loaded, to reduce the demand on the

RAM of the computer. Following the loading and reduction of all recorded data

the output is then saved to reduce the time needed next time. After completing

these steps the analysis was then performed to determine the information related to

dataset, including: reducing the dimensions, finding possible correlations, observing

joint activity, grouping commonly performed hand shapes and determining the

characteristics of these grouped hand shapes.

3.5.2 Principal Component Analysis

As a means of reducing the dimensional complexity of the data principal component

analysis (PCA) was considered. With a large amount of data with 60 dimensions

analysis could be made fast and easier with a reduction to the dimensions. When

considering joint angles the dimensionality is reduced greatly, though still containing

a significant number of dimensions. Though the large reductions commonly found

with PCA may lose descriptive elements needed in such vast amounts of data it was

considered and assessed due to the simplicity it could provide. The PCA technique

was chosen for dimension reduction over heatmaps, t-distributed stochastic neighbour

embedding (t-SNE) and multi-dimensional scaling (MDS) due to the vast amount

of information which can be extracted with just one application, the fact that this

works well for high dimensional data, the likely high collinearity in a dataset of hand

shapes and ease of implementation. Greater detailed explanations of PCA and the

alternative dimension reduction methods can be seen in Section 2.5.

Within MATLAB there is a built-in function for performing PCA, pca. To

perform PCA the angles of the joints at each frame were calculated and inputted

into the built-in MATLAB PCA function. From this function the variance of each

principle component (the eigenvalues of the covariance matrix of the input) can

also be extracted, enabling the creation of a scree plot. A scree plot displays the

eigenvalues of each of the principal components against that component number; in

plotting this the ideal number of components to used would be highlighted by the plot

levelling out (as would be scree at the base of a mountain). The principle component
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coefficients for this PCA performed were obtained from the applied function, enabling

the creation of a loading plot. Through the loading plot the influence the original

dimensions have on plotted principal components can be examined. This helps

identify trends in the original data (with correlations being highlighted) as well as

any possible groupings formed within the reduced dimensional frame of possibly one,

two or three dimensions.

Application of PCA on the collected data may provide some benefits. Following

a reduction of the dataset from this, any analysis methods performed after would

be quicker due to the lower number of dimensions which would need to be included.

Additionally, employment of PCA would enable a means of identifying trends within

the, expectedly correlated, data. Despite the appealing advantages of this technique,

there are limitations which must be considered. A reduction in dimensions enables

faster analysis but at the cost of a loss of information defining the data. Loss of these

dimension identifiers would be a hindrance as it would limit the analysis which could

be performed on interactions between the hand joints. Any reduction in dimensions

could help with future time sensitive analysis, but here processing time was not of

significant concern. Due to this, PCA was considered for correlation identification

but not any potential dimensional reductions.

A successful reduction in dimensions would allows for more analysis techniques to

be possible to employ. A large enough reduction could allow for manual analysis, or

crude search algorithms, for the grouping of similar data. This reduction would also

reduce the computational complexity, requiring less time to complete any analysis

methods. Though it may loose accuracy this could be a good alternative analysis

method for when speed is required. Additional to these, the outputs possible from

a PCA could identify trends and correlations within the data otherwise not seen.

Highlighting these trends will provide knowledge of how the digits of the hand

comparatively interact with one another during ADL; this could lead to identifying

potential possibilities in terms of complexity reductions in upper-limb prosthetic

devices. Reductions in hand complexity by linking the motion of digits lessens the

need for the individual actuation of each digit. This could provide a reduction in

the cost of the devices and create easier means of production, with a controlled loss

of accuracy during replication of hand motions. By combining the motions of only

highly correlated joints, a low loss of motion replication accuracy would be ensured.

3.5.3 Joint Angle Correlations

By observing the correlations of the joint angles throughout the recordings information

of aid in the development of upper-limb protheses could be obtained. Knowledge of

any correlations of joint angles during ADL will allow a simplification of prosthetic
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hand joints, reducing computational complexity and possibly actuation requirements.

It is already known that some joints of the hand move without user input through

their constraints to other joints; by observing joint angle correlations within the

collected data, the joints these constrains apply to and how they move in union

would be indicated. Additionally, any joints commonly activated in cohesion would

be highlighted.

Upon calculating all joint angles at each frame and reducing these to only where

functional hand shapes are occurring, the correlation between the joint angles can

be visualised through the use of the built-in MATLAB function plotmatrix. This

function displays scatter plots of each of the columns of the dataset (in this case

set to be the joint angles) against each other. In doing this any joint which behave

similarly (are correlated) would be highlighted, as well as those acting independently

of others being able to be identified. Additionally, loading plots from a joint angle

PCA analysis can be used to highlight any significant correlations between the

recorded joint angles.

An awareness of this information during upper-limb prostheses development could

enable a simplification of the devices. The knowledge could allow for the pairing of

certain digits, simplifying actuation needs and computational complexity of the code

used. This technique would be implemented over the complete recorded dataset and

final taxonomy. A digit could be found to possess only one, two or three positions,

irrespective of the other digits, or could be found to move identically to others,

reducing the actuation needs of an upper-limb prostheses. This would potentially

save time and money during the development and production of upper-limb prostheses

whilst maintaining a similar functionality of the hand. The potential offers of the

results of this method warrant application.

3.5.4 Joint and Digit Activity

From the data collected another piece of information that could be extracted is

a ranking of which digits moved the most during these recordings of ADL. This

would indicate an importance on certain digits, whilst highlighting an unimportance

of others. Additional to the guidance provided by the taxonomy of hand shapes

common to ADL, this would enforce the importance to the digits most utilised during

ADL for aid with development of upper-limb prostheses.

Following the calculation of the joint angles at each frame the change in each joint

angle other a set range of frames could be determined. To avoid contamination of the

results minor movements, either from the hand or LMC, which are not attributed to a

conscious movement by the participant were not considered. In order to achieve this
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joint angles which changed by more than one degree over 20 frames were considered

exclusively. The summation of these occurrences for each joint allows for the most

to least active joint and digit to be determined and presented.

Using this method each joint and digit activity was observed. To display the

outcomes of this analysis method the results were simply displayed as an output

text, ranking the most moved digits to least moved for the left and right hands. A

bar chart was also outputted for visual aid.

3.5.5 Artificial Neural Networks

An artificial neural network (ANN) is a classification algorithm designed to mimic

neural networks, forming a deep learning supervised machine learning technique.

An ANN consists of neurons connected by synapses, typically, over several layers,

referred to as hidden layers, between the input and output layer. The input layer

takes a set framework of data and the output layer assigns confidence values to each

of the possible classification categories. Further details on ANNs can be found within

Section 2.6.1. Here, GoogLeNet and a, created, bespoke ANN have been consider

for the classification of hand shapes within recorded data. GoogLeNet has been

chosen as a well establish network which has demonstrated high levels of accuracy in

image classification. A bespoke ANN has been created for the collected data, in an

attempt to provide high levels of classification with a faster computation time than

GoogLeNet.

GoogLeNet has been chosen to use here; it is a very well establish neural network

for image classification. GoogLeNet has 22 layers and takes an input image of

224-by-224 pixels; due to this input requirement, the 3D Cartesian data collected

was converted into the demanded data format and size. An example of an image of a

hand shape created for input into the GoogLeNet model can be seen in Figure 3.14.

Despite the need to convert the data into images, GoogLenet has been chosen as a

potential method for analysis due to the presented superior performance and the

fact that it is already a well established network. For this reason it has been applied

here for classification during preliminary assessment of the data, providing a quick

test for the existence of expected hand shapes within the data, and as a means to

draw comparisons between the recorded data and previous taxonomies, highlighting

the rate at which hand shapes from previous taxonomies appear within the recorded

data. The following steps were employed in preparation for training a network:

record the hand with a note of which hand shape is being performed, group these

hand shapes into the appropriate folders and then create an image for each frame

from the data of the recordings. Once trained and validated, the network could be

applied to the data collected using the portable motion capture system - data from
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everyday activities.

Figure 3.14: An example of a GoogLeNet input image for a point gesture.

During initial training the weights of the first ten layers were frozen (i.e. could

not be altered during training) to aid training time; however, in the end all layers

were trained (unfrozen). The training process of the GoogLeNet network included

10 epochs with a total of 13,036 images of the control hand shapes. One epoch

describes one pass of the entire training dataset of observations through the ANN

during training.

MATLAB scripts were created to handle the data conversion of the recordings

(from Cartesian co-ordinates to a 224-by-224 pixel image) and training of the network.

From the 3D Cartesian data a 3D binary space can be formed, in which the joints

are registered as high. A bound of 224 pixels, around the hand, in all three axes is

applied. From this two of the directions (in this case the x and y) can be utilised as

locators for points on the image and the third (z ) for alterations to the colour of

the points, representing the depth into the image. This process see the creation of

image describing each frame whilst retaining the information of Cartesian 3D data.

Lines were constructed between points describing connected joints, forming an image

of a hand skeleton, to aid edge detection during the ANN application. These were

achieved by extracting the depth of and distance between the two points and plotting

several points between these to fill the gap. Following the depth changes between

the points ensured a line consistent with the changing colour gradient. The interval

of filling was chosen to ensure that a gap did not occur along any line. Creating a

fading circular pattern around each data point was attempted in preliminary analysis

to assist the networks, though to no avail. A simple MATLAB script, with the
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desired training settings, was then created which takes an object, containing data

from the folders of images (imageDatastore), of the hand shapes to be studied (a

collection of folders named as labels to the images within them) and inputted into

GoogLeNet, as training or testing data.

Due to the high computational demand of creating images for input into GoogLe-

Net, a bespoke ANN was designed to input Cartesian co-ordinate hand motion data.

This ANN was crated using the feedforwardnet function of MATLAB. This was

given input characteristics to match the Cartesian co-ordinate data, specified using

the configure function. In this implementation the network was created with ten

hidden layers. The created network was then trained using the MATLAB train

function, inputting the labelled training control hand shape data. This trained net-

work was validated by a pass of the labelled test control hand shape data. This offers

a great potential in fast implementation and execution, compared to GoogLeNet -

though this approach does not offer the confidence of a well established network,

such as GoogLeNet.

This was not implemented for the creation of a final analysis due to the limitations

of it only grouping known hand shapes. However, this technique has been used to

evaluate the ability of LMC to provide reliable data, during preliminary assessments,

and to test the results of existing grasp taxonomies against the hand motion data

recorded during ADL.

3.5.6 K-Nearest Neighbours Classification

Classification algorithms are supervised machine learning techniques. These tech-

niques are trained with pre-labelled data and then provided unlabelled data to classify

into the previously seen categories. The k-nearest neighbours (KNN) classifier has

been used within this study; this classifier uses a similarity measure between the

provided data and known labels to predict the label for the provided, unlabelled, data.

Following a comparison of the inputted data to the known labels, the KNN classifier

outputs predictions of the labels based on the similarity between the inputted data

and the data with known labels.

The use of a classification algorithm was also attempted to label hand shapes

within the collected data. As with the use of ANNs, this method allows for another

means of preliminary analysis of the data collected as well as identifying trends with

previous taxonomies. MATLAB classification learning app was utilised to train and

export a model, which was then implemented to make predictions of hand shape

occurrences within frames of data. Recordings of the control hand shape were used

as training and validation data, divided as previously specified. Once validated, the
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trained classifiers could be applied to the data collected with the portable motion

capture system. Multiple classifiers were tested and the KNN subspace ensemble

classifier selected due to the high accuracy found possible with this during testing.

The use of a classification algorithm allows for the grasps of existing taxonomies to

be found with confidence in the data, supporting or arguing against their results. Once

training data has been recorded it is easy to implement within MATLAB due to built-

in app. Another advantage over other analysis techniques is the instant resultant

accuracy available after training the algorithm. However, unlike unsupervised

machine learning technique the training and validation data does need to be labelled.

Considering the high dimensionality and vast number of frames from hand motion

capture data an automated labelling method would be difficult to apply and manually

labelling the data would be a long and tedious process. An automated approach

could be applied, though this would reduce confidence in the results; anomalies are

possible and can be removed, but for confidence the data would need to be checked

back. Additionally this training and testing data needs to be recorded and limits

the ability of the classifier, as it can only classify what it has been trained on. The

purpose of this project is to update existing taxonomies with modern, new, hand

shapes, so the inability to highlight new hand shapes limits the use of this method

here significantly.

The classifier was trained use control train data and validated using control test

data, with a 80:20 randomised split of training:testing data. During preliminary

testing it was found that some hand shapes where not differentiate with the single

classifier. A second classifier was run to improve prediction of the four finger pinch

and closed hook, this was trained inputting only control train data of the four finger

pinch and closed hook. A receiver operating characteristic (ROC) curve was used to

evaluate the results.

This was not implemented for the creation of a final analysis due to the limitations

of it only grouping known hand shapes, has been used to evaluated the LMC in

providing reliable data and testing against existing taxonomies. Providing previously

identified hand shapes as training data allows for confirmation of the findings from

previous taxonomies, and potential support that the data collected with the LMC

were appropriate. Additionally, this method has the potential to identify specific

hand shapes in sets of data, enabling a potential reduction of a dataset to the object

grasping or gesturing frames. As more data are added to the training set, it will

become possible to identify more hand shapes and will enable greater customisation

of the resultant groupings.
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3.5.7 Decision Tree Learning

A decision tree queries an input through multiple layers to classify it into predeter-

mined categories. A manual decision tree could be easily implemented by deciding

the features of each hand shape and testing each in turn. Unlike other techniques

which are formed from data obtained with the portable motion capture system, these

definitions are purely what would be expected when that hand shape is performed

(it assumes the system provides perfect data within the expected hand shapes. The

application of a manually implemented decision tree classifier allows for categorisa-

tion into known labelled data whilst retaining control of the inner workings of the

technique, enabling the customisation and addition of observed features.

This could quickly reveal comparisons between existing grasp taxonomies, where

the expected hand shape is know, but would struggle with the identification of new

functional hand shapes. With a manual implementation, hand shapes falling outside

of the labelled categories could be highlighted, however other analysis techniques

would need to be employed to provide a grouping for these. Similar to ANNs and

classification algorithms, employment of this technique enables options for preliminary

analysis of the collected data and the ability to test these data against previous

taxonomies. Thresholds for the descriptors (open and closed) would need to be set,

with limited knowledge of an ideal definition. Given labelled training data these

thresholds could be learned through a learning process, training and testing the

decision tree on a set of labelled control data. This would require training data to be

obtained each time a hand shape is added, however refining a decision tree thresholds

using this method would improve accuracy and remove a need of human judgement.

In order to form a decision tree manually the following must be determined: a

structure running through the decisions, a set of characteristics able to define and

differentiate the inputs and a list of hand shapes and their defining characteristics.

One possible method of implementation would be to use if statements with minimal

to no else statements. The script would evaluate each statement line-by-line and

assign a confidence in each hand shape for every input. This would be simple to

implement and expand as more hand shapes are considered. Another method, closer

resembling a decision tree, would be to group hand shapes similarities and link

decisions. This method could be set up to run consecutively through the possible

hand shapes but would make the set up and addition of new hand shapes more

complex. Joint angles were decided to be the main characteristics used to define each

of the possible outcomes of the decision tree, simplified down to just defining whether

a digit is open or closed. For the thumb this was found to not be enough, due to the

possible flexion and extension and abduction and adduction motions, and, therefore,

spatial information of the thumb tip relative to other part of the hand was used
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alongside the joint extension. Though increasing the complexity of implementation

it was seen as easier than defining hand shapes with the thumb abduction. Multiple

methods could be used to define, allowing for vast customisation options - though

with a likely increase of the complexity in the creation of the decision tree. To test

the manual decision tree capability the control hand shapes were defined by the

characteristic aforementioned stated. These were chosen as they closely resemble

grasps found in previous taxonomies and as they were being used as controls in

other analysis techniques trailed, providing a fair comparable test of the analysis

techniques. Table 3.4 shows an example set of the implementation of the 12 control

hand shapes within a manual decision tree. In this table the first column describes

the hand shape and the following represent the descriptors for implementation of

decision tree learning. The abbreviation DNM was used when the position of that

digit does not matter. In the occurrence of a tip of one digit being close to another,

this was is denoted by stating just the names of those digits.
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Table 3.4: The suggested features for defining the previously control hand
shapes within a decision tree.

Hand Shape Thumb Index Middle Ring Little

2 finger hook
Half

open
Half open

Half

open
Closed Closed

2 finger pinch

Index

and

middle

DNM DNM DNM DNM

3 finger pinch

Index,

middle

and

ring

DNM DNM DNM DNM

4 finger pinch

Index,

middle,

ring

and

little

DNM DNM DNM DNM

Closed hook
Half

open
Almost closed

Almost

closed
Almost closed

Almost

closed

Closed pinch Index DNM Closed Closed Closed

Open hook
Half

open
Half open

Half

open
Half open

Half

open

Open pinch Index DNM Open Open Open

Planar pinch

Straight

under

fingers

Open Open Open Open

Point DNM Open
Closed-

Half
Closed-Half

Closed-

Half

Rest Out Open Open Open Open

Thumb up Out Closed Closed Closed Closed

The optimal value for the degrees, defining whether a digit is opened or closed,

was determined through the implementation of a PSO and brute-force search. A

PSO technique was chosen for fast performance and high accuracy. A brute-force

search was attempted due to the known search power. The PSO application was

provided lower and upper bounds of zero and 90 degrees, respectively, for both

the open and closed values. The full search area was provided to the PSO as the

faster computational time display by this method allows for a wider search area.
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Though the brute-force search takes a considerable longer computational time, this

time was reduced by implementing a two stage search method. To perform this,

the brute-force search initially looks within a wide search area with large step sizes

between candidate solutions. After which, the search was reduced to an area around

the found best performing candidate solution with a smaller step size. This allows for

a reduction in the computational time of implementation whilst retaining the search

power of the brute-force search. The brute-force search first looked between zero and

45 degrees for the opened value and 45 and 90 degrees for the closed values, both

with intervals of five degrees. The results of this were next used to create an input

for the second application, taking five degrees above and below the found values and

intervals of one degree as the next search input for the brute-force search. This style

of training works similarly to a greedy algorithm, with first pass dictating choices

for second. As with greedy algorithms, given the limitations imposed on the second

search, there could exist a greater solution outside of this search area. This method

of training, in this application, has been considered appropriate as it is unlikely that

multiple minima exist within the problem.

Though offering some potential with the collected data this analysis technique

was not used. The time needed to create the tree with no knowledge the ideal

setting makes this method unappealing. Though use could be found as a comparison

method for grasps found in existing taxonomies, classification algorithms have been

a preference for their ease of implementation and reliable results. Due to the manual

implementation of this classifier, customisation is high and defining hand shapes

by joints characteristic, rather than the digits, could allow for more accuracy but

would increase implementation time. Following an understanding of the collected

data through alternative analysis methods, manually created decision trees could be

employed to test future datasets or previous collections; the manual editing allows

for customisation to specific desires through these assessments.

3.5.8 K-Means Clustering

Clustering algorithms are unsupervised learning techniques, employed to determine

classifications within the data with no prior knowledge of potential groupings to be

found. For this study a k-means++ algorithm has been utilised. This is a centroid-

based clustering algorithm - providing clusters based on the proximity of data points.

As the data collected was in Cartesian co-ordinate form, using a proximity measure

to cluster these data provides a well suited means of determining trends within these

data. The classifications would allow for observations of congruency with previously

known hand shapes, validating their existence. Additionally, the aim to ascertain

unfamiliar hand shapes of modern ADL from these data indicates the need for an
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unsupervised learning technique.

A built-in MATLAB k-means function was used to cluster the data. The ability of

this clustering methods was inspected using a collection of control hand shapes. For

this, a k value of 12 was used - persuaded by the 12 types of hand shapes that would

be expected within these data. Once the clusters had been formed, their centroids

could be used to envision how the average hand shape of each cluster would appear.

Once validated, the clustering algorithm was confidently implemented with the data

collected during ADL.

A k-means++ algorithm was chosen for the computational speed and ease of

implementation it demonstrates. Though this algorithm lacks a guarantee of the

output accuracy, a custom test can be introduced to ensure a set accuracy is met for

the results - exploiting the speed and ease of running multiple k-means++ algorithms

in a single run. The k-means++ algorithm is a k-means algorithm with an improved

initialisation technique to increase the speed a reliability of the algorithm. To initialise

the k-mean++ algorithm randomly selects one point as a single centroid for the data,

the squared Euclidean distances between this and all of the other data points are

then calculated and the data point with the largest squared distance selected as

an additional centroid. Once the initially inputted desired k value is reached the

initialisation for a k-means algorithm has been achieved and the k-means algorithm

can run. This initialisation process, compared to a randomised initialisation, can

increase the computation cost of initialisation, but the subsequent application of

the k-means algorithm will converge faster - reducing the overall run time. A more

detailed description can be seen in Section 2.6.4. The algorithm has been set up to

repeat the clustering 100,000 times, with a new initial cluster centroid each time,

and output the attempt with the lowest sum of Euclidean distances between the

data points in each cluster and their respective centroids.

To asses the clustering performance under variations to the number of clusters

three standard measures have been tested: the Calinski-Harabasz (CH) index, Davies-

Bouldin (DB) index and silhouette score. The CH index and silhouette score both

provide an indication of how well dispersed and distinguished each cluster is. The

DB index shows the similarity between each cluster and that within closest proximity.

The combination of each of these methods serves to highlight a optimal number of

clusters, to be found from a clustering algorithm implementation. Each of these

methods were implemented using the built-in MATLAB function evalclusters -

specifying the appropriate evaluation method upon each call.

A looping process was created in order to determine an optimal k value for this

implementation. The mean distance from all points in cluster to their centroid (mean

points-centroid distance) was used as a performance measure of each k value, found
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by observing the mean of the Euclidean distance from each joint of each data point

within a cluster to their respective centroid point and then taking the mean of all of

these. The equation described by (2.5) was used to calculate the Euclidean distance

between the pairwise data. A k value would be considered optimal if this result is

below threshold of 15 mm and that of the value above it over this threshold. Once

the final clustering has been completed the same method was employed to evaluated

the resultant clusters.

It was found to be slow when increasing the k value by one each iteration, taking

excessively long computational time as the amount of recorded data increased. In

an attempt to decrease this time taken a variable k increment was applied. As the

clusters were known to be, at least close to, 60 and 30 for the left and right hands,

respectively, from previous attempts these where used as the starting values of k.

The k increment was set to five until the clustering gave a higher than desired mean

points-centroid distance, when it was reduced to two. With a k increment of two the

value of k was reduced until the clustering provided a mean points-centroid distance

lower than the desired value, from which k was increased by one each iteration until

the optimal k value was found. When each iteration was completed the k value was

stored in one of two arrays depending on whether the resultant mean points-centroid

distance falls higher or lower than the desired value. Both the high and low results

were stored, though only low would be necessary as it is not possible for a high

variable to be repeat with this set up - storing high could later help during debugging.

The changes of k increment were performed by dividing the previous increment by

two and taking the floor value, once the desired mean points-centroid distance was

passed with a k increment value of one it was known that the previous k value was

optimal.

A flowchart depiction of the k value selection process can be seen in Figure 3.15.

Within this flowchart, inc is the incremental step taken by k each iteration, k is the

number of clusters, distance is the mean points-centroid distance and threshold

preselected threshold value for the mean points-centroid distance. Utilisation of

this method to determine the optimal number of clusters provides confidence that

the outputted centroids will represent the original data within the set threshold

value, allowing control over the information loss when creating the taxonomy of hand

shapes.
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Figure 3.15: A flowchart of the process used to determine the optimal number
of clusters for a k-means clustering algorithm.
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This was the method used to categorise the common hand shapes found in ADL.

Once a predicted hand shape had been assigned for each frame of the collected data,

the results were further analysed as described in Section 3.5.10.

3.5.9 Merger of Groupings

Once a machine learning technique has been applied and the data collected grouped,

the centroids of these groups provides a taxonomy of hand shapes. Though high-

lighting many unique functional hand shapes it was found that in reality some of

these hand shapes found could be considered the same, leading to redundancies in

the taxonomy. The data has been reduced greatly from the many frames collected

to a manageable number, from this manual reduction could be performed if desired.

To automate this process as well, allowing for the entire analysis to be automated, a

merger script was made. This script calculates the Euclidean differences between

all of the points for each of the cluster centroids and merges any which would likely

appear similar to any observer.

A merger of similar hand shapes was performed, rather than altering the stopping

credentials of the k value selection process, in order to preserve the minimal accuracy

loss maintained during that procedure. Reviewing Figure 3.13 shows the selected

k value, on the grounds shown, provides the best balance of the evaluation values

tested. Alterations to the search definitions resulted in a lack of hand shapes being

captured within each cluster or a lower explained variation in the clusters found,

resulting in significant losses of information in one singular process. On pragmatic

grounds, a visual observation of the results from the employed k selection method

showed a variation in hand shapes with little repetition - other definitions provided

an observable high repetition rate or limitations in the hand shapes captured.

The merger script utilises the calculated Euclidean norm between each point of

all of the cluster centroids to assess similarities in the cluster. Initially all of the

clusters are repeated using a nested for loop (repeating one to the total number of

clusters in two for loops) and the Euclidean norms of each point in the two clusters

calculated. If all of these Euclidean norms are found to be below a set threshold

these hand shapes would be considered similar and labelled as such. When the

clusters compared are the identical cluster the process is skipped to the next without

consideration. The labelled clusters are stored within a cell array, with each cell

holding the labels of the cluster numbers to be merged together. The merger of

hand shapes considered similar would entail: the Cartesian co-ordinates of these

hand shapes averaged to form a new merged hand shape, all of hand shapes labelled

throughout the original data are relabelled to the new merged hand shape number,

their occurrences count combined, the number of frames they occur within combined,
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the percentage of functional hand shape frames the hand shape belong to combined

and the average frame length recalculated.

A threshold of 30 mm was chosen to imply that two hand shapes would be

considered similar, this was decided from several tests comparing the outputs of

the merging script with manual reduction. Figure 3.16 shows the results of testing

different merger threshold distances on the found clusters. These plots display the

results for merger distances of 17 to 55 mm; these were the points at which the

merger either had no effect on the founding clusters or grouped all of the hand shapes

into one singular cluster, respectively.

Figure 3.16a shows how the intra-cluster distance changes with a varied threshold,

calculated by the averaged distances between each data point and their respective

centroid. This enables a check that the found clusters still accurately represent the

data frames grouped within them, displaying the spread of the original hand shape

frames from the respective centroids.

In figure 3.16b the changes of a varied merger threshold on the inter-cluster

dispersion are displayed, calculated by the averaged distance of each cluster centroid

from all the of the data no captured within that cluster. This measure provides

an indication of variation across the clusters, ensuring clusters are unique and that

there is low hand shape repetition seen in the final results.

Figure 3.16c indicates the changes in average cluster standard deviation with

a varying threshold value, measured by averaging the standard deviations of each

of the clusters. This provides another measure of the spread within each cluster,

ensuring that the final centroids found are representative of the data within them.

Figure 3.16d displays how the coefficient of determination for the centroids and

clustered points alters during threshold variation; this was calculated by taking the

average of the correlation of each cluster centroid and each respective point in that

cluster and then averaging these results. This highlights the agreement observed

within each of the clusters, providing another measure to ensure that similar data

remain within the same cluster and that no data are captured in a cluster with too

high a disagreement.

The 30 mm threshold was concluded as the best balance of the studied character-

istics, displaying inter- and intra-cluster characteristics. With this choice, there still

remained a low variation within these resultant groupings, implying only similar hand

shapes are captured within each grouping. Additionally, there were large distances

across the groupings, showing that the variation of data was not diminished by these

groupings and that only similar hand shapes had been grouped. As this measure

identifies the amount of available information remaining following the grouping,
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there was a lot of weight given to it during the selection of a merger threshold. This

highlighted the performance of a 30 mm threshold value. Additionally, increases

past this value saw the correlation of the classified hand shapes and respective

cluster centroids decrease; the 30 mm choice was still able to keep a high agreement

between the clustered data and cluster representatives. Visual analysis supported

these findings, showing the removal of repeated hand shapes without unnecessary

grouping of hand shapes which were not similar when the merger was applied with a

30 mm threshold value.
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(a) The mean distance between each cluster
centroid and the respectively grouped hand
shapes, averaged across all clusters found,
versus the merger threshold value.
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(b) The mean distance between each cluster
centroid and the hand shapes of all other
groupings, averaged across all clusters found,
versus the merger threshold value.
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(c) The standard deviation of each cluster,
averaged across all clusters found, versus the
merger threshold value.
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Figure 3.16: The observed effects of varying the merger threshold value on
the cluster characteristics.
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This technique was performed following the k-mean++ clustering of the data

collected with the portable motion capture system, producing the finalised taxonomy

of functional hand shapes used in ADL. As the resultant data takes an identical

structure to the k-means++ output the same evaluation methods and means of

displaying the results can be used. This finalised taxonomy of hand shapes would

then be visually represented as described in Section 3.5.10.

