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Abstract

End-stage renal disease (ESRD) is one of the leading causes of morbidity and mortality

worldwide and its prevalence is only projected to increase as the average age and global

population rises. By far the most effective treatment for ESRD is kidney transplantation

with fully compatible donor and recipient human leukocyte antigen (HLA). Practically

however, full compatibility is not always possible. Where a mismatch in HLA occurs an

immune response may take place, leading to the formation of donor specific antibodies

(DSA) which target the kidney. In this thesis analysis is performed on 110 HLA incom-

patible kidney transplants performed between 2003 and 2014 at the University Hospitals

of Coventry and Warwickshire. The analysis aimed to address four main tasks: data

processing, exploratory analysis, immune response classification, and dynamical mod-

elling of DSA immune response. Under the exploratory analysis statistical techniques

were utilised to investigate relationships between characteristic variables and daily post-

transplant DSA levels with graft survival. Results of this work highlighted the signif-

icance of certain pre-transplant and post-transplant periods. For classification, a time

series clustering technique was used to identify five early post-transplant DSA response

types: no-response, fast-modulation, slow-modulation, rise-to-sustained and sustained.

This discovery was a new contribution to literature and highlighted improved outcome

for modulatory versus sustained outcome. Lastly, a set of parametric models were de-

veloped to describe the DSA post-transplant dynamic responses. Findings in this work

reinforce the concept of higher DSA levels being associated with worse outcome, how-

ever, contribute further by suggesting that this relationship may be dependent on response

type. Overall, these findings show that early period post-transplant monitoring can be a

beneficial tool for clinicians in the monitoring of patient health. It has provided indicators

towards the outcome of an incompatible kidney transplant. Future work should seek to

validate these findings with a larger multi-centre cohort.
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Chapter 1

Introduction

1.1 Motivation

End stage renal disease (ESRD) (or renal failure) is one of the significant causes of mor-

tality and morbidity worldwide. It occurs due to a lack of kidney function which is pri-

marily measured by the estimated Glomerular Filtration Rate (eGFR). Loss of function

can occur quickly (days or weeks) in the case of acute kidney injury (AKI) or over an

extended period of time (months or years) for chronic kidney disease (CKD), however,

in all cases without medical intervention it will eventually lead to death. The scale of

the problem is vast with an estimated 10% of the world population affected by CKD and

millions dying each year due to lack of affordable treatment. CKD has also been shown

by the 2010 global burden of disease study to be the fastest rising cause of death second

only to that of HIV and AIDs [1].

Work by Liyanage et al. [2] revealed that in 2010 a total of 2.618 million people experi-

enced renal replacement therapy (RRT) across the globe for treatment of ESRD. RRT is

a collective term for a number of treatments such as dialysis, hemofiltration and hemodi-

afiltration [3]. However, of the available treatments, transplantation from a compatible

donor is by far the most effective. Relative to dialysis-type treatments a systematic re-

view of 110 studies [4] identified that transplantation offers superior survival1 in addition

to improved quality of life for ESRD patients.

From the perspective of the patient, receiving a donor organ is considered the ultimate

step for treating ESRD [5]. Despite this there are major challenges to providing patients

with donor organs - or even RRT treatment at all in developing countries. The UK Renal

1across lifetime period. Perioperative period shows increased hazard rate relative to dialysis treatment.
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Registry report for 2010 shows, for example, that only 47% of RRT patients were trans-

plant recipients with the remaining patients on various forms of dialysis [6]. The average

wait time is 2.5 years (up to 3.5 for Black and Asian minorities) for a fully matched kid-

ney [NHSBT 2018]. In developing countries the outlook is often considerably worse with

fewer facilities and limited support from government for dialysis and transplant programs

[7, 8].

One of the key barriers to transplantation is the lack of compatible donor organs. As a

consequence, various countries have adopted different initiatives to improve the available

transplant pool. The UK offers one of the most successful initiatives known as the UK

living kidney sharing scheme (UKLKSS), put into action in April 2007. The scheme,

developed at the University of Glasgow, implements a novel approach involving graph

matching algorithms to link pairwise and 3-way exchanges of donor organs. In this sys-

tem a willing donor may be incompatible for a certain recipient but will agree to be placed

into a donor pool regardless. Their compatibility data is stored and an algorithm will at-

tempt to form chains of compatible patients and recipients from the available pool. In a

span between 2008 and 2017 UKLKSS algorithms led to 752 transplants taking place and

saving the national health service (NHS) approximately £52M [9]. Additional schemes

such as the ‘Max and Kiera’, or ‘opt-out’, law is also catching traction across the UK 2.

This law, which impacts all adults (except certain excluded groups), automatically agrees

a person to donate organs when they die unless they specifically state otherwise [10]. In

Wales this has seen consent rates for donation reach an all time high of 77%.

Despite the vast improvements in matching compatible donors and recipients seen in the

last two decades there still exist a large number of ESRD patients for which identifying a

compatible donor is a considerable challenge. In these circumstances patients may con-

sider an antibody-incompatible transplantation (AiT). AiT outcomes are generally worse

relative to compatible living donor transplant (LDT) transplantation - however are shown

to be comparable to compatible deceased donor transplant (DDT) [11], and superior to

waiting on RRT [12]. AiT is already greatly improving the lives for many ESRD patients,

however it is only in its early stages of adoption and there is much left to be learnt about

the underlying physiology determining short and long term outcomes. These gaps in

knowledge offer a motivation for the work in this thesis, which ultimately aims to better

understanding of risk in long term AiT outcomes.

2First Wales in 2015, England in 2020, Scotland 2021, Northern Ireland currently in legislative process.
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1.2 Background

One of the main elements responsible for the success of a transplantation is the reaction

of the immune system against the human leukocyte antigen (HLA) of the donor organ

[13]. An ideal situation would be for donor and recipient to fully match HLA, ensur-

ing that no immune response takes place against the transplanted organ. Indeed this was

a requirement in the early days of transplantation [14–16]. Fortunately, developments

in screening and availability of new drugs paved the way for looser compatibility rules

[17–19]. One of the main challenges to overcome in HLA-incompatible (HLAi) trans-

plantation is the immune response of antibodies produced by B-cells (white blood cell)

targeting the donor organ. When directed at a donor organ, HLA specific antibodies are

known as donor specific antibody (DSA) [20]. DSAs are usually formed due to previ-

ous exposure to the HLA such as through previous transplantation, blood transfusion, or

pregnancy [21–23]. Their presence leads the immune system to be pre-sensitised to cer-

tain HLA - often presenting the risk of a faster and more aggressive immune response if

encountered again.

Presence of DSA offers a substantial barrier to AiT, and is one that is carefully considered

by clinicians in practice - even a small amount of DSA at the point of transplantation has

been shown to compromise graft outcome [24]. High risk, or highly sensitised patient

(HSP) - which have large amounts of circulating anti-human antibodies - must typically

undergo immuno-suppressive treatment prior to transplantation, reducing antibody levels

to below a pre-determined threshold [25]. This treatment is a challenging process and

not without its risks. The main aim of immuno-suppressive treatment is to eliminate the

pathogenic DSA targeting the donor graft. Current treatment types however are not so-

phisticated enough to target the specific DSA alone, often leaving the recipient vulnerable

to opportunist infections and cancers. Current graft survival rates are notably lower for

AiT cases due to these many complications. The British Transplant Society (BTS) notes

that 3-year LDT graft survival rates are 94% for non-AiT and only 86% for HLAi- AiT

cases [25]. As a consequence safe transplantation of patients with high levels of circu-

lating DSA, i.e. HSP, is an ongoing problem and often results in increased waiting times

for transplantation [13].

In recent years the value of screening for post-transplant DSA in addition to pre-transplant

DSA has become more widely recognised [26, 27], and is subsequently gaining traction
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as an important monitoring tool [25]. DSA can either form early following transplanta-

tion due to re-synthesis of preformed DSA, or develop some time (typically years) after

transplantation towards the donor graft [28]. In the latter case DSA are referred to as de

novo or ‘new’ if translated from Latin. Both preformed and de novo DSA are considered

to have an important role in long term outcomes [29]. Preformed DSA following trans-

plantation can become triggered towards the donor graft, stimulating large production of

DSA that were previously removed. This highly active period is often associated with

severe/early acute rejection towards the donor kidney, which has been shown to increase

the risk of graft loss [25]. In contrast, presence of de novo DSA are associated with the

longer term chronic rejection but similarly demonstrates worse longer term graft survival

[28, 30, 31]. Despite these findings the underlying mechanisms governing DSA evolution

are not fully understood and new research continues to generate unexpected findings. One

of the most promising avenues for research is into early post-transplant DSA dynamic be-

haviour which has now seen a number of studies explore and demonstrate their link with

clinical outcomes [25, 32–34]. Behaviour in this period can be highly dynamic, and

varies greatly from case to case.

1.3 Problem statement

When considering AiT, the understanding as to why a given patient may experience re-

jection or graft failure is not truly appreciated. While it is recognised that presence of

DSA both around the perioperative period and in the years following can be detrimental

to graft outcome, there are still many notable examples where it is not the case. Higgins

et al. [26] for example demonstrated a startling result that many cases which formed

early high DSA levels post transplantation would regulate themselves following a dra-

matic increase, resulting in little long term effects on the donor organ. Large changes

in DSA levels were previously understood to be highly detrimental to graft outcome and

clinicians typically responded through administering plasmapheresis to remove the DSA,

subjecting the patient to excessive and potentially harmful amounts of treatment. Rev-

elations such as these are indeed valued insights, however do not yet address the true

understanding of why these processes occur. True understanding may realistically be out

of reach for current levels of technology to achieve as they would require validation of

physiologically based models that analyse the underlying immune response. Current lab-
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oratory assays do not present true values for antibody numbers but instead provide an

indication of the number of antibodies reactive against a particular antigen. These val-

ues are derived from techniques such as enzyme-linked immuno sorbent assay (ELISA)

and single antigen bead (SAB), which estimate antibody quantities based on a mean flu-

orescent intensity (MFI) indicator. In many cases the relationship between MFI and true

antibody concentration can be difficult to quantify as the measurement process may result

in nonlinear mapping between the two values (explained in later sections). Furthermore

affinity of DSA may influence MFI values irrespective of concentration, which have each

been shown to demonstrate very different in vivo kinetics [35]. Thus, relating MFI simply

to antibody concentration is not a trivial task and leaves process driven models currently

unobtainable in practice. Despite these limitations it is still widely considered that MFI

data can provide valuable knowledge and should not be rejected as an informative re-

source when concerning transplant outcomes. In this thesis data-driven approaches are

used as opposed to formulating and validating physiological models. Data driven anal-

ysis does not require a complete understanding of the underlying physiological system

and can therefore be implemented where one is not present. There are two main types of

data-driven analysis: parametric and non-parametric. In parametric analysis a parameter

based model is developed to describe the system using a limited number of variables,

such as in a multi-variable regression task or dynamic modelling using differential equa-

tions from physics. For non-parametric analysis the model structure is developed directly

from the data itself, such as a nearest neighbour clustering task. Each approach satisfies

a different role in analysis. Parametric approaches can greatly simplify the learning pro-

cess by pre-defining the structure of the solution, but requires assumptions to be made

about the model form. In non-parametric models there is less control over the solution,

however no assumptions about model form need to be provided - potentially benefiting

situations where less information about the solution structure is known. Parametric mod-

els have been used before such as in Zhang et al’s work [34] on describing certain types

of antibody decay rates following AiT. In this work daily DSA levels were considered

as dependent events and mathematical models in the form of differential equations were

developed to describe the DSA falls after transplantation and to find typical patterns as-

sociated with kidney rejection [34]. The aim of this work was to describe the regulatory

mechanisms responsible for DSA evolution in various outcome scenarios. One of the

biggest areas of weakness in AiT is the understanding of how antibodies contribute to
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longer term outcome and more clinically concerned works look to find associations be-

tween the two which could be informative in clinical practice. Higgins et al. [26] have

described the behaviour of DSA in the first month after transplantation by considering the

rises and falls in DSA levels ultimately showing that higher levels associate with greater

risk of acute rejection. Other more recent publications focus on use of DSA at spe-

cific time points both pre- and post-transplantation, either by applying classical statisti-

cal multivariable approaches [36–38] or more sophisticated machine learning algorithms

[39]. Most studies were however centre specific and only limited to few samples [26,

40, 41]. Many of these studies are additionally difficult to compare to one another due

to a wide variety in monitoring practices. A study of 66 histocompatibility laboratories

which supported at least 25 transplantations each year showed substantial differences in

defining sensitization status, method of reporting HLAi, and post-transplant DSA moni-

toring practices [42]. Even BTS guidelines remain relatively loose in defining key periods

for monitoring [25]. It is clear then that best monitoring practices are still a developing

area despite post-transplant associations with graft outcomes. Antibody monitoring is an

expensive and time consuming practice, and defining a clear set of monitoring and inter-

pretation protocols to maximise information gain from the fewest samples would be a a

strong step towards improving transplant success rates and presenting opportunities for

the development of multi-centre studies.

1.4 Thesis aim and objectives

In the recent two decades clinicians have begun to appreciate the value that post-transplant

DSA monitoring can bring to assessing patient health, however there is not yet a complete

understanding of how antibodies contribute to these outcomes. Modern DSA monitoring

tools such as the SAB have offered substantial advantages over previous methods, how-

ever are still expensive to use in clinical practice. In this work a unique opportunity is

presented to investigate short term post-transplant dynamic activity due to the high vol-

ume of DSA monitoring obtained (see Chapter 2) relative to other works in the field. In

particular, the early post-transplant period (first two weeks) is of interest due to the pres-

ence of anamnestic memory B-cell dynamic behaviour and the occurrence of accelerated

antibody mediated rejection (ABMR) episodes - which are thought to relate to long term

graft outcomes. The advantages of this data set are sought to be fully utilised in this thesis
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and the aim of the work can be summarised as follows:

Aim: To investigate the associations between early post-transplant DSA dynamics

and long-term graft outcomes so as to develop new domain knowledge.

Emphasis is placed on the immediate two month period following transplantation which

is hypothesised to contain valuable information pertinent to the acceptance of the kidney.

To satisfy this aim, the work conducted in this thesis is guided by four main objectives:

Obj. 1: To acquire and prepare a set of data for use in satisfying the thesis aim.

Obj. 2: To determine the most valuable DSA observation for monitoring in practice.

Obj. 3: To identify and relate the types of DSA dynamic responses present in the

AiT cohort to graft outcomes.

Obj. 4: To construct a generalised parametric based model of DSA dynamics for

each of the previously identified response groups.

These objectives first seek to develop a solid foundation for analysis by acquiring, pro-

cessing and defining a data set of post-transplant DSA dynamics before subsequently

building upon this foundation through analysis of DSA data under different contexts. The

purpose behind each of objective and how it relates to the thesis aim is briefly outlined

below.

The first objective is satisfied in Chapter 2 where a HLAi kidney transplant cohort pro-

vided by the University Hospitals of Coventry and Warwickshire (UHCW) is investigated

for its suitability in analysis of post-transplant DSA dynamics. This data set, once ex-

tracted, forms the basis of this thesis with all subsequent analysis performed on the same

cohort. Most critical is an assessment of the DSA samples and a detailed breakdown

of their meaning, measurement uncertainty, and limitations. This chapter additionally

details relevant information relating to patient desensitisation, transplantation, and other

treatment protocols as well as providing an overview of patient outcomes.

For the second objective a cross-sectional analysis of DSA observations is conducted

in Chapter 3 whereby daily samples are investigated independently for their relevance

towards long-term graft outcomes. This work builds upon the other studies in the area

which, due to limited sampling rates, were only able to determine associations with graft

outcome for specific time points pre- and post- transplantation [36–39]. Where DSA
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measurements are expensive and time consuming to monitor, this work identifies the

most informative period for a single sample to be taken in practice.

The third objective of this thesis, completed in Chapter 4, is to identify the different post-

transplant DSA response types/groups which occur within the first two months. Multiple

response types had already been shown in the literature before, for example Higgins

showed that in some cases a marked rise in DSA levels in the first month was followed

by a substantial fall back to the original levels, in others little to no activity was seen

at all [26]. Despite this a conclusive study in the area had not been conducted on the

cohort or otherwise. A deeper understanding of different DSA response types and their

potential relationship with long and short term graft outcomes could be used to guide

future treatment of patients.

The last objective of this work, completed in Chapter 5, is to develop a generalised para-

metric based model of the observed DSA dynamics as demonstrated in each of the previ-

ously identified response groups. Construction of these models allows for identification

of the dynamic features present in the transient response of the underlying physiological

system. From this analysis clinical insights can be identified from the use of model and

the inferred parameters of the system.

1.5 Summary of thesis structure

Chapter 1 has began by exploring the history and current state of AiT before subsequently

detailing the motivations, aims and objectives of the work contained within this thesis.

Chapter 2 follows on by providing the necessary background information about the AiT

transplant cohort which is used throughout all subsequent chapters. Chapter 3 details a

cross-sectional investigation of DSA and concludes with demonstrating the most valu-

able day for monitoring a single DSA sample in the early post-transplant. Chapter 4

applies a novel grouping analysis to AiT kidney DSA response data - first demonstrating

the types of response which occur and then relating these responses to graft outcomes.

Lastly, Chapter 5 introduces a dynamic modelling methodology and applies this to each

of the previously identified response groups allowing for clinical insights about DSA to

be linked directly to dynamic features. Chapter 6 concludes the thesis by summarising its

most important findings and exploring potential avenues for future works.
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Chapter 2

HLAi kidney transplant cohort

2.1 Introduction

Extracting useful information from limited clinical data has been one of the great focuses

of biomedical research. In the context of transplantation it could help guide or even

develop new treatment protocols. When considering data there are two main types in

clinical practice: static and dynamic. Static data do not change and typical examples may

be patient characteristics such as age (at time of transplant) or gender. Dynamic properties

change over time and are more frequently used in monitoring purposes. This thesis leans

heavily on investigating the influence of DSA evolution on transplant outcomes however

it is quite clear that DSA are not the only contributing factor. In this chapter the AiT

cohort used throughout this thesis is introduced alongside both the static and dynamic

variables relevant to future chapters.

2.2 Aim and objectives

The aim of the chapter is to introduce the background theory surrounding transplantation,

treatment and monitoring - and then use it to select a suitable HLAi kidney transplant

cohort for use in this thesis. Furthermore, DSA measurements, which form the foundation

of this thesis are investigated for their underlying physiological meaning in addition to

any limitations with the sampling approach. More specifically the chapter aims can be

summarised by:

Aim 1: To select an AiT cohort which is suitable for subsequent analysis.

Aim 2: To detail patient treatment, transplantation and DSA monitoring protocols.

9



Chapter 2. HLAi kidney transplant cohort

Aim 3: To extract a clean and usable DSA data set for use in subsequent analysis.

Aim 4: To describe short and long term patient outcomes for the cohort i.e., ABMR

and graft survival.

To satisfy these aims an extensive literature search is completed which investigates the

processes influencing an immune system response following a kidney AiT, the role of

DSA, and potential outcomes for the patient (Section 2.3). This information is then

utilised alongside key requirements for analysis, such as a minimum amount of DSA

samples, to guide decision making on preparing, or pre-processing, the data set (Section

2.4). Section 2.5 summarises key decisions and findings which are used in later chapters.

2.3 Background

Presence of donor sensitised HLA antibodies play an important role in modern day de-

cision making for renal transplantation. DSA are difficult to measure and modern day

techniques still present challenges in interpretation. In this section an overview of the

DSA monitoring tools used throughout this thesis are presented, however it is first re-

quired to detail the immunological background of DSA.

2.3.1 Immune response system

The immune response system consists of a set of mechanisms within the body that recog-

nises and defends against bacteria, viruses and other substances which appear to be harm-

ful. Initially when faced with a threat the body’s innate immune system operates as the

first line of defense in the form of natural killer (NK) cells - these function as some of

the primary means of destroying infected cells or tumours. In cases where the innate

immune system fails to protect the body from pathogens the active part of the immune

system begins to respond (typically after 2-3 days). The functions of the active immune

response are complex however can broadly be summarised into: recognition of specific

non-self antigens, generating responses to eliminate pathogens, and development of im-

munological cells. These functions are carried out by the two types of active immu-

nity mechanisms: humoral and cell mediated. The humoral system primarily consists

of circulating antibodies which, once stimulated, initiate a rapid production of antigen-

specific B lymphocytes (B-cells) that increases antibody titres and affinity to the inciting
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pathogen. For cell mediated immunity there is no involvement of antibodies but instead

activated production of NK cells, macrophages, and antigen-specific T lymphocytes (T-

cells) alongside cytokines. A humoral type response is generally referred to as ‘spe-

cific’ as it directly detects and neutralises particular antigens operating on the surface of

pathogenic substances. This is unlike cell mediated response which is less specific and

can target intra-cellular pathogens which multiply within host cells.

The active immune system has been of primary concern for clinicians in transplantation

due to a far stronger and more targeted response to the donor organ. Cellular response

mechanisms in particular were one of the first areas of focus in the modern era of trans-

plantation [25] where it was noted that up to a third of cases experienced graft loss in the

first year from T-cell mediated cellular rejection. Over 70% of lymphocyte production

is thought to be T-cell. Following this observation an intense period of research began,

eventually culminating in the production of a therapeutic toolkit which involved inhibit-

ing of T-cell production in addition to T-cell depletion routines. The available therapies

eliminated almost all graft losses from this cause in adherent patients with one of the

only limitations that treatments remain relatively ineffective against memory T-cell re-

sponses. Ultimately however, it is overall considered to be an effective set of treatment

options [25]. Following the substantial improvements in reducing T-cell mediated rejec-

tion a greater deal of focus has more recently (in the last 20 years) been placed into the

response of anti-donor antibodies, or DSAs, for which evidence had been accumulating

that they play an important role in acute and chronic allograft rejection.

DSAs are part of the humoral response against the HLA of the donor organ [13]. HLAs

are protein structures that exist on almost every cell in the human body. They function as

a signal to the body’s own immune system - informing that the cell belongs, or is ‘self’

[43]. The HLA system is controlled by the genes located on chromosome 6 and are split

into two main classes: class I (CI) and class II (CII). CI and CII HLA each have three main

variations: HLA-A, HLA-B, HLA-C, and HLA-DP, HLA-DQ and HLA-DR respectively.

In total over 25,000 allele sequences already identified across the two HLA classes [44]

with several studies showing that up to 40% of HLA allele have been identified in as little

as only a single person [45, 46].

One of the major barriers to HLAi transplantation is the presence of pre-sensitised mem-

ory B-cells and antibodies specific to donor HLA. In Figure 2.1 the process of antibody
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Figure 2.1: Diagram of humoral response upon first exposure to APC. APCs such
as macrophages, dendritic cells, and B-cells develop upon contact with donor foreign
antigens and stimulate humoral and cellular responses. Pathogen epitope-specific B-cell
production is stimulated which subsequently either mature into plasma cells via assis-
tance from helper T-cells (Th) or develop into memory B-cells. Plasma cells ultimately
facilitate the production of pathogen epitope-specific antibodies.

production and the development of memory B-cells is summarised following initial ex-

posure to a foreign HLA - such as is often presented if the patient has experienced either

pregnancy, blood transfusion, or previous transplantation. Initially, the signature of the

foreign HLA is captured by antigen presenting cell (APC) which is then subsequently pre-

sented to B- and T- cells that can begin processing an immune response to the perceived

pathogen. For the humoral response the process of antibody production, or synthesis, be-

gins with B-cells which are produced in the bone marrow. Following a maturation phase

the B-cell will differentiate into one of 2 types: memory cells, which allow for retaining

of information relating to an antigen, or the plasma cell, which exist in the bone marrow

and secrete antibodies directly into the blood. The vast majority of B-cells mature into

plasma cells which function directly as a factory for production of antibodies to target

foreign pathogens however it is the memory B-cells which remain present in the body

(for up to decades) that allow for rapid response to previously exposed pathogens.

