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Abstract: We model the joint risk neutral distribution of the euro-sterling and the dollar-sterling ex-

change rates using option-implied marginal distributions that are connected via a copula function that

satisfies the triangular no-arbitrage condition. We then derive a univariate distribution for a simplified

sterling effective exchange rate index (ERI). Our results indicate that standard parametric copula func-

tions, such as the commonly used Normal and Frank copulas, fail to capture the degree of asymmetry

observed in the data. We overcome this problem by using a non-parametric dependence function in the

form of a Bernstein copula which is shown to produce a very close fit. We further give an example of

how our approach can be used to price currency index options accounting for strike-dependent implied

volatilities.

We would like to thank Michael Bennett, Andrew Patton and Alessio Sancetta, participants at the CEF

2005 in Washington and the GFC 2005 in Dublin, as well as seminar participants at the Bank of England

for useful comments and discussion. Any remaining mistakes are our own. This paper represents the

views of the authors and should not be thought to represent those of the Bank of England and members

of the Monetary Policy Committee.
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1 Introduction

This paper describes a new approach for constructing bivariate risk-neutral distributions

implied by option prices. We consider FX options and model the dependence between a set

of three currencies using a copula function that satisfies a triangular no-arbitrage condition

such that the bivariate distribution of any two bilaterals is consistent with the univariate

distribution of the third currency pair. This allows us to derive a risk-neutral distribution

of the simplified sterling exchange rate index (ERI) under a consistent numeraire measure.

There is a very limited literature on the derivation of multivariate risk-neutral distribu-

tions and existing approaches are either based on fitting the implied correlation coefficient

(Bikos (2000) and Taylor and Wang (2004)), individual option contracts (Bennett and

Kennedy (2004)), or historical realised data (Rosenberg (2003)) in order to determine

the dependence pattern. In contrast our method is novel in the sense that we exploit all

available information in a set of (option-implied) density functions. We find that stan-

dard parametric copula functions (such as Gaussian, Frank or Gumbel) along with the

perturbed normal method of Bennett and Kennedy (2004) are not able to provide a good

fit to the data. This is especially true when one or more of the marginal distributions is

heavily skewed. We overcome this problem by fitting a non-parametric Bernstein copula

which can approximate any possible shape for the joint density.

The ERI is a key statistic for monetary policy purposes and hence also for market par-

ticipants in assessing potential interest rate movements. Using our method we can pro-

duce theoretically and empirically consistent distributions for the ERI along with interval

probabilities and standard summary statistics such as synthetic implied volatilities and

risk-reversals. Our empirical results indicate that since 2002 the standard deviation of the

sterling ERI has been relatively low (6 percent on an annualised basis). However, over the

same period the distribution has been negatively skewed and fat-tailed. We also compute

conditional densities to evaluate the sensitivity of the exchange rate index to movements

in one currency pair.

Our analysis extends the toolkit of approximation methods available to price multivariate

contingent claims beyond the assumption of multivariate Gaussianity. In particular, given
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risk-neutral densities for the implied cross rate we can price claims with several underlying

assets such as quantos and spread or basket options. In a second empirical application

of this paper we look at the problem of pricing index options, ie. options whose payout

depends on the geometric average of individual currency pairs.1

The paper is structured as follows. Section 2 gives a brief review of how copula functions

provide an intuitive and practical way to simplify the problem of modelling multivariate

distributions. Section 3 describes our approach and compares it to the existing literature.

In Section 4 we compare the performance of several copula functions and relate it to the

issue of different forms of asymmetric dependence. In Section 5 we report our results for

the sterling ERI and present a short application to the problem of pricing index options.

Section 6 concludes and discusses several possible avenues of future research.2

2 Modelling joint dependence

The sterling effective exchange rate index (ERI) is based on a geometric mean of 21

currencies.3 In order to make statements about the probability of particular outcomes for

the index, we therefore would need to model the joint distribution of all the individual

currency pairs. There are two reasons why this approach is difficult in practice. First, in

our case we do not have risk neutral marginal distributions for all 21 inputs, as (liquid)

options are only traded for the major currencies. This constraint may not be binding when

pricing more general index options. Second, any attempt to model the joint distribution

of 21 variables could, at best, be described as tricky without the use of some ad hoc

assumption such as multivariate Gaussianity or Student-t. Not wishing to make such a

compromise and in order to demonstrate our methodology, we model a simplified sterling

ERI (SERI), which consists of a weighted average of the euro-sterling and the dollar-

1Examples of index options include options on futures contracts on a geometric weighted average of

U.S. dollar exchange rates which are traded on the CME (CME$INDEXTM) and NYBOT (USDX c©).
2 Four appendices contain more detailed background information on the relationship between risk-

neutral distributions under different numeraire measures, the Bernstein copula and other copula functions

as well as the estimation of option-implied marginal densities.
3See Lynch and Whitaker (2004) for more details.
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Figure 1: Sterling ERI and Simplified ERI (set equal for 1 Jan 2002)).
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sterling bilaterals. As Figure 1 shows, the simplified index has tracked the ERI very

closely over the past five years.

Reducing the problem to only two variables greatly simplifies matters. However, it is still

not obvious, a priori, how we should model the joint distribution. As mentioned earlier,

a simple benchmark would be to assume a jointly normal distribution which would be

fully described by the forward rates, the implied volatilities and the implied correlation

coefficient.4 However, this approach only uses information from ATM (at-the-money)

option contracts and ignores the higher moment structure in the data. Alternatively, we

could use the product of option-implied marginal distributions, which would be able to

account for departures from normality given by excess skewness and kurtosis but this

would implicitly assume that the two marginals are independent from each other. The

next section describes how copulas enable us to overcome this problem by allowing us

to construct a joint distribution that allows for a general form of dependence given our

marginal distributions.

4See Campa and Chang (1998) for more details on FX implied correlation coefficients.
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2.1 Copulas

The central result in copula theory is a theorem by Sklar (1959), which states that any

continuous N -dimensional cumulative distribution function F , evaluated at point x =

(x1, ..., xN)5 can be represented as

F (x) = C(F1(x1), ..., FN(xN)), (1)

where C is called a copula function and Fi, i = 1, ..., N are the margins.6 The use of

copulas therefore splits a complicated problem (finding a multivariate distribution) into

two simpler tasks. The first task is to model the univariate marginal distributions and

the second task is finding a copula that summarises the dependence structure between

them.

It is also useful to think of copulas as joint distribution functions of standard uniform

random variables U1 = F (X1) and U2 = F (X2):

C(u, v) = Pr(U1 ≤ u, U2 ≤ v).

