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Abstract

Broadly, the thesis concerns information aggregation in large populations of agents,

each of whom has his own “window on the world” (i.e. some imperfect and private

information regarding the state of the world). The thesis explores how a policymaker

may seek to use the information revealed by the agents’ actions to improve social

welfare via information disclosures, or via the setting of a policy instrument. In

particular, it studies how the policymaker’s actions may distort the agents’ incentives

to acquire (or process) information and, in turn, how this influences the information

revealed by the agents’ actions and hence the policymaker’s ability to improve social

welfare in the first place. The three chapters are summarised below.

In chapter 1, I analyse the social value of public information in the context of a

static prediction model, where each agent has access to two information sources: a

(costly) private signal of the fundamental and a (free) public signal of the average

prediction of the other agents. I argue that providing more precise public information

(about the average prediction) is welfare-improving only up to a certain threshold,

above which it crowds out the acquisition of private information and no longer affects

welfare (i.e. if public information is already sufficiently precise such that some agents

do not acquire the private signal in equilibrium, then further increasing the precision

of public information will not affect welfare).

In chapter 2, I study optimal monetary policy in a setting where firms are ra-

tionally inattentive and the central bank learns about fundamentals by observing

market prices. I argue that optimal policy minimizes the central bank’s own infor-

mation precision about fundamentals, and I discuss the implications of this tension.

The model provides an informational rationale for increased policy activism at times

of high aggregate volatility (for instance, during recessions) and for a higher degree

of monetary neutrality during such times.

In chapter 3, I again analyse the relationship between optimal policy interven-

tion and price informativeness, but I also account for parameter uncertainty in the

spirit of Brainard (1967), i.e. uncertainty regarding the transmission of policy itself.

I argue that under parameter uncertainty, the central bank cannot perfectly dis-

entangle the effects of its policy from fundamental shocks moving prices, so policy

intervention necessarily crowds out some of the information (concerning fundamen-

tals) which is contained in prices. In terms of central bank learning, this leads to a

similar trade-off as in Balvers and Cosimano (1994).

iv



1 A Note on Static Social Learning when Private In-

formation is Costly

1.1 Introduction
In many economic situations, agents make decisions under imperfect and dispersed

information concerning payoff-relevant fundamentals. In such contexts, there is

scope for social learning, in the sense that agents may benefit by learning from others

(Vives (1996); Vives (1997); Burguet and Vives (2000); Bru and Vives (2002)). This

paper analyses social learning in the context of a static prediction model featuring

costly information acquisition. More specifically, it studies a “herding prediction

model with a rational-expectations flavor” as in Bru and Vives (2002) — where

each agent out of a continuum seeks to predict a random variable after observing

a private signal of its realization, as well as a noisy public signal of the average

prediction of the other agents — but in extension to Bru and Vives (2002), it con-

siders the possibility that the agents’ private signals are costly.1 It argues that, in

the presence of information acquisition costs, the provision of more precise public

information2 is no longer welfare-improving beyond a certain threshold, while in

the absence of information acquisition costs, more precise public information is al-

ways welfare-improving (the latter point follows directly from Bru and Vives (2002)).

Similarly to Bru and Vives (2002), there are information externalities at play, as

agents do not internalize the effects of their decisions3 on the informativeness of

the public signal of the average action.4 More specifically, in the same way as in

Bru and Vives (2002), informed agents do not take into account how their reac-

tion to their private information affects the informativeness of public information.5

Additionally, agents do not internalize how their acquisition of private information

affects the informativeness of the public signal — this latter mechanism6 is respon-

sible for the main result (namely, that increasing the precision with which agents

1In the sense that each agent needs to pay a fixed cost to observe the private signal.
2Referring to a higher precision (or lower noise) associated with the public signal of the average

prediction.
3Referring to both the decision of how to respond to private information, and to the decision

whether to acquire the private signal or not, as detailed below.
4Throughout the paper, I use the terms “average action” and “average prediction” interchange-

ably — as will become clear in the context of the model, each agent’s action will also be his
prediction regarding the fundamental.

5And welfare could be improved if informed agents responded more strongly to their private
signals, thereby generating more precise public information.

6Which is not captured in Bru and Vives (2002), where private information is free.
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observe the average prediction is no longer welfare-improving beyond a threshold).

When public information is sufficiently precise, only a fraction of agents acquire the

private signal in equilibrium — in all such equilibria, holding constant the fraction

of agents who are informed, increasing the precision with which agents observe the

average prediction improves the informativeness of the public signal about the fun-

damental (and expected welfare), in a similar fashion to Bru and Vives (2002); but

it decreases the returns to acquiring information and leads less agents to become

informed (which deteriorates the informativeness of the public signal). In equilib-

rium, the two effects cancel each other out, such that the informativeness of public

information (and thus expected welfare) remain constant in response to changes in

the precision with which the average action is observed. In other words, providing

a more precise signal of the average action is no longer welfare-improving beyond a

certain threshold, whereby all agents acquire the private signal below the threshold,

but only a fraction of agents acquire the private signal above the threshold. Thus,

if the public signal of the average action conveys information from informed to un-

informed agents, then increasing its precision will not improve welfare.

This is in contrast to Bru and Vives (2002), where increasing the precision with

which agents observe the average action is always welfare-improving. Hence, the

model illustrates that there is an inherent conflict between the incentives to acquire

private information and the ability of average actions to provide informative public

signals. This resembles Grossman and Stiglitz (1980), where “there is a fundamen-

tal conflict between the efficiency with which markets spread information and the

incentives to acquire information”. In their model, the informativeness of the price

system is independent of the amount of noise in the supply of the asset (which is

the only source of noise in Grossman and Stiglitz (1980), preventing the asset price

from being perfectly informative). This paper presents a parallel of their result in

the context of social learning.7 I also discuss how the result could be interpreted

in the context of the literature analysing central bank transparency in endogenous

information settings, where the policymaker learns about the state of nature from

market prices while simultaneously disclosing information to firms.

Before proceeding to the main text, I provide an illustrative example.8 Consider

a unit mass of firms, each of whom chooses its price pi to maximize profit subject to

unknown market conditions θ. Suppose that firm i’s profit is given by πi = −(pi−θ)2

7This is discussed in more detail in section 1.3.
8More examples are provided below, following Bru and Vives (2002).
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which can be derived from a log-quadratic approximation of the profit function where

θ ∼ N(0, σ2
θ) is the target price (assumed here to be common across firms and nor-

mally distributed). Further, suppose that each firm observes a private signal of the

target price xi = θ + εi, where εi ∼ N(0, σ2
x) is i.i.d. across firms (such that private

information is noisy and dispersed). It is easy to note that in the absence of any

other information source, each firm sets its price according to pi =
σ2
θ

σ2
θ+σ

2
x
xi and,

by virtue of the law of large numbers, the average price reveals the target price

p =
∫ 1

0
pidi =

σ2
θ

σ2
θ+σ

2
x
θ.

A natural question which arises in such a context is whether providing information

to firms of the form “average price” plus noise is welfare-improving.9 For instance,

a government agency could compile aggregate price statistics, but these may be

subject to measurement error — the policymaker may wonder whether a lower mea-

surement error helps firms make better pricing decisions. The answer provided by

Bru and Vives (2002) is that this is indeed true. In other words, making the average

price observable with less noise always helps firms better match the target price and

achieve higher expected profits10 (despite the fact that firms do not make socially

optimal use of information in the presence of the public signal of the average price,

i.e. there is an information externality at play)11 — for a textbook discussion of

this, see Vives (2010), chapter 6.6.

Note: A similar example is provided in Bru and Vives (2002): “competitive firms

decide about investment with macroeconomic uncertainty represented by the random

variable θ which determines average profitability. Firms invest taking into account

that the profits of investment will depend on the realization of θ. To predict θ each

firm has access to a private signal as well as to public information, which is formed

by aggregate investment figures compiled by a government agency. Data on aggre-

gate investment incorporates measurement error”. For more examples, see Bru and

Vives (2002), section 2, or Vives (2010), chapter 6.6.1.

This paper analyses the social benefit of more precise public information (in the

sense described above) when firms need to pay a fixed cost to observe the private

signal xi. It argues that in this case, increasing the precision with which firms ob-

9More specifically, I am now referring to a setting where each firm observes its private signal
xi, as well as a noisy signal of the average price when deciding on its own price. The question is
whether making the average price observable with higher precision helps firms better match the
target price.

10See also Corollary 1.2.
11More details are provided in Remark 1.1.
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serve the average price is welfare-improving only up to a certain threshold — if the

precision increases above this threshold, only a fraction of firms acquire the private

signal xi in equilibrium;12 the main result states that the informativeness of public

information (and expected welfare) are the same in all such equilibria.

1.2 Related literature
As previously mentioned, the model closest to the one presented here is Bru and

Vives (2002), which I extend by considering the possibility that the agents’ private

signals are costly. As such, the paper relates more broadly to the literature on so-

cial learning, herding and information cascades — see Vives (2010), chapter 6, and

the references therein for a general discussion of these topics, and chapter 6.6 for a

textbook treatment of Bru and Vives (2002). However, I only analyse the equilib-

rium behavior of agents, and do not address their socially optimal behavior — in

the language of Vives (2010), I analyse only the “market solution” here and do not

address the “team efficient solution”.13

The interaction between social learning and costly information acquisition has been

explored in a similar context by Burguet and Vives (2000) — for a textbook treat-

ment, see Vives (2010), chapter 6.3.2. The main difference between their model and

the one presented here is that they analyse a dynamic (sequential) prediction prob-

lem — where each period, a new generation of short-lived agents predict a random

variable after observing a private signal, as well as noisy public signals of the average

predictions of agents in past generations — whereas here, I study a static predic-

tion problem, with a “rational-expectations flavour”. Another important difference

lies in the assumptions concerning costly information acquisition — in Burguet and

Vives (2000), each agent can pay a higher cost to increase the precision of his pri-

vate signal, whereas here each agent faces a binary choice whether to acquire the

private signal or not (and the precision of the private signal is exogenous). This

assumption concerning costly information acquisition allows me to draw a parallel

with Grossman and Stiglitz (1980), as well as with Bernanke and Woodford (1997),

as I detail in sections 1.3 and 1.3.1 respectively.14

12Because if all agents acquired the private signal xi, then the noisy signal of the average price
would be sufficiently informative about the fundamental such that no firm would want to acquire
the private signal in the first place. The intuition for this relates to Grossman and Stiglitz (1980)
and Bernanke and Woodford (1997) — I expand on this in the main text.

13The main result here (i.e. Corollary 1.4) concerns the equilibrium acquisition and use of
information. Clearly, if the agents’ acquisition and use of information was efficient (i.e. socially
optimal), increasing the precision with which they observe the average action would always be
welfare-improving.

14Because both papers employ similar assumptions regarding the acquisition of private infor-
mation. In Grossman and Stiglitz (1980), traders face a binary choice whether to pay a fixed cost

4



Interestingly, the paper also relates to models analysing central bank transparency

in endogenous information settings, where the policymaker learns about the state

of nature from market prices (Morris and Shin (2005); Baeriswyl (2011); Baeriswyl

et al. (2020)). In these models, firms set prices under imperfect information and

the central bank observes a noisy signal of the average price, while simultaneously

disclosing (with noise) what it learns about the fundamental (from the noisy signal

of the average price) back to the firms. In such a model, the central bank practi-

cally mediates the firms’ learning from the noisy signal of the price level, whereas

here agents learn directly by observing the noisy signal of the average action.15 The

relation with this strand of the literature is explored in more detail in section 1.3.1.

1.3 Model
There is a continuum of agents (indexed by i on the unit interval) who face a linear-

quadratic Gaussian problem. Each agent chooses an action ai ∈ R to minimize the

distance from a normally distributed fundamental θ∼N(0, 1/τθ).

Information structure: Each agent can pay a fixed cost c ≥ 0 to observe a

private signal of the fundamental with an exogenous precision τx:

xi = θ + εi (1.1)

Where εi ∼ N(0, 1/τx) is i.i.d. across agents.
16 Additionally, there is a noisy public

signal of the average action:

y = a+ εy (1.2)

Where a =
∫ 1

0
aidi denotes the average action, and where εy ∼ N(0, 1/τy) is a white

noise term, distributed independently of all other random variables. I will investi-

gate the welfare effects of changes in τy.

to become informed or not. In Bernanke and Woodford (1997), section 1, forecasters also face a
similar binary choice (when costly information acquisition is taken into account).

15Unlike Baeriswyl (2011), or Baeriswyl et al. (2020), I abstract from strategic complementarities
in price-setting. I also assume that the fundamental is drawn from a proper, Gaussian prior.

16The convention is made that a version of the law of large numbers for a continuum of random
variables holds, such that errors on average cancel out almost surely (which implies that the
average signal across agents reveals the fundamental). For a discussion of the measure-theoretic
issues related to using a law of large numbers when integrating across a continuum of random
variables, see Judd (1985); Uhlig (1996). The convention is maintained throughout the thesis.

5



Each agent’s payoff is given by:

ui = −(ai − θ)2 − c1i∈I (1.3)

Where ai denotes agent i’s action and 1i∈I indicates whether agent i is informed or

not (i.e. takes value 1 if agent i observes the private signal xi and 0 otherwise).

Timing: This is a two-stage game where:

1) firstly, each agent decides whether to buy the private signal (xi) or not

2) secondly, each agent receives his information (i.e. informed agents observe xi

and y, while uninformed agents observe y) and takes his action ai

Equilibrium definition: An equilibrium specifies:

i) an information acquisition strategy for each player (specifying whether he buys

the private signal xi or not)

ii) action rules for informed and uninformed agents (mapping signal realizations

to actions)

Such that:

i) each agent acts optimally given his information (i.e. aI∗i = E[θ|xi, y], aU∗
i = E[θ|y])

ii) each agent’s information acquisition strategy is optimal (given the other agents’

information acquisition strategies)

When choosing whether to buy the private signal or not, each agent takes as given

the other agents’ information acquisition strategies. Also, when choosing how to act

conditional on the information received, each agent takes as given the other agents’

action rules. As is standard in the literature, given that uncertainty is Gaussian

and payoffs are quadratic, I restrict attention to linear equilibria — i.e. equilibria

in which each agent’s action rule is linear in his signals.17 I also restrict attention

17Because uncertainty is Gaussian and payoffs are quadratic, each agent’s best-response is linear
in his signals when the other agents’ action rules are linear in their signals.

6



to symmetric equilibria in which each type of agent uses the same action rule.18

As such, an equilibrium specifies a tuple:

(λ∗, ϕI∗1 , ϕ
I∗
2 , ϕ

U∗)

Such that:  aI∗i = E[θ|xi, y] = ϕI∗1 xi + ϕI∗2 y

aU∗
i = E[θ|y] = ϕU∗y

(1.4)


λ∗ = 1 if Li/Lu < 1

λ∗ = 0 if Li/Lu > 1

λ∗ ∈ [0, 1] if Li/Lu = 1

(1.5)

Where

Li = E[(ϕI∗1 xi + ϕI∗2 y − θ)2] + c (1.6)

And

Lu = E[(ϕU∗y − θ)2] (1.7)

λ∗ ∈ [0, 1] denotes the fraction of agents who become informed in equilibrium, ϕI∗1

and ϕI∗2 denote the responsiveness of informed agents’ actions to the private and

public signal respectively, and ϕU∗ denotes the responsiveness of uninformed agents’

actions to the public signal.

(1.4) states that both informed and uninformed agents act optimally conditional

on their information (to maximize individual utility (1.3)) — in other words, this

is an equilibrium condition for the second step of the game. Given that agents act

optimally conditional on their information, the expected losses of informed and un-

informed agents are given by (1.6) and (1.7) respectively. An equilibrium in the first

step of the game then requires (1.5).

Using a utilitarian welfare criterion which places an equal weight on all agents,

the welfare loss is defined as:

LW = −
∫ 1

0

E(ui)di (1.8)

18This is without loss of generality.
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And, in equilibrium, this can be expressed as:

L∗
W = λ∗Li + (1− λ∗)Lu (1.9)

I derive the equilibrium by backward induction. Hence, I first determine the equilib-

rium action rules for a given λ (step two in the timing of events). Then, I determine

the equilibrium λ (step one in the timing of events). These are characterised in

Propositions 1.1 and 1.2 respectively. Unless mentioned otherwise, I restrict atten-

tion to strictly positive, finite τx, τy, τθ.

Proposition 1.1. Suppose a fraction λ ∈ (0, 1] of agents are informed. Then,

there is a unique equilibrium in the second step of the game, in which ϕI∗1 solves:19

ϕI∗1 = τx/
[
τx + τθ + τy(λϕ

I∗
1 )2
]

(1.10)

Then, ϕI∗2 and ϕU∗ can be computed as functions of ϕI∗1 (see equations (A.8) and

(A.9)).

Proof: See Appendix A.1. □

Note: This is similar to Proposition 1 in Bru and Vives (2002) — more specif-

ically, they analyse the case in which all agents are informed (i.e. when λ = 1).

From the perspective of each informed agent, the optimal reaction to his private

signal xi depends on the reaction of the other informed agents to their private sig-

nals (because this affects the informativeness of the public signal). More specifically,

denote by ϕ
I

1 the responsiveness of all informed agents j ̸= i to their private signals

(i.e. suppose all informed agents j ̸= i act according to aIj = ϕ
I

1xj + ϕ
I

2y). Then,

the (individually) optimal responsiveness of agent i’s action to the private signal xi

(denoted below by ϕI∗1,i) can be expressed as:

ϕI∗1,i = τx/
[
τx + τθ + τy(λϕ

I

1)
2
]

(1.11)

This depends on the precision of the private signal (τx), the precision of the prior

(τθ), and the informativeness of the public signal about the fundamental20 (which

is captured by the last term in the denominator on the R.H.S. of (1.11); for more

19An analytical expression for ϕI∗1 is provided in Appendix A.1 — see equation (A.10).
20Which is defined as the precision of the unbiased signal of the fundamental contained in the

public signal of the average action — for more details, see (A.4) in Appendix A.1.
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details, see Appendix A.1). The informativeness of the public signal itself depends

on the precision with which agents observe the average action (τy), the fraction

of agents who are informed (λ) and the responsiveness of other informed agents’

actions to their private signals (ϕ
I

1). If other informed agents react more strongly

to their private information when taking their actions (i.e. a higher ϕ
I

1), then the

public signal becomes more informative about the fundamental, so each informed

agent finds it optimal to react less strongly to his private signal and more strongly

to the public signal (i.e. a lower ϕI∗1,i). As equilibria in the second step of the game

are necessarily symmetric, equation (1.10) follows from (1.11). For more details, see

Appendix A.1.

Remark 1.1. Informed agents do not make socially optimal use of their private in-

formation. More specifically, expected welfare would be higher if all informed agents

responded more strongly to their private information (thereby generating more pre-

cise public information and leading to lower expected losses for both informed and

uninformed agents). As previously mentioned, I focus the discussion in this paper

on the equilibrium use of information (and do not address the efficient use of in-

formation), thus I do not solve the “team problem” here.21 For a discussion of the

efficient use of information in this setting when all agents are informed (λ = 1), see

Bru and Vives (2002), or Vives (2010).

Before proceeding, it is helpful to discuss some properties of the equilibrium in

the second step of the game, which will be useful to establish the existence and

uniqueness of the equilibrium in the first step of the game. Firstly, we will note

(in Corollary 1.1) that, holding everything else constant, increasing the fraction of

agents who are informed (i.e. a higher λ), or increasing the precision with which

agents observe the average action (i.e. a higher τy), increases the informativeness of

the public signal about the fundamental (in the equilibrium reached in the second

step of the game). Secondly, we will note that a higher informativeness of the public

signal benefits uninformed agents relatively more than informed agents (because the

marginal benefit of additional information is higher for uninformed agents).

To formalise these remarks, it is useful to introduce some notation. Let τs(λ, τy)

denote the informativeness of the public signal about the fundamental (in equilib-

21Indeed, the main result of the paper concerns the equilibrium acquisition and use of informa-
tion (clearly, if the agents’ acquisition and use of information were socially optimal, increasing the
precision with which agents observe the average action would always be welfare-improving).
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rium),22 as a function of λ and τy (we will vary λ to characterise the equilibrium

and τy to study comparative statics). In other words, after fixing λ and τy, one can

use Proposition 1.1 to compute the equilibrium action rules in the second step of

the game:

(ϕI∗1 (λ, τy);ϕ
I∗
2 (λ, τy);ϕ

U∗(λ, τy))

Then, the informativeness of the public signal about the fundamental writes as:23

τs(λ, τy) = τy[λϕ
I∗
1 (λ, τy)]

2 (1.12)

In the same spirit, denote by γ(λ, τy) the ratio of the expected loss of informed

agents to the expected loss of uninformed agents (in the equilibrium of the second

step of the game, as a function of λ and τy). Taking into account that agents make

(individually) optimal use of their information we can express the expected losses

of informed and uninformed agents as:

Li(λ, τy) =
1

τx + τθ + τs(λ, τy)
+ c (1.13)

Lu(λ, τy) =
1

τθ + τs(λ, τy)
(1.14)

Hence, γ(λ, τy) writes as:

γ(λ, τy) =
Li(λ, τy)

Lu(λ, τy)
=

[
1

τx + τθ + τs(λ, τy)
+ c

]
/

[
1

τθ + τs(λ, τy)

]
(1.15)

Corollary 1.1. Holding everything else constant, increasing the fraction of agents

who are informed (λ), or increasing τy, improves the informativeness of the public

signal about the fundamental:

∂τs(λ, τy)

∂τy
> 0;

∂τs(λ, τy)

∂λ
> 0

Proof: See Appendix A.2. □

Corollary 1.2. Suppose private information is free (c = 0). Increasing τy is

welfare-improving:
∂L∗

W

∂τy |c=0

< 0

22Or, equivalently, the precision of the unbiased signal of the fundamental contained in y.
23See the discussion above, or equation (A.4).
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Proof: See Appendix A.3. □

Note: Corollary 1.2 is also proved in Bru and Vives (2002).

Corollary 1.3. Holding everything else constant, increasing the fraction of agents

who are informed (λ), or increasing τy benefits uninformed agents relatively more

than informed agents:
∂γ(λ, τy)

∂λ
> 0;

∂γ(λ, τy)

∂τy
> 0

Proof: See Appendix A.4. □

Remark 1.2. In the limit, as the average action becomes observable with al-

most perfect precision (i.e. τy → ∞), the public signal becomes almost perfectly

informative about the fundamental (i.e. τs(λ, τy) → ∞),24 so Lu(λ, τy) → 0, while

Li(λ, τy) → c, see (1.13) and (1.14).

On the other hand, if the average action is observed perfectly (i.e. y = a), there

is no equilibrium in the second step of the game (for any λ > 0) — it is straightfor-

ward to argue this by contradiction:

• Suppose that informed agents respond to their private signals (ϕ∗
1 ̸= 0). Then,

the public signal perfectly reveals the fundamental, and each informed agent

finds it optimal to not respond to his (noisy) private signal (ϕ∗
1 = 0), hence a

contradiction.

• Suppose that informed agents do not respond to their private signals (ϕ∗
1 = 0).

Then, the average action is uninformative about the fundamental, so each

informed agent finds it optimal to put a strictly positive weight on his private

signal xi (i.e. ϕ
I∗
1 > 0), hence a contradiction.

In what follows, I characterise the equilibrium in the first step of the game. Before

doing so, I assume that the cost of acquiring the private signal is sufficiently low,

such that in the absence of any public information (τy = 0), agents acquire the

private signal:
1

τθ + τx
+ c <

1

τθ
⇔ c <

τx
τθ(τx + τθ)

Otherwise, the unique equilibrium in the first step of the game specifies λ∗ = 0 for

any τy (i.e. agents never become informed). This assumption is maintained through-

24This is easily proved by noting that limτy→∞ ϕI∗1 = 0 which implies that τs(λ, τy) → ∞ as
τy → ∞. See also Bru and Vives (2002).
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out the rest of the paper. Proposition 1.2 characterises the equilibrium in the first

step of the game (for different values of τy) and Corollary 1.4 discusses the welfare

effects of more precise public information provision.

Proposition 1.2. Let τ̂y denote the solution to γ(1, τ̂y) = 1.25 For τy ≤ τ̂y the

unique equilibrium specifies λ∗ = 1. For τy > τ̂y, the fraction of agents who become

informed in equilibrium (λ∗ ∈ (0, 1)) solves γ(λ∗, τy) = 1.26 There is always a unique

equilibrium for any parameter values.

Corollary 1.4. If τy ≤ τ̂y, increasing τy is welfare-improving:
∂L∗

W

∂τy |τy≤τ̂y
< 0. On

the other hand, if τy > τ̂y changing τy does not affect the welfare loss:
∂L∗

W

∂τy |τy>τ̂y
= 0.

Proof: See Appendix A.5 and Appendix A.6. □

Taken together, Proposition 1.2 and Corollary 1.4 state that there is a threshold

level of public information τ̂y, whereby below the threshold (τy ≤ τ̂y) all agents

become informed and more precise public information is welfare-improving, whereas

above the threshold (τy > τ̂y) only a fraction of agents become informed and more

precise public information is no longer welfare-improving. In other words, if there

are at least some agents who do not acquire the private signal in equilibrium, then

increasing the precision with which agents observe the average action will not im-

prove expected welfare.

Equilibria where public information is sufficiently imprecise, such that all agents

acquire the private signal (τy ≤ τ̂y), are similar to the ones in Bru and Vives (2002),

and their properties have already been discussed above. For instance, the first part

of Corollary 1.4 is analogous to Corollary 1.2.

The main result, namely the second part of Corollary 1.4, follows readily after ob-

serving that, for sufficiently high precision of public information (τy > τ̂y), a fraction

less than one of agents become informed in equilibrium (λ∗ < 1),27 and that in such

equilibria, the expected loss of informed agents is necessarily equal to the expected

25We will note in the proof that there is a unique τ̂y which solves γ(1, τ̂y) = 1.
26We will also note in the proof that there is a unique λ∗ which solves γ(λ∗, τy) = 1 for τy > τ̂y.

An analytical expression for λ∗ is provided in Appendix A.6 — see equation (A.22).
27For details, see Appendix A.5.
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loss of uninformed agents — i.e. γ(λ∗, τy) = 1, or equivalently:

1

τθ + τs(λ∗, τy)︸ ︷︷ ︸
Lu(λ∗,τy)

=
1

τx + τθ + τs(λ∗, τy)
+ c︸ ︷︷ ︸

Li(λ∗,τy)

(1.16)

In turn, this requires that the informativeness of the public signal in any such

equilibrium (i.e. τs(λ
∗, τy)) is equal to a constant function of parameters, which is

independent of the precision with which the average action is observed — in order

for agents (in the first step of the game) to be indifferent between acquiring the

private signal and not acquiring it, it must be the case that the informativeness of

the public signal is given by:28

τs(λ
∗, τy) =

[√
τx(4 + τxc)

c
− τx

]
/2− τθ (1.17)

Note that this is independent of τy. It follows from (1.16) and (1.17) that the welfare

loss in any equilibrium in which τy > τ̂y can be expressed as:

L∗
W = λ∗Li(λ

∗, τy) + (1− λ∗)Lu(λ
∗, τy) =

2√
τx(4+τxc)

c
− τx

(1.18)

Which is also independent of τy. Also, note that this is independent of the precision

of the prior from which the fundamental is drawn (τθ). In fact, expected welfare in

all equilibria where public information is sufficiently precise (τy > τ̂y) depends only

on the precision of the private signal (τx), and the cost of acquiring it (c). For more

details, see Appendix A.6. There, I also argue that, because the informativeness of

public information is constant in any equilibrium in which τy > τ̂y (see (1.17)), the

responsiveness of informed agents’ actions to their private signals is also constant in

any such equilibrium. It follows that any increase in the precision with which agents

observe the average action above τ̂y is accompanied by a fall in the fraction of agents

who acquire the private signal (i.e. a lower λ∗), such that the informativeness of the

public signal remains unchanged (for details, see Appendix A.6).

This echoes Grossman and Stiglitz (1980),29 where the informativeness of the price

system is independent of the amount of noise in the asset’s supply (because any

change in the amount of supply noise is accompanied by a change in the fraction of

28i.e. if the informativeness of public information was higher or lower, then agents would no
longer be indifferent between buying the private signal and not buying it.

29For more details, see part 4 in section H and Theorem 4 in their paper.
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traders who acquire private information, such that the informativeness of the price

system remains unchanged). To better understand the parallel, remark that in the

model presented here, it is the noise in the observation of the average action which

prevents agents from perfectly learning the fundamental by observing the public sig-

nal, while in Grossman and Stiglitz (1980) it is the noisy supply of the asset which

prevents the asset price from being perfectly informative.

“An increase in noise increases the proportion of informed traders. At any given

λ,30 an increase in noise reduces the informativeness of the price system; but it in-

creases the returns to information and leads more individuals to become informed;

the remarkable result obtained above establishes that the two effects exactly off-

set each other so that the equilibrium informativeness of the price system is un-

changed.” (Grossman and Stiglitz (1980))

The intuition for the result in Grossman and Stiglitz (1980) is similar to the one

presented above — namely, in order for traders in their model to be indifferent be-

tween becoming informed and not becoming informed, the net benefit of acquiring

private information must be zero, and this only happens when the informativeness

of the price system is a constant function of parameters which is independent of the

amount of noise in the asset’s supply.

Translated to the context of social learning, the result reads as follows:

“An increase in the observation noise of the average action (lower τy) increases

the proportion of informed agents. At any given λ, an increase in noise (lower τy)

reduces the informativeness of the public signal (see Corollary 1.1); but it increases

the returns to information and leads more agents to become informed; the result ob-

tained above establishes that the two effects exactly offset each other so that

the equilibrium informativeness of the public signal is unchanged. (see (1.17))”

As previously mentioned, in any equilibrium in which each agent is indifferent be-

tween acquiring the private signal and not acquiring it, it must be the case that the

informativeness of the public signal is constant, such that the net benefit of becom-

ing informed is zero. In turn, this implies that expected welfare is necessarily the

same in all equilibria in which at least some agents are uninformed. Hence, if the

public signal of the average action conveys information from informed to uninformed

30In their model λ ∈ [0, 1] also denotes the fraction of informed agents.
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agents, then increasing its precision will no longer be welfare-improving.

Remark 1.3. The parallel with Grossman and Stiglitz (1980) emerges because

of the assumptions concerning costly information acquisition, namely that, in the

first step of the game, agents face a binary choice whether to pay a fixed cost to

acquire private information or not.31 However, note that there is no impossibility

result in the model presented here. One could construct such a result (and a more

direct parallel with Grossman and Stiglitz (1980)) by considering a model where the

fundamental is the sum of two components: one which is perfectly learnable at a cost,

and one which is not — the main result would be similar (namely, in all equilibria in

which some agents are informed while others are not, expected welfare is the same).

1.3.1 Relation to models of endogenous central bank infor-

mation

In this section, I discuss the relation between the model and the literature analysing

central bank transparency in endogenous information settings, where the central

bank learns about the state of nature by observing market prices (Morris and Shin

(2005); Baeriswyl (2011); Baeriswyl et al. (2020)). Hence, in this section only, I

assume that the noisy signal of the average action is no longer observable to agents

— instead, there is a policymaker who observes the noisy signal y = a + εy. The

policymaker observes the signal y, constructs an unbiased signal of the fundamental

(s) and simultaneously discloses a public signal z = s+ εz, where εz ∼ N(0, 1/τz) is

distributed independently of all random variables and τz measures the policymaker’s

degree of transparency.32,33 I provide more details about the setup in Appendix A.7.

In such a setting, it is straightforward to prove the following using similar arguments

as in the previous section:

Suppose that private information is free (c=0). Increasing the degree of central

bank transparency (i.e. increasing τz)) improves the informativeness of the public

31The results would be different, for instance, if we allowed agents to pay a higher cost in order
to increase the precision of their private signals.

32The setup is similar to Baeriswyl (2011) — the main difference being that the model here
does not feature strategic complementarities in price-setting (but does feature costly information
acquisition). Also, in Baeriswyl (2011), the central bank announces a semi-public signal, whereas
here it is purely public (i.e. the error term εz is common across firms —modeling public information
disclosures as in Baeriswyl (2011) would not make a difference concerning the main result).

33Note that if the policymaker is perfectly transparent (τz → ∞), the setup is equivalent to the
one from before, when firms directly observed the signal y. If the policymaker is perfectly opaque
(τz = 0), then there is no public signal.
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signal about the fundamental, although there are two opposing effects at play — on

one hand, the central bank discloses its information more precisely (which increases

the informativeness of the public signal about the fundamental); on the other hand,

because firms react to the central bank’s disclosure, the noisy signal of the price level

becomes less informative about the fundamental, so the central bank’s information

about the fundamental becomes less precise.34 Nonetheless, the latter effect never

dominates the former, so a higher degree of transparency always leads the central

bank’s disclosure to be more informative about the fundamental (hence improving

expected welfare).35

Conversely, suppose that private information is costly (c > 0). Further, suppose that

the central bank observes the average action with sufficiently high precision (τy > τ̂y,

where τ̂y is defined in Proposition 1.2). Then, there is a threshold τ̂z, above which

changes in the degree of transparency no longer affect the informativeness of the

central bank’s disclosure about the fundamental. For τz > τ̂z, further increasing the

degree of central bank transparency prompts less firms to become informed in equi-

librium (i.e. leads to a lower λ∗)— in turn, because less firms become informed in

equilibrium, the central bank is more poorly informed about the fundamental (because

the noisy signal of the average action is less informative). The main result of the

paper states that in this case, the direct and indirect effects cancel each other out,

such that the informativeness of the central bank’s disclosure about the fundamental

(and expected welfare) are constant in all equilibria in which τz > τ̂z (or equivalently

λ∗ ∈ (0, 1)).