The structure of an antibody (also referred to as an immunoglobulin (Ig)) is made of two

polypeptide sub units which together form a Y-shaped monomer, however some types

of antibody can chain together to form dimers or polymers. Of the five main classes of

antibody that are created in response to an infection IgD, IgE, and IgG are monomer types

while IgA is a dimer and IgM is a polymer. The different types of Ig vary in function and

location throughout the body. The most abundant anitbody type by far is the IgG isoptype

and, in its four subclass forms (IgG1, IgG2, IgG3, and IgG4), it provides the majority of
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antibody based immunity against invading pathogens [47].

Figure 2.2: Diagram showing which antibody types contribute to the DSA immune
response. IgG makes up the vast proportion of DSA volume and makes up the majority
of the immunity against invading pathogens.

A common misconception is that antibodies themselves are responsible for the destruc-

tion of antigens however this is not the case. Antibodies are in fact not capable of pene-

trating cell walls and serve mainly to inform other cells of the presence of an antigen

which then subsequently performs the destruction. Antibody antigen binding occurs

through the Fab region of the antibody (one of the forks). Once bound, the Fc region

(trunk) is presented and cell destruction can either take place through one of two main

mechanisms: phagocytosis or cell lysis. Phagocytosis occurs when effector cells (such

as macrophages or NK cells) bind to the Fc region and proceed to ingest both the anti-

body and pathogen. For cell lysis the complement system is activated which enhances

the ability of antibodies and phagocytes to clear pathogens. Complement binding begins

with the C1q protein complex (component of innate immune system) which attaches to

antibody Fc receptors. This process initiates the complement cascade that punctures the

cell and neutralising the threat. Complement binding has been an area of considerable fo-

cus in transplantation as not all antibody types are capable of activating the complement

cascade. Of the four subclass types IgG1 and IgG3 are often CI targeting antibodies and

have strong complement binding properties. IgG2 and IgG4 are typically CII targeting

antibodies with weak to no complement binding capability.

2.3.2 Monitoring of donor-specific antibodies

Investigative work on DSA in the context of transplantation can be dated at least as far

back as 50 years, where Patel and Terrasaki showed that positive crossmatch tests were

strongly correlated with delayed graft function [48]. Since then the importance of DSA

in assessing donor and recipient compatibility is more fully appreciated and monitoring
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of DSA both prior to and following transplantation is considered standard practice. Three

main techniques are now used to monitor the presence of patient anti-donor HLA anti-

bodies: complement dependent cytotoxic (CDC) crossmatch test, flow cytometry (FC)

crossmatch test, and luminex assay tests. The roles of each in the context of transplanta-

tion are detailed as follows.

Complement dependent cytotoxic crossmatch

CDC is an assay used to determine if a potential organ donor organ and recipient are

immunological compatibility [48] and is the standard test conducted prior to any organ

transplantation used to detect complement-fixing antibodies. In brief, donor lymphocytes

are isolated from peripheral blood, spleen, or lymph nodes before being further separated

into T-cell and B-cell compartments. Recipient serum is then mixed into the compart-

ments followed by rabbit serum containing a source of active complement. If DSA are

present in the recipient serum they will bind to the donor cells causing activation of the

complement - ultimately resulting in lysis of the lymphocytes. The level of DSA activity

can be expressed as a percentage of cell lysis (ratio of live/dead cells) although is more

generally either referred to as CDC+ or CDC- depending on if cell lysis is taking place or

not (shown in Figure 2.3). Unlike later discussed DSA measurement techniques the CDC

test is not able to distinguish specific types or classes of antibody and generally represents

the summative result of all antibody types (HLA or non-HLA; Allo or Auto-antibodies;

IgG or IgM) in the recipient serum. Despite this, CDC+ results are associated with worse

transplant outcomes [33].

(a) CDC- result. (b) CDC+ result.

Figure 2.3: Assessment of CDC assay. (a) absence of lysis (shown in red) indicates
non presence of DSA in recipient serum. (b) cell lysis present indicating binding of DSA
to donor cells. Images adapted from [49].
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Flow cytometry crossmatch

The FC crossmatch test is more sensitive than the CDC assay test as it can detect both

complement fixing and non-complement fixing DSA [50]. This test is completed by ini-

tially mixing of recipient serum with donor lymphocytes in a similar process to that seen

in CDC crossmatch test. Following an incubation period fluorescent labelled anti-human

IgG monoclonal antibodies are added to the serum which bind specifically to recipient

DSA that are bound to donor cells. The number of bound cells are then determined by

using an FC machine which observes the scattered light bouncing off of cells as they flow

past an emitted laser. Cut-off for a positive FC test is usually computed relative to a neg-

ative control serum which is without known HLA antibodies. If the fluorescence is two

standard deviations greater than that of the negative control sample then it is considered

FC+. The ability of the FC test to directly detect all bound donor specific IgG regardless

of reliance on the complement secondary effector mechanism has been a great advantage

of the test relative to CDC, however its reliance on statistical processes as opposed to

biological relevancy has resulted in both tests still frequently employed in practice [51].

Luminex platform

The luminex bead is a relatively newly developed technology that offers a more practi-

cal approach to measure DSA on a daily basis. Unlike FC and CDC testing microbead

analysis does not rely upon a steady supply of fresh donor lymphocytes to allow for

daily monitoring. Instead, target HLA proteins are purified and subsequently attached to

polystyrene beads which are each individually labelled with specific ratios of a fluores-

cent marker [52, 53]. Typically an assay consists of 100 beads which are used to measure

different HLA specific antibodies (shown in Figure 2.4). Patient blood sera, which con-

tains DSA, is then added to the assay and left to incubate allowing for binding of patient

DSA to compatible microbead antigens. Following the incubation period a secondary

anti-human IgG antibody is then added to the assay which contains a phycoerythrin (PE)

agent that acts similar to the florochrome markers on individual beads. The PE anti-IgG

antibodies bind to the anitbodies in the assay and - once non-bound antibodies have been

removed from the assay - can be used to determine the concentration of antibodies in the

patient sera. An estimate of antibody concentration on each bead is determined via an

MFI measurement which assesses the fluorescent signal given by each bead using a laser.

These values are then compared to an antibody negative control sample using a computer
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algorithm.

Figure 2.4: Luminex assay with example of single bead. Antigen specific antibodies
will bind to antigen binding sites on luminex bead. Concentration of DSA is then esti-
mated by fluorescent anti-IgG antibodies which bind to the antigen specific antibodies.
The fluorescence is then measured using a targeting laser and computer algorithm while
comparing emission to a negative control bead.

Earlier versions of the luminex platform utilise a technology known as phenotype beads

which carry an entire HLA haplotype profile. This results in several antibodies potentially

binding to the same bead some of which may or may not be donor specific. Developments

upon this technology came about with the development of the SAB which is capable of

targeting antibodies down to specific allele type (i.e. HLA-B7 and no others). This

has substantially improved specificity of the assay. An additional advantage of luminex

assays is that monitoring of non-DSA is also possible and may help distinguish between

a general immune response - such as with inflammation - or a specific anti-graft response

[26]. Positive reactivity of patient antibodies to a specific luminex bead HLA is not

straightforward to determine. Luminex assays are highly sensitive and positive cut-off

values between laboratories can vary substantially (from 500 to 3000 MFI) dependent on

lab specific protocols and operator experience. It is noted that even with standardised

protocols the coefficient of variation can be around 25% [54]. MFI levels can also be

affected by artefacts [55] or presence of IgM HLA specific antibodies [56] or presence

of complement proteins [57] and as such care should be taken not to directly equate

with the true concentration of HLA-specific antibodies. Despite this SAB measurements

are the best available option for determining DSA levels [58] and have improved the

ability to identify and manage sensitised patients [59] by providing a semi-quantitative

measurement of DSA with the MFI reading.

As previously mentioned low DSA level ranges provide large uncertainty for true con-

centration of DSA in patient blood serum as they approach the cut-off value for antibody

positivity at around 500-3000 MFI. It is also necessary to be cautious of particularly large
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(a) Close proximity to other DSA. (b) Competition with complement c1.

Figure 2.5: Biological processes governing prozone effect at high DSA concentra-
tions. (a) Close proximity of DSA on antigen binding sites restricts access for PE coated
anti-IgG antibodies to bind to DSA causing a reduction of DSA relative to true concen-
tration. (b) Concentration of DSA becomes high enough that complement c1 (purple) be-
gins to compete for PE coated anti-IgG antibody binding sites. Complement c1 requires
a divalent bond between two DSA binding sites and as concentration of DSA increases
complement c1 becomes yet more competitive - resulting in a lower MFI level even as
true DSA concentration increases.

DSA levels when using the luminex platforms. Two effects are documented in the liter-

ature which produce non-linear mapping of observed MFI mesasurements and true DSA

concentration: the prozone (or hook) effect and the saturation effect. The prozone ef-

fect (Figure 2.5) occurs primarily due to competition for the PE coated anti-IgG binding

sites. As concentration of DSA on the surface of the luminex beads increases they can

become close enough that they overlap and subsequently block the anti-IgG antibodies

from binding to the DSA - causing a decrease in the measured fluorescence. Additionally

close proximity of complement activating DSA can allow for competition from comple-

ment c1 molecules which require a divalent bond between two DSA. As concentration

of DSA increases more binding sites are available for complement c1 and therefore there

are fewer opportunities for the anti-IgG antibodies to bind. Saturation effects occur as

the concentration of DSA becomes so high that all antigen binding sites on the luminex

bead are taken. Often in the design of a luminex bead saturation and prozone effects

are weighed against one another in order to maximise the number of HLA present on

the bead while minimising the effects of complement c1 and DSA overlapping. Work

from the UHCW [60, 61] has shown that there is typically a ‘Goldilocks’ range where

MFI and true concentration are linearly matched however the extent must be determined

individually for specific HLA alleles. Figure 2.6 shows an example of MFI reading for

HLA allele A2 and B7 before they experience saturation relative to true DSA concentra-

tion. To identify presence of prozone or saturated affected MFI measurements procedures

typically dilute patient sera and check if observed MFI concentrationd react accordingly.
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Figure 2.6: Example of linear range detected using luminex assay. Note linear range
extends to different MFI for different types of anti-HLA antibodies. As true DSA con-
centration increases the linear relationship with MFI breaks down and a saturation effect
is demonstrated (extracted from work by [60]).

DSA use in practice

In practice patients may often display more than one DSA targeting donor HLA and,

where the goal is to relate these DSA levels to patient graft outcomes, has led to two

main approaches for analysis. The first approach is to use the immuno-dominant DSA

(iDSA) which is the DSA that demonstrates the largest MFI measurements. The second

is to use the total DSA (tDSA) measurement which is the aggregate of all DSA for any

given patient. No clear consensus is available on which approach is most appropriate

for analysis and many studies will take the approach of assessing associations with both

methods. In certain lung transplant cases, for example, tDSA has been associated with

antibody rejection when iDSA was not [62] however numerous findings have been shown

for only iDSA [63–65]. Figure 2.7 shows a case from the AiT cohort used in this thesis

and demonstrates how the tDSA can be formed from a patient who is sensitised to three

different donor HLA. Additionally, in the context of this patient the iDSA would be the

B60 type DSA.

2.3.3 Allograft rejection

Allograft rejection is an important barrier to long term graft survival [66] and is a conse-

quence of the interaction between patient immune system responding to HLAi expressing

cells on the graft vascular endothelial cells. Both the innate and adaptive immune systems

play a significant role in rejection however T-cells are the principal cells that identify the

allograft [67]. Renal transplant rejections can be broadly classified into the following

categories:
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Figure 2.7: tDSA accumulation procedure for a patient with three different DSA.

1. Hyper-acute rejection. Occurs within minutes of graft reconnecting blood supply

to organ (repurfusion) and occurs due to pre-existing antibodies in the recipient

blood against donor HLA which are present at the time of transplantation.

2. Acute rejection. Occurs within a few days to weeks following transplantation and

can occur either due to antibody or T-cell mediated response pathways.

3. Chronic rejection. Rejection is the result of a progressive loss of graft function

occuring over months or even years following transplantation and can occur due to

either antibody or T-cell mediated response pathways.

ABMR is caused by the binding of DSA to the graft endothelium and can result in classi-

cal pathway complement activation followed by cell death. This leads to restricted blood

flow and oxygen (ischaemia) causing damage to the kidney. Additionally, as endothe-

lium integrity is compromised as coagulation factors are able to pass through freely -

ultimately leading to blood clotting (vascular thrombosis) and compromising of kidney

function. It is usually defined with evidence of circulating DSA and immunological evi-

dence of antibody-mediated injuries to the kidney - such as inflammation of glomeruli or

peritubular capillaries, or even depositions of C4d (a degradation product of complement

pathway) to the endothelial membrane of the donor kidney. T-cell mediated rejection

(TCMR) occurs when patient lymphocytes become activated by recognition of foreign

donor HLA by APC. This leads to activation and infiltration of T-cells to the donor graft

causing cell lysis and is usually characterised by lymphocytic infiltration of the tubules,

interstitum and arterial intima. If untreated TCMR causes irreversible nephron loss [68].

Chronic rejection is linked to both immune and non-immune mediated factors with the

primary risk factor being non-compliance with immuno-suppression medication. Of the
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three rejection types hyper-acute ABMR was the first to be recognised as early as in the

1960s [69] however it was largely solved in the same decade with the introduction of the

CDC test which substantially reduced the rate of incidence [48]. Treatment for both acute

and chronic rejection is similar. For ABMR plasma-exchange, intravenous immuno glob-

ulin (IVIg) and various cell inhibitor drugs such as Rituximab and Bortezomib are used to

reduce antibody count. For TCMR T-cell, B-cell and macrophage levels are reduced via

lymphodepleting treatments such as prednisone and ATG. In both cases clinicians may

also vary dosage of immunosuppressive drugs to combat rejection onset.

2.3.4 End-stage renal disease

Kidneys are a vital part of the urinary tract whose purpose is to filter blood and remove

waste products. Typically, a person is born with two kidneys which are situated under the

lower ribs at the back, one on either side of the body where each kidney is shaped like a

bean with approximate dimensions 12x6x3cm and weight 150g. Aside from the kidneys,

there are three other main components of the urinary tract: ureters, bladder, and the ure-

thra and their position relative to one another. Filtration begins with a kidney extracting

waste products from the blood circulating from renal arteries. Common products to be

removed at this stage are creatinine, urea, and water whilst products that are not removed

are certain vitamins, amino acids, and hormones within the bloodstream. Once extracted,

the waste products form urine are passed down the ureters to the bladder. A typical blad-

der can store 400 ml of urine before it is expelled from the body via the urethra.

In addition to its main function of removing waste products the kidney also provides sev-

eral additional functions. Each kidney is a capable chemical factory when healthy and

produces many hormones which help regulate the body. Production of prostaglandins

and aldosterone for example influence the adsorption of sodium and water into the blood,

which act to both balance the body’s fluids and regulate blood pressure. It also pro-

duces vitamin D which has many functions however primarily aids in the maintenance of

healthy bones and regulation of the body’s immune response. Lastly of note, erythropoi-

etin is also produced which stimulates the production of mature red blood cells and thus

maintains healthy oxygen levels in tissues.

Kidney failure is the result of lack of kidney function. The length of time for which a

kidney demonstrates loss of function dictates whether it is referred to as AKI (days or

20



Chapter 2. HLAi kidney transplant cohort

weeks) or CKD (>3 months). Kidney function is measured via the eGFR which is based

on a blood sample testing for creatinine levels amongst other baseline patient characteris-

tics like gender and age. For CKD, where the loss of kidney function is more gradual, the

effectiveness of the kidney to filter waste products is categorised based on its eGFR level.

There are five stages with stage 1 corresponding to normal kidney function and stage 5

corresponding to kidney failure - otherwise known as ESRD. Once kidney function has

deteriorated to the point of ESRD the kidneys’ ability to regulate waste products is im-

paired substantially and without medical intervention will lead to illness and eventual

death. Should patient kidney function deteriorate to the point of ESRD then the organ is

considered to have failed, and, in the context of already having a previous transplantation,

it is referred to as a graft-failure (GF) in this thesis.

2.4 AiT cohort

The data used in this thesis has been collected by University Hospitals of Coventry and

Warwickshire who conducted 110 HLAi (and blood type compatible) kidney transplants

between June 2003 and February 2014 with follow-up time available up until March

2019. One patient did not provide consent for their data to be used in the study and is

excluded. Ethical approval for the study was obtained from the local ethics community

(CREC-055/01/03 and 13/WM/0090) and written consent was obtained from all other

patients included in the following studies. Of these 10 additional patients were excluded:

4 due to early death of patient (<10 days), 1 due to early graft failure, 3 due to missing/in-

complete DSA data, and 2 cases were excluded due to saturation affected DSA samples.

Following these exclusions 99 cases were available for all subsequent analysis in this the-

sis. Across the AiT cohort every single patient demonstrated at least one pre-sensitised

HLA-specific antibody with their donor organ, known as a mismatch. The maximum

number of mismatches was seven and the median was two. A total of 278 DSA were

present across the whole cohort with 138 being CI, and 140 being CII. In transplanta-

tion it is also common to consider if a case consisted of solely CI (N = 36), solely CII

(N = 24), or, a mixture of both CI and CII (CI&II) (N = 49) DSA.
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2.4.1 Desensitization protocol

Approximately ten days prior to transplantation patient DSA levels were assessed via lu-

minex assay MFI measurements. Sufficiently large DSA levels (tDSA >3,000 MFI) were

to be met with desensitization treatments with a target of negative FC crossmatch or cu-

mulative DSA MFI <3 000 for HLA -A, -B or -DR mismatch at the point of surgery. Two

treatment options were considered which consisted mainly of double filtration plasma-

pheresis (DFPP) and IVIg only in cases where IgG levels were low. In total 73 out of

99 cases had received at least one DFPP session; the maximum number of sessions ad-

ministered to a single patient was 13, and the median number of sessions received being

four. In a third (33/99) of cases however the DFPP sessions could not achieve negative

FC crossmatch and patients were transplanted in the presence of higher DSA levels due

to clinical needs. There were 11 DDT patients which were among the 26 cases which did

not receive pre-transplant DFPP treatments. Only a few cases received IVIg (N = 3).

Generally immunosuppressive treatments consisted of twice daily 1,000 mg mycopheno-

late mofetil, starting ten days before transplant with dosage reduced if white cell count

dropped below 4.0 x 109 per litre. Daily administrations of tacrolimus were commenced

four days before transplantation. Dosages were given at 0.15 mg/kg/day in increments

with a target trough level of 10 to 15 µg/L in the first month. At surgery, a single 500 mg

methylprednisolone dose was provided intravenously during the transplant operation; a

20 mg basiliximab induction was given twice on day zero and day four post-transplant.

2.4.2 Patient monitoring

HLA CI and CII specific antibodies were identified before transplantation through the

use of One Lambda Inc.’s (Canoga Park, CA) SAB assay on the Luminex assay plat-

form (XMap 200). For earlier cases, up to mid-2007, HLA phenotype beads were used

(N=19) before being replaced by the SAB used to the current date. Some select cases

were retrospectively retested with the SAB platform to confirm specificities. Protocol

for monitoring DSA was built to collect a high number of samples early post transplant

followed by fewer samples up until weeks 8-12 where protocol stopped.

Figure 2.8 indicates the stated protocol for each week following transplantation, with an

example being to collect at least four samples in the first week. In practice this high inten-

sity was difficult to achieve and success varied greatly from patient to patient. Relatively
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Figure 2.8: Assessment of DSA monitoring protocol. Following transplantation pa-
tients DSA would ideally be sampled at the stated protocol rate for a given period of time,
i.e., week 1, at least 4 samples. In practice this was not always achieved - as shown by the
% cases y-axis. For greater context some additional markers are included in light grey.

good rates are seen in weeks 1 and 2 however retention rates are notably at their poorest

relative to the desired protocol in weeks 3-4. More typically then, protocol for post-

transplant serum sample collection consisted of high-intensity testing over the first 15-

20 days following transplantation followed by more sparse measurements as the weeks

progressed, typically stopping at around sixty days. More limited testing is stated as oc-

curring only when the patient’s DSA levels and clinical measures were deemed stable.

Figure 2.9 further adds to Figure 2.8 by displaying histograms comparing the number of

DSA observations per case for a given period of time. The post-transplant period is of

most interest in this thesis and it can be seen that the number of observations can vary

greatly from case to case. At the extremes the lowest number of observations is six and

the maximum is 52. The median number of observations is 21. Not all cases will present

enough DSA observations necessary for analysis in this thesis - however this will be ad-

dressed in later chapters. Throughout this thesis tDSA levels will be used to represent the

patient antibody response to donor HLA and the term will be used interchangeably DSA.

2.4.3 Handling early acute ABMR

Apart from post-perfusion biopsies taken in the operating theatre, biopsy was done for

cause only, i.e. in cases of graft function deterioration or creatinine stuck. Acute rejection

episodes occurring before 30 days post-transplant (N=45) were identified at incidence un-

der the most recent BANFF guidelines [70]. In some instances, where the biopsy was not

23



Chapter 2. HLAi kidney transplant cohort

Figure 2.9: Histograms of observed number of data points per measurement pe-
riod. Total period includes pre-transplant and post-transplant periods. trx=transplant. A
general trend is that there are fewer observations as time progresses.

possible, for example, for patients on anti-coagulation therapy or during weekends, a

rapid rise of DSA MFI values alongside a drop in urine output and increase in creati-

nine was defined as clinical rejection. All 45 rejection cases were treated with a course

of pulse methylprednisolone 500 mg once a day for three days. Additionally, lympho-

depleting agent (ATG or OKT3 or Campath) was administrated in N=31 cases, and DFPP

treatment was performed in N=13 cases, of which 5 required IvIg replacement. One case

additionally had ecluzimab as rescue therapy.

2.4.4 Graft failure

Within many biomedical studies the variable of interest can often be characterised as a

“time to event” such as time to death or a failure event. In this study graft survival is of

key interest. The first transplant was conducted in June 2003 with subsequent patients

routinely referred to UHCW at an average rate of approximately ten per year since. The

last patients included in our study were from February 2014. These transplantations

have formed the basis of a longitudinal study whereby additional data on each patient is

routinely collected following transplantation. Follow up time for each of these cases was

available up until March 2019 providing vital information such as patient graft survival

status. With over ten years separating the first and last cases in our study the available

follow up time for each patient can vary considerably and many of the cases do not

experience a graft failure event in this period. In total only 24 cases have experienced a
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Figure 2.10: Comparison of censoring types. Left censoring - point of exposure occurs
some time before start of study. Right censoring - event occurs sometime after end of
study. Complete - both point of exposure and event occurrence are known.

graft failure event in the study time. By excluding those cases which do not experience a

graft failure event a substantial number of data would not be used in analysis. To benefit

the most from this survival data we therefore look to take advantage of censored data

which allows for the inclusion of no graft-failure (no-GF) cases into survival analysis.