The outcome of uniform random variables falls into the interval [0, 1], therefore the do-

main of a copula must be the N -dimensional unit cube. Similarly, because the mapping

represents a probability, the range of the copula must also be the unit interval. Also, it is

easy to determine the value of a copula on the border of its domain. When one argument

equals zero, the probability of any joint event must also be zero. Similarly, when all but

one of the inputs are equal to one (that is, they are certain), the joint probability must

be equal to the (marginal) probability of the argument that does not equal one. Finally,

the function must be increasing in all its arguments.

Formally, a two-dimensional copula is a function C : [0, 1]× [0, 1]→ [0, 1], such that

(i) C(u, 0) = C(0, v) = 0, (C is grounded),

(ii) C(u, 1) = u and C(1, v) = v, (consistent with margins)

5With some abuse of notation we fail to distinguish between random variables and their realisations.

However, the meaning will be clear from context.
6We use the terms marginal distribution and margin interchangeably.
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(iii) for any u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2,

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0 (2-increasing)

Intuitively, this last property ensures that the density of a copula (where it exists) is

non-negative.

An important result (Fréchet, 1951) states that any copula function has a lower and an

upper bound, C− and C+, which are called the minimum and the maximum copula,

respectively. For any point (u, v) ∈ [0, 1]× [0, 1] the copula must lie in the interval

C−(u, v) ≡ max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) ≡ C+(u, v).

Finally, if two random variables are statistically independent, their distribution is given

by the product copula, denoted by the symbol for orthogonality, or independence ⊥;

F (u, v) = C⊥(F1(u), F2(v)) = F1(u)F2(v).

A property that makes copulas extremely useful is that they are invariant under increasing

non-linear transforms. To see this, note that for any monotonically increasing function

g(x); Pr(x ≤ X) = Pr(g(x) ≤ g(X)). In the context of this study, this is important,

because we can use the same copula to describe the distribution of exchange rates in

levels as in returns (log-differences from the current spot or forward rate).

As with standard distribution functions, copulas have associated densities7

c(u, v) =
∂2C(u, v)

∂u∂v
,

which permit the canonical representation of a bivariate density f(u, v) as the product of

the copula density and the density functions of the margins

f(u, v) = c (F1(u), F2(v)) f1(u)f2(v). (2)

This expression indicates how the simple product of two marginal distributions will fail to

properly measure the joint distribution of two asset prices unless they are in fact indepen-

dent and the dependence information captured by the copula density, c (F1(u), F2(v)) , is

normalised to unity.

7The density exists a.e. in the interior of the domain. See Cherubini et al. (2004, pp 81) for further

details.
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2.2 Measuring association

While a copula function fully describes the dependence structure between two (or more)

random variables, we are often interested in simple summary statistics that indicate the

extent and the direction of co-movement. The most basic of these measures are concor-

dance measures, which assume the value of −1 for perfect negative association (counter-

monotonic, corresponding to the lower Fréchet bound or the minimum copula C−), 0 for

independence (corresponding to C⊥) and 1 for perfect positive association (comonotonic,

corresponding to the upper Fréchet bound or the maximum copula C+). Concordance

measures are completely determined by the underlying copula and independent of the

marginal distributions unlike Pearson’s Correlation. As such concordance measures are

also invariant under monotonically increasing transforms which in the context of this

study implies that the levels of exchange rates have the same concordance measure as

their returns (measured as log-difference from the current price or the forward rate).

The two most common concordance measures are Kendall’s tau and Spearman’s rho

(Kendall, 1938). For two pairs of i.i.d. random vectors (X1, Y1), and (X2, Y2), Kendall’s

tau has an interpretation as the difference between the probability of a joint outcome

with the same sign (Pr [(X1 −X2)(Y1 − Y2) > 0]) and the probability of a joint outcome

with different signs (Pr [(X1 −X2)(Y1 − Y2) < 0]) , in other words the difference between

the probability of the variables either rising or falling together (concordance) minus the

probability of them moving in different directions (discordance). Similarly, Spearman’s

rho measures the correlation between rank ordered data.8 The standard Pearson correla-

tion coefficient is not a concordance measure and in particular, in contrast to Kendall’s

tau and Spearman’s rho, it will be changed by non-monotonic transformations of the data

since it is not independent of the marginal distributions. Despite these failings of correla-

8In terms of a copula function C, Kendall’s tau can be expressed as

τ = 4
∫ ∫

I2
C(u, v)dC(u, v)− 1.

Similarly, Spearman’s rho can be written as

ρ = 12
∫ ∫

I2
uvdC(u, v)− 3.
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tion as a measure of dependence, foreign exchange analysts frequently use the correlation

coefficient derived from implied volatilities to infer the dependence relationship between

different exchange rates. We will compare the use of correlation with the two concordance

measures described in this section in our application below.

3 The methodology

Our methodology builds on earlier unpublished work by Bikos (2000), who uses one-

parameter copulas9 such as the Gaussian and the Frank copula to model the joint distri-

bution of the dollar-sterling and euro-sterling bilaterals. The marginal distributions are

given by univariate risk-neutral densities estimated using the Malz (1997) method and

the parameter of the copula function is chosen in such a way that the empirical corre-

lation coefficient (computed from the variances of the three margins) equals the implied

correlation coefficient (computed from ATM volatilities). A very similar approach has

been taken in a recent contribution by Taylor and Wang (2004), who also fit the implied

correlation coefficient, but use a more refined setup which ensures that the implied joint

density belongs to a common risk-neutral numeraire measure. Both studies (Bikos, and

Taylor and Wang) find that one-parameter copulas provide a good fit to the data but

essentially use one observation to fit a single parameter.10

A more general approach is taken by Bennett and Kennedy (2004), who use copulas in

conjunction with a triangular no-arbitrage condition to price quanto FX options, ie. FX

options whose payout is in a third currency. Similar to Bikos and Taylor and Wang, they

use option-implied11 densities as margins for the bivariate distribution. However, they

9These are functional forms that are described by a single parameter which is typically directly related

to the concordance measures described in Section 2.2.
10Rosenberg (2003) follows a different route by using a nonparametric method and a copula which is

estimated from historical exchange rate movements.
11While Bennett and Kennedy, as well as Taylor and Wang, work with a mixture of two log-normals

distributions, Bikos (2000) and this paper use the Malz method to compute risk-neutral densities. The

advantages and disadvantages of parametric and smile-interpolation approaches are discussed in Bliss

and Panigirtzoglou (2002). We emphasise, however, that the general methodology discussed in this paper

is independent of the way the marginal distributions are computed.
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estimate their copula function by fitting an entire set of option contracts in the third bi-

lateral (over different strike prices) instead of fitting just the implied correlation coefficient.

This additional information leads them to use a Gaussian copula which is perturbed by a

cubic spline, and which therefore allows for a more flexible dependence structure between

the three currency pairs. In the context of the quanto pricing problem this approach is

appealing because the perturbation function indicates the extent of departure from the

standard Black model which corresponds to a jointly lognormal distribution.