Relation to Bernanke and Woodford (1997)

Lastly, I consider a setting where the policymaker perfectly observes the average

action (i.e. y = a), while simultaneously disclosing information to agents. This

will allow me to draw a parallel with Bernanke and Woodford (1997), section 1,

as I explain below. In this case, it is easy to note that the policymaker perfectly

learns the fundamental if: i) at least a fraction of agents are informed (λ∗ > 0), ii)

informed agents respond to their private signals (ϕI∗1 ̸= 0).36 In this setting, it is

straightforward to prove the following:

34Essentially, the central bank is disclosing with higher precision a signal of the fundamental
which is less precise.

35Thus, full transparency would be optimal in this context. Note that this is no longer true in
richer settings, for instance featuring strategic complementarities (Baeriswyl (2011)).

36Because then the average action reveals the fundamental, as it aggregates the information
dispersed across informed agents.
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Proposition 1.3. Suppose private information is free (c = 0). The policymaker

can provide almost perfectly precise public information in equilibrium and achieve

welfare losses arbitrarily close to zero.

Conversely, suppose private information is costly (c > 0). There is a lower bound

on the welfare loss in any equilibrium:

LW ≥ 2√
τx(4+τxc)

c
− τx

. (1.19)

The policymaker achieves the minimum welfare loss by disclosing the fundamental

with precision:

τ ∗z =

[√
τx(4 + τxc)

c
− τx

]
/2− τθ. (1.20)

If the policymaker is sufficiently transparent (tz > t∗z), there is no equilibrium.

Sketch of proof: For the case when private information is free (c = 0), there is no

equilibrium in the second step of the game if the central bank is perfectly transpar-

ent. The argument is similar to the one in Remark 1.2 which proves that there is no

equilibrium if the average action is observed without any noise.37 Nonetheless, the

central bank can always decrease the expected welfare loss by increasing its degree of

transparency, and it can achieve welfare losses arbitrarily close to zero by revealing

the fundamental with almost perfect precision.

For the case when private information is costly (c > 0), note that:

• If τz < τ ∗z , all agents acquire the private signal in equilibrium. The policymaker

perfectly learns the fundamental and the welfare loss is strictly decreasing in

τz

• If τz = τ ∗z , each agent is indifferent between acquiring the private signal and not

acquiring it. In equilibrium, any fraction λ∗ ∈ (0, 1] of agents become informed

and the policymaker perfectly learns the fundamental. More specifically, the

equilibrium is:

37More precisely, if other informed agents respond to their private signals (i.e. ϕI∗1 ̸= 0), each
informed agent finds it optimal to not respond to his private signal (because the policymaker learns
the fundamental and the public signal is perfectly informative). If informed agents do not respond
to their private signals (i.e. ϕI∗1 = 0), then each informed agent finds it optimal to respond to his
private signal (because the public signal is uninformative).

17



– λ∗ ∈ (0, 1]

– ϕI∗1 = τx
τx+τθ+τ∗z

– ϕI∗2 = τ∗z
τx+τθ+τ∗z

– ϕU∗ = τ∗z
τθ+τ∗z

• If τz > τ ∗z ,
38 then there is no equilibrium in the first step of the game — this

can be argued by contradiction:

– Suppose a fraction λ∗ > 0 of agents become informed. Then, there is a

unique equilibrium in the second step of the game (in which the average

action reveals the fundamental). Because the policymaker learns the

fundamental and discloses it with precision τz > τ ∗z , the expected loss of

uninformed agents is lower than the expected loss of informed agents, so

no agent would want to acquire the private signal in the first step of the

game (thus λ∗ = 0), hence a contradiction.

– Suppose no agent becomes informed (λ∗ = 0). Then, there is a unique

equilibrium in the second step of the game in which ai = 0∀i. But then

the expected loss of informed agents is lower than the expected loss of

uninformed agents,39 so each agent would want to acquire the private

signal in the first step of the game (λ∗ > 0), hence a contradiction. □

Remark 1.4: The impossibility result above40 emerges because the informativeness

of public information (and hence γ(λ)) are discontinuous in λ at zero (which is

not the case when the policymaker observes the average action with noise, or when

agents directly observe the average action with noise).

Intuitively, the impossibility result above — whereby there is no equilibrium in

the first step of the game for τz > τ ∗z — emerges because if any fraction of agents

become informed, then the informativeness of the policymaker’s disclosure will be

high enough to discourage private information acquisition in the first place.

This is reminiscent of Bernanke and Woodford (1997) where the central bank’s

policy responds to private sector agents’ inflation forecasts. In a similar fashion,

they argue that if the forecasters’ information is free, then the central bank can

“make the variance of inflation arbitrarily close to its minimum value”, whereas if

38But τz is finite, such that the policymaker is not perfectly transparent (otherwise, there is no
equilibrium in the second step of the game).

39Because we assumed that c < τx
τθ(τx+τθ)

.
40Referring to the non-existence of equilibrium when the policymaker is too transparent.
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the forecasters’ information is costly, “there is a limit to [...] the degree to which

the variability of inflation can be reduced, without eliminating the incentive of the

forecasters to gather information” (Bernanke and Woodford (1997)). Proposition

1.3 provides a similar result in a setting where private information is noisy and dis-

persed, and where the central bank discloses information instead of setting policy.41

1.4 Conclusion
This paper analyses the social value of public information in the context of a static

herding model (in the spirit of Bru and Vives (2002)) featuring costly acquisition

of private information. It argues that there is a threshold level of public informa-

tion, whereby below the threshold all agents acquire private information, and more

precise public information is welfare-improving, whereas above the threshold only

a fraction of agents acquire the private signal, and more precise public information

is no longer welfare-improving. In other words, if the public signal of the average

prediction conveys information from informed to uninformed agents, then increasing

its precision will no longer be socially beneficial. I relate the result to Grossman

and Stiglitz (1980) and discuss its implications in the context of the literature on

endogenous central bank information.

41Note that we could easily extend the model by allowing the central bank to control a payoff-
relevant policy instrument.
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2 Optimal Monetary Policy and the Signal Value of

Prices under Rational Inattention

2.1 Introduction
By conducting monetary policy, the central bank influences market prices in line

with its objectives. Concurrently, market prices reveal information to the central

bank about the shifting fundamentals of the economy. The first point should be

uncontroversial, given that most central banks have an explicit inflation target. The

second point has a long tradition within economics, tracing back to Hayek (1945),

who put forward the idea that prices play an important role as aggregators of dis-

persed information.

Hence, by conveying information regarding fundamentals, market prices may in-

form the setting of optimal monetary policy, and a feedback loop may arise whereby

prices and monetary policy mutually influence each other. This feedback loop has

been called the “reflection problem” in deference to Samuelson (1994):

“Monetary policy relies on market prices, and yet monetary policy influences market

prices. This two-way flow introduces a potential channel of circularity whereby

market outcomes reflect central bank actions, which in turn reflect market outcomes.

Paul Samuelson (1994) famously compared this potential circularity with the reactions

of a monkey seeing its reflection in the mirror for the first time. The monkey reacts

to its own reflection in the mirror, unaware that it is seeing its own reflection.”

(Morris and Shin (2018))

I analyse this feedback loop and its implications for optimal monetary policy in

a setup where price-setters are rationally inattentive, in the spirit of Sims (2003). I

study a setting where the central bank extracts information from market prices, while

simultaneously influencing them via the conduct of its policy. Firms can only process

a finite amount of information, so prices are set under imperfect common knowledge

— as is already known this gives rise to real effects of nominal shocks (Woodford

(2001)) and provides scope for monetary policy intervention (Adam (2007)). From

the perspective of firms, monetary policy is part of the environment, so changes

in the central bank’s reaction function affect what firms pay attention to, which in

turn has implications for what information is revealed by their prices in equilibrium.
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Hence the central bank’s information is endogenous, in the sense that it depends

on its policy reaction function (which shapes the equilibrium allocation of attention

and the responsiveness of prices to shocks).

I show that the optimal monetary policy reaction function minimizes the informa-

tion revealed by prices.1 Because the central bank learns from prices, this implies

that the optimal reaction function must minimize the central bank’s own informa-

tion precision about fundamentals (the mechanism behind this will be discussed in

what follows). Consequently, the central bank faces an inherent tension between

stabilizing shocks to fundamentals2 and extracting information about fundamentals

from market prices.3 I also discuss the implications of this tension for optimal policy.

The framework: Besides the informational constraints placed on the central bank

(to be detailed below), I study a somewhat standard static monetary economy. There

is a household that supplies labour and consumes. Production takes place within

a unit mass of monopolistically competitive firms who set nominal prices before

markets open. Each firm faces an idiosyncratic productivity shock. Additionally,

there is a shock to the household’s preferences over consumption and labour which

shifts the efficient level of output in the economy — I refer to this (policy-relevant)

aggregate shock as the fundamental in what follows.

Alongside the private-sector agents, there is a consolidated monetary and fiscal

authority. The fiscal authority subsidises production to control for the distortion

caused by monopolistic competition, while the monetary authority directly controls

nominal demand. Following most of the literature, I abstract from imperfect infor-

mation on the side of the household.

Information frictions: As aforementioned, firms are rationally inattentive a la

Sims (2003). As such, they choose what they pay attention to subject to a con-

straint on information flow. Following Maćkowiak and Wiederholt (2009), I assume

that paying attention to aggregate and idiosyncratic shocks are separate activities4

1This statement (and the conditions under which it is true) will be made precise in the main
text (Corollary 2.1 in section 2.5).

2In order to maximize social welfare (defined in the main text as the expected utility of the
representative household).

3Note that extracting information from prices is not an explicit goal of the central bank —
more precise information (about the fundamental) is beneficial because it allows the central bank
to better tailor monetary policy (and achieve lower welfare losses).

4Such that firms cannot receive any signal which is informative about both aggregate and
idiosyncratic shocks.
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— in our context the idiosyncratic shock is firm-specific productivity, while aggre-

gate shocks comprise nominal demand and the fundamental (i.e. the shock to the

efficient level of output). Besides the fixed capacity to process information and the

independence assumption in the spirit of Maćkowiak and Wiederholt (2009), the

firms’ acquisition of information is flexible, in the sense that firms have access to an

unrestricted set of available signals.

The central bank is fully attentive, but I assume that it cannot directly observe

the efficient level of output (which will be relevant for the optimal setting of the

monetary instrument). Instead, the policymaker learns about the fundamental by

observing the market outcome. More specifically, I follow Baeriswyl et al. (2020) in

assuming that the central bank’s information source is a noisy signal of the price

level. We will also note that observing a noisy signal of real output is information-

ally equivalent to observing a noisy signal of the price level.5

Remark 2.1. Both the policymaker’s and the firms’ information is imperfect and

endogenous, but for different reasons. The policymaker’s information is imperfect

because he cannot directly observe the fundamental (and his only information source

is a noisy signal of the price level); his information is endogenous because the policy

reaction function affects price informativeness.6 The firms’ information is imperfect

because they only have a finite capacity to process information; their information is

endogenous because it depends on what they choose to pay attention to.

These informational assumptions seek to capture some of Hayek’s view of knowl-

edge in society. The contrast between the observability of information to agents —

namely, that firms (and the household) can directly observe shocks, while the central

bank cannot — seeks to capture the idea that private sector agents have knowledge

of the “particular circumstances of time and place”, while the policymaker does not

(which is of central importance in Hayek’s original argument). Because firms are

rationally inattentive, they make idiosyncratic errors when processing information

— the presence of these errors “implies that firms’ decision-makers know neither the

precise values of [shocks], nor exactly what other firms know. Information process-

ing limitations thus reflect Hayek’s view that information exists only in the form of

dispersed bits of incomplete and frequently contradictory knowledge” (Adam (2007)).

5So the policy rule will be similar to a standard Taylor rule.
6By price informativeness I refer to the information (concerning the efficient level of output)

contained in the noisy signal of the price level. I formally define this in the main text.
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Tension between stabilization and learning: This tension occurs when char-

acterising optimal policy in the setup described above and is best understood by

noting some properties of optimal policy and price informativeness:

i) Optimal policy seeks to accommodate shocks to the fundamental — in this regard,

more precise central bank information (about the fundamental) is beneficial as it

allows the central bank to better tailor monetary policy (and achieve lower welfare

losses);7

ii) Changes in policy affect price informativeness if and only if they prompt firms

to pay more or less attention to aggregate shocks. If firms pay more attention to

aggregate shocks, price informativeness increases (and vice-versa);8

iii) Because optimal policy accommodates shocks to the fundamental, it must also

minimize the attention paid by firms to aggregate shocks.

In light of the above, the inherent tension between stabilization and learning should

hopefully be clear — from i), ii) and iii) it follows that optimal policy minimizes

price informativeness (and thereby minimizes the central bank’s own information

precision about the fundamental). If the central bank manages to better stabi-

lize/accommodate shocks to the fundamental, then firms pay less attention to ag-

gregate shocks and price informativeness deteriorates — but then the central bank

is more poorly informed about the fundamental and is less able to accommodate it

(in this sense, the CB’s ability to accommodate shocks is partly self-defeating when

it learns from prices).

Policy implications: Because the firms’ equilibrium allocation of attention de-

pends on the parameters of the environment, so does price informativeness (and the

central bank’s information precision about the fundamental). It follows that the op-

timal degree of policy activism also depends on the parameters of the environment. I

characterise this analytically and argue that policy should respond more strongly to

perceived changes in the price level whenever firms pay more attention to aggregate

shocks in equilibrium (because prices are then more informative about the funda-

mental). Hence, the model provides an informational rationale for increased policy

activism during times of high aggregate volatility (for instance, during recessions).

7See Claim 2.3.
8See (2.33).
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Furthermore, it provides a rationale for the increased flexibility of the price level

— and the consequently muted ability of monetary policy to affect real output9

— during such times. When the volatility of the aggregate fundamental is high,

firms pay more attention to aggregate shocks in equilibrium, so prices respond more

strongly to (both fundamental and) nominal demand shocks — hence the degree of

monetary non-neutrality is lower. This second rationale is also discussed in Song

and Stern (2022). Also, the theory I propose here is consistent with their empirical

evidence documenting firm attention to aggregate shocks (I expand on this below).

2.2 Related literature
Endogenous central bank information: The main questions I seek to answer in

this paper are:

What information do prices reveal? What exactly determines price informative-

ness? If the central bank plays a role in this and it learns about the fundamental

by observing prices, how should optimal policy account for the endogeneity of the

central bank’s information?

These are common questions in the literature on endogenous central bank infor-

mation. Bernanke and Woodford (1997) discuss the existence and uniqueness of

rational expectations equilibria when monetary policy responds to inflation fore-

casts (which are endogenous to policy). In Aoki (2003) the central bank extracts

information about a policy-relevant state from noisy indicators of inflation and out-

put, while influencing these noisy indicators via its policy actions. Nimark (2008)

discusses a setting where the central bank learns about the state of the economy from

bond market prices (which are influenced by the setting of the short-term nominal

interest rate). In Bond and Goldstein (2015), the government extracts information

about a firm’s fundamental from its stock market price (which is endogenous to pol-

icy intervention). Morris and Shin (2005) study how public information released by

the central bank affects price informativeness and, in turn, how this influences the

central bank’s and the firms’ information precision about fundamentals over time.

Baeriswyl (2011) analyses the optimal degree of transparency of central bank com-

munication in a static (micro-founded) setup where the CB’s information source is

a noisy signal of the price level. Baeriswyl et al. (2020) expand on Baeriswyl (2011)

and analyse the effect of policy intervention in a similar setting — this is the most

9Equivalently, a higher degree of monetary neutrality.

24



closely related paper to the model I present here.10

A shared characteristic of the models mentioned above is that private-sector agents

are exogenously informed (in the sense that they take their information as given)11

— hence policy intervention affects price informativeness by changing the way in

which the private-sector agents’ information about fundamentals maps into market

prices. Because in my model firms are rationally inattentive, they choose what in-

formation to process and what information to neglect (so the private-sector agents’

information is endogenous and reacts to changes in policy). In other words, in a

rational inattention setting there is also a mapping from the environment to the

private-sector agents’ information structure — I thus build on this literature by

proposing a novel mechanism whereby changes in policy prompt changes in price

informativeness by affecting the signal structure of (or the information processed

by) private-sector agents,12 and by analysing the implications of this mechanism for

optimal policy.

Remark 2.2. In contrast, consider an example where the central bank’s infor-

mation is imperfect but exogenous. Iovino et al. (2021) emphasize the importance of

modeling incomplete central bank information,13 so they assume that the central bank

observes a noisy, private signal of the state (TFP) each period. The point stressed by

the endogenous central bank information literature is that such a (direct) signal may

not exist14 (i.e. TFP may not be directly observable and may need to be estimated

from other observable data which may be influenced by the central bank’s actions):

“it is not possible to directly observe a productivity shock. Instead, economists es-

timate productivity shocks with models that link output to capital used and hours

worked. These inputs are themselves the results of market interactions, which are

influenced by, among other things, the conduct of monetary policy” (Baeriswyl et al.

(2020)). “Monetary policy operates in an uncertain environment where some state

variables are only observed with error and delay and some variables, like productivity

and thus potential output, are not observed at all. Variables that are not observable

but relevant for monetary policy have to be inferred from variables that are observ-

10The main difference is that firms here are rationally inattentive, whereas in their paper the
firms’ information is exogenous. Also, there are no idiosyncratic shocks in their model.

11The only exception being Bernanke and Woodford (1997) who consider the possibility that
the forecaster’s private information is costly. The way in which information is acquired by firms
here is substantially different.

12Alongside affecting the response of private-sector agents to their information.
13On the grounds of realism, and because this provides a coherent microfoundation for monetary

policy shocks (Iovino et al. (2021)).
14Or that the precision of the (indirect) signal is endogenous to policy.

25



able” (Nimark (2008)).

Optimal monetary policy and rational inattention: Conceptually, the model

relates to papers studying optimal monetary policy when price setters have im-

perfect information (see for instance Adam (2007), Ball et al. (2005), Paciello and

Wiederholt (2013), Iovino et al. (2021) among others). The microfoundations of the

model are closely related to Adam (2007)15. The main difference is that the central

bank in his model is perfectly informed, while the central bank here is imperfectly

informed and learns from prices. I also extend the model of Adam (2007) by intro-

ducing idiosyncratic productivity shocks and argue that this modelling assumption

has important implications.16 The firms’ problem is similar to that in Maćkowiak

and Wiederholt (2009).17

Note that the central bank’s information is exogenous in the models mentioned

above. As far as I know, the model I present here is the only one where firms are

rationally inattentive and where the central bank learns by observing the market

outcome — the paper thus provides a link between the literature on optimal mon-

etary policy when firms are rationally inattentive and the literature on endogenous

central bank information.

More recent contributions (within the macro rational inattention literature) pro-

vide both conceptual and empirical support to the theory I propose here.

Afrouzi and Yang (2021) develop an attention-driven theory of pricing where the

slope of the Phillips curve and the degree of monetary non-neutrality respond en-

dogenously to the conduct of monetary policy (and they argue that more hawkish

policy flattens the Phillips curve and leads to higher monetary non-neutrality). I

present a similar result in a static setting18 and argue that price informativeness,

the degree of monetary non-neutrality, and the slope of the Phillips curve are all

innately linked.19

Song and Stern (2022) develop a text-based measure of firm attention to macroeco-

nomic news and provide evidence that firm attention is countercyclical, in the sense

15As well as Paciello and Wiederholt (2013).
16See section 2.4.
17In fact, exactly equivalent following Proposition 2.1.
18In my framework stabilization policy also flattens the Phillips curve and increases the degree

of monetary non-neutrality — see section 2.4.1.
19See Remark 2.4.
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that the average amount of attention paid by firms to aggregate shocks is higher

during recessions. They argue that this is the case because firms face higher aggre-

gate uncertainty during recessions (and thus find it optimal to pay more attention to

macroeconomic variables). They also propose this as a mechanism behind the state

dependency of monetary policy as documented by Tenreyro and Thwaites (2016)

who estimate weaker responses of real output to monetary policy in recessions than

in expansions. A similar mechanism occurs in the model I present here — further-

more, the optimal degree of policy activism is also state-dependent for the same

rationale (because firms pay more attention to aggregate shocks in recessions, prices

are more informative so the central bank finds it optimal to respond more strongly

to perceived changes in the price level).

Paper contribution: The main contribution of the paper is that it provides a

link between the literature on endogenous central bank information and the litera-

ture studying optimal monetary policy when firms are rationally inattentive.

In doing so, it also resolves an issue arising in Baeriswyl et al. (2020). In their

model, if the setting of the monetary policy instrument is observable (which they

believe to be “realistic”), changes in the central bank’s reaction function have no im-

plications for either welfare or price informativeness — see section 4 in their paper.20

The model I present here effectively builds on their signaling action framework, but

relaxes the assumption that the firms’ information is exogenous (instead assuming

that firms are rationally inattentive). It is also worth noting that besides taking a

stance on why there is imperfect information in the economy, I do not make any dif-

ferent assumptions regarding the observability of information relative to Baeriswyl

et al. (2020) –– more specifically, I also assume that relevant fundamentals are ob-

servable to firms (and the household), but not to the central bank.

Although firms can also observe the setting of the policy instrument here, they

cannot pay perfect attention to it (thus policy does not have the same signaling role

as in Baeriswyl et al. (2020), section 4). Also, changes in policy prompt changes

20“Whereas the central bank finds it optimal to take an action without disclosing any informa-
tion [. . . ], one may wonder whether it is realistic to keep an action secret from the public. This
section considers a more realistic operational framework where taking an action signals what the
central bank believes about the state of the economy [. . . ]” Baeriswyl et al. (2020). The assumption
that the setting of the monetary instrument is observable to firms also concords with Maćkowiak
and Wiederholt (2009) who “think that [in] a convincing model of real effects of monetary policy
due to imperfect information [. . . ] information concerning the current state of monetary policy
must be publicly available”.
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in the firms’ allocation of attention — hence changes in the CB’s reaction function

have implications for both welfare and price informativeness here. Furthermore, the

mechanism I discuss — whereby changes in policy affect price informativeness by

influencing the firms’ allocation of attention — is broadly consistent with insights

from the macro rational inattention literature, although the model I present here is

static and stylised.

Outline: The rest of the paper is organized as follows. In section 2.3, I intro-

duce the framework. In section 2.4, I analyse the role of policy intervention in a

setting where the central bank’s information is exogenous (i.e. the central bank does

not learn from prices); then, I define price informativeness and study its determi-

nants. In section 2.5 I analyse optimal policy in a setting where the central bank’s

information is endogenous (i.e. the central bank learns from prices). Section 2.6

discusses extensions and section 2.7 concludes. All proofs are collected in section

2.8.

2.3 Model setup
The economy is populated by a representative household, a unit mass of firms, a

fiscal authority and a central bank.

Household: The household’s preferences over consumption and labour are given

by:

U(C,L) =
C1−γ − 1

1− γ
− V

L1+ψ

1 + ψ
(2.1)

Where L denotes the household’s labour supply, the parameters γ and ψ regulate

the curvature of the utility function with respect to consumption and labour, and

V is a stochastic labour supply shock, whose log is mean-zero normally distributed

ln(V ) ∼ N(0, σ2
v). Variations in V will shift the efficient level of output in the econ-

omy.

C is a composite good defined by the Dixit-Stiglitz aggregator:

C = (

∫ 1

0

C
1

1+Λ

i di)1+Λ (2.2)

Where Ci denotes consumption of good i and (1+ 1
Λ
) is the elasticity of substitution

between different goods. The representative household’s budget constraint is given

by: ∫ 1

0

PiCi = WL+Π− T (2.3)
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Where Pi is the price of good i, W is the wage rate, Π are aggregate profits made

by the firms and T is a tax levied by the fiscal authority. Denote by P the price

index which solves PC =
∫ 1

0
PiCidi, i.e.:

P = (

∫ 1

0

P
− 1

Λ
i di)−Λ (2.4)

The household knows V and it takes as given the prices of all goods, as well as the

wage rate, the lump sum tax and the firms’ profits. It chooses a consumption vector

(specifying how much it consumes of each variety) and how much labour to supply,

in order to maximize utility (2.1) subject to the budget constraint (2.3).

Firms: Firm i produces good i according to the production function:

Yi = AiL
α
i (2.5)

Where Yi is output, Li is labour input and Ai is firm-specific productivity. The

log of each firm’s productivity is independently distributed according to ln(Ai) ∼
N(0, σ2

A).

Each firm sets its price and commits to producing any quantity demanded at that

particular price. Its nominal profits are given by:

Πi = (1 + ts)PiYi −WLi (2.6)

Where ts is a per unit production subsidy paid by the fiscal authority. Each firm

sets its price to maximize expected profit conditional on its information set — this

is presented in more detail in what follows.

Central bank: The central bank directly controls nominal spending:

M = PC (2.7)

WhereM denotes the central bank’s policy instrument (which should be interpreted

as nominal demand or the money supply).21 The central bank (henceforth, CB) is

imperfectly informed (about V ) and commits to a policy rule specifying how it sets

the money supply conditional on its private information — this will be described in

21Note that this can be microfounded by introducing a (binding) cash-in-advance constraint for
the household.
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more detail in what follows. The CB will choose the policy rule which maximizes

the expected utility of the household.

Fiscal authority: The sole purpose of the fiscal authority is to control for the

distortion caused by monopolistic competition. By taxing the household and ap-

propriately subsidising production (setting ts = Λ), it ensures that under perfect

information firms do not charge a markup above marginal cost,22 such that the

equilibrium is first-best. This is standard in the literature (see, for instance, Adam

(2007), or Paciello and Wiederholt (2013)). In this model, Λ is constant, so there

are no mark-up shocks.23

Deterministic equilibrium: In what follows we will work with an approxima-

tion of the model around a deterministic equilibrium (in which M = 1, V = 1 and

Ai = 1∀i). More specifically, we will work with log-quadratic approximations of the

agents’ payoff functions and log-linear approximations of the equilibrium conditions.

Note that this is common practice in the literature on optimal monetary policy —

see, Adam (2007), Ball et al. (2005), Paciello and Wiederholt (2013) among others.

In the deterministic equilibrium, all firms set the same price Pi = P = 1
C
, and

the household consumes all goods in equal amounts:

Ci = C = α1/(γ+ 1+ψ
α

−1) (2.8)

For reference, this is derived in Appendix 2.8.1. In what follows, lower-case Latin

letters denote variables expressed in terms of log-deviations from the deterministic

equilibrium — i.e. c = ln
(
C
C

)
, pi = ln

(
Pi
P

)
, p = ln

(
P
P

)
etc. I next derive log-

quadratic approximations of the CB’s and the firm’s objective functions around this

deterministic equilibrium (and describe the information structure).

Welfare (CB’s objective): Our welfare criterion will be the household’s expected

utility — as such, we think of the optimal allocation as the one which maximizes

the household’s utility given the economy’s technological constraints. Noting that at

any feasible allocation the household needs to supply the labour required to produce

22Under imperfect information, it implies that firms set prices equal to their expectation of
marginal cost.

23In the language of Paciello and Wiederholt (2013), this will imply that there are no shocks
which cause inefficient fluctuations under perfect information.
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the consumption goods:

L =

∫ 1

0

(
Ci
Ai

)(1/α)

di (2.9)

We can define the optimal allocation as the one which solves:

max
Ci∀i

C1−γ − 1

1− γ
− V

1 + ψ

[∫ 1

0

(
Ci
Ai

)(1/α)

di

]1+ψ
(2.10)

Maximizing the expression above yields that optimal consumption of the composite

good depends on the realization of V :

C∗ =
(α
V

)1/(γ+ 1+ψ
α

−1)

x constant︸ ︷︷ ︸
≈1(up to FOA)

(2.11)

While the optimal consumption mix depends on the realization of firm-specific pro-

ductivity shocks:

Ĉ∗
I :=

C∗
i

C∗ =

[
A

1/(1+Λ−α)
i∫ 1

0
A

1/(1+Λ−α)
i di

]1+Λ

(2.12)

Aggregate output and consumption should be higher whenever the disutility of

labour (V ) is lower.24 Also, the household should optimally consume more of the

goods produced by firms with above-average productivity (as they require relatively

less labour in production).

Note that consumption is efficient in the deterministic equilibrium. Expressing

(2.11) and (2.12) in terms of log-deviations from the deterministic equilibrium yields:

c∗ = − 1

γ + 1+ψ
α

− 1
v (2.13)

ĉi
∗ =

1 + Λ

1 + Λ− α
ai (2.14)

Our measure of welfare is a log-quadratic approximation of the utility of the house-

hold around the deterministic equilibrium. I show in appendix 2.8.1 that the welfare

loss is increasing in the distance between the optimal consumption vector (charac-

terised by c∗ and ĉi
∗ for all i) and the actual consumption vector — more precisely,

utility at any feasible allocation (c, ĉi) can be approximated as:

24This is the same as in Adam (2007) or Baeriswyl et al. (2020).
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Ũ(c, ĉi) = Ũ(c∗, ĉi
∗)− η(c− c∗)2 − ζ

∫ 1

0

(ĉi − ĉi
∗)2di (2.15)

Where η =
1

2
C

1−γ
(
1 + ψ

α
− 1 + γ

)
, ζ =

1

2
C

1−γ
[
1 + Λ− α

α(1 + Λ)

]
And where Ũ(c∗, ĉi

∗) denotes (approximate) utility evaluated at the optimal con-

sumption vector. The first negative term captures losses in utility due to a subop-

timal consumption level (i.e. the household consumes too much or too little of the

composite good, relative to the optimum), while the second term captures losses in

utility due to a suboptimal consumption mix (among the different goods produced

by firms). As previously mentioned, the optimal consumption level depends on the

realization of v, while the optimal consumption mix depends on the realization of

the a′is (as per equations (2.13) and (2.14)).

Central bank’s information: I first solve the model in a setup where the CB’s

information is exogenous (i.e. the CB does not learn from prices) — in this setting,

I analyse optimal monetary policy and its implications for price informativeness.

After characterising the equilibrium under exogenous CB information, I analyse the

reflection problem in section 2.5.

As such, for now I assume that the CB learns about the efficient level of output

by observing an exogenous signal x = c∗ + εx, where εx ∼ N(0, σ2
x) is independent

of all other random variables. The CB commits to a policy rule which maps signal

realizations to the money supply:

m = ρx (2.16)

Where ρ denotes the policy coefficient, which is chosen by the CB to maximize

expected welfare. Allowing the CB to commit to a policy rule such as (2.16) is com-

mon practice in the literature — see, for instance, Adam (2007), James and Lawler

(2011), Baeriswyl et al. (2020).

Firms’ objective: It is standard to show25 that each firm’s problem of choosing

25See Appendix 2.8.1.
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its price (pi) to maximize expected profits is equivalent to:

min
pi

1

2
E
[
(pi − p̂i)

2
∣∣Si]

Where: p̂i = r(m− c∗) + (1− r)p− zi

p =

∫ 1

0

pidi

zi = ϕai

(2.17)

And where r =
(
γ − 1 + ψ+1

α

)
/
(
1+Λ−α
αΛ

)
and ϕ = Λ

1+Λ−α .

Maximizing a log-quadratic approximation of the profit function around the de-

terministic equilibrium (with respect to the price pi) is equivalent to minimizing the

objective in (2.17). Si denotes firm i’s information set (to be introduced in the next

subsection).

Each firm incurs quadratic profit losses whenever its price (pi) differs from the profit-

maximizing price (p̂i), which depends on nominal demand (m), the fundamental (c∗),

the aggregate price level (p) and the firm’s productivity (ai). The sensitivity of firm

i’s optimal price to nominal demand and the fundamental is captured by r, while

the sensitivity of firm i’s optimal price to its productivity is given by ϕ. Noting that

p =
∫ 1

0
pidi, we can also interpret (1− r) as the degree of strategic complementarity

in price-setting. In line with the literature, I assume r ∈ (0, 1), such that prices are

strategic complements.

Firms’ information: Firstly, let us address what is observable to firms when

setting prices. In this regard, I depart from the macro literature on rational inatten-

tion26 in assuming that the price level is not observable to firms. I only make this

departure to facilitate comparison with the literature on the signal value of prices,

where firms do not observe the price level (or each other’s prices).27 Relaxing this

(i.e. allowing firms to observe the price level) does not affect the results in any way.

26For instance, Maćkowiak and Wiederholt (2009), Paciello and Wiederholt (2013).
27In Baeriswyl (2011), Baeriswyl et al. (2020), only the policymaker gets to learn by observing

a noisy signal of the price level — in fact, if the noisy signal of the price level were to be made
public, the central bank would not have any (private) information which is not already known by
firms, so there would be no role for the policymaker in the model (he could not reduce the welfare
loss). Note that a similar issue arises in Morris and Shin (2005). This is not the case here, as firms
are rationally inattentive (and it turns out to be irrelevant whether we assume the price level (or
a noisy signal of it) to be observable or unobservable to firms).
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With this in mind, when choosing its price, each firm can observe the realization of

its productivity (ai), the efficient level of output (c∗), as well as the setting of policy

(m). We will analyse price-setting (conditional on an information structure) as a

beauty contest game in the spirit of Morris and Shin (2002).

Information processing: As previously mentioned, firms are rationally inatten-

tive a la Sims (2003). As such, we treat them as finite capacity information channels

which can only process a certain amount of information. Information processing is

quantified as reduction in uncertainty, where uncertainty is measured by entropy.28

For the case of Gaussian random variables, entropy has a simple representation.

If Q is an n-dimensional random vector Q = (Q1, Q2, ..., Qn)
T whose distribution is

multivariate normal with covariance matrix ΩQ, its entropy is given by

H(Q) =
1

2
log2[(2πe)

ndetΩQ]

And only depends on the number of random variables and their covariance matrix.