Censored data occurs when some information about survival time exists but the exact

survival time is not known [71]. When considering patient graft survival as an outcome

there are three reasons that case data may be censored: patient death, no-GF during follow

up period, and contact with case lost during study period. In our cohort eight patients

died during follow up period and are subsequently death censored, 61 experienced no-GF

during follow up period and contact was not lost with any cases during study period. A

total of 69 cases are censored. When censoring data the root cause of censoring must

additionally be considered, and its subsequent impact on the confidence in survival time

[72]. Consider the following censoring types shown in Figure 2.10. Left censored data

occurs when the left side of the survival time becomes uncertain, such as in the case of

a person being tested positive for an infection - the true point of exposure is not known.

Right censored data is more commonly seen in transplantation literature where the point

of exposure is clearly known. Cases in our cohort are either complete, or right censored,

depending on the whether the time-to-GF occurs prior to the end of our study period.

When analysing patient survival data it is often convenient to compare in terms of a

consistent reference point as opposed to analysing relative to a fixed starting date. One

of the most powerful tools to achieve this analysis is through the Kaplan-Meier survival

estimator [73] (detailed in Appendix section A.1). First publicised in 1958, the estimator

determines the fraction of subjects which have not experienced an event for each point of

time following a common starting point (i.e., transplantation). In doing so the estimator

generates a non-parametric function describing patient survival over time. For a small
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sample size a plot of the survival function will be represented by a series of large declining

steps, however, as the sample size becomes large enough the plot will approach the true

survival function of the population. In bio-medicine these types of analysis are often used

to identify how different factors, such as gender, may influence long term outcome.

Through application of the product limit method the patient graft survival probability is

estimated from the 99 HLAi kidney transplant cases at each time point following trans-

plantation. The calculated Kaplan-Meier survival function is then plotted as shown in

Figure 2.11. In total 25 cases have experienced a graft-failure event as of March 2019

and 74 cases are censored. Of the censored cases one case exceeds 15 years of follow up

data and 5 cases have less than 5 years follow up data. The median (lower quartile (LQ) to

upper quartile (UQ)) follow-up time for censored cases is 9.9 (7.4 to 12.0) years. The ear-

liest graft failure event occurs at 71 days following transplantation and the last is at 12.8

years. The median (LQ to UQ) event time is 4.8 (2.3 to 6.3) years post-transplantation.
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Figure 2.11: Kaplan Meier survival analysis for HLAi kidney transplant cohort
Survival probability designates probability of graft-failure event for a given time. Cases
(n=99) are either censored (n=74) or not-censored (n=25). Censored data include patient
deaths or last record as non-event. Not-censored data are events. Black values indicate
number of censored cases which have exceeded the indicated time point. Red values
indicate the number of events which have occurred before the indicated time point.

2.5 Conclusions

Following a detailed literature review - which covered the relevant elements of the im-

mune response system through to monitoring DSA and patient outcomes - a study of the

AiT data set provided by the UHCW was conducted. The first aim of the chapter was
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to identify a suitable cohort for use in subsequent chapters. This objective was achieved

by accessing and assessing the UHCW HLAi (and blood type compatible) data set which

was collected between June 2003 and February 2014, and with follow-up data extending

up until March 2019. In total 110 cases were available for analysis however it was recog-

nised that not all cases may be suitable, and a total of 11 cases were excluded for reasons

including: early death (4), early graft failure (1), missing data (3), saturation effect (2),

and lastly no-consent (1). This left in total n = 99 cases for subsequent analysis. The

second aim of the chapter was also satisfied with a detailed account of the cohort, their

treatment, transplantation and DSA monitoring protocols was produced in accordance

with and records from the UHCW transplant teams. Thirdly, when considering develop-

ing a usable DSA data set it is noted that the number of possible DSA allele types is vast

and substantial even for this cohort. Most cases have more than one DSA with the median

being two and the maximum being seven. Additionally, nearly half of cases have DSA

of mixed class (n = 49). Comparing like-for-like DSA allele, for example A1, would

have substantially diluted the available cohort for analysis as few cases are likely to share

that same feature. In light of this there are two main approaches used to analyse cases

with multiple DSA in the literature, with the first assessing the patient iDSA and the sec-

ond patient tDSA. With no clear consensus on the best approach all subsequent analysis

utilises the latter approach - where each daily DSA sample consists of the aggregate of

the individual allele. Analysis of the DSA sampling rate shows that a consistent monitor-

ing pattern was not achieved amongst cases and in fact a wide variety of sampling rates

is demonstrated. In the worst case only six data points are available in contrast to 52 for

the case with the most observations. The median number of observations however was 21

with most samples present within the first 60 days. These limitations in sample rate will

need be considered in later chapters for particular types of analysis. Lastly, DSA data

were recognised as having a coefficient of variation of approximately 25% and limited

reliability at both low and extremely high MFI values. Values at or below 500-3000 MFI

may be subject to high levels of noise and careful consideration should be used for dy-

namic analysis. Additionally, high levels of DSA may induce a saturation effect whereby

a nonlinear relationship is formed between the luminex measurement assay and the true

DSA concentration. Two such cases in the UHCW AiT cohort were found by analysing

diluted samples and have subsequently been removed from analysis. The last aim of the

chapter was to describe the cohort in terms of patient outcomes, i.e., ABMR and graft
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survival. For ABMR it was shown that several different definitions exist based on the

timing and onset speed, however in this cohort information was only available for early-

acute ABMR incidences. In total n = 45 cases experienced a rejection episode within the

first 30 days. All incidences were treated with a course of pulse methylprednisolone how-

ever only n = 31 received lymphodepleting agent and fewer still, n = 13, receiving DFPP

treatment. For graft failure, as considered by a patient reaching ESRD, a Kaplan-Meier

survival analysis was produced to show how survival probability in the cohort changes

over time. Notably, five cases are shown to fail within the first year and a total of n = 25

by the end of the study period.
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Chapter 3

Identifying associations with sur-

vival outcome

3.1 Introduction

Throughout the 20th century many advances in biomedical knowledge were identified by

statistical approaches with supporting evidence based on p-values and other accompany-

ing methods [74]. This line of work contributes to what Varga et al. [75] describes as

‘precision medicine’ and is used in an explanatory or associative role but distinctively not

towards detailed predictions for individuals - referred to as ‘individualised medicine’. As

the 21st century approached, various biomedical research communities sought progress

towards individualised medicine which would ultimately allow for treatments and pre-

ventative actions to be tailored to specific persons. The goal of this analysis was simple,

‘using previous knowledge, infer the future behaviour’. There is a critical difference

between the two approaches: associative analysis find statistical strengths between vari-

ables which further develop understanding of a phenomena, and prediction studies focus

on formulating predictions of future data based on previous examples. In this chapter

associative analysis is performed with the objective of identifying the key variables that

relate most closely with long term graft survival in the AiT data set. Variables here cor-

respond to both the static characteristic variables and the dynamic DSA levels.
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3.2 Aim and objectives

Kidney HLA AiT is an active area of research for which all contributing factors towards

graft survival are not known. In this chapter an associative analysis is completed for the

AiT kidney transplant cohort from UHCW as detailed in Chapter 2. Specifically, the

influence of DSA on graft outcome are to be investigated as this cohort benefits from a

high rate of DSA sampling - allowing for the influence of certain daily observations to be

investigated. Due to the high costs associated with frequent DSA monitoring, this work

aims to suggest an optimal measurement period which practices can utilise to gain the

most information on long term survival. The aim of this chapter is therefore summarised

by the following statement:

Aim 1: To identify the most informative DSA measurement period.

In order to identify the above aim the following objectives are established:

Obj. 1: Investigate and prepare a suitable set of independent variables for multi-

variable analysis.

Obj. 2: Investigate multivariable associations with long term graft survival.

Obj. 3: Investigate the association of daily DSA levels with long term graft sur-

vival.

The chapter is split into the following sections: survival model theory, data pre-processing,

univariate analysis and multivariate analysis. Lastly, the results, reliability and implica-

tions of these analysis are discussed prior to chapter conclusions.

3.3 Survival model theory

In this chapter static and dynamic variables are considered in a univariate and multivariate

analysis to identify associations with graft survival outcome. Given a continuous output

variable, time to failure, one may typically look to a set of regression techniques to es-

timate the influence of a particular variable. For time-to-event data however, such as in

graft survival, the task is additionally more complex due to the presence of censored data

points which prohibit the use of standard regression models for parameter inference (or

face model bias). In response, survival specific modelling approaches have been devel-
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oped such as the Cox hazard models which can accommodate for censored data in their

inference of variable coefficients. It should be noted that some alternative approaches are

also present in the literature, depending upon the study objective. The most commonly

seen alternative is to assess survival data at a fixed point in time e.g., at 5-years post start

of study - ultimately reducing the task to a classification problem. Either approach has

their advantages with the classification task lending itself towards easier interpretability

and allowing for a wider range of modelling approaches to be implemented [76], while

the survival task alternatively allows for a risk to be interpreted across time. Critically

for this work however, by analysing at a particular time point the classification task is

limited to use only the subset of the cohort which have either experienced an event or

have been observed up until the end of that period. Given the relatively small data set

(N=99) the effects of using yet smaller subsets can substantially reduce statistical power,

the effect on case numbers can be seen in Table 3.1. Opting for a survival based approach

here grants us the most cases for analysis while also allowing for consideration of time

dependent risks, i.e., if a certain variable is more important in analysis of risk early as

compared to later post-transplant.

3-year 5-year 10-year Survival
Cases 96 94 62 99

GF within period 9 15 22 -
Uncensored events - - - 25

Table 3.1: Comparison of case numbers when considering graft survival as either
a classification or survival task. Number of cases indicates the total number available
for analysis for the given task. GF indicates the number of graft failures which have
occurred up to the indicated period. Uncensored events are the number of known graft
failures within the study period.

With a survival framework shown to be the best approach for this analysis we can consider

a range of different models to perform the associative analysis from Cox based hazard

models up to survival decision trees or random forests. For this chapter the use of Cox

proportional hazards models are explored which are one of the most commonly used tools

in survival analysis. In the model patient survival expectation can only be proportional

to one another i.e., if twice as likely at a time point t then they will be twice as likely at

all other time points too. For some cases this may be limiting if a model is expected to

have non-linear terms with respect to time, however, in many cases this proportionality

presents the main advantage of the model - eliminating the need to make assumptions

about the type of baseline survival function that it follows: e.g., Weibull, exponential,
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etc. With few data points many baseline functions could be considered plausible and

therefore this model presents itself as a strong candidate for exploratory analysis.

3.3.1 Cox-proportional hazards model

The purpose of the model is to evaluate simultaneously the effect of several factors on

survival. In other words, it allows us to examine how specified factors influence the rate

of a particular event happening (e.g., infection, death) at a particular point in time. This

rate is commonly referred to as a hazard rate. Predictor variables (or factors) are usually

termed covariates. The Cox model is expressed by the hazard function, denoted by h(t)

which can be interpreted as the risk of dying at time t. The function can be estimated by,

h(t) = h0 (t)eβ T x (3.3.1.1)

where t represents the survival time, h(t) the hazard function, and h0 the baseline hazard.

Given p covariates, x = (x1,x2, · · · ,xp), there will be p coefficients β = (b1,b2, · · · ,bp)

denoting the corresponding effect size of each. The baseline hazard, h0, corresponds to

the value of the hazard if all the xi are equal to zero (e0 = 1). Most frequently of interest

are the quantities e(bi), otherwise referred to as the hazard ratio (HR). HR can exist in a

range between zero and infinity with a HR of one indicating that the particular covariate

has no effect on survival outcome. Values lower than one indicate a reduced hazard ratio

and therefore improved survival outcome, values higher than one vice versa.

Estimating covariate coefficients

As previously indicated one of the advantages of the Cox proportional hazards model is

in its ability to determine a solution for coefficients β without making any assumptions

for the baseline function, h0. The solution, discovered by Cox in the early 21st century,

can be found through maximising the partial likelihood (PL) of the hazard function [77].

Defining the PL first requires each observation, i, to have a defined feature vector xi, time

Ti, and event indicator Di. Following this the f unique failure times are then mapped into

increasing order indices, t1 < · · · < t f , where j (i) is the index of the sample failing at

time ti. If the cohort can be described with at most one event occurring at any given time,

then the PL for the Cox model can be expressed as,
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L(β ) =
f

∏
i=1

h0 (ti)eβ T x j(i)

∑ j∈Ri h0 (ti)eβ T x j
, (3.3.1.2)

where h0 can be eliminated from the equation,

L(β ) =
f

∏
i=1

eβ T x j(i)

∑ j∈Ri eβ T x j
. (3.3.1.3)

In the case where event times are tied the probability is less accurate (particularly so the

more tied events that are in the cohort). The Breslow variation of the PL function should

be used (not shown due to no tied events in the AiT cohort) [78].

Proportional hazards assumptions

All statistical models are based upon certain underlying assumptions and violation of

these assumptions can result in less valid or even invalid model results [79]. Different

model families each have their own specific assumptions which must be validated, in the

case of Cox proportional hazards models the most critical assumption to validate is that

of proportional hazards. The proportional hazards assumption implies that all individuals

share the same baseline hazard function but only differ in scaling factor, i.e., for individual

i with baseline hazard h(t) the individual hazard is,

hi(t) = aih(t), (3.3.1.4)

where ai is a scalar multiple that is invariant in time (ai(t) = ai). For any two individuals,

i and j, a consistent hazard ratio should be present for all instances in time t,

hi(t)
h j(t)

=
aih(t)
a jh(t)

=
ai

a j
. (3.3.1.5)

Where a is comprised of covariant coefficients eβ T x the proportional hazards assumption

can thus be expressed as, β̂ = β (t), where β̂ denotes the PL estimate of the coefficients.
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3.4 Pre-processing of data set

For biomedical applications, all predictors (or independent variables in associative works)

in a data set are ideally clinically relevant, comprehensible, measured reliably, without

missing data, and non-correlating - however this is seldom the case in practice [80]. In

this section on pre-processing each of these areas will be explored and considered against

the AiT data set. Additionally, more method specific pre-processing stages which are

required to complete or improve analysis for the Cox proportional hazards models are

considered, such as standardising and handling of categorical variables. Each variable

used will be defined clearly and outlined how they are handled in the analysis.

3.4.1 Clinical relevance

Clinical relevance, comprehensibility and measurement reliability are all typically han-

dled with the influence of background domain knowledge. An example of this could be

in the case of observing that an increased risk of heart failure is linked to grey hair and

baldness in a multi-variable analysis. From a clinical sense these associations are im-

plausible and likely the relationship would not be demonstrated reliably under different

sample populations. With adequate domain knowledge it is recognised that these findings

are incorrect and more reasonably associated with age and male sex who also happen to

demonstrate strong correlations with grey hair and baldness. In the AiT data set there are

146 characteristic variables and 211 DSA daily variables available. With only 99 cases

this data set could be defined as wide and short with many more variables than samples

for analysis. Regression type models are shown to perform poorly under short and wide

conditions, yielding inconsistent modelling results with poor confidence on variable vari-

ance. Careful considerations along with consultation with clinical experts has allowed for

the selection of just 15 characteristic variables for further analysis (highlighted in Table

3.3). Each of the DSA daily variables will be considered under their own merit.

3.4.2 Handling missing data

In many parametric based techniques, such as in the Cox proportional hazards model,

missing data will result in complete omission of an observation from the analysis as

a model output cannot be determined without complete data. For these cases imputa-

tion techniques are largely considered for predictive or associative analysis. Incomplete
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data is commonplace in biomedical data sets and several mechanisms have been devel-

oped to handle missing values where one of the most popular techniques is single value

imputation. In this technique missing values are predicted based upon other baseline

characteristics either through substitution via global mean (or mode for categorical data),

model-based imputation, or from the k-nearest neighbours. Each approach has its own

drawbacks which should be carefully considered for a data set. The model-based ap-

proach for example may perform poorly given a weakly predictive model which is often

the case in low data scenarios. Alternatively, substitution via mean does not consider

correlations between other variables and if enough data are missing may introduce bias if

imputed values are all at the mean. If a large enough proportion of data is missing from a

sample it is recommended to use a multiple imputation technique which creates multiple

versions of the data set with differently imputed values or otherwise resort to different

strategies which can work around missing data [81]. Additional assumptions about the

mechanism for which data is missing need also be considered and can be broken down

into the following three categories:

• missing completely at random (MCAR) – probability of missing data is indepen-

dent of all other variables, including the response being predicted. In this case there

are no systematic differences between missing and observed values.

• missing at random (MAR) – probability of missing data is independent of only

the response being predicted but may depend on other variables.

• missing not at random (MNAR) – probability of missing data is dependent on the

values of unobserved data.

Current strategies for missing data are only able to operate under MCAR and MAR con-

ditions as the probability of missing data is independent of the reason it is missing. In the

AiT data set relatively few data are missing (<1% of samples) and are considered MCAR

in nature, so a k-nearest neighbours approach is used to impute missing value. Within the

literature a value of k = 5 is commonly used along with the Euclidean distance measure

to identify sample similarity [82]. This measure is a special case of the Minkowski norm,

(
n

∑
i=1
|xi− yi|p

)1/p

, (3.4.2.1)

p = 2. Similarity is computed for each other set of observations and the k most similar
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observations are utilised to form the imputed value via assuming the mean of those ob-

servations. In our case only continuous variables had missing data and so the case for

developing a similarity measure given dichotomous, ordinal, and categorical variables is

not considered however has been explored in literature.

3.4.3 Variable encoding

Data types can come in a wide variety of forms such as: temporal, spatial, image, con-

tinuous, ordinal, or categorical, however due to the numerical nature of statistical and

machine learning (ML) techniques will typically be restructured to numeric format for

analysis. For biomedical data sets it is common to see both ordinal and categorical data

forms such as gender or integer counts. This data is often valuable and cannot simply

be disregarded in models which only accept numerical input. As a consequence non-

numerical data formats typically undergo a variable encoding pre-processing stage prior

to analysis. For ordinal data it may be reasonable to assume the data as continuous in

analysis, alternatively if there is suspected non-linearity, handling as categorical data may

better represent the underlying structure. For categorical data it is not possible to directly

convert categories to a numerical structure: e.g., category A→1, category B→2, etc due

to a non-monotonic nature. Instead to address the challenges a categorical variable with

n categories is replaced by n coded variables. We can represent this transformation in

the following example where we look at how the patient hazard rate is effected by re-

gion in which treatment takes place. First we define the survival model with the regional

categorical variable xR and the associated coefficient bR,

h(t) = h0(t)ebRxR, (3.4.3.1)

where the regions may belong to any of the following four categories,

Region = xR



North

South

East

West

(3.4.3.2)

Next, xR is substituted for the four coded variables xN ,xS,xE ,xW each with their own
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associated coefficients bN ,bS,bE ,bW ,

h(t) = h0(t)ebNxN+bSxS+bE xE+bW xW (3.4.3.3)

Several coding methods exist in the literature such as Dummy, Contrast and Helmert

coding however when prioritising associative analysis Dummy coding is considered su-

perior [83]. Each method changes the meaning of interpreting the coded coefficients. For

Dummy coding, each coefficient, bi corresponds to the difference in hazard ratio between

category i and the reference category and an example of such coding can be seen in Table

3.2.

Region xN xS xE xW

North 1 0 0 0
South 0 1 0 0
East 0 0 1 0
West 0 0 0 0

Table 3.2: Example of dummy variable introduction for categorical variable. Cat-
egorical variable of region has n = 4 outcomes which is replaced by n dummy variables
in the regression model. One category is considered as a reference, in this example West,
which is effectively removed from the model by encoding of zero. The influences of the
category West are considered in the baseline hazard function h0.

The effective removal of one category as a reference category (incorporated into the base-

line hazard function h0) avoids over-parameterisation from occurring during model infer-

ence - otherwise known as the dummy variable trap [84].

3.4.4 Standardising variables

Standardisation is the process of adjusting variables to exist on the same scale as one an-

other. This is often a critical process in regression based techniques which include inter-

action or polynomial terms as it reduces multi-collinearity between variables - improving

consistency in estimation of coefficients. Additionally it allows for direct comparison of

coefficients in order to estimate variable importance. In this case continuous variables

are transformed via z-score scaling which re-scales the original variable to have a mean

of zero and standard deviation of one. This is calculated mathematically using, z = x−x̄
σ

,

where z is the z-score transformed variable, x is the original variable, x̄ is the mean of x,

and σ is the standard deviation of x.
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3.4.5 Results following pre-processing

Following the pre-processing stages there are 17 variables (shown in Table 3.3) of which

two correspond to output i.e., follow-up time and state of censorship, and 15 are poten-

tially clinically relevant predictor variables. Of these predictor variables seven are cate-

gorical in nature and have undergone dummy coding with baseline category highlighted

in bold font. Missing data, which makes up <1% of data is imputed using k-nearest neigh-

bour (k=5) single value imputation and is indicated via values in the notation [*]. Factors

were considered based on the available information present within the data set and can

generally be related to one of the following seven categories: recipient details, recipi-

ent background, donor compatibility, pre-transplant (trx) status, pre-trx treatment, early

post-trx health, and recipient outcome. Recipient details correspond generally to the de-

mographic data available, such as age, weight, and gender. Generally speaking the cohort

consisted of mostly middle aged persons with a median weight below the UK average of

76 kg. Notably, a larger population of females are present in the cohort, occupying ap-

proximately 60% of cases. Recipient background looks at the history of a patients’ RRT

treatments with the total established renal failure (ERF) time corresponding to the combi-

nation of time spent on dialysis and time spent with previous donor transplantations. The

number of previous transplants, which ranges from 0-3 in this cohort, has been reduced

from an ordinal to categorical variable for the purposes of analysis. Donor compatibility

highlights factors which are typically considered by clinical teams when matching donor

to recipient. DDT for example are shown to have worse long term outcomes [11]. For

the purposes of the analysis patient DSA are investigated for the total number of mis-

matches between the donor and recipient, in addition to the class specific mismatches for

CI and CII. Prior to transplantation clinicians were primarily concerned with ensuring

that patients achieved a negative FC crossmatch status and would routinely administer

DFPP treatment leading up to transplantation in order to achieve this. The number of

cases which achieved this status, and the number of treatment sessions administered, are

shown in the pre-trx status and pre-trx treatment sections, respectively. The number of

DFPP sessions administered to patients to reduce DSA levels prior to transplantation is

shown in the pre-trx treatment section. Lastly, two factors are used to represent the early

post-transplant monitoring of patient health. Day-4 creatinine levels which were used to

determine if a post-transplant biopsy was conducted, and occurrence of ABMR which is

a factor commonly associated with poorer long term graft outcomes [65, 85].
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Variables Variable type All cases (N=99)
Recipient details
Age (years) Continuous 43 (34-50)
Weight (kg) Continuous 69 (61-77)[2]

Gender (m, f) Categorical 39, 60
Recipient background
Previous transplants (0, >0) Categorical 40, 59
Total ERF time (years) Continuous 11 (3-17)[1]

Dialysis time (years) Continuous 5 (2-8)[1]

Transplant time (years) Continuous 3 (0-10)[1]

Donor compatibility
Donor status (LDT, DDT) Categorical 88, 11
Number of DSA Discrete 2 (1-7)

Number of CI DSA Discrete 1 (0-4)
Number of CII DSA Discrete 1 (0-5)

Pre-trx status
Crossmatch (FC-, FC+, CDC+) Categorical 27, 52, 20
Pre-trx treatment
DFPP (n, y) Categorical 26, 73
Post-trx health
Day 4 creatinine (mg/dL) Continuous 144 (104-234)
Early acute rejection episode (n, y) Categorical 54, 45
Recipient outcome
Follow-up time (years) Continuous 8.7 (5.6-11.5)
Censored data (n, y) Categorical 25, 74

Table 3.3: Characteristic table of AiT kidney cohort (N=99). [*] indicates number
of values which have been imputed. Values for: continuous variables correspond to me-
dian (quartile range), categorical variables correspond to number per category. Baseline
categories for predictor variables are shown in bold.