We extend these previous methods by estimating a joint distribution that is consistent

with the option-implied marginal distribution of the third bilateral over its entire support.

In order to do this we proceed in the following steps:

1. We use a similar line of reasoning as Taylor and Wang to derive a relationship

between the density of the euro-dollar exchange rate (denoted by z), under the

risk-neutral measure corresponding to a euro-denominated discount bond, and the

bivariate density of the euro-sterling and the dollar-sterling exchange rates (denoted

by x and y, respectively), under the risk-neutral measure corresponding to a sterling-

denominated discount bond. However, we formulate our problem in return- rather

than in level-space by defining each of the three exchange rates (x, y, and z) in

terms of their log-deviations from the forward rate. We argue that this setup is more

natural, because it preserves the natural symmetry of exchange-rate movements. As

we show in Appendix A, this relationship is given by

fQE
z (s) =

∫ ∞

−∞
fQS

xy (u, u− s)e−udu, (3)

where fQE
z denotes the risk-neutral density of euro-dollar (under a euro numeraire

measure) and fQS
xy is the bivariate distribution of euro-sterling and dollar-sterling

(under a sterling numeraire measure). Note that by triangular arbitrage it must be

the case that

x = y + z. (4)

2. By Sklar’s theorem we may assume the existence of a copula C(·) with density c(·)

in order to obtain the bivariate distribution of x and y in its canonical representation
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as shown above

fQS
xy (u, v) = c

(
FQS

x (u), FQS
y (v)

)
fQS

x (u)fQS
y (v). (5)

3. We estimate a parametric representation, ĉ(·, θ̂), of the copula density by minimising

the L2-distance between the option-implied third bilateral fQE
z and f̂QE

z (·, θ̂)

θ̂ = arginf

[∫ ∞

−∞

(
fQE

z (s)− f̂QE
z (s; θ̂)

)2

ds

] 1
2

, (6)

where

f̂QE
z (s, θ̂) =

∫ ∞

−∞
ĉ
(
FQS

x (u), FQS
y (u− s); θ̂

)
fQS

x (u)fQS
y (u− s)e−udu (7)

is the distribution of the third bilateral implied by parameters θ̂.

4. We can then use change of variable techniques to obtain bivariate distributions of

the exchange rates in levels, as well as the distribution of the simplified sterling ERI.

In terms of the deviation from its forward rate (implied by the UIP condition) the

SERI can be expressed as

ξ = ωEx + ωDy, (8)

where ωE and ωD are the weights of the euro and the dollar, currently set to 0.8

and 0.2. By substituting for y, the implied distribution of ξ under the sterling

risk-neutral measure can then be computed as

fξ(s) =

∫ ∞

−∞
fQS

xy

(
u,

s− ωEu

ωD

)
1

ωD
du. (9)

Once we have estimated the joint distribution of x and y under the sterling risk-neutral

measure, it is possible to also derive the corresponding distributions fQS
z , fQS

xz and fQS
yz , as

well as the corresponding PDFs and CDFs in level-space.

4 Choosing the right copula

In the following we apply a variety of different copula functions to the empirical frame-

work outlined in the previous section. Ultimately this leads us to choose a very flexible

representation in the form of a Bernstein expansion, as developed recently by Sancetta

(2003) and Sancetta and Satchell (2004).
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4.1 A comparison of different copula functions

Most existing applications of copulas in finance have focused on simple alternatives such

as the Gaussian, Frank, Gumbel or Plackett copula,12 since typically there is relatively

little information available about the margins and their dependence relationship. When

historical data are used, the distribution is only observed one realisation per time-period

and therefore has to be estimated over a moving window, which makes it especially difficult

to identify changes in the dependence structure. For example, it is often assumed that the

margins have a Student t-distribution and the dependence is Gaussian (described by the

normal copula). In comparison, by using option-implied densities, we are able to observe

the entire estimated marginal distributions on a daily basis. Furthermore, the triangular

nature of exchange rates imposes an additional restriction on the dependence structure.

Our implied densities are estimated using 1-month, 3-month and 12-month over-the-

counter option contracts which were obtained from the British Bankers Association (BBA)

and Citibank. For 3- and 12-month contracts we use the Malz (1997) method, which fits

a quadratic smile to the at-the-money volatility and the ±25-delta volatilities implied by

risk reversals and strangles. For 1-month contracts our data-set includes additional ±10-

delta contracts and we use a spline-interpolation which is briefly described in Appendix

C.

We find that one-parameter copulas provide a fairly good fit when the distributions of the

three exchange rates are roughly symmetrical. An example is given in Figure 2, which

shows the distribution of the return on the euro-dollar exchange rate for 23 July 2004, as

well as the approximations discussed in the previous section. From Table 1 we see that

the normal copula underestimates the extent of kurtosis. The Frank and Plackett copulas

have approximation errors (under the L2 criterion) which are somewhat smaller than that

of the normal copula.

However, as the density of the dollar-euro exchange rate becomes more skewed we find

that these one-parameter copulas frequently fail to provide an accurate description of the

data. An example is given in Figure 3 which shows approximations to the distribution of

12See Appendix C and Joe (1997) for a description of parametric copula families.
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Figure 2: Actual and fitted risk-neutral distribution for 1-month euro-dollar contracts on

23 July 2004.
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Figure 3: Actual and fitted risk-neutral distribution for 1-month euro-dollar contracts on

18 Dec 2002.
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Table 1: Comparison of Fit (23 Jul 2004)

PDF L2-dist (%) mean std skew kurt

Actual – -0.000 0.0268 0.023 3.661

Normal 16.15 -0.000 0.0250 0.042 3.258

Frank 12.58 -0.000 0.0261 0.038 3.605

Plackett 12.76 -0.000 0.0264 0.036 3.653

BB1 13.98 -0.000 0.0256 0.072 3.463

BB7 14.64 -0.000 0.0254 0.059 3.407

Asy. Gumbel 12.18 -0.000 0.0262 0.029 3.637

Pert. Normal 13.82 0.000 0.0257 0.071 3.501

Bernstein(2) 15.06 -0.000 0.0254 0.044 3.319

Bernstein(5) 8.94 0.000 0.0273 0.074 4.073

Bernstein(7) 4.51 0.000 0.0273 0.108 3.971

Bernstein(9) 1.70 0.000 0.0269 0.107 3.744

Bernstein(11) 1.50 0.000 0.0269 0.124 3.752

Bernstein(13) 1.48 0.000 0.0269 0.133 3.763

1-month euro-dollar contracts on 18 December 2002. In this case the best one-parameter

copula has an approximation error of only slightly less than 30 percent (Table 2) which

is largely due to the fact that the approximated densities fail to account for the extra

probability mass in the left tail of the distribution (corresponding to dollar depreciation).