Similarly, conditional uncertainty is measured by conditional entropy — if the vector

Z = (Z1, Z2, ..., Zm)
T also has a multivariate normal distribution, the conditional

entropy of Q given Z is:

H(Q|Z) = 1

2
log2[(2πe)

ndetΩQ|Z ]

Where ΩQ|Z denotes the conditional covariance matrix of Q given Z.

As such, reduction in uncertainty is measured as the difference between uncon-

ditional and conditional entropy — this is also known as the mutual information

between Q and Z:

I(Q,Z) = H(Q)−H(Q|Z)

The information processing constraint then places an upper bound on the mutual

information between the vector of variables which the decision-maker is interested

in learning about, and the vector of signals that the agent receives (to learn about

the variables of interest).

28Formally, the entropy of a continuous random variable X with density function p(x) is defined
as: H(X) = −

∫∞
−∞ p(x)log2(p(x))dx, where the convention is to take p(x)log(p(x)) = 0 when

p(x) = 0.
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Consider firm i and suppose that firms process information before setting prices29

— the random variables which firm i is interested in learning about are: the effi-

cient level of output (c∗), the money supply (m) and its firm-specific productivity

(ai).
30 Define the vector Xi = (c∗,m, ai)

T and suppose that firm i’s information set

is generated by observing a signal vector Si = (si,1, si,2, ..., si,K)
T . The information

processing constraint restricts the mutual information between Xi and Si:

I(Xi, Si) ≤ κ⇔ H(Xi)−H(Xi|Si) ≤ κ

Where κ > 0 denotes the firms’ information processing capacity (assumed to be

the same for all i). Intuitively, the information processing constraint places a limit

on how much uncertainty about the random vector Xi can be reduced through the

observation of the signal vector Si. If κ = 0, firms cannot receive any extra infor-

mation about the variables of interest, so their posteriors about c∗,m and ai are the

same as the priors. If κ→ ∞, firms can perfectly learn the realizations of c∗,m and

ai. For positive, finite κ (which I assume here), firms imperfectly learn about the

realizations of the variables of interest.

In a similar fashion to Maćkowiak et al. (2018), I assume that each signal in the

signal vector Si can be about a different linear combination of shocks. Further, I

impose some additional conditions following Maćkowiak and Wiederholt (2009):

1) All signals received by firms are Gaussian;

2) All noise in signals is idiosyncratic;

3) The signal vector Si can be partitioned into one subvector that only contains

information about aggregate shocks and another subvector that only contains in-

formation about idiosyncratic shocks, i.e. we can write Si = (SAi , S
I
i )
T , where

{SAi ,m, c∗} and {SIi , ai} are independent (this is referred to as the independence

assumption in what follows).

29Such that the price level is not observable to firms, as previously discussed.
30Technically, this is only true for ρ ̸= 0. If the CB does not intervene (i.e. if it sets ρ = 0), the

money supply is deterministic, so firms only track the efficient level of output (c∗) and firm-specific
productivity (ai).
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Note that all conditions above are static counterparts of the assumptions in Maćkowiak

and Wiederholt (2009). Condition 1 is just for ease of exposition — Gaussian sig-

nals are optimal because the firms’ loss function is quadratic and the variables being

tracked are also Gaussian.31 Condition 2 reflects the idea that the information fric-

tion here is the firms’ limited attention rather than the availability of information.

Condition 3 captures the idea that paying attention to aggregate shocks and paying

attention to idiosyncratic shocks are separate activities. This is not without loss of

generality — the signal structure chosen by firms in equilibrium in the absence of

the independence assumption will be different (I relax this assumption and discuss

its implications in section 2.6).

Each firm chooses the properties of its signal vector Si subject to the informa-

tion processing constraint and the conditions above. As each signal can be about a

different linear combination of shocks, we can represent the firm’s signal vector as:

Si = FiXi + εi

Where Fi is a Ki x 3 matrix of coefficients and εi = (ε1,i, ε2,i, ..., εK,i)
T is a Gaussian

white noise random vector (independent of Xi) with covariance matrix Ωεi. As pre-

viously mentioned, Xi = (c∗,m, ai)
T . Choosing the properties of the signal vector Si

entails specifying the number of signals to observe (Ki), the content of these signals

(Fi) and the covariance matrix of noise in the signals (Ωεi).

Taking into account that each firm sets its price optimally conditional on the infor-

mation it receives (i.e. it chooses pi to solve (2.17)), we can write firm i’s problem

when choosing its allocation of attention as:

min
Ki,Fi,Ωεi

1

2
var[r(m− c∗) + (1− r)p− zi|Si]

Subject to: Si = FiXi + εi,

εi ∼ N(0,Ωεi),

I(Si, Xi) ≤ κ,

Independence assumption.

For a more precise formulation of the firm’s information choice problem see Ap-

pendix 2.8.2.32 When choosing its allocation of attention, each firm takes as given

31See Maćkowiak and Wiederholt (2007), technical appendix for a proof.
32As will become clear, the signal vectors chosen in equilibrium have a simple representation (see

Proposition 2.1), so I leave some details regarding the determination of the equilibrium allocation
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the CB’s reaction function and the other firms’ allocations of attention. It antici-

pates how it will optimally set its price conditional on the information it receives33

and takes into account how its decision regarding the allocation of attention will

affect its profit losses.

Timing:

1. CB chooses its reaction function (ρ)

2. Firms choose their allocations of attention (Ki, Fi,Ωεi)

3. Shocks (v and the ai’s) are realized

4. CB receives its information (x) and sets policy (m) according to the policy

rule (m = ρx)

5. Each firm receives its information (Si) and sets its price (pi)

Equilibrium definition: An equilibrium specifies: the CB’s reaction function

(ρ∗), an allocation of attention for each firm (K∗
i , F

∗
i ,Ω

∗
εi), and a pricing rule for

each firm (mapping signal realizations to the firm’s price), such that ρ∗ maximizes

expected welfare, each firm’s price is equal to its conditional expectation of the profit-

maximizing price (p∗i = E[p̂i|Si]) and each firm’s allocation of attention minimizes

its expected profit losses subject to the information processing constraint and the

independence assumption. As previously mentioned, when choosing its allocation of

attention, each firm takes as given the other firms’ allocations of attention and the

CB’s reaction function, and it anticipates how prices will be set in equilibrium (in

step 5) — this allows us to get an expression for firm i’s expected profit losses as a

function of its allocation of attention (in step 2). Following the literature, I analyse

symmetric equilibria in which all firms choose the same allocation of attention:

(K∗
i , F

∗
i ,Ω

∗
εi) = (K∗, F ∗,Ω∗

ε)∀i.

Equilibrium content of signals: Before proceeding to derive the equilibrium, it

is useful to simplify the analysis regarding the equilibrium allocation of attention.

Generally, if a rationally inattentive agent with a quadratic loss function tracks a

Gaussian optimal action, it is without loss of generality to consider signals of the

of attention to the Appendix.
33It also anticipates how other firms will set prices (conditional on their information) in equi-

librium. We will also note that given a symmetric allocation of attention for all other firms j ̸= i,
there is a unique price-setting equilibrium, so each individual firm i can compute the price level as
a linear combination of m and c∗ when choosing its allocation of attention.
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form “optimal action plus noise”. Given that firms are constrained to learn about

aggregate and idiosyncratic shocks separately (by the independence assumption),

it should be without loss of generality to restrict our attention to two-dimensional

signal vectors (as in Maćkowiak and Wiederholt (2009)) — one signal of the form

“optimal response of price to aggregate shocks plus noise” and one signal of the

form “optimal response of price to firm-specific shock plus noise”. The content of

the latter is equal to zi in (2.17). The content of the former is more complicated

and depends on the price level, which is an endogenous variable. In this respect,

let us denote by q = m− c∗ the equilibrium response of the price level to aggregate

shocks under perfect information — observing a signal of the form “q plus noise” is

equivalent (in any symmetric equilibrium) to observing a signal of the form “optimal

response of price to aggregate shocks plus noise”.34

Proposition 2.1. Without loss of generality, we can restrict attention to equilibria

in which each firm observes two private signals: one about the composite aggregate

shock q = m − c∗ (si,1 = q + εi,1 = m − c∗ + εi,1) and one about its idiosyncratic

shock (si,2 = zi + εi,2), where εi,1 and εi,2 are drawn independently for each i from

the distributions N ∼ (0, σ2
1) and N ∼ (0, σ2

2) respectively.
35

Proof: See Appendix 2.8.2. □

Proposition 2.1 is useful because it simplifies the analysis regarding the equilib-

rium allocation of attention — now we only have to look for the variance of noise

in private signals (σ2
1 and σ2

2) which is consistent with equilibrium. In turn, this is

equivalent to determining how much attention firms pay to aggregate and idiosyn-

cratic shocks in equilibrium — given Proposition 2.1, the information processing

constraint rewrites as:

I[(m, c∗)′, SAi ]︸ ︷︷ ︸
κA

+ I[zi, S
I
i ]︸ ︷︷ ︸

κI

≤ κ ⇐⇒ 1

2
log2(1 +

σ2
q

σ2
1

)︸ ︷︷ ︸
κA

+
1

2
log2(1 +

σ2
z

σ2
2

)︸ ︷︷ ︸
κI

≤ κ (2.18)

Where κA and κI denote how much attention firm i pays to aggregate and idiosyn-

34Because in equilibrium the price level will be proportional to q — a similar observation is
made in Maćkowiak and Wiederholt (2009), where it is noted that observing a signal of nominal
demand, or a signal of a linear combination of nominal demand and the price level is equivalent.
Note that the problem here is more complicated because there are two aggregate shocks (to both
nominal demand and the efficient level of output).

35i.e. we only need to analyse equilibria in which: K = 2, F =

(
−1 1 0
0 0 ϕ

)
,Ωε =

(
σ2
1 0
0 σ2

2

)
.
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cratic shocks respectively.36 Clearly, there is a one-to-one mapping between σ2
1 and

kA (as well as between σ2
2 and kI) — in what follows, I present results in terms

of the amount of attention that firms pay to aggregate and idiosyncratic shocks in

equilibrium (rather than the variance of the noise terms in private signals).37

Some parts of the proposition are straightforward — for instance, that we can re-

strict attention to signal vectors featuring only one signal concerning the idiosyn-

cratic shock. If the firm were to observe multiple signals about zi, these would be

equivalent38 to a single signal with a higher precision (the same goes for observing

multiple signals about m− c∗).39

The equilibrium content of signals containing information about aggregate shocks is

less trivial because firms track two correlated aggregate variables (the efficient level

of output (c∗) and the money supply (m))40 and because of the strategic complemen-

tarity in price-setting. I show that in any symmetric equilibrium firms only learn

about the linear combination m − c∗ (i.e. in equilibrium, firms do not observe any

signals concerning aggregate shocks of the form si = d1m+d2c
∗+εi with d1 ̸= −d2).

Remark 2.3. Following Proposition 2.1, to fully characterise the equilibrium al-

location of attention, it suffices to find the pair (κA, κI) which is consistent with

equilibrium. More generally, the approach to determining the equilibrium allocation

of attention is the following: first, note that for any (κA, κI), it is without loss of

generality to restrict attention to information structures as described in Proposi-

tion 2.1; then (later on, in Claim 2.2), find the (κA, κI) which is consistent with

equilibrium.

36I have dropped i subscripts because the allocation of attention is symmetric.
37To facilitate comparison of my results with Maćkowiak and Wiederholt (2009) — following

Proposition 2.1, the firms’ problem here turns out to be equivalent to the one in their paper.
38i.e. would use up the same amount of processing capacity and lead to the same posterior

uncertainty about zi.
39Thus, the number of signals received by firms in equilibrium is indeterminate. However, all

equilibria are equivalent, in the sense that firms face the same posterior uncertainty about shocks
in any equilibrium, and all equilibria are associated with the same distribution of prices across
firms — hence, the “without loss of generality” part at the beginning of the proposition.

40For any ρ ̸= 0. For ρ = 0, i.e. if the CB does not change the money supply (relative to the
deterministic equilibrium), firms only track the efficient level of output.
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2.4 Equilibrium when central bank information is ex-

ogenous
In this section, I derive the equilibrium behaviour of firms and optimal monetary

policy when the CB’s information is exogenous. Then, I analyse the determinants

of price informativeness. Putting everything together, we can express the CB’s

problem as:

min
ρ
E[(c− c∗)2 + δ

∫ 1

0

(pi − p+ zi)
2di] (2.19)

Subject to:

c = m− p (2.20)

m = ρx (2.21)

p =

∫ 1

0

pidi (2.22)

pi = E[p̂i|Si] (2.23)

p̂i = r(m− c∗) + (1− r)p− zi (2.24)

Si =

(
m− c∗ + εi,1

zi + εi,2

)
(2.25)

Ωεi =

(
σ∗
1 0

0 σ∗
2

)
(2.26)

(σ∗
1, σ

∗
2) = argmax

σ1,σ2

1

2
E
[
(pi − p̂i)

2
]
subject to (2.20)-(2.26) and (2.18) (2.27)

Where:

c∗ = − 1

γ + 1+ψ
α

− 1
v (2.28)

zi =
Λ

1 + Λ− α
ai (2.29)

δ =
1

γ + 1+ψ
α

− 1

[
1 + Λ− α

α(1 + Λ)

](
1 + Λ

Λ

)2

> 0 (2.30)

Substituting the log-linearized demand function for good i into (2.15) and using

(2.22) gives an objective function equivalent to (2.19). (2.20) follows from the def-

inition of nominal demand. (2.21) is the CB’s policy rule. (2.22) follows from
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log-linearizing the price index. (2.23) states that each firm sets its price equal to

its conditional expectation of the profit-maximizing price, which is characterised in

(2.24). (2.25) and (2.26) characterise firm i’s signal vector following Proposition

2.1, and (2.27) states that each firm chooses its allocation of attention optimally to

minimize expected profit losses.

I derive the equilibrium by backward induction. Hence, I first characterise the firms’

price-setting behaviour conditional on the CB’s policy (ρ) and a symmetric alloca-

tion of attention (Claim 2.1).41 Then, in Claim 2.2, I determine the equilibrium

allocation of attention given the CB’s policy ρ.42 Lastly, in Claim 2.3, I characterise

optimal policy.43

Claim 2.1. (Equilibrium price-setting)

Fix any ρ and any symmetric allocation of attention (κi,A = κA and κi,I = κI∀i).
In equilibrium, prices are set according to:

p∗i =
rβ1

1−(1−r)β1 si,1 − β2si,2∀i

Where β1 = 1 − 2−2κA and β2 = 1 − 2−2κI denote the Kalman-gains of signals si,1

and si,2 respectively (i.e. E[q|Si] = β1si,1 and E[zi|Si] = β2si,2).

Proof. See Appendix 2.8.3.44 □

Price-setting conditional on a symmetric allocation of attention is equivalent to

a beauty contest game with an exogenous, Gaussian information structure, similar

to Morris and Shin (2002). This guarantees the existence and uniqueness of the

linear equilibrium in Claim 2.1. It also explains why the equilibrium weight given

to the private signal si,1 is lower than the signal’s Kalman-gain for any r ∈ [0, 1):

rβ1
1− (1− r)β1

< β1

For smaller values of r (i.e. a higher degree of strategic complementarity in price-

setting), higher-order beliefs about q increasingly influence firm i’s optimal price,

as firms attach greater weight to the beliefs about other firms’ beliefs about q, in-

41Step 5 in the timing of events.
42Step 2 in the timing of events.
43Step 1 in the timing of events.
44Given Proposition 2.1, the argument is standard in the literature — it follows Morris and

Shin (2002), section D, and is virtually equivalent to the one in Adam (2007), section 5.
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creasing the relative response to public information (i.e. the prior mean of q, which

is equal to zero and common knowledge among firms) and decreasing the relative

response to private information (signals si,1). In turn, this lowers the responsiveness

of the price level to aggregate shocks and amplifies the real effects of nominal shocks

due to imperfect information.45

Claim 2.2. (Equilibrium allocation of attention)

Fix any policy reaction function ρ.46 The firms’ equilibrium allocation of attention

is given by:

κ∗A =


κ if rσq

σz
≥ 2−κ + r(2κ − 2−κ)

1
2
log2(1− 1

r
+ 2κσq

σz
) if rσq

σz
∈ (2−κ, 2−κ + r(2κ − 2−κ))

0 if rσq
σz

≤ 2−κ

κ∗I = κ− κ∗A

Proof. See Appendix 2.8.3. □

The equilibrium above is equivalent to the one in Maćkowiak and Wiederholt (2009).

As such, the intuition behind it and its interpretation are familiar. In equilibrium,

firms pay more attention to shocks which are more volatile. Increasing the variance

of the idiosyncratic shock (σ2
z) relative to the variance of the aggregate shock (σ2

q )

will lead firms to pay more attention to the idiosyncratic shock (and vice-versa).

Consequently, prices will also respond more strongly to the idiosyncratic shock and

less strongly to the aggregate shock. Note that the variance of the aggregate shock

here depends on the setting of policy — in particular, if the CB stabilizes shocks and

reduces the variance of aggregate shocks to optimal prices (σ2
q ), the firms’ allocation

of attention will shift towards idiosyncratic shocks.

The degree of strategic complementarity in price-setting is also relevant in determin-

ing the equilibrium allocation of attention, as it induces strategic complementarity

in information acquisition — if all firms pay more attention to the aggregate shock

q, the price level will respond more strongly to it, so each individual firm will find it

45This is standard — see Woodford (2001), Adam (2007), Maćkowiak and Wiederholt (2009)
among others.

46And note that this pins down the variance of q: σ2
q = (ρ− 1)2σ2

c∗ + ρ2σ2
x.
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optimal to pay more attention to q.47 Thus, pinning down the equilibrium amounts

to solving a fixed point problem — at the fixed point, the amount of attention

allocated to aggregate shocks is (weakly) decreasing in the degree of strategic com-

plementarity.48

Claim 2.3. (Optimal policy)

Optimal policy seeks to accommodate shocks to the efficient level of output — i.e. it

minimizes the variance of the aggregate shock (σ2
q) conditional on the CB’s infor-

mation:

ρ∗ =
σ2
c∗

σ2
c∗+σ

2
x

In equilibrium, the variance of the aggregate shock is given by:

σ2∗
q =

σ2
c∗σ

2
x

σ2
c∗+σ

2
x

Proof: See Appendix 2.8.3. □

Welfare losses occur solely due to the firms’ limited capacity to process informa-

tion. By stabilizing aggregate shocks, the central bank simplifies the firms’ tracking

problem — in turn, this leads prices to better align with shocks and consumption

to be more efficient. Accommodating shocks to the efficient level of output is some-

what standard in the literature on optimal monetary policy, in settings of both

exogenous49 and endogenous50 firms’ information. Nonetheless, it is interesting to

note here that the mechanism via which accommodation policy increases expected

welfare — i.e. whether it improves the consumption mix or reduces the variance

of the output gap — depends on whether firms pay attention to just aggregate or

idiosyncratic shocks, or both.

If firms only pay attention to aggregate shocks (κ∗A = κ), (small) changes in pol-

icy influence both the consumption mix and the variance of the real output gap.

For instance, stabilization policy lowers the variance of firms’ information process-

ing errors — this both decreases inefficient price dispersion across firms (thereby

improving the consumption mix) and lowers the variance of the output gap (the

47Maćkowiak and Wiederholt (2009) refer to these as “feedback effects”.
48More precisely, strictly decreasing at an interior equilibrium allocation of attention. Equiva-

lently, (weakly) increasing in r.
49Baeriswyl et al. (2020).
50Adam (2007), Paciello and Wiederholt (2013).
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Figure 2.1: Welfare loss plotted as a
function of the CB’s reaction function ρ
(in the presence of idiosyncratic shocks,
σz = 1)

Figure 2.2: Welfare loss plotted as a
function of the CB’s reaction function ρ
(in the absence of idiosyncratic shocks,
σz = 0)

mechanism is similar to Adam (2007)). On the other hand, if firms only pay atten-

tion to idiosyncratic conditions (κ∗A = 0), (small) changes in policy only influence

the variance of the output gap.

If firms pay attention to both aggregate and idiosyncratic shocks (κ∗A ∈ (0, κ)),

(small) changes in policy affect welfare only by influencing inefficient price disper-

sion. Although accommodation policy lowers the variance of the aggregate shock

(and, holding everything else unchanged, this should lead to a fall in the variance of

the real output gap), it prompts firms to pay less attention to aggregate conditions

— this fall in attention works in the opposite direction (to increase the variance of

the output gap) and perfectly offsets the former effect (such that the variance of the

output gap is constant for any κA ∈ (0, κ)).

Importantly, note from Claim 2.3 that optimal policy depends on the CB’s infor-

mation precision regarding the efficient level of output c∗. The CB intervenes more

(and is able to achieve a lower welfare loss) if its information is more precise. In the

limiting case when the CB is perfectly informed, the fundamental shock is perfectly

accommodated, so the variance of the aggregate shock q (σ2
q ) is zero, and firms only

pay attention to their idiosyncratic productivity shocks. This is illustrated in Figure

2.1, for a parametrisation where the CB’s information is almost perfectly precise (so

ρ∗ ≈ 1).51

For comparison, Figure 2.2 illustrates a situation where there are no idiosyncratic

shocks (in which case the model corresponds almost exactly to the one in Adam

51More precisely, the parametrisation is chosen such that in the absence of policy intervention
firms pay attention only to aggregate shocks (to illustrate the different ways in which policy affects
welfare). The calibration is: κ = 1, σ2

c∗ = 4, σ2
z = 1, r = 0.4, δ = 3, σx = 0.001.
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(2007)) — optimal policy is the same in both settings, but the mechanism via which

policy intervention affects the welfare loss is different.

2.4.1 Policy intervention, monetary non-neutrality and the

Phillips curve

Interestingly, for the economy without idiosyncratic shocks, the degree of monetary

non-neutrality and the slope of the Phillips curve are constants (which depend on

parameters only), while in the presence of idiosyncratic shocks, changes in the CB’s

policy rule may affect both the degree of monetary non-neutrality in the economy,

as well as the slope of the Phillips curve. In the latter case, this is possible because

changes in policy may prompt firms to pay more or less attention to aggregate shocks

(see Claim 2.2) and, in turn, this affects how prices respond to aggregate shocks (see

Claim 2.1).

To be more precise, from the firms’ equilibrium behaviour,52 it follows that the

price level can be expressed as p = α(m− c∗), where:

α =


αH = r(1−2−2κ)

1−(1−r)(1−2−2κ)
if rσq

σz
≥ 2−κ + r(2κ − 2−κ)

αM = 1− σz
2κrσq

if rσq
σz

∈ (2−κ, 2−κ + r(2κ − 2−κ))

αL = 0 if rσq
σz

≤ 2−κ

(2.31)

Thus, the responsiveness of the price level to a nominal demand shock m is captured

by α, so the degree of monetary non-neutrality is (1− α). The slope of the Phillips

curve — relating the price level53 to the real output gap (c − c∗) — is given by

α/(1 − α).54 Intuitively, α depends on how strongly firms respond to their private

signals about aggregate conditions when setting their prices — in turn, this depends

on the degree of strategic complementarity in price-setting and on how much atten-

tion firms pay to aggregate shocks (see Claim 2.1).

Hence, if there are no idiosyncratic shocks (σz = 0), firms pay attention solely

to aggregate shocks (κ∗A = κ) and α is always equal to αH . Note that this is inde-

52Equation (2.31) can be obtained by substituting κ∗A from Claim 2.2 into the price-setting
equation from Claim 2.1 and aggregating across firms. Note that it corresponds to equation (38)
in Maćkowiak and Wiederholt (2009).

53More precisely, the deviation of the price level from the deterministic equilibrium.
54Using p = α(m − c∗) and the definition of nominal demand m = c + p, one obtains p =

[α/(1− α)](c− c∗).
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Figure 2.3: Response of price level to
aggregate shocks (plotted for different
policy reaction functions ρ)

Figure 2.4: Phillips curve (plotted for
different policy reaction functions ρ)

pendent of the CB’s policy (ρ) or the variance of the aggregate fundamental (σ2
c∗).

55

Consequently, in an economy without idiosyncratic shocks, the degree of monetary

non-neutrality and the slope of the Phillips curve depend only on the degree of

strategic complementarity in price-setting and on the firms’ capacity to process in-

formation.

On the other hand, in the presence of idiosyncratic shocks, α also depends on the

variance of aggregate and idiosyncratic shocks, as these affect the equilibrium al-

location of attention. In particular, note that stabilization policy (by reducing the

variance of aggregate shocks) may decrease the responsiveness of the price level to

aggregate shocks and flatten the Phillips curve. Figures 2.3 and 2.4 plot the response

of the price level to aggregate shocks and the Phillips curve (for different policy rules)

in the example from before (where the CB is almost perfectly informed).56 At the

optimal policy, the variance of aggregate shocks is (almost) zero so firms only pay

attention to idiosyncratic shocks. Thus, the price level never responds to aggregate

shocks and the Phillips curve is perfectly flat. If there are no idiosyncratic shocks

(σz=0), the two blue lines do not rotate in response to changes in policy.57

2.4.2 The signal value of prices

Having characterised optimal policy and the equilibrium behaviour of firms, we are

in a position to assess what information is revealed by prices (and how policy inter-

55This happens because the signal-to-noise ratio associated with firms’ private signals (as well
as the Kalman-gain of signals si,1) depends only on how much attention firms pay to q (and not on
the variance of q which is indeed influenced by policy). For instance, if the CB reduces the variance
of the aggregate shock (σ2

q ), the variance of noise in private signals (σ2
1) decreases proportionally,

so firms respond the same way to their private signals when setting prices.
56See footnote 51 for the parametrisation.
57They represent the response of the price level to aggregate shocks and the Phillips curve when

firms pay attention solely to aggregate shocks.
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vention affects price informativeness). In this respect, it is useful to define exactly

what is meant by price informativeness. In line with the literature on the signal

value of prices (Morris and Shin (2005); Baeriswyl (2011); Baeriswyl et al. (2020)),

in the endogenous central bank information setup (next section), I assume that the

CB’s only information source is a noisy signal of the aggregate price level p̃ = p+ ε̃,

where ε̃ ∼ N(0, σ2
p̃) is distributed independently of all other random variables. Thus,

by price informativeness, I refer to the incremental information precision that the

CB gains from observing the signal p̃:

Definition. Price informativeness (denoted τp) is defined as the precision of the

unbiased signal of the fundamental (referring to the efficient level of output (c∗))

which the CB can construct from p̃. Equivalently, price informativeness captures

the difference between the CB’s posterior and prior information precision about c∗

(where prior and posterior refer to before and after observing the signal p̃).58

It might seem arbitrary that price informativeness is defined in terms of what the

CB can infer from p̃. However, we will note that this is equivalent to the incremental

information precision that an external observer (who knows m and is fully attentive)

gains from observing p̃.59

The responsiveness of the price level to shocks concerning the efficient level of out-

put is crucial in determining what the CB can infer from p̃. It follows from before

that we can express p̃ as:

p̃ = α(m− c∗) + ε̃

Where α is characaterised in equation (2.31). If firms only pay attention to firm-

specific productivity (κ∗A = 0) the price level does not respond to aggregate shocks

(α = 0), so p̃ is completely uninformative (it reveals only the noise term ε̃). However,

if firms pay some attention to aggregate conditions (κ∗A > 0), p̃ reveals information

about both policy and the efficient level of output. As the CB knows m, it can

construct an unbiased signal of c∗:

c̃ = m− p̃

α
= c∗ +

ε̃

α
(2.32)

58i.e. τp = [var(c∗|ICB , p̃)]−1 − [var(c∗|ICB)]−1
, where ICB denotes the CB’s information set

before observing p̃.
59Note that the setting of policy is observable to firms. If we assume that the setting of policy

is also observable to an external observer (who does not otherwise have any private information
about c∗ but) who is fully attentive, he perfectly infers the CB’s private information about c∗ by
observing m (because there is a one-to-one mapping between x and m for any ρ ̸= 0).
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With precision τp = α2/σ2
p̃. Equivalently, price informativeness is given by:

τp =


α2
H/σ

2
p̃ =

[
r(1−2−2k)

1−(1−r)(1−2−2k)

]2
/σ2

p̃ if rσq
σz

≥ 2−k + r(2k − 2−k)

α2
M/σ

2
p̃ =

[
1− σz

2krσq

]2
/σ2

p̃ if rσq
σz

∈ (2−k, 2−k + r(2k − 2−k))

0 if rσq
σz

≤ 2−k

(2.33)

Note that besides the observation noise (σ2
p̃), price informativeness depends only on

α. Because the CB can perfectly disentangle the money supply from p̃, changes in

policy (ρ) are not associated with changes in price informativeness so long as firms

do not reallocate attention from aggregate to idiosyncratic shocks or vice-versa (such

that α stays constant).

Remark 2.4: It should be clear that price informativeness, the slope of the Phillips

curve and the degree of monetary non-neutrality are all determined by α. A lower

α leads to:

• Lower price informativeness

• A flatter Phillips curve

• A higher degree of monetary non-neutrality

Determinants of price informativeness: The observation that price informa-

tiveness depends on the degree of strategic complementarity in price-setting and on

the firms’ information precision regarding fundamentals is somewhat standard in

the literature on the signal value of prices: “[. . . ] the central bank’s information

precision is a function of the private sector agents’ information precision. This is

very natural, since the central bank learns by observing what the individual agents

do. The reason why [private agents’ information precision] enters in this relation

is because the aggregate actions are revealing only to the extent that private agents

put weight on their own private signals. The more informative are their private sig-

nals, the greater is the information value of the aggregate action. In this sense, the

central bank’s information value is dependent on (and is derivative of) the private

sector agents’ information precision” (Morris and Shin (2005)). The novelty in the

model presented here is that the private sector agents’ information is endogenous60

(because it depends on their chosen allocations of attention).

60Referring to both the content and precision of firms’ signals.
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In line with our analysis from the previous section (regarding α), if firms pay atten-

tion solely to aggregate shocks, price informativeness depends only on the degree

of strategic complementarity (1− r) and the firms’ capacity to process information

(κ) — a higher κ or a higher r both prompt firms to respond more strongly to their

private information, thereby improving price informativeness. Note that in this case

changes in the CB’s policy rule (ρ) do not affect τp — when firms pay a fixed amount

of attention to aggregate conditions, changes in policy do not prompt firms to react

more or less strongly to their private information (and therefore do not affect price

informativeness).

If firms pay attention to both aggregate and idiosyncratic shocks, price informa-

tiveness depends not only on κ and (1 − r), but also on the variance of aggregate

and idiosyncratic shocks (σ2
q and σ2

z) — thus, it also depends on the setting of pol-

icy (as this determines σ2
q ). A higher σ2

q , a lower σ2
z , or a higher κ, all lead firms

to pay more attention to aggregate shocks (and prices to be more informative, as

they respond more strongly to q). Increasing the degree of strategic complemen-

tarity (lowering r) has a dual detrimental effect on price informativeness — it both

prompts firms to pay less attention to aggregate shocks (as per Claim 2.2), and to

put a lower weight on their private signals concerning aggregate shocks when setting

prices (for any given allocation of attention, as per Claim 2.1). Figure 2.6 illustrates

the effect of changes in the degree of strategic complementarity on price informa-

tiveness — the dotted line corresponds to a setting where there are no idiosyncratic

shocks (σz = 0), so only the latter effect is at play;61 the solid line corresponds to a

situation where there are both aggregate and idiosyncratic shocks, so changes in r

also lead to changes in the equilibrium allocation of attention.62

Figure 2.5 illustrates the effect of policy intervention on price informativeness in the

example from the previous section (in which the CB is almost perfectly informed).

In line with the discussion above, policy influences price informativeness only to the

extent that it leads firms to pay more or less attention to aggregate shocks. Note

that optimal policy (ρ∗ ≈ 1) prompts firms to not pay any attention to aggregate

conditions, implying that prices reveal no information regarding the efficient level

of output (c∗).

61i.e. increasing the degree of strategic complementarity lowers price informativeness only by
decreasing the firms’ response to their private signals (while the precision of the signals remains
constant).

62Figure 2.6 is plotted for a different calibration chosen such that when r = 1 firms pay attention
solely to aggregate shocks (for the solid line σz = 1); for the dotted line σz = 0 so firms only pay
attention to aggregate shocks (for any r). The other parameters are: κ = 1, σq = 2, σp̃ = 1.
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Figure 2.5: Square root of price infor-
mativeness plotted as a function of the
CB’s reaction function (ρ)

Figure 2.6: Strategic complementari-
ties and price informativeness

2.4.3 Exogenous vs endogenous firms’ information

Before proceeding to analyse the reflection problem, let us illustrate in more detail

how the endogeneity of the firms’ information plays an important role in our prob-

lem. This also allows us to compare the mechanism via which policy intervention

deteriorates price informativeness here with the one in Baeriswyl et al. (2020), sec-

tion 3.

To do so, we will consider our example from the previous sections, in which the

CB is almost perfectly informed.63 Start from a situation in which the CB does

not intervene (ρ = 0), then analyse the equilibrium behaviour of firms (and price

informativeness) as the CB (gradually) changes its policy towards ρ∗ ≈ 1 in three

different cases:

1. Firms do not reoptimize their information choice (exogenous information)

2. Firms reoptimize what they pay attention to but not how much attention they

pay to aggregate vs idiosyncratic shocks (fixed capacity per channel)

3. Firms fully reoptimize their allocations of attention (endogenous information)

Starting point (ρ = 0): Given our parametrisation, in the absence of any policy

intervention, firms only pay attention to aggregate shocks, so each firm observes

the signal s0i,1 = c∗ + ε0i,1, with ε0i,1 ∼ N(0, σ2
c∗/(2

2κ − 1)). Conditional on this

information structure, for ρ = 0, the price level is proportional to c∗ in equilibrium

(more precisely p = αHc
∗). This is illustrated on the L.H.S. of Figure 2.7, which

represents q = m− c∗ and p as vectors in (c∗, εx) space — at the starting point ρ is

zero, so q is represented by the (black) vector OQ0 and the price level is represented

63See footnote 51 for the parametrisation.
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by the blue vector in the direction of OQ0 (and of length αH). For ρ = 0 observing

a noisy signal of the price level (p̃ = p+ ε̃) is equivalent to observing a noisy signal

of the fundamental (c∗) with precision equal to:

τ 0p = α2
H/σ

2
p̃

In what follows τ 0p denotes price informativeness at the inaction policy (ρ = 0).