3.5 Univariate analysis of predictor variables

In most systems predictor variables are often not univariate nor linearly related to output.

Despite this it is still often useful to explore univariate relationships between predictor

and output variables. Univariate relationships can be indicative of where to explore for

more complex nonlinear relations and offers broad context. Additionally, in cases which

demonstrate a short and wide data set, i.e., with many predictor variables and few sam-

ples, narrowing down the number of predictor variables is a key process to extract useful

information in the multivariable analysis. For these reasons a univariate analysis will be

conducted first on the previously detailed variable list from Table 3.3. The univariate

analysis is completed using the Cox proportional hazards model with a single variable in-

putted into the model at a time. For categorical models all encoded variables are included
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in the same model. Each variable will yield a coefficient or hazard ratio which indicates

the hazard relative to the baseline.

3.5.1 Testing model assumptions

Following the pre-processing stages, and prior to model regression, variables are first as-

sessed for their adherence to the underlying assumptions of the Cox proportional hazards

model which is primarily that of the proportional hazards assumption. As failure to com-

ply with this assumption may impact the validity of a given model, violations will need

to be addressed before analysis can be completed. There are primarily two approaches to

testing the proportional hazards assumption in the literature: visual inspection via plot-

ting survival curves or statistical analysis using methods such as the Schoenfeld residual

test [86]. Frequently both are utilised where initially the Schoenfeld test screens potential

violations before covariates are then visually inspected through survival plots to aid in

decision making [80].

Approaches to testing proportional hazards assumption

Schoenfeld residuals are typically calculated prior to a multivariable analysis individually

for each covariate. The coefficient β is calculated for each non-censored sample in an

alternative model which allows β to vary with time, given as β (t), these values are then

compared to the maximum likelihood (ML) estimate β̂ ,

β (t) = β̂ + εs(t), (3.5.1.1)

where εs(t) is the error term or Schoenfeld residual. A proportional hazard for non-

censored observation at time t will yield εs(t) = 0 and validating of the proportional

hazards assumption is achieved by plotting εs over time. An average or locally weighted

scatter-plot smoothing (LOESS) [87] line is usually plotted to inspect the data, however

a formal test (Schoenfeld F test [88]) has also been developed to determine if the data

deviates significantly from a flat line about β̂ . An additional step typically normalises

values about zero. Figure 3.1 shows an example of the scaled Schoenfeld residuals for

a particular variable ‘average calories consumed per meal’ from a lung cancer data set

(sourced from the R survival package [89], original data from [90]). The Schoenfeld

residuals deviate significantly from a flat line (p=0.043, Schoenfeld F test) and therefore

40



Chapter 3. Identifying associations with survival outcome

proportionality is not valid.

Figure 3.1: Schoenfeld residuals example. Schoenfeld residuals plotted against trans-
formed time for a univariate Cox proportional hazards model investigating ‘average
calories consumed per meal’ to lung cancer (data from [90]). Censored data (red) are
smoothed with a LOESS curve (solid black line) overlaid with 95% confidence interval
(dashed black line). Schoenfeld F test indicates non-proportional hazards at p<0.05.

Before assessing visually it is typically advantageous to first convert Kaplan-Meier sur-

vival function, S(t), into the cumulative hazard function H(t),

H(t) =−logeS(t), (3.5.1.2)

which is then used to plot the log(−log(S(t)) vs. log(t) (referred to as the log-log plot) to

determine hazard proportionality between two different data sets. This is advantageous

over using survival function to check for proportionality as it can also be used to estimate

the log hazard ratio by the vertical distances between two lines in the plot. Figure 3.2

shows three examples of how this plot may be presented for a two class data, i.e. patient

sex, male and female. For the proportional case (A) the log cumulative hazard is parallel

representing a constant hazard ratio across time. In (B) the hazard ratio is only partly

proportional and in (C) not at all, thus violating the assumption.

Results of testing proportionality assumption

To begin with each variable is checked for their adherence to the Cox proportionality

assumption via the Schoenfeld F-test as shown in Table 3.4. Significant variables (p-

value<0.05) are those which show time dependent variation, and therefore violate the

assumption. Only one variable, ‘Cross match status’, is shown to violate the assumption

with a p-value = 0.046 (highlighted in bold). Several options are available to handle such
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Figure 3.2: Example assessment of proportionality through log cumulative hazard
function vs. log of time. Categorical variables can be assessed for adherence to pro-
portionality via comparison of the log cumulative hazard function vs. log of time plot.
(A) Proportionality satisfied when plots are parallel. Separation between curves indicates
an estimate of log hazard ratio. (B) Proportionality is satisfied early on however hazard
ratios diverge (or converge) at a later period thus invalidating the assumption. (C) Hazard
ratios are not proportional as plots are not parallel thus invalidating the assumption.

a violation which have been explored in the literature, such as introducing a time depen-

dent coefficient in its place [91], or combining groups if it is appropriate in categorical

variables. In the case of crossmatch status it is reasonable to consider the combination

of FC- and FC+ groups into a new CDC- group, as a CDC+ test is generally considered

to be the worst outcome. This solution is then considered under the log cumulative haz-

ard function vs. log of time plot to assess for its viability, shown in Figure 3.3. When

observing the original grouping for crossmatch status the cause of the proportionality vi-

olation can be attributed to the crossing of FC+ group briefly over CDC+ group in the

mid time period. This shows a time dependent proportional behaviour with similar char-

acteristics early post transplant before diverging in later periods. The revised crossmatch

groups solve for this violation and present an avenue for crossmatch status to be reliably

included in the study.
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(a) Log-log plot of crossmatch groups.
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(b) Log-log plot of revised crossmatch groups.

Figure 3.3: Assessment of proportionality assumption among crossmatch status
groups. The log-log plot compares the log of the cumulative hazard function, or
log(−log(S(t))), against the log of time, log(t). Proportionality between groups is satis-
fied when plots are close to parallel.
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Variable Data type p-value
Patient age Continuous 0.32
Patient weight Continuous 0.31
Patient gender Categorical 0.20
Previous transplants Categorical 0.86
Time with ERF Continuous 0.67
Time on dialysis Continuous 0.56
Time transplanted Continuous 0.95
Donor type Categorical 0.14
Number of DSA Continuous 0.80
Number of Class I DSA Continuous 0.17
Number of Class II DSA Continuous 0.45
Cross match status Categorical 0.05
Pre-transplant DFPP Categorical 0.56
Creatinine level* Continuous 0.10
Early acute ABMR Categorical 0.44

Table 3.4: Schoenfeld individual test. The Schoenfeld individual test is performed to
identify any variables which violate the proportionality assumption, as given by a signif-
icant (i.e., p-value <0.05) test result. *Day four, post transplant.

3.5.2 Estimating univariate associations with graft outcome

Each variable has been shown to satisfy the Cox proportional hazard assumption of pro-

portionality suggesting that model estimates should be reliable for the sample population.

In this section each variable is considered in a Cox proportional hazards model indepen-

dently for their associations with graft survival and an estimate of both the HR and its

respective confidence interval is conducted. Estimation of variable confidence intervals

is typically completed in one of two ways: parametrically, whereby a sample distribu-

tion type is assumed, or non-parametrically whereby no assumptions on the underlying

distribution are made. In this case a non-parametric approach known as bootstrapping is

used due to limited knowledge about the underlying distributions of the parameters under

analysis. This section will first briefly cover bootstrap theory before its application in

Cox proportional hazards analysis.

Bootstrap theory

Bootstrapping is a non-parametric statistical approach which, in this case, has the aim

of creating an estimate for a population parameter. To do so, data is resampled multiple

times from the original sample, creating many simulated data sets. Each simulated set is

then used to independently form an estimate which, collectively, form a sampling distri-

bution of the parameter. From this distribution statistical inferences about the parameter
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can be made such as calculation of the standard errors, confidence intervals, and hypoth-

esis testing. An underlying assumption for the application of bootstrapping is that the

original sample is representative of the true sample distribution from which it is drawn

- meaning that it is unable to account for any unforeseen bias in the sampled data set.

Practically, bootstrapping serves to mimic the process of running multiple real experi-

ments and then aggregating their results to form an improved estimate. This process is

highlighted in Figure 3.4 for a simulated data set representing the height of a population

with a true distribution from which samples are drawn being represented by a normal

distribution θ ∼N (µ = 182,σ = 10). To estimate bootstrap confidence intervals a per-

centile bootstrap method is used [92]. This method observes the distribution of parameter

estimates - in the previous section this would be θ̄ - and then orders them from highest to

lowest. From this ordered set of bootstrap samples the confidence intervals are found by

first identifying the integer positions of the lower bound (LB) and upper bound (UB),

LB = bα ·N
2
e (3.5.2.1)

UB = bN− α ·N
2
e (3.5.2.2)

where α and N are model specific parameters with α representing the desired level of

significance (e.g., α = 0.05 for 95% [93]) and N representing the total number of boot-

strap samples. The lower and upper bounds of the confidence interval, θ̄LB and θ̄UB, can

then found by checking the corresponding θ values from the ordered set.

Results of univariate analysis

Results for univariate estimates HR have been conducted using a bootstrap analysis with

N = 2500 simulated data sets. Each data set consists of resampled data up to the original

size of the data set (i.e., 99 samples) with stratified sampling implemented to ensure fair

representation of both censored and uncensored classes in each set (i.e. 25 uncensored

and 74 censored samples, respectively). Figure 3.5 shows the results of this process for

all 15 considered variables. Due to standardisation of the data occurring within pre-

processing stages, interpretation of the continuous variable HR should be as follows - for

every one unit increase in standard deviation of the variable, patient HR will experience

a multiplier by the corresponding amount. Variables with the biggest mean difference
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Figure 3.4: Example of bootstrapping approach to provide a parameter estimate.
Left - A sample distribution of N samples (yellow histogram) is drawn from the true dis-
tribution (red outline, mean in red dashed line) representing the measurements of height,
θ , from a study population. Middle - To estimate the mean height, θ̄ , and confidence in-
terval a bootstrap resampling approach is used to produce b simulated data sets. For each
simulated set an estimate of the desired parameter, mean height θ , is computed. Right
- resampling estimates are combined to form a distribution of the parameter estimate θ̄ .
Bootstrap mean estimate of θ̄ shown in black dashed line, true θ̄ in red dashed line.

from a HR=1 are ordered first in Figure 3.5 indicating that they are likely to be of most

importance. Increased patient age, increased time on dialysis and negative CDC cross-

match status each demonstrate a reduced HR, by factors 0.66 (for every 12.0 years), 0.7

(for every 4.6 years), and 0.68, respectively. A high degree of confidence is shown in HR

estimates due to tight bootstrap distributions. For less significant variables: time on ERF,

no previous transplants, and early ABMR show slight associations with graft survival,

however confidence in these estimates is relatively weak. The remaining 9 variables

show little to no association with graft failure due to mean values centred close to HR=1.
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Figure 3.5: Histogram results of univariate Cox proportional hazards estimates for
associations with graft survival. In total 15 variables were considered for associations
analysis. Analysis was conducted via bootstrap resampling which simulated N = 2500
data sets for estimation of variable HR. Confidence intervals (95%) are highlighted in
blue. Dark blue line corresponds to the mean estimate, the value of which is indicated
in top right corner of each plot. A value of 1 indicates no impact on graft survival. σ

indicates the amount corresponding to a one unit increase in the associated variable.
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3.6 Multivariable analysis of predictor variables

From the univariate analysis it is clear that there are multiple factors that express associa-

tions with graft survival - indicating that their relationships should be considered under a

multivariate environment. For an associative task, a multivariate analysis is used to better

estimate variable coefficients under the condition of potentially confounding factors. A

clear example could be in the association of a populations weight from a set of measure-

ments of height or waist size. In either case the variable will be able to explain some

variance, however an improvement would be possible when accounting for the influence

of both variables in analysis. For biological applications there could be many variables

considered in analysis due to the complexity of a system that has evolved over thousands

of years. While it may be tempting to include large numbers of predictor variables this

can often lead to dilution of the true associations with outcome; leading to large standard

errors with wide confidence intervals in methods such as regression techniques [94]. In

this section the 15 variables assessed under univariate conditions are further investigated

for potential multivariate associations with graft survival. As the AiT data set could be

considered both wide, meaning it has large numbers of variables, and short, meaning

there are relatively few samples, it is practical to undergo a variable selection process

prior to final assessment of multivariate associations. There are two stages of variable

selection implemented, namely, an investigation of variable correlations and stability.

3.6.1 Variable correlations

An assumption of regression models is the lack of perfect multi-collinearity, or correla-

tion, between variables due to the consequence of unidentifiable variable coefficients. For

example, a model y = A ·X1 +B ·X2 where variables X1 and X2 are perfectly correlated,

i.e., X1 =X2 =X , results in model simplification to y= (A+B) ·X where neither values of

variables A and B can be known. This leads to a case where the model regression coeffi-

cients cannot be trusted. In the case of estimating variable associations, high correlations

should be removed from the data set - usually by removing one or the other variable in a

pair. This differs from predictive analysis where the desired outcome is not an accurate

estimate of variable coefficients. Variables in this case which are not perfectly correlated

may still offer further predictive value to a model and therefore should still be included.

To assess variable correlations a correllelogram is formed based on Pearson’s correlation
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coefficient calculated independently for each pair of variables in the data set. The theory

and results of this process are covered next.

Assessing variable correlations

The Pearson’s correlation coefficient [95] is an approach to measure the association be-

tween two variables on a continuous scale - lending itself useful in analysis of the 15

variables: 6 continuous, 6 binary (numerically encoded), and 3 (ordinal, handled as con-

tinuous). The Pearson’s correlation coefficient, ρ , is defined by the covariance between

two variables, X and Y , divided by the population standard deviations, σX and σY , of

those two variables,

ρ(X ,Y ) =
COV (X ,Y )

σX ,σY
, (3.6.1.1)

where for n samples in the data set, and population means µX , and µy,

COV (X ,Y ) =
n

∑
i=1

(Xi−µX)(Yi−µY )/(n−1). (3.6.1.2)

The values of ρ can occupy values between -1 and 1 which indicate the strength and

direction of the correlation between two variables [96]. A value of 1 indicates two per-

fectly correlated variables, a value of -1 indicates two variables with a perfect negative

correlation, and a value of 0 indicates that there is no correlation between variables at all.

Results of variable correlation analysis

Figure 3.6 illustrates the resulting correllelogram produced via computing the Pearson’s

population correlation coefficient for each pair of variables. The figure can be interpretted

based on both marker size and colour. The size of the marker corresponds to the magni-

tude of the correlation coefficient and the colour to its direction, i.e., red being negative,

and blue being positive correlation. Large correlations then, are found between certain

variables which come as no surprise. Time on ERF (a), time with transplant (b), and time

on dialysis (c) can, for example, be related to one another by the following expression

a = b+ c - and show corresponding correlations. Additionally, a negative correlation is

also formed between having no previous transplants and time with transplants/ERF which

carry similar information. Other variables that have strong associations are the number of
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DSA groups: total, CI, and CII - which similarly have an a = b+ c relationship. Several

weak correlations are also present in the data, however are not strong enough to require

action. Patient age, gender and crossmatch status for example show weak correlations

with almost all variables. To handle multi-collinearity conflicts the results from the uni-

variate analysis is used to assist in eliminating highly correlated variables. From this,

only the most significant variables are sought to be included in further multivariate anal-

ysis. Time on dialysis, previous transplants (=none), and each of CI and CII DSA were

selected to remain in the analysis based on this premise. Variables: time on ERF, time

with transplant, and total number of DSA have been removed due to high correlations.

Figure 3.6: Correlation plot of univariate variables. Each variable is assessed for
correlations via the Pearson’s correlation coefficient. Variables are standardised and cate-
gorical variables are represented in dummy variable form. Each correlation is denoted by
two features: size and colour. The size corresponds to the absolute correlation coefficient,
and the colour indicates if the correlation is positive (blue) or negative (red).

3.6.2 Variable selection

After assessing and removing variables with high correlations a variable selection stage is

conducted. Variable selection is a process whereby a larger number of candidate variables

are reduced to a smaller subset which is considered for final inclusion in an associative
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model. There are two primary reasons for doing so. Firstly, it aids in the selection of vari-

ables which are related to outcome, while simultaneously excluding those which are not

- making the model more accurate. Secondly, it helps to select a model with the fewest

number of variables by eliminating irrelevant variables that would otherwise decrease

precision and increase model complexity [97]. Additionally, from a practical point of

view, including a large number of predictor variables can often lead to dilutions of their

true associations with outcome; leading to large standard errors with wide confidence

intervals [94]. Simpler models are typically easier to generalise, interpret and apply in

practice, however, one must be cautious to ensure that important variables are not ex-

cluded. In general there is no set rule for the number of variables to include in a model

as it can depend on several factors. A number of ‘traditional’ rules commonly applied

in clinical modelling strategy (e.g., for logistic regression and survival models) typically

place this number between 10-15 events per variable [98], however in some cases this is

higher or lower [97]. With N = 99 cases in the AiT cohort we could reasonably expect a

multivariable model to support between 6-10 variables and maintain accuracy.

Variable selection techniques

There are many variable selection techniques available within the literature with two of

the most common techniques being forwards and backwards selection. In these selection

approaches variables first undergo a univariate analysis whereby each variable is fit inde-

pendently of one another. Variables which show significant association with the output

(typically p < 0.25) or variables which are already demonstrated/known to be clinically

relevant are to be considered for further analysis. Optimising the variables within a model

is then completed iteratively for both types of model. In forwards selection a model be-

gins with no variables. Variables are then systematically tested to identify significant

contribution to the model outcome. The most significant variable is added and the pro-

cess repeated until variables no longer contribute a significant difference. For backwards

selection this process is completed in reverse and begins with a full model including all

variables. The least significant variables are then systematically removed until all re-

maining variables are considered to have significant contribution. The approaches have

proved popular and effective in biomedical literature [99], with additional variations such

as step-wise elimination (which includes both forwards and backwards steps), and all-

possible subset selection (brute force analysis of all combinations) also used [97]. In

50



Chapter 3. Identifying associations with survival outcome

recent studies the advantages of using penalised regression techniques instead to perform

variable selection have been investigated and are shown to be a worthy competitor or

even superior to iterative selection techniques [100]. These approaches generally yield

less variable and yet equally interpretable models, particularly in tasks with few samples

as in the AiT cohort. For these reasons a regularised technique known as least absolute

shrinkage and selection operator (LASSO) is used for variable selection in this chapter

and is explained in the following section.

LASSO regularisation

The Cox proportional hazards model is often an effective choice for associative analysis

due to its coefficients being interpreted in terms of a hazards ratio. With a high num-

ber of variables however the coefficients become unreliable. This is caused due to an

attempt to invert a matrix which becomes singular due to correlations between features.

Mathematically the problem can be avoided by introducing an l1 penalty term on the co-

efficients, a process otherwise known as LASSO regularisation. LASSO regularisation

differs from other forms of regularisation in that variable coefficients can be reduced to

zero - effectively eliminating them from the model. This is in contrast to types such as

ridge and elastic-net which may only shrink values towards zero. LASSO regularisation

can be expressed by the optimisation problem for β ,

β̂ = argmax
β

(log(L(β ))−α

p

∑
j=1
|β j|), (3.6.2.1)

where β̂ is the optimal set of β found by maximising the function, and α is a scalar value

which implicitly determines the number of model features. The size of alpha influences

the regression coefficients with a larger α corresponding to a larger penalty term and a

value of α = 0 corresponding to standard Cox regression analysis with no penalty. For

LASSO variable selection approaches it is typical to optimise a model based on varying

the α value. As α increases parameters are shrunk closer to zero, and the least influen-

tial parameters will be systematically eliminated from the model. Figure 3.7 shows this

process for the investigated data set. A range of α’s are considered from 10−3, in which

all 12 variables are still contained in the model, through to a value approaching 1 where

by only a single variable remains in the model. From here selecting of an appropriate α

is then dependent on maximising of a user specified quantity, in this case the Harrell’s
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C-index.

Figure 3.7: LASSO regularisation for variable selection. By varying α the magnitude
of the l1 penalty term is increased, systematically reducing variable coefficients to zero.
*Only a subset (7/12) variables are labelled for clarity.

Harrell’s C-index

Harrell’s C-index (also known as the concordance index) is a goodness of fit measure for

models which produce risk scores - such as the hazard ratio in Cox proportional hazards

models. It is commonly used to evaluate risk in survival analysis where data may be

censored and can be thought of as a generalisation of the receiver operating characteristic

(ROC) for survival data. The intuition is as follows: for patient, i, assign risk score ηi

from the risk model. If the risk model is good then patients who have shorter time to

event, T , will have higher risk scores and vice versa. By considering any two patients it

can then be inferred that the patient with the higher risk score should have had a shorter

time to event. The C-index can then be computed by observing the risk scores and time-

to-event for all patient pairs. The logic for Harrell’s C-index can be expressed succinctly

through the following equation for censored data (as described in [101]),

c =
∑i, j,i6= j I(ηi < η j) · I(Ti > Tj) ·∆ j

∑i, j,i6= j I(Ti > Tj) ·∆ j
(3.6.2.2)

where ∆i is the state of censoring for observation i, and I(·) is the indicator function

mapping logic statements true = 1 and false = 0. The sum ∑i, j,i 6= j is carried out for all

pairs i and j except i = j. The C-index can form values between zero and one with a

value of 0.5 indicating random chance of determining which patient will live longer (i.e.

no better than a coin flip) and a value of 1 being a perfect score. To increase confidence in

the C-index estimation a stratified k-fold cross-validation scheme is implemented on the
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data set. Cross-validation is an approach used to reduce over-fitting and serves to improve

the generalisability of the model to new data. The cross-validation process, illustrated in

Figure 3.8, requires partitioning of a data set into k approximately equal sized chunks.

Chunks will then iteratively represent the testing set for which the desired quantities,

i.e., concordance, are calculated. The rest of the data set take place of the training set

for which model inference is conducted upon. Ultimately, k estimates of the calculated

quantities are produced which can be used to determine a mean and confidence interval

for further analysis. By lastly stratifying the partitioning process, chunks are ensured to

have a fair representation of output classes (i.e, censored and not-censored data).