3.5.10 Displaying Results

Following the application of methods determining the taxonomy it must then be

visually represented in an understandable way to create the final taxonomy of hand

shapes used in ADL. This was achieved by plotting each point of the centroids

graphically. These centroids provided an averaged value for each of the data points

for each cluster - therefore describing the common hand shapes found within the

data. For each hand shape, the total number of occurrences and the total number

of frames it appears for was found. The percentage of the data each hand shape

occupies and the number of frames (and, hence, time) each is held for on average can

be calculated. This analysis provides an understanding of the importance of each

hand shape found in ADL. The amalgamation of the final groupings of hand shapes

and analysis of each of these groups results in a functional hand shape taxonomy

labelled with key information regarding each of the hand shapes.

The taxonomy was initially represented by wire frame images on the hand, this

can be seen in Figure 3.17. This was created by connecting select points of the hand

joint co-ordinates in a Cartesian system. As can be seen, in this form the hand

shape is difficult to make out from a limited number of 2D images and, therefore, a

different method was eventually chosen to display the final taxonomy. One advantage

of this display method is the ability to add a scale to the axis, providing a further

assessment of the hand shape characteristics during analysis; however, for the

purposes of displaying a final taxonomy this does not add any value.
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(a) A wire frame image of an opened hand. (b) A wire frame image of an closed hand.

Figure 3.17: The original, wire frame style, visual means to displaying the
hand shapes within the taxonomy of hand shapes, plotted in MATLAB.

In order to create more visually descriptive images of the hand for the taxonomy

Blender was used to render freestyle line art images from a model of the hands.

An example of the style used to create the taxonomy can be seen in Figure 3.18.

This showed more descriptive capabilities with just a single image and was able

to distinguish all hand shapes whilst maintaining a single camera angle. The

joint rotations were determined from calculations employing the vector dot product

between the adjacent bones, performed using (2.4). To produce these images the

joint angles were calculated from the Cartesian locations of the cluster centroids and

then inputted into a Python script which rotates each bone of the armature of the

Blender hand model accordingly. An image could then be rendered and used a the

representing image of that cluster centroid (and, in turn, hand shape) within the

final taxonomy.

(a) A line art image of an opened hand. (b) A line art image of an closed hand.

Figure 3.18: The final, line art style, visual means to displaying the hand
shapes within the taxonomy of hand shapes, rendered in Blender.

Additional data associated with each hand shape within the taxonomy, such as

the number of occurrences and average time of each occurrence, are determined
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within MATLAB and display within a table.

3.5.11 Evaluation of Analysis

To ensure trust in the results of the analysis performed the outputs must be evaluated.

As a k-means++ clustering algorithm, followed by an automated merger of similar

hand shapes, has been chosen for the main analysis the final output of these processes

was evaluated. Creation of CH, DB and silhouette graphs can be used to determine

an acceptable range of k for a k-means++ algorithm prior to implementation. The

steps taken to optimise the k values to have a data-centroid differences of below

15 mm ensures the resultant clusters describe the full recorded data within 15 mm.

Following clustering and merge, the steps taken to find the data-centroid differences,

as well as the R-squared and standard deviations, are tested on the resultant clusters.

The CH index [154], a method commonly employed to determine the optimal num-

ber of resultant clusters from an unsupervised learning algorithm, was implemented

to provide confidence in the acceptable values of k. The CH index calculates the ratio

of the sum of inter-cluster and intra-cluster dispersion to provide an indication of

how dense the clusters are and how well separated each is from the others. Alongside

this the DB index [155] has also been calculated for varied numbers of clusters. The

DB index provides a measure of the similarity between clusters in close proximity,

resulting in a measure inversely proportional to the performance of each clustering

observed. Additionally, the silhouette score [156] has been taken for the same range

of cluster numbers. This score describe how dispersed and clearly distinguished each

cluster is, resulting in a measure indicative of clustering performance.

As described in Section 3.5.8, steps have been taken to ensure that a k value

with data-centroid differences greater than 15 mm is not used. This keeps the

clusters representing the total data within 15 mm despite the large reduction in data

obtained during clustering. Following both the k-means++ clustering and merger of

these resultant clusters the data-centroid differences, R-squared values and standard

deviations of these groupings are found.

The differences measured are calculated identically to that for determining an

optimal value of k. The data-centroid difference was calculated by taking the average

of averaged pairwise distances between each observation in a cluster and the respective

centroid. This provided a clear measure of how dispersed the clusters are and, in

turn, how well the centroids formed represent the data collected. Reductions to this

measured distance are implicit of a closer representation of all of the hand shapes

seen during ADL by the centroid.

The R-squared value is a percentage measure of fit between two variables, dis-
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playing how well the observed variables describe each other. Taking the average of

this measure per cluster, comparing each observation in a cluster to the respective

centroid, shows how well the cluster centroid describes the observations within that

cluster. A higher R-squared value would indicate a better agreement between the

cluster observations and their respective centroids.

Standard deviation of a dataset shows how dispersed that data are around the

mean. Taking the average of the standard deviations of each clusters found provided

a measure of how dispersed the observations of a clusters are around their respective

centroids. A higher averaged standard deviation would imply the existence of more

dispersed clusters, with centroids less representative of the observations made during

ADL.

The R-squared values and standard deviations are found through the use of built-in

MATLAB functions (corrcoef and std), from these functions the R-squared values

can be calculated by taking the square of the correlation coefficients and the standard

deviation is provided directly, respectively. The corrcoef function provides the

linear correlation coefficients of the columns of the inputted matrices; in this case this

is the cluster centroids and all of the hand shapes within that respective cluster. The

results of these are then averaged and then squared to find the R-squared value for

each cluster. The std function returns the standard deviations of the columns of the

present array (in this case joint Cartesian locations), here for each frame within the

cluster the standard deviation between the joint Cartesian locations and that of the

cluster centroids were found and then averaged to find the overall average standard

deviation for each cluster. Determining the data-centroid differences provides the

knowledge of how accurately the original data are being represented by the groups

outputted. The R-squared values and standard deviations, respectively, provide an

indication of how closely correlated and how dispersed the clusters are.

3.6 Analysis of Muscle Excitation Techniques

The selected optimisation techniques for predicting muscle excitations from kinematic

data were assessed, in order to determine the best for proposed solution. The cost

function, given by (3.5), was tailored to each predictive model through alterations

to the terms of this equation in order to minimise a tuning cost, set as (3.6). This

hyperparameter tuning was achieve by inputting hand shapes with known muscle

excitations, displayed in Figure 3.19. To assess the performance of these techniques

validation and evaluation methods were employed. To validate each of the methods,

for use in the prediction of muscle excitations, the resultant muscle excitations

obtained by each, inputting a hand shape with known muscle excitations, were
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compared to the known muscle excitations. To evaluate the capability of each

method repeated applications were performed for all methods, aiming to identify the

method with superior performance, across a multiple applications.

Due to an inability to collect real world data, validation data were created

utilising MyoSuite [166]. Within MyoSuite two hand shapes were simulated to

provide the validation data: a four finger pinch and point. These hand shapes can

be seen reproduced in Figure 3.19; the four finger pinch and point hand shapes being

respectively shown by Figures 3.19a and 3.19b. These hand shapes were selected in

order to provide a means of validation for the predictions made - demonstrating a

sufficient range of joint angle combinations when applied in conjunction with the

equilibrium hand shape data. The created data contain the joint angles and muscle

excitations for each hand shape, with an identical structure to the requirement from

the musculoskeletal model [9].

(a) The four finger pinch hand shape created
by known muscle excitations within MyoSuite,
for the validation of prediction methods.

(b) The pointing hand shape created by
known muscle excitations within MyoSuite,
for the validation of prediction methods.

Figure 3.19: The hand shapes created within MyoSuite by known muscle
excitations, for the validation of prediction methods.

An equilibrium hand shape, with zero muscle excitations, was also tested; these

experimental data were provided with the employed musculoskeletal model [9].

Though the zero muscle excitations reduces the complexity of this problem, these

data were tested to confirm adequate performance of the predictive methods with

respect to the experimental data. To ensure similarities between the simulated and

experimental validation data, the equilibrium hand shape muscle excitation data

were simulated within MyoSuite. The joint angles outputted from MyoSuite for this

set of muscle excitations gave an exact match to those recorded in the equilibrium

hand shape data provided with the musculoskeletal model, showing support for this

means of simulating validation data. The equilibrium hand shapes, provided and

simulated, are presented in Figure 3.20; with Figure 3.20a showing hand shape from

the experimental data and Figure 3.20b showing the simulated hand shape.
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(a) The hand shape for the equilibrium hand
provided with the musculoskeletal model [9],
for the validation of prediction methods.

(b) The hand shape for the equilibrium hand
created within MyoSuite, for the validation
of prediction methods.

Figure 3.20: The hand shapes of the equilibrium hand shape data used
during the validation of prediction methods.

In order to determine the method to be highlighted as the proposed solution and,

consequently, applied to the data recorded with the portable motion capture system,

repeated applications of the same hand shapes were performed for each method.

Each of the predictive methods outlined were repeated ten times with inputs of

the two validation hand shapes in Figure 3.19. As indicators of performance, the

average correlations between the predicted and known muscle excitations and joint

angles and the time taken were observed The ranges of these measures were also

recorded, in order to highlight the consistency of the predictive methods tested across

these applications. By validating and evaluating these methods with data including

known muscle excitations, the importance of the resultant angle correlation on the

predictive ability of the method can also be observed.

The results of the validation and evaluation of the techniques employed are

presented in Section 4.3.

3.7 Analysis of AirGo Clinical Data

Though the accuracy of the AirGo would mostly depend on the validity of the LMC

and, hence, the results of the evaluating the portable motion capture system, the

results collected during the clinical trial were analysed to assess the capability of the

device.

From the clinical data collected two main pieces of information can be extracted

and tested: the injured hand and whether the patient has progressed between visits.

The injured hand can be predicted from the AirGo output data by comparing the

motion possible by each of the joints, the lowest motion indicating the likely injured

hand. Comparing this to the known injured hand would provide an indication of
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the capability of the device. Progression of hand motion can be observed from

patients with multiple recordings from different visits. Though largely an indication

of the progression of patients, this will give comfort in using the data from AirGo in

progressing sessions with patients.

In order to predict which hand was injured several methods where observed, these

were: the summation of all angles, summation of all total active motions (TAMs),

summation of the TAMs of the injured digits, observing only the injured joints, the

summation of the MCP and PIP for the injured digits only, the MCP for the injured

digits only, the summation of all MCP and PIP and the summation of all MCP.

When the injured joint was known this was only used to isolate those digits from the

hand, comparing that digit from both hands exclusively.

To determine whether progression was made multiple comparison methods have

been considered, these were: the summation of the TAMs of the digits for each hand,

the summation of TAMs of the digits for the injured digits only, the injured joints

exclusively, the MCP and PIP of the injured digits, MCP of the injured digits, MCP

and PIP of all digits and the MCP angle of all digits. The use of TAMs shows how

the entire hand has performed, thought to indicate an injury hand if one of the

hands shows lower mobility. In testing it was seen that it was not able to accurately

determine an injured hand, thought to be because varying mobility from other digits

masked the injured digit; because of this the injured digits, when know, was isolated

and compared. Additionally during validation it was seen that the LMC provided the

most accurate readings for proximal joints, for this reason the MCP and PIP joints

were also isolated for analysis in both predicting the injured hand and observing

progression in patients.

These prediction methods were applied to data separated by patients and trials.

When considered on a trial level, simply each trial was observed, independently of

the others. When considered on a patient level, the trials for patients with multiple

recording were collected and the joint angles, of each recording, were averaged,

producing an averaged set of measurements for that patients. If only one trial existed

for a patient then only that trial was consulted.

Additional to these, the time taken to determine the joint angles of the patients,

compared to the typically used alternative goniometer, can also be observed. There

is no possible inter-reader difference as the device is consistently used and required

no manual interference for measurements once begun. Consistency (intra-reader

differences) of the LMC can be obtained from the validation of portable system.
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Analysis

This chapter discusses the analysis techniques performed, and the results obtained,

on the data collected using the portable motion capture system, including validation

of the system and evaluation of the final results. Details of the potential techniques

considered can be found in Chapter 2. The main analysis technique used to extract

a taxonomy of functional hand shapes from the collected data was decided to be the

k-means++ algorithm, here detailed steps of the implementation can be seen. The

results of the other techniques employed, all of which are outlined within Chapter 3,

to extract various useful information have been also displayed and discussed here.

Following implementation of the techniques selected, a modern taxonomy of hand

shapes can be introduced. A significant advantage of capturing quantitative hand

motion data, rather than video recordings, is that the collected data can be later

analysed autonomously using machine learning algorithms. This process is quicker

and, once sufficiently trained, can be more reliable than a human watching back

a video to manually assign the hand shapes performed in each frame. To detect

when a certain functional hand shape is performed, positional data transformed to a

local co-ordinate system has been used. The data are considered only within this

local co-ordinate system, as the spatial location of the hand has no relevance - it is

the shape of the hand which prerequisites the desired information. The resultant

taxonomy of this can be seen displayed and discussed in Chapter 5. The results of

the validation and evaluation performed for the application of various optimisation

techniques within a muscle excitation prediction model has been provided. Additional

to this analysis, the outputs of a clinical trial performed to evaluate the performance

of AirGo have been presented and reviewed. Further details on the deployment of

each of these studies can be seen, respectively, in Chapters 6 and 7.
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4.1 Analysis of Portable Motion Capture System Valid-

ation Data

Validation data for the portable motion capture system, utilising a Vicon motion

capture studio, has been collected following the procedure outline in Section 3.4. The

hand shapes observed during validation are shown in Figure 3.7. This collected data

has been compared within MATLAB in order to observe any error formed from the

use of the portable motion capture system and Leap Motion controller (LMC). The

process undertaken to complete the validation is as shown in Section 3.2. Both the

angles and distances of the two systems were compared and these comparisons can be

in Tables 4.1 and 4.2, respectively. Table 4.3 shows the correlations between the joint

positional co-ordinates recorded by the two systems. For each of the measurements

made, the average, minimum and maximum values have been given - providing

indications of the central tendency and spread of the obtained results.

The distances between the Cartesian co-ordinates was calculated by the Euclidean

norm, described by (2.5), and the joint angles were found by utilising the vector

dot product, shown by (2.4), of two adjacent bones. Analysis was performed in the

local co-ordinate system, with data scaled to provide equivalent fixed feature points.

When calculating the difference in positional distances, the metacarpophalangeal

(MCP) was not considered as this was used as an anchor for local co-ordinate system

and scaling and, therefore, was the same for both recordings. Though this validation

was performed with the portable system, the results also validation for the LMC

and, hence, can be used as validation for the AirGo device.

The overall positional difference between the two systems was calculated from

the mean of the absolute of the difference between each equivalent point x, y and z

value from the LMC and Vicon system. This difference was found to be 14.2 mm.

Other observed differences in the positional recordings can be seen in Table 4.1.

Within this table are the pairwise distance differences between the two recording

systems for the proximal interphalangeal (PIP) joint, distal interphalangeal (DIP)

joint and tip of the digit and each of the digits for each of the recorded control hand

shapes. The digits have been labelled one to five, one representing the thumb and five

representing the little finger. Observing the average difference of the joints highlights

a clear trend of the error increasing with more distal joints - indicating that more

confidence should be placed on the locations of joints more proximal in data collected

with this system. It can be seen that the thumb exhibits the largest error out of the

digits and that the index finger showed the lowest error, this lower accuracy of the

thumb positional measurements should be considered when conclusions are drawn

from collected data.
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Table 4.1: The positional errors, in millimetres, observed during validation of the portable motion capture system against a
state-of-the-art motion capture studio.

Hand Shape

Total
Difference

Joint Digit

PIP DIP tip 1 2 3 4 5

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Max. Max. Max. Max. Max. Max. Max. Max. Max.

Two Finger Hook 11.4
11.0

8.92
8.72

10.9
9.78

14.4
14.1

21.2
19.7

5.96
4.94

13.2
12.2

8.93
8.71

7.72
7.45

11.7 9.16 11.6 14.7 24.0 7.70 14.1 9.10 7.86

Two Finger Pinch 15.2
11.6

11.7
8.43

14.8
11.0

19.2
15.4

19.5
18.8

11.1
9.52

20.8
16.1

14.8
8.42

9.77
5.13

19.1 15.1 18.7 23.4 21.0 14.1 28.3 19.0 13.0

Three Finger Pinch 14.2
12.0

10.1
8.71

14.3
11.9

18.3
15.5

19.8
18.6

10.9
8.60

15.7
11.7

17.4
11.4

7.17
5.44

18.4 12.7 18.9 23.7 20.9 13.6 22.4 27.6 8.49

Four Finger Pinch 14.3
11.9

9.93
8.00

14.1
11.7

18.8
16.1

19.9
18.5

11.5
7.25

15.4
12.2

14.8
7.86

9.78
5.11

18.1 12.9 18.3 23.0 21.0 16.0 19.6 23.3 16.1

Closed Hook 13.4
12.2

9.51
8.81

13.9
12.5

16.8
14.7

23.7
21.4

12.7
10.5

12.0
9.50

10.1
7.90

8.56
6.83

14.2 10.2 14.8 17.9 27.7 14.8 13.8 12.7 10.4

Closed Pinch 14.4
13.8

12.9
12.5

14.9
14.1

15.5
14.7

17.8
17.4

9.42
8.20

15.8
14.5

14.6
13.8

14.5
13.4

15.0 13.6 15.6 16.3 18.1 11.3 17.0 15.9 16.1

Open Hook 17.1
15.0

10.9
10.1

17.0
14.5

23.3
20.2

22.6
21.2

10.9
10.2

17.6
14.3

19.2
15.4

15.0
11.0

18.7 11.5 18.9 25.8 23.7 12.1 20.5 22.5 17.3

Open Pinch 15.8
14.9

11.7
10.9

15.9
15.0

19.8
18.9

20.3
18.2

11.5
7.42

21.1
20.5

15.9
14.2

10.3
9.59

17.4 12.9 17.7 21.5 23.5 14.6 22.2 17.2 11.1

Planar Pinch 9.79
7.62

8.24
7.06

9.41
6.92

11.7
8.89

15.3
14.7

4.75
2.99

10.9
5.99

11.1
6.72

6.88
3.91

11.7 9.08 11.4 14.5 15.8 6.17 14.9 14.4 9.19

Point 11.9
10.9

10.8
10.2

11.7
9.74

13.1
12.4

22.7
21.0

4.33
3.33

10.5
9.61

9.40
8.99

12.5
10.5

13.3 12.0 13.6 14.3 26.0 5.77 12.0 9.91 14.9

Rest 11.5
9.87

8.37
7.79

11.2
9.47

14.9
12.3

15.7
12.9

7.10
3.82

13.3
11.2

11.8
10.6

9.57
9.48

13.1 8.70 12.8 17.8 19.9 10.2 15.1 12.8 9.71

Thumb Up 21.7
15.3

14.9
12.0

22.4
15.3

27.9
18.8

22.0
19.2

18.7
11.8

25.0
15.1

23.9
14.9

19.2
11.7

32.3 20.9 33.7 42.2 23.5 31.2 39.0 37.5 30.1

Average 14.2 10.7 14.2 17.8 20.0 9.91 15.9 14.3 10.9

123



Analysis

The overall angular difference between the two systems was calculated from the

mean of the absolute of the difference in the angles of each equivalent point from the

LMC and Vicon. This difference was found to be 18.4 degrees.

The observed differences in the angles measured can be seen in Table 4.2. Within

this table are the pairwise angular differences between the two recording systems

for the MCP, PIP and DIP joints of the digit and each of the digits for each of the

control hand shapes. The digits have been labelled with one to five, one representing

the thumb and five representing the little finger. Despite the lower error observed in

joints more proximal during consideration of the error in the Cartesian locations,

measurements of the joint angles indicated a superior performance from the PIP

joints over the MCP joints. This greater error displayed by the MCP jointed could

be argued to be a result of the greater degrees of freedom (DoF) this joint exhibits

- positional measurements would have been affected by abduction and adduction,

whereas the observed joint angle only considered the flexion and extension of the

joints. Similarly to the Cartesian differences analysis, the index finger was the digit

which exhibited the lowest error. Though there was little range in the errors of the

other digits it should be noted that the thumb showed the second lowest error when

the joint angles were measured. These results should be consulted when joint angles

measurements are taken with an LMC.
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Table 4.2: The joint angle errors, in degrees, observed during validation of the portable motion capture system against a
state-of-the-art motion capture studio.

Hand Shape

Total
Difference

Joint Digit

MCP PIP DIP 1 2 3 4 5

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Max. Max. Max. Max. Max. Max. Max. Max. Max.

Two Finger Hook 13.8
12.2

9.03
7.43

14.8
12.4

17.4
16.8

11.3
10.4

13.0
10.6

10.5
9.55

15.1
11.9

18.9
15.9

15.3 11.0 19.7 17.9 12.3 17.3 12.0 20.3 24.3

Two Finger Pinch 20.6
13.0

22.3
10.6

19.3
14.8

20.6
13.9

10.3
7.72

22.3
14.6

31.0
23.3

21.0
10.7

18.5
6.40

27.8 32.9 23.5 28.4 12.9 31.5 40.0 27.9 27.7

Three Finger Pinch 12.7
10.4

15.5
11.1

11.9
9.48

10.7
9.08

15.4
15.2

10.8
7.86

13.2
8.46

15.1
9.09

9.17
6.82

16.7 23.0 15.1 12.1 15.8 14.9 19.8 24.0 11.2

Four Finger Pinch 18.6
15.1

16.0
9.32

21.7
18.1

18.1
15.4

18.9
17.1

16.6
10.9

16.3
8.00

20.0
9.19

21.4
14.1

22.8 27.4 26.3 22.7 21.0 20.0 25.8 27.6 26.3

Closed Hook 20.1
19.0

12.4
11.3

21.3
19.6

26.4
23.1

34.1
25.0

15.4
11.5

13.8
12.5

18.7
15.6

18.6
14.2

22.2 14.4 22.6 32.5 43.0 20.9 16.4 24.5 22.3

Closed Pinch 20.3
20.0

23.5
22.7

12.0
11.2

25.1
23.6

11.4
11.2

14.6
12.6

22.0
20.1

23.6
22.5

29.1
28.3

20.5 24.3 12.9 26.5 11.6 16.9 24.1 25.2 29.8

Open Hook 19.5
19.2

24.3
21.2

13.7
12.9

20.4
15.4

10.8
10.0

23.3
18.2

21.5
19.9

21.0
19.9

21.0
15.6

20.2 26.3 14.9 23.8 11.3 26.9 22.4 22.3 25.5

Open Pinch 19.5
17.2

29.7
27.7

12.9
10.1

16.0
13.9

18.8
17.1

16.0
10.8

27.9
22.6

19.5
17.9

15.4
14.7

21.9 32.9 15.7 17.2 21.5 19.3 33.2 22.5 16.9

Planar Pinch 15.3
12.0

17.2
11.9

14.4
13.0

14.7
4.96

31.9
19.2

9.10
7.02

11.6
7.67

13.3
11.4

10.9
9.34

19.5 21.8 15.8 30.7 55.6 12.7 16.2 16.6 13.4

Point 17.6
15.8

14.1
12.4

16.3
14.5

22.4
19.5

19.3
17.8

7.18
5.69

22.4
18.3

20.5
16.3

18.4
16.2

19.5 16.6 19.5 26.7 21.8 8.86 29.5 27.7 20.9

Rest 16.4
15.2

22.5
19.9

13.3
9.44

13.3
7.42

20.3
19.2

11.9
9.84

19.1
14.0

16.0
14.4

14.2
12.7

18.2 24.1 16.0 20.0 22.4 14.3 24.1 18.5 15.3

Thumb Up 26.4
21.8

31.1
18.8

32.5
29.3

15.4
13.4

23.1
20.9

19.7
9.42

24.2
15.3

32.4
27.7

31.1
27.2

35.4 52.9 37.3 17.0 24.8 35.5 38.4 39.7 36.6

Average 18.4 19.8 17.0 18.4 18.8 15.0 19.5 19.7 18.9
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The overall correlation between the two systems was calculated from the mean

of the correlations found between each recorded joint location from the LMC and

Vicon. This correlation was found to be 0.92.

The observed correlations between both capture systems can be seen in Table 4.3.

Within this table are the correlations between the two recording systems for the PIP

and DIP joints and tip of the digit and each of the digits for each of the control

hand shapes. The digits have been labelled with one to five, one representing the

thumb and five representing the little finger. As would be expected, the majority

of the correlations exhibited the same patterns as was seen in the Cartesian errors;

more proximal joint displayed a higher correlation and the index finger exhibited the

highest correlation of the digits. One difference was the high correlation calculated

for the thumb, contrasting the high error seen when observing the Cartesian distance

error but agreeing with the results of joint angle comparisons.
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Table 4.3: The correlations observed during validation of the portable motion capture system against a state-of-the-art motion
capture studio.

Hand Shape

Total
Difference

Joint Digit

PIP DIP tip 1 2 3 4 5

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Av.
Min.

Max. Max. Max. Max. Max. Max. Max. Max. Max.

Two Finger Hook 0.95
0.95

0.97
0.97

0.96
0.96

0.91
0.91

0.96
0.96

1.00
0.99

0.97
0.97

0.79
0.77

0.68
0.57

0.96 0.97 0.97 0.92 0.97 1.00 0.98 0.82 0.77

Two Finger Pinch 0.90
0.84

0.93
0.89

0.87
0.79

0.80
0.68

0.95
0.93

0.96
0.92

0.67
0.47

0.88
0.84

0.96
0.91

0.94 0.95 0.92 0.87 0.96 0.99 0.80 0.94 0.99

Three Finger Pinch 0.90
0.84

0.94
0.92

0.87
0.79

0.78
0.64

0.91
0.88

0.98
0.96

0.83
0.69

0.63
0.54

0.99
0.99

0.93 0.95 0.92 0.85 0.95 0.99 0.91 0.72 1.00

Four Finger Pinch 0.89
0.85

0.95
0.93

0.87
0.78

0.64
0.50

0.88
0.85

0.97
0.96

0.86
0.78

0.68
0.47

0.82
0.74

0.93 0.95 0.92 0.77 0.90 0.99 0.93 0.85 0.89

Closed Hook 0.89
0.88

0.94
0.93

0.86
0.84

0.65
0.59

0.89
0.89

0.98
0.96

0.90
0.85

0.75
0.65

0.58
0.47

0.91 0.95 0.88 0.73 0.91 0.99 0.95 0.83 0.67

Closed Pinch 0.93
0.92

0.90
0.89

0.95
0.93

0.94
0.90

0.98
0.98

0.98
0.97

0.91
0.87

0.77
0.76

0.57
0.54

0.94 0.91 0.95 0.97 0.98 0.99 0.94 0.78 0.61

Open Hook 0.92
0.90

0.97
0.96

0.92
0.90

0.81
0.77

0.97
0.96

0.99
0.97

0.93
0.90

0.83
0.79

0.87
0.85

0.94 0.97 0.95 0.85 0.97 0.99 0.95 0.86 0.91

Open Pinch 0.92
0.91

0.95
0.95

0.94
0.93

0.93
0.91

0.94
0.92

0.95
0.94

0.93
0.92

0.96
0.95

0.97
0.96

0.94 0.96 0.95 0.95 0.95 0.98 0.94 0.97 0.98

Planar Pinch 0.97
0.96

0.97
0.96

0.97
0.97

0.97
0.96

0.94
0.94

0.99
0.99

0.99
0.97

0.98
0.97

0.99
0.99

0.98 0.97 0.98 0.97 0.95 1.00 1.00 0.99 1.00

Point 0.95
0.94

0.95
0.93

0.96
0.96

0.94
0.93

0.98
0.97

0.99
0.98

0.94
0.92

0.86
0.78

0.61
0.60

0.96 0.96 0.96 0.95 0.99 1.00 0.96 0.91 0.62

Rest 0.97
0.96

0.98
0.98

0.98
0.98

0.97
0.97

0.98
0.98

0.99
0.98

0.98
0.98

0.98
0.97

0.98
0.98

0.98 0.98 0.98 0.98 0.98 1.00 0.99 0.99 0.99

Thumb Up 0.78
0.63

0.88
0.79

0.73
0.55

0.72
0.67

0.97
0.96

0.87
0.68

0.72
0.56

0.52
0.24

0.17
0.03

0.88 0.92 0.85 0.77 0.98 0.98 0.84 0.74 0.29

Average 0.92 0.94 0.91 0.84 0.95 0.97 0.88 0.80 0.77
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The observed errors highlight the limitations of the LMC, but the results are able

to support the claims of many authors [104, 111–116] that the LMC can provide

clinically viable data. Across all of the adopted hand shapes, the system was able to

provide a high correlation; this establishes confidence in this data collection method.