Case 1: I first illustrate how policy intervention crowds out the information con-

tained in the price level in a setting where firms do not reoptimize their choice of

information in response to changes in policy. In such a setting, each firm still ob-

serves the signal s0i,1 = c∗ + ε0i,1, with ε
0
i,1 ∼ N(0, σ2

c∗/(2
2κ − 1)) for any ρ (i.e. each

firm still pays attention solely to the aggregate fundamental (c∗), regardless of the

setting of policy). Note that firms know the CB’s reaction function (ρ), but do not

know anything else concerning the setting of the monetary instrument (m) because

(although m is observable) they are not paying any attention to it. More precisely,

each firm’s expectation of m is given by:

E[m|s0i,1] = E[ρ(c∗ + εx)|s0i,1] = ρE[c∗|s0i,1]

This delivers a similar equilibrium pricing rule as in Baeriswyl et al. (2020) section

3.2, where the CB’s policy instrument is unobservable to firms (because the CB

finds it optimal to act under full opacity) — more specifically, given this information

structure, one can show that accommodation policy (ρ ∈ (0, 1]) prompts firms to

underreact to their private signals s0i,1:

pi = (ρ− 1)
r(1− 2−2κ)

1− (1− r)(1− 2−2κ)
s0i,1 = (ρ− 1)αHs

0
i,1

In turn, this implies that the price level reacts less to the aggregate fundamental

(c∗), relative to a situation where there is no policy intervention:

p =

∫ 1

0

pidi = (ρ− 1)αHc
∗

Which in turn prompts a deterioration of price informativeness:

τ 1p = (ρ− 1)2α2
H/σ

2
p̃

τ 1p < τ 0p∀ρ ∈ (0, 1]
(2.34)
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The grey line in Figure 2.7 plots price informativeness as a function of the CB’s

reaction function in this case. Vectors depicting the price level associated with dif-

ferent policy reaction functions are illustrated by the grey arrows in the graph on the

L.H.S. of Figure 2.7 — as the CB changes its policy from 0 to 1, firms increasingly

underreact to their private signals and the price level responds less and less to the

aggregate fundamental (so the vector depicting the price level shrinks in length and

in the limit tends towards zero as ρ → 1). Note that the price level never responds

to the CB’s observation noise (εx), because firms do not pay any attention to the

monetary instrument (m).

Case 2: If firms do not reoptimize how much attention they pay to aggregate vs

idiosyncratic shocks in response to changes in the CB’s reaction function (ρ), then

κA = κ so following Proposition 2.1, each firm observes the signal si,1 = q + εi,1,

with εi,1 ∼ N(0, σ2
q/(2

2κ − 1)) for any ρ — i.e. each firm pays attention solely to

q = m− c∗ for any policy reaction function. It follows from our equilibrium analysis

that in this case the price level is proportional to q (for any ρ); more specifically:

p = αHq = αH(m− c∗)

The blue vectors in the directions of {OQ1; ...;OQ5} illustrate p for ρ ∈ {0.31; 0.4; 0.55;
0.69; 1} respectively. Price informativeness is always equal to that at the inaction

policy and is independent of the CB’s reaction function ρ:

τ 2p = τ 0p = α2
H/σ

2
p̃

Case 3: See the discussion in the previous section — the price level is given by

(2.31) and price informativeness (denoted by τ 3p in Figure 2.7) is characterised in

(2.33). Given our calibration, for ρ ∈ (0.31, 0.69), the equilibrium allocation of

attention is interior — the red vectors in the directions of {OQ2;OQ3} depict p

for ρ ∈ {0.4; 0.55}. For any ρ ∈ [0.69; 1] firms pay attention only to idiosyncratic

shocks, so p = 0. For any ρ ∈ [0; 0.31] firms pay attention only to aggregate shocks,

so p = αHq.

Discussion: Although in our example optimal policy intervention (ρ∗ ≈ 1) com-

pletely crowds out the information contained in the price level under both exogenous

and endogenous firms’ information,64 the mechanisms at play are clearly distinct —

under exogenous information, it is the firms’ under-reaction to their private signals

64Referring to cases 1 and 3 above.
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Figure 2.7: Exogenous vs endogenous
firms’ information and price informative-
ness

Grey: Exogenous information (
√
τ 1p )

Blue: Fixed Capacity (
√
τ 2p )

Red: Endogenous information (
√
τ 3p )

(about c∗) which lowers price informativeness (see (2.34)), while under endogenous

information it is the firms’ under-acquisition of information (about q), which deteri-

orates price informativeness.65 To see this more clearly, note that under exogenous

firms’ information, price informativeness is always zero if ρ = 1 (regardless of pa-

rameter values), while this is not the case under endogenous firms’ information —

one can easily construct an example (with a different calibration) in which the CB

is poorly informed and a reaction function specifying ρ = 1 leads prices to be more

informative in equilibrium than at the inaction policy.

Note that the tension between implementing the optimal policy and learning from

prices will be more pervasive under endogenous than under exogenous firms’ infor-

mation. Under exogenous firms’ information, optimal policy intervention always

lowers price informativeness (see Baeriswyl et al. (2020), section 3). On the other

hand, under endogenous firms’ information, if optimal policy leads firms to pay less

attention to aggregate shocks, then optimal policy will necessarily minimize price

informativeness (this is also stated more formally as a result in what follows).

65Referring to the fact that firms pay less attention to the aggregate shock q when policy is set
optimally — see (2.33) and its derivation.
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2.5 Equilibrium when central bank information is en-

dogenous
In this section, I present results regarding optimal policy in a setting where the

CB learns from prices, while simultaneously influencing them via the conduct of

its policy. Thus, I assume here that the CB’s only information source is the signal

p̃ = p + ε̃ (introduced in the previous section). As such, the CB’s policy rule now

reads: m = ρp̃. Intuitively, given any m, a higher observation of the price level (p̃)

signals to the CB a lower efficient level of output c∗ (see (2.32)). By exactly how

much the money supply should optimally respond to the noisy observation of the

price level is the question I investigate here. I restrict attention to ρ ≤ 0 and argue

in Appendix 2.8.4 that the policy rule m = ρp̃ is equivalent to a policy rule which

maps the unbiased signal of the fundamental which the CB constructs from p̃ to the

money supply — i.e. to a policy rule of the form: m = ρ̃c̃, where c̃ is characterised

in (2.32) and where ρ̃ ∈ [0, 1).

I look for “simultaneous equilibria” where firms choose prices and the CB sets the

policy instrument (m) at the same time — this is the same equilibrium concept

employed in Baeriswyl (2011), Baeriswyl et al. (2020). The equilibrium definition

is the same as before and the only difference with regards to the timing of events is

that the CB and firms now act simultaneously.66

Proposition 2.2. Suppose that in the absence of policy intervention (ρ = 0) the

equilibrium allocation of attention is interior (i.e. κ∗A|ρ=0 ∈ (0, κ)).67 Then, there is

a unique equilibrium where optimal policy solves:

σ2
c∗ + ρ∗σ2

p̃√
σ2
c∗ + ρ∗2σ2

p̃

=
σz
2κr

,

prices are set according to:

p∗i =
r(1− 2−2k∗A)

1− (1− r)(1− 2−2k∗A)
si,1 − (1− 2−2k∗I )si,2∀i,

66Namely, steps 4 and 5 in the previous timing of events take place simultaneously. More
precisely, the CB still chooses ρ first; secondly, firms choose their allocations of attention; then,
shocks are realized; lastly, all agents (i.e. both the CB and firms) receive their information and
take actions simultaneously (firms set prices and the CB sets m).

67Expressed as a condition on parameters, this writes as: rσc∗
σz

∈ (2−κ, 2−κ + r(2κ − 2−κ)).
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and the equilibrium allocation of attention is given by:

κ∗A =
1

2
log2(1−

1

r
+

2kσ∗
q

σz
),

κ∗I = κ− κ∗A,

where the standard deviation of the aggregate shock is:

σ∗
q =

σ2
c∗√

σ2
c∗ + ρ∗2σ2

p̃

.

Corollary 2.1. Optimal policy minimizes price informativeness.68

Corollary 2.2. Optimal policy is more activist69 whenever prices are more in-

formative in equilibrium.

Comparative statics: ∂|ρ∗|
∂κ

> 0 ; ∂|ρ
∗|

∂σ2
c∗
> 0 ; ∂|ρ

∗|
∂σ2
z
< 0 ; ∂|ρ

∗|
∂r

> 0; ∂|ρ
∗|

∂σ2
p̃
< 0.

Proof: See Appendix 2.8.4. □

It is easiest to interpret the equilibrium by referring to our analysis from the exoge-

nous CB information section — the only difference here concerns the determination

of the money supply, which is now set as a linear function of the CB’s noisy obser-

vation of the price level.70 Firstly, remark that for each individual firm the problem

is unchanged (so the firms’ equilibrium behaviour will be the same as before). A

relevant observation is that although the money supply is determined differently, it

is still Gaussian and observable to firms. To be more specific, each firm still takes

as given the CB’s reaction function (ρ) and the other firms’ allocations of attention

(and it anticipates how prices are set in equilibrium given the other firms’ alloca-

tions of attention). Hence, each firm anticipates how the price level is determined

in equilibrium, and thus how the policy instrument is set in equilibrium as a func-

tion of the CB’s noisy observation of the price level — essentially, this implies that

each firm can compute the optimal response of its price to aggregate shocks when

68Optimal policy also minimizes the slope of the Phillips curve and maximizes the degree of
monetary non-neutrality — see Remark 2.4.

69By “policy activism” I refer to the absolute value of ρ — when |ρ| is higher, policy is more
activist in the sense that the CB responds more strongly to a perceived change in the price level.

70Which is itself a function of the money supply (whereas before the money supply was set as
a linear function of the CB’s noisy observation of the fundamental itself).
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choosing its allocation of attention.71 Because the firm’s problem of choosing its

allocation of attention is the same as before, we can use the same reasoning to prove

Proposition 2.1 in this (endogenous CB information) setting. Then, Claim 2.1 and

Claim 2.2 follow as before.72 Claim 2.3 does not apply anymore because the policy

instrument is set differently, but it is still relevant (in the sense that the expected

welfare loss remains strictly increasing in the variance of the aggregate shock q (σ2
q )

and thus the CB still seeks to minimize it).73,74

Importantly, note that the equilibrium allocation of attention in Proposition 2.2 is

interior (i.e. in equilibrium, firms pay attention to both aggregate and idiosyncratic

shocks). We will note that the corollaries follow immediately from this observation

(and our previous analysis). To see why in equilibrium (when policy is set optimally

ρ = ρ∗) firms pay attention to both aggregate and idiosyncratic shocks, recall that

in the absence of policy intervention (ρ = 0) the equilibrium allocation of attention

is interior:

i) This implies that there are no equilibria where firms pay attention only to id-

iosyncratic shocks. It is easy to argue this by contradiction. Suppose there is an

equilibrium where the allocation of attention is given by (κA, κI) = (0, κ) — then,

the price level is zero and it follows that σ2
q ≥ σ2

c∗ (for any ρ); but then each in-

dividual firm finds it optimal to pay some attention to aggregate shocks (hence, a

contradiction).

ii) This also implies that, if policy is set optimally ρ = ρ∗, then firms cannot pay

attention only to aggregate shocks. Firms would pay attention solely to aggregate

conditions only if their variance (σ2
q ) was higher than the variance of the fundamen-

71More precisely, in equilibrium, the optimal response of firm i’s price to aggregate shocks (given
by p̂i

A = r(m− c∗) + (1− r)p)) will again be a linear combination of m and c∗. Because each firm
takes as given the other firms’ allocation of attention, it can compute p as a linear combination of
m and c∗ as before, and in any symmetric equilibrium it must still be the case that the price level
is proportional to m− c∗, so Proposition 2.1 still holds.

72However, note that q (and thus σ2
q ) are determined differently to before (because the money

supply is determined differently). For instance, from the perspective of firm i, the money supply
now depends on the other firms’ allocation of attention for any ρ ̸= 0 (whereas in the exogenous
CB information setting this was not the case) — for details, see Appendix 2.8.4

73Of course, this is just a consequence of the fact that the firms’ equilibrium behaviour is the
same as before (as is the welfare function).

74Also, our optimal (alternative) reaction function (m = ρ̃∗c̃) will be similar to the one from
Claim 2.3, except for the fact that the CB’s observation noise is endogenous — more precisely,
the variance of the CB’s observation noise is now the inverse of price informativeness (i.e. is equal
to 1/τp = σ2

p̃/α
2) and is endogenous because α is endogenous (as it depends on the equilibrium

allocation of attention), whereas before the CB’s observation noise was just σ2
x (and was exogenous).
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tal (σ2
c∗) — but this would imply that the welfare loss in equilibrium (given optimal

policy) is higher than the welfare loss in the absence of policy intervention (i.e. for

ρ = 0), which cannot be the case (because the central bank chooses ρ to minimize

the welfare loss, and it can choose ρ = 0).

Consequently, in equilibrium the firms’ allocation of attention must necessarily be

interior — for a more precise formulation of the argument, see Appendix 2.8.4. From

section 2.4.1, we know that if the equilibrium allocation of attention is interior, then

the responsiveness of the price level to aggregate shocks (αM) is strictly increasing in

the variance of the aggregate shock (σ2
q ), and does not otherwise depend on the CB’s

policy rule (see (2.31)). On the other hand, expected welfare is strictly decreasing

in σ2
q , so optimal policy must minimize σ2

q . It follows that optimal policy minimizes

α. Hence, optimal policy also minimizes price informativeness and the slope of the

Phillips curve, and maximizes the degree of monetary non-neutrality (see Remark

2.4). Because the CB’s sole information source is the noisy signal of the price level,

it follows from Corollary 2.1 that by setting policy optimally, the CB minimizes its

own information precision about the efficient level of output.

Taking into account that firms reallocate attention from aggregate to idiosyncratic

shocks (or vice-versa) in response to changes in policy weakens optimal accommo-

dation policy to shocks because it worsens the CB’s information. Recall from Claim

2.3 (and the discussion following it) that the CB finds it optimal to intervene more

whenever its information about the fundamental is more precise — when the allo-

cation of attention is endogenous, the CB’s information is always less precise at the

optimal policy (ρ = ρ∗) than at the inaction policy (ρ = 0) (because optimal policy

minimizes the amount of attention paid by firms to aggregate shocks), so the pol-

icymaker finds it optimal to accommodate less strongly shocks to the fundamental

(relative to a setting where firms do not reallocate attention in response to changes

in policy).

I provide a numerical example for illustrative purposes. I first provide a parsi-

monious calibration of the model. In line with the benchmark parametrisation of

Maćkowiak and Wiederholt (2009), I let κ = 3 and r = 0.15. I normalize σz = 1 and

calibrate σc∗ such that in the absence of policy intervention (ρ = 0), firms allocate

20 percent of their information processing capacity towards aggregate shocks (and

80 percent towards idiosyncratic shocks) — this implies a value of σc∗ roughly equal

57



to one.75,76 I calibrate σp̃ such that when policy is set optimally (ρ = ρ∗), firms al-

locate 10 percent of their information processing capacity towards aggregate shocks

(and 90 percent towards idiosyncratic shocks) — this implies a value of σp̃ = 0.15.

Under this calibration, a shift from inaction (ρ = 0) to optimal policy (ρ∗ = −3.19,

or equivalently ρ̃∗ = 0.18) lowers α from 0.16 to 0.07 (implying a flattening of the

Phillips curve from 0.19 to 0.08 and a decline of price informativeness from 1.19 to

0.23 — see Figures 2.8 and 2.9). Also, note from Figure 2.9 that optimal policy

(ρ̃∗ = 0.18) minimizes price informativeness.

To make the discussion concerning optimal policy intervention more transparent, I

present results in terms of the alternative (equivalent) policy rule m = ρ̃c̃, whereby

the monetary instrument responds to the unbiased estimate of c∗ constructed by

the CB from p̃. This is easier to interpret, since the optimal reaction coefficient

lies between 0 and 1 as in the exogenous CB information section (see Claim 2.3).

Expressed in these terms, taking into account that firms reallocate attention in re-

sponse to changes in the CB’s reaction function weakens optimal accommodation

policy to shocks from ρ̃∗ = 0.54 to ρ̃∗ = 0.18 (see Figure 2.10).

Figure 2.10 plots the welfare loss as a function of the policy reaction function (ρ̃).

The red line depicts the welfare loss as a function of policy (ρ̃) if firms do not reallo-

cate attention from aggregate to idiosyncratic shocks (or vice-versa) in response to

changes in the CB’s reaction function, such that they always allocate 20 percent of

their attention to aggregate shocks (as in the absence of policy intervention ρ̃ = 0).

In other words, this is equivalent to a fixed capacity per channel setting where firms

pay a fixed amount of attention to aggregate shocks (κA = 0.6) — in such a setting,

price informativeness is constant at τp = 1.19 (see the discussion in section 2.4.3 and

Figure 2.9).

Note from Figure 2.10 that when the allocation of attention is endogenous, the

policymaker’s ability to reduce the welfare loss is significantly impaired — in fact,

the expected welfare loss would have been lower in equilibrium if firms had not re-

allocated attention from aggregate to idiosyncratic shocks in response to changes in

policy. An externality arises when the CB learns from prices because firms do not

75Although the variance of aggregate and idiosyncratic shocks is equal, firms allocate more
attention to idiosyncratic shocks because of the strategic complementarity in price-setting and the
associated “feedback effects”.

76I focus the discussion here on price informativeness, the slope of the Phillips curve and the
optimal degree of policy activism. Hence, I only provide a parsimonious calibration of the model.
To calculate the welfare loss in Figure 2.10, I set δ = 3.
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Figure 2.8: Phillips curve for different
policy rules: red (inaction policy), blue
(optimal policy)

.

Figure 2.9: Price informativeness plot-
ted as a function of policy (ρ̃) if firms
always allocate 20 percent of their at-
tention to aggregate shocks (red) vs if
firms’ allocation of attention is endoge-
nous (blue)

Figure 2.10: Welfare loss plotted as a
function of policy (ρ̃) if firms always al-
locate 20 percent of their attention to
aggregate shocks (red) vs if firms’ allo-
cation of attention is endogenous (blue)

Figure 2.11: Optimal policy plotted
as a function of the variance of the ag-
gregate fundamental (σ2c∗): black dot-
ted line (κA = 0.3), yellow dotted line
(κA = 0.6), blue line (κA = κ∗A), red line
(κA = κ∗A|ρ=0)
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internalize how their allocation of attention affects price informativeness.77

Because the CB learns from prices, its information (and thus, optimal policy) de-

pends on the parameters of the environment, which shape the equilibrium allocation

of attention and price informativeness. In particular, optimal policy is more activist

whenever a change in parameters leads prices to be more informative in equilibrium

(see Corollary 2.2) — a higher κ, a lower σz, or a higher r all prompt firms to pay

more attention to aggregate shocks in equilibrium (and thus prices to be more in-

formative, which in turn justifies a higher degree of policy activism).78

A higher σc∗ increases the optimal reaction coefficient ρ̃∗ both because it increases

price informativeness and because it worsens the CB’s prior information precision

concerning the fundamental.79 To see this more clearly, consider what happens in

our example if we double the variance of the aggregate fundamental (σ2
c∗) — the

amount of attention paid by firms to aggregate shocks in equilibrium increases to

15.3 percent and the optimal policy reaction coefficient rises back to ρ̃∗ = 0.54.

If firms still allocated only 10 percent of their attention to aggregate shocks (such

that price informativeness stayed constant at τp = 0.23), the optimal policy reaction

function would specify ρ̃∗ = 0.32.

This is depicted in Figure 2.11 which plots the optimal policy reaction coefficient

(ρ̃∗) as a function of the variance of the aggregate fundamental (σ2
c∗). In line with

our analysis, the optimal degree of policy activism when the allocation of attention

is endogenous (depicted in blue) is always lower relative to a situation where the

amount of attention paid by firms to aggregate conditions is fixed at the inaction

policy (depicted in red)80 — this reflects the fact that the CB takes into account

that policy intervention makes firms pay less attention to aggregate shocks (thus

crowding out some of the information contained in the noisy signal of the price

level).

77There are also other externalities at play (even when the CB does not learn from prices) as
firms do not make socially optimal use of their private information (and do not choose the socially
optimal allocation of attention).

78A higher r also prompts firms to respond more strongly to their private information conditional
on any given allocation of attention — see the discussion in section 2.4.2.

79More specifically, the CB sets the policy instrument equal to its conditional expectation of
the fundamental, which is a weighted sum of c̃ (i.e. the unbiased estimate of c∗ constructed from
p̃) and the prior mean of c∗ (which is equal to zero) and where the weights correspond to the
relative precision of each signal. A higher σc∗ both lowers the precision of the prior and increases
the precision of the signal in equilibrium.

80Except for any σ2
c∗ < 0.69 (when in the absence of policy intervention (ρ = 0) firms pay

attention solely to idiosyncratic shocks) and the CB finds it optimal to not intervene (ρ̃∗ = 0).
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2.6 Extensions/Discussion

2.6.1 Information processing

The assumptions concerning firms’ information processing play a crucial role in the

results. In this section, I relax these assumptions and discuss their implications.

Firstly, consider the independence assumption (constraining firms to learn about

aggregate and idiosyncratic shocks separately) — this can be either dropped or

strengthened.

Dropping the independence assumption: If we drop the independence as-

sumption, then it is straightforward to show that:

• Optimal policy should still seek to accommodate shocks to the efficient level

of output

• Price informativeness is independent of the central bank’s policy rule

Hence, it is easy to characterise the optimal reaction function — this is similar to the

case featuring the independence assumption, but with a fixed capacity per channel.81

Strengthening the independence assumption: One may also consider strength-

ening the independence assumption (and constraining firms to learn about nominal

demand and the efficient level of output separately) — more specifically, firm i’s

signal vector would be given by:

Si =


si,1

si,2

si,3

 =


c∗ + εi,1

m+ εi,2

zi + εi,3


And the firm would choose σ2

i,1, σ
2
i,2, σ

2
i,3 subject to the information processing con-

straint. With such an information structure, the problem would be notably dif-

ferent.82 For instance, even if firms paid a fixed amount of attention to aggregate

shocks, a shift from inaction (ρ = 0) to accommodation policy (ρ ∈ (0, 1)) would

deteriorate price informativeness both by: i) prompting firms to under-react to sig-

nals si,1 (for any fixed information structure)83; ii) prompting firms to shift some

81Or in the absence of idiosyncratic shocks (σz = 0).
82And it is not as straightforward to characterise the equilibrium as in the case where we drop

the independence assumption.
83As in the “exogenous firms’ information” example in section 2.4.3.
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attention from the fundamental to the policy instrument (i.e. higher σ2
1 than at the

inaction policy).

Deriving the equilibrium with such an information structure is a notably different

problem which I do not address here. If the reader is unconvinced by the model (be-

cause he believes that the stronger independence assumption should be employed),

note that we can rewrite an exactly equivalent model where the aggregate funda-

mental is an (exogoenous) shock to nominal demand (as in Baeriswyl and Cornand

(2011)) — in this case, we just need to assume that nominal demand (i.e. the sum

of the fundamental and policy) is observable to firms (instead of the stronger as-

sumption that any linear combination of the fundamental and policy is observable).

The interpretation of the model would be slightly different, but the equilibrium and

the main message would be the same.

Fixed capacity vs fixed marginal cost: In the model, we have assumed that

firms have a fixed capacity to process information. Suppose instead that firms

can choose how much attention they pay to their environment, subject to a fixed

marginal cost of increasing the channel capacity (κ). In this case (assuming the

independence assumption still holds), choosing how much attention to pay to ag-

gregate vs idiosyncratic shocks are two independent decisions. One can show that

in such a setting multiple equilibria can arise if the degree of strategic complemen-

tarity is sufficiently high (r < 0.5). Furthermore, the two equilibria feature different

comparative statics (for instance, at the low-attention equilibrium, lowering the cost

of information may actually prompt firms to pay less attention to aggregate shocks

in equilibrium, while this is not the case at the high-attention equilibrium). Note

that this occurs in the standard static version of Maćkowiak and Wiederholt (2009),

if firms are allowed to choose how much attention they pay to their environment

(subject to a fixed marginal cost of increasing information flow) — a similar point

is made in Fulton (2017).

Thus, in the model I abstract from allowing firms to choose how much attention

they pay to their environment for various reasons:

1. There are multiple equilibria featuring different comparative statics (and we

would need a criterion to select among these equilibria)

2. The model does not allow for an analytical solution (of the reflection problem)

3. There is an additional complication (relative to the situation where the firms’
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information processing capacity is fixed): a natural question arises whether

firms’ information processing costs should enter the welfare function or not84

2.6.2 Interpreting recessions

Throughout the paper I interpret recessions as times of high aggregate fundamental

volatility (i.e. high σ2
c∗) — one might object to this on various grounds. For instance,

one might think of a recession as a low realization of c∗, rather than an increase in

the variance of the distribution from which it is drawn. Nonetheless, remark that

Song and Stern (2022) think of recessions in a similar way:85

“Countercyclical attention exhibited in Figure [2.12] is consistent with predictions

in Mackowiak and Wiederholt (2009), which models firms that allocate attention be-

tween aggregate and idiosyncratic conditions. Their model predicts that firms will

pay more attention to aggregate conditions in downturns if those conditions become

more uncertain. This result is also consistent with Chiang (2021), which develops

a generalized information structure where agents pay greater attention to uncertain

aggregate conditions when expecting a bad economic state, which subsequently gen-

erates countercyclical attention and uncertainty.”

Furthermore, my interpretation is consistent with their empirical evidence that firm

attention to aggregate shocks is counter-cyclical.86 Importantly, their textual mea-

sure of firm attention seeks to distinguish between the amount of attention paid by

firms to aggregate vs idiosyncratic shocks:

“We identify instances in which firms discuss the following nine macroeconomic

topics: general economic conditions, output, labor market, consumption, investment,

monetary policy, housing, inflation, and oil. [...] Any words or phrases that might

apply to both aggregate and firm-specific conditions are removed to avoid misiden-

tification. For example, the phrase ’interest rates’ is excluded from the monetary

policy dictionary because firms may mention interest rates in the context of their

own liabilities.”

84And if so, how exactly they enter the welfare function (for instance, one could assume that
labour is allocated towards processing information).

85For more details, see section 2 in their paper.
86They also document that firm attention to aggregate shocks is polarized, in the sense that some

firms pay more attention than others to aggregate shocks. This could be easily accommodated in
the model I present here — for instance, by making firms heterogeneous in the amount of attention
they pay to the environment (κ) — and the main message of the paper would not change.
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Figure 2.12: “Time series of attention to ‘economic conditions’ ” (source: Song and
Stern (2022))

For a rational inattention model (of asset pricing) where recessions are concep-

tualised in a similar manner, see Kacperczyk et al. (2016).

2.6.3 Learning from prices

Throughout the paper, “learning from prices” refers to extracting information about

the fundamental from a noisy signal of the price level. As previously mentioned,

this modelling assumption follows the literature on the signal value of prices (Morris

and Shin (2005); Baeriswyl (2011); Baeriswyl et al. (2020)).

Note that allowing the CB to also observe a noisy signal of real output does not

affect the results in any way (because the noisy signal of real output is information-

ally equivalent to the noisy signal of the price level).87 Hence, the model relates

more broadly to the literature on endogenous CB information (see, for instance,

Aoki (2003)).

87So allowing the CB to also observe an independent noisy signal of real output is equivalent to
changing the variance of the CB’s observation noise (σ2

p̃).
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2.7 Conclusion
In this paper, I analyse optimal monetary policy in a setting where the central

bank learns from prices, and firms are rationally inattentive. I argue that optimal

policy necessarily minimizes the attention paid by firms to aggregate shocks and

that, in turn, this implies that optimal policy minimizes price informativeness. Be-

cause the CB learns from prices, it follows that by setting policy optimally, the CB

must minimize its own information precision about the fundamental, so its ability

to accommodate shocks is partly self-defeating. I also argue that policy should re-

spond more strongly to perceived changes in the price level whenever firms pay more

attention to aggregate shocks in equilibrium.
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2.8 Proofs and complementary results

2.8.1 Derivation of deterministic equilibrium and objective

functions

Deterministic equilibrium

In this section only, suppose that M = 1, V = 1, Ai = 1∀i and this is common

knowledge among all firms. We will present the derivation generally, then substi-

tute these particular values at the end (because we will log-linearize the equilibrium

conditions afterwards).

From the first-order conditions of the household’s problem, it follows that the opti-

mal consumption-labour choice must satisfy:

V L∗ψC∗γ = WP (2.35)

And the household’s demand for each good is:

C∗
i =

(
Pi
P

)− 1+Λ
Λ

C∗ (2.36)

The market-clearing conditions are:

Ci = Yi∀i (2.37)

L =

∫ 1

0

Lidi (2.38)

Using (2.36), (2.37) and the production function, we can express firm i’s profits as:

Πi = (1 + ts)P
1− 1+Λ

Λ
i P

1+Λ
Λ C −W

(
C

Ai

)1/α(
Pi
P

) 1+Λ
Λα

(2.39)

As mentioned in the main text, we think of price-setting in the deterministic case as

a static game of complete information. Each firm chooses its price Pi to maximize

Πi, taking as given other firms’ prices Pj ̸=i. Note that because we are in the deter-

ministic case, taking as given Pj ̸=i implies taking as given C and W as well (thus, it

is exactly as in the standard case in which the firm takes as given the price index,

the wage rate and composite consumption).88

88Given Pj ̸=i, one can compute the price index, as firm i is atomistic. Given M = 1 and P , one
can compute C. Then, W can be obtained using the equilibrium conditions.
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After taking into account that the production subsidy is set optimally (ts = Λ),

firm i’s first-order condition writes as:(
P ∗
i

P

) 1+Λ−α
αΛ

=
1

α
W

1

PC

(
C

Ai

)1/α

(2.40)

Because we are in the deterministic case, Ai = 1∀i, so (2.40) implies that in equi-

librium all firms set the same price. Thus, the L.H.S. of (2.40) is one. Using the

equilibrium conditions to find an expression for the wage and substituting in (2.40)

yields:

1 =
1

α
Cγ+ψ+1

α
−1. (2.41)

Note from above that if the money supply was not fixed, there would be nominal

indeterminacy. However, recalling that M = 1, the only price-setting equilibrium

is the one in which each firm sets Pi =
1
C
, where C solves (2.41). Also note that

changes inM lead to proportional changes in P (implying that changes in the money

supply have no real effects when they are common knowledge).

Welfare (derivation of central bank’s objective)

For the derivation of welfare, we will work with a large but finite number of firms,

instead of a unit mass — this does not alter the results in any meaningful way, but

it makes the derivation more straightforward. This also facilitates comparison with

Paciello and Wiederholt (2013).89

The consumption aggregator with a finite number of firms is given by:

C =

(
1

I

I∑
i=1

C
1

1+Λ

i

)1+Λ

(2.42)

Which can be rearranged as:

ĈI :=
CI
C

=

(
I −

I−1∑
i=1

Ĉi
1

1+Λ

)1+Λ

(2.43)

89I follow their derivation here. They work with a finite number of firms (instead of a unit
mass) because they “find that it makes the derivation of the central bank’s objective [...] more
transparent”.
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Noting again that the household needs to supply the labour required for production

yields the counterpart of equation (2.9) for a finite number of firms:

L =
I∑
i=1

(
Ci
Ai

)1/α

(2.44)

Substituting (2.43) and (2.44) into the utility function gives an expression for utility

at any feasible allocation:

U(C, Ĉ1, Ĉ2, ...ĈI−1, V, A1, A2, ..., AI) =

=
C1−γ − 1

1− γ
− V

1 + ψ
C

1+ψ
α

I−1∑
i=1

(
Ĉi
Ai

)1/α

+

(
1

AI

)1/α
(
I −

I−1∑
i=1

Ĉi
1

1+Λ

) 1+Λ
α

1+ψ

(2.45)

Maximizing (2.45) gives:

C∗ =

 α

V I1+ψ

(1

I

I∑
i=1

A
1

1+Λ−α
i

)−(1− 1+Λ
α

)(1+ψ)


1

γ−1+
1+ψ
α

(2.46)

Ĉ∗
i =

 A
1

1+Λ−α
i

1
I

I∑
i=1

A
1

1+Λ−α
i


1+Λ

∀i (2.47)

The equations above correspond to (2.11) and (2.12) in the main text. Using (2.46)

and (2.47), we can easily see that in the absence of shocks (V = 1 and Ai = 1∀i),
optimal consumption is characterised by:

C∗ =
( α

I1+ψ

) 1

γ−1+
1+ψ
α (2.48)

Ĉ∗
i = 1 (2.49)

Note that the steady-state is the same as the one in Paciello and Wiederholt (2013).
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Expressing equation (2.45) in terms of log-deviations from steady-state:

u(c, ĉ1, ..., ĉI−1, v, a1, ..., aI) =
C

1−γ
e(1−γ)c − 1

1− γ
−

− αev

1 + ψ
C

1−γ
e

1+ψ
α
c

1
I

I−1∑
i=1

e
1
α
(ĉi−ai) +

1

I

1

e
1
α
aI

(
I −

I−1∑
i=1

e
1

1+Λ
ĉi

) 1+Λ
α

1+ψ (2.50)

Our measure of welfare is a second-order approximation of (2.50) around the origin.