Figure 3.8: k-fold cross-validation scheme. For a k-fold partition scheme there will
be k iterations through the data set. On each iteration a new partition of the data will
represent the testing set, and all others will represent the training set. For each iteration
the training set will be used to infer model parameters while the testing set will be used
to calculate desired output quantities.

For each value of alpha investigated in LASSO regularisation analysis (Figure 3.7) the

stratified 5-fold cross validation of Harrell’s C-index is calculated (illustrated in Figure

3.9). The mean value of the C-index is shown in dark blue with the minimum and max-

imum values indicated by the highlighted region. In orange, the maximum C-index is

found at a value of α = 0.154, showing a distinctive peak with tighter confidence inter-

vals than other values. From this it is found that crossmatch status, patient age, and time

on dialysis are the variables which should be selected with all other variables discarded

from the model.

3.6.3 Stability of variable selection solution

An important, and often ignored, element of data-driven variable selection techniques is

that of model stability - this is to say the robustness of a given model to small sampling
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Figure 3.9: Cross-validated Harrell’s C-index results. To select an optimal value of α

for the LASSO regularised Cox proportional hazards model (Figure 3.7) the concordance
index is maximised. Here the mean concordance-index is shown in dark blue, minimum
and maximum boundaries are shown in blue, and α at the maximum concordance index
represented by the orange line.

perturbations in the data set [102]. Irrespective of the given variable selection procedure,

the goal of the associative analysis is to produce one specific model out of a large set

of possible candidate models. In many cases however, it is likely for there to be several

competing models which fit the data similarly well and may ultimately be chosen depen-

dent on the characteristics of but a few of observations.This is to say that by only slightly

altering the data a different model may be selected. The frequency at which variables

may be selected then can be thought of probabilistically, with variables that demonstrate

a stronger effect on outcome are selected at a higher rate, and those with weaker to no

effect may be present only by a matter of chance [103, 104]. In this section a bootstrap

analysis of the variable selection procedure (Section 3.6.2) is conducted where inclusion

frequencies of specific variables, and particular models are investigated.

Bootstrap stability analysis methodology

This bootstrapping methodology builds upon the existing foundations established in Sec-

tion 3.5.2, which used the approach to estimate parameter the coefficient mean and distri-

bution based upon a defined univariate model. The basic idea for using bootstrap analysis

to assess stability is to draw n bootstrap samples from the original data set and perform

variable selection independently for each one [97]. The important quantities which are

desired are (i) the bootstrap inclusion frequencies of variables, (ii) the bootstrap inclu-

sion frequencies of particular model configurations. Selection of an appropriate model
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can then be based off of a pre-defined cut-off value for inclusion frequencies. For the par-

ticular task of assessing stability in resampling based model selection approaches, it has

been shown that a subsample of the data set without replacement performs superior to a

regular bootstrap sample in the task of identifying uninformative variables (i.e., produces

low inclusion rate) [105]. In this case a 90% subsampling procedure is performed without

replacement n = 5000 times and the results are aggregated. The final model evaluation

will be based on variables which appear in selected models at greater than 50% inclusion

rate.

Results of multi-variable associations

The results of the bootstrap stability analysis are shown in Table 3.5, indicating both the

variable inclusion frequency, rate (%), and the model inclusion frequency for the top three

most commonly occurring models, model factors. In total there were 16 combinations of

the variables which occurred among the 5000 bootstrap samples, however despite this the

top tree models occupied 52% of the total occurrence rate, and the top model occurred

in 35% of samples. Within these top three models exist combinations of only four vari-

ables: crossmatch status, time on dialysis, patient age, and early ABMR - with only early

ABMR excluded of these for the top model. By considering the variable inclusion rate

crossmatch status, time on dialysis, and patient age are demonstrated as by far the most

frequently occurring factors (≥ 87%). A second set of less frequently occurring, but po-

tentially informative, variables includes: early ABMR, previous transplants, and donor

type. All remaining variables occupy low to no inclusion rates across any of the consid-

ered bootstrap variations. Only crossmatch status occurred in all 100% of models. In

line with the model selection criteria previously established, only variables with at least

a 50% inclusion rate will be considered going forwards in analysis.

The final results of the multivariate associations can then be formulated based on a Cox

proportional hazards model fitted from variables: crossmatch status, time on dialysis,

patient age. Model coefficient estimates and confidence intervals are produced based

on the bootstrap methodology outlined in the same approach as in the univariate case

(section 3.5.2). As compared to the univariate results patient age and crossmatch status

demonstrate similar mean HR values - with crossmatch status only slightly deviating from

0.68 to 0.67. Time on dialysis shows the largest deviation from the univariate model with

mean HR changing from 0.70 to 0.61.
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Variable Rate (%) Model factors
Cross match status (CDC-) 100 X X X
Time on dialysis 90 X X X
Patient age 87 X X
Early ABMR (yes) 37 X X
Previous trx (no) 33
Donor type (living) 25
Creatine level* 3
Patient weight 0
Patient gender (male) 0
Number of Class I DSA 0
Number of Class II DSA 0
Pre-trx DFPP (yes) 0
Occurrence (%) 35 16 11

Table 3.5: Results of multivariable stability analysis. Associations between factors
and graft survival are assessed under multivariable conditions using a Cox proportional
hazards model. To eliminate uninformative variables a variable selection approach known
as LASSO is applied. This analysis assesses the stability of those variable selections by
repeating the analysis under bootstrap conditions (n = 5000 simulations). The results of
the analysis then shows (A) the frequency in which variables appear (Rate (%)), and (B)
the three most commonly occurring models (Model factors). *Day four, post transplant.

Figure 3.10: Histogram results of multivariate Cox proportional hazards estimates
for associations with graft survival. Analysis was conducted via bootstrap resampling
which simulated N = 2500 data sets for estimation of variable HR. Confidence intervals
(95%) are highlighted in blue. Dark blue line corresponds to the mean estimate (indicated
in top right corner of each plot). HR=1 indicates no impact on graft survival. σ indicates
the amount corresponding to a one unit increase in the associated variable.
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3.7 Exploratory cross-sectional analysis

The second aim of this chapter was to identify the most informative single day DSA

observation for graft survival. In this section a multivariate analysis is performed inde-

pendently for each DSA daily sample set surrounding transplantation - referred to collec-

tively as a cross-sectional analysis. For each multivariate model the previously identified

informative characteristics of: patient age, time on dialysis, and crossmatch status were

introduced into a Cox proportional hazards model alongside the specific DSA sample set

for a given day. DSA associations with graft survival were then assessed alongside the

model concordance index performance. Prior to the modelling stage DSA responses were

first subject to pre-processing to maximise on the available data for analysis.

Pre-processing of DSA for cross-sectional analysis

From Chapter 2 Section 2.4.2, it is shown that DSA monitoring protocols in the UHCW

presented a high sampling frequency within the first few months. Despite this the spe-

cific monitoring periods varied substantially patient to patient resulting in relatively low

sample numbers for each day. In many cases however, data is surrounded closely by sam-

ples that could be used to estimate non-measured daily data under the assumption that

they closely represent the dynamic behaviour of the DSA response. To synthesise these

non-measured DSA samples a linear interpolation procedure was implemented across the

cohort - an example of which is shown in Figure 3.11. In each case data was never extrap-

olated and, due to the differing lengths of each observed response, would result in a data

set which gradually decreases in size towards the extremes of the explored time period.
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Figure 3.11: Example of DSA response with missing data filled by linear interpola-
tion. Observed data can be seen to be most frequent in the earlier periods post transplan-
tation and less frequent the further from transplantation.
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Results of cross-sectional analysis

Each day surrounding transplantation was considered for analysis from ten days prior to

transplantation up to 200 days post-transplant. From this data set only the cross-sectional

models which presented at least 10 non-censored data would be further analysed - thus

resulting in an explored period of 96 days from 7 days prior to transplantation up to

88 days post-transplantation. For each model confidence intervals on desired quantities

such as parameter HR and C-index were calculated via bootstrap resampling approach

(discussed in section 3.5.2, n= 2500). The results are highlighted in Figure 3.12 via three

sub-figures: (A) which shows the DSA level (unit 1000 MFI) HR and confidence intervals

(95%), (B) the HR significance (i.e., the proportion of bootstrap samples which satisfy

HR> 1), and (C) the available number of samples considered for each cross-sectional

model in terms of total cases (black markers), censored cases (blue markers), and non-

censored cases (red markers).

Figure 3.12: Cross sectional analysis of hazard ratios. Results for each given day cor-
respond to an independent multivariate analysis of DSA levels using a Cox-proportional
hazards model. (A) Shows the HR median and confidence intervals (95%) corresponding
to an increase in DSA by 1000 MFI. (B) Coefficients are significant if null hypothesis
is rejected, i.e., HR=1. Significance is deemed at a p-value < 0.05 and is shown in blue
markers. Non-significance is shown in red. (C) Shows the number of samples available.
In black the total sample size, in blue the censored data, in red the uncensored data. All
variables satisfied Schoenfeld individual test.

58



Chapter 3. Identifying associations with survival outcome

Each of the sub-figures can be assessed independently:

(A) The median DSA HR (red and blue markers) demonstrates positive values across

the explored time period. The highest median HR are found in the periods leading

up to transplantation, immediately following, and in the later stages approximately

>65 days post transplant. The highest recorded HR median is on day 88 at 1.16. In

contrast the period which demonstrates the lowest HR median begins at 5 days post

transplant and extends up until day 30 after which median HR begins to slowly rise.

The lowest recorded HR median is found on day 6 post-transplant with a value of

1.01. Confidence in the HR estimates, visualised as coloured bands, is also shown

to change throughout the analysis period. From the pre-transplant period through

to 5 days post-transplant, DSA HR confidence interval size varies from 0.2-0.3 but

generally shows an increasing trend up until day 5 post transplant. From day 6 until

approximately day 30 confidence intervals are at their smallest around 0.1 before

beginning another phase of gradually increasing interval size until the end of the

study. Day 88 - the last day of analysis - has the widest confidence interval at 0.38.

(B) The significance of the DSA HR bootstrap confidence intervals (95%), visualised

in (A) as bands, is shown relative to the significance threshold p-value of 0.05.

A HR is significant if the null hypothesis is rejected, i.e., HR=1. Early DSA HR

estimates are significant during the pre-transplant period where lower bound of

confidence intervals are demonstrated to exceed HR of 1. Following transplantation

significance in these estimates is lost with up to 25% of values shown below 1 on the

least significant result - day 5. From day 6 onwards the significance of daily DSA

HR estimates increases gradually, becoming significant again for the first instance

on day 41 with the last instance of non-significance on day 50. Significance peaks

at day 71 with a p-value of <0.001. For clarity, significant p-values (< 0.05) are

colour coded blue and non-significant p-values in red (mapped similarly onto (A)).

(C) The sample size available for model regression is dependent on available DSA

data for each patient on the day of analysis. In the early pre-transplant period the

first observation for a given patient varied and therefore sample size began low at

N = 48 before increasing and reaching maximum study size of N = 99 on day 5.

The minimum number of samples reached by the end of the study was N = 52 on

day 88. A minimum of 10 non-censored samples is present across all models.
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3.8 Discussion

HLA-specific DSA monitoring following kidney transplantation can be a useful surrogate

marker for immune response and associated outcomes and, as a result, most transplanting

centres and national guidelines suggest such monitoring [25]. Specific monitoring proto-

col however is not defined and varies with uncertainty on the most useful time-points and

duration of such monitoring around transplantation. In practice this currently translates to

centre specific protocol due to little guidance available on specific and most informative

monitoring periods [25]. Obtaining a DSA MFI sample is financially costly and imposes

an additional burden on the patient. Therefore, knowledge of most informative monitor-

ing period would be advantageous in clinical practice and allow for targeted application.

In this study, there was access to a high-frequency monitoring of HLA-specific DSA

in the early post transplant period allowing for a detailed exploration of the association

of daily DSA MFI values with long term graft outcome. This data set (N = 99 cases),

provided by UHCW (Chapter 2), has presented a unique opportunity to observe these

associations and how they may differ on a daily level and for a wide period from 7 days

prior to transplantation up to 88 days following. Analysis was conducted in two primary

stages. The first, an investigation of associations with long term graft survival, sought to

identify relationships between graft survival and variables with historical and clinical sig-

nificance. Associations between variables and graft survival were established based upon

a set of multivariate Cox proportional hazard models which accounted for the influence of

multiple confounding factors. A set of 15 variables were considered (Table 3.3) initially

under univariate and subsequently multivariate conditions. The second stage of analysis

looked to extract only those variables shown to demonstrate significant associations with

graft survival and then use them as a basis for developing a set of multivariable models -

one for each DSA day analysis.

Of the 15 variables, 6 were considered to demonstrate associations under a univariate

analysis: patient age, time on dialysis, crossmatch status, time on ERF, occurrence of

previous transplant, and occurrence of early ABMR - however confidence was weak in

the latter three. Under multivariate conditions the most informative variables were found

through a LASSO variable selection approach. Through this approach an l1 penalty term

on the model coefficients acts as a parameter to tune in order to maximise the cross-

validated Harrell’s C-index. As the penalty term increases less influential factors are
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eliminated from the model. Furthermore modelling results were validated through a boot-

strapping approach which sought to investigate the stability of variable selection. Data

were resampled N = 5000 times and model selection repeated. Of these final models three

variables: crossmatch status, time on dialysis, and patient age, were each present in most

models (between 87-100%). They were additionally together the components of the most

commonly forming model which occurred in 35% of resampled variable selection results.

Long term graft survival following HLAi kidney transplantation is a previously explored

multivariate problem, and individually each of these variables are known factors. Results

in this chapter corroborate findings in literature, such as CDC+ crossmatch status at the

time of transplantation [33, 48, 106], greater time on dialysis [107], and younger patient

age [15, 38, 108], each being associated with an increased risk of long term graft failure.

Certain other variables such as gender [15, 36, 38], DSA class type [26], and number of

DSA [11] have demonstrated significance in other studies but not in this cohort. Early

ABMR demonstrated some degree of association with long term graft failure in both the

univariate and multivariate analysis - however not close to the extent of the top three se-

lected variables. It ultimately only appeared in 37% of models during bootstrap analysis.

Some studies have found strong associations with early ABMR, often associating it with

recurrent rejection, chronic ABMR and poor graft survival [65, 85]. Such differences in

results may be explained due to the smaller sample size of the UHCW data set and the

elimination of less influential variables during regularisation. Additionally, the smaller

sample size could have resulted in the under-representation of certain classes - such as in

gender where male representation is lower at only 39%.

For the second phase of analysis a cross-sectional approach was used to identify associ-

ations between each set of daily DSA samples and graft outcome. On each day a sep-

arate multivariate Cox proportional hazards model was developed using the previously

identified significant variables (crossmatch status, time on dialysis, and age) in combina-

tion with the DSA data representing the day in question. From this, four periods were

identified with different characteristics: pre-transplant (up to 1 week prior), early post

transplant (up to 5 days post), weeks 2 to 6, and weeks 6 to 12 (end of study). The first

period, pre-transplant, shows strong association with graft outcome and demonstrates a

median HR of 1.1 for every increase in DSA level. This finding is in line with other

research which have also demonstrated that higher total DSA pre-transplant was associ-

ated with long term outcomes [109–112]. In the early period following transplantation
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DSA median HR remain similar to pre-transplant levels, however confidence in these

values decreases to the point of non-significance. Low confidence in this early period is

an interesting observation. Higgins et al. for example [26], along with others [64, 113],

have previously discussed the observation of subdued DSA dynamics in this period be-

fore and suggested that it may potentially arise due to adsorption of HLA antibodies onto

the kidney allograft. The relative importance of measuring in DSA in this region may

be influenced by the inability of the SAB tool to observe absorbed levels of DSA on the

kidney itself - resulting in low MFI readings. The period between weeks 2 and 6 offers

another striking result where DSA MFI observations here offer the weakest associations

with long term graft outcome. Furthermore they offer the tightest HR confidence inter-

val across the investigated period. Weak/ no association was unexpected and occurs in

a period of known dynamic activity [26]. This may indicate that these early dynamics

are not associated with long term outcome or may be a result of other factors such as

dynamics occurring at different rates between patients. The penultimate analysis period

at 6-12 weeks showed a trend of gradually increasing median DSA HR - implying that

DSA levels were growing more strongly associated with graft outcome the further from

time of transplant. Like our study, others reported these same longer term findings [110,

112, 114], however these were defined based on a single time-point at month-3 follow-

ing transplantation. In all cases median DSA HR were positive, however significance

was present only in the pre-transplant period and in weeks 6-12 up until the study period

ended.

Throughout this analysis the dynamic complexity of DSA levels following transplantation

is somewhat mitigated by assessment of each day in isolation and there is undoubtedly

more complex activity not captured in this analysis. Despite this the objective of the

chapter was to identify the most informative single DSA measurement for long term graft

outcome. Recommendations of this work would place this day on either 2 days prior to

transplantation - where it appears critical that DSA values are low for improved chance of

long term survival - or, day 70, as a suitable monitoring point for patient follow up. Due

to the aforementioned static nature of this analysis, yet stronger recommendations could

come as a result of dynamic modelling, which may allow for more in depth understanding

of time-dependent features in the DSA response: such as the period for which DSA

levels are subdued following transplant, and time or presence of peak DSA. These may

better yet equip clinicians in prognosis of graft outcome or aid in the understanding of
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underlying physiological processes governing DSA response.

3.9 Conclusions

In this chapter a selection of potentially informative variables relating the UHCW AiT

kidney data set (N = 99 cases) was formed and subsequently investigated for their rela-

tionship to graft survival. Final associations between variables and graft survival were

established based upon a set of multivariate Cox proportional hazard models which ac-

counted for the influence of multiple confounding factors. To achieve the primary aim

of the chapter which was to identify the most informative DSA measurement period, the

following three objectives were fulfilled:

1. Investigate and prepare a suitable set of independent variables for multivari-

able analysis. In multivariable analysis, biomedical data needs to be clinically

relevant, without missing data and non-correlating [80]. For associations with long

term graft outcome a set of 15 potentially informative variables were identified

based on clinical literature. A small amount (< 1%) of missing data were synthe-

sized via k-nearest neighbour single value imputation, and for strongly correlating

variables the weakest association with graft outcome were removed.

2. Investigate multivariable associations with long term graft survival. In total 12

variables were available for multivariable analysis following data pre-processing.

For a data set with a relatively low number of observations, and large number of

independent variables, a multivariate regression analysis may lead to a result with

low precision. To address this limitation in the UHCW cohort a variable selection

approach was used to remove variables of least importance. This was achieved via

a bootstrapped LASSO regularisation technique which assessed consistency of the

selected variables through a analysis of random perturbations in the data set.

3. Investigate the association of daily DSA levels with long term graft survival.

Following multivariable analysis 3 variables were found to be significantly asso-

ciated with long term graft outcome: patient age, crossmatch status, and time on

dialysis. For daily DSA associations a new multivariate model was inferred for

each day surrounding transplantation from 7 days prior to 88 days post (limited

only by data available). Each model included the three significant variables in ad-
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dition to the DSA data for a given day.

The results of DSA daily associations analysis indicate four distinct areas in the early

period surrounding kidney AiT:

1. Pre-transplant (>1 week prior). Significant association with graft outcome. Higher

DSA levels indicative of worse graft outcome.

2. Immediately post transplant (<5 days post). Not-significant with graft outcome.

Low confidence in DSA HR interval.

3. Early post transplant (weeks 2-6). Not-significant with graft outcome. High

confidence in DSA HR interval.

4. Medium term (Weeks 6-12). Significant association with graft outcome. Higher

DSA levels indicative of worse graft outcome.

Two periods: pre-transplant, and medium term, demonstrate significant associations with

graft outcome - with both also showing that higher DSA levels in their respective periods

are indicative of worse outcome. Recommendations of this work would suggest that if

few observations are to be made due to financial considerations, a monitoring protocol of

two DSA samples on days -2 and 70 are likely to be most informative of long term graft

outcome. Patients in this study were transplanted at a single University Hospital from

the UK and the results in this study may therefore reflect specific immunosuppressive

protocol, management, monitoring protocols, and case selections - potentially limiting

generalisability to wider patient groups. For future work results should be corroborated

via a multi-centre study, a larger number of cases may also present the opportunity to

develop predictive models which could be used to assist in patient specific management.
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Grouping of post transplant DSA

dynamic responses

4.1 Introduction

DSA monitoring is already prevalent in clinical practice as a monitoring tool for patient

health and has had several studies demonstrate this link for both pre- and post- trans-

plant periods [36–39]. Despite this however, there is not yet a complete understanding

of how antibodies contribute to these outcomes. In this Chapter a novel analysis is con-

ducted which utilises the high number of DSA samples available in the HLAi kidney

transplant cohort to investigate for the different dynamic response types that have been

demonstrated. It is hypothesised that this type of analysis may benefit clinical decision

making while also providing further value in guiding future DSA monitoring protocol.

4.2 Aim and objectives

By observing the DSA data set it is apparent that several different response types are

present in the cohort - however the number of response types and their distinctive features

are not known. In this chapter the primary aim is to identify both the number of DSA

response types and their respective features in addition to relating them to long term

graft outcomes. The DSA responses in the cohort are complex and numerous providing

a substantial challenge for manual grouping efforts. As such, an unsupervised machine

learning technique known as clustering is to be utilised, reducing the influence of human

bias in analysis and allowing for reproducible results. The aims of the chapter are then
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outlined as follows:

Aim 1: To identify, using an unsupervised clustering technique, the different post-

transplant DSA response types present in the cohort.

Aim 2: To determine the dynamic response type of each case in the cohort.

Aim 3: To identify the associations between post-transplant DSA responses type

and long term graft outcome.

In most time series clustering approaches data must be uniformly distributed and evenly

lengthened which presented some challenges for the DSA clustering task. Most notably,

a compromise was made between the length of time series and the amount of cases which

could be included in analysis. To address this limitation a secondary stage was introduced

to label the shorter DSA responses through use of an early time series classification ap-

proach. Therefore, to satisfy the above aims the following objectives are established:

Obj. 1: Identify an ideal time series clustering approach for the DSA data set.

Obj. 2: Determine ideal DSA response length for time series cluster analysis.

Obj. 3: Implement clustering, assess the fitness and stability of model solution.

Obj. 4: Implement early time series classification on short time series in the cohort.

Obj. 5: Label DSA response type of each case in the cohort.

Obj. 6: Associate dynamic response type with long term graft outcome.