The performed validation highlights digits and joints to be taken with confidence or

avoided to maintain a high accuracy of results. Caution should be exercised when

assessing the joint angles of distal joint and the thumb joint positions following

collection with this system.

The evaluated system, an Intel Next Unit of Computing (NUC) powered by an

external battery, does not provide the ideal conditions for the LMC. It is assumed

that if this experiment was to be repeated with LMC data extracted employing

a desktop computer, then greater agreement between the two collection methods

would be found. Though efforts were taken to match the marker positions of the

Vicon system with the recorded points of the LMC, this has likely been a source

of error, particularly as the physical markers could drift throughout the recordings.

Several recordings were taken and the markers were checked and, if needed, realigned

between recordings to reduce this influence as much as possible.

4.2 Analysis of Activities of Daily Living Recordings

Following the collection of hand motions during activities of daily living (ADL),

analysis was performed to filter and segregate functional hand shape occurrences

and transitional frames, determine correlations in joint angles, observe variation

in activity from the joints, determine hand shapes commonly found within these

recordings and evaluate these found hand shapes. A significant advantage of a

data collection method which captures the 3D positional data of the hand, rather

than a video recording, is that the numerical data recorded can be later analysed

autonomously using basic machine learning techniques. This process is quicker and

more reliable than a human watching back a video to decide when specific hand

shapes are used.

To determine the capabilities to discriminate hand shapes, machine learning

techniques considered were tested with recordings of the control hand shapes shown

in Figure 3.7. Recordings of the control hand shapes were randomly permutated

and divided into training and testing data (with a 80:20 training:testing ratio). This

collated data contained 32,589 performed hand shapes - providing 26,071 training

hand shapes and 6,518 testing hand shapes. All of the analysis of the portable motion

capture system collected data was performed using MATLAB R2020b (9.9.0.1467703)

on a computer with Windows 10, 32 GB random access memory (RAM) and an Intel

128



Analysis

Core i7-7700 processor and as described in Section 3.5.

A preliminary analysis was performed after recording hand motions for 13 par-

ticipants and used to support analysis choices going forward. The results of the

preliminary analysis, including the patient data, resultant taxonomy of hand shapes

and hand shape characteristics, can be seen in Appendix B.

4.2.1 Determining Functional Hand Shape Occurrences

Data were reduced following the steps explained in Section 3.5.1. From the initial

collection of 20,188,273 frames, 1,877,430 and 1,353,969 frames were considered

functional hand shape frames, for the left and right hands respectively. Following

the averaging of each occurrence of a functional hand shape, the functional hand

shape frames where reduced to 1,237 and 662 averaged hand shape frames, prepared

as an input for clustering, for the left and right hands respectively.

A total time of 22 hours 53 minutes and ten seconds was taken to load and process

the 111 hours and 20 minutes of recordings. This time was comprised of, per hand

per recording: loading the data into MATLAB, removing the frames which the hand

of interest is not seen in, labelling each of the remaining frames as a functional

hand shape or transition frame, transforming these functional hand shapes into

a local reference frame and calculating the averaged Cartesian joint locations for

each of the functional hand shape occurrences. It should be noted that a large

amount of this time was taken loading the data; once the raw data had been loaded

and processed they were saved as MATLAB variables, to later be loaded in more

rapidly for analysis. The analysis of the data, exclusively, took 52 seconds; this was

considered as reloading the variables, clustering the data, merging the data and

determining characteristics of the data. This was all performed on a computer with

Windows 10, 32 GB RAM and an Intel Core i7-7700 processor running MATLAB

R2020b (9.9.0.1467703). It should also be noted that this can be executed without

the need of a human present, once told the data location the script performs the

aforementioned tasks independently.

4.2.2 Principal Component Analysis

A principal component analysis (PCA) was applied in an attempt to reduce the

number of dimensions of the collected data. After centring the data on the origin,

PCA determines perpendicular axes through the data which provide the largest

sum of squared distances of the data point projected onto the created axes - these

axes become the principle components. For the collected data PCA was applied

to the recorded Cartesian positions and calculated joint angles. The steps taken
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were as described in Section 3.5.2. To asses the reductions, reasonably, possible

with the application of PCA a scree plot and loading plot were created. Scree

plots visualise the eigenvalues of the principle components in order to indicate the

number of principle components needed. Loading plots display the loadings of each

original variable along the principle components. The loading for each of the original

dimension is calculated from the product of the eigenvectors and square of eigenvalue

for that dimension. A loading plot highlights trends within the data and conveys the

influence of original dimensions on the principle components. Further description

around the techniques used is given within Section 2.5.

The resultant scree plots for the both hands, following the implementation of a

PCA with the joint angles of the collect hand motions can be seen in Figure 4.1. The

loading plots for this implementation are shown in Figure 4.2. This same analysis

applied to the Cartesian data is provided within Appendix C. The score plots of both

datasets, of Cartesian and joint angle data, were unable to present clear information

due to the vast amount of continuous observations collected.

Left Hand Angles Scree Plot

60.24%

10.83%

6.61% 6%

4.35%

2.7% 2.58%
1.86%

1.12% 1.11% 0.79% 0.59% 0.46% 0.35% 0.23% 0.18%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Principal Components

0

10

20

30

40

50

60

70

80

90

100

V
ar

ia
n
ce

 E
x
p
la

in
ed

 /
 %

(a) A scree plot for the joint angles of the left
hand.
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(b) A scree plot for the joint angles of the
right hand.

Figure 4.1: The scree plots from a principal component analysis evaluation
of the joint angles from the collected data.
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(a) A loading plot for the joint angles of the
left hand.
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Right Hand Angles Loading Plot
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(b) A loading plot for the joint angles of the
right hand.

Figure 4.2: The loading plots from a principal component analysis evaluation
of the joint angles from the collected data.

The first principle component provided 60.2% and 60.8% of the variation of the

collected data, an unsuitable signifiant loss of data, for the left and right hand

respectively. Observing the scree plot identifies that three principle component

were able to retain 77.7% and 77.6% variation of the data, for the left and right

hand respectively. Employment of this ascertained information could aid in the

reduction of computational complexity during analysis, though result in a partial

loss in recorded information. From the loading plots presented for each hand, it can

be seen that all of the joints on each digit, bar the thumb, tend to show a positive

correlation to each other. Furthering this it can be deduced that the index and

middle and ring and little digits show a positive correlation to each other but exhibit

a low correlation between these two groups. Though the score plots were unable to

present any relevant data, the scree and loading plots still provided an insight into

possible reductions for clustering and the correlations of the hand joint angles.

4.2.3 Joint Angle Correlations

Determining any correlations in the joints as they move during ADL would aid

the design of upper-limb prostheses, highlighting any possible linkages in actuation

strategies. If two or more joints were seen to move in cohesion then their actuation

could be linked, saving the cost of components and the complexity in the actuation

script. The recordings of the control hand shapes shown in Figure 3.7 were used

to validate the possible application of this method. Following confirmation in the
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potential of this method, it was applied to the hand motion recordings from ADL.

The steps taken were as described in Section 3.5.4. Further description around the

techniques used given in Section 2.5.

Matrices of scatter plots drawing comparisons of each joint from the recorded

data collected during ADL can be seen in Figures 4.3 and 4.4. From these plots the

the correlations between hand joints during ADL are displayed. This was achieved

through the MATLAB function plotmatrix. This function creates a matrix of

subplots containing scatter plots of each of the dimensions against one another;

this additionally place histogram plots for each of the dimensions in the respective

columns along the matrix diagonal. Along the rows and columns are the hand joints,

with each matrix element displaying a plot of the recorded respective joint angles; a

single point on a plot representing the angle of each joint at a given frame.
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Figure 4.3: The joint angles correlations for the left hand from the collected
data.
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Figure 4.4: The joint angles correlations for the right hand from the collected
data.
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Of significant note from the left hand is the correlations between the MCP and

PIP for the middle, ring and little fingers, which all displayed a correlation coefficient

greater than 0.8. These positive extremities of correlation coefficients is likely to be

indicative of a common motion exhibited between these joints. The MCP and PIP

joints of index finger displayed a close to 0.8 positive correlation for the left hand

and over 0.8 for the right hand, implying this high correlation exists between the

MCP and PIP joints in motion. Additional to these high positive correlations, on the

right hand both the PIP and MCP joint for the ring and little finger each displayed

a correlation greater than 0.8. It is arguable that this high positive correlation is

implicit of a constraint between these joints. From these plots, it can also be seen

that there is a strong relationship between the DIP and PIP joints. This can be

seen on both hands and is more pronounced in the first and second digits. These

findings agree with the claims that there exists correlations between the DIP and

PIP joints, widely supported within the literature [193–195]. This analysis highlights

correlations of the hand digits, for consideration in attempts to replicate the hand

motions.

4.2.4 Joint and Digit Activity

A practically useful piece of information that could be extracted from the collected

data is the comparative activity exhibited by each of the joint during ADL. This

has the potential to highlight any possible redundancies to actuation strategies. If a

joint is found to have not moved or moved very little it could be made redundant in

actuation, removing a need of a component to actuate it and the extra computational

complexity of the inclusion. Oppositely, if a joint is shown to experience an abundance

of activations during ADL, support for a greater focus to be given to this joint would

be provided. This exploration of joint activity was applied the entirety of the

data collected during ADL, in order to provide information for the development of

upper-limb prostheses. The steps taken were as described in Section 3.5.4. Further

description around the techniques used has been provided within Section 2.5.

The extracted joint activities, from the raw data collected during ADL, can be

observed in Figures 4.5 and 4.6. A threshold was selected to provide clarity to joint

activities, enabling a clear identification of joint which are more active through ADL.

Reducing the threshold such that the activity of the thumb carpometacarpal (CMC)

and MCP was registered resulted in saturation of the other joint activities. However,

observing the thumb CMC and MCP joints activities would provide insightful

information. For this reason, bar chart presenting joint activity calculations with a

lower threshold have been included within Appendix C.
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Left Hand Joint Activity
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Figure 4.5: The joint activity seen for each joint on the left during data
collection.

Right Hand Joint Activity

Thu
m

b 
C
M

C
f

Thu
m

b 
C
M

C
a

Thu
m

b 
M

C
P

Thu
m

b 
IP

In
de

x 
M

C
P

In
de

x 
PIP

In
de

x 
D

IP

M
id

dl
e 
M

C
P

M
id

dl
e 
PIP

M
id

dl
e 
D

IP

R
in

g 
M

C
P

R
in

g 
PIP

R
in

g 
D

IP

Litt
le

 M
C
P

Litt
le

 P
IP

Litt
le

 D
IP

Joints

0

0.5

1

1.5

2

2.5

3

T
o
ta

l 
A

ct
iv

it
y

10
5

Figure 4.6: The joint activity seen for each joint on the right during data
collection.

Immediately from the presented figures, it can be seen that the thumb exhibits

comparatively little motion throughout ADL. This suggests a possible redundancy of

the actuation of thumb joints. Of the other joints, there was no significant difference
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across the activity of each joint, though the MCP little finger did display a noticeable

lower activity than the others. It can been seen that both hands present identical

patterns in the activities of their joints, suggesting that an actuation strategy for

either hand would present the same results if applied to the other.

During validation of the portable system it was observed that the thumb typically

exhibited a greater positional error than the other digits. This error could contribute

to the lower activity seen though is unlikely to have a significant effect, as this

error was not considerably higher than that of the other digits. For the selected

threshold for activity, slight activity was seen in the thumb interphalangeal (IP)

joint, supporting the influence of the error due to proximal joints typically displaying

a lower positional error during validation. It could be argued that the lower activity

and greater error seen by the distal joint of the thumb, during observations of joint

activity and validation, could be caused by the LMC not registering the motion of

the thumb CMC and MCP joints as effectively, resulting in the device assuming they

remain stationary.

4.2.5 Artificial Neural Networks

An artificial neural network (ANN) is a, supervised, reinforced learning technique

which learn through methods mimicking neural behaviour. They are a supervised

learning technique, trained with labelled data to predict classifications of unlabelled

data. The exact inner workings of this predictive model are typically not known,

evolved through repetitive modification made by reinforcement learning. An ANN

is made up of, typically, several layers of neurons connected by synapses and learn

through adjustments to weights along the synapses and bias designed in into the

neurons. The steps taken to implement this with hand motion data were as described

in Section 3.5.5. In order to evaluate the performance of this method confusion

matrices were used. A confusion matrix shows the predicted against the actual

categories for labelled data within a matrix plot; the diagonal presents the correct

predictions, with any data outside of this highlighting misclassification of observations.

Further description around the techniques used has been given in Section 2.6.1.

GoogLeNet is a complex, well established and highly accurate ANN for image

classification. In an attempt to capture this accuracy for the classification of hand

shapes in motion capture data, GoogLeNet has been employed. For this the training

data were converted into images and divided 70%:30% (train:validate). Within the

first epoch the network achieved a prediction accuracy close to 100% and maintains

this high level of accuracy for the remainder of the training. The resultant confusion

matrix from the application of GoogLeNet with the test images of the control hand

shapes can be seen in Figure 4.7. It took 45 hours and 39 minutes to create the
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32,589 images for training and testing. After data conversion, it took 51 minutes to

train the network and one minute and 40 seconds to then make the predictions for

the test dataset.
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Figure 4.7: A confusion matrix from the implementation of GoogLeNet with
images of the control hand shapes.

A bespoke ANN, designed to receive an input of the Cartesian hand motion data,

was also trained and tested with these same datasets. This was created using the

feedforwardnet function in MATLAB and, subsequently, trained with train, in

an attempt to provide faster classifications than GoogLeNet with a similar level of

accuracy. The confusion matrix from inputting the test dataset into this ANN can

be seen in Figure 4.8. This network did not require any conversion to be applied to

the data before application and took only eight seconds to train and 16 milliseconds

to make the predictions, as a result of this.
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Figure 4.8: A confusion matrix from the implementation of a purpose built
artificial neural network with Cartesian co-ordinates of the control hand shapes.

GoogLeNet was able to offer a perfect accuracy score with the test dataset and

provides confidences as a well established network. However, it took a considerable

amount of time to convert the hand motion data into appropriate images for input

into this network. Applying this method to collection of hand shapes recorded over

several hours would take an unpractical amount of time. The bespoke ANN was

able to hold the same accuracy as GoogLeNet, when provided the test dataset, in

a significant reduced time for both training and testing. This low application time

enables use with larger collections of hand motion data. Both of the considered ANN

methods displayed high accuracy with the control hand shapes; however, these will

not be applied to the collected data as they are unable to identify new hand shapes

and allow for no manual customisation of the categories. If a bin for unclassified

hand shapes was created, hand shaped categorised here could then be manually

labelled - providing identification of new hand shapes within the data. Though

predictions with low confidence from the ANN could be identified as unclassified, it

was uncertain that this would present reasonable results and still requires a, likely,

significant amount of manual intervention.
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4.2.6 K-Nearest Neighbours Classification

Another supervised learning approach which can be implemented with the collected

data is classification algorithms. Classification algorithms observe properties of the

data in order to label individual readings of a dataset into predetermined categories.

The properties used to classify the data vary depending on the dataset in question

and technique applied, these can be: categorical, ordinal, integer-values or real-values.

Here, the co-ordinate values of hand motion data collected were classified. The steps

taken were as described in Section 2.10.

The training of a classification algorithm, to be able to label data accuracy,

requires labelled training data, with also labelled testing data if validation is desired.

Here, the control hand shapes recorded, represented in Figure 3.7, were used as train

and test data. The MATLAB Classification Leaner application was used quickly

explore the performance of the possible classification algorithms which could be

applied to the recorded data. A k-nearest neighbours (KNN) subspace ensemble

classifier provided the highest accuracy score among the tested classifiers and was

subsequently chosen to asses the performance of classification algorithms with hand

motion data. This classifier predicts observation labels based on a similarity measure

to trained groups of labelled observations.

Confusion matrices and receiver operating characteristic (ROC) curves were

created in order to visually evaluate the performance of the implemented technique.

A ROC curve provides a graphical plot comparing the true positive rate against the

false positive rate for a classification algorithm. The true positive rate defines the

sensitivity of the system and the specificity can be found by subtracting the false

positive rate from one. The area under the curve (AUC) was also calculated to assess

the performance of the algorithm; calculated from the area under the ROC curve.

A higher AUC value indicates a superior performance of the compared algorithm.

Further description of the techniques employed is provided in Section 2.6.2.

A KNN subspace ensemble classifier was found to achieve an accuracy for both

the training data and testing data of 100%. The classifier was trained in 16.8 seconds

and was able to classify the test hand shapes collection in 0.805 seconds. Figure 4.9

shows the confusion matrix from inputting the testing data into a trained KNN

subspace ensemble classifier. This highlights the ability of the classifier to correctly

predict all of the testing, control, hand shapes. Additionally, Figure 4.10 displays

the ROC curve. This presents an AUC of one, due to the perfect predictions.
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Figure 4.9: A confusion matrix from the implementation of a k-nearest
neighbours classifier with Cartesian co-ordinates of the control hand shapes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

Classifier ROC Curve for Test Data

AUC = 1.00
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This classification method has been shown to be capable, predicting control

hand shapes perfectly and taking relativity little time to do so. Implementation of

this method could identify expected hand shapes within collected data, enabling a

possibility to evaluate existing grasp taxonomies with data collected during modern

ADL. However, the limitations it imposes (as with ANNs) make it not worth

application for the creation of a novel taxonomy of hand shapes. For this reason, it

will not be employed to create the final modern taxonomy of hand shapes found in

ADL.

4.2.7 Decision Tree Learning

Decision tree analysis is a predictive modelling technique used to categorise similar

occurrences within dataset. The similarity between hand joints in observed hand

shapes suggested the use of decision tree learning as a potentially superior supervised

learning technique. A typical implementation of this method would be similar to

that of classification algorithms, training on a set amount of data and validating

this on another - to then be applied to unlabelled data. Here, similar approaches

to the underlining philosophy of decision tree learning have been taken to create

a manual decision tree, aimed at categorising similar hand shapes observed. This

manual implementation allows for high customisation during the build of a tree; one

element which could also be added, which is not available in normal employment

or other supervised learning techniques, is a category for hand shapes not fitting

the provided definitions. An unknown category would be beneficial in this research

for the extraction of new hand shapes seen during ADL. Any found hand shapes

deemed to be appropriate to add could be added to later developments of the tree;

the addition of new classifications is possible but grows increasingly demanding in

comparison to other considered classification techniques. The closed and opened

values were determined through trained using particle swarm optimisation (PSO)

and brute-force search optimisation techniques. During training the same divide,

as with other classification methods, of the control hand shape data was used - a

train:test split of 80:20. The steps taken to implement the manual decision tree were

as described in Section 3.5.7. Further description around the techniques used is given

in Section 2.6.3.

Both a PSO and binary-brute force search were used to train the decision tree

with the selected training data, of labelled control hand shapes. The PSO technique

was able to provide an accuracy of 44.8% - taking four minutes and 42 seconds to

converge towards this result. This training suggested an opened value of 16.9 degrees

and a closed value of 47.5 degrees. The brute-force search was able to achieve 44.9%

accuracy with this training dataset and 44.5% with the test data - taking five hours

142



Analysis

four minutes and 36 seconds to determine this. This accuracy was obtained from

an opened threshold value of 17 degrees and closed of 46 degrees; these value were

refined from 20 degrees and 45 degrees, found by the first pass to present an accuracy

of 44.6%. The brute-force search results were in agreement with that found from

the PSO method, supporting the use of these values. The values found with the

brute-force search were used due to the confidence provided by the exhaustive search.

To predict the hand shapes of the test data the decision tree classifier took

18 seconds. The results of this application can be seen in Figure 4.11.
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Figure 4.11: A confusion matrix from the implementation of a decision tree
classifier with Cartesian co-ordinates of the control hand shapes.

The decision tree classification method provided a fast application but lacked

the desired accuracy for hand motion classifications. The employed PSO provided

similar accuracy to the brute-force search with a reduced time of convergence. When

a brute-force search was applied it was found to give results within the proximity

of the PSO technique, providing confidence in the quicker application of the PSO

technique. Due to the close proximity of the resultant trained values, those achieved

by the brute-force search were selected because of the exhaustive power of this
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technique. Though the brute-force search gives an exhaustive search through the

possible solutions a PSO technique could be employed were computation speed is of

importance.

The manual implementation of this technique suggested the definitions provided

could be causing the error - if taken further, methods should be employed to optimise

the set definitions for the tree. However, this application was able to provide a

framework for the classification of hand shapes in a decision tree; this shows potential

for future applications, provided the definitions were improved. Despite the promise it

is, again, unreasonable to assume a supervised classification technique could provide

useful data for the creation of a modern taxonomy present new hand shapes of ADL.

The manual implementation does offer the creation of a bin for hand shapes which do

not fit any previously defined categories, though this would require manual labelling

of hand motion data post application.

4.2.8 K-Means Clustering

Clustering algorithms are unsupervised machine learning techniques. The use of an

unsupervised learning technique has been seen to be more fitting for the collected

data, providing the possibility go indicate unexpected functional hand shapes within

the modern ADL. Clustering algorithms attempt to find clusters of observations

within the data which are similar, typical determined by the Euclidean distance

between those points. They does not require training data, but evaluation techniques

can be employed after implementation to assess the obtained results. Supervised

learning evaluation method can be enforced onto results obtained from labelled

data, though cluster evaluation methods provide feasible means of assessing the

performance of a cluster analysis application. The clustering algorithm chosen for

analysis here is the k-means++ algorithm. The k-means algorithm is a centroid-based

clustering algorithm, determining cluster based on proximity of the data points

within their dimensions - selected due to the nature of Cartesian hand motion data.

The k-means++ algorithm offers an improved method for the selection of initial

condition, over the original k-means algorithm. The steps taken were as described in

Section 3.5.8. Further description around the techniques used is given in Section 2.6.4.

The k-means++ clustering algorithm needs to be provided with a number of clusters

to find within the data. Due to the vast and complex nature of the hand motion

data collected it is unfeasible to assert a priori assumptions of this value. To aid in

the selection of the number of clusters to be achieved there exists several methods.

Most commonly used are, the Calinski-Harabasz (CH) index, Davies-Bouldin (DB)

index and silhouette score. The theory behind each of these methods can be seen

in Section 2.6.4. Each of these methods were first attempted on the control hand
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shapes recorded, observing whether they can each determine the optimal number of

clusters as 12 (the known amount of identifiable hand shapes). The application of

each method can be seen in Figures 4.12, 4.13 and 4.14. Though the CH index plot

provides a less clear conclusion than the other methods, it was stated by Calinksi

and Harabasz [154] that if there are several local maxima then it is most economical

to select the lowest value of k providing a local maxima. After the application of

these methods with the control hand shapes, all were able to deem 12 as the optimal

number of clusters. These applications have shown promise in these evaluation

methods and provided confidence in their application with the collected data.
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Figure 4.12: A plot of the Calinski-Harabasz index values for the control
hand shapes for a k-means clustering algorithm.
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Figure 4.13: A plot of the Davies-Bouldin index values for the control hand
shapes for a k-means clustering algorithm.

2 4 6 8 10 12 14 16 18 20

Number of Clusters

0.5

0.55

0.6

0.65

0.7

0.75

S
il

h
o
u
e
tt

e
 S

c
o
re

Silhouette Evaluation for Control Hand Shapes

Figure 4.14: A plot of the silhouette scores for the control hand shapes for a
k-means clustering algorithm.

The control hand shapes recorded were inputted into a k-means++ algorithm

to confirm competency to output clusters correlated with the known hand shapes.

The similarity between the resultant centroids and original 12 hand shapes shows
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that the classifier is able to determine congruent clusters without prior information.

Figure 4.15 shows the centroids of each cluster, each representing a hand shape

averaged from the cluster. Comparing these centroids to the ideal control hand

shapes in Figure 3.7 provides a visual evaluation of clustering performance.

The clusters were numerically evaluated by observing the number of correctly

labelled observations within a single cluster. Taking the most occurring label within

each cluster as the predicted label for that cluster and, ergo, the observations within

it enables the creation of a confusion matrix for the k-means++ algorithm. This

created confusion matrix can be seen in Figure 4.16.

The confusion matrix displays a lower accuracy than what was seen by alternative

classification methods; however, upon inspecting the hand shapes drawn from the

centroids of this clustering it can be seen that this method was able to identify

the desired hand shapes with clarity. The four finger pinch hand shape displays a

lower flexion of the digits than would be expected, this is reflected by the inaccuracy

highlighted by the confusion matrix. The other drawn hands shapes accurately

depicted the desired hand shape, even when a lower accuracy is exhibited in the

confusion matrix. This suggests that some of the control hand shapes could have

been grouped, as they display little significant difference from each other. Despite the

lower accuracy seen, the k-means++ clustering algorithm was applied to the collected

data, as it was able to reproduce the hand shapes within the given data with visual

accuracy, a desirable trait of the final taxonomy, and is not limited to previously

known hand shapes, enabling the identification of new hand shapes within ADL.
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Figure 4.15: The centroids found for the control hand shapes using k-means,
presented by line art images.
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Figure 4.16: A confusion matrix from the implementation of a k-means
clustering algorithm with Cartesian co-ordinates of the control hand shapes.

Preliminary analysis performed after the collection of 13 participants, totalling

62 hours and ten minutes of data, showed promising results and confidence in the

future data collected. The results of this analysis can be seen in Appendix B. The

clusters showed a good spread of hand shapes, with some agreement with previous

taxonomies and introducing some, valid, new hand shapes.

Once seen to be capable at extracting the expected hand shapes as clusters from

the control data, the k-means++ was applied to the data recorded during ADL. This

provided an initial grouping of the functional hand shapes within the data, with

the possibility of further analysis refining this to the final taxonomy. Each average

hand shape was defined with 60 values (inputted into the algorithm): the x, y and z

Cartesian localised co-ordinates for each of the hand joints recorded by the LMC.

The clusters were determined through the use of squared Euclidean distances, with

the algorithm repeating the clustering 100,000 times and selecting the attempt with

the lowest sum of squared Euclidean distances.

The promising results, for the control hand shapes, obtained from each of the
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techniques to identify the ideal number of clusters in a dataset (the CH index, DB

index and silhouette score) justified the applications of these with the collected

data. However, despite this performance shown with the control hand shapes, the

evaluation methods employed provided no clear identification of an optimal k values

for either hand. The graphical representation of each of these measures for k values

between two and 100 can be seen in Figures 4.17, 4.18 and 4.19, respectively. It can

be seen that, despite their confident applications during analysis of the control hand

shapes, these cluster evaluation methods provide no clear indication of an optimal

number of clusters. Though these cannot identify the optimal number, there is

potential to use the provided information to support a cluster number value chosen

through an alternative means.
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(a) A plot of the Calinski-Harabasz index
values for the left hand, using k values of 2 to
100.
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(b) A plot of the Calinski-Harabasz index
values for the right hand, using k values of 2
to 100.

Figure 4.17: The plots of the Calinski-Harabasz index values for the data
collected within activities of daily living for a k-means clustering algorithm.

149



Analysis

0 10 20 30 40 50 60 70 80 90 100

Number of Clusters

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
D

a
v
ie

s
-B

o
u

ld
in

 I
n
d

e
x
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(a) A plot of the Davies-Bouldin index values
for the left hand, using k values of 2 to 100.
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(b) A plot of the Davies-Bouldin index values
for the right hand, using k values of 2 to 100.

Figure 4.18: The plots of the Davies-Bouldin index values for the data
collected within activities of daily living for a k-means clustering algorithm.
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(a) A plot of the silhouette scores for the left
hand, using k values of 2 to 100.
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(b) A plot of the silhouette scores for the right
hand, using k values of 2 to 100.

Figure 4.19: The plots of the silhouette scores for the data collected within
activities of daily living for a k-means clustering algorithm.

The low confidence in the assessed cluster evaluation methods results in a need for

another measure of clustering performance. The optimal value for k was determined

through observations of the mean points-centroid distance, following applications

of the k-means++ algorithm with differing values of k. The value of k providing

clustering with a mean points-centroid Euclidean norm distance below a set threshold,

with the next integer increase of k providing a mean points-centroid distance above

the set threshold, would be considered optimal. Further details of the process applied

can be seen in Section 3.5.8 - with a flowchart of the process undertaken shown in

Figure 3.15. Any value of k found which produces clusters of data with distances

between the clustered functional hand shape frames and their centroid below the set

threshold distance would be accepted.
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The performance of the k-means++ algorithm results in a reduction in the number

of hand shapes which need to be displayed to visualise the hand shapes occurring

within the collected data. This collection allows for manual intervention, if desired,

and can be brought to a final solution through the combination of similar clusters. To

calculate the mean points-centroid distances for each application of k-means++ the

averaged means of the Euclidean distances from each joint of each data points within

each of the clusters to their respective centroid points were taken. For this analysis

a threshold value of 15 mm was used to deem an appropriate performance of a k

value. This threshold value was selected for pragmatic reasons, then assessed through

rigorous testing of the preliminary data with altered threshold values. This selected

value was found to be the value able to provide an ample number of descriptive hand

shapes.