Denote this by ũ(c, ĉ1, ..., ĉI−1, v, a1, ..., aI). Let x be the input vector of the function

u(.):

x =
(
c ĉ1 ... ĉI−1 v a1 ... aI

)T
We can express our second-order Taylor approximation as:

ũ(x) = u(0) +∇u(0)x+
1

2
xTHu(0)x (2.51)

Where ∇u(0) denotes the gradient of u(.) evaluated at the origin:

∇u(0) =
(
∂u
∂c
(0) ∂u

∂ĉ1
(0) ... ∂u

∂ĉI−1
(0) ∂u

∂v
(0) ∂u

∂a1
(0) ... ∂u

∂aI
(0)
)

And Hu(0) denotes the Hessian of u(.) evaluated at the origin:

Hu(0) =



∂2u
∂c2

(0) ∂2u
∂c∂ĉ1

(0) ... ∂2u
∂c∂ĉI−1

(0) ∂2u
∂c∂v

(0) ∂2u
∂c∂a1

(0) ... ∂2u
∂c∂aI

(0)
∂2u
∂ĉ1∂c

(0) ∂2u
∂ĉ1

2 (0) ... ∂2u
∂ĉ1∂ĉI−1

(0) ∂2u
∂ĉ1∂v

(0) ∂2u
∂ĉ1∂a1

(0) ... ∂2u
∂ĉ1∂aI

(0)
...

∂2u
∂ĉI−1∂c

(0) ∂2u
∂ĉI−1∂ĉ1

(0) ... ∂2u
∂ĉ2I−1

(0) ∂2u
∂ĉI−1∂v

(0) ∂2u
ĉI−1∂a1

(0) ... ∂2u
∂ĉI−1∂aI

(0)

∂2u
∂v∂c

(0) ∂2u
∂v∂ĉ1

(0) ... ∂2u
∂v∂ĉI−1

(0) ∂2u
∂v2

(0) ∂2u
∂v∂a1

(0) ... ∂2u
∂v∂aI

(0)
∂2u
∂a1∂c

(0) ∂2u
∂a1∂ĉ1

(0) ... ∂2u
∂a1∂ĉI−1

(0) ∂2u
∂a1∂v

(0) ∂2u
∂a21

(0) ... ∂2u
∂a1∂aI

(0)
...

∂2u
∂aI∂c

(0) ∂2u
∂aI∂ĉ1

(0) ... ∂2u
∂aI∂ĉI−1

(0) ∂2u
∂aI∂v

(0) ∂2u
∂aI∂a1

(0) ... ∂2u
∂a2I

(0)


Computing the gradient and the Hessian yields:

∇u(0) = C
1−γ
(
0 0 ... 0 − α

1+ψ
1
I

... 1
I

)
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Hu(0) =

C
1−γ



−( 1+ψα − 1 + γ) 0 ... 0 −1 1+ψ
αI ... 1+ψ

αI

0 − 2
I
1+Λ−α
α(1+Λ) ... − 1

I
1+Λ−α
α(1+Λ) 0 1

αI ... 0
...

0 − 1
I
1+Λ−α
α(1+Λ) ... − 2

I
1+Λ−α
α(1+Λ) 0 0 ... 0

−1 0 ... 0 − α
1+ψ

1
I ... 1

I
1+ψ
αI

1
αI ... 0 1

I
1
I

[
ψ
(

1
αI

)2 − 1
α

]
... − ψ

αI2

...
1+ψ
αI 0 ... 0 1

I − ψ
αI2 ... 1

I

[
ψ
(

1
αI

)2 − 1
α

]


Using the law of large numbers to argue that 1

I

I∑
i=1

ai = 0, (2.51) simplifies to:

ũ(x) =u(0)− C
1−γ 1

1 + ψ
v +

1

2
C

1−α
[
−
(
1 + ψ

α
− 1 + γ

)
c2 − α

1 + ψ
v2
]
−

− 1

2
C

1−γ
{
2

I

(
1 + Λ− α

α(1 + Λ)

) I−1∑
i=1

ĉi
2 − 1

I

[
ψ

(
1

αI

)2

− 1

α

]
I∑
i=1

ai
2

}
−

− C
1−γ

cv + C
1−γ 1

αI

I−1∑
i=1

ĉiai−

− 1

2
C

1−γ 1

I

(
1 + Λ− α

α(1 + Λ)

)[I−1∑
i=1

(
ĉi
∑
j ̸=i

ĉj

)]
−

− 1

2
C

1−γ ψ

αI2

[
I∑
i=1

(
zi
∑
j ̸=i

zj

)]

(2.52)

Maximizing (2.52) w.r.t. (c, ĉ1, ..., ĉI−1) yields:

c∗ = − 1

γ + 1+ψ
α

− 1
v (2.53)

ĉi
∗ =

1 + Λ

1 + Λ− α
ai (2.54)

Which correspond to equations (2.13) and (2.14) in the main text. Computing

the difference between utility at any feasible allocation and utility at the optimal
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allocation gives:

ũ(c, ĉ1, ..., ĉI−1, v, a1, ..., aI)− ũ(c∗, ĉ1
∗, ..., ĉ∗I−1, v, a1, ..., aI) =

= − 1

2
C

1−γ
(
1 + ψ

α
− 1 + γ

)
︸ ︷︷ ︸

η

(c− c∗)2

− 1

2
C

1−γ 1

I

[
1 + Λ− α

α(1 + Λ)

]
︸ ︷︷ ︸

ζ

I−1∑
i=1

(ĉi − ĉ∗i )
2

(2.55)

Equation (2.55) corresponds to the welfare function used in the main text. Note that

all results regarding policy hold for any η > 0 and ζ > 0, so changing parameters does

not qualitatively alter our main results (as the central bank will not face a trade-off

between stabilizing the consumption level and improving the consumption-mix).

Derivation of firm’s objective

Firm i’s optimal price readily follows after log-linearizing (2.35) and (2.40) around

the deterministic equilibrium. Alternatively, the firm’s objective can be derived

by taking a second-order approximation of the firm’s profit function around the

deterministic equilibrium (see Maćkowiak and Wiederholt (2009)).

2.8.2 Details and proofs regarding the information struc-

ture

Choice regarding characteristics of signal vector

We can represent the firm’s choice regarding its allocation of attention in an intuitive

way reminiscent of Maćkowiak et al. (2018). As the firm’s signals can be about any

linear combination of shocks, we can write:

Si = FiXi + εi (2.56)

Where Fi is a Ki x 3 matrix of coefficients and εi = (ε1,i, ε2,i, ..., εK,i)
′ is a Gaussian

white noise random vector (independent of Xi) with covariance matrix Ωεi.
si,1

si,2
...

si,Ki

 =


f i1,1 f i1,2 f i1,3

f i2,1 f i2,2 f i2,3
...

...
...

f iKi,1 f iKi,2 f iKi,3



c∗

m

ai

+


εi,1

εi,2
...

εi,Ki

 (2.57)
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Each firm chooses the number of signals it receives (Ki), the content of these signals

(by choosing the components of the matrix Fi), as well as the variances and covari-

ances of the noise terms in the signals (by choosing the covariance matrix Ωεi). As

all noise in signals is idiosyncratic (condition 2 in the main text), εi is independent

of εj for any j ̸= i.

The independence assumption (condition 3 in the main text) constrains the firm’s

choice regarding the components of matrix Fi and the covariance matrix Ωεi — for

any n ∈ {1, 2, ..., Ki}, if fn,1 ̸= 0 or fn,2 ̸= 0, then fn,3 = 0; if fn,3 ̸= 0, then

fn,1 = fn,2 = 0 (such that firms cannot receive any signal which is informative about

both aggregate and idiosyncratic shocks). Also, if signal sin concerns aggregate

shocks (i.e. fn,1 ̸= 0 or fn,2 ̸= 0) and signal si,p concerns the idiosyncratic shock (i.e.

fp,3 ̸= 0), then cov(εi,n, εi,p) = 0.

To fix ideas and clarify the implications of the independence assumption, sup-

pose that firm i decides to learn about the variables of interest by receiving n

signals about aggregate shocks and (Ki − n) signals about the idiosyncratic shock.

Without any loss of generality, we can order the signals such that the subvector

containing information about aggregate shocks comprises the first n signals (i.e.

SAi = (si,1, si,2, ..., si,n)) and the subvector containing information about the idiosyn-

cratic shock comprises the last (Ki − n) signals (i.e. SIi = (si,n+1, si,n+2, ..., si,Ki)).

The independence assumption (condition 3) then requires that:

Si =



si,1
...

si,n

si,n+1

...

si,Ki


=



f i1,1 f i1,2 0
...

...
...

f in,1 f in,2 0

0 0 f in+1,3
...

...
...

0 0 f iKi,3




c∗

m

ai

+


εi,1

εi,2
...

εi,Ki

 ; (2.58)

Ωεi =

(
ΩA
εi 0

0 ΩI
εi

)
(with sizes

(
nxn nx(Ki − n)

(Ki − n)xn (Ki − n)x(Ki − n)

)
) (2.59)

Where ΩA
εi denotes the covariance matrix of noise in signals concerning aggregate

shocks and ΩI
εi denotes the covariance matrix of noise in signals containing informa-
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tion about the idiosyncratic shock:

ΩA
εi =


σ2
i,1 . . . cov(εi,1, εi,n)
...

...
...

cov(εi,n, εi,1) . . . σ2
i,n

 (2.60)

ΩI
εi =


σ2
i,n+1 . . . cov(εi,n+1, εi,Ki)
...

...
...

cov(εi,Ki , εi,n+1) . . . σ2
i,Ki

 (2.61)

We can then simply express the problem solved by firm i when choosing its allocation

of attention as:

min
{Ki,Fi,Ωεi}

1

2
E[pi − r(m− c∗)− (1− r)p+ zi]

2

Subject to: pi = E[r(m− c∗) + (1− r)p− zi|Si],

(2.58), (2.59), I(Si;Xi) ≤ κ.

(2.62)

The firm chooses the number of signals it receives (Ki), how many of these concern

aggregate and idiosyncratic shocks, as well as their content (Fi) and the variances

and covariances of the noise terms in the signals (Ωεi), subject to the information

processing constraint. It anticipates how it will optimally set its price conditional

on the information it receives and takes into account how its decision regarding the

allocation of attention will affect its profit losses. Equations (2.58) and (2.59) place

additional constraints on the firm’s available choices regarding Fi and Ωεi, ensuring

that the independence assumption (condition 3 in the main text) is satisfied.
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Proof of Proposition 2.1

Using the independence assumption and taking into account that each firm sets its

price optimally conditional on the information it receives, we can express firm i’s

problem when choosing its allocation of attention (2.62) as:

min
{Ki,Fi,Ωεi}

1

2
var[r(m− c∗) + (1− r)p|SAi ] +

1

2
var[zi|SIi ]

Subject to: (2.58), (2.59), I[(c∗,m), SAi ] + I(zi, S
I
i ) ≤ κ.

(2.63)

Where it was also noted that I(ai, S
I
i ) = I(zi, S

I
i ) (for any S

I
i ).

To determine the equilibrium allocation of attention, I approach the problem in

two steps:

1) Fix the amount of attention paid by firms to aggregate and idiosyncratic con-

ditions (i.e. suppose that I[(c∗,m), SAi ] ≤ κA and I(zi, S
I
i ) ≤ κI for all i, with

κA + κI ≤ κ, κA ≥ 0, κI ≥ 0) and find the K,F,Ωε which are consistent with

equilibrium.

2) Find the κA and κI which are consistent with equilibrium.

Proposition 2.1’. In any symmetric equilibrium in which the amount of atten-

tion allocated by firms towards aggregate (idiosyncratic) shocks is given by κA (κI)

— i.e. I[(c∗,m), SAi ] ≤ κA and I(zi, S
I
i ) ≤ κI∀i — it is WLOG to restrict our at-

tention to an information structure in which each firm observes two private signals:

one about the composite aggregate shock q = m− c∗ (si,1 = q + εi,1 = m− c∗ + εi,1)

and one about its idiosyncratic shock zi (si,2 = zi + εi,2), where εi,1 and εi,2 are

drawn independently for each i from the distributions N ∼ (0, σ2
1) and N ∼ (0, σ2

2)

respectively. Further, the variance of the noise terms in private signals is equal to

σ2
1 = σ2

q/(2
2κA − 1) and σ2

2 = σ2
z/(2

2κI − 1), where σ2
q = var(m− c∗).90

Remark 2.3. Following Proposition 2.1, to fully characterise the equilibrium al-

location of attention, it suffices to find the pair (κA, κI) which is consistent with

equilibrium. More generally, the approach to determining the equilibrium alloca-

90i.e. we only need to analyse equilibria in which: K = 2, F =

(
−1 1 0
0 0 ϕ

)
,Ωε =(

σ2
q/(2

2κA − 1) 0
0 σ2

z/(2
2κI − 1)

)
.
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tion of attention is the following: first, note that for any (κA, κI), it is WLOG to

restrict attention to information structures as described in Proposition 2.1; then

(later on, in Claim 2.2), find the (κA, κI) which is consistent with equilibrium.

Proof: Firm i solves:

min
{Ki,Fi,Ωεi}

1

2
var[r(m− c∗) + (1− r)p|SAi ] +

1

2
var[zi|SIi ]

Subject to: (2.58); (2.59) ; I[(c∗,m), SAi ] ≤ κA; I(zi, S
I
i ) ≤ κI .

(2.64)

Because of the way we split the problem, the firm’s choice regarding its signals con-

taining information about aggregate shocks and its choice regarding signals contain-

ing information about the idiosyncratic shock are now two separate (independent)

smaller problems. Before, if the firm chose a particular signal vector concerning

idiosyncratic shocks, it had to take into account how much processing capacity this

used up and how much was then available to process information about the aggre-

gate shocks. Now, this is no longer the case and the firm’s decision regarding how to

learn about aggregate shocks (KA
i , F

A
i ,Ω

A
εi) is independent of its decision regarding

how to learn about the idiosyncratic shock (KI
i , F

I
i ,Ω

I
εi), so we can analyze these

two choices in turn.

I start with the choice regarding learning about the idiosyncratic shock. The sub-

problem reads:

min
KI
i ,F

I
i ,Ω

I
εi

1

2
var[zi|SIi ]

Subject to: SIi = F I
i ai + εIi ;

εIi ∼ N(0,ΩI
εi);

I(zi, S
I
i ) ≤ κI .

The constraint on information flow regarding the idiosyncratic shock implies that:

H(zi)−H(zi|SIi ) ≤ κI

1

2
log2(2πeσ

2
z)−

1

2
log2(2πe var(zi|SIi )) ≤ κI

log2(
σ2
z

var(zi|SIi )
) ≤ 2κI

var(zi|SIi ) ≥
σ2
z

22κI
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The objective function is increasing in var(zi|Si) and the firm wants to minimize it,

so the constraint is binding and it must be the case that an optimal signal vector

leads to:

var(zi|SIi ) =
σ2
z

22κI

Any signal vector with the property that var(zi|SIi ) =
σ2
z

22kI
is optimal, so the opti-

mal choice regarding the number and content of signals concerning the idiosyncratic

shock is indeterminate - there is an infinite number of signal vectors leading to

the same conditional variance (as mentioned in the main text, observing multiple

signals about zi is equivalent to observing a single signal with a higher precision).

However, the posterior uncertainty following the observation of the optimal signal

vector is unique. Thus, without loss of generality, we can restrict attention to signal

vectors in which the firm observes one signal about the idiosyncratic shock of the

form si,2 = zi + εi,2, with εi,2∼N(0, σ2
2) and σ

2
2 = σ2

z

22κI−1
.91

(Bayesian updating given the normal information structure implies that var(zi|si,2) =
σ2
zσ

2
2

σ2
z+σ

2
2
. Because σ2

2 = σ2
z

22κI−1
, it follows that var(zi|SIi ) = σ2

z

22κI
, so the signal si,2 is

optimal.)

Now, let’s turn our attention to firm i’s choice regarding its signals containing in-

formation about aggregate shocks. The subproblem reads:

min
KA
i ,F

A
i ,Ω

A
εi

1

2
var[r(m− c∗) + (1− r)p|SAi ]

Subject to: SAi = FA
i

(
m

c∗

)
+ εAi ;

εAi ∼ N(0,ΩA
εi);

I[(m, c∗), SAi ] ≤ κA.

The problem here is more complicated, because firms track two (correlated) shocks

and because of the strategic complementarity in price-setting. Recall that we want

to prove that it is WLOG to restrict attention to an information structure in which

each firm observes a private signal of the form si,1 = m − c∗ + εi,1, where εi,1 ∼
N(0, σ2

q/(2
2κA − 1)). I argue this in four steps:

• Step 1: Prove Lemma 1 below

• Step 2: Note that for any given symmetric allocation of attention, p is a linear

91i.e. a solution is KI
i = 1;F Ii = (ϕ); ΩIεi = (

σ2
z

22κI−1
).
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combination of m and c∗ (in price-setting equilibrium among firms)

• Step 3: Using Lemma 1 and step 2, note that in any symmetric equilibrium

the price level must be proportional to q (i.e. p = constant x (m− c∗))

• Step 4: Rest of proof follows immediately from Lemma 1 and step 3.

Lemma 1. If the firm solves:

min
KA
i ,F

A
i ,Ω

A
εi

[var(d1m+ d2c
∗|SAi )]

Subject to: SAi = FA
i

(
m

c∗

)
+ εAi ;

εAi ∼ N(0,ΩA
εi);

I[(m, c∗), SAi ] ≤ κA.

(2.65)

(where d1 and d2 are non-zero constants) it is without loss of generality to restrict

attention to one-dimensional signal vectors of the form si,1 = d1m + d2c
∗ + εi,1,

where εi,1 ∼ N(0, σ∗
1), i.e. a solution is KA

i = 1, FA
i =

(
d1 d2

)
and σ∗

1 =

var(d1m+ d2c
∗)/(22κA − 1).

Proof: See Appendix 2.8.2. □

Step 2: Note that for any given symmetric allocation of attention, p is a linear

combination of m and c∗ (in price-setting equilibrium among firms).

Fix any symmetric allocation of attention:

(Ki, Fi,Ωεi) = (K,F,Ωε)∀i.

Price-setting conditional on this symmetric allocation of attention is equivalent to

a beauty contest game with an exogenous (Gaussian) information structure similar

to Morris and Shin (2002), as each firm sets its price to match a weighted sum of

m− c∗ and the average price (as well as its idiosyncratic shock):

pi = E[r(m− c∗) + (1− r)p− zi|Si]

As such, it should be without loss of generality to restrict our attention to linear

equilibria — i.e. equilibria in which each firm sets its price as a linear function of
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its signals:

pi = βSi = βAS
A
i + βIS

I
i (2.66)

Where β is a 1xK matrix of coefficients to be determined in equilibrium (βA is the

left 1xKA submatrix of β denoting firms’ response to signals containing information

about aggregate shocks and βI is the right 1xKI submatrix of β denoting firms’

response to signals containing information about idiosyncratic shocks). (2.66) is

equivalent to:

pi = βA[F
A

(
m

c∗

)
+ εAi ] + βI [F

Iai + εII ] (2.67)

As all noise in signals is idiosyncratic and the ai’s are i.i.d., aggregating (2.67) across

firms gives:

p = βAF
A

(
m

c∗

)
Which is indeed a linear combination of m and c∗.

Note that this is by no means a (rigorous) proof, as we restricted attention to linear

equilibria. More rigorously, one can also show that it is WLOG to restrict attention

to linear equilibria by expressing each firm’s optimal price as an infinite sum of its

first and higher-order beliefs of (m− c∗), then arguing that beliefs of various order

are all linear combinations of signals (and the infinite sum is bounded), but this is

superfluous at this point given the literature (see Morris and Shin (2002), section D

for the initial argument which could also be applied here although the information

structure here is more complicated; I also go over the argument in Appendix 2.8.3

for the information structure described in Proposition 2.1 (the argument proves the

uniqueness of the linear equilibrium given that information structure)).

Step 3: Using Lemma 1 and step 2, note that in any symmetric equilibrium the price

level must be proportional to q (i.e. that we can express p = constant x (m− c∗)).

The approach is the following. We start by positing that in equilibrium the price

level is a particular linear combination of m and c∗ (i.e. that p = γ1m + γ2c
∗).

Taking this as given, we characterise firms’ optimal signals (using the Lemma) and

their equilibrium prices. We then check whether the price level is indeed given by

the linear combination (of m and c∗) which we posited at the beginning. The only

linear combinations which verify our initial guess are of the form γ1 = −γ2 (implying

that in any symmetric equilibrium the price level is proportional to m− c∗).
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Suppose that the price level is given by p = γ1m+ γ2c
∗. Firm i’s profit-maximizing

price is given by:

p̂i = r(m− c∗) + (1− r)(γ1m+ γ2c
∗)− zi ⇔

⇔ p̂i = [r + (1− r)γ1]︸ ︷︷ ︸
ξ1

m+ [(1− r)γ2 − r]︸ ︷︷ ︸
ξ2

c∗ − zi

Thus, when choosing the properties of its signal vector regarding aggregate shocks,

firm i solves:

min
KA
i ,F

A
i ,Ω

A
εi

[var(ξ1m+ ξ2c
∗|SAi )]

Subject to: SAi = FA
i

(
m

c∗

)
+ εAi ;

εAi ∼ N(0,ΩA
εi);

I[(m, c∗), SAi ] ≤ κA.

Using the Lemma, it is without loss of generality to restrict our attention to equi-

libria in which the firms’ signal vector concerning aggregate shocks comprises only

the signal si,1 = ξ1m + ξ2c
∗ + εi,1, where εi,1 ∼ N(0, σ2∗

1 ) and σ∗
1 = var(ξ1m +

ξ2c
∗)/(22κA − 1). Given this signal, each firm sets its price according to:

p∗i =
(
1− 2−2κA

)
s1,i − E[zi|SIi ]

Aggregating across firms, the price level is given by:

p =
(
1− 2−2κA

)
(ξ1m+ ξ2c

∗)

In order for our guess to be verified, it must be the case that:γ1 = (1− 2−2κA)ξ1

γ2 = (1− 2−2κA)ξ2
(2.68)

Solving this yields: γ1 =
rβ1

1−(1−r)β1

γ2 = − rβ1
1−(1−r)β1

(2.69)

Where β1 = 1− 2−2κA . Note that γ1 = −γ2 for any κA and r.
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Step 3 says that regardless of how much attention firms pay to aggregate shocks

in equilibrium (for any κA), if firms optimally choose the number, content and pre-

cision of their signals and set prices optimally conditional on the information they

receive, then the price level must be proportional to m− c∗. Note that this can be

proved in multiple ways (and the argument above is just one of them).

Step 4: Because in any symmetric equilibrium the price level is proportional to

m− c∗, we can rewrite firm i’s problem as

min
KA
i ,F

A
i ,Ω

A
εi

constant x [var(m− c∗|SAi )]

Subject to: SAi = FA
i

(
m

c∗

)
+ εAi ;

εAi ∼ N(0,ΩA
εi);

I[(m, c∗), SAi ] ≤ κA.

The objective is equivalent to the one from Lemma 1 if d1 = 1 and d2 = −1. It

follows that a solution is to observe the signal si,1 = m−c∗+εi,1, with εi,1 ∼ N(0, σ1)

and σ2
1 = var(m− c∗)/(22κA − 1).

Collecting results yields Proposition 2.1’. □

Proof of Lemma 1

Proof: Recall the CB’s policy rule m = ρx = ρ(c∗+εx) (we are solving the problem

for ρ ̸= 0, as d1 ̸= 0). The idea is to note that we can rewrite the problem as:

min
KA
i ,F̃

A
i ,Ω

A
εi

[var(d1ρεx + (d1ρ+ d2)c
∗|SAi )]

Subject to: SAi = F̃A
i

(
εx

c∗

)
+ εAi ;

εAi ∼ N(0,ΩA
εi);

I[(εx, c
∗), SAi ] ≤ κA.

(2.70)

That is, we can set up the firm’s tracking problem in terms of the independent

variables c∗ and εx — this is useful, because the solution to this problem follows

directly from Adam (2007). Two observations are in order, to argue that problems

(2.65) and (2.70) are equivalent.
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Firstly, note that in both problems firms can choose from the same menu of sig-

nals — the set of all linear combinations of m and c∗ is the same as the set of all

linear combinations of εx and c∗.

Secondly, note that the information processing constraint is the same in the two

problems. The vector (m, c∗) can be computed from the vector (εx, c
∗) and vice-versa

— thus, they contain the same information and it follows92 that I[(m, c∗), SAi ] =

I[(εx, c
∗), SAi ] for any signal vector SAi .

Hence, in both problems, the firm chooses from the same menu of signals to maxi-

mize the same objective function, subject to the same constraint — clearly, solutions

must coincide.

It follows from Adam (2007) that when the firm solves the latter problem (expressed

in terms of independent variables), it is without loss of generality to restrict atten-

tion to one-dimensional signal vectors of the form ˜si,1 = d1ρεx + (d1ρ+ d2)c
∗ + εi,1,

where εi,1 ∼ N(0, σ2∗
1 ), i.e. a solution is Ki = 1, F̃i =

(
d1ρ d1ρ+ d2

)
and

σ2∗
1 = var[d1ρεx + (d1ρ + d2)c

∗]/(22κA − 1). Lastly, note that this is the same as

the signal si,1 from the Lemma. □

Remark 2.5: See Adam (2007) — section 4.1 for the reference (more specifi-

cally, problem (18) and Appendix A.3). Similar results are discussed more generally

in Sims (2010) and Fulton (2017).

92This is a property of mutual information — see for instance, Fulton (2017), property 3 and
corollary, or Maćkowiak et al. (2018).
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2.8.3 Details regarding equilibrium when central bank in-

formation is exogenous

Proof of Claim 2.1

Note that this was actually already proved in Appendix 2.8.2 (see (2.69)). The

following proof shows the uniqueness of the linear equilibrium associated with the

information structure from Proposition 2.1 (recall that we restricted our attention

to linear equilibria). The following argument can also be extended to show that it is

WLOG to restrict attention to linear equilibria (in step 2 of Appendix 2.8.2). Also,

note again that this is virtually equivalent to the argument in Adam (2007), section

5.

Proof: Each firm’s optimal pricing rule specifies:

pi = Ei[r(m− c∗) + (1− r)p− zi] (2.71)

Where Ei[.] denotes the expectation conditional on firm i’s information set, i.e.

Ei[.] = E[.|Si]. We have fixed a symmetric allocation of attention κi,A = κA and

κi,I = κI∀i. Following Proposition 2.1’, it is WLOG to restrict our attention to an

information structure in which each firm observes two private signals: one about the

composite aggregate shock q = m− c∗ (si,1 = q+ εi,1 = m− c∗+ εi,1) and one about

its idiosyncratic shock zi (si,2 = zi+εi,2), where εi,1 and εi,2 are drawn independently

for each i from the distributions N ∼ (0, σ2
q/(2

2κA − 1)) and N ∼ (0, σ2
z/(2

2κI − 1))

respectively.

Bayesian updating given this information structure implies that:

Ei[q] = [1− 2−2κA ]︸ ︷︷ ︸
β1

si,1

Ei[zi] = [1− 2−2κI ]︸ ︷︷ ︸
β2

si,2

Before proceeding, we introduce some notation in the spirit of Morris and Shin

(2002) to be able to refer to beliefs of various order — denote by E[q] the average

expectation of q across firms (i.e. E[q] =
∫ 1

0
Ei[q]di), by E

2
[q] the average expecta-

tion of the average expectation of q across firms (i.e. E
2
[q] = E[E[q]]) and so on.

Note that all noise in signals is idiosyncratic and the ai’s are i.i.d. across firms,
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so
∫ 1

0
Ei[zi] = 0. By repeatedly integrating across firms, taking conditional expecta-

tions and substituting back in (2.71), we can rewrite it as:

pi = rEi[q] + r
∞∑
n=1

(1− r)nEi
[
E
n
(q)
]
− Ei[zi] (2.72)

We can then compute the firm’s beliefs of various order about q.

We know that Ei[q] = β1si,1 = β1[q + εi,1]. Aggregating across firms gives: E[q] =

β1q.

Hence, Ei[E(q)] = Ei[β1q] = β1Ei[q] = β2
1si,1.

Repeatedly applying the same operation yields: Ei[E
n
(q)] = βn+1

1 si,1.

Substituting the higher-order beliefs into (2.72) and computing the infinite sum

gives:

pi =
rβ1

1− (1− r)β1
si,1 − β2si,2.

□

Proof of Claim 2.2

Note again that this is equivalent to the equilibrium in Maćkowiak and Wiederholt

(2009), section 5 (for the derivation of the equilibrium, see the technical appendix of

their paper). The derivation here is slightly different because firms do not observe

the price level.

Proof: Consider firm i’s problem when choosing its allocation of attention. The

firm takes as given the CB’s policy rule (thus, it takes as given the variance of the

aggregate shock σ2
q ) and the other firms’ allocations of attention. As there is a unit

mass of firms (and firm i is atomistic), firm i’s decision regarding its allocation of

attention and firm i’s price do not influence the aggregate price level. Thus, firm

i effectively takes the price level as given (because it takes as given other firms’

attention allocations and it anticipates how prices are set in equilibrium (see Claim

2.1)).

83



Following Proposition 2.1’, firm i’s problem writes as:

min
κA,κI

var[rq + (1− r)p− zi|Si]

Subject to: Si =

(
q + εi,1

zi + εi,2

)
; Ωεi =

(
σ2
q

2κA−1
0

0 σ2
z

2κI−1

)
;

κA + κI ≤ κ; (κA;κI) ∈ [0, κ]2.

In what follows I use the following Lemma to simplify the exposition:

Lemma 2. Suppose w is a constant (which the firm takes as given). Consider

the problem:

min
κA,κI

var[wq − zi|Si]

Subject to: Si =

(
q + εi,1

zi + εi,2

)
; Ωεi =

(
σ2
q

2κA−1
0

0 σ2
z

2κI−1

)
;

κA + κI ≤ κ; (κA;κI) ∈ [0, κ]2.

The solution is:

κ∗A =


κ if wσq

σz
≥ 2κ

1
2
κ+ 1

4
log2

(
w2σ2

q

σ2
z

)
if wσq

σz
∈ (2−κ, 2κ)

0 if wσq
σz

≤ 2−κ

κ∗I = κ− κ∗A

Proof. Bayesian updating given the signal vector Si implies that var[q|Si] =

σ2
q/2

2κA and var[zi|Si] = σ2
z/2

2κI . Thus, we can rewrite the problem as:

min
κA,κI

w2σ2
q/2

2κA + σ2
z/2

2κI

Subject to: κA + κI ≤ κ; (κA;κI) ∈ [0, κ]2.

This is a standard constrained minimization problem whose solution is given in the

Lemma. Alternatively, see Maćkowiak and Wiederholt (2009), section 5 (equations

35 and 36). □

Now let us analyse the equilibrium allocation of attention — the approach is the
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following: fix the allocation of attention of all firms j ̸= i:

(κj,A, κj,I) = (κA, κI)∀j ̸= i

And compute the price level using Claim 2.1; then, analyse firm i’s optimal alloca-

tion of attention. As we are looking for a symmetric equilibrium, it must be the case

that firm i finds it optimal to choose the same allocation of attention as the other

firms (κ∗i,A, κ
∗
i,I) = (κA, κI) . Essentially, this is a fixed point problem in which the

equilibrium allocation of attention maps to itself.

Firstly, let us consider equilibria in which firms pay attention only to idiosyncratic

conditions. Suppose (κA, κI) = (0, κ). By Claim 2.1, prices are set according to

pj = β2sj,2, so the price level is p = 0. Thus, firm i’s problem writes as:

min
κA,κI

var[rq − zi|Si]

Subject to: Si =

(
q + εi,1

zi + εi,2

)
; Ωεi =

(
σ2
q

2κA−1
0

0 σ2
z

2κI−1

)
;

κA + κI ≤ κ; (κA;κI) ∈ [0, κ]2.

By Lemma 2, firm i finds it optimal to choose (κ∗i,A, κ
∗
i,I) = (0, κ) if rσq

σz
≤ 2−κ. Thus,

for such policy and parameter values, there is an equilibrium in which firms only

pay attention to idiosyncratic shocks.

Secondly, consider equilibria in which firms pay attention only to aggregate con-

ditions. Suppose (κA, κI) = (κ, 0). By Claim 2.1, prices are set according to

pj = r(1−2−2κ)
1−(1−r)(1−2−2κ)

sj,1, so the price level is given by p =
r(1− 2−2κ)

1− (1− r)(1− 2−2κ)︸ ︷︷ ︸
αH

q.

Thus, firm i’s problem writes as:

min
κA,κI

var[(r + (1− r)αH)q − zi|Si]

Subject to: Si =

(
q + εi,1

zi + εi,2

)
; Ωεi =

(
σ2
q

2κA−1
0

0 σ2
z

2κI−1

)
;

κA + κI ≤ κ; (κA;κI) ∈ [0, κ]2.

By Lemma 2, firm i finds it optimal to choose (κ∗i,A, κ
∗
i,I) = (κ, 0) if [r+(1−r)αH ]σq

σz
≥ 2κ.