In Section 4.3 background information on similarity measures, clustering methods and

cluster validation are discussed which provide the relevant framework to approach a time

series clustering task. In Section 4.4 the clustering methodology for the DSA response is

developed in addition to discussing pre-processing of the cohort for analysis. Section 4.5

provides the results of the clustering analysis on the DSA responses data set in addition to

validating the solution via fitness and stability assessments. Section 4.6 next classifies the

remaining shorter DSA responses into the determined response groups. Penultimately,

Section 4.7 relates the now labelled DSA responses with graft survival before results are

discussed are further discussed in section 4.8 and then summarised in section 4.9.
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4.3 Background

In many fields of research it is often useful to structure unlabelled data. This can be

achieved by organising data into homogeneous groups where both within-group similar-

ity and between-group dissimilarity are maximised. The action of doing so, labelled as

‘clustering’, is necessary regardless of the object data type. Some of earliest instances

of clustering research began in the mid 1960’s [115] with such works as the monograph

‘Principles of numerical taxonomy’ by Sokal and Sneath (1963) [116] stimulating a world

wide effort to discover superior techniques. The timing of this research is non coinciden-

tal as the advent of the first desktop computer in 1964 - the Programma 101 - presented

new opportunities to researchers, allowing for automation of large numerical tasks. Its

first uses were in anthropological data however it has since branched out to be a truly

interdisciplinary technique and is used regularly in many fields from social science to en-

gineering and bio-medicine [117, p. 50]. Due to the vast number of applications that em-

ploy clustering analysis there are a considerable number of clustering techniques present

within literature [118, 119]. Additionally, there is no established methodology for select-

ing an ideal technique for a particular clustering task. In this section an overview of the

literature and the main concepts of clustering are presented. A framework for selecting a

clustering technique used in this chapter is also presented.

4.3.1 Similarity measures

When considering a data set to be clustered, an individual observation may be referred to

as an object. Each object can be multidimensional and represented by any combination

of features with the most common examples being that of binary, spatial, categorical, or

temporal [119]. Calculation of the similarity, or dissimilarity, between two data objects

is typically achieved via measurement of the distance between their multi-dimensional

feature vectors - whereby the larger the distance between two objects the less similar

they are to one another. Quantifying similarity between two data can be a challenging

task and many measures may perform better or worse relative to a particular data set.

Measuring closeness of the data may be specific to the desired objective of the clustering

task. Due to the various requirements of different clustering tasks a large number of

similarity measures have been developed across literature. The various distance measure

approaches can generally be placed into one of the following three categories [118]:
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• Shape-based - compares the overall shape of the time series. Time series are typi-

cally scaled thus placing emphasis on the relative differences in evolution.

• Feature-based - clustering is performed on extracted features from each time se-

ries. This is often used to reduce the dimensionality of the task.

• Model-based - raw time series are converted into a parametric model and defined

by a set of parameters. Parameters are then clustered by conventional techniques.

Shape-based similarity measures are the first to be used historically and are by far the

most popular within literature. They can be further subdivided into two categories: lock-

step and elastic. Lock-step type measures include methods such as the Minkowski and

Pearson correlation distance measures. The category is so-called as these measures re-

quire time series of equal length and sample rate. Each data point is compared on a one-

to-one basis directly to its counterpart. Elastic measures are more flexible - at the cost of

higher computational time. They allow for data points to be compared on a one-to-many

or one-to-none basis which is advantageous in the handling of outliers or similar time

series that are distorted in the temporal axis. Two of the most popular elastic measures

are dynamic time warping (DTW) and longest common sub-sequence (LCSS). Figure

4.1 highlights these key differences by comparing how Euclidean and DTW calculate the

distance between two time series.

Figure 4.1: Examples of lock-step and elastic shape based distance measures. Left
- Lock-step, Euclidean distance measure. Right - Elastic, DTW distance measure. Lock-
step distance measures calculate distance on a one-to-one basis. Elastic distance measures
can calculate distance using one-to-many - accommodating for distortion in time.

Time series are by their nature high dimensionality objects. In many situations this can

present an obstacle to clustering algorithms due to the substantial amount of computa-

tional time required to complete the task. Feature-based similarity measures extract key

features from the time series allowing for representation in a lower dimensionality form.

The disadvantage of these sets of techniques is that some information is lost in this pro-
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cess. One of the most common feature extraction techniques is piece-wise aggregate

approximation (PAA) which segments the time series along the temporal axis. Each seg-

ment is then summarised with the mean of values in each segment before being clustered

using conventional techniques. Building upon PAA, symbolic aggregate approximation

(SAX) is a technique which first z-score normalises each time series before subsequently

determining similarity based on bands which deviate from the time series mean [120].

This technique is powerful due to its ability to determine similarity across vastly different

scales of the time series.

Figure 4.2: Examples of feature extraction used in PAA. Left - a time series in raw
data form with high dimensionality. Right - time series features extracted by PAA. Time
series is split into segments and each segment represented by its mean value.

Model based clustering is a statistical approach to clustering a data set. The premise of

which is that the observed data is assumed to be generated from a finite set of component

models [121]. The underlying models must be defined prior to clustering which may

be a limitation depending on the task at hand. Model parameters are determined by

a probability distribution. In addition to inferring the assignment of observations to a

particular cluster most model based algorithms will estimate these parameter values. For

example in the case of a parameter defined by Gaussian distribution the estimated values

defining a cluster would be the mean and standard deviation. Some of the more popular

approaches for time series clustering are auto-regressive moving average (ARMA), Time-

Series Bitmaps, and Hidden Markov Models [122].

Many time series methods are proposed in the literature each with a set of advantages and

disadvantages. The different trade offs in approaches should be carefully considered for

a given task. In Figure 4.3 a flow chart is presented offering a route to identifying which

particular set of techniques to explore for a given task. In general, if an underlying model

is known, model-based techniques can offer a superior amount of control in a clustering

task and should be considered first out of the clustering approaches. In many cases in
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time series clustering an underlying model is not known prior to the task and so shape-

based and feature-based measures should be considered. For extremely large data sets

or for tasks which occur in real time, computational time may be of a concern. In these

cases feature based methods may offer faster processing time due to their typical use of

dimensionality reduction techniques. Shape-based techniques work with the raw data

from observations, so no information is lost as in the case of feature based techniques and

so may offer superior accuracy in clustering tasks where critical information is lost.

Figure 4.3: Time series distance measure selection flow chart. A flow chart de-
tails how one of three main groups of distance measure: shape-based, feature-based, and
model-based, may be selected for a particular clustering task.

4.3.2 Clustering methods

Once a similarity measure is chosen a framework for clustering the time series needs to

be decided. Many methods for clustering are available within the literature and are fre-

quently classified into the following four categories: partitioning, hierarchical, density

based and grid based [118, 122, 123]. Unlike the distance measure the choice of clus-

tering method generally does not influence the solution a great deal [119]. As such only

partitioning and hierarchical approaches will be explored here as they are more commonly
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explored in the literature.

Partitioning methods are characterised by partitioning data objects into a predefined num-

ber of subsets k, where each subset is its own cluster. Objects may belong to only one

cluster and clusters may not be empty. As stated by Sarda-Espinosa [124] partitional pro-

cedures are regarded as combinatorial optimisation problems. As such to find the global

optimum set of clusters would require an exhaustive effort of trialling each combination

– a feat not reasonably achievable even for small data sets. In response several heuristics

for finding local optima have been developed, the most common of which being k-means

[125] and k-medoids [126] which develop clusters around the mean and medoid of the

data objects, respectively.

Hierarchical clustering [126] is an approach which establishes a hierarchy of most similar

time series. Two main hierarchical approaches exist: agglomerative and divisive [118].

Agglomerative begins with each object assigned to its own cluster before an iterative

process begins merging most similar clusters until ultimately only one cluster remains

that describes the entire data set. A divisive approach is the complete opposite, in the

sense that it begins with one cluster describing the data set before subsequently dividing

each stage into two sub-clusters which are most dissimilar. The process is repeated until

each object is assigned to its own cluster. Once complete the hierarchy can be represented

by a dendrogram providing a clear visual tool to view the similarity structure of the data

set. Several approaches exist for formulating cluster centres, or links, at each stage in the

hierarchical structure. Some of the most used are single, complete, average linkage and

ward’s method.

4.3.3 Cluster validation

The objective of clustering is to identify the number of groups of objects within a given

data set. Most clustering approaches either require pre-defining the number of groups be-

fore analysis, such as in partitioning methods, or extracting groups from a pre-determined

structure, as in hierarchical methods. In either case identifying the correct number of

groups is not always immediately clear. To identify the correct number of groups a clus-

ter evaluation methodology should be implemented. Evaluation of cluster results in an

objective manner is referred to as cluster validation [127], it can generally be broken

down into three main sections:
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1. Evaluating the fit of the clustered data.

2. Evaluating the stability of the clustered data.

3. Evaluating the performance of the solution relative to external sources of data.

Cluster fitness (1), and cluster stability (2), are both known as internal validation tech-

niques which assess both the quality of the solution and robustness of the solution respec-

tively. Evaluation relative to an external source (3), is known as an external validation

technique and requires an additional data set with known solution - as this is not available

for DSA response types we do not address external validation any further in this chapter.

The following sections give a brief overview of the two internal validation approaches.

Cluster Fitness Validation

Assessing the fitness of a clustering solution is by far the more popular internal validation

metric in literature. It assesses the quality of the solution, and is typically achieved via

comparison of geometric properties of each identified cluster. The most commonly used

geometric properties considered are compactness and separability which reward minimis-

ing distance of within-cluster (intra) objects and maximising distance of between-cluster

(inter) objects respectively [128]. Figure 4.4 illustrates an example of how each of these

geometric properties may be determined for a two dimensional data set in Euclidean

space. Cluster distances are often represented by the mean difference between objects

(inter) or cluster centres (intra). The figure shows how the correct number of clusters k=3

minimises the within-cluster distance between objects while also maximising the distance

between cluster means. For too many clusters, k=4, the reduction in intra cluster distance

is not enough to compensate for the much smaller inter cluster distance when compared

relative to k=3 clusters. Aside from compactness and separability, other properties are

also proposed in the literature and may offer different advantages in their use. One such

measure is exclusiveness which can be beneficial in the detection of outlier data [128]. It

is based upon the probability density function of the solution and implies that the closer

objects tend to be to their cluster mean the more likely that it is a true cluster. Many

fitness validation tests exist within the literature, with varying support for each metric

[129]. Often it is the case that certain metrics will perform well for a given task as is

the case for similarity measures. Some of the more popular measures are the Silhouette

index [130], Calinski-Harabasz index [131] and the Gap statistic [132].
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Figure 4.4: Compactness and separability concepts of cluster fitness. (A) and (B)
represent compactness or intra-cluster distance for group size k=3 and k=4 respectively.
(C) and (D) represent separability or inter-cluster distance for group size k=3 and k=4
respectively.

Cluster Stability Validation

In recent years a new approach to selecting the number of clusters has become increas-

ingly popular based on cluster stability. The premise of which is that the clustering so-

lution should not only be representative of the observed data set, but also the underlying

structure from which it is sampled from. The philosophy of a stability assessment differs

from that of fitness assessments by considering only if a solution can be constructed in

a stable configuration and not through descriptive metrics which require defining what a

good cluster is. Assessing stability refers to investigating the robustness of a clustering

solution under perturbation or sub sampling of the original data [133, 134]. The concepts

of using stability to select the optimal number of clusters is presented in Figure 4.5. Two

samples are shown, both drawn from the same underlying distribution. The true solution,

k=4, is represented by the black circles encasing individual observations belonging to

each group. For each sample clusters are formed for k=2 and k=5 groups highlighting

how instability can be formed from both too many and too few groups. In the case of

too few groups, k=2, two separate solutions are formed from the differences in observed

samples - a horizontal and vertical split - highlighting how small deviations leads to in-

consistent grouping. In reality both the horizontal and vertical split are present in the true
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solution. For too many groups, k=5, clustering solutions attempt to identify five groups

where only four exist - requiring an existing cluster to be split, which, depending on how

samples are drawn, could be any of the four.

Figure 4.5: Concepts of cluster stability. Cluster solutions are shown to be unstable
if number of clusters is either too small (k=2) or too large (k=5). [Image credit to U.
Luxburg [135]]

4.4 Methodology

In the background section a wide range of clustering methodology was discussed high-

lighting how certain approaches may be more suitable for a particular task. In this section

each element is revisited and discussed from the point of view of clustering the DSA time

series data set. A framework for this clustering task is subsequently established. In order

the methodology sections are: pre-processing of DSA data set, determining similarity

between DSA responses, establishing a cluster solution, and identifying optimal number

of cluster groups.

4.4.1 Pre-processing of DSA data set

Before beginning clustering analysis it is important to consider any pre-processing stages

that should be completed. Pre-processing is an important step in machine learning and

is required in order to prepare data for model development. In the case of time series

clustering two main considerations are made at this stage: time-series dimensionality

reduction and time series scaling. With relatively few cases in the cohort, dimensionality

reduction techniques are not required to improve computational time and so this element
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is not considered in analysis.

Scaling time series data

Depending on the desired goal of the clustering it is often beneficial to scale time series

data. The DSA post-transplant responses in the AiT cohort have a wide range of maxi-

mum levels ranging from 34 kMFI to less than 1 kMFI. As the objective of the analysis

is to identify different types of dynamic responses regardless of maximum levels it is ad-

vantageous in this case to perform scaling prior to clustering analysis. Different types of

scaling options are available. As the most suitable scaling option is not known a priori

the following three commonly implemented techniques are considered:

Max scaling =
X

Xmax
(4.4.1.1)

Min-max scaling =
X−Xmin

Xmax−Xmin
(4.4.1.2)

Z-normalisation =
X−µ

σ
(4.4.1.3)

where X is a vector representing a DSA time series, Xmax the maximum DSA level, Xmin

is the minimum DSA level, µ is the mean DSA level and σ is the standard deviation of the

DSA time series. The three scaling options in addition to their raw data observations are

detailed in Figure 4.6. Four DSA responses are selected to highlight the advantages and

disadvantages of each scaling option. The list below highlights some potential limitations

identified in each scaling approach:

1. Clustering of similar responses is inhibited due to differences in peak DSA values.

2. Measurement uncertainty is exaggerated, adversely influencing the cluster solution.

3. Relatively little activity is exaggerated, introducing an undesired artifact.

Table 4.1 shows which limitations are present in which scaling option and cites examples

of each through linking with Figure 4.6. It can be seen that none of the scaling options

are immediately free of potential limitations. No scaling (or raw) has the most severe

limitation which impacts almost every response in the DSA data set and so is disregarded

as an option immediately. Min-max scaling and Z-normalisation both exaggerate the ac-

tivity seen in the response for Case-95 which could otherwise be considered as exhibiting
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relatively low changes in DSA level. Max scaling appears to offer the best balance of

capturing the underlying DSA responses in the cohort whilst minimising the introduction

of undesired artifacts. As no solution sufficiently addresses limitation 2, pre-emptive ac-

tion is taken to isolate those impacted cases from influencing the clustering algorithm.

Cases which exhibit a DSA MFI level consistently below 1,500 are excluded from the

analysis. The DSA activity in these cases would at any rate have been considered less

clinically relevant due to their low MFI level. Classifying DSA responses in this range

has been observed before [26], these cases can generally be considered as ‘no-response’

due to their low activity. Following the removal of ‘no-response cases’, or otherwise now

referred to as Group-0, of which there are N=20 in the cohort, the remaining N=73 cases

are then scaled via max-scaling technique.

Scaling option Limitation 1 Limitation 2 Limitation 3
Raw C↔D
Max scaling E
Min-max scaling I J
Z-score normalisation M N

Table 4.1: Comparison of scaling option limitations for DSA responses. Alphabetical
code relates to time series responses seen in Figure 4.6.

Influence of DSA sample on cohort

Due to the detailed DSA collection protocols outlined in chapter 2 samples are rarely

taken at consistent timing and frequency across any two cases. When considering lock-

step clustering algorithms such as Euclidean distance measure for example, analysis

would not be possible due to the requirement of one-to-one matching of measurements

at each time point. Even the more flexible elastic measures such as DTW which can ac-

commodate one-to-many and one-to-none matching may demonstrate worse performance

with non-uniformly distributed samples. For these reasons missing data points in the data

set are to be replaced by means of linear interpolation. An example of this process can

be seen in Figure 3.11. Missing values are typically few in the first two weeks post-

transplantation as DSA collection protocol aims to take measurements most frequently.

The further from transplantation the less frequent DSA samples are observed. At the two

week mark the median length of interpolated values is 0 days, at 4 weeks this extends to

2 days, at 50 days this is extends to 5 days, and at 100 days the median is considerably

larger at 16 days. This same inconsistency in measurement sample rate also presents an
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Figure 4.6: Comparison of scaling options for time series clustering. The influ-
ence of four different scaling techniques: no scaling (raw), divide through by maximum
(max-scaling), min-max normalisation (min-max) and z-score normalisation (z-norm) are
presented for four representative DSA time series responses: case-93, case-95, case-124
and case-136. When comparing cases, y-axis is consistent for a given scale.

additional trade-off consideration. For many samples the last available measurement is

observed at different times post-transplantation. In Figure 4.7 the number of DSA re-

sponses is shown relative to the days from transplantation. This figure represents the

number of cases whose DSA observation extend at least beyond a given day. By utilising

all cases in the cohort at N=99 less than 10 days of data would be available for the clus-

tering task - which is too small to capture even documented response types such as the

modulation [26]. A reasonable balance was established at 50 days post transplant which

extends the study period to 4 weeks past typically observed modulation response peaks.

In total 17 cases are excluded from clustering analysis at this expense bringing the total

to N=82.

4.4.2 Determining similarity between DSA responses

As discussed in the background section determining similarity between different time

series responses is achieved through use of a distance measure. Many such distance mea-
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Figure 4.7: Cases vs. DSA response length. This graph assesses the trade-off between
number of cases and length of DSA response in clustering analysis. The marked point at
50 days post transplant and N=82 cases indicates the selected trade-off used in subsequent
analysis.

sures are available in the literature which often serve to benefit different clustering tasks.

In Figure 4.3 a flow chart is presented to broadly narrow down the available set of tech-

niques to either: model-based, feature-based, or shape-based depending on whether the

data set can be defined para-metrically and whether time complexity is of great concern in

analysis. In the case of the DSA response data set no parametric model is available to de-

fine the evolution of DSA data and time complexity is not a concern in analysis due to the

relatively small sample size and due to no requirement of real-time output of clustering

solution. Given this description of the data set a shape-based similarity measure would

likely be the most suitable for the clustering task. Of these an elastic distance measure

known as DTW is chosen due to its well documented advantages over lock-step distance

measures such as Euclidean, and also other elastic measures such as LCSS [136].

DTW

DTW was developed to address the shift effect which was a major disadvantage of the

Euclidean distance measure. It is so called as it effectively warps two sequences, x, and y,

of data non-linearly in time to map data more effectively with one another when dealing

with different speeds or shifts in the pattern. When calculating DTW between two time

series first an (n×m) local cost matrix (LCM), referred to as d, is produced, whereby

element (i, j) refers to the quadratic distance between elements xi and y j,

d
(
xi,y j

)
=
(
xi− y j

)2
. (4.4.2.1)

Following construction of the LCM a warping path, W = w1,w2, . . . ,wK , is determined

by forming a path through the LCM. The max length of the path meets the condition:
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max(n,m)≤ K ≤ m+n−1, and paths are formed via three constraints:

• Boundary condition: A path must start and end at the diagonal corners of the

LCM: w1 = (1,1) and wK = (n,m).

• Continuity: The path may only continue to adjacent elements within the LCM.

Given wq = (i, j) then wq+1 is any of elements (i, j+1) ,(i+1, j) or (i+1, j+1)

for q = 1, . . . ,K−1 and i = 1, . . . ,n−1 and j = 1, . . . ,m−1.

• Monotonicity: Subsequent steps on the path must be non-decreasing in time. Both

indices i and j must either remain the same or be increasing with subsequent steps.

Figure 4.8: DTW constraint diagrams. (A) all constraints are met. (B) boundary
condition constraint is broken. (C) Continuity constraint is broken. (D) Monotonicity
constraint is broken.

The total distance for a warping path W is the sum of all individual distances of the LCM

which the path traverses. To identify the DTW distance for any given pair of time series

the minimum warping path is required. This is obtained algorithmically via exploring all

possible warping paths in a brute force O(nm) calculation using,

Di, j = d
(
xi,y j

)
+min(Di−1, j−1,Di, j−1,Di−1, j). (4.4.2.2)

Given the higher computational cost associated with this algorithm compared to many

other lockstep or feature based approaches several techniques are developed to address

this issue. The task can be reduced substantially by simply limiting the search area for

identifying an appropriate warping path. In practice there are reasonable ways of achiev-

ing this as it is not likely, for example, that comparing first and last points is desirable.

Additionally, of special note is that the lock-step method known as Euclidean distance

measure can be considered a unique case of DTW whereby a diagonal warping path is

formed from d(1,1) to d(n,m) (n = m), hence satisfying one-to-one matching of all ele-

ments.
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Global constraints

Imposing a global constraint on the potential warping path for DTW is a common pro-

cedure and is explored well in the literature for both classification and clustering tasks

[137, 138]. Enacting of a constraint serves not only to reduce processing time for the

algorithm – as fewer routes need be explored – but has also been shown to improve over-

all accuracy of said tasks [139–141]. While reducing the search space to identify a more

accurate result may seem counter-intuitive, it acts to limit pathological alignments that

may otherwise have been formed. There are two well known global constraints in the

area: Sakoe-Chiba band (SKB) and Itakura parallelogram [141] (Figure 4.9). The SKB

runs along the leading diagonal and has a fixed width R, where R is a positive integer.

The Itakura parallelogram describes the region which constrains the warping path to a

series of slopes. For example, with a fixed slope S > 1 the Itakura parallelogram consists

of the cells that are bound by slopes with gradient S and 1/S intersecting at both origin

and coordinates (N,N). Several more complex constraints also exist, such as those which

generalise the band shape to the data set itself [138, 142], however they typically require

large number of time series to establish constraint boundaries and so will not be explored

in this work.

Figure 4.9: Global constraint types. Left: SKB. Right: Itakura parallelogram.

Identifying the optimal width R or slope S is often a task all in upon itself and many

approaches to do so exist within the literature [143–145]. Much like the more complex

constraint types, identifying optimal band width benefits from a large data set allowing

for cross-validation of output. In the absence of large amounts of data this thesis opts

to follow guidelines formed about studies in the area. A consensus suggests that an R

width of 10% for the Sakoe-Chiba band is an optimal choice for maximising clustering

accuracy - beating out the Itakura parallelogram and unconstrained band in most data sets

[139, 146]. Use of these parameters has been standard practice for some time and will be
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implemented in this thesis [147, 148].

Example of similarity between two antibody responses

A complete example of the DTW distance measure and SKB constraint in action on two

DSA responses from the AiT cohort can be found in Figure 4.10. The figure illustrates

the DTW process starting with the distance matrix (DM) in Figure 4.10a and the LCM

in Figure 4.10b. An example of the optimal warping path is then shown both without

any constraints in Figure 4.10c and with the 10% SKB constraint utilised in this work

in Figure 4.10d. Lastly, Figure 4.10e plots both DSA responses next to one another and

illustrates how the optimal warping path (10% SKB) is mapped between the two. The

aggregate distance of the mapped lines yields the value for DTW similarity between the

two responses.
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(e) Optimal warping path (SKB=10%) as illustrated between Case-x and Case-y.