We therefore considered more flexible functional forms, such the multi-parameter BB1

and BB7 (Joe-Clayton) copulas (see Joe, 1997, for more details), as well as the perturbed

normal specification of Bennett and Kennedy. However, as can be seen from the table,

the results indicate that these copulas were only slightly more successful in matching the

skew in the third bilateral than their one-parameter counterparts.
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Table 2: Comparison of Fit (18 Dec 2002)

PDF L2-dist (%) mean std skew kurt

Actual – -0.000 0.0297 -0.682 4.248

Normal 29.95 -0.000 0.0273 -0.294 3.456

Frank 29.79 -0.000 0.0278 -0.310 3.614

Plackett 29.87 -0.000 0.0279 -0.311 3.621

BB1 23.96 -0.001 0.0284 -0.498 3.721

BB7 28.24 -0.000 0.0273 -0.339 3.570

Asy. Gumbel 27.31 -0.000 0.0277 -0.440 3.645

Pert. Normal 27.38 -0.000 0.0271 -0.319 3.462

Bernstein(2) 29.52 -0.000 0.0277 -0.307 3.587

Bernstein(5) 19.19 -0.000 0.0283 -0.529 4.038

Bernstein(7) 9.91 0.000 0.0295 -0.649 4.418

Bernstein(9) 5.55 0.000 0.0299 -0.685 4.511

Bernstein(11) 3.59 0.000 0.0297 -0.629 4.340

Bernstein(13) 4.89 0.000 0.0297 -0.659 4.420

4.2 Modelling asymmetric dependence

The reason behind this failure, we believe, lies in the inability of standard copulas to

account for a general degree of asymmetry in the dependence structure. We consider

two different forms of asymmetry. In the first case joint negative events (the lower left

quadrant) are more dependent than joint positive events (the upper right quadrant), or

vice versa. In terms of a copula’s density this can written as

c(u, v) )= c(1− u, 1− v).

We call this (for lack of a better expression) asymmetry along the 45 degree line. This

concept is useful for many asset classes such as equities, because the degree of co-movement

across different markets is often thought to depend on its direction. For instance, a

frequently made observation is that dependency is greater during downturns than during
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expansions (see Cherubini et al. 2004, for examples) and there are several copulas, such

as Gumbel’s copula or the Joe-Clayton copula that can model this form of asymmetry.

In the second case of asymmetry, however, dependence for a negative outcome of the first

variable and a positive outcome in the second variable (the upper left quadrant) is greater

than dependence for a positive outcome in the first variable and a negative outcome in

the second variable (the lower right quadrant), or vice versa. We can write this as

c(u, 1− v) )= c(1− u, v).

In this case, the copula is not interchangeable, that is C(u, v) )= C(v, u). We argue that

for exchange rates, this second form of asymmetry (which we call asymmetry across the

45 degree line), is as equally important as that along the 45 degree line.13 This is because

unlike equities, changes in exchange rates do not have a natural interpretation in terms

of upward or downward movements; the appreciation of one currency pair corresponds to

the depreciation of its reciprocal.

To our knowledge there has been very little work on parametric representations for non-

interchangeable copulas. Exceptions are the doctoral thesis of Khoudraji (1995) and a

recent article by Mari and Monbet (2004) in which they develop asymmetric extensions

to the Clayton and the Gumbel families.

When we fit the asymmetric Gumbel copula to the skewed distribution of the 1-month

maturity euro-dollar contracts of December 18 2002, we find that it lowers the approxi-

mation error from 30 percent to about 27 percent. However, this degree of error is still

far too large to be acceptable; it is apparent that we need to find a different copula to

capture the dependence structure between foreign exchange rates.

A very general starting point for constructing a copula is to define its values on a discrete

set of points such that the three conditions in the definition of a copula (grounded, con-

sistence with margins and two-increasing) are satisfied. We can then use some form of

interpolation to obtain a functional form on the unit square. One possible way to obtain

13Patton 2005 finds asymmetry in the exchange rates of the dollar with the yen and the mark during

the 1990s, which he explains by competitiveness between Japanese and German exporters. This argument

relies on the assumption that the US assumes the position of a passive (numeraire) player.
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such an interpolation is to use a Bernstein expansion.14 This has been proposed by Li

et al. (1998) and the ensuing Bernstein copula and its theoretical characteristics are dis-

cussed by Sancetta (2003) and Sancetta and Satchell (2004). One very desirable property

of the Bernstein copula is its ability to approximate any possible copula function. We

refer the reader to Appendix B for a more detailed description of the Bernstein copula as

well as an efficient way to fit it to a given set of triangular marginal distributions.

The results of our application of the Bernstein copula to the euro-dollar distributions for

23 July 2004 and 18 December 2002 are shown in the bottom sections of tables 1 and 2.

We use approximations with Bernstein polynomials of order 2 to 11 and find that for both

dates the L2 goodness-of-fit criterion improves quickly and that a 11th order expansion

provides a fit which is dramatically better than that of the parametric and perturbed

normal copulas.

The top panels in Figure 4 show the level curves of the Bernstein copula and its density for

24 June 2002. For this particular day the dependence structure is more or less symmetric

across the 45 degree axis, however, it is asymmetric along the 45 degree axis, in the sense

that dependence between joint negative outcomes is stronger than dependence between

joint positive outcomes. The middle row shows the cumulative bivariate distribution and

its density, which is obtained by connecting the copula with the option-implied marginal

distributions for euro-sterling and dollar-sterling. Overall there is a negative slope in the

dependence between the two bilaterals. This is reflected in negative values of the depen-

dence measures (τKendall = −0.20, ρSpearman = −0.27 and ρcorrelation = −0.29). Finally,

the two lower panels show what the joint CDF and PDF would look like if we assumed

joint normality (using only information from implied volatilities and forward rates). The

density has the characteristic elliptical shape of a bivariate normal distribution, which is

downward-tilted, corresponding to a negative implied correlation coefficient. Compared

to the estimated copula distribution, the bivariate normal distribution can be seen to

provide a highly simplified description of the data.

14The Bernstein expansion is a linear combination of polynomials (Bernstein polynomials) which are

described in more detail in Appendix B. A family of Bernstein polynomials is shown in Figure 12.
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Figure 4: Distributions of euro-sterling and dollar-sterling for 1-month contracts on 24

June 2002. Panels (a) and (b) contain level curves of the Bernstein(11) copula and its

density. Panels (c) and (d) show distributions implied by the Bernstein copula, while

panels (e) and (f) show the bivariate normal benchmark distributions (based on the im-

plied correlation coefficient). The variables are expressed in terms of their return relative

to the current forward rate.
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(c) bivariate CDF
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(d) bivariate PDF (percentiles)

euro!sterling

d
o
lla

r!
s
te

rl
in

g

!0.05 0 0.05

!0.06

!0.04

!0.02

0

0.02

0.04

0.06

0.2

0.4

0.6

0.8

(e) bivariate normal CDF
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(f) bivariate normal PDF (percentiles)
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5 Empirical results

In the following we present empirical estimates of SERI densities, as well as a short

application to the problem of pricing FX index options.