This simplifies to rσq
σz

≥ 2−κ+r(2κ−2−κ); for such policy and parameter values there

is an equilibrium in which firms pay attention only to aggregate shocks.
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Lastly, consider equilibria in which firms pay attention to both aggregate and id-

iosyncratic shocks. Suppose (κA, κI) ∈ (0, κ)2. Using the same logic as before, the

price level is given by:

p =
r(1− 2−2κA)

1− (1− r)(1− 2−2κA)︸ ︷︷ ︸
αM

q (2.73)

Using Lemma 2, it follows that at an interior solution the amount of attention firm

i should pay to aggregate conditions is:

κ∗i,A =
1

2
κ+

1

4
log2

{
[r + (1− r)αM ]2

σ2
q

σ2
z

}
(2.74)

Note again that we are looking for a symmetric equilibrium, so it must be the

case that κ∗i,A = κA; denote the fixed point (i.e. the solution to (2.74)) by κ∗A.

Substituting αM from (2.73) into (2.74) and rearranging gives:

(
1

22κA
)2
[
22κr2

σ2
q

σ2
z

− (1− r)2
]
− 2(1− r)r(

1

22κA
)− r2 = 0

Which is a quadratic equation. Solving this yields:

22κ
∗
A ∈

{
−
(
2κσq
σz

+
1

r
− 1

)
;
2κσq
σz

− 1

r
+ 1

}
The first root is negative, as r ∈ (0, 1) and thus cannot be a solution (as 22κ

∗
A ≥ 1).

Rearranging gives:

κ∗A =
1

2
log2

(
1− 1

r
+

2κσq
σz

)
Indeed, this conforms with our conditions for an interior solution if rσq

σz
∈ (2−κ, 2−κ+

r(2κ − 2−κ)).

Note that there is a unique equilibrium for any policy rule and parameter values

(as parameter regions for which we obtain distinct equilibria are mutually exclu-

sive). Also, the equilibrium coincides with the one from Maćkowiak and Wiederholt

(2009). □
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Proof of Claim 2.3

Proof: Recall that the setting of policy determines the variance of the aggregate

shock q:

σ2
q = var(m− c∗) = var[ρ(c∗ + εx)− c∗] = (ρ− 1)2σ2

c∗ + ρ2σ2
x (2.75)

We will find an expression for expected welfare as a function of σ2
q (and note that

the CB’s policy ρ does not affect expected welfare in any other way except for its

effect on σ2
q ). The expression for welfare takes different forms if firms pay attention

only to aggregate or idiosyncratic shocks (or both), so we consider these cases in turn.

Case 1: rσq
σz

≥ 2−κ + r(2κ − 2−κ)

If firms pay attention solely to aggregate shocks (κ∗A = κ), then (following Claim

2.1) prices are set according to:

pi =
r(1− 2−2κ)

1− (1− r)(1− 2−2κ)︸ ︷︷ ︸
αH

si,1

So the price level is given by:

p =

∫ 1

0

pidi = αH

∫ 1

0

(q + εi,1)di = αHq

Recall that the expected welfare loss is given by:

E[L] = E[c− c∗] + δE[

∫ 1

0

(pi − p+ zi)
2di]

The loss due to inefficient consumption variance in this case is given by:

E[(c− c∗)2] = E[(m− p− c∗)2] = E[(q − αHq)
2] = (1− αH)

2σ2
q

And the loss due to an inefficient consumption mix is given by:

δE[

∫ 1

0

(pi−p+zi)2di] = δE[

∫ 1

0

(αH(si,1−q)+zi)2di] = δ(α2
Hσ

2
1+σ

2
z) = δ(α2

H

σ2
q

22κ − 1
+σ2

z)

Hence, in this case the expected welfare loss is given by:

LH = (1− αH)
2σ2

q + δ(α2
H

σ2
q

22κ − 1
+ σ2

z)
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Case 2: rσq
σz

∈ (2−κ, 2−κ + r(2κ − 2−κ))

If firms pay attention to both aggregate and idiosyncratic shocks, then by Claim

2.1, prices are set according to:

pi =
r(1− 2−2κA)

1− (1− r)(1− 2−2κA)︸ ︷︷ ︸
αM

si,1 − (1− 2−2κI )si,2

Where, by Claim 2.2, κA = 1
2
log2(1− 1

r
+ 2kσq

σz
) and κI = κ− κA.

Aggregating across firms, the price level is given by:

p = αMq = (1− σz
2krσq

)q

Thus, in this case the variance of the real output gap is:

E[(c− c∗)2] = E[(q − p)2] = E[(1− αM)2q2] =

[
σz

2κrσq

]2
σ2
q =

[ σz
2κr

]2
Note that this is independent of σ2

q . The loss due to an inefficient consumption mix

simplifies to:

δE[

∫ 1

0

(pi − p+ zi)
2di] =

δσ2
z

r22κ

[
2κ+1r

σq
σz

+ r − 2

]
Hence, in this case the expected welfare loss is:

LM =
[ σz
2κr

]2
+
δσ2

z

r22κ

[
2κ+1r

σq
σz

+ r − 2

]
Case 3: rσq

σz
≤ 2−κ

If firms pay attention solely to idiosyncratic shocks, then prices are set according

to:

pi = −(1− 2−2κ)si,2

And the price level is given by p = 0. Consequently, the variance of the real output

gap is:

E[(c− c∗)2] = σ2
q
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And the associated loss due to an inefficient consumption mix is given by:

δE[

∫ 1

0

(pi − p+ zi)
2di] = δ

σ2
z

22κ

Hence, in this case the expected welfare loss is:

LL = σ2
q + δ

σ2
z

22κ

Collecting results from the three cases yields that we can express the expected

welfare loss as:

E[L] =


(1− αH)

2σ2
q + δ(α2

H
σ2
q

22κ−1
+ σ2

z) if rσq
σz

≥ 2−k + r(2k − 2−k)[
σz
2κr

]2
+ δσ2

z

r22κ

[
2κ+1r σq

σz
+ r − 2

]
if rσq

σz
∈ (2−k, 2−k + r(2k − 2−k))

σ2
q + δ σ

2
z

22κ
if rσq

σz
≤ 2−k

Note that this is (continuous and) strictly increasing in σ2
q , and does not otherwise

depend on the policy coefficient ρ. It follows that the CB sets ρ to minimize σ2
q .

Minimizing (2.75) w.r.t. ρ readily yields:

ρ∗ =
σ2
c∗

σ2
c∗ + σ2

x

And evaluating σ2
q at the optimal policy ρ∗ gives:

σ2∗
q =

σ2
c∗σ

2
x

σ2
c∗ + σ2

x

Note also that this is equal to the CB’s posterior uncertainty about c∗. □
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2.8.4 Details regarding equilibrium when central bank in-

formation is endogenous

Policy rule

In the endogenous CB information section, I assume that the CB commits to the

policy rule m = ρp̃ — i.e. the CB’s policy instrument responds to the noisy obser-

vation of the price level (whereas in the exogenous CB information setup I assume

that the monetary instrument responds to the CB’s noisy observation of the funda-

mental itself). In the spirit of the exogenous information section, we will consider an

alternative policy rule of the form m = ρ̃c̃ (i.e. a policy rule whereby the monetary

instrument responds to the unbiased signal of the fundamental which is constructed

by the CB from p̃)93 and argue that it is equivalent to the policy rule m = ρp̃.

Firstly, note that Proposition 2.1 and Claim 2.1 still hold in the endogenous CB

information setup regardless of the form of the policy rule which the CB commits

to, so long as m remains normally distributed (m is determined differently, but is

still Gaussian and observable, so firms still find it optimal to observe noisy signals

of q = m − c∗ and zi and to use the same pricing rule as before). Hence (using

Claim 2.1 and aggregating across firms), for any symmetric allocation of attention

(κi,A, κi,I) = (κA, κI)∀i, the price level is given by:

p =
rβ1

1− (1− r)β1︸ ︷︷ ︸
α

(m− c∗) where β1 = 1− 1

22κA
(2.76)

Where α ∈ [0, 1) is to be determined in equilibrium (because κA is to be determined

in equilibrium). Thus, in any equilibrium the CB’s signal is:

p̃ = α(m− c∗) + ε̃

For α ̸= 0, the unbiased estimate of c∗ recovered by the CB from p̃ is (as before):

c̃ = m− p̃

α
= c∗ − ε̃

α

So our alternative policy rule writes as:

m = ρ̃c̃ = ρ̃

(
c∗ − ε̃

α

)
= − ρ̃

α(1− ρ̃)
p̃

93Which is denoted by c̃, see (2.32).
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While our original policy rule writes as:

m = ρp̃ = ρ[α(m− c∗) + ε̃] = − ρα

1− ρα
(c∗ − ε̃

α
)

The two policy rules are equivalent if:

ρ = − ρ̃

α(1− ρ̃)
(2.77)

As mentioned in the main text I restrict attention to ρ ≤ 0. Note from (2.76) that

because κA ∈ [0, κ] it must be the case that α ∈ [0, 1) in any equilibrium. Hence it

follows from (2.77) that if ρ > 0 (and there is an equilibrium among firms), then the

policy rule m = ρp̃ is equivalent to a policy rule of the form m = ρ̃c̃ where ρ̃ < 0

or ρ̃ > 1. Hence restricting attention to finite ρ ≤ 0 is equivalent to restricting

attention to ρ̃ ∈ [0, 1). I justify restricting attention to ρ̃ ∈ [0, 1) on the following

grounds:

• It conforms with the optimal reaction coefficient from Claim 2.3 which always

lies between 0 and 1. The CB’s problem here is similar to the one from the

exogenous CB information setup, the only difference being that its information

precision concerning the fundamental is now endogenous (and depends on the

setting of the policy reaction function) — see also Remark 2.6 below.

• Baeriswyl et al. (2020)94 also restrict attention to policy rules specifying ρ̃ ∈
[0, 1), which “means that the central bank seeks to accommodate shocks to

the fundamental rather than to amplify them (i.e. ρ̃ < 0) or overaccommodate

them (i.e. ρ̃ > 1), which sounds realistic” (Baeriswyl et al. (2020))

Note 1: The argument above is somewhat incomplete as it presupposes that for any

ρ ≤ 0 there is a unique equilibrium allocation of attention (and hence a unique α

associated with each ρ ≤ 0) — I argue in what follows that this is indeed the case.

Note 2: To compute ρ̃ (for the graphs in the main text), I fix different values

for ρ and compute the equilibrium among firms (and α), then use equation (2.77) to

compute ρ̃.

Remark 2.6: It should also be WLOG to restrict attention to ρ̃ ∈ [0, 1).

Sketch of argument: Given a policy rule of the form m = ρ̃c̃, the variance of q

94See section 1.6.
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in any equilibrium is:

σ2
q = var(m− c∗) = (ρ̃− 1)2σ2

c∗ + ρ̃2σ2
p̃/α

2 (2.78)

Consider any ρ̃ < 0 — for any α ∈ [0, 1), the variance of the aggregate shock q is

higher than the variance of the fundamental σ2
q > σ2

c∗ . From the welfare analysis in

the exogenous CB information setup (Claim 2.3), we know that the expected welfare

loss is strictly increasing in σ2
q . It follows that a policy rule specifying ρ̃ = 0 leads

to lower welfare losses in equilibrium than one specifying ρ̃ < 0 (i.e. the CB does

not find it optimal to amplify shocks to the fundamental).

For any ρ̃ > 1, one can show that overaccommodating less (i.e. decreasing ρ̃)

leads to lower welfare losses in equilibrium (i.e. for ρ̃ > 1 a policy rule specifying

m = (ρ̃ − ε)c̃ does strictly better than a policy rule specifying m = ρ̃c̃ (where ε is

small), so no ρ̃ > 1 can be optimal). To see this more clearly, consider the derivative

of (2.78) w.r.t. ρ̃:

∂σ2
q

∂ρ̃
= 2(ρ̃− 1)σ2

c∗ + 2ρ̃σ2
p̃/α

2 − 2ρ̃2σ2
p̃

1

α3

∂α

∂ρ̃
(2.79)

Using the chain rule we can express ∂α
∂ρ̃

= ∂α
∂σ2
q

∂σ2
q

∂ρ̃
, which implies that (2.79) can be

rearranged as:

∂σ2
q

∂ρ̃
=

[
2(ρ̃− 1)σ2

c∗ +
2ρ̃σ2

p̃

α2

]
/

[
1 + 2ρ̃σ2

p̃

1

α3

∂α

∂σ2
q

]
(2.80)

For ρ̃ > 1, both the numerator and denominator of the fraction on the R.H.S. of

(2.80) are strictly positive (because ∂α
∂σ2
q
≥ 0 (see 2.31) and because α ∈ [0, 1) in any

equilibrium). It follows that
∂σ2
q

∂ρ̃
> 0 for ρ̃ > 1, so overaccommodating less (slightly

lowering ρ̃) is welfare-improving.

Optimal policy

Recall (from (2.76)) that we can express the CB’s signal as:

p̃ = α(m− c∗) + ε̃
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Using the CB’s policy rule m = ρp̃, we can express q as:

q = m− c∗ = ρ [α(m− c∗) + ε̃]− c∗ ⇔

⇔q = − 1

1− ρα
c∗ +

ρ

1− ρα
ε̃

(The denominator is strictly positive because we have restricted attention to ρ ≤ 0

and because α ≥ 0 in any equilibrium.) Squaring both sides and taking uncondi-

tional expectations yields:

σ2
q =

(
1

1− ρα

)2

σ2
c∗ +

(
ρ

1− ρα

)2

σ2
p̃ (2.81)

Note that the variance of aggregate shocks in equilibrium is a function of α. Also, α

is itself a function of σ2
q (as it depends on how much attention firms pay to aggregate

shocks).

As mentioned in the main text, in equilibrium firms pay attention to both aggre-

gate and idiosyncratic shocks — I argue this more precisely (and alleviate potential

concerns) afterwards in Appendix 2.8.4. For now, let us just guess and verify that

the equilibrium allocation of attention is interior — in this case, it follows from

Claim 2.2 that the amount of attention allocated by firms to aggregate shocks (in

equilibrium) is given by:

κA =
1

2
log2

(
1− 1

r
+

2κσq
σz

)
Using this and (2.76) yields (as before):

α = 1− σz
2κσqr

(2.82)

Substituting (2.82) into (2.81) gives:

σ2
q =

22κσ2
qr

2(σ2
c∗ + ρ2σ2

p̃)

[2κσqr(1− ρ) + ρσz]
2

Rearranging yields:

[2κσqr + ρ(σz − 2κσqr)]
2 = 22κr2(σ2

c∗ + ρ2σ2
p̃) (2.83)

Note that because firms pay some attention to aggregate shocks (κA > 0), it must be

the case that σz < 2κσqr. Recalling that we restrict attention to ρ ≤ 0 implies that
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the squared term on the L.H.S. of (2.83) is strictly positive. Taking square roots of

both sides of (2.83) and rearranging gives us an expression for σq as a function of

policy and parameters:

σq =
2κr
√
σ2
c∗ + ρ2σ2

p̃ − ρσz

2κr(1− ρ)
(2.84)

It follows from before (Claim 2.3) that the welfare loss is strictly increasing in σq,

so the CB seeks to minimize it.95 Taking the derivative of (2.84) w.r.t. ρ (and

simplifying) yields:

∂σq
∂ρ

=
[
2κr(σ2

c∗ + ρσ2
p̃)− σz

√
σ2
c∗ + ρ2σ2

p̃

]
/
[
2κr(ρ− 1)2

√
σ2
c∗ + ρ2σ2

p̃

]
(2.85)

Setting the first-order condition equal to zero is equivalent to:

σ2
c∗ + ρ∗σ2

p̃√
σ2
c∗ + ρ∗2σ2

p̃

=
σz
2κr

(2.86)

Let f(ρ) =
σ2
c∗+ρσ

2
p̃√

σ2
c∗+ρ

2σ2
p̃

. Note that:

• f(0) = σc∗ >
σz
2κr

(because in the absence of policy intervention (ρ = 0), the

equilibrium allocation of attention is interior)

• f(−σ2
c∗
σ2
p̃
) = 0 < σz

2κr

• f(ρ) is continuous and strictly increasing in ρ (for ρ ≤ 0)

It follows that there is a unique solution to f(ρ) = σz
2κr

(i.e. (2.86)), which is the

optimal policy.96 Note that because f(ρ) is increasing in ρ (for ρ ≤ 0), it follows

that ∂σq
∂ρ

> 0 for ρ > ρ∗ and ∂σq
∂ρ

< 0 for ρ < ρ∗ so we have indeed found a (global)

minimum.

We should check that when policy is set optimally (ρ = ρ∗) firms indeed find it

optimal to pay attention to both aggregate and idiosyncratic shocks in equilibrium

(such that our guess is verified) — I argue this in Appendix 2.8.4 (see (2.90) and

the discussion following it).

Corollary 2.1 follows immediately from our previous analysis. Because the equi-

librium allocation of attention is interior, α is equal to αM (see 2.82) — hence α

95More precisely, because the equilibrium allocation of attention is interior, the welfare loss is

given by E[L] =
[
σz

2κr

]2
+

δσ2
z

r22κ

[
2κ+1r

σq

σz
+ r − 2

]
— see case 2 in Appendix 2.8.3.

96Also, ρ∗ ∈ (−σ2
c∗
σ2
p̃
, 0).
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is strictly increasing in σq. Because optimal policy minimizes σq, it also minimizes

α. It follows that optimal policy minimizes price informativeness (τp = α2/σ2
p̃), the

slope of the Phillips curve and the degree of monetary neutrality.

To analyse comparative statics, note that for ρ∗ < 0, the L.H.S. of (2.86) is strictly

increasing in ρ∗ and σ2
c∗ , and strictly decreasing in σ2

p̃. Hence it is straightforward

to prove Corollary 2.2 by taking implicit derivatives (or inspecting) (2.86).

Using (2.84) and (2.86) we can express:

σ∗
q =

σ2
c∗√

σ2
c∗ + ρ∗2σ2

p̃

(2.87)

Proof that equilibrium allocation of attention is interior

Let us first consider equilibria where firms pay attention only to idiosyncratic shocks.

Suppose (κA, κI) = (0, κ). By Claim 2.1, prices are set according to pj = β2sj,2, so

the price level is p = 0. Thus, firm i’s problem writes as:

min
κA,κI

var[rq − zi|Si]

Subject to: Si =

(
q + εi,1

zi + εi,2

)
; Ωεi =

(
σ2
q

2κA−1
0

0 σ2
z

2κI−1

)
;

κA + κI ≤ κ; (κA;κI) ∈ [0, κ]2.

By Lemma 2, firm i finds it optimal to choose (κ∗i,A, κ
∗
i,I) = (0, κ) if rσq

σz
≤ 2−κ. Note

that because p = 0, the CB’s signal is pure noise p̃ = ε̃. This implies that the

variance of the aggregate shock q = m− c∗ is greater than (or equal to) the variance

of c∗ for any policy reaction function: σ2
q ≥ σ2

c∗∀ρ. As rσc∗
σz

> 2−κ (because in the

absence of policy intervention, the equilibrium allocation of attention is interior), it

follows that the inequality rσq
σz

≤ 2−κ cannot be satisfied in equilibrium for any ρ —

hence there are no equilibria where firms pay attention only to idiosyncratic shocks.

Secondly, consider equilibria where firms pay attention only to aggregate condi-

tions. Suppose (κA, κI) = (κ, 0). By Claim 2.1, prices are set according to pj =

r(1−2−2κ)
1−(1−r)(1−2−2κ)

sj,1, so the price level is given by p =
r(1− 2−2κ)

1− (1− r)(1− 2−2κ)︸ ︷︷ ︸
αH

q. Thus,
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firm i’s problem writes as:

min
κA,κI

var[(r + (1− r)αH)q − zi|Si]

Subject to: Si =

(
q + εi,1

zi + εi,2

)
; Ωεi =

(
σ2
q

2κA−1
0

0 σ2
z

2κI−1

)
;

κA + κI ≤ κ; (κA;κI) ∈ [0, κ]2.

By Lemma 2, firm i finds it optimal to choose (κ∗i,A, κ
∗
i,I) = (κ, 0) if [r+(1−r)αH ]σq

σz
≥ 2κ.

Let us now determine σq in this case (and denote it by σq,H). Using (2.81), we can

express:

σ2
q,H =

(
1

1− ραH

)2

σ2
c∗ +

(
ρ

1− ραH

)2

σ2
p̃.

Hence, there is an equilibrium where firms pay attention solely to aggregate shocks

if:

[r + (1− r)αH ]σq,H ≥ 2κσz (2.88)

Lastly, consider equilibria where firms pay attention to both aggregate and idiosyn-

cratic shocks. Firm i’s problem reads:

min
κA,κI

var[(r + (1− r)αM)q − zi|Si]

Subject to: Si =

(
q + εi,1

zi + εi,2

)
; Ωεi =

(
σ2
q

2κA−1
0

0 σ2
z

2κI−1

)
;

κA + κI ≤ κ; (κA;κI) ∈ [0, κ]2.

Where αM = 1 − σz
2κrσq,M

and σq,M =
2κr

√
σ2
c∗+ρ

2σ2
p̃−ρσz

2κr(1−ρ) (because we posited that

the firms’ equilibrium allocation of attention is interior — see equations (2.82) and

(2.84)). Using Lemma 2 again, firm i finds it optimal to pay attention to both

aggregate and idiosyncratic shocks if:

2−κ < [r + (1− r)αM ]σq,M/σz < 2κ (2.89)

Inequalities (2.88) and (2.89) can never be satisfied simultaneously (thus, we never

get multiple equilibria for any ρ).

The last thing to show is that inequality (2.89) is satisfied when policy is set opti-

mally (ρ = ρ∗). To be more precise, we want to show that:

2−κ < [r + (1− r)α∗
M ]σ∗

q,M/σz < 2κ (2.90)
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Where α∗
M = 1− σz

2κrσ∗
q,M

, σ∗
q,M =

σ2
c∗√

σ2
c∗+ρ

∗2σ2
p̃

(see (2.87)) and where ρ∗ solves (2.86).

Firstly, note that:

[r + (1− r)α∗
M ]σ∗

q/σz < [r + (1− r)αH ]σc∗/σz < 2κ (2.91)

Where the first inequality holds because α∗
M < αH and σ∗

q < σc∗ . The second in-

equality holds because in the absence of policy intervention (ρ = 0), the equilibrium

allocation of attention is interior.

Secondly, note that:

2−κ < [r + (1− r)αM ]σq,M/σz ∀ρ ≤ 0 (2.92)

From (2.91) and (2.92), it follows that (2.90) is satisfied (hence our guess that the

equilibrium allocation of attention is interior is verified, and it follows that the

unique equilibrium we have identified always exists). □
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3 Brainard Uncertainty and the Signal Value of Prices

3.1 Introduction
One rationale standing behind caution in monetary policy-making is parameter un-

certainty in the spirit of Brainard (1967) — in other words, uncertainty regarding

the transmission of policy itself.1 This is also referred to as “multiplicative uncer-

tainty”, and is to be distinguished from “additive uncertainty” which is independent

of the policymaker’s behavior:2

“Researchers have generally specified models in which uncertainty is independent

of the policymaker’s behavior. In these models, the only uncertainty is whether the

economy will deviate from the path policy-makers expect on account of what are

known as ‘additive shocks’. As Theil (1958) showed, the best that policy-makers

could do in this case would be to ignore the effects of uncertainty upon the economy.

This is known as ‘certainty-equivalence’.” (Batini et al. (1999))

Note that in Chapter 2, the central bank faces only “additive” uncertainty (con-

cerning the fundamental).3 In this paper, I introduce parameter uncertainty in a

stylized, dynamic version of the model presented in Chapter 2, then I analyse similar

questions (concerning the effects of policy intervention on price informativeness, and

the consequent implications for optimal policy).

Building on Chapter 2, I first analyse a sequence of static beauty contest games

featuring an (infinitely-lived) activist policymaker who learns about fundamentals

by observing noisy signals of the agents’ average actions, in the spirit of Morris and

Shin (2005). Each period, a new generation of (short-lived) rationally inattentive

agents are born, who live for one period in which they process a fixed amount of

information about their environment, then take their actions.4 Firstly, the paper

argues that the central bank can use the information revealed by the average actions

1Throughout the paper I use the terms “parameter uncertainty”, “Brainard uncertainty” and
“uncertainty regarding the transmission of policy” interchangeably.

2More details are presented in section 3.3.
3For instance, in section 2.4, it is easy to note that the central bank faces “additive” uncertainty

and that its optimal policy displays certainty-equivalence — see, for instance Claim 2.3 and note
that the policy instrument is optimally set according to m = E[c∗|x]. In contrast, under parameter
uncertainty, the central bank no longer acts solely on the basis of expected values, so optimal policy
no longer displays certainty-equivalence (for more details, see section 3.3.1).

4Each private-sector agent’s problem is equivalent to the firm’s problem in Chapter 2 (if there
are no idiosyncratic shocks in the model of Chapter 2, i.e. if σ2

z = 0).
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of agents in past generations to improve the expected welfare of agents in the current

generation. Furthermore, it argues that, in such a setting, the policymaker’s actions

do not affect his information precision about fundamentals, because the central bank

can always perfectly disentangle its policy instrument from the average action.5

I then relax the assumption that the central bank perfectly knows the parameters

governing the transmission of its policy (i.e. I introduce parameter uncertainty in

the spirit of Brainard (1967)). I argue that under parameter uncertainty, the central

bank can no longer perfectly disentangle the effects of its policy from the average

action, because the latter necessarily reflects some of the uncertainty associated with

the transmission of policy (alongside information concerning the fundamental). Not

perfectly knowing either the fundamental or the transmission of policy, the policy-

maker learns about both upon observing the agents’ average action. This implies

that “policy experiments” designed to elicit information concerning policy trans-

mission (as described in Bertocchi and Spagat (1993)) are informationally costly for

the central bank in this framework, as they necessarily come at the expense of in-

formation concerning fundamentals. Parameter uncertainty complicates the central

bank’s problem, as a trade-off emerges between learning about the fundamental and

learning about the parameter governing the transmission of policy — the central

bank has both an incentive to experiment with policy (in order to elicit information

about its transmission) and an incentive to be cautious with policy (in order to have

more precise information about the fundamental). This resembles the problem of

“learning with two unobservable parameters” in Balvers and Cosimano (1994), as I

explain in more detail in section 3.3.4.

Related literature: The paper relates to the literature on central bank learn-

ing under parameter uncertainty (see, for instance, Bertocchi and Spagat (1993);

Balvers and Cosimano (1994); Sack (1998); Ellison and Valla (2001)). I expand

on this in section 3.3.3, after I introduce the model. The paper also relates to the

literature analysing optimal policy in settings where firms set prices under imperfect

common knowledge, and the central bank learns from prices (for instance, Morris

and Shin (2005); Baeriswyl (2011); Baeriswyl et al. (2020)). For more details about

this strand of the literature, see section 2.2 in Chapter 2.

5This is similar to the observation (in Chapter 2) that price informativeness is independent of
the central bank’s reaction function so long as firms pay a fixed amount of attention to aggregate
shocks — see the discussion in section 2.4.2.
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3.2 Certainty-equivalent model
Agents and payoffs: Consider a sequence of static beauty contest games in the

spirit of Morris and Shin (2005). Time is discrete and indexed by t ∈ {0, 1, 2...}.
Each period t, a new generation of private-sector agents (indexed by i on the unit

interval) play a beauty contest game. More specifically, each agent i in generation t

chooses his action ai,t ∈ R to match a weighted sum of a Gaussian fundamental θt,

as well as the average action of the agents in that period at =
∫ 1

0
ai,tdi. Additionally,

each agent cares about matching the central bank’s policy instrument, denoted by

gt. More precisely, each agent’s utility writes as:

ui,t = − [ai,t − r(θt + gt)− (1− r)at]
2 (3.1)

Where the degree of strategic complementarity is (1−r). The way in which policy is

incorporated in the model is reminiscent of James and Lawler (2011) — “it implies,

of course, that appropriate adjustments in g can fully neutralize the consequences of

variations in θ. Such a formulation is likely to be especially relevant in a macroeco-

nomic context, where θ might, for example, be taken to correspond to a particular

aggregate demand shock realization” (James and Lawler (2011)). Equation (3.1)

can also be derived in the context of a microfounded economy, as in Chapter 2.6

Initially, the fundamental is drawn from a Gaussian prior θ−1 ∼ N(0, σ2
θ,−1); then,

it evolves according to an AR(1):

θt = αθt−1 + εθt (3.2)

Where α ∈ [0, 1] and the εθt ’s are independently and identically distributed accord-

ing to εθt ∼ N(0, σ2
θ).

As mentioned above, the central bank controls the policy instrument gt. The poli-

cymaker will have some private information (concerning the fundamental) and will

choose a reaction function specifying how he sets the policy instrument (gt) condi-

tional on his information (this is introduced in the next subsection). The policy-

maker’s per-period payoff is given by:

ucb,t = −(at − θt − gt)
2 − λ

∫ 1

0

(ai,t − at)
2di (3.3)

6Where the agent’s utility would correspond to a log-quadratic approximation of a monop-
olistically competitive firm’s profit function in an economy in which the household consumes a
composite good a la Dixit-Stiglitz and the central bank controls the money supply.
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The central bank’s per-period payoff is decreasing in the distance of the average

action from the sum of the fundamental and the policy instrument in that period

(i.e. the first squared term), as well as in the dispersion of actions from the average

action (i.e. the second term). The weight assigned to action dispersion in the wel-

fare function is given by λ > 0. We will note in what follows that the exact value

of λ does not matter for the results7 — remark however that λ > 1 if the welfare

function is derived from microfoundations, while in a beauty contest formulation of

the problem in the spirit of Morris and Shin (2005), λ = 1. This is also discussed in

Baeriswyl et al. (2020) where the same objective function is used for the policymaker.

Information structure: The assumptions concerning the information structure

are similar to the ones in Chapter 2. More specifically, I assume that private sec-

tor agents are rationally inattentive (and can directly observe the fundamental, as

well the setting of the policy instrument), while the central bank learns about the

fundamental by observing noisy signals of the agents’ average actions (as in Morris

and Shin (2005)).

Private sector agents: All agents in all generations have the same finite ca-

pacity to process information, denoted by κ. In similar fashion to Chapter 2, agents

in each period process information before taking their actions. The setting of the

policy instrument in period t (gt) is observable to private-sector agents in genera-

tion t. In what follows we will also note that gt is Gaussian and each private agent

knows the distribution from which it is drawn. Define the vector Xt = (θt, gt)
T and

let Si,t denote the vector of (private) signals observed by agent i in period t. The

information processing constraint writes as:

I(Xt, Si,t) ≤ κ

Which states that the mutual information between Xt and the vector of signals

observed by each agent i in generation t (Si,t) must not exceed the agent’s capacity

to process information (κ) — for more details, see section 2.3 in chapter 2. I assume

that each signal observed by agents can be about any linear combination of current

shocks (i.e. θt and gt). Hence, we can represent the signal vector of agent i in

generation t as:

Si,t = Fi,tXt + εi,t (3.4)

7As the central bank will not face a trade-off between reducing the first and second components
of the loss function.
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Where Fi,t is a Ki,t x 2 matrix of coefficients and εi,t = (ε1,it, ε2,it, ..., εKi,t,it)
T is a

Gaussian white noise random vector (independent of Xt and all other random vari-

ables) with covariance matrix Ωi,t. As previously mentioned, Xt = (θt, gt)
T . As

in chapter 2, choosing the properties of the signal vector Si,t entails specifying the

number of signals to observe (Ki,t), the content of these signals (Fi,t) and the co-

variance matrix of noise in the signals (Ωi,t).

Taking into account that each agent acts optimally conditional on the informa-

tion received (i.e. he chooses ai,t to maximize (3.1)), we can write agent i’s problem

(in generation t) when choosing his allocation of attention as:

min
Ki,t,Fi,t,Ωi,t

E
[
a∗i,t − r(θt + gt)− (1− r)at

]2
Subject to: a∗i,t = E[r(θt + gt) + (1− r)at|Si,t],

Si,t = Fi,tXt + εi,t,

εi,t ∼ N(0,Ωi,t),

I(Si,t, Xt) ≤ κ.

(3.5)

When choosing his allocation of attention, each agent takes as given the central

bank’s reaction function (which will imply that each agent takes as given the dis-

tribution of gt, as will be discussed in what follows), as well as the other agents’

allocations of attention. He anticipates how he will optimally choose his action

conditional on the information he receives8 and takes into account how his decision

regarding the allocation of attention will affect his expected utility.

Central bank: As in Morris and Shin (2005), in each period t, the central bank

observes a noisy signal of the agents’ average action in period t− 1. In period t, the

policymaker observes the signal:

Zt = at−1 + εZt (3.6)

Where the εZt ’s are Gaussian noise terms distributed independently of each other

and all other random variables according to εZt ∼ N(0, σ2
z). The central bank’s

information set in period t is the collection of all past signals up to period t:

Icbt = {Zt, Zt−1, Zt−2, ..., Z1}
8He also anticipates how other agents will choose their actions (conditional on their informa-

tion) in equilibrium — given the other agents’ allocation of attention, each agent can compute at
as a linear combination of θt and gt when choosing his own allocation of attention.
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In the spirit of Morris and Shin (2005), we will be interested in the central bank’s

information precision about the fundamental over time. We will denote by τ cbt the

central bank’s information precision about the fundamental in period t, as measured

by:

τ cbt = 1/var(θt|Icbt )

= 1/(var|Zt, Zt−1, Zt−2, ...)
(3.7)

The central bank chooses a policy rule specifying how it sets the policy instrument

gt conditional on its information in period t. I restrict attention to linear policy

rules of the form:

gt =ρt,tZt + ρt,t−1Zt−1 + ρt,t−2Zt−2 + ...+ ρt,1Z1

=
t−1∑
k=0

ρt,t−kZt−k
(3.8)

Where ρt,t−k denotes the responsiveness of the policy instrument in period t to the

signal observed by the central bank in period t − k. Hence in each period t, the

central bank’s policy rule (denoted ρt) specifies a vector of coefficients:

ρt = (ρt,t, ρt,t−1, ρt,t−2, ..., ρt,1) (3.9)

For ease of notation, denote by Scb,t the (column) vector of signals observed by the

central bank up to period t:

Scb,t = (Zt, Zt−1, ..., Z1)
T (3.10)

Such that we can write the central bank’s policy instrument (in period t) more

compactly as:

gt = ρtScb,t (3.11)

When choosing its policy rule, the central bank takes into account how this affects

the private sector agents’ equilibrium behavior in each period t (and thus, expected

welfare in period t, as well as the incoming signal in period t+ 1 which is centered

on the private-sector agents’ average action in period t).