Figure 4.10: Example case demonstrating process of DTW distance measure. In
this example, two time series for Case-x and Case-y are compared for similarity through
the DTW measure in line with the methodology previously discussed. (a) More yel-
low regions indicate a larger distance between two time series observations. Distance is
maximised when comparing distances further in time and in scaled DSA value (b) More
yellow regions indicate a large ‘cost’ to reach from origin. (c) W is found by identifying
the lowest cost path on LCM. (d) Similar to (c) however W is found by identifying the
smallest route on the banded LCM. The path cannot exceed the boundaries and so W is
constrained. (e) Each node on the warping path corresponds to a magenta line connecting
each time series. The aggregate of all line distances forms the distance measure d. (b-d)
Resolution of low cost paths are prioritised (hence yellow region saturation).
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4.4.3 Establishing a cluster solution

By itself any similarity measure between two time series is fairly meaningless and only

gains meaning when compared to additional pairings. In principle this is what a cluster-

ing algorithm adds to a similarity measure. Forming a cluster solution through any of the

previously discussed clustering approaches (hierarchical, partitioning, etc.) takes the sim-

ilarity information of all time series combinations within a cohort, and uses that to form

a structure of most similar responses. As stated in the Background section there is little

that separates clustering approaches in terms of the solution that they produce [119]. As

such in this work an agglomerative hierarchical clustering approach will be used due to

its clear presentation of cluster solution in structural format. Another advantage relative

to other approaches such as partitioning approaches is that it does not require pre-defining

of the number of clusters, k, prior to analysis. The membership of objects relative to a

desired number of clusters is instead extracted from the hierarchical structure once the

solution is complete. The structure being referred to is known as a dendrogram and an

example is shown in Figure 4.11. The example shows a cluster solution with 10 objects,

each represented at their intersection with the x-axis. The y-axis indicates the similarity

between clusters (or objects at their lowest level). A clustering solution is made by estab-

lishing a threshold and then forming a cut in the dendrogram at that value. Figure 4.11

highlights how two different threshold values provide the membership solution for k = 2

and k = 3 clusters.
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Figure 4.11: Example of dendrogram for hierarchical cluster solution. Both the left
and right dendrograms represent the same solution but interpreted at different similarity
threshold values. Left - a higher threshold yields a solution with two clusters. Right - a
lower threshold yields a solution with three clusters.

The agglomerative hierarchical clustering method is a bottom up approach which starts

with all objects in their own cluster before subsequently, at each step, merging the most

similar pairs into groups. When complete only a single cluster remains which includes

all objects. This process can be summarised by the following pseudo code:
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Algorithm 1 Form agglomerative hierarchical cluster solution
1: Compute the distance matrix.
2: Initialise all N observations into their own cluster.
3: while there is more than 1 cluster do
4: Merge the two closest clusters.
5: Update the distance matrix to reflect previous step.
6: end while
7: return Set of nested clusters.

In step 1 a DM, D is formed which contains the distances between all pairs of objects in

the data set. Step 2 establishes the bottom level of the hierarchical structure by placing

each object into its own cluster. Steps 3-5 complete the iterative process of merging the

most similar cluster pairs to one another. This is achieved through the merging process in

step 4, where two clusters ci and c j are merged to form a new cluster ci∪ c j. Step 5 up-

dates the DM by first removing the rows and columns of ci and c j and then subsequently

adding an additional row and column for ci∪c j detailing the similarity of the new cluster

relative to all other clusters in the DM. The final stage, step 7 returns the set of nested

clusters which details the structure of the hierarchical cluster solution.

To calculate the distance measure for the new cluster the Lance-Williams dissimilarity

update formula is used [149], where the distance between cluster ci∪c j and ck is defined

as,

D(i∪ j,k) = αiD(i,k)+α jD( j,k)+βD(i, j)+λ |D(i,k)−D( j,k)| (4.4.3.1)

where αi, α j, β , and λ are parameters used to determine how the distance function per-

forms. Varying these parameters can yield results such as comparing the nearest neigh-

bour between two clusters, known as single linkage (αi =α j = 0.5, β = 0, and λ =−0.5)

or furthest neighbour, known as complete linkage (αi = α j = 0.5, β = 0, and λ = 0.5),

however in this analysis the Ward’s linkage type is used,

αi =
ni +nk

ni j +nk
, α j =

n j +nk

ni j +nk
, β =

−nk

ni j +nk
, and λ = 0. (4.4.3.2)

where ni and n j represent the number of objects in clusters i and j, ni j = ni +n j, and nk

represents the number of objects in cluster k. Ward’s method is an analysis of variance

(ANOVA) based approach that is based upon Ward’s criterion [150]. It defines the dis-
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tance between two clusters to be the increase in summed square (SS) that results from the

merging of two clusters d(i, j) = SSi∪ j− (SSi +SS j). This process is advantageous in

that it minimises the total within-cluster variance - reducing the chance of outlier groups

with few cases. Additionally it does not demonstrate some of the pitfalls of other tech-

niques such as in centroid or median linkage whereby a non-monotonic structure can be

formed.

4.4.4 Identifying optimal number of cluster groups

In the background section both fitness and stability internal validation measures were dis-

cussed as approaches to identify the optimal number of groups from a clustering method.

Fitness measures are used to determine the quality of a solution while stability measures

are used to determine how robust the solution is under random perturbations of the data

set. Many such fitness and stability validation measures exist in the literature. For fitness

validation the Gap statistic is utilised in this work due to its strong performances shown

relative to other good measures such as the Calinski and Harabasz and Silhouette index

[132]. The Gap statistic is also notably superior to many techniques as it evaluates clus-

ters relative to a reference null distribution - providing the ability to distinguish whether

data should be clustered at all. Stability validation refers to investigating the robustness

of a clustering solution under perturbation or subsampling of the original data. A stable

solution is one that is considered to have captured the underlying structure of the data set;

any data set drawn from the same source would produce the same result. The assessment

process for stability validation used in this work is based off of the techniques discussed

in Luxburg’s overview of clustering stability [135].

Fitness validation

The gap statistic [132] is a globally defined (across the entire data set) fitness measure

which estimates the correct number of clusters by comparing the within cluster dispersion

by that expected under an appropriate null distribution or reference set. For each data set

the within cluster dispersion, Wk, is calculated for a given number of clusters, k, using the

following equation,

Wk =
k

∑
l=1

1
2 |nl| ∑

q,r∈Cl

d (q,r) . (4.4.4.1)
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nl is the number of observations in cluster Cl , and d (q,r) is the distance between obser-

vations q and r. To avoid local minima and improve precision, use of multiple reference

sets is recommended [151]. In this work 100 reference sets are generated from block

bootstrapping the DSA data set. If the within cluster dispersion for a particular reference

set is given as Wkb and the total number of reference sets is B then the gap statistic is

calculated by,

Gapk =
1
B

B

∑
b=1

log(Wkb)− log(Wk) . (4.4.4.2)

To identify the optimal number of clusters the gap statistic must be assessed across a

range of likely group sizes. For N time series the maximum number of clusters is K = N

- where each observation has its own cluster - and the minimum number of clusters is

k = 1 - where all time series belong to the same cluster. With N = 50 time series used

in the DSA responses in analysis, the range of clusters assessed was from k = 1 to k = 9

which was satisfactory to find a solution. Once calculated, the gap statistic can be plotted

for each number of clusters. For straightforward clustering tasks plotting the result may

be sufficient to identify the solution which can be identified from an ‘elbow’ on the plot.

This ‘elbow’ represents the optimal number of clusters k at which point the Gap statistic

is maximised relative to the reference null sets. For many cases in clustering this point

may not be clearly identifiable and so an additional rational step is provided to add more

certainty to the estimation [132]. Details of the approach are given as follows.

By letting l̄ = 1
B ∑

B
b=1 log(Wkb), compute the standard deviation of the B reference set

log(Wk),

sdk =

√√√√ 1
B

B

∑
b=1

(log(Wkb)− l̄)2. (4.4.4.3)

Next, by defining sk = sdk

√
1+ 1

B , select the optimal number of clusters via the first

instance meeting the following condition,

Gapk ≥ Gapk+1− sk+1. (4.4.4.4)

This approach is known as the ‘one-standard-error’ rule and is used at least as early as
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1984 in Breiman’s work on classification [152] and has been shown to work well in both

simulation studies and in real data examples for clustering tasks [132].

Stability validation

To assess the stability of a solution it is necessary to evaluate the performance of a fixed

clustering algorithm upon several slightly varying data sets. There are several ways to

approach the task such as: random sub-sampling without replacement [134, 153, 154],

adding random noise to original data [155, 156], and dimensionality reduction [157].

Without clear indication of a superior methodology, in this work random sub-sampling

without replacement is used to generate perturbed data sets. Additionally, evaluating the

performance of the clustering solutions can either be completed relative to the original

data set [153], or to compare clusterings of overlapping samples [154]. At this point the

amount of sub sampling extracted from the DSA time series data sets, and the comparison

approach needs to be carefully considered. By changing the data too much (sub sample

is too small) there is a risk of destroying the underlying structure of the samples. By

changing the data too little (sub sample is too large) changes in stability may be trivial.

An overlapping clusters approach with sub sampling rate of 90% per data set was found

to balance well the aforementioned considerations.

For each sub sampled data set clustering is performed using the methodology outlined

in this chapter. Once clustering solutions are formulated the two are compared to one

another for consistency. Comparison of consistency can be achieved by measuring the

distance between clusterings [135]. For overlapping data this is straightforward to com-

pute using a distance score such as the Rand index. The Rand index, R, identifies the

agreement between partitions in data by calculating the percentage of object pairs that

are similarly grouped in each clustering solution. It can be calculated simply by,

R =
a+b(N

2

) (4.4.4.5)

where a is the number of times a pair of objects belong to the same cluster across the two

solutions, b is the number of times a pair of objects does not belong to the same cluster

across the two solutions, and the binomial
(N

2

)
represents the total number of pairs of

objects. The Rand index represents the frequency of occurrence of agreements relative to

the total number of pairs. It can take values between 0 and 1, with 0 indicating the two
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clustering methods show no agreement on any pair of objects and 1 showing complete

agreement on all pairs of objects. In most cases it is more practical to use the adjusted

rand index (ARI) which additionally corrects for random chance of agreement between

two sets of clusterings. Such a correction is established off of the expected Rand index,

E(R), from a baseline random model. The ARI, is given by,

ARI =
R−E(R)
1−E(R)

. (4.4.4.6)

As a single ARI measurement may not be truly representative of the stability of the clus-

tering solution the approach is completed numerous times on separately generated ran-

dom sub samples of the cohort - allowing for sufficient statistics to be determined. In

total the process is completed 100 times for each cluster size, providing each a distribu-

tion of ARI values. The simplest way to determine the optimal numbers of clusters is to

calculate the mean or median ARI for each distribution and then identify where it is at its

maximum [153].

4.5 Clustering analysis results

The aim of this section is to apply an unsupervised clustering technique to identify the

DSA response types present in the AiT cohort thus addressing the primary objective of

this chapter. The results in this section follow on from the development of the cluster

structure using an agglomerative hierarchical clustering technique (with a DTW distance

measure) as detailed in the methodology. The section first completes a cluster validation

stage which applies both an assessment of cluster fitness (Gap statistic) and cluster stabil-

ity (under perturbations of the data) to determine the optimal number of clusters before

then subsequently discussing each identified cluster.

4.5.1 Identifying optimal number of clusters in DSA response data set

Fitness validation results

To determine the optimal number of clusters, k, present in the DSA response data set (with

n responses) a fitness validation technique known as the Gap statistic is implemented

[132] as is discussed in the methodology. The results of which are shown in Figure
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4.12. The left figure shows results for the within cluster dispersion, w - a metric used to

determine the quality of the cluster solution, where a lower value indicates a better fit.

It is not advised, however, to simply select the number of clusters relative to lowest w

as w naturally reduces with an increasing number of clusters approaching close to zero

at k = n. To accommodate for this affect the within cluster dispersion is measured for

both the true data set and also for reference data sets (N=100) which acts as a baseline

for comparison. Identifying optimal k may now be clear and represented by an ‘elbow’

on the plot however for robustness a one-standard error test can be completed to provide

a definitive result - as shown on the right of Figure 4.12. In this analysis the optimal k is

given at the first incidence of a positive one-standard-error value which suggests that the

benefit of adding clusters is no better than what is seen in the reference data. Under both

the ‘elbow’ and one-standard-error analysis it can be seen that k = 4 clusters is optimal.

Figure 4.12: Gap statistic analysis to determine optimal cluster size. Results of the
gap analysis for DSA time series. Left: within-cluster dispersion, the standard deviation
is indicated for reference data via the shaded region. Right: one-standard-error mea-
surements. The optimal number of clusters is indicated by the lowest k on the left in
combination with positive one-standard-error measurement on the right; in this case k=4.

Stability validation results

Following fitness validation which assesses the quality of the clustering solution, the sta-

bility validation allows for a degree of confidence in arriving at a given solution consis-

tently. For small data tasks as in this case with clustering only 65 responses it is important

to assess whether the underlying structure of the data has truly been captured. In this anal-

ysis two random subsets of the DSA responses are extracted with each representing 80%

of the total cohort (52 responses). Each subset forms a cluster solution before their de-

gree of agreement is determine via the ARI. Figure 4.13 shows the ARI results across

N = 200 runs of the stability analysis. On top a cumulative density function shows how
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each cluster size, k, performs relative to one another and on the bottom the ARI results

are displayed in terms of box-plots for easier interpretation of features. It is clear that

for k = 2 and k = 3 a vast number of solutions perform poorly achieving less than 0.5

on the ARI. This result can generally be explained by observing that there are too few

clusters to form a consistent solution, therefore different solutions are regularly formed

and compared to one another (example shown in Figure 4.5). The most regularly forming

solution is found at k = 4 which also demonstrates the highest ARI median value with the

tightest inter-quantile range, producing a clearly superior result over 200 runs. For k = 5

and k = 6 the results demonstrate gradually worsening performance relative to k = 4.

Figure 4.13: Stability analysis of cluster solutions for varying k. Top - accumulative
density function of ARI results for each cluster size. ARI is based on comparing the
clustering solutions of two 80% sub-samples of the DSA cohort i.e. a random 80% of
65 = 52 responses in each solution. Larger ARI indicates better agreement between two
solutions.

4.5.2 Identified DSA response types

Following the results of both fitness and stability analysis on the cluster solution each

of the DSA response types are now explored. In Figure 4.14 the cluster hierarchy is

shown along with the four identified cluster groups (as colour coded). Each of the cluster
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groups show good within cluster similarity relative to their between cluster similarity

which is substantially larger - reinforcing previous validation efforts. It can be seen that

any subsequent cuts would further split Group 4 while fewer cuts would result in the

amalgamation of Groups 3 and 4 and then Groups 1 and 2 subsequently.

Antibody responses
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Figure 4.14: Agglomerative hierarchical structure of DSA cohort formed using
DTW distance measure. The four identified clusters are highlighted by purple (Group-
1), blue (Group-2), green (Group-3) and red (Group-4) colour code. Similarity is repre-
sented on a log-scale and the end of each branch designates a DSA response.

In Figure 4.15 each of the four groups are displayed relative to their cluster mean (dark

blue line) and cluster standard deviation (blue highlighted band). The most populated

cluster is Group-2 with 25 responses and the least populated is Group-1 with 12 re-

sponses. By additionally including the no-response group (N=19) which was excluded

from analysis in the pre-processing stage there are a total of 5 observed response types in

the AiT cohort. Each of the responses are detailed as follows:

No-response group (Group-0) - The no-response group is characterised by low DSA

levels <1,500 MFI in post-transplantation follow-up. As the DSA levels are so low they

are both considered clinically less relevant while at the same time DSA values are less

reliable due to uncertainty in SAB measurement assay.

Fast modulation (Group-1) - Responses in the fast modulation group demonstrate a

sharp rise followed by a sharp decrease is tDSA MFI values. The mean peak is day 13

post-transplant across the 12 cases. The dynamic behaviour can be summarised as having

short peak duration, typically 3-4 days, before a sharp drop and settling at pre-peak DSA

level. DSA are typically inactive for up to 5 days following transplant.
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Figure 4.15: Identified DSA response types from cluster analysis. Each of the four
identified response clusters are shown (Groups 1-4). Dark blue line represents cluster
mean response and shaded region the cluster standard deviation. Dotted lines represent
each individual response belonging to a given class.

Slow modulation (Group-2) - The slow modulation group shares similarities with the

fast-modulation group, however dynamics occur over a longer period of time. They are

characterised by a sharp rise followed by a gradual decline in DSA values. The mean peak

day is 13 post-transplant however unlike the fast-modulation group DSA tend to remain at

this level for some time before decay. In this group, peak duration is not easily defined and

gradually reduces to approximately 30% of peak levels by the 50th day post-transplant. A

period of inactivity following transplantation was also seen with DSA typically inactive

for up to 5 days following transplant. In some cases large oscillations in DSA levels were

present during the decay phase - not seen in group 1.

Rise to sustained (Group-3) - Cases in this group see a relatively lower increase in

DSA levels from transplant levels when compared to either of the modulation groups (as

indicated by the higher starting values). Additionally, whereas both modulation groups

demonstrate a similar time to peak the rise-to-sustained group rise is much more gradual

with the average response taking up to three weeks to achieve maximum value and little to

no period of inactivity before the rise takes place. During the clustering period of 50 days

there is no notable drop in DSA levels once the peak value has been reached indicating a

relatively high settling level compared to modulation groups.

Sustained (Group-4) - The sustained group shows the least activity of the four response

types (excluding Group-0) and has no substantial rise or fall in DSA from early post-
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transplant levels. By observing the mean response a slight decay in DSA levels can be

observed throughout the 50 day clustering period however individual responses do not

necessarily reflect this. As indicated by the cluster hierarchical structure (Figure 4.14)

Group-4 was the next consideration for an additional cut. Under further investigations

this cut would produce two additional responses with 8 and 7 cases respectively and

represent a sustained group and a steadily decaying group which reaches half its value by

the end of the 50 day clustering period (shown in Appendix C.0.2). Although both fitness

and stability analysis produced strong results and confidence in k = 4 this observation

should be investigated further when a larger sample size is available for the clustering.

4.6 Classification of shorter time series

During the pre-processing stage for time series clustering outlined in this chapter it was

described that the DTW distance measure would require two time series to be close to,

or equal in length to determine similarity. This requirement has presented a challenge for

clustering of the post-transplant DSA responses present in the AiT cohort. Monitoring

of patient DSA levels on a consistent basis was rarely achieved at uniform sample rates

and, more crucially, not always maintained for the same period following transplantation.

As such selecting a time period to complete clustering analysis would need to come at a

compromise of ‘time analysed’ to ‘cases included’. Increasing the length of time period

for analysis resulted in a decrease in the number of responses which could be included

in analysis. Each patient record in the AiT cohort is valuable and the more cases which

can be included in analysis the more confidence that can be obtained in the demonstrated

results. In total there were 15 dynamic response type cases which did not present sam-

ples up to 50 days post transplantation and were subsequently excluded from clustering

analysis.

Following this result two additional objectives are presented in order to extract the most

useful information from the DSA data set as possible:

1. Classify as many of the remaining unclustered DSA responses into the pre-determined

clusters as possible.

2. Maintain a high degree of confidence in classification results.

Time series classification is the act of grouping objects into previously defined classes
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and is typically performed with a supervised learning technique that has labelled data.

Functionally the technique shares many similarities with time series clustering as the

objective is to identify similarity between two different temporal objects. In particular

time series similarity measures are shared between the two techniques. For the following

classification task a DTW distance measure with a 10% Sakoe-Chiba band is used to

determine similarity between DSA responses, as was the case for the clustering task. The

reader is subsequently referred back to previous sections in this chapter for the relevant

methodology. The labelled classes for which DSA responses are to be classified into are

the previously identified groups from cluster analysis and, more specifically, the similarity

measure is calculated relative to the mean response of each cluster (shown in Figure 4.15).

4.6.1 Early classification of time series

In this early classification of time series (ECTS) analysis an approach is presented to

classify the remaining responses into the now pre-defined classes from clustering anal-

ysis. The decision to classify each short response is based upon whether their length

exceeds the minimum predictive length (MPL) - which is determined based on a predic-

tive confidence threshold [158]. Those that exceed the MPL will then be classified and

included in any subsequent analysis on DSA response groups. The concept behind MPL

can be illustrated through Figure 4.16. In the figure a classification task is presented to

place a time series into a pre-defined cluster. The two examples illustrate how classifica-

tion can be dependent on the length of a time series. Without establishing some condition

prior to classification, a time series which is too short can be easily placed into two or

more clusters if their dynamics are similar in early periods. The result then is more down

to chance as to which group it will ultimately be allocated - as is the case in Figure 4.16

(left). The MPL is a condition which establishes the minimum amount of data required

to make confident predictions on the cluster allocation. Figure 4.16 (right) shows a time

series with enough data to reliably distinguish between different clusters - allowing for

confident allocation into the correct cluster group. Through use of MPL the left time se-

ries would be rejected and considered unsuitable for the classification task, the right time

series would be accepted and allocated to the most similar cluster group.
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Figure 4.16: Example time series demonstrating the value of requiring a minimum
number of samples in classification tasks. Left - too few samples do not provide
adequate information to place the time series into the correct cluster. Right - enough
samples are provided to correctly distinguish between clusters. Three separate clusters
are represented by grey dashed lines. Initially they overlap one another before diverging
at a later time point.

4.6.2 Minimum predictive length

Determining the MPL is achieved by systematic analysis of the classification accuracy at

each given time series length. An overview of the process can be seen in Algorithm 2.

Algorithm 2 Determining minimum predictive length
1: Define L as the length of maximum response time.
2: Define C as number of cluster mean responses.
3: Define T as number of training set responses.
4: Define Y as list of true classes for training set responses.
5: Define Amin as the minimum classification accuracy to satisfy MPL.
6: for i = 1 to L do
7: for j = 1 to T do
8: Define tT as the first i observations in the jth training set response.
9: Scale tT according to its peak value.

10: for k = 1 to C do
11: Define tC as the first i observations in the kth cluster mean response.
12: Determine the DTW distance measure D( j,k) for tT and tC.
13: end for
14: Allocate the class prediction P(i, j), determined from minimum D( j, :).
15: end for
16: Determine predictive accuracy A(i), from comparing P(i, :) and Y .
17: if A(i)> Amin then
18: return MPL i.
19: end if
20: end for

The algorithm begins at a time series length of one and identifies the similarity between

each training set response and each cluster mean response. Training set responses are

scaled prior to analysis based on their peak value - reflecting the amount of information

that is realistically available in practice. Once the similarity measures for a given training
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response have been determined the training response is allocated to the most similar clus-

ter. After all training responses are allocated to their respective clusters the classification

accuracy can then be calculated by comparing cluster predictions to the true solution. The

process is repeated for increasing units of time until the maximum response time is met

or the pre-determined minimum classification accuracy is satisfied.

4.6.3 Classification matrix

For classification tasks a confusion matrix (as shown in Figure 4.17) is utilised to deter-

mine the overall classification accuracy known as the correct classification rate (C). For

balanced (where representatives of each class are equal in number), or close to balanced

class problems, C is one of the best measures used to determine the quality of the clas-

sification result. To determine C predicted values are compared to a known target class.