During preliminary analysis, a script running through all of the values one by one

was possible. With the full collection this took too long and was reduced to only

looking around the area found during preliminary experiments, as this was deemed

to be suitable and provided clusters with the predefined desired characteristics. For

the preliminary data k values of 60 and 30 were deemed appropriate for clustering,

further information of these clusters can be seen in Appendix B. Following attainment

of this knowledge, k values ranging by 20 either side of these in intervals of 5 were

tested. Tables 4.4a and 4.4b show the results of the k values tested around this

area. The optimal values of k decided for the left and right hands, respectively,

were 30 and 60, providing a mean points-centroid distance of 9.81 and 10.5 mm,

receptively. Upon observing the application of these values alongside alternative

values it was seen that these values were able to retain an apt amount of information

of the collected data and, hence, were selected. This was further supported by the

confidence in the results obtained from these k values during preliminary analysis.

Table 4.4: The results from varied clustering k values, selected within prox-
imity to the results of preliminary clustering.

(a) The results of varying the clustering k
value for the left hand.

k value Distance / mm R-squared

40 10.7 0.96

50 10.4 0.96

55 10.1 0.96

60 9.81 0.96

65 9.66 0.96

70 9.53 0.96

80 9.35 0.96

(b) The results of varying the clustering k
value for the right hand.

k value Distance / mm R-squared

10 11.9 0.95

20 11.1 0.95

25 10.8 0.95

30 10.5 0.96

35 10.4 0.96

40 10.2 0.96

50 9.90 0.96
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The k-means++ clustering algorithm has been used, to reduce the processed data

into a manageable number of hand shapes; in turn, leading to the creation of the

final taxonomy of the hand shape observed within modern ADL. The final taxonomy

is presented in Section 5.2.

4.2.9 Merger of Groupings

After the initial clusters are formed a merge script is then run, which indicates

whether any of the clusters could be combined - leading to a final solution. This

looks at reducing the number of groups formed from the data using features specific

to the data, in this case the pairwise Euclidean norms between each of the points of

the group centroids was chosen. Each of the cluster centroids are compared to each of

the others; the x, y and z values of each point from one centroid are subtracted from

those of the other considered centroid and the norm of this distance vector found.

If this norm is below a set threshold then the hand shapes are considered, by the

script, similar enough to be combined. Visual inspection could then be performed

to determine whether it is reasonable for these highlighted clusters to be combined;

alternatively, the script can be set to continue with the merger autonomously. The

steps taken were as described in Section 3.5.9.

Preliminary analysis of collected data showed a need for this merger. The obtained

results of the k-means++ application contained redundant information and it was

found manual intervention was required to provide a concise taxonomy of hand

shapes. The merger script was executed to remove these redundancies and display

the desired concise taxonomy of hand shapes for modern ADL. The final results of

the k-means++ clustering algorithm and subsequent merger of clusters can be seen

in Section 5.2. It can be seen, by comparing the pre- and post-merger taxonomies

presented, that the merger simply removed any redundant information from the

results of clustering.

4.2.10 Displaying Results

Following the discovery of the common hand shapes of modern ADL, the centroids of

the final groupings were visualised to provide an updated taxonomy of hand shapes.

This was achieved by the steps shown in Section 3.5.10, using Blender to form a

three-dimensional (3D) image of the hand and, subsequently, render the model as

line art. These images were then consolidated to form a modern taxonomy of hand

shapes. The joint angles used as inputs for the rotations in Blender were calculated

using the vector dot product, as presented by (2.4). The movement of the joints

in Blender, rendering of the images and concatenation of these images employed
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the Python scripts within Blender. Inputting the results of analysis on preliminary

collected data showed this to be capable method with promise to display the final

taxonomy clearly. The results of the performed preliminary analysis can be seen

demonstrated within Appendix B. This final taxonomy of the hand shapes observed

within ADL can be seen in Section 5.2.

4.2.11 Evaluation of Analysis

After a set of hand shapes were identified as the common hand shapes of ADL

they were evaluated to ensure confidence in the results. As cluster analysis, an

unsupervised machine learning technique, has been employed for the process of

categorising the hand shapes found in the recorded data, there exists no native

evaluation of the results. Furthermore, the large amounts of complex motion data

results in no abundance of labelled data. Alternative methods for evaluation of these

results have been considered. The method employed to deem an optimal k value,

with clusters centroids which represent the data of that cluster within an acceptable

bound, the mean points-centroid distance, were additionally used as an evaluation

method. Alongside this, the standard deviation and correlations have been taken;

these measures were both taken for each of the clusters of data and averaged to

provide a value for the entire data. Both groupings found pre- and post-merge have

been evaluated - this ensures that the automated merger of hand shapes does not

result in a significant loss of accuracy. The steps taken to evaluate the results were

as described in Section 3.5.11.

The results of the k-means++ algorithm gave a cluster mean distance of 5.36 mm

and standard deviation of 6.67 mm for the left hand and a cluster mean distance

of 5.95 mm and with a standard deviation of 7.33 mm for the right hand. This

indicates that the clusters generated represent all of the functional hand shapes

occurring during the 111 hours and 20 minutes of collected data to within 6.70 mm

for both hands using 60 and 30 hand shapes. Standard deviations were calculated

by observing the variation of the joint positions across all of the hand shapes which

formed each cluster. These clusters showed R-squared values of 96.6% and 95.9%, for

the left and right respectively - observing the correlation of each hand shape inputted

into the k-means algorithm with the cluster centres. All of these statistical values

were calculated omitting fixed points (the wrist and MCP joints). The final resultant

groupings of hand shapes (the output of the k-means++ algorithm followed by a

merger of similar clusters) gave average R-squared values of 96.0% and 95.6% for the

left and right hand, respectively. These groupings provided cluster mean distances

of 11.7 mm and 8.36 mm with standard deviations of 7.20 mm and 7.72 mm, for the

left and right hand respectively. This implies that the collections of 40 and 24 hand
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shapes presented in Section 5.2 resemble the functional hand shapes seen in ADL

within 12.0 mm, for both the left and right hand.

The selected analysis techniques, k-means++ clustering and a merger of similar

hand shapes, were proven to cluster the data with centroids representing the original

recorded data within an acceptable error. The overall average distance between the

collected data and found centroids, of 12.0 mm, implies that these hand shapes,

presented as the hand shapes of ADL, are able to display the functional hand motions

performed in everyday life with ample accuracy. Additionally, the average R-squared

value, between both hands, of 95.8% shows a high level of agreement between the

cluster centroids obtained and the data categorised within each respective cluster.

The standard deviation of the found clusters, averaged at 7.46 mm, indicates that

the observations within the clusters formed remain within reasonable proximity to

their means - highlighting confidence in the representation of the collected data by

the presented taxonomy.

4.3 Analysis of Muscle Excitation Techniques

Optimisation techniques have been employed alongside an existing musculoskeletal

model in order to provide predictions of muscle excitations occurring within a single

frame of kinematic data of the hand. The selected optimisation techniques chosen to

form prediction methods were the: genetic algorithm (GA), PSO, gradient descent

(GD) and brute-force search techniques. The cost function for each method was

tailored through optimisations of the tunable cost function, (3.5), using inputs of

simulated muscle excitations; these hand shapes with simulated muscle excitations

can be seen in Figure 3.19. To validate each method, these two hand shapes were

inputted and the resultant predictions compared to the known muscle excitations of

each hand shape. In addition, the equilibrium hand shape, shown in Figure 3.20a,

was inputted into each of the methods; this provided an additional validation test and

performance evaluation with experimental data. In the repeated applications, the two

validation hand shapes were passed into each method ten times and characteristics of

interest are recorded. These characteristics were: the accuracy, reliability and time

taken. The method found to perform with the desired characteristics was selected

as proposed solution for the prediction of muscle excitations from kinematic data.

Acquisition of the muscle excitations seen during modern ADL was then achieved

by the application of the proposed prediction method with the hand shapes found

within modern ADL. The results of the validation and repeated applications of each

methods are showcased within this section. Further details of these methods can be

seen in Section 2.9, with the chosen implementations for this research described in
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Section 6.2.

Hyperparameter tuning was applied to balance the influence of the two elements

of the cost function utilised - attempting to minimise the joint angle error, through

(3.2) or (3.3), and the summation of muscle excitations, through (3.4). These cost

terms were balanced by altering the parameters of (3.5) through inputs of hand

shapes in Figure 3.19. Tuning each method with hand shape data containing known

muscle excitations enables confidence in these methods, before the application of

solely kinematic data. These resultant, individualised, cost functions were then used

for the application of each method during validation and evaluation.

Repeated applications of each of the methods were performed in order to provide

comparable evaluation measures for the selection process. This involved applying each

of the methods ten times with the same hand shapes and recording the correlations

between the calculated and desired muscle excitations and joint angles and the time

taken. For each of these measures, the average value and variation from this were

recorded. This evaluation was performed following hyperparameter tuning on hand

shapes with known muscle excitations to ensure that the methods perform adequately

in a controlled situation. This provided an evaluation of the results obtained by

the selected techniques, enabling comparisons to be drawn and a superior method

to be highlighted. Line art of the hand shapes used as an input during these

repeated applications can be seen in Figure 3.19. The results of applying the selected

optimisation methods can be seen in Table 4.5, this table shows the results of ten

repeated applications of the validation hand shapes with the tuned cost parameters

for each method. Within this table, the muscle excitation correlation shows the

correlations between the known hand shape muscle excitations and the predicted

muscle excitations and the joint angle correlation gives the correlations between the

known hand shape joint angles and the joint angles resulting from inputting the

predicted muscle excitations into the musculoskeletal model. The time taken shows,

in seconds, the length of time taken to predict the muscle excitations for one hand

shape. The values for each of the ten applications were calculated with the average

values from the results obtained by inputting the two validation hand shape joint

angles. For each of the performance measures, the average, minimum and maximum

values seen across the ten applications have been given. Each test was executed on

a PC with Windows 10, 16 GB RAM, Intel Core i7-7700 processor and MATLAB

2020b (9.9.0.1570001).
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Table 4.5: The results from the repeated applications of the different optim-
isation techniques considered.

Method

Muscle
Excitation
Correlation

Joint Angle
Correlation

Time taken
/ seconds

Av.
Min.

Av.
Min.

Av.
Min.

Max. Max. Max.

GA 0.67
0.67

0.76
0.76

63
40

0.67 0.76 81

PSO 0.69
0.69

0.76
0.76

158
154

0.69 0.76 176

Binary Brute-Force
Search

0.46
0.46

0.74
0.74

114
113

0.46 0.74 115

GD 0.22
0.05

0.71
0.69

21
20

0.36 0.74 22

GA into GD 0.68
0.68

0.74
0.74

83
59

0.68 0.74 99

Brute-Force Search
into GA

0.64
0.64

0.72
0.72

115
102

0.64 0.72 145

Brute-Force Search
into GA into GD

0.67
0.67

0.74
0.74

140
127

0.67 0.74 165

PSO into GD 0.74
0.74

0.74
0.74

173
171

0.74 0.74 176

Brute-Force Search
into PSO

0.64
0.64

0.74
0.74

144
142

0.64 0.74 146

Brute-Force Search
into PSO into GD

0.70
0.70

0.74
0.74

193
167

0.70 0.74 271

Though solving the equilibrium hand shape can be viewed as a trivial problem,

this does provide an additional indication of the abilities of the selected methods. A

recording of a hand in the rest, equilibrium, position was provided with the employed

musculoskeletal model [9]; these data included the joint angles and muscle excitations

of the recorded hand shape. Table 4.6 displays the results of an application of each

method with the data of a hand held in an equilibrium position, with zero muscle

excitations. Simulating zero muscle excitations from all muscles (a hand held in

equilibrium) within MyoSuite resulted in identical angles to those for the recorded

equilibrium hand data. As a result, the muscle predictions found were equal for all

of the methods considered. Both of the hand shapes, provided with the model and

simulated within MyoSuite, can be seen in Figure 3.20.
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Table 4.6: The results of applying each of the tested optimisation methods with the joint angles of the equilibrium hand shape.

Method
Muscle

FDSL FDSR FDSM FDSI FDPL FDPR FDPM FDPI EDCL EDCR EDCM EDCI EDM EIP EPL EPB FPL APL

GA 0.01 0.00 0.00 0.73 0.00 0.00 0.00 0.32 0.00 0.00 0.01 0.07 0.00 0.33 0.00 0.00 0.00 0.00
PSO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Binary
Brute-Force

Search
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GD 0.01 0.00 0.00 0.73 0.00 0.00 0.00 0.32 0.00 0.00 0.01 0.07 0.00 0.33 0.00 0.00 0.00 0.00
GA into GD 0.01 0.00 0.00 0.73 0.00 0.00 0.00 0.32 0.00 0.00 0.01 0.06 0.00 0.33 0.00 0.00 0.00 0.00
Brute-Force
Search into

GA
0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00

Brute-Force
Search into
GA into GD

0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00

PSO into
GD

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Brute-Force
Search into

PSO
1.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Brute-Force
Search into
PSO into

GD

1.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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This collected data shows the use of optimisation techniques with a musculoskeletal

model to be a plausible method for the determination of hand muscle excitation.

The applied GA technique showed an adequate average muscle excitation correlation,

with a comparatively strong average joint angle correlation. Both of these measured

correlations showed consistent results for this technique. Applications of this method

were relatively quick to complete but did show a relatively low consistency in the

time taken. The PSO technique took nearly three times longer to perform than

GA but presented a slight improvement in muscle excitation correlation, with no

difference in the joint angle correlation. Additionally, the time elapsed for the PSO

technique was able to display a higher consistency. Both of the measured correlations

for the GA and PSO methods showed highly competitive consistencies.

The brute-force search gave consistent but low muscle excitation correlations; these

results were expected as an exhaustive search would result in identical predictions

being made each time, leading to a high consistency in the results, and this search

was restricted to binary cases of muscle excitations, limiting the possible accuracy of

these predictions. Despite this, the method was able to exhibit a comparatively high

joint angle correlation. This method took a relatively long time to complete but

was able to provide results quicker than a singular application of PSO. The use of a

brute-force search prior to applications of GA and PSO showed worse performance

than the original applications of GA and PSO, for all measures. Within this hybrid

method it appeared that the brute-force search takes a considerable amount of the

time to provide worse initial conditions. With the brute-force search limited to only

exploring binary cases of muscle excitations, some of these excitations may be too

far away from the truth for the current implementation of this method to obtain a

close to correct solution. Additionally, the muscle excitation cost term attempts to

keep any zero excitations obtained, which may not be true in reality. Though with

time the GA and PSO method can correct for this, the current implementation does

not appear to provide the time required for this to occur.

The standalone application of a GD showed relatively poor correlations for both

the muscle excitations and joint angles. Furthermore, these measures exhibited low

consistency across the applications. Though the correlation results were relatively

poor this did display the lowest average time taken, with high consistency to the

times recorded. These results highlight the inabilities of this technique when applied

outside of a region close to the minimum of a problem, though it was able to show that

there would be limited influence on the time taken from tandem applications with

this method. The tandem application of GA and PSO with GD displayed the highest

correlation between the desired and predicted muscle excitation correlations. Despite

this performance, the joint angle correlation observed was lower than individual

applications of the GA and PSO methods. A slight increase in the average time
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taken was observed, with variations to this time being similar to those of the

original applications of these methods. These results follow the expected outcomes

for applications of the GD method subsequent to another optimisation technique.

Applying a brute-force search before applications of a GA or PSO with GD showed

little to no improvements in terms of muscle excitation correlations. Additionally,

this method proved to show lower angle correlations when compared to standalone

applications of GA or PSO techniques. For both of the GA and PSO techniques,

this hybrid application took the greatest amount of time. The use of GD showed aid

in improving the correlations but was unable to provide appropriate results when

employed as a standalone application.

Examination of the binary brute-force search shows this application would require

a total number of combinations of 262,144 (218) and, therefore, the average time

taken for each combination was 0.435 milliseconds. If a brute-force search was to

be implemented with a more appropriate increment between increases in muscle

excitations of 0.01 there would be a total number of combinations of (1 + 1/0.01)18 ≈
1.2 × 1036. In this application it would take approximately 1.7 × 1025 years to

complete. This is, clearly, not feasible; however, the binary variant was able to

provide the GA and PSO optimisation techniques with improved initial candidate

solutions. Given enough time the shown brute-force search would be able to find a

close replication of the desired hand shapes, with knowledge of the required muscle

excitations. One possible alternative implementation is to run a brute-force search

after the application of PSO, exhaustively searching the surrounding area within set

bounds to further improve the acquired accuracy.

When applied as a standalone method the GD was not able to produce results of

ample accuracy. However, utilising GD following applications of GA and PSO showed

the capability of this method in further increase the observed muscle correlation

- increasing the accuracy of these results. This method was able to also provide

muscle excitation correlation improvements to the hybrid techniques applying GA

and PSO following a brute-force search. Utilised following applications of other

techniques this did not increase the computational time dramatically, showing an

average 27.3 seconds increase over the original application of these techniques.

Due to the superior performance displayed when tested with the validation hand

shape data and proven ability to accurately predict the equilibrium muscle excitations,

the PSO followed GD method was selected as the most appropriate method for

predicting the muscle excitations from kinematic hand data. The correlation between

the inputted and outputted joint angles was not the best seen (coming second to

the lone implementations of PSO and GA); however, this method provided the

best muscle excitation correlation. Among the best performing methods, the PSO
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with GD method provided the same level of consistency in the correlations of the

muscle excitations and joint angles - as seen in Table 4.5. Though this method was

among the slowest, the recorded time taken had one of the highest consistencies; the

minimum and maximum times taken showed only a 1.15% and 1.44% difference from

the mean value, respectively. Furthering the case for this selection, this method and

a standalone PSO were the only methods that were able to predict the equilibrium

hand shape muscle excitations with 100% accuracy.

After hyperparameter tuning, the following parameter values were used in the

cost function for the PSO:

P1 = 0.11, P2 = 1.67, C1 = 0.10, C2 = 0.10,

and the following values for GD cost function:

P1 = 18.3, P2 = 15.3, C1 = 2.76, C2 = 10.7.

Each set of parameters has been quoted with respect to (3.5).

Table 4.7 shows the known muscle excitations of the validation hand shape muscles,

with Table 4.8 showing the results of using PSO followed GD to predict these muscle

excitations.
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Table 4.7: The recorded muscle excitations for the validation hand shapes used, found within MyoSuite.

Hand Shape
Muscle

FDSL FDSR FDSM FDSI FDPL FDPR FDPM FDPI EDCL EDCR EDCMEDCI EDM EIP EPL EPB FPL APL

Hand Shape 1 0.34 0.15 0.19 0.22 0.13 0.49 0.10 0.09 0.09 0.24 0.31 0.26 0.37 0.26 0.41 0.26 0.70 0.35
Hand Shape 2 0.82 0.17 0.32 0.09 0.87 0.20 0.77 0.01 0.09 0.29 0.41 0.83 0.80 0.08 0.23 0.24 0.87 0.75

Table 4.8: The predicted muscle excitations for the validation hand shapes used, provided by using a composite method of particle
swarm optimisation and gradient descent.

Hand Shape
Muscle

FDSL FDSR FDSM FDSI FDPL FDPR FDPM FDPI EDCL EDCR EDCMEDCI EDM EIP EPL EPB FPL APL

Hand Shape 1 0.36 0.00 0.03 0.01 0.10 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 1.00 0.40
Hand Shape 2 0.25 0.00 0.06 0.00 0.41 0.33 0.77 0.00 0.00 0.00 0.00 0.20 0.04 0.07 0.00 0.00 1.00 0.71
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The results and analysis following implementation of the PSO into GD hybrid

method can be seen in Chapter 6.

4.4 Analysis of AirGo Clinical Data

The validation performed with the LMC has provided validation fro the AirGo

system, with a known measurement accuracy of 18.4 degrees. In addition to the

validation of the LMC, further tests were carried out to understand how AirGo

performed in a clinical environment. For this the ability to predict injured hands

and show progress made by patients from the collected data was observed. These

observations were made to provide an indication of the capability of AirGo to

provide adequately sensitive information during clinical application. Eight different

methods were employed to determine these, these were: the summation of all angles,

summation of all total active motions (TAMs), summation of the TAMs of the

injured digits, observing only the injured joints, the summation of the MCP and PIP

for the injured digits only, the MCP for the injured digits only, the summation of all

MCP and PIP and the summation of all MCP. Further details of these methods are

provided in Section 3.7. Though subjective to how the patients performed it is an

indication of the capability of the measurements made with the AirGo device.

A total of 11 patients, over 16 trials, have been measured with this system, with

four of the patients returning at least once. This study took place during a hand

therapy clinic at University Hospitals Coventry & Warwickshire (UHCW).

Table 4.9 shows the results of the analysis performed on the data recorded using

AirGo. With reference to this table, the presented methods used to review the data,

in order, are: the summation of all angles (1), summation of all TAMs (2), summation

of the TAMs for the injured digits (3), observing only the injured joints (4), the

summation of the MCP and PIP for the injured digits only (5), the MCP for the

injured digits only (6), the summation of all MCP and PIP (7) and the summation of

all MCP (8). The patients correctly predicted column shows the fraction of patient

recordings in which the injured hand was able to be correctly predicted and the trials

correctly predicted column shows the fraction of trails in which the injured hand was

able to be correctly identified using the data. The progress seen in patients shows the

fraction of patients which showed improvement between recordings, when multiple

recordings of a patient were available. Each of the differing methods employed to

review the results are labelled one to eight and their performance in the prediction

of the injured hand and observation of patient progress has been presented.

From these methods run eight out of 11 patient injuries were correctly predicted

using only the injured MCP (method six). This method was also able to predict
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11 out of 16 trials correctly and showed the most progress amongst the patients,

showing progress for two out of the four patients with multiple visits. If the injury

was not know, then the best predictor was seen to be only utilisation of the MCP

measurements, which also displayed one of the highest rates for identification of

patient progress. During validation of the angles collected by the LMC using the

portable motion capture system, displayed in Table 4.2, it was seen that all joints

tended to present the same degree of error in angular measurements; however, the

index finger showed a significantly lower error when compared to the other digits. If

the injured joint was not known prior to analysis, using the summation of all MCP

joint angles was found to perform the best; this predicted the injured hand correctly

for seven out of 11 patients, with 11 out of 16 of the trials correctly predicted and

two of four patients deemed to show progress. Other methods considered did not

hold as great performance with patient data but were found generally acceptable

with trail wide data, with some only suggesting progress in one patient out of the

four with multiple recordings.

Table 4.9: The results of the analysis performed with the data collected using
AirGo.

Method
Patients Correctly

Predicted

Trials Correctly

Predicted

Progress Seen

in Patients

1 5/11 8/16 1/4

2 5/11 8/16 1/4

3 7/11 10/16 1/4

4 5/11 9/16 1/4

5 8/11 9/16 2/4

6 8/11 11/16 2/4

7 7/11 10/16 2/4

8 7/11 11/16 2/4

With no true readings for the collected data, analysis of these data is difficult

- the results are subject to the performance of the patients. However, from this,

the practicality of the data collected was observed, exposing the ability of the data

collected with AirGo. Additionally, it highlights the best method for analysis of data

in a clinical setting, for implementation of AirGo in clinics.

The best performance was seen using the MCP joint of the injured hand, though

with no prior knowledge the summation of all MCP joint angles present a close

results to this. With the MCP joint angle of the inured digit, eight out of 11 patients

were correctly predicted and 11 out of 16 trials. Observing the summation of the

MCP joint angles for all digits provided correct predictions for seven out of the 11
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patients (only one worse than when the injury was known) and 11 of the 16 trials

(identical to that achieved with knowledge of the injury). Both of these methods

showed progress in two out of the four patients.

The fact that observations of the MCP joint only was able to perform comparatively

well implies that the inaccuracies may exist within the other joints considered. Due

to the lack of measurements with alternative devices, it could be argued that this

is a result of performance from recorded patients; however, it was also seen that

more distal joints performed worse when validating the portable motion capture

system, which also employed an LMC for data collection. This does not give rise to

significant issues but encourages the use of the MCP joint measurements, if AirGo

was to be clinically utilised for the analysis of patient data. Both methods outlined

by the MCP summation showed progress in the same patients, regardless of prior

knowledge of the injured digit. This implies that the summation of the recorded

MCP joint angles, alone, could be employed for the quick assessment of progress in

patients.

A possible alternative measure for the performance of AirGo is a comparison

between the measurements obtained with AirGo and that collected using a goniometer.

Collecting data with both techniques in the same session would enable the possibility

of comparisons between the data. However, due to the inaccuracy in measurements

collected with a goniometer this validation process is likely to not hold significant

confidence. As it stands, the validation of the portable motion capture system

provides a good view of the capability of the LMC and, therefore, AirGo. To

ensure confident validation of the AirGo system, recordings with both AirGo and a

state-of-the-art motion capture device under equivalent conditions AirGo should be

undertaken. This would provide assurance in the clinical application of the AirGo

system.
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Chapter 5

Taxonomy of Functional Hand

Shapes

Following the discussion, presented in Chapter 2, of grasp taxonomies described in

the literature, the taxonomy of the functional hand shapes observed within modern

activities of daily living (ADL) is presented. The data have been recorded and

analysed following the procedures laid out in Chapter 3 and the taxonomy has been

explicated following the results obtained in Chapter 4. All obtainable information

surrounding each hand shape is provided. A means in which the final output can be

manually modified to suit set desires, employing the information of each hand shape,

is explained. Comparisons are then drawn between the presented taxonomy and

current state-of-the-art, observing any differences and deducing possible reasoning

for each of these.
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Taxonomy of Functional Hand Shapes

5.1 Introduction

There have been several attempts to produce a taxonomy of the hand grasps used in

activities of daily living (ADL), these can be seen described in Section 2.3. However,

the current understanding of hand motion still remains limited; within studies it

is common for only one or two professions to be observed [7, 72] and there is little

research focused on monitoring the hand shape used in everyday activities [74, 75].

The majority of studies are limited by their use of video cameras for recording and

low selection of subjects and tasks. Though recent attempts have moved towards

the use of machine learning for their analysis and, some, implement motion capture

for data collection, these are still limited. The most recent development in grasp

taxonomies was that introduced by Feix et al. [8], from which this work aims to

further update this to modern ADL.

The portable motion capture system has been used to collect which can be used as

a base for the updated taxonomy of hand shapes. From this system and the analyse

methods chosen a greater length of data has been possible to collect and analyse.

The final output of the analyse offers an update to the current grasp taxonomies,

including the motions used in modern ADL.

Within this chapter the results of the analysis performed on the data collected

during modern ADL, employing the introduced portable motion capture system, are

displayed and discussed. Details of the participants recorded during ADL, including

their recorded time, is provided. The updated taxonomy of hand shapes seen in

modern ADL is presented. From this taxonomy, the characteristics of each of the

hand shapes has been determined, displaying the number of occurrences of each

during collection and the average time each is held for. A discussion of results,

including comparison to existing taxonomies, provides an insight into the agreement

with existing taxonomies and highlights the new hand shapes introduced by the

presented taxonomy.

5.2 Modern Taxonomy

With the portable motion capture system a total of 111 hours and 20 minutes of data

were collected, an individual breakdown of the participants is shown in Table 5.1.

Recordings were taken over the whole week, collecting various activities in working

and recreational environments with healthy participants. Each recording session

lasted until the participant was no longer willing to continue or the battery fully

depleted. Recorded tasks include: working at a computer, housework, cooking,

shopping, car repairs and playing violin.
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Table 5.1: The anonymised participant information.

Participant Recorded Time Age Dominant Hand Gender

01 8 hours 10 minutes 45 Right Female

02 5 hours 20 minutes 72 Right Male

03 2 hours 30 minutes 30 Right Female

04 2 hours 50 minutes 24 Left Male

05 4 hours 50 minutes 24 Right Female

06 6 hours 20 minutes 54 Right Female

07 2 hours 10 minutes 22 Right Female

08 6 hours 0 minutes 53 Right Female

09 5 hours 20 minutes 47 Right Female

10 2 hours 10 minutes 46 Right Female

11 3 hours 20 minutes 75 Right Female

12 3 hours 20 minutes 28 Right Female

13 9 hours 50 minutes 26 Right Male

14 5 hours 30 minutes 21 Right Female

15 5 hours 10 minutes 23 Right Female

16 6 hours 50 minutes 22 Left Female

17 3 hours 20 minutes 21 Right Male

18 4 hours 40 minutes 24 Right Male

19 7 hours 30 minutes 50 Right Male

20 2 hours 20 minutes 26 Right Female

21 6 hours 0 minutes 49 Right Male

22 7 hours 50 minutes 52 Right Male

The final centroids, to visually display the common hand shapes performed in

ADL, for the left and right hand are shown in Figures 5.1 and 5.2, respectively. The

script to decide the value of k, for application of a k-means++ algorithm, outputted

optimal k values of 60 and 30 for the left and right hand, respectively - which were

reduced to 40 and 24 unique hand shapes with the execution of the merging script.