Remark 3.1. We will note that — given the private sector agents’ equilibrium

behavior — the central bank indeed finds it optimal to use a policy rule which is
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linear in its private signals.9

In turn, because the central bank sets its policy as a linear function of its signals

(which are Gaussian), it follows that gt is normally distributed each period. As each

private agent takes as given the central bank’s reaction function (as well as the equi-

librium strategies of all agents in previous generations, such that the distributions of

Zt−1, Zt−2, ... are common knowledge in period t), each agent in generation t takes

as given the distribution of gt. Furthermore, because gt and θt are Gaussian, and

payoffs (3.1) are quadratic, each private agent finds it optimal to learn about shocks

by observing Gaussian signals.

In short, the remark states that all agents in the game (referring to both the central

bank and private sector agents) will be best-responding against the other players’

strategies. If the central bank sets policy as a linear function of its signals, private

sector agents find it optimal to learn about shocks by observing Gaussian signals,

and, in turn, if private sector agents learn about shocks by observing Gaussian sig-

nals (and act optimally given their information), the central bank will find it optimal

to set policy as a linear function of its private signals.

Timing: In period t = 0, the central bank first chooses its reaction function:10

{ρt}∞t=1 = {(ρt,t, ρt,t−1, ρt,t−2, ..., ρt,1)}∞t=1.

Then, in each period t ≥ 0:

1. Each private agent chooses his allocation of attention: (Ki,t, Fi,t,Ωi,t)

2. The central bank observes its private signal (Zt) and sets policy gt according

to the policy rule (gt = ρtScb,t)

3. The fundamental (θt) is realized

9More precisely, the central bank will find it optimal to set gt = −E[θt|Icbt ] and E[θt|Icbt ] will
be a linear combination of the central bank’s signals (Zt, Zt−1, Zt−2, ...); see Proposition 3.2.

10It will turn out to be irrelevant whether we assume that the central bank chooses its reaction
function (for all future periods) at time t = 0, or if we allow the central bank to choose its reaction
function period-by-period. The reason is that the central bank’s per-period loss in period t will be
proportional to the variance of the sum of the policy instrument and the fundamental in period t
(see Corollary 3.1), so the central bank will (optimally) set its policy instrument equal to (minus)
its expectation of the fundamental conditional on its information up to period t — in turn, this is
a (deterministic) linear combination of its signals up to period t, in which the weight associated
with each signal is deterministic (i.e. independent of the realizations of signals up to period t).
This happens because in a Gaussian environment, conditional variances (and the weights in the
linear rules which agents optimally use to form their expectations, conditional on their Gaussian
signals) are independent of signal realizations.
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4. Each private agent observes his signal vector (Si,t) and takes his action ai,t

Equilibrium definition: An equilibrium specifies:

1. The central bank’s policy rule {ρt}∞t=1 (mapping the central bank’s signal re-

alizations up to period t to the policy instrument in period t (for all t))

2. An allocation of attention for each agent in each generation (K∗
i,t, F

∗
i,t,Ω

∗
i,t),

3. An action rule for each agent in each generation (mapping signal realizations

to his action a∗i,t)

Such that:

1. The central bank’s policy is optimal (i.e. it solves problem (3.12) below)

2. Each agent’s allocation of attention maximizes his expected utility subject to

the information processing constraint

(i.e. (K∗
i,t, F

∗
i,t,Ω

∗
i,t) solves problem (3.5) for all i and all t)

3. Each agent acts optimally given his information

(i.e. a∗i,t = E[r(θt + gt) + (1− r)at|Si,t] for all i and all t)

As previously mentioned, when choosing his allocation of attention, each agent takes

as given the other agents’ allocations of attention and the central bank’s policy rule,

and he anticipates how other agents will act conditional on their information (in step

5 of each period) — this will allow us to get an expression for agent i’s expected

utility as a function of his allocation of attention (in step 2 of each period).11 I

analyse symmetric equilibria in which all agents in the same generation choose the

same allocation of attention:

(K∗
i,t, F

∗
i,t,Ω

∗
i,t) = (K∗

t , F
∗
t ,Ω

∗
t )∀i.

Let us now turn our attention to the central bank’s policy rule — as previously

mentioned, the policymaker takes into account how his reaction function shapes the

agents’ equilibrium behavior and, in turn, how this affects expected welfare, as well

as the central bank’s own information in future periods. More specifically, when

choosing the policy reaction function (in period t = 0), the central bank’s problem

reads:

11Note that there is a unique equilibrium in step 5 for any allocation of attention chosen in step
2. See Chapter 2.
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max
{ρt}∞t=1

−
∞∑
t=1

δtE

[
(at − θt − gt)

2 + λ

∫ 1

0

(a∗i,t − at)
2di

]
(3.12)

Subject to:

gt = ρtScb,t (3.13)

Scb,t = (Zt, Zt−1, ..., Z1)
T (3.14)

Zt = at−1 + εZt (3.15)

at =

∫ 1

0

a∗i,tdi (3.16)

a∗i,t = E[r(θt + gt) + (1− r)at|Si,t] (3.17)

Si,t = F ∗
i,tXt + εi,t (3.18)

εi,t ∼ N(0,Ω∗
i,t) (3.19)

(K∗
i,t, F

∗
i,t,Ω

∗
i,t) solves problem (3.5) (3.20)

Where

θt = αθt−1 + εθt (3.21)

And where δ ∈ [0, 1] denotes the central bank’s discount factor.

The policymaker chooses his reaction function {ρt}∞t=1 to maximize the discounted

sum of its expected per-period payoffs (3.12) (where the central bank’s per-period

payoff is specified in (3.3)). The reaction function maps the central bank’s signal

vector in period t to the policy instrument in period t as specified in (3.13). (3.14)

states that the central bank’s signal vector in period t is the collection of all signals

observed up to period t, which are centered on the private sector agents’ average

actions (see (3.15)). Furthermore, the policymaker takes as given the agents’ equi-

librium behavior (conditional on his reaction function) — more formally, equilibrium

conditions 2 and 3 above are taken as constraints in the central bank’s optimization

problem. (3.17) states that the central bank takes as given that each agent acts

optimally conditional on his information, while (3.18)-(3.20) state that the central

bank takes as given that each private-sector agent chooses his allocation of attention

optimally to maximize his expected utility. (3.21) restates the law of motion for the

fundamental.

I first characterise the agents’ equilibrium behavior (in Proposition 3.1), then I

derive the optimal policy in the steady state (in Proposition 3.2).
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Proposition 3.1. Fix any policy reaction function in period t (ρt) and any history

of play (up to period t)12; the following constitutes an equilibrium among private-

sector agents in generation t:

1. Each agent observes one private signal si,t = θt + gt + εi,t, where each εi,t is

i.i.d. according to εi,t ∼ N(0, var(θt + gt)/(2
2κ − 1)),13

2. Each agent acts according to: a∗i,t = γsi,t, where γ = r(1−2−2κ)
1−(1−r)(1−2−2κ)

.

Proof: See Appendix B.1. □

Proposition 3.1 characterises the private sector agents’ equilibrium behavior (in each

period t), given the central bank’s policy rule up to period t. Note that this is sim-

ilar to the equilibrium behavior of firms in chapter 2. Each private-sector agent in

period t observes a noisy private signal centered on the sum of the policy instrument

and the fundamental in that particular period, and his action is proportional to the

realization of his private signal. Agents react relatively less to their private signals

whenever the degree of strategic complementarity is higher, or whenever their capac-

ity to process information is lower. For more details, see Appendix B.1, or chapter 2.

Before characterising the central bank’s optimal reaction function, it is useful to

make some remarks which will help simplify the problem. Firstly, in Corollary 3.1,

we will note that the central bank’s per period expected loss in period t is pro-

portional to the variance of the sum of the fundamental and the policy instrument

in period t (i.e. proportional to var(θt + gt)). Secondly, in Corollary 3.2, we will

note that the central bank’s information precision about the fundamental does not

depend on its reaction function {ρt}∞t=1. Together, these will imply that the central

bank optimally chooses a reaction function which sets gt in each period to mini-

mize var(θt + gt) conditional on the central bank’s information up to period t (i.e.

g∗t = −E[θt|Icbt ]). The central bank’s steady-state information precision about the

fundamental is characterised in Corollary 3.2 and the optimal reaction function in

the steady-state is then characterised in Proposition 3.2.

12Referring to the previous policy rules {ρt}t−1
t=1, as well as the equilibrium behavior of agents

in previous generations (i.e. their chosen allocations of attention and corresponding equilibrium
actions).

13i.e. the equilibrium allocation of attention in period t specifies K∗
t = 1, F ∗

t = (1 1),Ω∗
t =

(var(θt + gt)/(2
2κ − 1))
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Corollary 3.1. The central bank’s expected (per-period) loss in period t is pro-

portional to var(θt+ gt) (i.e. to the variance of the sum of the fundamental and the

policy instrument in period t):

E[ucb,t] = −ζvar(θt + gt)

Where ζ = (γ − 1)2 + λγ2

22κ−1
, and γ is characterised in Proposition 3.1.

Proof: see Appendix B.2. □

Corollary 3.2. The central bank’s information precision about the fundamental

in any period T (i.e. τ cbT ) is independent of its policy reaction function up to period

T (i.e. {ρt}Tt=1). The central bank’s steady-state information precision (denoted τ cbss)

solves:

τ cbss

[
α2

τ cbss + γ2/σ2
Z

+ σ2
θ

]
= 1 (3.22)

The central bank’s steady-state information precision is:

1. Increasing in the agents’ capacity to process information: ∂τcbss
∂κ

> 0;

2. Decreasing in the degree of strategic complementarity (1− r): ∂τcbss
∂r

> 0;

3. Decreasing in the persistence of the fundamental: ∂τcbss
∂α

< 0;

4. Decreasing in the variance of the innovation to the fundamental: ∂τcbss
∂σ2
θ
< 0;

5. Decreasing in the variance of the central bank’s observation noise: ∂τcbss
∂σ2
Z
< 0.

Proof: Firstly, let us argue that the central bank’s information precision about the

fundamental is independent of its reaction function. If agents act as described in

Proposition 3.1, then the average action in period t− 1 is given by

at−1 = γ(θt−1 + gt−1) (3.23)

For any policy reaction function. Hence, the noisy signal observed by the central

bank in period t writes as:

Zt = at−1 + εZt = γ(θt−1 + gt−1) + εZt (3.24)

Because the central bank knows gt−1 in period t, it can construct the unbiased signal
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of the fundamental:

st :=
Zt
γ

− gt−1 = θt−1 +
εZt
γ

(3.25)

Which reveals the fundamental with noise:

σ2
s :=

σ2
Z

γ2
(3.26)

Importantly, note that σ2
s does not depend on the central bank’s reaction function.

Although ρt−1 influences the average action in period t − 1, it does not influence

the informativeness of the noisy signal Zt for the central bank (because the central

bank can perfectly disentangle its policy from the average action).14 The argument

applies to all periods, so changes in the central bank’s reaction function {ρt}Tt=1 do

not affect the central bank’s information precision about the fundamental in period

T .

In the spirit of Morris and Shin (2005), we can then derive a recursive expression

for the central bank’s information precision over time. Consider a generic period

t− 1. Recall that the central bank’s information precision (about the fundamental

in period t− 1) after observing the signal Zt−1 is denoted by τ cbt−1:

τ cbt−1 = 1/var(θt−1|Icbt−1) = 1/var(θt−1|Zt−1, Zt−2, ...) (3.27)

Following play in period t − 1, the central bank observes the signal Zt in period t,

from which it constructs the unbiased signal st of the fundamental θt−1 (with noise

σ2
s =

σ2
Z

γ2
). Hence, the central bank’s information precision about θt−1 in period t is:

1/var(θt−1|Icbt ) = 1/var(θt−1|Zt, Zt−1, Zt−2, ...)

= τ cbt−1 +
γ2

σ2
Z

(3.28)

The central bank does not have any additional information concerning θt in period

t, so its estimate of θt is:

E[θt|Icbt ] = E[αθt−1 + εθt ] = αE[θt−1|Icbt ] (3.29)

Which implies that:

var(θt|Icbt ) = α2var(θt−1|Icbt ) + σ2
θ (3.30)

Noting that var(θt|Icbt ) = 1/τ cbt , we can substitute (3.28) into (3.30) to obtain a

14A similar observation is made in Chapter 2.
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recursive expression for the central bank’s information precision:

1

τ cbt
=

α2

τ cbt−1 + γ2/σ2
Z

+ σ2
θ (3.31)

The steady-state information precision thus solves:

τ cbss

[
α2

τ cbss + γ2/σ2
Z

+ σ2
θ

]
= 1 (3.32)

Which is a quadratic equation in τ cbss . Solving this for τ cbss (and noting that one root

is strictly negative and thus cannot be a solution as τ cbss ≥ 0) gives:

τ cbss =

√
(σ2

z − α2σ2
z − γ2σ2

θ)
2
+ 4γ2σ2

θσ
2
z + σ2

z − α2σ2
z − γ2σ2

θ

2σ2
θσ

2
z

(3.33)

The comparative statics in Corollary 3.2 follow from (3.33). Note that increasing

the agents’ capacity to process information (κ), or decreasing the degree of strategic

complementarity (i.e. increasing r) prompts agents to respond more strongly to

their private signals si,t (i.e. leads to a higher γ in equilibrium — see Proposition

3.1). This makes the central bank’s signal in period t more informative about the

fundamental in period t−1, and leads to a higher steady-state information precision

for the central bank — the intuition is similar to Morris and Shin (2005). □

Proposition 3.2. In the steady-state, optimal policy specifies:

ρ∗
t = (−αϕ

γ
,−α

2ϕ

γ
,−α

3ϕ

γ
, ...)

i.e.

ρ∗t,t−k = −α
k+1ϕ

γ
(3.34)

where

ϕ =
γ2/σ2

z

γ2/σ2
z + τ cbss

(3.35)

And where γ is characterised in Proposition 3.1 and τ cbss is characterised in Corollary

3.2.

Proof: see Appendix B.3. □
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3.3 Model featuring Brainard uncertainty
So far we have assumed that the policymaker faces uncertainty only regarding funda-

mentals. In this section, I relax this assumption and analyse the effects of parameter

uncertainty on the optimal policy. By parameter uncertainty, I refer to uncertainty

regarding the relationship between the central bank’s policy instrument and the

agents’ optimal action — more specifically, I now assume that each agent’s payoff

is given by:

ui,t = − [ai,t − r(θt + btgt)− (1− r)at]
2 (3.36)

Where bt is not perfectly known by the policymaker (whereas in the certainty-

equivalent model from before, bt = 1∀t). I account for parameter uncertainty by

assuming that there is uncertainty regarding the effects of policy intervention (on

the agents’ optimal action); although the policymaker will not know the exact value

of this parameter (bt), it will know the distribution from which it is drawn.

This is referred to as multiplicative uncertainty (as opposed to additive uncertainty,

for instance, about fundamentals θt) — the more the policy instrument is used,

the more uncertainty is multiplied into the target variable (in this case, the agents’

optimal action). In turn, in a static setup such as in Brainard (1967) this calls

for less policy intervention. I first show that this also applies to a static version of

the beauty contest game from the previous section. Then, I discuss how parameter

uncertainty would affect the central bank’s learning about the fundamental in a

dynamic setting, and the implications of this for optimal policy.

3.3.1 Static setup

Firstly, let us consider a one-shot beauty contest game featuring an activist poli-

cymaker and Brainard uncertainty. Similarly to before, agents’ payoffs are given

by:

ui = − [ai − r(θ + bg)− (1− r)a]2 (3.37)

And the policymaker’s payoff is:

ucb = −(a− θ − bg)2 − λ

∫ 1

0

(ai − a)2di (3.38)

Which are counterparts of equations (3.36) and (3.3) respectively. In this section

only, suppose that θ ∼ N(0, σ2
θ) and b ∼ N(1, σ2

b ) (and the prior distributions of θ

and b are common knowledge).
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As previously mentioned, the policymaker does not know the value of b, but he

does know the distribution from which it is drawn; other than this (i.e. the distri-

bution of b), the central bank does not have any other information concerning b. In

this section only, I assume that the central bank learns about the fundamental (θ)

by observing an exogenous signal x = θ + εx, where εx ∼ N(0, σ2
x) is independent

of all random variables. As before, the central bank chooses a reaction function

mapping its signal realization to the policy instrument g = ρx (where the central

bank chooses ρ to maximize the unconditional expectation of (3.38)).

Unlike the central bank, suppose that private-sector agents know how policy in-

tervention affects their optimal action (more precisely, I assume that the realization

of b is common knowledge among private-sector agents when choosing their alloca-

tion of attention).15 Other than this, the private-sector agents’ problem is the same

as before. To avoid any potential confusion, I restate the timing of the problem in

the presence of parameter uncertainty:

1. The central bank chooses its reaction function (ρ)

2. The parameter b is realized

3. Private-sector agents are born (note that b and ρ are common knowledge

among private-sector agents)

4. Each private agent chooses his allocation of attention (Ki, Fi,Ωi)

5. The fundamental (θ) is realized

6. The central bank observes its private signal x and sets g according to the

policy rule g = ρx

7. Each private agent observes his signal vector (Si) and takes his action ai

The following Proposition characterises the equilibrium of the game.

Proposition 3.3. Fix any policy reaction function ρ. The following constitutes

an equilibrium among private-sector agents:

1. Each agent observes one private signal si = θ + bg + εi, where each εi is i.i.d.

according to εi ∼ N(0, var(θ + bg|b)/(22κ − 1)),16

15I make this assumption in order to preserve the linear-quadratic-Gaussian structure of the
agents’ problem. I expand on this in the next subsection.

16i.e. the equilibrium allocation of attention specifies K∗ = 1, F ∗ = (1 b),Ω∗ = (var(θ +
bg|b)/(22κ − 1))
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2. Each agent acts according to: a∗i = γsi, where γ = r(1−2−2κ)
1−(1−r)(1−2−2κ)

.

Optimal policy specifies:

ρ∗ = − 1

1 + σ2
b

σ2
θ

σ2
θ + σ2

x

, (3.39)

i.e. the policy instrument is set according to:

g∗ = − 1

1 + σ2
b

E[θ|x]. (3.40)

Proof: See Appendix B.4. □

Under Brainard uncertainty, the central bank no longer acts solely on the basis of

the expected values of random variables, but also makes use of information concern-

ing the variance of b (in other words, optimal policy no longer displays “certainty-

equivalence”). Also note that g∗ is always lower (in absolute value) than the central

bank’s expectation of the fundamental. Further, the optimal degree of policy ac-

tivism is decreasing in σ2
b . These are all standard features of Brainard conservatism

— in fact, optimal policy (3.39) is equivalent to the one in Brainard’s “one target-

one instrument” case.17 The more the central bank intervenes to stabilize the shock

to the fundamental, the higher is the policy-induced variance in the agents’ optimal

action and, in turn, this calls for less policy activism.

3.3.2 The signal value of prices under parameter uncer-

tainty

Before reintroducing dynamics, let us analyse how policy intervention affects the

information revealed by the noisy signal of the average action in the static setup

from the previous subsection. More precisely, suppose that following play of the

static beauty contest game (from section 3.3.1), the central bank observes a noisy

signal of the agents’ average action Z = a+εZ (as in section 3.2). Given Proposition

3.3, for any policy reaction function ρ, the average action is given by:

a = γ(θ + bg) (3.41)

So the noisy signal observed by the central bank writes as:

Z = γ(θ + bg) + εZ (3.42)

17See equation (5’) in Brainard (1967) and the discussion regarding it (and compare this with
equation (3.40) above).
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Note that this conveys information to the central bank regarding both the funda-

mental (θ) and the transmission of policy (b). More specifically, the incremental

information value about the fundamental comes from the signal:

θ̂ :=
Z

γ
− g (3.43)

Which reveals the fundamental with noise:

σ2
θ̂
:= E[(θ̂ − θ)2] = g2σ2

b +
σ2
z

γ2
(3.44)

While the incremental information value about the transmission of policy (b) comes

from the signal:

b̂ :=
Z

γg
− E[θ|x]

g
(3.45)

Which reveals the transmission of policy with noise:

σ2
b̂
:= E[(b̂− b)2] =

var[θ|x]
g2

+
σ2
z

γ2g2
(3.46)

Note that whenever the central bank intervenes more (referring to a higher abso-

lute value of g), it learns more about the transmission of policy, but less about the

fundamental (i.e. this leads to a lower σ2
b̂
, but also to a higher σ2

θ̂
). Absent any

policy intervention (g = 0), the signal Z contains no information about b (σ2
b̂
→ ∞),

but reveals the same amount of information about θ as in the absence of Brainard

uncertainty (σ2
θ̂
= σ2

z

γ2
).

The intuition is the following: because agents process information about their opti-

mal action (which is a weighted sum of the fundamental and the policy instrument),

the average action reveals this weighted sum (to the extent that agents respond to

their private signals) — see (3.41). While in the certainty-equivalent setup from

section 3.2, the average action was proportional to the sum of policy and the fun-

damental,18 and the policymaker could perfectly disentangle the policy instrument

from the average action, this is no longer the case under parameter uncertainty, be-

cause the average action necessarily reflects some of the uncertainty associated with

the transmission of policy, alongside information concerning the fundamental. Not

perfectly knowing either θ or b, the policymaker learns about both upon observing

the noisy signal of the average action.

18As opposed to the weighted sum θ + bg.
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The fact that more policy intervention increases the central bank’s information preci-

sion about policy transmission (but lowers the central bank’s information precision

about fundamentals) should hopefully be intuitive in light of the above (as more

policy intervention leads to more policy-induced variance in the average action). In

turn, in a dynamic setup in which there is persistence in both θ and b, such that

better information about θt (bt) improves the central bank’s estimate of θt+1 (bt+1),

the central bank should also take learning into account when setting policy.19 More

specifically, the central bank would now have an incentive to experiment with pol-

icy,20 in order to learn more about its transmission, as well as an incentive to be

cautious with policy,21 in order to have more precise information concerning funda-

mentals.

3.3.3 Relation to literature on central bank learning under

parameter uncertainty

Central bank learning under parameter uncertainty has already been extensively

studied — see for instance, Bertocchi and Spagat (1993); Balvers and Cosimano

(1994); Sack (1998); Ellison and Valla (2001) among many others. While in the

original (static) formulation of Brainard (1967), parameter uncertainty calls for less

policy activism from the central bank, this has been disputed as being poor from

an informational perspective, as the policymaker learns less about the transmission

of policy if this is being used cautiously. In turn, this calls for more activism and

“policy experiments” designed to elicit information regarding policy transmission:

“Whether or not the Fed actually does sacrifice short-term goals to carry out ex-

periments, we will show that it should, since the government should in general not

behave myopically. While the degree to which it should sacrifice current reward in

exchange for information depends on such factors as discount rates and the nature

of the uncertainty faced, it is certainly true that large informational gains justify

small sacrifices. [. . . ] At each stage of the process, there is a potential trade-off

between minimization of output variability and the value of the information which

can be obtained through an activist policy. The implications of learning for policy

prescriptions are intuitively clear; monetary policy should be activist in the sense

that it should be responsive to new information as it arises. In addition, there is a

19Because its information precision about both the fundamental and the transmission of policy
would depend on its policy reaction function (unlike in the certainty-equivalent setup, see Corollary
3.2).

20i.e. to set a higher absolute value of g (in expectation).
21i.e. to set a lower value of g (in expectation).
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second sense in which monetary policy should be activist. It should actively seek to

generate information even if it is costly to do so.” (Bertocchi and Spagat (1993))

In a dynamic setup of our model (featuring parameter uncertainty), the central

bank should be “activist” in both senses described by Bertocchi and Spagat (1993)

— in the first sense, it should change policy over time upon observing its signals

and updating its beliefs about the fundamental22 (and the transmission of policy);

in the second sense, it should consider undertaking “policy experiments” (i.e. a

more activist policy) seeking to generate information about the transmission of

policy. However, it should take into account that such “policy experiments” are

informationally costly, as they come at the expense of information concerning the

fundamental — more specifically, the central bank loses information concerning the

counterfactual of what would have happened in the absence of policy intervention

(because the average action now reflects some of the uncertain effects associated

with the policy intervention and this distorts the informativeness of the average ac-

tion about the fundamental).23

In turn, this implies that the central bank’s problem in a dynamic setting resembles

the more general problem of “learning with two unobservable parameters” discussed

in Balvers and Cosimano (1994) — I expand on this in the next subsection.

3.3.4 Dynamics

In this section, I will again assume that θt is governed by the AR(1) process de-

scribed in section 3.2. Similarly, I assume that initially b−1 is drawn from a common

knowledge prior distribution b−1 ∼ N(b, σ2
b,−1); then, it also evolves according to an

AR(1):

bt = βbt−1 + εbt (3.47)

Where β ∈ [0, 1], and the εbt ’s are independently and identically distributed accord-

ing to εbt ∼ N(0, σ2
b ).

22Note that the central bank in the certainty-equivalent setup from section 3.2 is activist in this
sense.

23The central bank would only act as described in Bertocchi and Spagat (1993) if it faced no
uncertainty concerning the fundamental. For instance, in the example from the previous subsection,
consider what happens if σ2

x = 0, such that the central bank’s private signal about the fundamental
(x) is perfectly informative. The central bank would then only use the signal Z to infer information
concerning b. In this case, if there is persistence in b (such that learning is valuable for the central
bank in future periods), the policymaker should consider a policy which responds more strongly
to its private signal x (than the myopic policy (3.39)). The example is in the spirit of Bertocchi
and Spagat (1993) — see cases 3-5 in their paper.
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Firstly, we will note that a complication arises in the dynamic formulation of the

problem. More specifically, the prior distribution of the agents’ optimal action (in

a generic period t) is no longer Gaussian, unless relatively strong assumptions are

imposed.

Recall that in the static setup from section 3.3.1, we assumed that b is common

knowledge among private-sector agents (when choosing their allocation of atten-

tion), such that the prior distribution of each agent’s optimal action (conditional

on b) is Gaussian. Given that payoffs are quadratic, this allows us to use the same

reasoning as in Proposition 3.1 to characterise the equilibrium allocation of atten-

tion. In contrast, if private-sector agents did not know the realization of b, the prior

distribution of the optimal action (under perfect information) θ+bg would no longer

be Gaussian because the product of two normal random variables (in this case b and

g) is not normally distributed. In turn, this complicates the problem of determining

the equilibrium allocation of attention (conditional on the central bank’s reaction

function) because the linear-quadratic-Gaussian structure of the problem is not pre-

served.

In a dynamic setting, assuming that agents in each generation t know bt is no

longer sufficient to ensure that the optimal action (under perfect information) in

period t (i.e. θt+ btgt) is Gaussian, even if the central bank uses a linear policy rule

because, from the perspective of a private-sector agent born in generation t, gt is not

normally distributed — to see this more clearly, suppose that all agents in previous

generations acted in a similar way to the previous subsection, i.e. according to:

ai,t−k = γ(θt−k + bt−kgt−k + εi,t−k) (3.48)

For all i and k. It follows that in each period t − k + 1, the central bank observes

the signal:

Zt−k+1 = γ(θt−k + bt−kgt−k) + εZt−k+1 (3.49)
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Hence, given a linear policy reaction function (such as (3.8)), the policy instrument

in period t writes as:

gt =
t−1∑
k=0

ρt,t−kZt−k

=
t−1∑
k=0

ρt,t−k[γ(θt−k−1 + bt−k−1gt−k−1) + εZt−k]

(3.50)

So from the perspective of agent i in generation t (who does not know the value of

bt−k), the policy instrument in period t is not normally distributed because the terms

bt−kgt−k are not normally distributed (as discussed above). We could assume that

the whole sequence {bt}tt=0 is common knowledge among private-sector agents in

period t (and this would preserve the linear-quadratic-Gaussian structure), but this

is not particularly appealing.24 An additional complication is that in the dynamic

setting featuring parameter uncertainty, the central bank may not necessarily want

to set policy as a linear function of its signals. Furthermore, even if one is ready

to make these strong assumptions,25 the central bank’s problem would resemble to

a large extent the “learning with two unobservable parameters” problem in Balvers

and Cosimano (1994). Hence, I instead make some simplifying assumptions seeking

to draw a more direct parallel with Balvers and Cosimano (1994) — the first one

fixes the information structure (in the spirit of the previous sections); the second

one restricts private-sector agents to use a linear action rule; the third states that

the central bank observes average actions perfectly:

1. Each agent in generation t knows the distribution of the optimal action under

perfect information (i.e. the prior distribution of θt + btgt) and observes a

private signal of it, i.e. each agent in generation t observes the signal si,t = θt+

btgt+ εi,t, where each εi,t is i.i.d. according to εi,t ∼ N(0, var(θt+ btgt)/(2
2κ−

1)).

2. Each agent takes his action as a linear function of his signal.

24Indeed, even in the static setting, one may wonder whether it is realistic to assume that
private-sector agents have perfect knowledge concerning the effects of policy intervention on their
optimal action. In the stylised, beauty-contest formulation of the model this may seem reasonable,
but in the context of the microfounded economy, this is less so. In the latter context, uncertainty
concerning the effects of policy intervention would translate to uncertainty regarding the relation-
ship between the central bank’s policy instrument (for instance, the money supply) and nominal
demand — it does not seem realistic to assume that private-sector agents are perfectly informed
about this relationship.

25i.e. restricting the central bank to use a linear policy rule and assuming that private-sector
agents in generation t know the whole sequence {bt}tt=0.
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3. In each period t, the central bank perfectly observes the agents’ average action

in period t− 1 (i.e. I assume that σ2
Z = 0).

Remark 3.2. Assumptions 1 and 2 above could be motivated26 by assuming that

private-sector agents in each generation t use a “simplified view of the world” and

misperceive the shape of the distribution of the optimal action in that period —

in particular, they believe that the optimal action θt + btgt is Gaussian (which is

not the case), but other than this, they correctly perceive the mean and variance of

the distribution.27 Note that, in the limit, as σ2
b → 0, the model collapses to the

“certainty-equivalent” model from section 3.2, and the prior distribution of the op-

timal action in generation t is indeed Gaussian, so conditions 1 and 2 above emerge

endogenously (as previously discussed).

Proposition 3.4. Suppose conditions 1, 2 and 3 above are satisfied. Then, the

central bank’s problem is equivalent to the one in Balvers and Cosimano (1994).28

Proof: Given conditions 1 and 2, one can use similar arguments as in the proof

of Proposition 3.1 to argue that each agent i finds it optimal to act according to

a∗i,t = γsi,t, when all other agents j ̸= i act according to a∗j,t = γsj,t. Hence,

a∗i,t = γsi,t specifies an equilibrium action rule for private-sector agents in each gener-

ation. Consequently, the average action in period t is given by a = γ(θt+btgt). Then,

the same argument as in the proof of Corollary 3.1 implies that the expected per-

period welfare loss in period t is proportional to the variance of θt+btgt — more pre-

cisely, expected welfare in period t can be expressed as: E[ucb,t] = −ζvar(θt + btgt).

Hence, the central bank’s problem can be expressed as:

max
{gt}∞t=1

−ζδt
∞∑
t=1

var(θt + btgt|Icbt ) (3.51)

Where Icbt = {gs, as}t−1
s=0, denotes the central bank’s information set in period t (when

the central bank knows all previous average actions, as well as the policy instrument

in all previous periods). Note that observing the average action from period t− k is

26Albeit not in the most elegant way.
27More precisely, in each period t, the optimal action θt + btgt will be a well-defined random

variable with some mean and variance — if agents use the “simplified view of the world” described
in the Remark, they (wrongly) believe that the optimal action is Gaussian, but they (correctly)
perceive the first and second moments of its distribution. Note that in this case we would also
need to write each agent’s information processing constraint in terms of this misperception —
more precisely, the information processing constraint would place an upper bound on the expected
uncertainty reduction concerning the (misperceived, Gaussian) optimal action.

28More specifically, the fundamental (θ) corresponds to the intercept in their model, while the
transmission of policy (b) corresponds to the slope parameter in their model.
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informationally equivalent to observing the agents’ optimal action in period t−k (i.e.
observing γ(θt−k+bt−kgt−k) is informationally equivalent to observing θt−k+bt−kgt−k

because the central bank knows γ). It follows that the central bank’s problem is

equivalent to the one described in Balvers and Cosimano (1994), section 2.1. □

3.4 Conclusion
The paper analyses a sequence of static beauty contest games featuring an (infinitely-

lived) activist policymaker who learns about fundamentals by observing noisy signals

of the agents’ average actions (as in Morris and Shin (2005)). Each period, a new

generation of (short-lived) rationally inattentive agents are born who process a fixed

amount of information about their environment, then take their actions. The pa-

per firstly argues that the central bank can exploit the information revealed by the

average actions of agents in past generations to improve the expected welfare of

agents in the current generation — furthermore, it argues that in such a setting, the

policymaker’s actions do not affect his own information precision about fundamen-

tals (because the central bank can always perfectly disentangle its policy instrument

from the average action).