5.1 Assessing foreign exchange risks

The estimated bivariate distribution provides a compact summary about the market’s

consensus about the magnitude and balance of future exchange rate risks. Here we de-

scribe several statistics and graphical tools which we believe may be helpful for policy

makers and market participants in order to assess these risks.

5.1.1 Summary statistics

In order to get a first idea how the distribution of the SERI has changed over time, Figure

5 shows the annualised standard deviation, skewness and kurtosis of 1-month return

PDFs. It is evident that volatility has seen large changes, with the (annualised) standard

deviation fluctuating between 4 and 13 percent. In general, volatility is considerably lower

in the second half of our sample (after the end of 2001). Turning to skewness, we find that

the balance of risk is typically close to symmetric, except for the period from 2002 to the

middle of 2003, in which the probability of large depreciations was seen to be larger than

that of large appreciations. This result is interesting insofar as the negative skew precedes

the actual strong depreciation of sterling towards the beginning of 2003. Finally, return

PDFs have been moderately, but consistently fat-tailed, with an average fourth moment

of about 4. The third and fourth moments appear to be closely related as negative skews

tend to coincide with large levels of kurtosis.

Figure 6 shows a time-series of the implied correlation coefficient for 1-month maturities,

as well as Kendall’s tau and Spearman’s rho, the two dependence measures described in

section 2.2. Most of the time these measures indicate a (slightly) positive relationship

between euro and the dollar versus sterling. However, there is a marked period during
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Figure 5: First four moments of the implied simplified sterling ERI (log-returns).
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Figure 6: Different measures for the dependence between euro-sterling and dollar-sterling.
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the first half of 2002 when this relationship turned negative. In general, we find that the

three measures are closely related. However, the linear correlation coefficient is virtually
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always larger in absolute size than Spearman’s rho and, especially, Kendall’s tau. There is

also evidence that the (return) standard deviation of the SERI is positively related to the

magnitude of dependence between the two variables.15 A low (or negative) dependence

between sterling’s two main bilaterals is often viewed as a desirable property, as it insulates

the effective exchange rate against external shocks.

5.1.2 Unconditional and conditional risk-neutral PDFs of the ERI

Having estimated the joint distribution of the euro-sterling and the dollar-sterling bilater-

als we can compute distributions of the (simplified) exchange rate index (as we described

in Section 3). These distributions can be unconditional (ie. taking into account all possible

constellations of the three exchange rates) or conditional on certain outcomes. Uncondi-

tional distributions of the level of the ERI for the first business day in the years 2001,

2003 and 2005 are shown in the left panel of Figure 7. We can see that that the level as

well as the shape of the distributions have seen considerable variation over the past five

years. For example, the implied variance of the 2001 curve is much larger than that of

the 2003 curve, leading to a flatter and wider PDF. The right panel of this figure shows

return PDFs for 1-, 3- and 12-months maturities.

We can further condition the distribution of the ERI on certain outcomes of the exchange

rates involved. For example we can compute a distribution under the assumption that

the dollar appreciates or depreciates by a certain percentage against the euro. Say, that

at the maturity of the option contracts, the level of the euro-dollar bilateral equals z = z̄.

In this case, by Bayes’ law, the conditional joint distribution of euro-sterling (x) and

dollar-sterling (y) would be

fxy (u, v |z = z̄ ) =
fxy (u, u− z̄)∫∞

−∞ fxy (s, s− z̄) ds
= fx (u |z = z̄ ) . (10)

From equation (8) we can then derive the conditional distribution of the ERI as

fξ (u |z = z̄ ) = fx (u + ωDz̄ |z = z̄ ) . (11)

15The regression coefficient for Spearman’s rho in a regression explaining the return standard deviation

has a coefficient of 4.6 with a t-value of 13.6.
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Figure 7: 1-month SERI level PDFs (left panel) and return PDFs for 24 June 2004 and

different maturities (right panel).
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Figure 8 plots the 1-month distribution of the ERI under different scenarios for the euro-

dollar exchange rate. Figure 9 illustrates how each of these scenarios corresponds to

an intersection of the bivariate distribution between the euro-sterling and dollar-sterling

bilaterals. It can be seen that an appreciations of the dollar versus the euro (decrease in

z) shifts the location of the conditional ERI PDF downwards, while a depreciation of the

dollar increases the level of the conditional density and also leads to a bimodal shape.

The reason for this behaviour is the asymmetry of the bivariate distribution across the

45 degree axis.

5.2 Pricing index options and deriving synthetic contracts for

the ERI

Knowledge of the implied bivariate risk-neutral distribution of two asset immediately

allows us to price multi-factor contingent claims such as basket options, spread options,

and quantos. In particular, consider a European-style payoff in currency c which depends

on some functional form G(Sc,a
T , Sc,b

T ) of currency pairs Sc,a
t , Sc,b

t at time T . Then it is

well-known that a contingent claim V at time t can be priced via the integral

Vt

(
G(Sc,a

t , Sc,b
t )

)
= e−rc(T−t)

∫ ∞

0

∫ ∞

0

G(u, v)f̃Sc,a
T ,Sc,b

T ,t(u, v)dudv, (12)
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Figure 8: 1-month level PDFs of the SERI on 24 September 2004, conditional on different

outcomes for euro-dollar. The unconditional distribution is shown in light grey.
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where f̃Qc

Sc,a
T ,Sc,b

T ,t
(·, ·) is the bivariate risk-neutral distribution of Sc,a

T , Sc,b
T under numeraire-

measure c at time t for time T .

Here we consider the case of index options, which is directly related to the problem of

estimating risk neutral distributions for effective exchange rate indices. Because of this

close analogy, we can interpret the prices of standard contracts such as straddles, risk-

reversals and butterflies of an index option as those belonging to hypothetical contracts

on the (simplified) exchange rate index itself. This is useful because policymakers such

as central banks often use time-series of these contracts to obtain insights on market

expectations about exchange rate risks.

A possible way to formulate the payoff of a two-asset index call option for currencies

Sc,a
t , Sc,b

t with strike K and expiry T is

payoff = max




(

Sc,a
T

M c,a
t,T

)ωa
(

Sc,b
T

M c,b
t,T

)(1−ωa)

−K, 0



 , (13)

where M c,a
t,T and M c,b

t,T are the forward rates at time t. In this case, the index is the

geometric average of the deviation of the two exchange rates from their forward rates.