Figures 5.3 and 5.4 present the initial clustering, prior to the merger of similar

hand shapes, for the left and right hand respectively. The number of occurrences of

each of these hand shapes and the total number of frames each occurs in for the left

and right hand, respectively, can be seen in Figures 5.5, 5.6, 5.7 and 5.8.

Additionally, further information for each of the clusters presented can be found

in Tables 5.2 and 5.3. Within these tables the first column provides the label of the

cluster, the second the percentage of the data which this hand shape exists within,
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the third and fourth columns show the total number of times the hand shape occurs

within the data and the total number of frames it is seen within, respectively and

the fifth column provides the average number of frames each hand shape is held for

each time, this has been rounded to a whole integer. As evaluated in Section 4.2.11,

these clusters represent the recorded data 12 mm.
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Figure 5.1: The taxonomy of hand shapes for the left hand, provided by line art of the 40 cluster centroids.
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Figure 5.2: The taxonomy of hand shapes for the right hand, provided by line art of the 22 cluster centroids.
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Figure 5.3: The hand shape representations for the initial k-means cluster centroid of the left hand, provided by line art of the 60
cluster centroids.
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Figure 5.4: The hand shape representations for the initial k-means cluster centroids of the right hand, provided by line art of the
30 cluster centroids.
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Number of Occurrences of Each Left Hand Shape
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Figure 5.5: A bar chart displaying the total number of occurrences of each
hand shape for the left hand.
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Number of Total Frames of Each Left Hand Shape
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Figure 5.6: A bar chart displaying the total number of frames each hand
shape is seen within for the left hand.
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Number of Occurrences of Each Right Hand Shape
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Figure 5.7: A bar chart displaying the total number of occurrences of each
hand shape for the right hand.
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Number of Total Frames of Each Right Hand Shape
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Figure 5.8: A bar chart displaying the total number of frames each hand
shape is seen within for the right hand.
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Table 5.2: The further hand shape cluster characteristics for the left hand.

Hand
Shape

Percentage of

Data / %
Total occurrences Total Frames Average Frames

1 0.30 31 5641 182

2 2.97 389 55689 143

3 0.04 7 737 105

4 0.06 9 1190 132

5 2.17 307 40794 133

6 0.10 15 1812 121

7 0.04 8 769 96

8 0.02 4 462 116

9 0.32 40 5972 149

10 0.05 9 892 99

11 0.13 24 2450 102

12 0.02 4 370 93

13 0.06 9 1096 122

14 0.12 18 2165 120

15 0.25 26 4643 179

16 0.13 15 2395 160

17 0.01 2 179 90

18 0.10 11 1845 168

19 0.14 23 2603 113

20 0.09 16 1757 110

21 0.16 20 2947 147

22 0.01 3 250 83

23 0.13 15 2359 157

24 0.13 16 2458 154

25 0.05 6 906 151

26 0.07 13 1308 101

27 0.04 7 702 100

28 0.05 2 960 480

29 0.15 22 2727 124

30 0.14 21 2604 124

31 0.12 16 2319 145

32 0.17 17 3187 187

33 0.06 9 1202 134

34 0.14 19 2558 135

35 0.19 18 3511 195

36 0.10 19 1825 96

37 0.10 14 1784 127

38 0.05 9 1020 113

39 0.03 5 604 121

40 0.13 19 2397 126
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Table 5.3: The further hand shape cluster characteristics for the right hand.

Hand
Shape

Percentage of

Data / %
Total occurrences Total Frames Average Frames

1 0.18 24 2477 103

2 0.17 17 2278 134

3 0.98 112 13291 119

4 0.12 14 1584 113

5 1.55 162 20992 130

6 0.05 8 702 88

7 0.33 29 4422 152

8 0.19 17 2619 154

9 0.16 18 2184 121

10 0.15 15 2039 136

11 0.08 9 1034 115

12 0.11 11 1431 130

13 0.17 22 2355 107

14 0.59 67 7933 118

15 0.22 22 2941 134

16 0.05 6 631 105

17 0.20 23 2657 116

18 0.13 13 1809 139

19 0.02 3 291 97

20 0.03 4 370 93

21 0.17 21 2312 110

22 0.24 28 3288 117

23 0.04 5 493 99

24 0.08 12 1134 95

As highlighted in Section 4.2.1, the loading and processing of the data took

22 hours 53 minutes and ten seconds and the analysis of this processed data took

52 seconds. Though processing take an undesirable computational time it can all be

completed without the need of a human present. These timings were collected on

a computer with Windows 10, 32 GB random access memory (RAM) and an Intel

Core i7-7700 processor, running MATLAB R2020b (9.9.0.1467703).

After reviewing the images of the hand shapes it appears that a few could be

considered anomalies (hand shapes 3, 20 and 25 for the left hand and 6 and 11 for

the right). However, their appearances within the data are scarce and they are

typically removed when considering hand shapes which occur above a set threshold.

Extracting hand shapes based on the number of occurrences for each hand is a quick

and simple reduction technique, employing a crudeness maybe not ideal for some

situations. For example, a reduction to the ten most commonly occurring hand
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shapes provides a quick reduction in data and removal of possible anomalies. Despite

the simplicity, however, the tenth most commonly occurring hand shapes only occur

for 1.62% and 3.17%, for the left and right hand respectfully, and the combined

percentage of the time for these ten hand shapes is 73.0% and 77.0% of the time

spent performing functional hand shapes, for the left and right hand respectfully.

From a quick and simple reduction there is still a high representation of the hand

shapes occurring within the data. As the data consists of a total of only 60 hand

shapes between both hands manual analysis would be feasible. From the present

hand shape taxonomy, specific hand shapes could be manually favoured over others

(for example, selecting either those considered gestures or hand shapes) - supported

by the data available in Tables 5.2 and 5.3.

With the intention to further simplify the presented taxonomies of functional

hand shapes, similar hand shapes seen across both taxonomies were merged into

a single taxonomy of functional hand shapes. The resultant taxonomy of this

can be seen in Figure 5.9. The previously observed results strongly advise that

focus is given to the separated taxonomies introduced, as it was seen that each

hand presented different hand shapes and occurrence rates - indicating a need for

individual consideration of each hand. However, this simplified taxonomy provides

an easier means of consideration and implementation of the results obtained from

ADL hand motion data, if a quick overview is desired.
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Figure 5.9: The simplified, singular, taxonomy of hand shapes.
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5.3 Discussion

It has been shown that large amounts of data can be obtained from a variety of

common ADL and locations and processed quickly and reliably using the measurement

approach presented. The data collection system gave no issues and was able to

record natural hand movements, not encumbered by markers and within a normal,

comfortable, environment for the participants. It could be used in all situations it

was presented with, with no complaints from the participants, and gave no hindrance

during the normal daily tasks performed.

Following collection, the data were successfully aggregated into the hand shapes of

ADL through quantitative analysis. It can be seen that the hand shape which occurs

the most times throughout the recordings, and therefore in ADL, is, for the left

hand, hand shape 2 and, for the right hand, hand shape 5; which displays a closed

fist shape for the left hand and close to an open pinch for the right hand. These

hand shape form 31.4% and 24.5% of hand shapes seen for each hand, respectively.

Further extending this search shows the left hand to produce hand shapes close to a

closed fist and the right hand to present variations of pinching actions. It is arguable

that the prosthetic devices which allow, exclusively, open and close functionality

provide acceptable functionality, but these omit hand shapes which have been seen

to be required for large amounts of time during ADL.

Given the higher number of right hand dominate participants, the nature of the

grasps and the motion capture setup it could be argued that this greater grasping

time for the left hand is due to the right hand being obscured in some frames.

Additionally, in some circumstances it would be expected that the non-dominate

hand holds an object whilst the dominate hand interacts with it (e.g. using a phone).

Given the higher number of right hand dominate participants and the requirement

for a collection of frames to be considered functional hand shape frames only when

the hand joints remain close to stationary for a period of time, it is arguable that this

is a large reason for the greater number of functional hand shape performances from

the left hand. Observing the percentage of the frames in which the hands were seen

for, across all of the participants, showed a greater percentage of functional hand

shape frames for the left hand; however, for the left hand dominate participant alone

this was shown to be greater for the right hand. This suggests that hand dominance

had an effect on the collected data.

Further, manual, reductions can be taken, given information determined about

each of the hand shapes - which would provide a concise display of the desired

hand shapes from ADL. The previously discussed clustering evaluation methods, the

Calinski-Harabasz (CH) index, Davies-Bouldin (DB) index and silhouette score, have
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not been used due to the poor performance observed when applied to the collected

data, as has been shown in Figures 4.17, 4.18 and 4.19.

The classification of a functional hand shape being a position in which each joint

is held within one degree for one second or longer results in the data reflecting several

hand gestures as well as grasps. Previous taxonomies have only considered grasps,

occurring whilst an object is held. For example, hand shape 4 for the left hand

resembles an index pointing gesture - not displayed within previous taxonomies. In

addition to this, various grasps displayed in this taxonomy may appear similar to

those found within previous taxonomies though it could be argued that, in some

cases, these are being used as gestures (for example, a closed fist or flat hand).

Gestures are also of significant value to ADL and should not be omitted from a final

taxonomy. As examined in Section 2.3, there has been considerable support expressed

in the literature for the aid gesturing provides to daily living [80–97]. Gesturing

has been observed to help with: conceptualising speech and accessing the speakers

mind [82–88], problem solving [89], accessing mental lexicon and formulating speech

[90–93], memory-based tasks [94, 95] and communication for children with intellectual

difficulty [96]. Among these studies, it has been shown that pointing helps retain

taught knowledge [95] - highlighting the significance of a pointing gesture being

observed within the final taxonomy for ADL. In consideration of the aid gesturing

has been shown to bring to everyday life, it was seen as of significant importance

that gestures were able to be extracted from the collected data during the performed

analysis.

Comparing the new taxonomy to those previously defined in the literature reveals

several novel hand shapes which have been identified, by this taxonomy, as relevant

for ADL. The additional hand shapes seen were: index finger point (with thumb

abduction and adduction), inferior pincer with index and middle finger, peace sign,

relaxed hand, fully closed fist, thumb-little finger opposition, thumb up and middle

finger pinch. Similarly, there are some grasps that exist in the previous taxonomies

which the new taxonomy does not deem relevant. These grasps were, when compared

to the taxonomy introduced by Feix et al. [8]: parallel extension, thumb-3 finger and

extension type. The analysis of the data collected resulted in 16 more groupings of

hand shapes for the left hand, compared to the right; these additional hand shapes

seen on the left hand included: index and middle hook, light tool with little finger

extension, small diameter with index point and sphere-3 finger with extended ring

and little finger, with reference to the taxonomy by Feix et al. [8]. Despite the

lower number of hand shapes, the right hand also highlighted some hand shapes

which were not seen from the left hand, including: platform and medium wrap

with ring finger extension, with reference to the taxonomy by Feix et al. [8]. This

dissimilarity between the two hands implies a requirement to develop upper-limb
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prosthetic devices for each hand, individually - accounting for the differences seen

within the taxonomy.

It can be observed from the taxonomy that there is little difference in the thumb

position across all of the presented hand shapes, this is further supported by the

lack of activity shown by the thumb in Figures 4.5 and 4.6. The thumb is considered

to only act as a stabilising post for the other digits to work against, implicated by

the limited motion provided by the metacarpophalangeal (MCP) joint of the thumb.

Consideration of this limited motion when replicating the hand motions would aid

in the reduction of complexity of the device.

The taxonomy shown here provides a confident display of the hand shapes

relevant to ADL; highlighting both grasps and gestures performed throughout a

typical working day, introducing new hand shapes to those seen in previously defined

taxonomies of grasps and providing a distinction between the everyday needs of the

left and right hands. The obtained knowledge, through this collection of hand shapes

found in modern ADL, offers the potential of refinement to upper-limb prostheses.

The presented taxonomy offers a convergence of human hand replicas towards an

exact reproduction of the human hand motions required for ADL. The data seen

here has shown support for many of the grasps presented in previously introduced

taxonomies, with only a few grasps form previous taxonomies not being represented.

However, here there are several hand shapes presented in addition to those seen

from previous taxonomies; many of which could be argued to represent gestures,

not considered during the creation of previous taxonomies. This highlights the

importance of gestures in everyday modern life. Support is seen for the creation of

an upper-limb prostheses only providing an open and close function. However, it has

been seen that these devices are greatly limited and do not allow for many of the

hand shapes performed during ADL. The taxonomy presented here has indicated

a difference in the left and right hand, providing a useful note for the design of

upper-limb prostheses for each hand. This newly found information will aid in the

development of upper-limb prostheses, enabling an improvement to the quality of

life of recipients and a reduction in the cost of these devices.
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Chapter 6

Predicting Hand Muscle

Excitations

This chapter looks at existing mathematical models of the human hand, initially high-

lighted in Chapter 2, and the possible next steps to these. An existing musculoskeletal

model of the human hand is reviewed, focusing on the potential implementation

alongside optimisation techniques to determine muscle excitations from kinematic

data. The optimisation techniques employed can be found discussed in Chapter 2,

with the methods taken to implement these with the existing musculoskeletal model

shown in Chapter 3. The results of this development, implemented with the hand

shapes of the taxonomy presented in Chapter 5, are then displayed. Finally, the

technique proposed as a solution for predicting muscle excitations and the obtained

results are discussed.
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6.1 Introduction

Several varying models of the human hand exist within the literature; these attempt

to understand the kinematic motions of the hand [157–159], define the constraints

limiting digit motion [160–162], explain the motion made possible by the wrist [163–

165, 196] or examine the kinetic properties of the human hand [9, 197]. Utilising a

musculoskeletal model of the hand to provide the muscle excitations from a single

frame of kinematic data would present many opportunities. From the data collected

with the portable motion capture system, this ability would enable the determination

of muscle excitations performed during activities of daily living (ADL). This could

present great aid to the development of myoelectric upper-limb prostheses.

Predictive models for muscle excitations, exclusively inputting a single frame of

kinematic data, are sparse within the literature, with none presented for the hand.

For this reason, a predictive model has been proposed - designed to provide prediction

from the data collected during ADL. For this the musculoskeletal model proposed by

Blana et al. [9] has been selected for implementation with optimisation techniques,

to achieve a prediction of the muscle excitations occurring within select single frames

of hand kinematic data. After the optimisation has completed, the output provides a

close approximation to exact representation of the desired joint angles and, therefore,

the knowledge of the muscle excitations which result in this. The outputted joint

angles can be visualised alongside the the desired joint angles to visually evaluate

the results. Numerical assessment can also be provided by comparing the differences

in the joint angle values.

The existing musculoskeletal model chosen to support this muscle excitation

prediction method uses muscle excitations to determine the joint angles of the hand.

In this application, the optimisation techniques select proposed candidate solutions

of muscle excitations aimed to result in an inputted set of hand joint angles. By

repeatedly inputting these candidate sets of muscle excitations into the model and

determining the cost of each solution proposed, the applied optimisation technique

converges towards a solution - a set of muscle excitations which result in the inputted

hand joint angles (implicit of the muscle excitations for this hand shape being found).

This model has been selected as it is openly available and has a desirable input and

output characteristics for the intended application and data collected during ADL.

In this chapter, the implementation of the selected optimisation methods, applied

alongside the musculoskeletal model, has been described. The methods used to create

an input from Cartesian co-ordinate data, the cost function applied and how each

method was validated and evaluated are also presented. Following assessment of the

selected methods, one is highlighted as the proposed solution and implemented to
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determine the muscle excitations of ADL using the data collected with the portable

motion capture system, presented in Figures 5.1 and 5.2. The chapter concludes

with a discussion around the implementation of each technique and the final results

obtained.

6.2 Proposed Techniques

The proposed solution, as aforementioned, utilises the musculoskeletal model intro-

duced by Blana et al. [9] and a selected optimisation technique. Several optimisation

techniques were attempted to enable the desired balance of accuracy, reliability and

speed. The Cartesian data collected with the portable motion capture system was

used as an input to this method. As the musculoskeletal model employed provides

the joint angles, these Cartesian data were transformed into joint angles prior to

application. As the optimisation techniques reduce a given function, a cost function

was created such that lower outputted minimised the difference between the joint

angles found from the predicted muscle excitations and the desired, inputted, joint

angles. Each method was validated with control data, with known muscle excitations,

and assessed from repeated applications of identical inputs. The outline of the

designed prediction technique can be seen in Section 3.1.2 and the a full description

of the means employed to assess the ability of the selected optimisation techniques

can be seen in Section 3.6.

The musculoskeletal model selected to create the proposed muscle prediction

method was that presented by Blana et al. [9]. The model takes an input of the

current muscle excitations of the hand, determined through electromyography (EMG)

readings in a typical implementation, to provide the current joint angles of the hand.

It was proposed as a technique for the control of a robotic hand - providing the joint

angles to be performed following acquisition of muscle excitations from an EMG

sensor.

This model only considers the extrinsic muscles of the hands but has been selected

for several reasons. The open availability, with support readily available, and the

MATLAB integration provided results in an appealing model. The MATLAB support

allows for muscle excitations to be performed directly after data process and analysis,

autonomously - performed also within the MATLAB space. Though timing is not

of significant value in this application, the model was demonstrated to be capable

of performing real time - promising fast predictions of muscle excitations. The

clearly defined inputs and outputs provides easy implementation and alternative

uses. Further to this, the use of joint angles as an output means that this could

easily be integrated with the collected data within ADL - which had been converted
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into joint angles during the analysis process. Using this model, the hand joint angles

performed by a set of muscle excitations can be determined using (3.1). Inputting

the best solution found, from the applied optimisation techniques, each iteration into

this equation provides the joint angles for that best solution. Repeatedly proposing

candidate solutions of muscle excitations, altered iteratively by the optimisation

techniques, to be inputted into this equation provides a cost of each iteration and

enables comparisons of candidate solutions.

The selected techniques, for application as strand alone methods and in tandem,

are: genetic algorithm (GA), particle swarm optimisation (PSO), gradient descent

(GD) and brute-force search. These were selected to provide a range of approaches for

solving the problem of predicting muscle excitations from kinematic data. The GA

technique is a well established method for optimisation of a problem, shown applicable

in numerous situations. The PSO technique has shown superior performance to other

optimisation techniques within several applications. The GD method has been seen

to provide support to other optimisation techniques by converging closer towards

a found minimum. The brute-force search is an exhaustive search strategy which,

given enough time, assure the global minimum to a presented problem.

The determined hand shapes of ADL were in three-dimensional (3D) Cartesian

form. In order to be comparable to the output of the musculoskeletal model and,

hence, work with the optimisation techniques these data must be converted into

joint angles equivalent to those outputted by the musculoskeletal model. For each

joint angle to be calculated the following were used: the joint in question, the more

distal joint and that more proximal. These sets of co-ordinates were converted into

a two-dimensional (2D) co-ordinate system and the desired angle found through the

application of the vector dot product, as described by (2.4). Only the flexion angle

of the joints was required and, hence, the angle was calculated in the 2D co-ordinate

system - the transformations applied ensured alignment with the desired axes.

In order to compare the candidate solutions a cost function is required. Here

a function which finds the joint angles for a set of muscle excitations, from the

musculoskeletal model, and compares this output to the joint angles of the desired

hand shape was created. For the GA and PSO implementations a fitness scaling

technique was employed to aid convergence. Fitness scaling considers an exponential

decrease in the cost as the technique converges towards a solution. This provides an

increased influence of those with a lower cost. To achieve this (3.2) was implemented

to calculate the cost of each candidate solution. Several similar cost functions were

implemented and tested, though this was found to best aid the convergence of the

PSO. During a brute-force search fitness scaling adds no benefit and, therefore, the

cost function for each input combination was defined to be the summation of the
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absolutes of the differences between the resultant and desired joint angles, as shown

in (3.3).

The steps taken during an application of this prediction method can be seen

described within Section 3.1.2. From the Cartesian data of the hand, joint angles of

each observed hand shape were calculated and inputted into the predictive model.

The applied optimisation method was then initiated with a random candidate solution

and begun. Once a prediction had been made of the muscle excitations, these values

were inputted into he musculoskeletal model to determine the joint angles these

excitations create. Next the difference between these, found, joint angles and those

desired, from the inputted hand shape, was taken to calculate the cost of this

application. The final outputted joint angles were also used to create a render of the

hand taking up this position, to provide a visual assessment of performance.

Each of the selected techniques were validated by assessing the results of inputting

hand shapes with known muscle excitations; the performance of each was then

determined through repeated applications inputting these validation hand shapes.

The final output of the implemented technique was assessed numerically; comparing

the absolute difference between the predicted joint angles, found using the predicted

muscle excitations, and inputted joint angles. Additional visual assessment was

carried out through comparisons of the predicted and inputted hand shapes. The

predicted joint angles, to form the hand shape from the predicted muscle excitations,

were calculated by inputting the outputted muscle excitations into the musculoskeletal

model.

The optimisation techniques selected are described fully in Section 2.9.

6.2.1 Genetic Algorithm

The GA technique attempts to mimic the natural learning behaviour of living

organisms. The optimal solution to a provided problem is found by improvements

made through generations of a population of candidate solutions. Exploitation of a

current best solution and exploration of the possible solutions are tunable through

alterations to the parent selection and child mutation techniques. This method has

been chosen as it is a well established, effective, optimisation algorithm.

A built-in MATLAB function was utilised for the employment of a GA technique.

A population of 200 chromosomes was used; the collection of extrinsic muscle

excitations, the candidate solution, was considered a chromosome, with each muscle

excitation considered a gene. The cost function (3.2) was implemented. Parent

selection was completed using a roulette wheel selection method. A scattered crossover

function was implemented to generate children, from the selected parents. A uniform
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mutation function was utilised to mutate a random selection of the generated

children. The following options altered and tested to optimise the employment of

GA: FunctionTolerance, MaxGenerations and MaxStallGenerations. These are

stopping criteria, each influencing the decision of whether the technique has converged

to a solution. FunctionTolerance provides the value which, if the output is seen as

lower than for MaxStallGenerations number of iterations, then the GA will stop

and declare the input with the lowest found cost at that time to be the optimal

solution. MaxGenerations gives the total number of iterations allowed before the

GA is terminated.

6.2.2 Particle Swarm Optimisation

The PSO technique mimics the behaviour seen in swarms of animals, aimed to

replicate the communication and learning behaviour to converge towards a set of

inputs which result in the smallest possible output of a given function. Using a cost

function, observing the difference between the calculated and desired joint angles,

as this function results in PSO being able to be used to converge on the solution

of the muscle excitations used to achieve these desired joint angles. This results in

the knowledge of the muscle excitations used to create the given hand shape. To

achieve this a swarm of particles, initiated with varying conditions, are inputted into

the function and result of each input found. These results highlight a personal best

for each particle and global best of the swarm, updated upon acquisition of superior

results. In each iteration the position, velocity and personal best for each particle in

the swarm and the global best are considered to form the next step of that particle.

This communication and learning of each particle through the iterations results in

convergence towards the optimal solution. The PSO technique was considered for

the displayed comparatively fast convergence and high accuracy.

A PSO technique was implemented through the use of a built-in MATLAB func-

tion. For this, a function which is to be optimised must be provided; here, a function

inputting the muscle excitations and outputting the cost of that candidate solution

was selected. Provided with a set of muscle excitations this function would employ the

musculoskeletal model to calculate the joint angles this combination achieves. The

cost for this set of muscle excitations is then calculated, which becomes the output of

the function to be minimised. As this resultant cost is minimised by the PSO tech-

nique, the muscle excitations of the presented hand shape are converged toward with

each iteration. Within MATLAB there are several customisable options provided for

the built-in PSO function, for this implementation the following were considered:

FunctionTolerance, MaxIterations, MaxStallIterations, ObjectiveLimit,

SelfAdjustmentWeight, SocialAdjustmentWeight and SwarmSize. These para-
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meters can be seen described in Section 3.1.2. Each of these options were altered

and tested to optimise the employment of PSO. The PSO employed took on the

following settings:

Table 6.1: The parameters selected for the muscle excitation predicting
application of a particle swarm optimisation technique.

Parameter Value

FunctionTolerance 1e-10

MaxIterations inf

MaxStallIterations 100

ObjectiveLimit 1e-10

SelfAdjustmentWeight 2

SocialAdjustmentWeight 2

SwarmSize 200

Here, FunctionTolerance, MaxIterations and ObjectiveLimit were set to these

extreme values to remove any influence over the termination of the algorithm. This

resulted in the sole use of MaxStallIterations as the indicator that a solution had

been found. Other settings were determined through testing, found to accuracy

converge on a solution with minimal computational time.

6.2.3 Gradient Descent

The GD method utilises the gradient of the equation being minimised to converge

towards a minimum. After the gradient of the current candidate solution has been

determined, it is multiplied by a set constant and subtracted from the current

candidate solution - providing the new candidate solution. This results in the ability

to take larger steps towards a minimum when at a greater distance from it and smaller

steps as the process converges closer to one of the minima. For this implementation,

the gradient was determined each step using numerical differentiation. One weakness

of the GD method is the tendency to converge towards local minima, a problem

arising if the selected initial candidate solution is not in proximity of the global

minimum. Due to this limitation, the GD method is typically applied after an

optimisation technique, to converge further towards the solution - in this study the

GD method has been considered to aid the convergence of the other techniques

applied.

A GD optimisation algorithm was created within MATLAB, implementing the

steps pictorially outlined by Figure 6.1. The gradient of each attempt was calculated

through numerical differentiation, using the central difference formula with a step

of 0.2 for each muscle excitation above and below the currently considered set of
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muscle excitations. The applied central difference numerical method followed the

formula (2.14) to provide an estimate of the gradient of each iteration. The learning

rate was set to 0.01, due to the fine detail of the problem, and the total number of

iterations allowed was 2,000. No stopping criterion was implemented for reaching

a low enough cost, in each implementation the total number of iterations must be

reached. The lower (zero) and upper (one) bounds were tested after each iteration

to keep values within practical bounds. These set values for an implementation of

GD were all found to be optimal through testing.

Figure 6.1: A flowchart representation of the implementation of a gradient
descent method within MATLAB.

6.2.4 Brute-Force Search

A brute-force search has been consider in an attempt to observe vast amounts of

varying all possible solutions. Though likely to converge on an accurate solution

with enough time this method takes a considerably long time and has only been

considered due to the ease of implementation it offers. A binary brute-force search

was initially implemented and found to perform well, once increased to a finer range

of real numbers, between zero and one, the computational complexity increased

dramatically. As detail was added to the search range the number of iterations
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required increases exponentially, becoming increasingly demanding on computational

time with the musculoskeletal model being run each iteration.

A binary brute-force search was implemented within MATLAB following the

process described Figure 6.2. This generates all possible combinations of the candidate

solution vector, enabling an exhaustive search of all possible solutions. Here, n

represents the number of elements in the solution vector, increment is a predefined

value which provides the resolution of the brute-force search and minU and maxU

are the minimum and maximum values of muscle excitations, receptively. As this

was a binary search, the increment was set to one and the minimum and maximum

values of muscles excitations searched were set to zero and one, receptively. To

initialise, all muscle excitations of the candidate solution vector were set to zero.

Here n represents the number of elements in the solution vector, increment is a

predefined value which provides the resolution of the brute-force search and minU

and maxU are the minimum and maximum values of muscle excitations (zero and

one), receptively. To initialise, all muscle excitations of the candidate solution vector

are set to zero. To initialise, all muscle excitations are set to zero and one iteration

completed. The position of the last element in the candidate solution vector is then

selected as the increaseValue. In the next iteration, as the element at position

increaseValue has not reached the maximum possible value of this element (one),

it is increased by the set incremental value. Once the maximum value has been

reached by the element at position increaseValue, the value of this element is reset

to zero in the following iteration and increaseValue decreased by one. Following

this the element at the position of the, now decreased, increaseValue is increased

by one increment. Then all of the elements before the increaseValue position are

queried against the maximum possible value (one); the first position found to have

a value not be equal to the maximum value is set as the increaseValue and the

cycle continued. Once all elements have reached the maximum value the brute-force

search is known to have finished. In the case of a binary brute search this increment

was set to one; however, the process has been programmed in the way described to

allow for the increment to be altered if desired. During each iteration the model is

executed with the muscle excitations of that iteration. The cost of each combination

is found by the summation of the absolute differences between the fond and desired

joint angles. fitness scaling is not required as each possible combination is being

tested and this cost function will provide enough detail to highlight the best. The

muscle excitations with the lowest cost are stored separately in a vector, as well as

their cost and output. Once complete the muscle excitations of best found solution

are set as the initial conditions for the implementation of PSO.
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Figure 6.2: A flowchart representation of the implementation of a brute-force
search algorithm within MATLAB.
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In a brute search the total number of combinations are given by the possible

values one element could take on raised to the power of the total number of elements.