I then relax the assumption that the central bank perfectly knows the effects of

its policy on the agents’ optimal action (i.e. I introduce parameter uncertainty in

the spirit of Brainard (1967)). I argue that under parameter uncertainty, the central

bank can no longer perfectly disentangle its policy from the average action, because

the average action necessarily reflects some of the uncertainty associated with the

transmission of policy (alongside information concerning the fundamental). This

implies that “policy experiments” designed to elicit information concerning pol-

icy transmission (as described in Bertocchi and Spagat (1993)) are informationally

costly for the central bank, as they necessarily come at the expense of information

concerning fundamentals. I then argue that under some simplifying assumptions, the

central bank’s problem resembles the problem of “learning with two unobservable

parameters” in Balvers and Cosimano (1994).
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A Proofs and Details for Chapter 1

A.1 Proof of Proposition 1.1
Proof: Given (1.4) the average action in equilibrium writes as:

a =

∫ 1

0

a∗i di

a =

∫
i∈I

aI∗i di+

∫
i∈U

aU∗
i di

a =

∫
i∈I

[ϕI∗1 (θ + εi) + ϕI∗2 y]di+

∫
i∈U

[ϕU∗y]di

a = λ(ϕI∗1 θ + ϕI∗2 y) + (1− λ)ϕU∗y

So the public signal can be expressed as:

y = a+ εy = [λϕI∗1 ]θ + [λϕI∗2 + (1− λ)ϕU∗]y + εy (A.1)

Denote by s the unbiased signal of the fundamental (θ) contained in y — more

specifically, for any ϕI∗1 ̸= 0 and λϕI∗2 + (1− λ)ϕU∗ ̸= 1,1 this is defined as:

s := y

[
1− λϕI∗2 − (1− λ)ϕU∗]

λϕI∗1
(A.2)

Note from (A.1) and (A.2) that:

s = θ +
εy
λϕI∗1

(A.3)

Hence the precision2 of s as an unbiased signal of the fundamental (denoted by τs)

is equal to:

τs = τy(λϕ
I∗
1 )2 (A.4)

I also refer to this as the “informativeness” of the public signal about the funda-

mental. Intuitively, the information (about the fundamental) revealed by the noisy

signal of the average action depends on the fraction of agents who are informed (λ)

and the response of informed agents’ actions to their private signals (ϕI∗1 ), alongside

the precision of the observation noise τy, because it is the aggregation of the private

1For now let us just guess and verify that these hold. I argue afterwards that λϕI∗2 +(1−λ)ϕU∗ ̸=
1 and ϕI∗1 ̸= 0 in any equilibrium (for any parameter values).

2i.e. the inverse of the variance of the noise.
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signals xi which reveals the fundamental.

Given the information structure, Bayesian updating implies that informed agents

act according to:

aI∗i =
τx

τx + τθ + (λϕI∗1 )2τy
xi +

τy(λϕ
I∗
1 )2

τx + τθ + τy(λϕI∗1 )2
s (A.5)

And uninformed agents act according to:

aU∗
i =

τy(λϕ
I∗
1 )2

τθ + τy(λϕI∗1 )2
s (A.6)

Matching coefficients on xi in (A.5) with (1.4) gives (1.10). Let f(ϕI∗1 ) denote the

right-hand side of (1.10) as a function of ϕI∗1 , i.e.:

f(ϕI∗1 ) = τx/
[
τx + τθ + τy(λϕ

I∗
1 )2
]

Note that:

• f(0) > 0

• f(1) < 1

• f(ϕI∗1 ) is continuous and strictly decreasing in ϕI∗1

It follows that there is a unique solution to (1.10).3

Intuitively, f(ϕ∗I
1 ) is the optimal weight an informed agent puts on his private signal

when taking his action, given that all other informed agents put weight ϕ∗I
1 on their

private signals (the equilibrium must be symmetric, hence the fixed point problem).

f(0) > 0 means that when other informed agents disregard their private signals, an

informed agent puts a positive weight on his own private signal (the intuition for

f(1) < 1 is similar). f(ϕ∗I
1 ) is decreasing, because as other informed agents respond

more strongly to their private signals, the public signal becomes more informative

(given any finite, positive ty and any λ ∈ (0, 1]), so each informed agent finds it

optimal to respond less strongly to his private signal xi.

Substituting (A.2) into (A.5) and (A.6) and matching coefficients on y with (1.4)

3More precisely, (1.10) is a cubic equation (in ϕI∗1 ) with one real root and two complex roots.
I restrict attention to real roots.
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for informed and uninformed agents respectively gives:ϕI∗2 =
τy(λϕI∗1 )2

τx+τθ+τy(λϕ
I∗
1 )2

[1−λϕI∗2 −(1−λ)ϕU∗]
λϕI∗1

ϕU∗ =
τy(λϕI∗1 )2

τθ+τy(λϕ
I∗
1 )2

[1−λϕI∗2 −(1−λ)ϕU∗]
λϕI∗1

(A.7)

For ease of notation, let m =
τy(λϕI∗1 )2

τθ+τy(λϕ
I∗
1 )2

and n =
τy(λϕI∗1 )2

τx+τθ+τy(λϕ
I∗
1 )2

. Solving the system

of equations (A.7) yields:

ϕI∗2 = n/[m(1− λ) + λ(n+ ϕI∗1 )] (A.8)

ϕU∗ = m/[m(1− λ) + λ(n+ ϕI∗1 )] (A.9)

Note that there is a unique equilibrium in the second step of the game (i.e. (ϕI∗1 , ϕ
I∗
2 , ϕ

U∗))

for any λ ∈ (0, 1] and any parameter values (positive, finite τx, τy, τθ).
4 □

An analytical expression for ϕI∗1 (i.e. the solution to equation (1.10)) is given by:

ϕI∗1 =

[
27λ4τxτ

2
y +

√
108λ6(τθ + τx)3τ 3y + 729λ8τ 2xτ

4
y

] 1
3

3 3
√
2λ2τy

−

−
3
√
2(τθ + τx)[

27λ4τxτ 2y +
√
108λ6(τθ + τx)3τ 3y + 729λ8τ 2xτ

4
y

] 1
3

(A.10)

(A.10) can be used to argue that ϕI∗1 (λ, τy) is continuous in λ and τy for any λ ∈ (0, 1]

and any positive, finite τx, τy, τθ. Then, it is straightforward to argue that τs(λ, τy)

is continuous in λ and τy, and hence that γ(λ, τy) is continuous in λ and τy which is

used in the proof of Proposition 1.2.

A.2 Proof of Corollary 1.1
Proof: From (1.10) it follows that holding everything else constant, a higher τy

leads to a lower ϕI∗1 in equilibrium (i.e. increasing the precision with which agents

observe the average action prompts informed agents to respond less strongly to their

private signals (xi) in the equilibrium of the second step of the game) — by implicitly

differentiating (1.10) w.r.t. τy it is straightforward to show that:

∂ϕI∗1 (λ, τy)

∂τy
< 0 (A.11)

4Also, for any parameter values λϕI∗2 + (1− λ)ϕU∗ < 1 and ϕI∗1 > 0, so λϕI∗2 + (1− λ)ϕU∗ ̸= 1
and ϕI∗1 ̸= 0 hold in any equilibrium. Thus, our guess in footnote 1 in (Appendix A.1) is verified.
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In turn, a lower ϕI∗1 is only consistent with a higher τs(λ, τy), i.e. informed agents

respond less strongly to their private signals xi only if the public signal is more

informative about the fundamental — note that we can express:5

ϕI∗1 (λ, τy) =
τx

τx + τθ + τs(λ, τy)
(A.12)

So indeed:
∂ϕI∗1 (λ, τy)

∂τs(λ, τy)
< 0 (A.13)

Using the chain rule to differentiate (A.12) w.r.t. τy we can write:

∂ϕI∗1 (λ, τy)

∂τy
=
∂ϕI∗1 (λ, τy)

∂τs(λ, τy)

∂τs(λ, τy)

∂τy
(A.14)

It follows from (A.11), (A.13) and (A.14) that ∂τs(λ,τy)

∂τy
> 0.

A similar argument can be used to show that ∂τs(λ,τy)

∂λ
> 0. □

A.3 Proof of Corollary 1.2
Proof: If the private signal is free, all agents become informed (λ∗ = 1) so the

welfare loss is:

L∗
W |c=0 =

1

τx + τθ + τs(1, τy)

It follows from Corollary 1.1 that ∂τs(1,τy)

∂τy
> 0, so

∂L∗
W

∂τy |c=0
< 0. □

A.4 Proof of Corollary 1.3
Proof: Increasing the informativeness of the public signal lowers the expected

losses of both informed and uninformed agents, but uninformed agents benefit rela-

tively more (because they are more poorly informed) — differentiating (1.15) w.r.t.

τs(λ, τy), it is straightforward to show that:

∂γ(λ, τy)

∂τs(λ, τy)
> 0 (A.15)

Which states that as the public signal becomes more informative, the ratio of the

expected loss of informed agents to the expected loss of uninformed agents increases.

5Equation (A.12) follows from (1.12), (1.4) and (A.5).
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Using the chain rule to differentiate (1.15) we can express:

∂γ(λ, τy)

∂τy
=
∂γ(λ, τy)

∂τs(λ, τy)

∂τs(λ, τy)

∂τy
(A.16)

As ∂τs(λ,τy)

∂τy
> 0 (see Corollary 1.1), it follows from (A.15) and (A.16) that ∂γ(λ,τy)

∂τy
> 0.

A similar argument can be used to show that ∂γ(λ,τy)

∂λ
> 0. □

A.5 Proof of Proposition 1.2
Proof: Firstly, note that there are no equilibria in which all agents are uninformed

(for any τy). It is straightforward to argue this by contradiction. Suppose λ∗ = 0

(and note from the equilibrium conditions that this requires Lu(0, τy) ≤ Li(0, τy)).

Then, the public signal is uninformative about the fundamental, so (in the absence

of any other information source) each agent chooses ai = 0 (which is the prior mean

of θ). It follows that Lu(0, τy) = 1/τθ and Li(0, τy) = 1/[τθ + τx] + c. Because we

assumed that c < τx/[τθ(τx + τθ)], it is optimal for an individual agent to become

informed when there is no public information, so Lu(0, τy) > Li(0, τy) (a contradic-

tion). Hence there are no equilibria in which λ∗ = 0.

Secondly, consider equilibria in which all agents become informed. Suppose λ∗ = 1

and note from the equilibrium conditions that this requires Lu(1, τy) ≥ Li(1, τy), or

equivalently γ(1, τy) ≤ 1. Note that:

1. γ(1, 0) < 1 (if all agents are informed and there is no public information, each

agent finds it optimal to become informed)6

2. limτy→∞γ(1, τy) > 1 (if all agents are informed and public information becomes

perfectly precise, each agent finds it optimal to be uninformed)7

3. γ(1, τy) is continuous and strictly increasing in τy
8

It follows that there is a unique τy which solves γ(1, τy) = 1 — denote the solution by

τ̂y. It also follows (from point 3) that γ(1, τy) ≤ 1 for τy ≤ τ̂y, so for such parameter

values there is an equilibrium in which all agents become informed. It is also easy to

see that this is the unique equilibrium.9 This proves the first part of the Proposition.

6Because we assumed that c < τx
τθ(τx+τθ)

.
7See Remark 1.2.
8See Corollary 1.3.
9If τy ≤ τ̂y, then γ(λ, τy) < 1 for λ < 1 (because γ(λ, τy) is strictly increasing in both arguments,

see Corollary 1.3) so there are no equilibria in which some agents are informed and others are
uninformed.
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Lastly, consider equilibria in which some agents are informed while others are un-

informed (i.e. λ∗ ∈ (0, 1)) and note that this requires Lu(λ
∗, τy) = Li(λ

∗, τy), or

equivalently γ(λ∗, τy) = 1. We know that there are no such equilibria for τy ≤ τ̂y.

Suppose τy > τ̂y — note that:

1. γ(0, τy) < 1 (if no agent is informed, each agent finds it optimal to become

informed)10

2. γ(1, τy) > 1 (if all agents are informed, each agent finds it optimal to be

uninformed)11

3. γ(λ, τy) is continuous and strictly increasing in λ12

It follows that for τy > τ̂y there is a unique λ which solves γ(λ, τy) = 1 — denote the

solution by λ∗. Note that this implies that for τy > τ̂y there is a unique equilibrium

in the first step of the game in which the fraction of agents who become informed

is equal to λ∗ ∈ (0, 1). This proves the second part of the Proposition. □

A.6 Proof of Corollary 1.4
The first part of the Corollary is analogous to Corollary 1.2. To prove the second

part of the Corollary, we will note that the precision of the unbiased signal of the

fundamental contained in y (i.e. τs(λ
∗, τy)) is constant in all equilibria in which

τy > τ̂y (or λ
∗ ∈ (0, 1)) — more specifically, in all such equilibria it must be the case

that Lu(λ
∗, τy) = Li(λ

∗, τy). This is equivalent to:

1

τθ + τs(λ∗, τy)
=

1

τx + τθ + τs(λ∗, τy)
+ c

Which is a quadratic equation in τs(λ
∗, τy). Solving this for τs(λ

∗, τy) (and noting

that the solution needs to be greater than or equal to zero) yields:

τs(λ
∗, τy) =

[√
τx(4 + τxc)

c
− τx

]
/2− τθ (A.17)

Hence in all equilibria in which τy > τ̂y the precision of the unbiased signal of

the fundamental contained in y is a constant which depends on the cost of private

information (c), the precision of the private signal (τx) and the precision of the

10If no agent is informed (i.e. λ = 0), then the public signal is uninformative about the
fundamental, so each agent finds it optimal to become informed because we assumed that c <

τx
τθ(τx+τθ)

.
11Because τy > τ̂y and γ(1, τy) is strictly increasing in τy — see Corollary 1.3.
12See Corollary 1.3.

126



fundamental (τθ). It follows that for τy > τ̂y the expected loss of uninformed agents

writes as:

Lu(λ
∗, τy) =

1

τθ + τs(λ∗, τy)
=

2√
τx(4+τxc)

c
− τx

(A.18)

As Lu(λ
∗, τy) = Li(λ

∗, τy) in all equilibria in which τy > τ̂y, we can express the

welfare loss as:

L∗
W = λ∗Li(λ

∗, τy) + (1− λ∗)Lu(λ
∗, τy) =

2√
τx(4+τxc)

c
− τx

(A.19)

Note that this does not depend on τy.
13 This proves the second part of Corollary 1.4.

In the main text, I also mention that the responsiveness of informed agents’ ac-

tions to their private signals is constant in all equilibria where public information is

sufficiently precise (τy > τ̂y) — using (A.12) and (A.17) this can be expressed as:

ϕI∗1 (λ∗, τy) =
τx

τx + τθ + τs(λ∗, τy)
=

2τx√
τx(4+τxc)

c
+ τx

(A.20)

It is also claimed that any increase in the precision with which agents observe the

average action above τ̂y is accompanied by a fall in the fraction of agents who

acquire the private signal (i.e. a lower λ∗), such that the informativeness of the

public signal remains unchanged. Recall from (A.3) and the discussion following

it that the informativeness of the public signal about the fundamental (τs(λ, τy))

depends on:

1. the fraction of agents who are informed (λ);

2. the responsiveness of informed agents’ actions to their private signals (ϕI∗1 );

3. the precision with which agents observe the average action (τy).

Because τs(λ
∗, τy) and ϕ

I∗
1 (λ∗, τy) are constant in all equilibria in which λ∗ ∈ (0, 1), it

follows that if there is a change in τy, the fraction of agents who become informed in

equilibrium (λ∗) adjusts such that the informativeness of the public signal (τs(λ
∗, τy))

stays constant. More specifically, using (1.12), the precision of the unbiased signal

13Also note that this does not depend on the precision of the prior (τθ). If the fundamental
is drawn from a more imprecise prior, the fraction of agents who become informed in equilibrium
increases. This improves the informativeness of the public signal to the extent that agents remain
indifferent between buying and not buying the private signal, and welfare remains unchanged.
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of the fundamental contained in y (in equilibrium) writes as:

τs(λ
∗, τy) = τy[λ

∗ϕI∗1 (λ∗, τy)]
2 (A.21)

This is equivalent to:

λ∗ =

√
τs(λ∗, τy)

τyϕI∗1 (λ∗, τy)2
(A.22)

It is clear from (A.22), (A.20) and (A.17) that an increase in τy prompts a fall in

λ∗. Note that (A.22) is equivalent to γ(λ∗, τy) = 1.14

□

A.7 Relation to models of endogenous central bank

information
In this section only, suppose that the noisy signal of the average action is no longer

observable to agents — instead, there is a policymaker who observes the noisy signal

y = a+ εy. The policymaker observes the signal y, constructs an unbiased signal of

the fundamental (s) and simultaneously discloses a public signal z = s+ εz (where

εz ∼ N(0, 1/τz) is distributed independently of all random variables and τz measures

the policymaker’s degree of transparency).15

In such a setting, an equilibrium specifies:

(λ∗, ϕI∗1 , ϕ
I∗
2 , ϕ

U∗)

Such that:  aI∗i = E[θ|xi, z] = ϕI∗1 xi + ϕI∗2 z

aU∗
i = E[θ|y] = ϕU∗z
λ∗ = 1 if Li/Lu < 1

λ∗ = 0 if Li/Lu > 1

λ∗ ∈ [0, 1] if Li/Lu = 1

Where

Li = E[(ϕI∗1 xi + ϕI∗2 z − θ)2] + c

14And because we supposed that τy > τ̂y, λ
∗ is guaranteed to lie between 0 and 1 — see the

proof of Proposition 1.2.
15If the policymaker is perfectly transparent (τz → ∞), the setup is equivalent to the one from

before, when firms directly observed the signal y. If the policymaker is perfectly opaque (τz = 0),
then there is no public signal.
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And

Lu = E[(ϕU∗z − θ)2]

The average action is given by:

a = λ∗(ϕI∗1 θ + ϕI∗2 z) + (1− λ∗)ϕU∗z

So the policymaker observes the signal:

y = λ∗(ϕI∗1 θ + ϕI∗2 z) + (1− λ∗)ϕU∗z + εy

From which he constructs the unbiased signal of the fundamental:

s :=
y − z

[
λϕI∗2 + (1− λ)ϕU∗]

λϕI∗1
= θ +

εy
λ∗ϕI∗1

With noise equal to 1/[(λ∗ϕI∗1 )2τy]. For ease of notation, let σ
2
y = 1/τy and σ

2
z = 1/τz

(in this case it is more intuitive to express results in terms of the variance of noise

in signals rather than their precision). Then we can write the noise in the central

bank’s unbiased signal of the fundamental as:

σ2
cb :=

σ2
y

(λ∗ϕI∗1 )2

The public signal observed by firms writes as:

z = s+ εz = θ +
εy

λ∗ϕI∗1
+ εz

And the public signal reveals the fundamental with noise equal to:

σ2
public =

σ2
y

(λ∗ϕI∗1 )2
+ σ2

z = σ2
cb + σ2

z

Denote by σ2
cb the noise in the policymaker’s observation of the fundamental, i.e.:

σ2
cb =

σ2
y

(λ∗ϕI∗1 )2

And by σ2
public the variance of the noise with which the public signal (disclosed by

the central bank) reveals the fundamental, i.e.:

σ2
public = σ2

cb + σ2
z =

σ2
y

(λ∗ϕI∗1 )2
+ σ2

z
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In this setting, I investigate how changes in the degree of transparency (i.e. σ2
z)

affect the informativeness of the central bank’s disclosure about the fundamental

(σ2
public) and hence expected welfare. Note that because the central bank’s informa-

tion precision about the fundamental is endogenous (as it depends on the agents’

equilibrium behavior), changes in the degree of transparency (σ2
z) have both a direct

and an indirect effect on the informativeness of the public signal:

∂σ2
public

∂σ2
z

=
∂σ2

cb

∂σ2
z︸︷︷︸

indirect effect

+ 1︸︷︷︸
direct effect

The direct effect reflects the fact that the central bank discloses its information

more or less precisely. The indirect effect reflects that the precision of the central

bank’s private signal of the fundamental is endogenous and depends on the agents’

equilibrium behavior (which depends on the central bank’s degree of transparency).

Expressed in these terms, the remarks made in section 1.3.1 write as:

Suppose private information is free (c=0). The indirect effect is always negative,

but never dominates the direct effect (i.e.
∂σ2
cb

∂σ2
z
∈ (−1, 0)). Hence, a higher degree

of transparency always increases the informativeness of the public signal about the

fundamental (
∂σ2
public

∂σ2
z

> 0) — therefore, a higher degree of transparency is always

welfare-improving (LW
∂σ2
z
> 0).

Conversely, suppose private information is costly (c > 0). Further, suppose that

the central bank observes the average action with sufficiently high precision (τy > τ̂y,

where τ̂y is defined in Proposition 1.2). Then, there is a threshold σ̂2
z , below which

a fraction less than one of agents become informed in equilibrium (λ∗ < 1) — below

this threshold, changes in the degree of transparency no longer affect the informa-

tiveness of the central bank’s disclosure about the fundamental, because the indirect

effect perfectly offsets the direct effect. More specifically,
∂σ2
cb

∂σ2
z
= −1, which implies

that
∂σ2
public

∂σ2
z

= 0. Hence, for σz < σ̂z, changes in the degree of transparency do not

affect welfare (LW
∂σ2
z
= 0).

It is straightforward to prove the remarks above using similar arguments as in the

main text.
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B Proofs for Chapter 3

B.1 Proof of Proposition 3.1
Proof: Given the central bank’s policy rule in period t (i.e. ρt) and the history of

play up to period t, one can compute the distribution of gt and argue that this is

mean-zero Gaussian gt ∼ N(0, σ2
g,t). The distribution of gt is common knowledge

among all agents in period t.

Note: The equilibrium behavior of private agents here is similar to the equilibrium

behavior of firms in Chapter 2, so the proof is along similar lines.

Firstly, we need to show that each agent acts optimally1 given his information2

(i.e. that each agent finds it optimal to act as described in point 2 given that the

information structure is the one described in point 1). The argument is similar to

the one in Chapter 2, section 2.4. Each agent’s optimal action rule specifies:

a∗i,t = E[r(θt + gt) + (1− r)at|Si,t]

We have fixed the allocation of attention such that each agent observes the private

signal si,t = θt + gt + εi,t, where each εi,t is i.i.d. according to εi,t ∼ N(0, var(θt +

gt)/(2
2κ − 1)). Note that if all agents (j ̸= i) act as described in point 2, i.e. if

a∗j,t = γsj,t∀j ̸= i, then the average action is given by:3

at =

∫ 1

0

a∗j,tdj =

∫ 1

0

γsj,tdj =

∫ 1

0

γ(θt + gt + εj,t)dj = γ(θt + gt) (B.1)

Hence agent i’s optimal action rule writes as:

a∗i,t = E[r(θt + gt) + (1− r)γ(θt + gt)|Si,t]

a∗i,t = [r + (1− r)γ]E[θt + gt|Si,t]
(B.2)

Given the information structure, Bayesian updating implies that each agent’s ex-

pectation of θt + gt is given by:

E[θt + gt|Si,t] = (1− 2−2κ)si,t (B.3)

1In step 5 of the timing of events.
2Which was chosen in step 2 of the timing of events.
3Agent i is infinitesimal, so his action does not affect the average action.
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Substituting γ from Proposition 3.1 and (B.3) into (B.2) yields:

a∗i,t = γsi,t (B.4)

Which proves that each agent i finds it optimal to act according to (B.4) when all

other agents j ̸= i act according to (B.4), so this indeed specifies an equilibrium

action rule given the information structure.4

Secondly, we need to show that the allocation of attention described in Proposition

3.15 constitutes an equilibrium, i.e. that each agent i in generation t finds it optimal

to observe one signal si,t = θt + gt + εi,t, where εi,t ∼ N(0, var(θt + gt)/(2
2κ − 1)).

Note that if all other agents j ̸= i observe the signal sj,t, then (as argued above)

in step 5 of the game, all other agents (j ̸= i) act according to a∗j,t = γsj,t and the

average action is given by (B.1). Hence, agent i’s optimal allocation of attention

must solve:

min
Ki,t,Fi,t,Ωi,t

E
[
a∗i,t − (r + γ − γr)(θt + gt)

]2
Subject to: a∗i,t = E[(r + γ − γr)(θt + gt)|Si,t],

Si,t = Fi,tXt + εi,t,

εi,t ∼ N(0,Ωi,t),

I(Si,t, Xt) ≤ κ.

(B.5)

Which is equivalent to:

min
Ki,t,Fi,t,Ωi,t

(r + γ − γr)2var(θt + gt|Si,t)

Subject to: Si,t = Fi,tXt + εi,t,

εi,t ∼ N(0,Ωi,t),

I(Si,t, Xt) ≤ κ.

(B.6)

Given that uncertainty is Gaussian, it should be without loss of generality to re-

strict attention to one-dimensional signal vectors centered on the optimal action, i.e.

K∗
i,t = 1, F ∗

i,t = (1 1) (see the discussion in Chapter 2). In this case, the informa-

tion processing constraint writes as 1
2
log2

[
var(θt+gt)

var(θt+gt|Si,t)

]
≤ κ. Because the objective

is strictly increasing in var(θt + gt|Si,t) and the agent wants to minimize it, the

information processing constraint binds and an optimal signal vector must lead to

4This is also the unique equilibrium given the information structure, see the argument in section
2.8.3.

5i.e. K∗
t = 1, F ∗

t = (1 1),Ω∗
t = (var(θt + gt)/(2

2κ − 1)).
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var(θt + gt|Si,t) = var(θt + gt)/2
2κ. Note that the signal si,t attains this and is thus

optimal.6 Hence, each agent i finds it optimal to observe the signal si,t when all

other agents j ̸= i observe the signal sj,t, so the purported allocation of attention7

indeed constitutes an equilibrium. □

B.2 Proof of Corollary 3.1
Proof: Recall that the central bank’s per-period payoff is given by:

ucb,t = −(at − θt − gt)
2 − λ

∫ 1

0

(ai,t − at)
2di (B.7)

If agents act as described in Proposition 3.1, then the average action is given by

(B.1), so the expectation of the first component of the loss function writes as:

E[(at − θt − gt)
2] = E[(γ − 1)2(θt + gt)

2] = (γ − 1)2var(θt + gt)

While the second component of the expected loss writes as:

E[λ

∫ 1

0

(ai,t − at)
2di] = λE[

∫ 1

0

(γsi,t − γθt − γgt)
2di)]

= λE[

∫ 1

0

(γεi,t)
2di]

= λγ2var(θt + gt)/(2
2κ − 1)

(B.8)

Where the last equality holds because the processing errors are i.i.d. and have

variance equal to var(θt + gt)/(2
2κ − 1) (see Proposition 3.1). Hence, the central

bank’s expected payoff in period t is:

E[ucb,t] = −
[
(γ − 1)2 +

λγ2

22κ − 1

]
︸ ︷︷ ︸

ζ

var(θt + gt) (B.9)

□

6Because the signal si,t is centered on θt+ gt and because the variance of the noise term εi,t is

equal to var(θt+gt)
22κ−1 , it follows that var(θt + gt|si,t) = var(θt+gt)

22κ .
7i.e. K∗

t = 1, F ∗
t = (1 1),Ω∗

t = (var(θt + gt)/(2
2κ − 1)).
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B.3 Proof of Proposition 3.2
Proof: Using Corollary 3.1 and (B.1), we can express the central bank’s problem

as:

max
{ρt}∞t=1

ζδt−1var(θt + gt) (B.10)

Subject to:

gt = ρtScb,t (B.11)

Scb,t = (Zt, Zt−1, ..., Z1)
T (B.12)

Zt = γ(θt−1 + gt−1) + εZt (B.13)

Given the Gaussian information structure, the central bank’s expectation of θt in

period t will be a (deterministic) linear function of the signals observed up to period

t (Zt, Zt−1, Zt−2, ...):

E[θt|Icb,t] = η0Zt + η1Zt−1 + η2Zt−2 + .... (B.14)

Where the weight associated with each signal does not depend on the signal realiza-

tions (see footnote 10). It is straightforward to note that a myopic policy specifies:

gmyopict = −E[θt|Icbt ]

And achieves a per-period expected loss of:

E[ucb,t] = −ζvar(θt|Icbt ) = −ζ 1

τ cbt
(B.15)

Then, note from Corollary 3.2 that the myopic policy is optimal (because the central

bank’s information precision about the fundamental in period T is independent of its

policy reaction function up to period T and there are no other intertemporal links).

Hence, the central bank sets gt in each period to minimize var(θt + gt) conditional

on its information in period t, i.e. it sets:

g∗t = −E[θt|Icb,t] = −η0Zt − η1Zt−1 − η2Zt−2 + .... (B.16)

We can use the central bank’s steady-state information precision (characterised in

Corollary 3.2) to determine the coefficients (η0, η1, η2, ...) in the steady-state. Con-

sider a generic period t and suppose that the central bank’s information precision

has reached the steady-state. Recall from (3.28) that the central bank’s expectation
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of θt in period t is:

E[θt|Icbt ] = αE[θt−1|Icbt ] (B.17)

In turn, the central bank’s expectation of θt−1 in period t is a weighted sum of its

expectation of θt−1 in period t − 1 and the unbiased signal of θt−1 constructed by

the central bank from Zt in period t (which was denoted by st, see (3.25)):

E[θt−1|Icbt ] = (1− ϕ)E[θt−1|Icbt−1] + ϕst

= (1− ϕ)E[θt−1|Icbt−1] + ϕ(
Zt
γ

− gt−1)
(B.18)

Because the central bank’s information precision has reached the steady-state:

var(θt−1|Icbt−1) = 1/τ cbss (B.19)

Also, note that the noise with which st reveals the fundamental is independent of the

central bank’s estimate of the fundamental up to period t and has variance σ2
Z/γ

2

(see (3.26)), so Bayesian updating implies that:

ϕ =
γ2/σ2

z

γ2/σ2
z + τ cbss

(B.20)

We are looking for optimal policy in the steady-state, so using the fact that gt−1 was

set optimally in period t− 1 (i.e. gt−1 = g∗t−1 = −E[θt−1|Icbt−1]), we can write (B.18)

as:

E[θt−1|Icbt ] = E[θt−1|Icbt−1] + ϕ
Zt
γ

(B.21)

Furthermore, because the central bank’s information precision has reached the steady-

state, the central bank used the same linear rule (B.14) to form its expectation of

θt−1 in period t− 1:

E[θt−1|Icbt−1] = η0Zt−1 + η1Zt−2 + η2Zt−3 + ... (B.22)

Substituting (B.22) into (B.21) and the resulting expression into (B.17) yields:

E[θt|Icbt ] = α

[
ϕ

γ
Zt + η0Zt−1 + η1Zt−2 + η2Zt−3 + ...

]
(B.23)
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Matching coefficients in (B.23) with (B.14) gives:

η0 =
αϕ

γ

η1 = αη0 =
α2ϕ

γ

η2 = αη1 =
α3ϕ

γ
...

(B.24)

Which given (B.16) implies that we can write optimal policy in period t as:

g∗t = −αϕ
γ
Zt −

α2ϕ

γ
Zt−1 −

α3ϕ

γ
Zt−2 − ... (B.25)

Matching coefficients in (B.25) with the central bank’s policy rule (3.8) yields Propo-

sition 3.2. □

B.4 Proof of Proposition 3.3
Proof: The first part of the proof (concerning the agents’ equilibrium behavior

conditional on the central bank’s reaction function) is analogous to the proof of

Proposition 3.1.

In a similar fashion to the proof of Corollary 3.1, it is then straightforward to argue

that the central bank’s expected payoff is decreasing in the variance of θ + bg — as

agents take their actions according to a∗i = γsi, it follows that the average action

is given by a = γ(θ + bg), so the expectation of the first component of the central

bank’s loss function again writes as:

E[(a− θ − bg)2] = (γ − 1)2var(θ + bg)

While the second component of the expected loss writes as:

E[λ

∫ 1

0

(a∗i − a)2di] = λE[

∫ 1

0

(γsi − γθ − γbg)2di)]

= λE[

∫ 1

0

(γεi)
2di]

= λE[γ2var(θ + bg|b)/(22κ − 1)]

= λγ2var(θ + bg)/(22κ − 1)

(B.26)

136



Where the penultimate equality holds because the processing errors are i.i.d. and

have variance equal to var(θ + bg|b)/(22κ − 1), while the last equality follows be-

cause E[var(θ + bg|b)] = var(θ + bg).8 It follows that the expected welfare loss is

proportional to var(θ + bg), so we can express the central bank’s problem as:

max
ρ

−ζvar(θ + bg) (B.27)

Subject to:

g = ρx (B.28)

Where ζ is characterised in Corollary 3.1. After substituting the constraint into the

objective function and simplifying, the central bank’s problem is equivalent to:

max
ρ
σ2
θ [(1 + ρ)2 + ρ2σ2

b ] + σ2
xρ

2(1 + σ2
b ) (B.29)

Maximizing this readily yields:

ρ∗ = − 1

1 + σ2
b

σ2
θ

σ2
θ + σ2

x

(B.30)

Noting that E[θ|x] = σ2
θ

σ2
θ+σ

2
x
x, the policy instrument is optimally set according to:

g∗ = − 1

1 + σ2
b

E[θ|x]. (B.31)

□

8It is straightforward to prove the last statement, for instance, by using the law of total variance
to express var(θ + bg) = E[var(θ + bg)|b] + var[E(θ + bg|b)]. Because θ and g are mean-zero (for
any policy reaction function ρ), E[θ + bg|b] = 0, so var(θ + bg) = E[var(θ + bg)|b].
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Maćkowiak, B. and M. Wiederholt (2007). Optimal sticky prices under rational

inattention. CEPR Discussion Papers 6243, C.E.P.R. Discussion Papers.
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