In order to price such an option, we take the prices of vanilla options on the individual

currency-pairs as given and compute an option implied PDF for an index with weights

ωa and (1 − ωa) using the same method as for the simplified sterling ERI. We can then

obtain the call-price function by integrating the implied PDF twice with respect to the
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Figure 9: Bivariate 1-month distribution of the SERI on 1 September 2004, with inter-

sections representing the different scenarios for the euro-dollar exchange rate in Figure

8.
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strike price (essentially reversing the result of Breeden and Litzenberger (1978)).

Since standard OTC FX contracts are typically expressed in terms of delta (first derivative

with respect to the underlying) rather than strikes, and priced in terms of vols (implied

volatility) rather than currency units, we transform the call prices into implied volatilities

(using Black’s formula) and the strikes into deltas (using the implied volatility of a strike

equal to the forward rate). Figure 10 shows the implied volatility smile for an index

option with 50:50 weights of euro and yen versus the dollar and a maturity of one month

for 24 June 2004. For comparison we also show the constant smile corresponding to

the multivariate Black-model (assuming joint log-normality)16 and an ad-hoc adjustment.

For the latter, we take the average of the smiles implied by vanilla options for the euro-

dollar and yen-dollar bilaterals and adjust its mean in a way that it equals the implied

volatility of the Black-model at a delta of 0.5. Compared to the Black-model which

16The problem of pricing options on geometric indexes has been discussed inter alia by Eytan, Harpaz

and Krull (1986) in the context of the Value Line Index (VLCI) and by Bhargava and Clark (2003) in

the context of the U.S. Dollar Index (USDX). Both studies use multivariate log-normal extensions of the

Black model.
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Figure 10: Smile of a 50:50 index option of euro and yen versus the dollar for 1 month

contracts on 24 June 2004.
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corresponds to a straight smile, the ad-hoc adjustment therefore recognises the fact that

implied volatilities are strike-dependent. We then compute the straddle (50 delta call +

50 delta put), risk-reversal (25 delta call - 25 delta put) and butterfly (25 delta call +

75 delta call - straddle) for each model. We also compute risk-reversals and butterflies

corresponding to 10-delta contracts. The prices are given in Table 3 and indicate that the

ad-hoc adjustment performs well for the straddle and the 10 delta contracts, but poorly

for the 25 delta contracts (especially the risk reversal).

Figure 10 compares synthetic implied volatilities (straddles) and risk-reversals for the

SERI with actual contracts for the euro-sterling and dollar-sterling bilaterals. SERI im-

plied volatilities are similar in magnitude to the annualised standard deviation of the

return PDF shown in Figure 5. Since the middle of 2000 they have been consistently

lower than the implied volatilities of either of the two individual exchange rates, which

is due to the fact that the two series are not perfectly correlated. This analogous to

the fact that a basket or index option is cheaper than a set of options on the individual

underlyings. The time-series of SERI risk-reversals has similar characteristics as the skew

of the return PDF. It is also interesting to see that SERI risk reversals are very similar

to sterling-euro risk reversals and often move in opposite direction to the sterling-dollar
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Table 3: Prices of index option-contracts for June 24 2004 in vols

straddle risk rev.25∆ risk rev.10∆ butterfly25∆ butterfly10∆

Black model 9.04 0.00 0.00 0.00 0.00

ad-hoc adj. 9.04 -0.41 -0.76 0.25 0.97

copula model 8.99 -0.75 -0.67 0.38 0.83

errorBlack -1% 100% 100% 100% 100%

errorad−hoc -1% 45% -14% 34% -17%

Figure 11: 1-month implied volatilities and risk reversals (including synthetic SERI con-

tracts).
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risk-reversal. This close alignment is likely to be a consequence of the large weight of the

euro in the currency index.
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6 Conclusions and further research

In this paper we have proposed a new approach to derive bivariate risk-neutral distri-

butions from option prices in foreign exchange markets. A distinguishing feature of our

method is that it provides a joint density that is consistent with the marginals of three

currency pairs over their entire support. This is achieved by minimising the L2-distance

between the actual PDF of the cross rate (third bilateral) and the corresponding PDF

implied by a copula function. Previous studies have fitted the joint distribution either to

the implied correlation coefficient (Bikos (2000) and Taylor and Wang (2004)) or to a set

of individual option contracts (Bennett and Kennedy (2004)).

One of our main findings is that standard one-parameter copulas lack the flexibility to

consistently model the relationship between risk-neutral FX densities. This is especially

true when one or more of the margins is heavily skewed. The same failure occurs with

more sophisticated two-parameter copulas and the perturbed normal copula of Bennett

and Kennedy that can account for asymmetry along the 45 degree line. A more general

dependence structure is clearly needed to capture the relationships between foreign ex-

change rates. We solve this problem by using a Bernstein copula, which permits a close

approximation to any possible dependence function.

We apply our method to estimate the risk-neutral distribution of a simplified exchange

rate index for sterling. Our results indicate that the shape, as well as the location of this

distribution has seen considerable change over time. An interesting observation is that the

large depreciation of sterling in 2003 was pre-dated by a negative skew and an increase in

kurtosis of the SERI distribution. We also show how the estimated bivariate distribution

can be used to construct densities of the exchange rate index that are conditional on

hypothetical movements of one currency pair.

In a second application we use our empirical framework to price currency index options, ie.

options whose underlying is a geometric mean of individual exchange rates. In an example

we demonstrate how standard contracts such as straddles, risk-reversals and butterflies

can be priced for options of an index of the euro and the yen versus the dollar. We compare

our method to the standard multivariate Black-model, which assumes joint log-normality,
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as well as an ad-hoc adjustment based on the actual smiles and implied correlation. In

our example we find that volatility quotes differ significantly across different methods.

We believe that there are several reasons why the methodology of this paper is useful for

practitioners: Our framework is general in the sense that it does not make any assump-

tions on the marginal distributions. It is also straightforward to extend our framework

to other multi-asset currency options such as quantos, basket options, spread options and

rainbow options. Finally, the Bernstein copula exhausts the space of all possible paramet-

ric copulas. A failure to provide a match therefore implies that the individual margins

are not arbitrage-free.

We envisage several avenues of future research. First, it would be interesting to extend

our methodology to more then three exchange rates. For example, a three-dimensional

copula could be used to link the six bilaterals between the dollar, the euro, the yen and

sterling. Second, we believe that our method could be adapted to price options whose

payout is path-dependent, such as barriers.

Finally, we would like to emphasise the fact that the statistical model of this paper has

the unique feature that option-implied densities in conjunction with the triangular nature

of exchange rates provide us with information on the entire marginal distributions as well

as their dependence structure on a daily frequency. For many other applications much

less information is available and the margins, as well as the copula, need to be estimated

over a slow-moving time-horizon. We therefore believe that the framework of this paper

may serve as a laboratory environment to evaluate the reliability of other copula methods

which rely on less information.