Mathematical expressed by c = ve, where c denoted the total number of combinations,

v is the number of possible values each element can be and e is the total number

of elements considered. In this application there are 12 elements to the muscle

excitation vector. Considering a binary brute-force search, with be two possible

values for each element, results in a total of 4,096 (212) combinations.

Moving from a binary search to continuous, the increments between possible values

can be substituted into this equation to quickly determine the effect of increasing

the fineness of the search. As the values lay between, and including, zero and one

the possible values are given by 1 + 1/i, where i is the the value of the increment

used. Substituting this into the equation for the total number of combinations gives

c = (1 + 1/i)e. As can be seen, a decrease in the increment used results in and

increase in the possible values which an element can experience and, in turn, the

total combinations. Decreasing this increment, and in turn improving the fineness

of the search, as little as one step to 0.5 results in a total number of combinations

of 531,441 ((1 + 1/0.5)12). If this was to be decreased to a value more fitting to

the situation and sensitivity of the musculoskeletal model, 0.01, it would require

1.13e24 ((1 + 1/0.01)12) total combinations. Ideally this step size would be further

decreased, though it can be seen this would result in an unreasonably large number

of combinations.

This approach can be seen to be simple to implement and, given a fine enough

interment, would accurately determine the correct muscle excitations for a presented

hand shape. However, as has been shown, decreasing this increment results in a

dramatic increase in he total number of combinations needed to be tested and, as a

result, the computational complexity of this algorithm. Though easy to implement, it

is unlikely that this search method would be a practical application for determining

the muscle excitations of hand shapes from kinematic data. Due to the superior

efficiency, a converging algorithm is more desirable.

6.2.5 Hybrid Methods

Additional to the implementation of the described techniques individually, a selection

of these methods where implemented in tandem with one another. This fusion was

performed in an attempt to provide a balanced performance of the techniques. The

GA and PSO methods showed superior results during preliminary testing, for this

reason they have been the focus of the hybrid method - using the other techniques to

further their abilities. The techniques chosen to aid these were a binary brute-force

search and GD, aiming to utilise the search power of the brute-force search and
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speed of GD. All of the methods chosen were implemented with the aforementioned

settings.

One hybrid method attempted was the implementation of a GD following an

application of GA and PSO. This is a typical application of GD, used to converge

further towards a solution following an approximation of the global minimum to a

problem. Following the GA and PSO, the GD method is then applied to converge

to a final solution - improving the accuracy of the results with little cost of the

computational time.

Another method which attempted was the application of a binary brute-force

search prior to the execution of the GA and PSO methods. A binary brute-force

search was chosen, compared to a finer search interval, in the interest of time; a binary

search required 4,096 iterations, compared to the next finest search (increments of

0.5) requiring 531,441 iterations. The applications of the GA and PSO techniques

following the search resulted in the conclusion that this search did not require a high

accuracy. It was decided that reducing the computational complexity of the overall

method was sought after more than the initial pass accuracy. Using a brute-force

search to initialise the GA and PSO applications allowed for a faster convergence

promised by both, with an increase in accuracy as a result of these improved initial

conditions. The binary brute-force search attempts each binary combination of

muscle excitations with the musculoskeletal model and calculates the resultant cost

of each, selecting the set of muscle excitations displaying the lowest cost as the initial

conditions for the next technique. A GA or PSO is then performed, converging

towards the solution from these given initial conditions.

In an attempt to utilise the favourable properties of each algorithm, methods

employing the results of a brute-force search with either a GA or PSO optimisation

method, to then be reduced by GD, were trialled. This was trialled due to the

initial capable performance of the brute-force search into GA and PSO combinations

and the improvements seen of following the GA and PSO methods with GD. The

exhaustive exploration of a brute-force search, into the balanced exploration and

exploitation of the GA and PSO methods, with the exploitation from GD, through

the quick descent on a minimum, makes this combination appealing. To initialise,

these hybrid methods performed a brute-force search across an exhaustive collection

of binary muscle excitations to find the closest match to the solution. The muscle

excitation set with the lowest cost from this search was then inputted to either a

GA or PSO technique, to minimise the cost of this set. A GD method was then

implemented to further reduce this cost, in attempt to find the global minimum cost

for the problem - the optimal set of muscle excitations creating the inputted hand

shape.
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6.3 Proposed Solution Selection

To assess the ability of the collection of suggested optimisation techniques, validation

and evaluation of each was conducted. The cost function was tailored to each of

the optimisation technique through tuning based on the results of inputting two

hand shapes with known muscle excitations, shown in Figure 3.19. To evaluate

the effectiveness of each method, these hand shapes with known muscle excitations

were then inputted into each method ten times. The muscle excitation and joint

angle correlations and time taken of each application was recorded to determine an

average performance of each method. Following this, each method was then tested

with an input of a recorded equilibrium hand shape, seen in Figure 3.20, to ensure

adequate performance with experimental data. Selection of a proposed technique

was completed from a review of the results from each assessment method to deem

the best overall performing method. These chosen assessment methods are described

in Section 3.6, with the results of which in Section 4.3.

The parameters of the cost function for each method were tuned prior to valida-

tion and evaluation. The optimisation methods underwent hyperparameter tuning

through parameter variations over multiple applications of the hand shapes in given

in Figure 3.19. Utilising (3.5), the components of the cost function for each method

were coaxed towards those providing the best performance using PSO and GD

optimisers. Through each iteration the correlation between the known and predicted

muscle excitations was tested and the parameters altered, in an attempt to minimise

the difference between the recorded data and predictions made - resulting in con-

vergence towards the best possible predictive performance for each technique. This

minimisation was achieved by implementing equation (3.6) as the cost function for

the parameter tuning.

The overall performance of each method was assessed through repeated applic-

ations of the methods with identical inputs. To become a method which can be

confidently proposed as a means of predicting the muscle excitations occurring from

a single frame of kinematic data they much show agreement with the known muscle

excitations. The chosen hand shapes for the repeated applications are displayed in

Figure 3.19. The performance measures selected, to be examined over the repeated

applications, were: the muscle excitation and joint angle correlations and the time

taken. The differences between the input and the resultant joint angles of the output

inputted into the musculoskeletal model were considered - observing the difference

in these sets of angles, correlation between them and time taken in each application.

Through comparison of the muscle excitations, the end goal outputs from the muscle

excitation prediction methods can be observed. The comparison of the joint angles
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also provides the level of confidence to be had in the choice to assess each method

with the joint angles; if the muscle excitation match and the joint angles agree with

the outcome of this assessment then it holds that this is a valid means for performance

assessment. Though the time taken is not of great concern for this application of the

predictive model, it was considered potentially useful for future applications. The

proposed solution was then concluded from the judged best performance across all

of these categories. The results achieved form this evaluation method can be seen in

Table 4.5.

To further validate the selected methods, experiment data of an equilibrium hand

shape have been tested with each; these data included both the recorded joint angles

and muscle excitations for the hand shape seen in Figure 3.20. This test allowed

for the assessment of the methods with experimental data. Additionally, the tested

equilibrium hand shape was not used during the tuning of the cost functions and,

therefore, was an appropriate test of the predictive performance of each method with

unseen data. The resultant muscle excitations found from the validation method

employed can be seen in Table 4.6.

Reviewing the validation and evaluation tests highlighted the hybrid combination

of a PSO technique followed by a GD method as the superior muscle excitation

prediction method. This method offered a confident muscle excitation accuracy, with

consistent repeatability. Furthermore, this method was one of two methods able to

provide the desirable muscle excitations in a test with a recording of the equilibrium

hand shape. This method has been used to determine the muscle excitations found

in ADL from the single kinematic frames of averaged hand shapes found across ADL

recordings, the results of which are presented within the next section.

6.4 Muscle Excitations of Common Hand Shapes

Following proposal of a means for predicting the muscle excitations from a single frame

of kinematic data, the hand shapes of ADL were inputting. This was performed with

the aim to determine the muscle excitations of ADL. Hand motion data seen in modern

ADL has been collected with the portable motion capture system and a taxonomy

common hand shapes has been created from these data. The model introduced in

Section 3.1.2 has been implemented with the hand shapes presented in Section 5.2 to

determine the muscle excitations from the collected data. The determination of the

muscle excitations performed to achieve these common hand shapes would provide

the knowledge required for EMG controlled upper-limb prostheses.

The taxonomy of hand shapes used as inputs into this method, presented by

Figures 5.1 and 5.2 for the left and right hands respectively. These represent the
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functional hand shapes found within ADL. To implement this model with the hand

shapes of ADL the Cartesian co-ordinates of the cluster centroids were converted

into the required joint angles, applying the vector dot product shown by (2.4). The

PSO and GD hybrid optimisation method was then employed in order to converge

on the closest muscle excitations which results in the desired joint angles, providing

a prediction of the muscle excitations of the inputted hand shape. The mean of the

absolute differences between the desired and outputted joint angles was calculated

as a measure of evaluating of the results.

The GD hybrid method was selected to examine the data collected during

ADL, due to the superior balance of accuracy, consistency and computational

time which it demonstrated. To perform this process on the 40 and 24 com-

mon hand shapes found in ADL for the, respectively, left and right hands it took

three hours 58 minutes and 12 seconds. This was performed on a computer with

Windows 10, 32 GB random access memory (RAM) , Intel Core i7-7700 processor and

MATLAB 2020b (9.9.0.1570001). The muscle excitations for all of the hand shapes

recorded during ADL have been calculated and can be seen in Tables 6.2 and 6.3.

Within these tables each row represents one of these common hand shapes, each

column the extrinsic muscles of the hand and each element displays the found muscle

excitation for the respective muscle as a fraction of maximum muscle excitation

during the performance of each hand shape. The muscles observed are the: flexor

digitorum superficialis (FDS), flexor digitorum profundus (FDP), extensor digitorum

(ED), extensor indicis (EI), extensor pollicis longus (EPL), extensor pollicis brevis

(EPB), flexor pollicis longus (FPL) and abductor pollicis longus (APL). The result-

ant actions performed by activations of each of these muscle groups can be seen in

Table 2.1. Images of the hand taking on the outputted joint angles, for the left and

right hands respectively, are shown in Figure 6.3 and 6.4. Comparing these hand

shapes to those seen in Figure 5.1 and 5.2, receptively, visualises the error of the

implemented technique. When implemented with all of the hand shapes found in

ADL the outputs were found to differ from the desired joint angles by an average

of 19.3 degrees. The full collection of hand shapes showed a correlation between

the determined and desired hand shapes of 0.58. This was, respectively, composed

of average joint angle differences of 19.6 degrees and 19.3 degrees and correlations

of 0.55 and 0.61 for the left and right hands. Though this joint angle correlation

was low, the strong performance that this method demonstrated when predicting

the muscle excitation during validation, in spite of a comparatively lower joint angle

correlation, provides confidence in the generated outputs.
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Table 6.2: The predicted muscle excitations for the hand shapes, from the left hand, presented in the introduced taxonomy of
hand shapes.

Hand
Shape

Muscle

FDSL FDSR FDSM FDSI FDPL FDPR FDPM FDPI EDCL EDCR EDCM EDCI EDM EIP EPL EPB FPL APL

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.37 0.37 0.20 0.26 0.03 0.00 0.00 1.00 0.00
2 0.15 0.14 0.13 0.22 0.36 0.21 0.32 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
3 0.00 0.00 0.02 0.00 0.00 0.00 0.12 0.10 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.00
4 0.13 0.13 0.07 0.00 0.24 0.15 0.17 0.02 0.00 0.00 0.00 0.22 0.00 0.03 0.00 0.00 1.00 0.00
5 0.08 0.11 0.09 0.14 0.26 0.18 0.26 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
6 0.03 0.00 0.00 0.00 0.12 0.00 0.00 0.14 0.00 1.00 0.52 0.21 0.00 0.00 0.00 0.00 0.10 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.67 0.68 0.07 0.23 0.01 0.00 0.00 1.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.66 0.63 0.21 0.32 0.03 0.00 0.00 1.00 0.00
9 0.00 0.04 0.00 0.04 0.00 0.06 0.00 0.07 0.27 0.00 0.34 0.00 0.27 0.00 0.00 0.00 1.00 0.00
10 0.13 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.63 0.66 0.23 0.00 0.00 0.00 0.00 1.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.14 0.14 0.08 0.02 0.01 0.00 0.00 1.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.25 0.52 0.50 0.24 0.24 0.00 0.00 0.00 1.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.13 0.21 0.26 0.12 0.14 0.03 0.00 0.00 1.00 0.00
14 0.13 0.16 0.13 0.00 0.30 0.20 0.32 0.04 0.00 0.00 0.00 0.16 0.00 0.02 0.00 0.00 1.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.25 1.00 0.26 0.22 0.25 0.03 0.00 0.00 0.28 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.10 0.34 0.15 0.00 0.02 0.00 0.00 1.00 0.00
17 0.13 0.14 0.08 0.12 0.24 0.15 0.18 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.26 1.00 0.19 0.03 0.24 0.00 0.00 0.00 0.22 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 1.00 0.26 0.15 0.19 0.02 0.00 0.00 0.33 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.27 0.23 0.19 0.22 0.26 0.03 0.00 0.00 1.00 0.00
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21 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.56 0.61 0.21 0.00 0.03 0.00 0.00 1.00 0.00
22 0.15 0.15 0.13 0.00 0.36 0.21 0.32 0.07 0.00 0.00 0.00 0.06 0.00 0.01 0.00 0.00 1.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.48 0.49 0.18 0.23 0.03 0.00 0.00 1.00 0.00
24 0.05 0.05 0.00 0.00 0.15 0.11 0.00 0.00 0.00 0.00 1.00 0.19 0.00 0.03 0.00 0.00 0.26 0.00
25 0.13 0.00 0.00 0.00 0.31 0.00 0.00 0.20 0.00 0.16 0.12 0.00 0.00 0.00 0.00 0.00 1.00 0.00
26 0.09 0.06 0.00 0.00 0.20 0.10 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.00 1.00 0.00
27 0.11 0.11 0.08 0.00 0.28 0.18 0.23 0.03 0.00 0.00 0.00 0.04 0.00 1.00 0.00 0.00 0.19 0.00
28 0.10 0.00 0.00 0.00 0.32 0.00 0.00 0.02 0.00 0.50 0.59 0.19 0.00 0.03 0.00 0.00 1.00 0.00
29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.28 0.63 0.54 0.00 0.27 0.01 0.00 0.00 1.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.26 0.15 0.04 0.00 0.24 0.06 0.00 0.00 1.00 0.00
31 0.00 0.12 0.00 0.00 0.00 0.19 0.02 0.23 0.14 0.00 0.12 0.24 0.12 0.04 0.00 0.00 1.00 0.00
32 0.04 0.00 0.00 0.00 0.17 0.02 0.02 0.00 0.00 0.00 0.02 0.16 0.00 0.02 0.00 0.00 1.00 0.00
33 0.07 0.14 0.00 0.17 0.19 0.17 0.01 0.21 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00
34 0.00 0.00 0.05 0.14 0.00 0.00 0.14 0.13 0.04 0.12 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
35 0.00 0.13 0.07 0.15 0.00 0.17 0.21 0.20 0.26 0.00 0.00 0.00 0.25 0.00 0.00 0.00 1.00 0.00
36 0.13 0.13 0.00 0.00 0.33 0.19 0.00 0.19 0.00 0.00 0.49 0.20 0.00 0.03 0.00 0.00 1.00 0.00
37 0.00 0.13 0.08 0.00 0.00 0.19 0.25 0.00 0.05 0.00 0.00 0.16 0.00 0.03 0.00 0.00 1.00 0.00
38 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.08 0.27 1.00 0.33 0.00 0.26 0.00 0.00 0.00 0.30 0.00
39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.34 0.43 0.09 0.14 0.01 0.00 0.00 1.00 0.00
40 0.10 0.10 0.00 0.00 0.33 0.20 0.00 0.12 0.00 0.00 0.16 0.07 0.00 0.02 0.00 0.00 1.00 0.00
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Table 6.3: The predicted muscle excitations for the hand shapes, from the right hand, presented in the introduced taxonomy of
hand shapes.

Hand
Shape

Muscle

FDSL FDSR FDSM FDSI FDPL FDPR FDPM FDPI EDCL EDCR EDCM EDCI EDM EIP EPL EPB FPL APL

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.16 0.15 0.07 0.08 0.01 0.00 0.00 1.00 0.00
2 0.09 0.08 0.06 0.11 0.23 0.14 0.21 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.30 0.48 0.41 0.00 0.29 0.00 0.00 0.00 1.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.23 0.36 0.35 0.15 0.21 0.02 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.28 0.67 0.64 0.10 0.26 0.02 0.00 0.00 1.00 0.00
6 0.00 0.00 0.04 0.14 0.00 0.00 0.14 0.13 0.06 0.11 0.00 0.00 0.03 0.00 0.00 0.00 1.00 0.00
7 0.09 0.10 0.00 0.00 0.30 0.19 0.00 0.12 0.00 0.00 0.20 0.04 0.00 0.01 0.00 0.00 1.00 0.00
8 0.10 0.08 0.00 0.00 0.21 0.12 0.02 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 1.00 0.00
9 0.11 0.11 0.10 0.00 0.33 0.20 0.28 0.02 0.00 0.00 0.00 0.14 0.00 0.02 0.00 0.00 1.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.61 0.59 0.21 0.29 0.03 0.00 0.00 1.00 0.00
11 0.00 0.14 0.10 0.17 0.00 0.18 0.26 0.26 0.12 0.00 0.00 0.00 0.12 0.00 0.00 0.00 1.00 0.00
12 0.15 0.15 0.12 0.19 0.33 0.19 0.30 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
13 0.00 0.00 0.00 0.06 0.00 0.00 0.03 0.17 0.00 0.50 0.02 0.00 0.00 0.00 0.00 0.00 1.00 0.00
14 0.11 0.15 0.11 0.00 0.27 0.19 0.27 0.04 0.00 0.00 0.00 0.16 0.00 0.02 0.00 0.00 1.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.16 0.35 0.12 0.00 0.02 0.00 0.00 1.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 1.00 0.19 0.15 0.00 0.00 0.00 0.00 0.27 0.00
17 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.15 0.17 1.00 0.21 0.07 0.16 0.00 0.00 0.00 0.16 0.00
18 0.09 0.10 0.00 0.00 0.27 0.18 0.00 0.15 0.00 0.00 0.55 0.21 0.00 0.00 0.00 0.00 1.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.18 0.10 0.04 0.13 0.01 0.00 0.00 1.00 0.00
20 0.01 0.00 0.00 0.00 0.20 0.00 0.00 0.07 0.00 0.62 0.77 0.21 0.00 0.03 0.00 0.00 1.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.40 0.36 0.20 0.25 0.03 0.00 0.00 1.00 0.00
22 0.00 0.04 0.00 0.04 0.00 0.06 0.00 0.07 0.27 0.00 0.34 0.00 0.27 0.00 0.00 0.00 1.00 0.00
23 0.15 0.15 0.10 0.15 0.29 0.17 0.24 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
24 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.02 0.00 0.62 1.00 0.24 0.00 0.04 0.00 0.00 0.56 0.00
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Figure 6.3: The hand shapes, for the left hand, created from the predicted muscle excitations of hand shapes from the introduced
taxonomy of hand shapes, using the proposed prediction technique.
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Figure 6.4: The hand shapes, for the right hand, created from the predicted muscle excitations of hand shapes from the introduced
taxonomy of hand shapes, using the proposed prediction technique.
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6.5 Discussion

The applications of different optimisation methods to predict muscle excitations

from a single frame of kinematic data have been presented and each was tested on

data collected during ADL. The accuracy and computational time of each has been

examined. The hybrid method, an application of a PSO method followed by a GD

technique, has been highlighted as the best and, in turn, claimed to be the proposed

solution.

The cost functions for each of the selected optimisation methods were tuned with

the hand shapes presented in Figure 3.19. When considered in repeated applications,

inputting the validation hand shapes, all methods showed an average correlation to

the inputted joint angles greater than 0.70. The brute-force search and GD method

provided the lowest correlations between predicted and know muscle excitations

during validation, respectively showing correlations of 0.46 and 0.22 - without these,

all of the recorded muscle excitation correlations were above 0.60. This means of

evaluation was able to identify key differences in the applications and results of the

selected methods, providing options for the selection of a proposed solution. All of

the methods were tested with an input of an equilibrium hand shape; in this test

the PSO and PSO followed by GD methods were the only methods to present the

correct solution - zero muscle excitations across all muscles.

The proposed solution to determining muscle excitations from kinematic data is a

combination of a musculoskeletal model [9] and the PSO with GD hybrid optimisation

method. This method was selected for the superior balance in performance, across

all of the assessment categories observed, demonstrated. This method displayed

superior muscle correlation performance when tested in ten repeated applications,

showing a correlation of 0.74 between the known and predicted muscle excitations;

this unsurpassed performance was key to the selection of this technique. Through

these ten applications, this method displayed a very low variation across all of the

measured fields. Across the ten applications the outputted joint angles showed a

correlation to those desired of 0.74. A standalone implementation of PSO was able

to provide a higher joint angle correlation but was hindered by the lower muscle

excitation correlation it displayed. The average time taken by the PSO and GD

hybrid optimisation method, to provide predictions of the muscle excitations, was

173 seconds. For this study computational time was not of high importance and,

therefore, this slower performance did not provide any detriment the selection of this

method. Further highlighting the performance capabilities of this method was that

it was one of only two methods to produce the desired equilibrium validation results,

the other method being a singular implementation of PSO.
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When implemented with the hand shapes found in ADL, by the portable motion

capture system, the proposed solution was able to provide muscle excitations creating

hand shapes with an average difference of 19.3 degrees from those inputted, with a

correlation to these of 0.58. In an application of the chosen musculoskeletal model

[173], adequate control of a robotic hand was achieved with a correlation, to the

performed hand motions, greater than 0.55; therefore, the correlation of 0.58 observed

here provides promising results for this prediction technique. The EPL, EPB and APL

all exhibited zero excitation; this raised concern that the implementation of muscle

redundancies was providing inaccurate results. However, these results were also found

when the chosen technique was applied without muscle redundancy considerations.

It could be argued that consideration of external forces would influence these muscles

and should be tested and, dependently, considered for future implementations. Hand

motion data collected with a portable motion capture system have found the hand

shapes occurring within ADL. The combination of an existing musculoskeletal model

[9] and optimisation techniques has been implemented to determine the muscle

excitations of these hand shapes found in ADL. The employed method has been

validated and evaluated with hand shape data including muscle excitations; the

proposed predictive method performed the best out of all of the examined techniques.

Weighting the influence of the joint errors in the cost function, from the results of

the Leap Motion controller (LMC) validation experiment, aided application with the

collected ADL data. The determination of the muscle excitations performed in ADL

would provide knowledge useful for the development of EMG controlled upper-limb

prostheses.

The use of optimisation techniques with a musculoskeletal model has shown to

be a plausible means of predicting hand muscle excitations. The proposed hybrid

technique was able to determine muscle excitations replicating the desired hand

shapes, observed during ADL, with an average error of 19.3 degrees and average

correlation, to the desired hand shapes, of 0.58. The exclusion of external forces in

the recorded data leads to potential inaccuracies in the predicted muscle excitations

for the specific use cases recorded. The musculoskeletal model utilised during this

application did not observe the intrinsic muscles of the hand - weighting a large

focus of any results obtained towards application with prosthetic hand devices. Due

to these omissions, an upper-limb device created from these results which desires a

controllable gripping strength would require additional controllers to be used; several

alternative methods of grasping control have been shown to be feasible, with some

studies finding that visual feedback was sufficient [3, 59–62, 65, 68–70]. Furthermore,

the exclusive consideration of extrinsic muscles of the hand from the model provides

possible limitations to the accuracy of predictions made employing it. However, this

work provides a framework to implement a musculoskeletal model with optimisation
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techniques for the prediction of hand muscle excitation, enabling the ability to apply

different or updated models. This work shows potential in aiding the design and

development of EMG controlled upper-limb prostheses by determining the muscle

excitations performed during ADL.
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AirGo

As shown in Chapter 2, the currently employed method for measuring hand angles is

inaccurate and shows low repeatability. This highlights a need for a more accurate

and reliable solution, with particular focus given to an increase of the inter-rater

reliability. In this chapter, a novel means for the measurement of hand joint angle data

within a clinical setting has been introduced. A description of the device, validation

methods, steps taken during the clinical trial and analysis methods performed can

be seen provided in Chapter 3. Previously favoured methods are reflected upon,

with the limitations and possible solutions highlighted. The proposed solution to

these exposed issues has been described within this chapter. The suitability of this

proposed solution is discussed, with reference to the results from the validation of

the portable motion capture system and the clinical study performed, presented

in Chapter 4. A discussion around this work and the resultant data provides a

conclusion to this chapter, with empathise on the improvements the introduced

device provides to an occupational health therapy clinic.
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7.1 Introduction

When evaluating the performance of the human hand an important measure is

the active range of motion of the digits. This can be of aid when evaluating

the rehabilitation progress of an injured hand, the capabilities of full and partial

prosthetic hands and the adoption progress of upper-limb prostheses. Measuring the

active range of motion of the digits during rehabilitation or adoption of upper-limb

prostheses enables the assessment of the rehabilitation progress; through this, the

rehabilitation routine can be altered to further gain greater progress or focus can

be given to the weak performing digits in an upper-limb prosthesis. The currently

employed measurement device is a goniometer; however, this device lacks the desirable

speed, accuracy and consistency for such measurements. Therefore there is a need to

improve the measurement devices used to enable improvements to hand rehabilitation

and upper-limb prostheses evaluation and adoption. The improvement that would be

gained from the employment of a new device, over a goniometer, has been assessed

based on the speed, accuracy and consistency of the measurements obtained.

As highlighted in Section 2.10, there have been studies indicating the poor

performance of goniometers for hand joint angle measurements [239, 240] and several

showcasing new methods or technology aiming to provide an improvement to this

[116, 241–248]. The time taken and reliability of the current state-of-the-art are

highlighted as significant issues within the literature [116, 247]. Particularly, this

showed low inter-rater reliability - indications suggesting that seeing a different

clinical staff member on a different visit affects the results more than patient progress

would [239, 244, 247]. Additionally, the manual goniometer, implemented commonly

within clinics, requires contact with the patient, possibly leading to contamination

of the collected measurements. The current state-of-the-art leaves much room for

improvement on many fronts and attempts at creating alternative measuring devices

have shown promise but lack clinical evaluation [116, 241–248].

The proposed clinical hand angle measuring device, the AirGo (abbreviated from

Air Goniometer), has been validated against a state-of-the-art motion capture studio

and tested within a hand clinic. Though the accuracy found in validation of the Leap

Motion controller (LMC) has shown only marginal improvement over a goniometer,

18.4 degrees, it was still suggested for clinical measurements due to the support

shown within the literature [111–116]. It should be highlighted that the validation

was performed on a portable system and that the LMC is likely to provide superior

accuracy if validated with a PC, as it is used in the AirGo system. The proposed

solution offers an ease of use and high reliability of the results, as well as a far quicker

time to gather all of the measurements for both hands. The LMC has been employed

208



AirGo

along with JavaScript (JS) code to extract the Cartesian locations of the hand joints

and, subsequently, calculate the joint angle to form AirGo. These resultant joint

angles are displayed within a Hypertext Markup Language (HTML) body.

Here, the proposed solution is introduced, broken down into the physical build

and the scripts used for front- and back-end development. The results of the clinical

trial are discussed, in relation to the validation performed for the LMC and the

demands of a clinical setting. Following these, a discussion compares the AirGo

system with the current state-of-the-art and investigates the worth of employing

AirGo within clinics.

7.2 Proposed Solution

The AirGo system uses an LMC to calculate the joint angles of a presented hand.

This results in faster and more accurate collection of patient data, compared to the

currently employed method, with no need for contact between clinical staff and the

patients.

In Section 4.1 the a portable system employing the LMC was found to provide a

set of choreographed hand shapes within 18.4 degrees, compared to a state-of-the-art

motion capture system. As the AirGO system utilises the LMC, and calculates the

angles in the same manner, these validation results are implicit of the accuracy of

the AirGo system.

In a clinical trail performed with AirGo, the proposed device was seen to be

able to record the joint angles within a matter of seconds. This provides a vast

improvement to the goniometer, typically taking several minutes to perform the same

measurements [116]. Additionally, employment of the AirGo system could alleviate

the need of a clinical staff for hand joint angle measurements. Provided the front-end

is modified to receive a unique identifier from the patient and direct them through

the collection, the device could be set up in the clinic to measure patients prior to

their appointments. Furthering this development, AirGo enables the possibility of

patients recording from home if necessary. The ease of use of the device means that

the patients would only need start the recording and present their hands. The time

saved by clinic staff could be used for the treatment of more patients. If a clinical

staff is present to oversee the recording, the method still remains contactless; the the

clinical staff operates the computer the patient only needs to present their hands.