Appendix A: The relationship between risk-neutral

densities under different numeraire measures

Let za,b
T , za,c

T , zb,c
T denote the logarithmic deviation of three triangular exchange rates Sa,b

T ,

Sa,c
T , Sb,c

T from their respective forward rates Ma,b
t,T , Ma,c

t,T , M b,c
t,T . We show that at any time

t ≤ T the relationship between the univariate PDF of za,b
T under the risk-neutral measure
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Qa
17 and the bivariate PDF of za,c

T and zb,c
T under the risk-neutral measure Qc is given by

fQa

za,b
T ,t

(x) =

∫ ∞

−∞
fQc

za,c
T ,zb,c

T ,t
(u, u− x)e−udu. (A-1)

To see this,18 consider the following no-arbitrage condition between ratios of spots and

forwards (Zi,j
T ≡ Si,j

T /M i,j
t,T ),

(
Za,b

T −K
)+

= Za,c
T

(
Zc,b

T − Zc,a
T K

)+

. (A-2)

Discounting both sides under the respective equivalent martingale measures we can write

this equality in terms of expectations at time t as

era(T−t)EQa
t

[(
Za,b

T −K
)+

]
=

Si,j
t

M i,j
t,T

erc(T−t)EQc
t

[(
Zc,b

T − Zc,a
T K

)+
]

, (A-3)

which simplifies to

EQa
t

[(
Za,b

T −K
)+

]
= EQc

t

[(
Zc,b

T − Zc,a
T K

)+
]

, (A-4)

or

∫ ∞

K

(s−K)fQa

Za,b
T ,t

(s)ds =

∫ ∞

0

∫ ∞

uK

(v − uK)fQc

Zc,a
T ,Zc,b

T ,t
(u, v)dvdu.

Differentiating both sides twice with respect to K gives

fQa

Za,b
T ,t

(K) =

∫ ∞

0

fQc

Zc,a
T ,Zc,b

T ,t
(u, uK)u2du. (A-5)

By a change of variable, zi,j = lnZi,j, we then get

fQa

za,b
T ,t

(x) =

∫ ∞

−∞
fQc

zc,a
T ,zc,b

T ,t
(u, u + x)eudu. (A-6)

or

fQa

za,b
T ,t

(x) =

∫ ∞

−∞
fQc

za,c
T ,zb,c

T ,t
(u, u− x)e−udu. (A-7)

17More precisely the risk-neutral measure Qj is the equivalent martingale measure associated with a

discount bond in currency j.
18We follow a similar line of reasoning as Taylor and Wang (2004), who derive a relationship between

distributions of exchange rates in levels.
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Appendix B: The Bernstein copula and a simple rep-

resentation of the optimisation problem

The underlying idea of the Bernstein copula is to define a function α(ω) on a set of grid

points and then use a polynomial expansion to extend the function to all points in the unit

square. In our application we use an evenly spaced grid of (m + 1)2 points, ω = k
m ×

l
m ,

k, l = 0, ..., m. The bivariate Bernstein copula is then defined as

CB(u, v) =
m∑

k=0

m∑

l=0

α

(
k

m
,

l

m

)
Pk,m(u)Pl,m(v), (B-1)

where

Pj,m(x) =



 m

j



 xj(1− x)m−j

is the j-th Bernstein polynomial of order m (for j = 0, ..., m). Sancetta and Satchell

(2004) show that this function will be a copula as long as α(ω) satisfies the basic three

conditions of a copula (grounded, consistent with margins and two increasing) for all

points on the grid.

Similarly, the density of the bivariate Bernstein copula is given by

cB(u, v) = m2
m−1∑

k=0

m−1∑

l=0

β

(
k

m
,

l

m

)
Pk,m−1(u)Pl,m−1(v), (B-2)

where

β

(
k

m
,

l

m

)
= α

(
k + 1

m
,
l + 1

m

)
− α

(
k + 1

m
,

l

m

)
− α

(
k

m
,
l + 1

m

)
+ α

(
k

m
,

l

m

)
.

Note that the two-increasing property of α ensures that the density is non-negative.

We now show how we can write our optimisation problem (6) as a simple constrained

quadratic programming problem. Recall from equation (7) that we approximate the

euro-dollar density as

f̂QE
z (s, θ̂) =

∫ ∞

−∞
ĉ
(
FQS

x (u), FQS
y (u− s), θ̂

)
fQS

x (u)fQS
y (u− s)e−udu. (B-3)

Using the Bernstein copula, this can be written as

f̂QE
z (s, θ̂) =

m−1∑

k=0

m−1∑

l=0

θk,lψk,l(s), (B-4)
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Figure 12: Bernstein polynomials for m = 5.
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where θk,l = β
(

k
m , l

m

)
and

ψk,l(s) =

∫ ∞

−∞
Pk,m−1

(
FQS

x (u)
)
Pl,m−1

(
FQS

y (u− s)
)
fQS

x (u)fQS
y (u− s)e−udu.

These functions have the properties that ψk,l(·) ≥ 0 and
∫∞
−∞ ψk,l(s)ds = 1, for all k, l =

0, ..., m− 1.

Proposition 1 (Restrictions on θ) Expression (6) is a copula density if and only if

θk,l ≥ 0, k, l = 0, ..., m− 1, (B-5)
m−1∑

k=0

θk,l =
1

m
, l = 0, ..., m− 1, and (B-6)

m−1∑

l=0

θk,l =
1

m
, k = 0, ..., m− 1. (B-7)

These restrictions also imply that the sum of all coefficients equals unity.

The optimisation problem can be restated as

inf{θk,l}m−1
k,l=1

∫∞
0

(∑m−1
k=0

∑m−1
l=0 θk,lψk,l(s)− f̃QE

z (s)
)2

ds (B-8)

s.t. restrictions on {θk,l}m−1
k,l=1,
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which can be simplified to

infθ θ′Hθ − 2gθ, s.t. R1θ ≤ q1, R2θ = q2, (B-9)

where

H =

∫ ∞

0

ψ(s)ψ′(s)ds, g =

∫ ∞

0

fQE
z (s)ψ′(s)ds,

and Rj and qj impose the equality (j = 1) and inequality (j = 2) constraints of proposi-

tion 1. This allows the problem to be solved by a standard Lagrangian approach.

Appendix C: Description of other copula functions

The Normal copula:

C(u, v; ρ) = Φρ (ζ1, ζ2) , (C-1)

and

c(u, v; ρ) =
1√

1− ρ2
exp

(
ζ2
1 + ζ2

2

2
+

2ρζ1ζ2 − ζ2
1 − ζ2

2

2(1− ρ2)

)
, (C-2)

where ζ1 ≡ Φ−1(u), ζ2 ≡ Φ−1(v), Φ(·) is the standard normal CDF and Φρ(·, ·) is the

bivariate normal CDF with correlation coefficient ρ ∈ [−1, 1]. A joint distribution is

normal if, and only if, both the copula and the margins are normal.

The Frank copula:

C(u, v; δ) = −1

δ
log {[η − gugv] /η} (C-3)

and

c(u, v; δ) =
−δg1(1 + gu+v)

(gugv + g1)2
(C-4)

where gz ≡ e−δz − 1 and δ ≥ 0.

The Plackett copula:

C(u, v; δ) =
1

2
η−1

{
1 + η(u + v)−

[
(1 + η(u + v))2 − 4δηuv

]1/2
}

, (C-5)

and

c(u, v; δ) =
[
(1 + η(u + v))2 − 4δηuv

]−3/2
δ [1 + η(u + v − 2uv)] , (C-6)

where η = (δ − 1) and δ ≥ 0.
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The BB1 copula:

C(u, v; θ, δ) = φ−1 (φ(u) + φ(v)) , (C-7)

where φ(s; θ, δ) =
(
s−θ − 1

)δ
is an Archimedian generator with θ > 0, δ ≥ 1, and

c(u, v; θ, δ) = −φ′′(C(u, v))φ′(u)φ′(v)

φ′(C(u, v))3
. (C-8)

The BB7 copula: This copula is also known as the Joe-Clayton copula and has a

similar structure as the BB1 copula, except that the Archimedian generator is given by

φ(s; θ, δ) =
[
1− (1− s)θ

]−δ − 1, for θ ≥ 1, δ > 0.

The (Generalised) Asymmetric Gumbel copula:

C(u, v; α0,α1,α2, δ) = uAvBe−α0H
1
δ , (C-9)

where

A =
α1

α0 + α1
, B =

α2

α0 + α2
, H =

(
ũ

F

)δ

+

(
ṽ

G

)δ

,

and

F = α0 + α1, G = α0 + α2, , ũ = −log u, ṽ = −log v.

The density is given by

c(u, v; α0, α1,α2, δ) =
C

uv
(T1T2 + T3) , (C-10)

where

T1 = A +
α0

F

(
ũ

F

)δ−1

H
1

δ−1 ,

T2 = B +
α0

G

(
b̃

G

)δ−1

G
1

δ−1 ,

T3 =
α0(δ − 1)

FG

(
ũṽ

FG

)δ−1

H
1

δ−2 .

The Perturbed Normal copula: Bennett and Kennedy (2004) construct a perturbed

version of the normal copula CN by using the transformation

Cϕ(u, v) = ϕ−1 (C(ϕ(u), ϕ(v))) ,

where the transformation function ϕ : [0, 1] → [0, 1] is modelled as a cubic spline that

satisfies (i) ϕ(0) = 0, (ii) ϕ(1) = 1 and (iii) ϕ(·) is concave. We use the same specification

as them with knotpoints at [0, 0.1, 0.5, 0.9, 1].
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Appendix D: Estimating the marginal distributions

We use two datasets of over-the-counter (OTC) option contracts. The first dataset, pro-

vided by Citibank, consists of 10 and 25 delta risk-reversals and strangles, as well as

ATM and forward contracts with 1 month maturity. The second dataset, provided by

the British Banker’s Association (BBA), contains 25 delta risk-reversals and strangles, as

well as ATM contracts with maturities of 1, 3 and 12 months. We further use spot and

libor rates, which are also provided by the BBA.

For the BBA dataset we estimate PDFs using the Malz (1999) method, which fits a

quadratic function to the volatility smile as a function of (spot) delta. The relationship

between call prices and deltas are computed by the Black (1976) model.

For the Citibank dataset, which includes additional 10 delta contracts, we extend the

Malz method in the sense that we fit the five available contracts by a spline consisting of

two cubics (in the intervals between 0.1 and 0.25 and 0.75 and 0.9, respectively) and a

quartic (in the interval between 0.25 and 0.75). We impose the restriction that the first

three derivatives are continuous.

In both cases the PDF is computed as the (numerical) second derivative of the call price

function corresponding to the interpolated volatility smile.

In order to adapt the (level) PDFs to the setup connecting the three margins (equation

3), we use the transformation

fQd

Sa,b(x) = fQd

Sa,b

(
1

x

)
1

x2
, (D-1)

to exchange numerator and denominator, and the transformation

fQa

Sa,b(x) = fQb

Sa,b(x)
Ma,b

t,T

x
, (D-2)

where Ma,b
t,T is the forward rate, to change the numeraire measure. For example, we

initially compute a PDF for dollar per euro under a dollar numeraire measure and then

transform it into a PDF for euro per dollar under a euro numeraire measure. We use the

transformation

fza,b(x) = fSa,b

(
ln

(
x

Ma,b
t,T

))
1

x
, (D-3)
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to transform the level PDF fSa,b(·) into the return PDF fza,b(·).

Appendix E: Black’s model for pricing an index option

We consider a European call option whose payout depends on the value of the index

It =

(
M c,a

t,T

M c,a
0,T

)ωa
(

M c,b
t,T

M c,b
0,T

)(1−ωa)

= A
(
M c,a

0,T

)ωa
(
M c,b

t,T

)(1−ωa)

(E-1)

on expiry (t = T ). Under standard assumptions, the forward rates follow driftless diffusion

processes under the numeraire measure Qc

dM c,i
t,T = σc,idWQc

i , i ∈ {a, b}, (E-2)

where WQc
a and WQc

b are standard Brownian motions with correlation coefficient ρ (such

that dWQc
a dWQc

b = ρdt). Applying Itô’s lemma gives

dI =
∑

i

∂I

∂M c,i
dM c,i +

1

2

∑

i

∑

j

∂2I

∂M c,i∂M c,j
dM c,idM c,j

= δIIdt + σIIdWQc
I , (E-3)

where δI = (ω2
a − ωa)

(
1
2σ

2
c,a + 1

2σ
2
c,b − σc,aσc,bρ

)
, σ2

I = ω2
aσ

2
c,a + (1 − ωa)2σ2

c,b + 2ωa(1 −

ωa)σc,aσc,bρ and WQc
I is a standard Brownian motion under the equivalent martingale

measure. Setting EQc
t [IT ]−M I

t,T equal to zero gives the arbitrage-free forward rate for the

index

M I
t,T = Ite

δ(T−t). (E-4)

The call price for an option with strike K is then given by

C(It, K,σI , T ) = erc(T−t)
[
M I

t,T Φ(d1)−KΦ(d2)
]
, (E-5)

where Φ(·) denotes the standard normal distribution and

d1 =
log

(
M I

t,T /K
)
− σ2

I
2 (T − t)

σI

√
T − t

and d2 = d1 − σI

√
T − t.
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