This provides a consistency in measurement results, as the clinical staff member is

not able to contaminate results through physical interaction with the patient.
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7.2.1 Physical Build

A stand was built to support the LMC whilst the patients used AirGo. This was

built for clinical application to aid in the collection of measurements. The vertical

positioning of the LMC means that the user can place their elbow on the table and

present their hand to the LMC with ease. A built-in height adjustment mechanism

allows for the device to be compatible with different users, irregardless of their

forearm length. This assists the LMC to find the hand accurately in the space. These

adjustable settings were designed such that the centre of the LMC could exist in fine

scale intervals between known extremes of forearm lengths. Removal of the physical

build would result in a less comfortable user experiences but a reduced cost - of

consideration if mass deployment was undertaken.

The initial build of the stand for this system can be seen in Figure 7.1. Each of the

components were laser cut from a five millimetre thick acrylic sheet and permanent

fixtures were attached with epoxy. Acrylic chosen as it was cheap and accessible and

the ability to accurately provide the desired patterns highlighted the laser cut as the

selected production method. The base of the system was bent into the desired shape

using an acrylic bending machine. The base was bent to ensure that all of weight

of the system sits through the centre of the base, creating a stable stand platform

which supports the LMC confidently. Sections were cut out of the side to make

it so that the stand could be easily picked up and transported. A pocket for the

backboard was added to the top of the base, to hold it upright, and house the height

adjusting mechanism. Adhesive rubber pads where attached underneath the base

to keep the stand stable whilst in use. Though movement does not affect the angle

readings, this provided an ease of use. The backboard sits in the pocket of the base

and was used to hold the LMC in place during data collection. The adjustable height

of the stand was achieved using a moving pin on the base which locks into teeth on

back board. The locking pin is three millimetres heigh and the teeth were cut with

two and a half millimetres between each one, allowing high level of accuracy during

adjustments. At the centre top of the backboard a hole was cut to house the LMC;

this was created one millimetres narrower than the LMC. The LMC was placed on

the back of the top board, in a recessed hole with an identical width and height to

the LMC and three millimetres deep. To support the LMC within the system a clip

was fashioned; this lifts up to allow the LMC to be placed into the recess and then

will naturally sit down and exert a pressure which holds the LMC within this recess.
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(a) The front view of the first iteration of the
stand for AirGo.

(b) The rear view of the first iteration of the
stand for AirGo.

Figure 7.1: The front and rear views of the first iteration of the stand for
AirGo.

Preliminary experiments with the first iteration of AirGo identified that the

LMC performed best when a hand was presented perpendicularly to the long side.

Henceforth, the stand was modified to allow the LMC to sit at an angle more suited

for data collection. The time frame of the clinical trial resulting in this being solved

by the removal of the hole and attachment of the LMC with a suitable adhesive.

Given more time, a new top part would be laser cut with the LMC hole rotated

appropriately. The final form of the AirGo stand can be seen in Figure 3.5. After

implementation it was found that, in this orientation, the LMC was able to pick

up the hands more consistently - this setting was adopted for the duration of the

clinical trial.

The stand was proven to provide useful functionality during the clinical trial.

Though not necessary, this was seen to provide a more comfortable user experience

than if the LMC was to be place on a horizontal surface and the hand outstretched.

The physical body also helped indicate to the user where to place their hands; for

many patients this is a new item and presenting the LMC only would be disorientating.
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The height adjustment provided aid to the LMC when locating the presented hands.

Following alteration to the orientation of the LMC, the device was able to work with

no other issues. Future iterations of AirGo aim to reproduce the clasping mechanism

for the LMC in this orientation.

7.2.2 Front-End Code

The screen displayed in an application of AirGo can be seen in Figure 3.6. In the

current state, this would be presented to both the patient and clinical staff. The

numerical values provide clinical staff with an indication of performance, displaying

the best measurement taken so far for each joint and the resultant total active motion

(TAM). The gauges display the live, smoothed and best performance for a selected

digit, allowing the clinical staff to isolate a single digit and encourage the patient to

flex further.

Figure 7.2 presents version 1.1 of AirGo, the main addition to version 1.2 was

the addition of the patient identifier input box and save button. When pressed, the

save button stores the displayed values in a text file named by the value given in the

patient identifier box, current recording time and the number of recordings previously

taken for the observed patient - aiding future reference of the measurements taken.

Figure 7.2: The first iteration of the display for the AirGo system.

The AirGo screen consists of: version number, an interactive text box and three

buttons, indication of the hands seen, tables of the maximum joint angles reached,

a live view of the hands presented and gauge style indications of the joint angles

for a selected digit. In the top left of the screen the name AirGo, followed by the
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version number, is displayed. The top right of the screen hosts interactive elements

of the script, this includes: providing a unique patient ID (to enable patient progress

tracking), a set button (to set a current best for the user), a save button (which saves

the current observations under the unique patient identifier, the current time and

visit number) and a reset button (refreshing the script for the next patient). The

indication of the hands seen by the LMC is displayed as a simple “Yes” or “No” to

assure the user that the correct hand is being recognised. The table shown updates

with the smoothed joint angle for each joint of each digit and respective TAM; the

TAM for a digit is calculated from the summation of the constituent joints.

The live view provides a three-dimensional (3D) wire frame image of the current

LMC observations. This was used to ensure that the captured information was close

to the real life scenario. The live view of the hand was achieved using a canvas drawn

on the HTML page, updating the image based on the results gathered from the LMC

by the JS script. Gauges of the current flexion degree, for each joint of a selected

digit, were created to provide a relative indication of the flexion achieved. These

gauges were also created through a canvas drawn on the HTML page, extracting the

required data to display from the JS script. This display was also considered as a

user motivator to flex a digit further, with future implementations hoping to also

include a personal best from all measurements taken for the current patient.

The tables and canvas images displayed were coded to resize with the screen so

that the monitor, browser or window position adopted in a use would not matter

- the correct information would always display correctly. The set button sets the

currently seen hand joint angles as the target flexion for the other hand. These

target values were used, rather than absolute bests, as an aim for the patients as

not everyone will exhibit the same natural flexion. The creation of a patient specific

target severs to provide a more realist aim, intending to lead towards more motivated

patients.

One future modification is to split the information displayed between the clini-

cian staff and patient. For the current implementation within a clinical study the

information has been reduced and amalgamated on a single screen. Further inform-

ation, sought by the clinical staff would be saved following the measurements for

later reference. For the patient, future implementations plan to display the virtual

representation of the presented hand and achieved joint angles. This aims to focus

motivation on the patient to further flex their joints, through a gamification of the

task. Additional to this, the ability to reload past recordings and personal best

would aid patient motivation.
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7.2.3 Back-End Code

In order to extract the positional co-ordinates of he hand from the LMC and, in

turn, calculate and present the required data, several JS scripts were executed within

the HTML script. These produce a loop, updating with measurements from the

LMC and performing any necessary calculations each iteration. Any interaction with

the AirGo screen, such as the buttons in the top right, executes specified JS scripts

written to execute the requested functions.

Upon start the Leap Service programme initiates a local websocket, this is

accessed by the JS code to gather the data from the LMC. From the LMC the 3D

Cartesian locations of each of the joints, for the presented hands, are found. Using

the animation loop of the current browser, the values obtained from the LMC are

continually updated. The obtained values are stored as JS variables for later access

by the code.

The joint angles are calculated for each joint, in turn, using the vector dot product

in 3D space, utilising (2.4). To achieve this the joints more proximal and more

distal to a selected joint; when calculating the including the distal interphalangeal

(DIP) angle the tip of a digit was considered as the joint more distal. These joint

are transformed to make the currently considered joint the origin of the Cartesian

space, from which the dot product rule was directly applied with inputs of the other

joints locations to determine the angle between them - providing the joint angle of

the currently considered joint. This was converted into degrees, from radians, and

subtracted from 180 degrees to provide the flexion angle of the joint (the commonly

considered clinical measure). The abduction and adduction of the digits is not

considered and, therefore, been omitted during these calculations. Smoothing was

applied to avoid the potential of any anomalous data contaminating the collected

measurements. If data has been collected for a hand for 100, consecutive, frames the

the mean and standard deviation of this 100 set of frames are calculated. Each of the

recorded angles from each of these frames is compared to the two standard deviations

away from the mean, a frame found outside of this is removed. The average of the

remaining frames provides the smoothed angle, to be displayed on the AirGo screen.

The TAM value was calculated with the summation of the DIP, proximal in-

terphalangeal (PIP) and metacarpophalangeal (MCP) joint angles. The TAM of the

thumb was not calculated due to the lower number of joints, resulting in a measure

it not comparable with the other digits. The joint angles of the carpometacarpal

(CMC) joint (flexion and extension and abduction and abduction) are not considered

in observations the hands joints and, due to this, have not been considered here.

Following the calculation of the joint angles, the getElementById function was
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used to update the cells of the HTML table accordingly. Each cell in the HTML

front-end script was labelled with an id property, this is then accessed by the

getElementById function and the variable stored under that id updated by the JS

script - updated each iteration of the embedded JS script. The getElementById

function was also used to extract the x, y and z Cartesian co-ordinates of the joints,

for display in the live view area. These values were drawn onto the created canvas

using the beginPath, moveTo and lineTo functions. The beginPath starts a new

drawing on the canvas, the moveTo function defines the start point of the line to be

drawn and the lineTo draws a line between this start point and specified position.

These functions are used to draw connecting lines between each of the joint locations,

resulting in a wire frame representation of the hand. The gauges, displaying the

requested joint angles, also use the beginPath, moveTo and lineTo functions to

update the dedicated canvases. These function draw a line representative of the

percentage of 180 degrees that the observed angle comes to. The space be between

the current angle and a zero degree representation with line is then filled to display as

arc from zero degrees to the observed angle. All of the aforementioned are updated

with each cycle of the JS loop.

When a, unique, identifying value is typed into the patient identifier box this

value is held by the HTML script and later extracted by the JS script using the

getElementById function. Utilising this value with the name of the later saved file

provides a unique identifier for the measurements taken for each patient. Upon

pressing the set button a boolean variable, set, is switched from false to true; this

variable is queried each loop and if found true then the currently seen hand is set

as the ideal joint angles These joint angles are stored in separate variable, to later

be refereed in order to drawn comparisons. When the “Save” button is pressed the

smoothed joint angles at that moment in time are written into a string variable,

tabulating these values, and saved as a text file. The JS save script then creates a

route for the HTML to download the file from, clicks the link to begin the download

and subsequently removes the link. This file is named by the patient identifier

and the current date and time (obtained using the Date JS function), for later

ease of reference. The reset button simply refreshes the browser page using the

location.reload() function, this reloads the currently viewed webpage and, in

turn, resets any stored data.

7.3 Clinical Trial

A clinical study implementing the AirGo system was performed during a hand clinic

at University Hospitals Coventry & Warwickshire (UHCW). A total of 11 patients
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were measured, voluntarily, following a visit to the clinic. Of these 11 patients, 16

trials were recorded; four of the patients were recorded in consecutive visits.

The results of this clinical trail are presented in Section 4.4, displayed within

Table 4.9. Measurements of joint angles required took less than 30 seconds, for each

patient, and required no expertise or prior knowledge to operate the device, only for

the patient to present their hand to the LMC.

7.4 Discussion

The currently employed method for hand joint angle measurements, a goniometer,

lacks the desired accuracy and reliability and requires prior knowledge and expertise

to operate. The introduced AirGo system was able to measure the joint angles of

the hands within a fraction of the time taken for measurements with a goniometer

and showed a superior accuracy, with no need for prior knowledge of the system.

Following a clinical study, the AirGo system has been shown to be applicable within

a clinical environment. The ability to store the data with the AirGo system allows

for an ease of measurement comparisons and the possibility to quickly review patient

progress. Additionally, the use of measurements taken from each patient to provide

a goal to aim for provides an achievable aim for each patient - the gamification of

the system leads to a more motivated patient. Utilisation of data recorded from each

patient as the respective target angles, compared to an absolute best, also means

that any natural limitations of patient are be accounted for; this provides a patient

specific clinical assessment.

Though designed for clinical application, there is not restriction to use in a clinical

environment and there is no reason for the patient to not perform this measurement

collection at home (given the LMC is provided for them and they have a PC meeting

the requirements). The LMC is inexpensive and could be loaned to several patients

and does not enforce heavy demands on a PC. With a limited number of LMCs,

AirGo could still find use in application before or after clinical visits, with self

measurement acquisition being possible.

In a study to validate a portable motion capture system the LMC was shown

to provide adequate measurement accuracy; theory suggests the possibility of a

higher accuracy with the AirGo system when implemented with a PC with higher

specifications. The use of the LMC in a clinical environment is also supported by

the literature, proving to provide an accuracy holding clinical relevance [111–116].

Application of the device within a clinical environment severed to prove the

capability of the device to provide the desired properties of a measurement system
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AirGo was quick to provide data with high consistency in measurements without

requiring expertise or contact. The smoothing applied to the data provided a more

reliable reading; however, this did result in an, approximately, two second delay to

the data. The LMC would sometimes label the detected hand incorrectly, the live

view of the virtual hand and seen hand indicators provide the necessary knowledge

of an error occurrence - with removal and representing the desired hand commonly

fixing this issue. The display is functional but offers little in terms of a user friendly

experience, if deployed within clinics it would be preferred that this is redesigned to

provide a cleaner and easier to understand interface. It was observed that, throughout

the clinical trial, patient interest was peaked by the displayed hands; this digital

visualisation of the hand serves to potential aid the adoption rate of the device and

result in a greater willingness of patients to participate. AirGo was able to measure

all of the joint angles for the presented hands in a matter of seconds; the currently

employed goniometer has been shown to take several minutes to produce the same

results [116].

Observations of the recorded data concluded that, comparing the MCP angle of

the known injured digit on each hand gave the most confident results for predicting

injury (eight out of 11 patients correctly predicted). Observing the MCP angle

exclusively was also among the methods which presented the highest number of

progressed patients. Though these results are not conclusive, as it is unknown whether

the patients did progress, the ability to predict the correct injury with an accuracy

greater than 70% highlights this analysis method as a possible means of quickly

identifying patient progress. Knowledge of the precise validity and repeatability of

this method is limited, suggested future work includes a comparison of this system

with a state-of-the-art motion capture studio over several repeated recordings. In a

study implementing the LMC for hand digit joint angle measurements [116], it was

seen that the accuracy of the wrist rotation was lower when the elbow was not seen.

During measurements, the AirGo does not view the elbow position; however, the

wrist angles are not measure and, therefore, this was not seen as a problem. This

knowledge, however, would influence future changes if wrist angle observations were

added.

The proposed solution has demonstrated, within a clinical environment, several

advantages over the currently employed joint angle measurement method. The

required procurement of several LMCs may result in a limited adoption; however,

The literature shows vast support for the creation a superior clinical measurement

method [116, 239–248], with additional support seen for the use of the LMC [111–116].
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Chapter 8

Conclusions and Future Work

This chapter highlights the conclusions drawn from the works of previous chapters.

Included within this are discussions of the: created taxonomy of functional hand

shapes, proposed technique to predict muscle excitations from kinematic data and

suggested method to the measurement of joint angles within a clinical environment.

The modern, updated, taxonomy of hand shapes, presented in Chapter 5, is reviewed.

The resultant accuracy from the predictions of muscle excitations using kinematic

data, seen in Chapter 6, is evaluated. The improvements offered, by AirGo, over

the current clinically employed hand digit angle measurement device, highlighted in

Chapter 7, are discussed. Additional to this, the recommendations for future work

in all of these areas are presented.
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8.1 Conclusions

This work has completed the set out objectives and provided knowledge of the

hand shapes found in everyday modern life, with the importance and predictions of

the muscle excitations for each also provided. A method for predicting the muscle

excitations occurring within a single frame of kinetic data has been provided and an

improved clinical method for measuring hand digit joint angles supplied.

The goal of creating a portable motion capture system has been met; the Leap

Motion controller (LMC) and Next Unit of Computing (NUC) system has proven to

be a viable means of collecting hand motion data during activities of daily living

(ADL). It was found to collect natural, unencumbered, hand movements without

problems. The system was validated against a state-of-the-art motion capture system

and found to provide data within 14.2 mm, exhibiting a correlation between the two

systems of 0.92. The clustering, with subsequent merger, of the collected data gave

confident results, reducing all of collected data into 40 and 24 hand shapes, for the

left and right hands respectively. These hand shapes were shown to represent all of

the collected data within 12 mm for both hands. The found hand shapes formed the

novel taxonomy introduced here, with information of each grouping readily available.

The provided details of each group enabled manual intervention for a more concise

and customised taxonomy of the hand shapes of ADL, to suit specific needs. The

large focus that previous work has placed on grasps, tainted by the desire of a wider

audience from industrial manufacturing robotics, limits the obtained results. This

research aimed to capture all of the functional hand shapes present during ADL, with

an unhindered focus on improving the quality of life for upper-limb prostheses users.

The lack of video recordings of the collected data and the fact that no knowledge

exists of the exact tasks being performed during the use of each hand shape leads

to difficulties in designing task specific prostheses. This knowledge would enable

task focused customisation during the development of the prosthetic devices, as the

specific hand shape requirements during set tasks would be known. This could lead

to the development of upper-limb prostheses with high usability whilst remaining

at a low cost. Despite ample performance during validation, the data captured

by the employed portable motion capture system still differed from those from the

state-of-the-art. As post-processing of these data included reductions made with

machine learning techniques, there is the potential that some information was lost in

these choice. Any data loss could potentially mean that hand shapes occurring during

ADL were missed. The data have been collected from a diverse range of participant

ages, gender and activities, but there was a lack of left handed participants. This

means that it is difficult to draw decisive conclusions relevant for all end users.
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An existing musculoskeletal model has been implemented alongside optimisation

techniques to provide predictions of hand muscle excitations from kinematic data.

Following validation and evaluation of each of the selected methods, the use of

a hybrid technique utilising a particle swarm optimisation (PSO) technique with

gradient descent (GD) was concluded as the proposed solution. The deployment of

this with the hand motion data collected during ADL was found to supply muscle

excitations providing joint angles with an average pairwise difference to the inputted

hand shape of 19.3 degrees and a correlation to this of 0.58. As the collected data

did not include external forces, there were limited options to incorporate muscle

redundancy into the predictive model. This limitation mean that, though the

resultant muscle excitations will adequately perform the desired grasp, it is difficult

to claim the results to be the optimal solutions. In order to enable the ability to

vary the grasping pressure of a prostheses, the addition of a controller would be

required; this limits the potential applications the of these results. Furthermore,

the limited validation with experimental data means that certainty is not provided

with this method. The lack of external forces and information of the exact task

performed also means that there is no knowledge of wherever a grasp or gesture

has been performed. Dependent on this, the gripping pressure and, in turn, muscle

excitations may be different. This application has only considered the hand, with no

concern of the position and rotation of the arm; alterations to muscle excitations may

occur due to changes to hand location in space and the angle of the arm. Though

the current implementation would work for hand prostheses, it would potentially

not be applicable for more proximal amputations. The musculoskeletal model used

works well when performing hand shape reproduction for prosthetic devices, but the

fact that it does not consider the intrinsic muscles means that the results may not

be the exact case for able bodied subjects. This has not been seen as detrimental to

this project due to the focus on hand prostheses development, though would require

consideration if further information was desired.

The LMC has been further utilised in a motion capture solution for the im-

provement of hand joint angle measurements in a hand therapy clinic; the resultant

device has been named AirGo. The results of validation performed for the LMC

support use of this device, shown to provide joint angles within 18.4 degrees when

compared to a state-of-the-art motion capture system. A clinical trial performed has

indicated the employability of this device within a clinical environment. Overall the

AirGo offered a faster measurement time and greater reliability, without the need of

contact between patient and clinical staff, when compared to the currently employed

method. However, the accuracy showed no improvement over these methods during

validation of the LMC. Additionally, the validation data were collected in a scenario

different from that for which AirGo was designed and the clinical study performed
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did not include results of an alternative method. This lack of end use validation

data hinders the employability of AirGo at present. Furthering this, the cost of the

devices required to use AirGo means that there is a commitment required for clinics

to consider before the employment of this device.

The steps outlined by the objectives of this research have been successfully

undertaken. Motion capture data of the hand during ADL has been collected and

analysed. The common hand shapes performed during ADL have been observed and

compared to the results of existing grasp taxonomies found within the literature.

The muscle excitations of the functional hand shapes seen within ADL have been

determined. Motion capture technology has been implemented to provide faster and

more reliable measurements of the hand digit joint angles than the current clinical

standard. The following list defines the original set of objectives, with sub-bullets

outlining how each has been completed:

� Collect and analyse motion capture data of the hand to provide an understand-

ing of the typical everyday hand motions.

– A portable motion capture system has been created; utilising a LMC, NUC

and external battery.

– Hand motion data have been collected with 22 subjects during ADL, totalling

111 hours and 20 minutes.

� Determine the common hand shapes performed in everyday activities and

compare these with previously developed taxonomies in the literature.

– The common hand shapes seen during ADL have been found for the left and

right hands, each collection respectively consisting of 40 and 24 hand shapes,

following a k-means++ and merger of the recorded data.

– These final results were compared to previous taxonomies, with the similar-

ities and differences between the collections drawn.

� Develop and implement a musculoskeletal model based technique to determine

muscle excitations from hand shapes observed in everyday life.

– Optimisation methods have been performed alongside existing an muscu-

loskeletal model to enable predictions of muscle excitations from a single

frame of kinematic hand data.

– The model has been validated using hand shapes with known muscle excita-

tions, showing a 0.74 correlation between the predicted and know muscle

excitations, and used to predict muscle excitations for the common hand

shapes observed in ADL.

� Utilise motion capture technology to provide faster and more reliable measure-

ments of the hand digit angle than the current clinical standard.
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– A clinic-ready device, AirGo, has been created utilising the LMC.

– AirGo has been tested within a clinical environment, showing feasibility for

the use of this device in practice.

This work has completed the aims set out, through utilisation of the devices

and methods aforementioned. The aim to ascertain the most commonly used hand

motions in modern ADL has been achieved through the implementation of the

created portable motion capture system and subsequent machine learning approach

based analysis. A means in which the quality of life of recipients of upper-limb

prostheses can be increased and the cost of the devices reduced has been highlighted

from this created taxonomy. An understanding of the muscle excitations performed

during ADL has been provided through the application of an existing musculoskeletal

model and optimisation techniques with the data collected during ADL. An improved

method for clinical measurements of the hand joint angles has been supplied. The

following list defines the original set of aims, with sub-bullets outlining how each has

been achieved:

� Create a means by which the quality of life of recipients of upper-limb prostheses

can be increased and the cost of the devices reduced.

– A taxonomy of the functional hand shapes seen within ADL has been

provided, with combined and individual results for both the left and right

hands presented - providing an understanding of the demands from the hand

during ADL.

– The developed predictive model can suggest muscle excitations expected

during the performance of these hand shapes, to aid the development of

myoelectric prostheses.

– AirGo has displayed faster and more consistent measurements for rehabilit-

ation in clinics than the currently employed devices and offers a means of

testing the performance of prosthetic hands.

� To ascertain the most commonly used hand motions in everyday tasks, including

the use of modern day technology.

– Data have been collected with the created portable motion capture system

across a range of activities performed in regular ADL.

– Machine learning was used to identify common hand shapes within the

collected data.

� Provide a greater understanding of hand motion through mechanistic musculo-

skeletal modelling of the hand.

– A predictive model has been created and employed to provide predictions of

the muscle excitation which can cause the hand shapes seen during ADL.
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– The model has been shown to be able to predict muscle excitations from

conventional motion capture Cartesian data formatted kinematic hand data.

� Improve the clinical methods employed to obtain angular displacement meas-

urements for the hand digits.

– AirGo has been shown to provide improved speed and consistency, in terms of

data collection, over the currently employed clinical measurement methods.

– The system was seen to be deployable within a clinical environment with

the use of only an LMC and the JavaScript (JS) code.

8.2 Future Work

Future work is important to further the findings of this research and employment of

the methods and results introduced. Increases to the collected data should continue

to support the results and improvements to methods would hope to aid efficiency

and accuracy of the introduced results, devices and prediction technique.

Regarding the data collected during ADL, an increase to the collected data would

serve to cover a greater range of activities over a longer period of time - converging

towards a full representation of hand shapes in, ever-changing, modern ADL. The

majority of participants studied were right hand dominant, further data collection

and analysis could be used to determine the differences seen between differing hand

dominance. The analysis of this increased amount of data should consolidate the

findings of this paper and require no further modifications to the analysis process.

Additionally, if video recordings were captured alongside this collection, it would

enable the determination of the exact application for each of the observed hand shapes.

Though this could provide insightful information, and provide precise discrimination

between gestures and grasps, it would likely result in less natural motions and tasks

performed, as the participants would know their actions are begin recorded with less

anonymity. A major limitation to this element of the study was the low accuracy

observed, in comparison with state-of-the-art motion capture systems. Due to this,

further work to this study would be to improve the devices used and continue data

collection as developments are made in lightweight and low resource demanding

motion capture devices.

Though including the summation of the muscle excitations within the cost function

attempts to simulate the muscle redundancies, this does not provide an exact solution.

Without knowledge of external forces imposed on the hand it is difficult to know how

the internal muscle forces would distribute themselves, though weighting on muscle

parameters such as moment arms and grouping flexors and extensors could aid in the
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generation of more accurate muscle redundancies. However, there was no support

found for this in the literature and this would need to be tested with experimental

data. Aiding this, another future task would include collecting ADL data with

knowledge of the external forces and electromyography (EMG) data, for use during

further development of the predictive model and validation of the predictions. The

limited validation data analysed with the introduced muscle excitation prediction

technique highlights a need for the collection of data observing both the kinematics

and kinetics of the hand. The current musculoskeletal model employed only considers

the extrinsic muscles of the hand; as the technique discussed provides a framework

in which the model could easily be updated, it is suggested that experiments with

alternative models are undertaken. Use of a model with the hand and arm, including

the extrinsic and intrinsic muscles of the hand, would help identify more accurate

distribution of the excitations. As more optimisation techniques are developed and

improvements are presented to existing techniques, the implementation of these within

the framework presented is envisioned. Applications with alternative musculoskeletal

models and optimisation algorithms would help to identify the most accurate possible

predictions of the muscle excitations.

AirGo was solely used for measurements taken during a clinical application of the

device, resulting in no comparable measure to evaluate the observed performance. A

repeated clinical study with data simultaneously collected by the currently employed

method would enable further evaluation of the device; allowing for comparisons of the

time taken, accuracy and repeatability. The validation for the LMC was performed

under conditions different to those seen during the employment of AirGo, suggesting

a need to collect additional validation data for the use of the LMC with AirGo. Even

so, this validation highlighted the imperfect accuracy of the LMC; as improvements

are made to motion capture devices, future work would include replacing the currently

used LMC. The current setup of the device allows for these changes, with a redesign

of the head mount and alterations to application programming interface (API) being

the only necessary changes to perform a replacement. As AirGo becomes closer

to clinical application, improvements to the front-end code would provide a more

comfortable user experience and promote the breadth of use for this device. The

completion of these suggestions would bring AirGo closer to a recognised clinically

viable device.
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The following pages provide supporting material for the results and conclusions drawn

from this research. Within the work, references have been made to the appropriate

sections and items here when relevant.
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Appendix A: Ethical Approval

The following section provides the documents acquired from the ethical approval gran-

ted for this study. The confirmation of Biomedical & Scientific Research Ethics Com-

mittee approval is shown in Figures A.1 and A.1; the supporting documents follow,

including: the participant information leaflet, in Figures A.3, A.4, A.5, A.6 and A.7,

the participant consent form, in Figure A.8, and the participant questionnaire, in

Figure A.9. The confirmation of Research Ethics Committee approval is shown in

Figures A.10, A.11, A.12, A.13, A.14, and A.15.
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www.warwick.ac.uk 

PRIVATE 
Mr Callum Thornton 
School of Engineering 
University of Warwick 
Coventry 
CV4 7AL 
 
 
4 October 2018 
 
 
Dear Mr Thornton, 
 
Study Title and BSREC Reference: Modelling and Analysis of Hand Motion in Everyday 
Activities with Application to prosthetic Hand Technology REGO-2018-2210 
 

 
Thank you for submitting the revisions to the above-named study to the University of 
Warwick’s Biomedical and Scientific Research Ethics Sub-Committee for approval.   
 
I am pleased to confirm that approval is granted. 
 
In undertaking your study, you are required to comply with the University of Warwick’s 
Research Data Management Policy, details of which may be found on the Research and 
Impact Services’ webpages, under “Codes of Practice & Policies” » “Research Code of 
Practice” » “Data & Records” » “Research Data Management Policy”, at: 
http://www2.warwick.ac.uk/services/ris/research_integrity/code_of_practice_and_policies/res
earch_code_of_practice/datacollection_retention/research_data_mgt_policy  
 
You are also required to comply with the University of Warwick’s Information Classification 
and Handling Procedure, details of which may be found on the University’s Governance 
webpages, under “Governance” » “Information Security” » “Information Classification and 
Handling Procedure”, at: 
http://www2.warwick.ac.uk/services/gov/informationsecurity/handling. 
Investigators should familiarise themselves with the classifications of information defined 
therein, and the requirements for the storage and transportation of information within the 
different classifications: 
 

Information Classifications: 
http://www2.warwick.ac.uk/services/gov/informationsecurity/handling/classifications  
Handling Electronic Information: 
http://www2.warwick.ac.uk/services/gov/informationsecurity/handling/electronic/ 
Handling Paper or other media 
http://www2.warwick.ac.uk/services/gov/informationsecurity/handling/paper/. 

 
 
Please also be aware that BSREC grants ethical approval for studies. The seeking and 
obtaining of all other necessary approvals is the responsibility of the investigator. 
 
These other approvals may include, but are not limited to: 
 

Figure A.1: The Biomedical & Scientific Research Ethics Committee approval
confirmation document for hand motion capture, page one.
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Biomedical and Scientific 
Research Ethics Sub-Committee 
Research & Impact Services 
University of Warwick 
Coventry, CV4 8UW. 
E: BSREC@Warwick.ac.uk 

http://www2.warwick.ac.uk/services/
ris/research_integrity/researchethics
committees/biomed 

 

1. Any necessary agreements, approvals, or permissions required in order to comply 
with the University of Warwick’s Financial Regulations and Procedures. 

2. Any necessary approval or permission required in order to comply with the University 
of Warwick’s Quality Management System and Standard Operating Procedures for 
the governance, acquisition, storage, use, and disposal of human samples for 
research. 

3. All relevant University, Faculty, and Divisional/Departmental approvals, if an 
employee or student of the University of Warwick. 

4. Approval from the applicant’s academic supervisor and course/module leader (as 
appropriate), if a student of the University of Warwick. 

5. NHS Trust R&D Management Approval, for research studies undertaken in NHS 
Trusts. 

6. NHS Trust Clinical Audit Approval, for clinical audit studies undertaken in NHS 
Trusts. 

7. Approval from Departmental or Divisional Heads, as required under local procedures, 
within Health and Social Care organisations hosting the study. 

8. Local ethical approval for studies undertaken overseas, or in other HE institutions in 
the UK. 

9. Approval from Heads (or delegates thereof) of UK Medical Schools, for studies 
involving medical students as participants. 

10. Permission from Warwick Medical School to access medical students or medical 
student data for research or evaluation purposes. 

11. NHS Trust Caldicott Guardian Approval, for studies where identifiable data is being 
transferred outside of the direct clinical care team. Individual NHS Trust procedures 
vary in their implementation of Caldicott guidance, and local guidance must be 
sought. 

12. Any other approval required by the institution hosting the study, or by the applicant’s 
employer. 
 

There is no requirement to supply documentary evidence of any of the above to BSREC, but 
applicants should hold such evidence in their Study Master File for University of Warwick 
auditing and monitoring purposes. You may be required to supply evidence of any 
necessary approvals to other University functions, e.g. The Finance Office, Research & 
Impact Services (RIS), or your Department/School. 
 
May I take this opportunity to wish you success with your study, and to remind you that any 
Substantial Amendments to your study require approval from BSREC before they may be 
implemented.   

 
 
Yours sincerely 
 

 
pp.  
 
 
Dr David Ellard 
Chair 
Biomedical and Scientific 
Research Ethics Sub-Committee

Figure A.2: The Biomedical & Scientific Research Ethics Committee approval
confirmation document for hand motion capture, page two.
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Participant Information Leaflet 

 

Study Title: 
Modelling and Analysis of Hand Motion in Everyday Activities 
with Application to Prosthetic Hand Technology 

Investigator: Callum Thornton 

 

Introduction 
 
You are invited to take part in a study. Before you decide, you need to understand why the 
study is being done and what it would involve for you. Please take the time to read the 
following information carefully. Talk to others about the study if you wish. 
 
Part 1 tells you the purpose of the study and what will happen to you if you take part. 
Part 2 gives you more detailed information about the conduct of the study. 
 
Please ask if there is anything that is not clear or if you would like more information. Take 
time to decide whether or not you wish to take part. 
 

PART 1 

What is the study about? 
 
My research aims to create a mechanistic mathematical model of the human hand in order 
to give a greater understanding of how the hand works and, through the application of this 
knowledge, reduce the cost of upper limb prostheses. This study is being used to evaluate 
current state-of-the-art in taxonomies of common hand grasps used in everyday activities 
and update these taxonomies to include modern day, finer scale, tasks (such as the use of 
keyboards and mobile phones). 
 
Do I have to take part? 
 
It is entirely up to you to decide. I will describe the study and go through this information 
sheet, which I will give to you to keep. If you choose to participate, you will be asked to 
sign a consent form to confirm that you have agreed to take part. You will be free to pause 
the experiment or withdraw at any time, without giving a reason and this will not affect you 
or your circumstances in any way. 
 

 

 

Figure A.3: The Biomedical & Scientific Research Ethics Committee ap-
proved participant information leaflet for the conducted study, page one.
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What will happen to me if I take part? 
 
The Leap Motion experiment can be performed anywhere, this will most likely be in your 
regular working environment. You will be required to wear a headband (on which the Leap 
Motion controller will be attached) and have a pocket-sized computer (used to collect the 
data) in close proximity (this may be on your person or beside you on a desk). This 
experiment can be carried out wherever you would like for as long as you would like. You 
will then be asked to treat this time as you normally would, performing tasks as you normally 
would. Once the experiment has started the Leap Motion controller will look for hands in its 
field of vision, fit hand models to any hands it finds and send these models to the computer, 
which then only records the positional data from the models. If you are unable to wear a 
headband, for medical or religious reasons, you will not be able to take part in the study – 
please let us know immediately if you have any worries. 
 
If the VICON experiment is being performed you will be in the VICON Gait Laboratory at the 
University. Your digit length, knuckle width, wrist width and hand length will need to be 
measured and then reflective markers attached to your hand, with medical grade double 
sided tape. You will then be asked to perform typical everyday tasks with a range of common 
household items within the laboratory. This will include: holding a mug, operating a 
smartphone, removing a screw cap from a jar, holding a blunt kitchen knife, squeezing a 
tube of toothpaste, holding a key, picking up coins and carrying a bag. The positions of the 
reflective markers are recorded by infrared cameras, located around the room, to collect the 
motion capture data. You may be asked to repeat some of these tasks with a non-invasive 
pressure, EEG and/or EMG sensing device to find the pressure applied by the hand, 
electrical activity of the brain and/or electrical activity of the muscles (respectively) when the 
tasks are performed. 
 
What are the possible disadvantages, side effects, risks, and/or discomforts of 
taking part in this study? 
 
All the equipment is non-invasive, therefore should not pose any risk or side effect. If, 
however, at any time during the study you feel irritation from the equipment used you are 
free to pause, or stop the experiment completely. 
 
What are the possible benefits of taking part in this study? 
 
There will be no direct, individual, benefits from taking part in this study; however, as this 
is a research project focused on health care the results will give wider, long term, benefits 
and impacts. The overall project aims to enhance the design and reduce the cost of upper 
limb prostheses, the data collected in this study will help towards this goal. 
 
Expenses and payments 
 
There are no expenses or payments involved with the participation of this study. 
 
What will happen when the study ends? 
 
Once the experiment has finished that is all that will be required from you. The data 
collected will be stored for up to 10 years, per University policy (or in line with the new 
University regulations, if changed). Further detail on how the data is stored is included in 
Part 2. 
 
Will my taking part be kept confidential? 
 
Yes. We will follow strict ethical and legal practice and all information about you will be 
handled in confidence. All data will be kept on an encrypted memory stick and it will be 
ensured that these are safely stored in a locked cupboard within one of the supervisor’s 

Figure A.4: The Biomedical & Scientific Research Ethics Committee ap-
proved participant information leaflet for the conducted study, page two.
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office. Data will be stored for up to 10 years according to University policy (or in line with the 
new University regulations if changed). The data will only be accessible by the PhD student 
and the supervisors for this project. The signed consent form will be will be locked in a draw 
in the supervisor’s office, away from the laboratory. 
 
What if there is a problem? 
 
Any complaint about the way you have been dealt with during the study or any possible 
harm that you might suffer will be addressed. Detailed information is given in Part 2. 
 

This concludes Part 1. 

If the information in Part 1 has interested you and you are considering participation, 

please read the additional information in Part 2 before making any decision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5: The Biomedical & Scientific Research Ethics Committee ap-
proved participant information leaflet for the conducted study, page three.
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PART 2 

Who is organising and funding the study? 
 

This study is EPSRC (Engineering and Physical Sciences Research Council) and UHCW 
(University Hospitals Coventry and Warwickshire NHS Trust) funded. 
 

What will happen if I don’t want to carry on being part of the study? 
 
Participation in this study is entirely voluntary. Refusal to participate will not affect you in 
any way. If you decide to take part in the study you will need to sign a consent form, which 
states that you have given your consent to participate. 
 
If you agree to participate, you may nevertheless withdraw from the study at any time without 
affecting you in any way. 
 
You have the right to withdraw from the study completely and decline any further contact by 
study staff after you withdraw. Withdrawal from the study will not affect your usual care or 
any care benefits you may be entitled to. If you do choose to withdraw from the study any 
data collected will be immediately deleted. 
 
What if there is a problem? 
 
This study is covered by the University of Warwick’s insurance and indemnity cover.  If you 
have an issue, please contact the Chief Investigator of the study:  
 
Callum Thornton 
Biomedical and Biological Laboratory 
School of Engineering 
University of Warwick 
Coventry 
CV4 7ES 
Tel: 07477 631 867 
Email: c.thornton@warwick.ac.uk 
 
Who should I contact if I wish to make a complaint? 
 
Any complaint about the way you have been dealt with during the study or any possible 
harm you might have suffered will be addressed.  Please address your complaint to the 
person below, who is a senior University of Warwick official entirely independent of this 
study: 

   

Head of Research Governance 

Research & Impact Services 

University House 

University of Warwick 

Coventry 

CV4 8UW 

Tel: 024 76 522746 
Email:  researchgovernance@warwick.ac.uk 

 

 

 

 

Figure A.6: The Biomedical & Scientific Research Ethics Committee ap-
proved participant information leaflet for the conducted study, page four.
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Will my taking part be kept confidential? 
 

 
All participants will be assigned a study number which will be the number under which all 
their data will be recorded – this will ensure that their data is anonymised. All data will be 
saved to an encrypted USB stick for further analysis. Only myself, my supervisors in the 
School of Engineering and collaborators and co-supervisor at WMS and UHCW will have 
access to the data collected. 
 
What will happen to the results of the study? 
 

 
Results will be used, anonymised, in publications for journals, my thesis and posters and 
presentations at conferences, workshops and an annual internal symposium. 
 
Who has reviewed the study? 
 
This study has been reviewed and given favourable opinion by the University of Warwick’s 
Biomedical and Scientific Research Ethics Committee (BSREC): REGO-2018-2210. 
 
What if I want more information about the study? 
 
If you have any questions about any aspect of the study, or your participation in it, not 
answered by this participant information leaflet, please contact:   
 
Callum Thornton 
Biomedical and Biological Laboratory 
School of Engineering 
University of Warwick 
Coventry 
CV4 7ES 
Tel: 07477 631 867 
Email: c.thornton@warwick.ac.uk 
 

Thank you for taking the time to read this participant information leaflet. 

 

 

Figure A.7: The Biomedical & Scientific Research Ethics Committee ap-
proved participant information leaflet for the conducted study, page five.
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3rd August 2018, version 2 
 1 

 

 

 

 

 
BIOMEDICAL AND SCIENTIFIC RESEARCH ETHICS COMMITTEE APPROVED 

CONSENT FORM 

 

Study Number:   

Patient Identification Number for this study:   

Title of Project: Modelling and Analysis of Hand Motion in Everyday Activities with 
Application to Prosthetic Hand Technology 

Name of Researcher(s): Mr. Callum Thornton, Prof. Michael Chappell, Dr. Neil Evans and 
Dr. Joseph Hardwicke 

               Please initial boxes 

1. I confirm that I have read and understand the information sheet dated 3rd August 

2018 for the above study.  I have had the opportunity to consider the 

information, ask questions and have had these answered satisfactorily.  

2. I understand that my participation is voluntary and that I am free to withdraw at 

any time without giving any reason, without my medical, social care, education, 

or legal rights being affected. 

3. I understand that relevant sections of my medical notes and data collected 

during the study, may be looked at by individuals from The University of 

Warwick, from regulatory authorities (or from a relevant NHS Trust), where it is 

relevant to my taking part in this study.  I give permission for these individuals to 

have access to my records. 

4. I agree to take part in the above study.    

 

 

            

Name of Participant   Date    Signature 

                

                 

            

Name of Person   Date    Signature  
taking consent  

Figure A.8: The Biomedical & Scientific Research Ethics Committee ap-
proved participant consent form for the conducted study.
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3rd August 2018, version 2 
 1 

 

 

 

 

 
BIOMEDICAL AND SCIENTIFIC RESEARCH ETHICS COMMITTEE APPROVED 

QUESTIONNAIRE 

 

Study Number:   

Patient Identification Number for this study:   

Title of Project: Modelling and Analysis of Hand Motion in Everyday Activities with 
Application to Prosthetic Hand Technology 

Name of Researcher(s): Mr. Callum Thornton, Prof. Michael Chappell, Dr. Neil Evans and 
Dr. Joseph Hardwicke 
 

1. Age: _________ 

2. Gender: _________ 

3. Dominate hand: _________ 

4. Do you have any hand impairments? (if yes please specify below) _________ 

5. Do you have any current medical conditions? (if yes please specify below) _________ 

If yes to question 4 please specify below, 
 
 
 
 
 
 
 
 
 
 
 
If yes to question 5 please specify below, 
 

Figure A.9: The Biomedical & Scientific Research Ethics Committee ap-
proved participant questionnaire for the conducted study.
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A Research Ethics Committee established by the Health Research Authority 

 
North East - York Research Ethics Committee 

NHSBT Newcastle Blood Donor Centre 
Holland Drive 

Newcastle upon Tyne 
NE2 4NQ 

 
Telephone: 0207 1048091 

 
 
 
 
 
 
 
 
 
 
 
11 May 2018 
 
Dr Joseph Hardwicke 
Consultant Plastic Surgeon/Honorary Associate Professor 
University Hospitals of Coventry and Warwickshire NHS Trust 
Clifford Bridge Road 
Coventry 
CV2 2DX 
 
 
Dear Dr Hardwicke 
 
Study title: A sensorimotor PROsthesis for the upper LIMB. The 

PROLIMB study. 
REC reference: 18/NE/0174 
Protocol number: JH382118 
IRAS project ID: 243525 
 
The Proportionate Review Sub-committee of the North East - York Research Ethics Committee 
reviewed the above application via correspondence. 
 
We plan to publish your research summary wording for the above study on the HRA website, 
together with your contact details. Publication will be no earlier than three months from the date 
of this favourable opinion letter.  The expectation is that this information will be published for all 
studies that receive an ethical opinion but should you wish to provide a substitute contact point, 
wish to make a request to defer, or require further information, please contact 
hra.studyregistration@nhs.net outlining the reasons for your request. Under very limited 

Please note:  This is the 
favourable opinion of the 
REC only and does not allow 
you to start your study at 
NHS sites in England until 
you receive HRA Approval  
 

Figure A.10: The Research Ethics Committee approval confirmation docu-
ment for the AirGo clinical trail, page one.
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A Research Ethics Committee established by the Health Research Authority 

circumstances (e.g. for student research which has received an unfavourable opinion), it may be 
possible to grant an exemption to the publication of the study.  
 
Ethical opinion 
 
On behalf of the Committee, the sub-committee gave a favourable ethical opinion of the 
above research on the basis described in the application form, protocol and supporting 
documentation, subject to the conditions specified below. 
 
Conditions of the favourable opinion 
 
The REC favourable opinion is subject to the following conditions being met prior to the start of 
the study. 
 
Management permission must be obtained from each host organisation prior to the start of the 
study at the site concerned. 
 
Management permission should be sought from all NHS organisations involved in the study in 
accordance with NHS research governance arrangements. Each NHS organisation must 
confirm through the signing of agreements and/or other documents that it has given permission 
for the research to proceed (except where explicitly specified otherwise). 
 
Guidance on applying for HRA and HCRW Approval (England and Wales)/ NHS permission for 
research is available in the Integrated Research Application System, www.hra.nhs.uk or at 
http://www.rdforum.nhs.uk.  
 
Where a NHS organisation¶s role in the study is limited to identifying and referring potential 
participants to research sites (“participant identification centre”), guidance should be sought 
from the R&D office on the information it requires to give permission for this activity. 
 
For non-NHS sites, site management permission should be obtained in accordance with the 
procedures of the relevant host organisation. 
 
Sponsors are not required to notify the Committee of management permissions from host 
organisations. 
 
Registration of Clinical Trials 
 
All clinical trials (defined as the first four categories on the IRAS filter page) must be registered 
on a publically accessible database. This should be before the first participant is recruited but no 
later than 6 weeks after recruitment of the first participant. 
  
There is no requirement to separately notify the REC but you should do so at the earliest 
opportunity e.g. when submitting an amendment.  We will audit the registration details as part of 
the annual progress reporting process. 
  
To ensure transparency in research, we strongly recommend that all research is registered but 
for non-clinical trials this is not currently mandatory. 
  
If a sponsor wishes to request a deferral for study registration within the required timeframe, 
they should contact hra.studyregistration@nhs.net. The expectation is that all clinical trials will 

Figure A.11: The Research Ethics Committee approval confirmation docu-
ment for the AirGo clinical trail, page two.
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be registered, however, in exceptional circumstances non registration may be permissible with 
prior agreement from the HRA. Guidance on where to register is provided on the HRA website.  
 
It is the responsibility of the sponsor to ensure that all the conditions are complied with 
before the start of the study or its initiation at a particular site (as applicable). 
 
Ethical review of research sites 
 
The favourable opinion applies to all NHS sites taking part in the study, subject to management 
permission being obtained from the NHS/HSC R&D office prior to the start of the study (see 
“Conditions of the favourable opinion”). 
 
Summary of discussion at the meeting  
 
Members stated that there needed to be more information in the Participant Information Sheet 
on the number of visits, the location of these visits and the time taken to collect data. The type 
of activities patients will be asked to perform also need to be included. 
 
Members noted that on page 13 of the protocol, it stated that participants would have to wear 
the LMC (data capture device) for 6 hours in the home or familiar setting and queried whether 
this was a further additional visit.   If so, there would need to be details included in the 
Participant Information Sheet. 
 
Members noted that in the section “what is the purpose of the study” reference was made to 
patients who may choose to wear it (the old/new prosthesis) in the future. It seemed ambiguous 
and may be misinterpreted that patients would receive (if they choose) the body powered finger 
prosthesis after the study had finished. Members requested that this was made clearer in the 
Participant Information Sheet. 
 
Members stated that the Participant Information Sheet, Page 2 "Why have I been invited to take 
part?", Line 4, "you" should read "your". 
 
You confirmed that the above changes had been made. 
 
Approved documents 
 
The documents reviewed and approved were: 
 
Document   Version   Date   
Covering letter on headed paper    11 May 2018  
IRAS Application Form [IRAS_Form_27042018]    27 April 2018  
IRAS Checklist XML [Checklist_27042018]    27 April 2018  
Letter from sponsor [243525_PROLIMB_Sponsor Letter]    17 April 2018  
Participant consent form [243525_PROLIMB_Consent Form]  1.0  16 April 2018  
Participant information sheet (PIS) [tracked and clean]  V1.1  09 May 2018  
Research protocol or project proposal [243525_Protocol_PROLIMB]  1.0  16 April 2018  
Summary CV for Chief Investigator (CI) [Summary CV for CI ]  1.0  17 April 2018  
 
 

Figure A.12: The Research Ethics Committee approval confirmation docu-
ment for the AirGo clinical trail, page three.
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Membership of the Proportionate Review Sub-Committee 
 
The members of the Sub-Committee who took part in the review are listed on the attached 
sheet. 
 
Statement of compliance  
 
The Committee is constituted in accordance with the Governance Arrangements for Research 
Ethics Committees and complies fully with the Standard Operating Procedures for Research 
Ethics Committees in the UK. 
 
After ethical review 
 
Reporting requirements 
 
The attached document “After ethical review – guidance for researchers” gives detailed 
guidance on reporting requirements for studies with a favourable opinion, including: 
 

x� Notifying substantial amendments 
x� Adding new sites and investigators 
x� Notification of serious breaches of the protocol 
x� Progress and safety reports 
x� Notifying the end of the study 

 
The HRA website also provides guidance on these topics, which is updated in the light of 
changes in reporting requirements or procedures. 
 
User Feedback 
 
The Health Research Authority is continually striving to provide a high quality service to all 
applicants and sponsors. You are invited to give your view of the service you have received and 
the application procedure. If you wish to make your views known please use the feedback form 
available on the HRA website: 
http://www.hra.nhs.uk/about-the-hra/governance/quality-assurance/    
 
HRA Training 
 
We are pleased to welcome researchers and R&D staff at our training days – see details at 
http://www.hra.nhs.uk/hra-training/   
 
With the Committee¶s best wishes for the success of this project. 
 
18/NE/0174 Please quote this number on all correspondence 
 

Figure A.13: The Research Ethics Committee approval confirmation docu-
ment for the AirGo clinical trail, page four.
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Yours sincerely 

 
pp 
Mr Steve Chandler 
Chair 
 
Email: nrescommittee.northeast-york@nhs.net  
 
Enclosures: List of names and professions of members who took part in the review  

 
“After ethical review – guidance for researchers” 

 
Copy to: Ms Ceri Jones 

 
Miss Sonia Kandola, University Hospitals of Coventry and Warwickshire 
NHS Trust  

Figure A.14: The Research Ethics Committee approval confirmation docu-
ment for the AirGo clinical trail, page five.
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North East - York Research Ethics Committee 
 

Attendance at PRS Sub-Committee of the REC meeting via correspondence 
 
  
Committee Members:  
 
Name   Profession   Present    Notes   
Mr Steve Chandler (Chair) Retired Consultant 

Medical Physicist  
Yes     

Dr Mary Connor  Coaching & Mentoring 
Consultant  

Yes     

Dr James Hobkirk  Lecturer in Physiology & 
Scientific Director of 
Cardio-thoracic Surgery  

Yes     

  
Also in attendance:  
 
Name   Position (or reason for attending)   
Mrs Helen Wilson  REC Manager  

 
 

Figure A.15: The Research Ethics Committee approval confirmation docu-
ment for the AirGo clinical trail, page six.
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Appendix B: Preliminary Findings

The following section provides the participant information and results form the

preliminary data collection and analysis performed. This preliminary data collection

includes 62 hours and ten minutes of hand motion data from 13 participants. The

data collected during the preliminary data collection has also been used within

the final taxonomy of hand shapes presented in this study. Included here are: the

anonymised participant information, in Table B.1, the resultant hand shapes found

within the data collected, in Figures B.1 and B.2, bar charts of the number of

occurrences and frame count for these hand shapes, in Figures B.3, B.4, B.5 and

B.6, and tabulated characteristics of the hand shapes, in Tables B.2 and B.3.

Table B.1: The anonymised participant information from the preliminary
data collection.

Participant Recorded Time Age Dominant Hand Gender

01 8 hours 10 minutes 45 Right Female

02 5 hours 20 minutes 72 Right Male

03 2 hours 30 minutes 30 Right Female

04 2 hours 50 minutes 24 Left Male

05 4 hours 50 minutes 24 Right Female

06 6 hours 20 minutes 54 Right Female

07 2 hours 10 minutes 22 Right Female

08 6 hours 0 minutes 53 Right Female

09 5 hours 20 minutes 47 Right Female

10 2 hours 10 minutes 46 Right Female

11 3 hours 20 minutes 75 Right Female

12 3 hours 20 minutes 28 Right Female

13 9 hours 50 minutes 26 Right Male
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Figure B.1: The preliminary taxonomy of hand shapes for the left hand, provided by line art of the 38 cluster centroids.
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Figure B.2: The preliminary taxonomy of hand shapes for the right hand, provided by line art of the 22 cluster centroids.
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Number of Occurrences of Each Left Hand Grasp
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Figure B.3: A bar chart displaying the total number of occurrences of each
hand shape for the left hand for the preliminary data analysis.
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Number of Total Frames of Each Left Hand Grasp
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Figure B.4: A bar chart displaying the total number of frames each hand
shape is seen within for the left hand for the preliminary data analysis.
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Number of Occurrences of Each Right Hand Grasp
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Figure B.5: A bar chart displaying the total number of occurrences of each
hand shape for the right hand for the preliminary data analysis.
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Number of Total Frames of Each Right Hand Grasp
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Figure B.6: A bar chart displaying the total number of frames each hand
shape is seen within for the right hand for the preliminary data analysis.
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Table B.2: The further hand shape cluster characteristics for the left hand
for the preliminary data analysis.

Hand
Shape

Percentage of

Data / %
Total occurrences Total Frames Average Frames

1 0.07 6 585 98

2 0.19 14 1606 115

3 0.08 8 685 86

4 0.86 45 7331 163

5 0.13 10 1085 109

6 0.1 7 816 117

7 1.87 133 16048 121

8 0.08 5 683 137

9 0.08 4 677 169

10 0.13 8 1131 141

11 0.06 4 527 132

12 0.01 1 73 73

13 0.07 5 598 120

14 0.03 2 219 110

15 0.11 7 901 129

16 0.01 1 72 72

17 0.18 7 1506 215

18 0.21 16 1815 113

19 0.04 4 365 91

20 0.08 8 706 88

21 0.07 5 620 124

22 0.06 4 479 120

23 0.06 5 474 95

24 0.02 2 159 80

25 0.1 9 892 99

26 0.02 2 175 88

27 0.02 2 192 96

28 0.04 3 381 127

29 0.02 1 131 131

30 0.05 3 405 135

31 0.01 1 128 128

32 0.08 5 669 134

33 0.11 9 904 100

34 0.01 1 109 109

35 0.04 4 372 93

36 0.02 2 174 87

37 0.04 4 360 90

38 0.02 2 194 97
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Table B.3: The further hand shape cluster characteristics for the right hand
for the preliminary data analysis.

Hand
Shape

Percentage of

Data / %
Total occurrences Total Frames Average Frames

1 1.12 68 7530 111

2 0.06 3 436 145

3 0.23 14 1519 109

4 0.01 1 85 85

5 0.4 23 2727 119

6 0.1 6 691 115

7 0.09 7 620 89

8 0.03 2 191 96

9 0.18 8 1226 153

10 0.07 5 501 100

11 0.05 4 371 93

12 0.04 3 291 97

13 0.05 4 344 86

14 0.09 6 639 107

15 0.04 3 288 96

16 0.23 12 1536 128

17 0.07 5 479 96

18 0.06 3 376 125

19 0.04 3 243 81

20 0.01 1 75 75

21 0.03 2 183 92

22 0.08 3 541 180
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Appendix C: Additional Analysis Findings

The following section provides additional results from the analysis performed. This

includes: the scree plots from a principal component analysis (PCA) analysis of the

collected hand motion data in Cartesian form, in Figures C.2 and C.1, the loading

plots from a PCA analysis of the collected hand motion data in Cartesian form, in

Figures C.3 and C.4, and the joint activity seen in the collected data with a threshold

such that the thumb has been included, in Figures C.5 and C.6.
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Figure C.1: A scree plot for the joint Cartesian co-ordinates of the left hand.
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Right Hand Cartesian Scree Plot

60.14%

10.1%
8.56%

6.5%

3.72%
2.53% 2.36%

1.27% 1.07% 0.6% 0.51% 0.47% 0.44% 0.37% 0.29%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Principal Components

0

10

20

30

40

50

60

70

80

90

100

V
ar

ia
n
ce

 E
x
p
la

in
ed

 /
 %

Figure C.2: A scree plot for the joint Cartesian co-ordinates of the right
hand.
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Left Hand Cartesian Loading Plot
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Figure C.3: A loading plot for the joint Cartesian co-ordinates of the left
hand.
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Right Hand Cartesian Loading Plot
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Figure C.4: A loading plot for the joint Cartesian co-ordinates of the right
hand.

C-4



Appendices

Left Hand Joint Activity
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Figure C.5: The joint activity seen for each joint on the left during data
collection, with a threshold altered to include all of the joints of the thumb.
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Right Hand Joint Activity
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Figure C.6: The joint activity seen for each joint on the right during data
collection, with a threshold altered to include all of the joints of the thumb.
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