For the binary class problem shown in Figure 4.17 there are two classes ‘Positive’ and

‘Negative’ there can be one of four possible outcomes: true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) depending on the relationship between

predicted response and target class. C is then given as the fraction of the total number of

correct predictions TP+TN over the total number of predictions TP+TN+FP+FN. It can

often be useful in analysis to observe the specific classification properties of any given

class either relative to target or predicted values. For the binary class problem these are

given specific names: specificity (Sp), sensitivity (Sn), negative predictive value (NPV),

positive predictive value (PPV) - however the same concepts can be easily extended to

multi class problems. Formula to calculate each is given in Figure 4.17.

Figure 4.17: Confusion matrix notation and definitions for binary classifier.
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4.6.4 Generating training data

Identifying the MPL requires analysing a set of training data which have complete ob-

servations up to the full length of 50 days. Due to the small sample size of the DSA

responses there were few responses available to isolate for a training data set as they

were all utilised in the development of the clustering structure. To address this limitation

new data were generated through random perturbations of the original data. There are

several approaches to doing so in the literature such as utilising bootstrapping techniques

[159], model-based generation (if a model is available) [157], or adding random noise

to the original data points [155, 156]. In this analysis 1000 new responses are generated

through the latter approach and the methodology is detailed in Algorithm 3.

Algorithm 3 Generating new time series responses.
1: Define L as the length of maximum response time.
2: Define G as the number of generated training responses.
3: Define N as the number of clustered responses.
4: for i = 1 to G do
5: Define idx as random integer from 1 to N.
6: Set X as cluster response idx.
7: for j = 1 to L do
8: M(i, j) = X( j)+N (µ = 0,σ = 0.05)
9: end for

10: end for
11: return M

In Figure 4.18 the results of the generation procedure are shown for a randomly selected

subset of N=75 responses. The parameters values µ = 0,σ = 0.05 were used to provide

a representative sample of the DSA data set. Each generated response is shown relative

to their allocated nearest neighbour cluster.

4.6.5 Results of MPL analysis

The results of the MPL analysis are shown in Figure 4.19. Classification accuracy, C,

is shown relative to the length of data and steadily improves from the shortest measured

length (2 days) which has an accuracy of approximately 25% up to the complete length

(50 days) which has an accuracy rate of 100%. In general the accuracy trends upwards

with an increasing amount of measurement samples available for classification analysis.

The MPL is given at a pre-selected accuracy threshold specific to the needs of the clas-

sification task. Due to the high requirements of accuracy in this application a threshold
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Figure 4.18: Example of generated DSA responses. G=1000 responses are gener-
ated using Algorithm 3. Following the generation procedure each response is classified
into the pre-defined cluster groups. Here a random subset of N=75 responses are shown
relative to the mean and standard deviation of their respectively allocated cluster groups.

of C=90% is used and yields an MPL of 27 days, indicating the minimum length that

a DSA response must be observed to in order to be classified in this analysis. It is ad-

ditionally useful to compare classification accuracy to a reference value. It may seem

counter-intuitive for example to see that at 2 days an accuracy of 25% can be achieved

when the lowest possible accuracy is a value of 0%. In fact 25% is the lowest accuracy

that would be expected in this analysis as it represents that of a perfectly random classifier

with 4 classes (as in this case). An accuracy of 0% is extremely unlikely through random

allocation and would represent responses being deliberately allocated to incorrect classes.

An additional exploratory MPL analysis was also conducted based on the assumption that

the maximum post-transplant DSA value was known prior to the analysis and could form

a basis for scaling each response (shown in grey, Figure 4.19). Notably a classification

accuracy of nearly 75% can be achieved with only 1 to 2 early post transplant DSA mea-

surements and, owing to the high cost of each SAB test, may represent an avenue worth

exploring in future research.

By observing the confusion matrix at 27 days we can ascertain further information about

the classification properties, as shown in Figure 4.20. In the figure the classification re-

sults of the 1000 generated time series can be observed. With 27 days of data it becomes

clear that mis-classification occurs only between specific classes and not others. For ex-

amples, there are no cases of mis-classification between Group-1 to Group-3 or Group-4

however, it is present between groups 1 and 2, groups 2 and 3, and, to a much lower ex-
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Figure 4.19: Results of MPL analysis applied to generated DSA responses. Y-axis
is the correct classification rate, C, and a higher C indicates a better performance. A
threshold at C=90% is established and represented by the black dotted line. As the length
of time series increases, more data is available allowing for improved classification per-
formance. Two results are shown in red and grey. In red is the results for which all
subsequent analysis is to be based upon and follows Algorithm 2. In grey is a study of the
classification performance excluding the scaling process (Algorithm 2, line 9) and may
represent the potential ability of a classifier with few data points but a known peak value.

tent, between groups 3 and 4. Interestingly group-4 has extremely low mis-classification

properties showing that at 27 days post transplant it can be identified far more consistently

than other groups. In Xing’s work on early classification of time series [158] a methodol-

ogy for identifying the MPL individually for multi-class situations is also explored, and

may potentially offer advantages over a single global MPL by presenting specific entry

points for each class type. Although not considered here it does offer potential for certain

time series to be classified at earlier points.
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Figure 4.20: Confusion matrix showing the simulated classification results (N=1000)
with post-transplant DSA data up to 27 days post transplant.
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4.6.6 Classifying short responses

In total 15 responses were considered for early classification. By using the MPL of 28

days seven of these responses have now been classified with an estimated classification

accuracy of 90%. The results of both the clustering and classification stages can be sum-

marised as in Table 4.2.

Group Response Type Clustering Classification Total
0 No-response 19*
1 Fast modulation 12 2 14
2 Slow modulation 25 2 27
3 Rise-to-sustained 13 2 15
4 Sustained 15 1 16

Table 4.2: Total number of cases grouped through classification and clustering pro-
cesses. *No-response cases are completed through pre-processing stages prior to cluster-
ing analysis. Determined by maximum post-transplant DSA value <1500 MFI, shortest
no-response time series length is 46 days. Out of 99 total cases 8 were too short to allocate
to a response type.

4.7 Analysis of DSA response types

By observing the total number of DSA responses allocated to each group as seen in

Table 4.2, each of the identified DSA response types: groups 0 to 4 (no-response, fast-

modulation, slow-modulation, rise-to-sustained, and sustained) are investigated for po-

tential associations with graft outcomes.

4.7.1 Survival analysis

A Kaplan-Meier survival analysis is produced to investigate group associations with graft

survival (Figure 4.21). Each of the 5 groups are shown in addition to censored data.

Group membership can also be seen at each time point following transplantation. Sur-

vival rates of the groups differ considerably and do not in all cases function directly

proportional to one another - indicating either influence of other confounding variables

or presence of nonlinear hazard rates. This difference is most profound with Group 2

which appears to be a relatively good indicator of graft survival (compared to Groups 3

and 4) until 12 years post-transplantation when survival probability drops drastically and

is ultimately presented as the worst group overall. Group 1 appears to be a good indica-

tor of graft survival, it has only a single graft failure at 3 years post transplantation yet
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demonstrates a median follow-up time of 11.6 years. Groups 3 and 4 share strong simi-

larities with one another with the most striking difference being their poor 2 year survival

rates at 87% and 81% respectively which functions in stark contrast to all other groups

which have survival rates of 100% in this period. Group 0, interestingly, has worse long

term survival than Group 1 despite the lack of DSA in the early post transplant period.
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Figure 4.21: Survival analysis of DSA response groups. Top: Kaplan-Meier survival
plots for each group. Bottom: group membership following transplantation.

4.7.2 Early acute ABMR

Presence of early acute ABMR is of key interest to clinical teams following AiT and is

generally strongly associated with poorer long term graft outcomes. In Table 4.3 groups

are shown relative to occurrence of early acute ABMR. Unsurprisingly, the no-response

group demonstrated a lowest number of cases where acute ABMR was detected at only

10%, however this does highlight that ABMR can occur even at extremely low DSA

levels. The next lowest group was Group 4 which demonstrates sustained or very slow

decay of DSA levels over the analysis period. Groups 2 and 3 both share a relatively high

ratio of cases which experience early acute ABMR at 60% however the most striking

result is for Group-1 in which 100% of cases experienced early acute ABMR in this

cohort. This analysis is extended in Figure 4.22 which compares survival rates for each

group (except Group-1) when accounting for occurrence of early acute ABMR.

For Group-0 only 2 cases rejected and neither has thus far experienced graft failure, this is
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Group Response Type Total Early acute ABMR %
0 No-response 19 10
1 Fast modulation 14 100
2 Slow modulation 27 60
3 Rise-to-sustained 15 60
4 Sustained 16 19

Table 4.3: Analysis of early acute ABMR between identified DSA response groups

in contrast to the 17 cases which did not reject and have a lower overall survival probabil-

ity after 10 years. This observation is intriguing however would require further samples

in the rejection category to see if its superior survival rates are significant. There is little

difference observed in Group 2 when assessing for influence of rejection on survival, in

both cases the first instances of failures occur around the 3-5 year range. Both late failures

occur in the non-rejection group. In Groups 3 and 4 a considerably larger risk is shown

for rejection compared to non-rejection groups - suggesting that sustained DSA levels in

combination with a rejection episode could be a concerning indicator for graft failure.

Particularly for Group 3 where the earliest four failures occur in the rejection group, two

of which in the first year following transplantation. For Group 4 both occurrence and

non-occurrence of rejection can ultimately lead to graft failure, however it is a greater

risk in rejection cases at 2/3 (66%) compared to non-rejection 3/13 (23%).
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Figure 4.22: Influence of early acute ABMR on graft survival. Group-1 not shown
as all cases were early acute ABMR. rej= early acute ABMR episode, nonRej= no early
acute ABMR episode.
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4.8 Discussion

In this Chapter an unsupervised machine learning technique known as ‘clustering’ has

been used to extract the overall dynamic trends and patterns from the DSA responses data

set. Furthermore, each dynamic trend was subsequently assessed for relationships with

long term survival outcome. This analysis was possible due to the high-frequency moni-

toring of HLA-specific DSA made available from the UHCW which provided a uniquely

detailed data set. DSA measurements were typically taken daily in the first two weeks,

followed by three times a week for the first month before subsequently monitoring based

on clinical progress of a given patient. This high rate of monitoring is unusual in prac-

tice where most transplant centres and guidelines typically suggest monitoring only a few

points post transplant. Developing of the DSA response cluster structure took place us-

ing a DTW (10% SKB) distance measure with an agglomerative hierarchical clustering

approach (Ward linkage) and the optimal number of clusters were identified both with

fitness and stability validation techniques. In total 65 max-scaled DSA responses with

length of 50 days were clustered using the algorithm. For both fitness and stability as-

sessments the optimal number of clusters was independently identified at k = 4 showing

that it had both the best quality and robustness of tested cluster size (k = 2, . . . ,9). By ac-

cepting this strong solution, the four clusters would subsequently be referred at as Groups

1 to 4 (fast-modulation, slow-modulation, rise-to-sustained, and sustained, respectively),

and, in addition to a previously outlined Group 0, indicate that five response types are

found within the cohort. Group 0 is the no-response group (N = 19) and was isolated

in the pre-processing stage of analysis due to there being consistently low DSA (< 1500

MFI) values which when scaled adversely affected the clustering solution. Additionally,

clinically speaking, DSA in this range are also generally considered less relevant with

low risk associated with long and short term transplant outcomes. Following clustering

analysis 15 cases which had a limited amount of DSA data shorter than 50 days were

classified based on an early time series classification approach. This approach used a

set of simulated DSA responses (generated via random perturbations of true samples) to

determine the MPL which a DSA response could be accurately classified (> 90%). Ul-

timately 7 out of these 15 short responses displayed a length greater than the MPL (27

days) allowing for classification of the responses. When observing dynamic behaviours a

rising trend is often considered more worrying and clinically useful than a steady state or
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drop in the MFI values. Additionally it has been observed that dynamic behaviours can

precede an episode of ABMR, both histologically and clinically, i.e. drop in urine output

and a rise in creatinine. Here it has been shown that an aggressive rise in DSA correlates

strongly with early acute ABMR, the fastest rising group is the fast-modulation (Group

1) which regularly experience their peaks within two weeks following transplantation and

has a 100% early acute ABMR rate. The slow modulation and rise-to-sustained groups

also demonstrate aggressive rises in DSA and have high rates of rejection at 60%. Most

interestingly however is that these high rates of rejection do not always associate with a

higher rate of graft failure. Group 1, with the highest rate of rejection, has the lowest rate

of graft failure with survival rates comparable to those seen in non-AiT. In contrast 6 out

of the 7 graft failures in Group 3 experienced an early acute ABMR episode suggesting

that ABMR may only be a detrimental factor to long term graft health in certain types of

DSA response. Certain features such as subdued DSA levels following transplantation,

and sustained total DSA levels over extended periods of time, have been noted in several

studies before - however it has not been achieved to this degree of resolution. Dynamic

patterns for example were reported in individual donor-specific HLA antibodies using

visual description [26]. The modulatory response case was also extracted and analysed

under a more complex mathematical modelling of dynamic behaviour [34]. The delayed

rise in DSA levels, a feature seen commonly in group-1 and group-2 cases, is thought to

be caused due to adsorption of HLA antibodies onto the kidney allograft [26, 64, 113],

and, like our study, others reported that sustained total DSA were associated with the

worse outcome than resolved DSA [110, 114]. Early ABMR episodes are also typically

associated with recurrent rejection, chronic ABMR and poor graft survival but a few stud-

ies have reported good graft outcome - highlighting that later episodes are typically more

detrimental [65, 85]. One limitation in this work may be considered due to use of the

One Lambda SAB assay. SAB are the best available option for determining DSA levels

[58] and have substantially improved the ability to identify and manage allosensitised

transplant patients [59]. Despite this they are subject to losses in measurement accuracy.

They provide a semi-quantitative measurement of DSA in the form of a mean fluores-

cent intensity MFI reading which does not always have a linear relationship with true

DSA levels. At extremely high DSA quantities the SAB assays can be subject to prozone

and saturation effects [58, 160] which reduce accuracy in large DSA levels observations.

Best efforts have been made to address these limitations during pre-processing stages and
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two saturation affected responses were subsequently removed from the study (Chapter

2), however, it is still recognised that MFI levels cannot accurately represent true anti-

body strength. Despite these limitations, an in-depth and detailed description of DSA

dynamic responses has been made and associated them with clinical end-points - satis-

fying the aim of the chapter. SAB measurements are reasonably attainable in clinical

practice and the results may present an avenue for development of superior treatments

types/ protocols to replicate responses associated with better outcomes. This approach

improves understanding of dynamic response and stimulates future mechanistic studies,

such as pre-transplant characterisation of immune status and post-transplantation role of

idiotypic antibodies or soluble HLA or different stages of humoral immune maturation.

Ideally, a larger multi-centre study is required to confirm the findings. Other limitations

include cases discharged back to parent units or management protocol that may have in-

fluenced long term outcomes; additionally, protocol biopsies were not employed possibly

resulting in missed sub-clinical ABMR. This work may help in future tailoring of treat-

ment, so that lower risk HLAi patients are not subjected to over-immunosuppression even

if they have had early acute rejection and that high-risk patients can be looked at more

carefully even if they haven’t had an early acute rejection. Lastly, despite strong fitness

and stability validation results for optimal clustering size, the clustering process may still

have missed other patterns due to sample size - including ones which may simply not be

present in the cohort - and further studies with a larger sample may untie that.

4.9 Conclusions

In this chapter the primary aim was to identify through an unsupervised machine learning

clustering technique the various types of post-transplant DSA responses that were present

in the AiT cohort. Through application of a DTW based agglomerative hierarchical clus-

tering algorithm the following result was achieved:

1. Four active DSA response types have been identified. These are referred to as:

fast-modulation (Group-1), slow-modulation (Group-2), rise-to-sustained (Group-

3), and sustained (Group-4) which each demonstrate distinctive characteristics from

one another (validated via stability and fitness assessments).

2. One inactive DSA response type identified. Referred to as the no-response group

(Group-0), it was isolated from the clustering set during data pre-processing stages
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and is characterised by low DSA activity (< 1500 MFI).

Various elements of these response types have been identified before within the litera-

ture, such as observations of the modulation group [26], however no such analysis has

been previously completed to characterise response types to such a high (up to daily)

resolution. Building upon these analysis the second aim of the Chapter was to identify

associations between response types and graft outcomes. These results can be summarise

as:

1. Group-1 has best long term survival outcomes. Despite demonstrating compa-

rably high maximum DSA levels to other groups Group-1 demonstrates excellent

survival rates - comparable to that seen in not-AiT patients.

2. Groups 0 and 2 experienced no early (<2 years) graft failure events. Unlike

other groups, Group-2 appeared to clearly demonstrate nonlinear hazard rates with

a high drop in survival after 10 years.

3. Groups 3 and 4 had worse early (<2 years) graft survival performance. These

response types demonstrate a superior risk of poor survival outcome, particularly

in the first years following transplantation.

4. Early acute ABMR rates are highest in Group-1 (100%) despite best graft-

survival outcomes. ABMR is thought to be a poor sign of long term graft outcome

however this result serves to contradict such a finding. A survival analysis of each

group highlights that almost all of Group-3 graft failures (6/7) are ABMR - sug-

gesting that ABMR may only be detrimental in certain response types.
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Chapter 5

Data driven dynamical modelling

of post-transplant DSA responses

5.1 Introduction

Extracting useful information from limited clinical data has always been one of the main

focuses of research in biomedicine. Data is frequently sparse and noisy, yet still often

forms the basis of life changing decisions made by clinicians in practice [161]. The

dynamic response of a physiological system following clinical intervention or treatment

typically carries critical information about possible clinical outcomes, and is therefore

often utilised in the stages of prevention, screening, diagnosis and prediction of the re-

sponse to treatments or clinical intervention [162, 163]. In various physiological systems

mathematical models have been developed to describe, interpret, or predict the dynamic

behaviours in clinical data [164–166] which serve to either identify common groups or

distinguish features at the individual case level. In the previous chapter four DSA dy-

namic response types were identified and shown to relate to different types of graft out-

come. In this chapter a data-driven mathematical model is developed separately for each

of these response types allowing for the representation of individual cases in terms of a

parametric based model.

5.2 Aim and objectives

In the previous chapter, five types of post-transplant DSA response were identified: no-

response (Group-0), fast modulation (Group-1), slow modulation (Group-2), rise-to- sus-
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tained (Group-3), and sustained (Group-4). Of these, analysing the dynamic response

groups (i.e, groups 1-4) present the greatest clinical interest as they are thought to be

associated with both long and short term clinical outcomes. As it stands there is cur-

rently only a limited model available in the literature to analyse the personalised DSA

dynamic response pattern which is capable of describing only the decay of certain mod-

ulation response types [34]. In the absence of a complete model the work in this chapter

is undertaken with the goal of mathematically describing DSA evolution in each of the

dynamic response groups. The chapter aims then can be summarised by:

Aim 1: To mathematically describe DSA evolution in each of the previously identi-

fied dynamic response groups.

Aim 2: To compare dynamic response characteristics between response groups.

Aim 3: To identify associations between dynamic response characteristics and long

term graft outcome.

To describe DSA dynamics a data-driven modelling approach is used based upon dif-

ferential equations - ultimately allowing for a model to be uniquely defined by a set of

parameters. Each of the dynamic response groups is to be assessed independently and

undergo a separate model selection process which consider best fit to data, physiological

considerations and model stability. To achieve the chapter aims the following objectives

are satisfied:

Obj. 1: To produce a suitable set of candidate models for analysis of each of the

previously identified DSA dynamic groups.

Obj. 2: To develop and employ a data-driven model selection methodology on the

DSA dynamic response data set.

Obj. 3: To extract and assess inferred model parameters for differences between

groups and for associations with long term graft outcome.

The chapter is split into six main sections. Section 5.3 introduces the background theory

surrounding the model selection and parameter estimation approaches. Section 5.4 intro-

duces the model selection methodology. Section 5.5 is the results section which applies

the model selection methodology to each dynamic response group. Section 5.6 extracts

and then assesses inferred model parameters between groups and in relation to long term

outcome. Lastly, the chapter conclusions are formed in Section 5.7.
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5.3 Considerations for model development

5.3.1 Modelling approach

When developing mathematical models for the description of dynamics in physiological

based systems there are two main approaches that are commonly used. The first approach,

often referred to as physiological or mechanistic modelling, is based on the understand-

ing of the underlying physiology which has generated the measured data. By utilising

this approach the developed model can be used to interpret changes at the organ, tissue,

cellular, or even molecular scale - all with parameters that have direct physiological in-

terpretations [167]. Practically speaking this modelling process can be time-consuming

or even impossible to implement in practice due to the detailed knowledge required about

the structure of the system and its parameters. Secondly there is the data-driven approach.

This approach differs in that it aims only to describe the data without accounting for the

true nature of the underlying physiological system. In this system the internal structure

is considered that of a black box with the only available information being presented as

the measured inputs and outputs. A data-driven model need only be flexible enough to

capture the various demonstrated dynamic characteristics in the data [168]. The ideal

model to use depends upon the research aim, knowledge of the system, and availability

of data. The mechanistic approach is advantageous in that it can present a deeper insight

into the principles of the underlying system, however it is not always feasible in practice.

In many situations where the system is less well understood, or access to data is limited,

a data-driven modelling approach can still provide valuable information pertinent to the

system and may even guide later establishment of mechanistic models [169].

When considering development of physiological systems - which typically demonstrate

an extraordinary level of complexity due to their evolution over millions of years - there

are two key challenges in establishing a model. (1) Systems are often highly complex

and adaptable resulting in properties which are not able to be reduced to sub-units [170].

An example of this may be seen in the case of brain plasticity, where it is known that

the nervous system is capable of reshaping itself following severe injury. These systems

can present difficulties in model identifiability due to multiple feedback loops which can

result in strong couplings between variables [167]. (2) Production of a physiological

model, even approximately realistic, will require a large number of parameters [171]
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which are not trivial to identify [172]. This is a formidable task in mechanistic modelling

and, even in cases where a system can be defined, estimation of the parameters may again

not be feasible - even with perfect data - due to limitations in structural identifiability.

For data-driven modelling techniques a complete understanding of the underlying physi-

ological system is not required and therefore many of the difficulties presented for physi-

ological models do not apply. Data-driven models may be considered as either parametric

or non-parametric which differ dependent on whether the system is defined based upon

a fixed number of characteristics - the parameters - or directly from the measurements

themselves. For parametric models the information in the system is captured by a rela-

tively small number of parameters as compared to non-parametric models which make

no assumptions about an underlying system. Non-parametric models are therefore typi-

cally much more flexible, however this leads to less structural interpretability compared

to parametric modelling approaches [168]. Additionally, parametric models typically re-

quire less training data due to the inclusion of modelling assumptions making them highly

suited to many biomedical applications where data is limited.

Under consideration of the available modelling approaches in accordance with the avail-

able DSA data set, this thesis opts to consider only data-driven modelling approaches

which are parametric in nature. Physiological models are not considered as the DSA data

set is both noisy and sparse, and therefore does not provide sufficient resolution to model

a highly complex system. Furthermore, as highlighted in Chapter 2 a DSA measurement

can be influenced by several different molecules such as IgG and IgM which would ren-

der a true physiologically based system as structurally unidentifiable. A parametric based

data-driven modelling approach is selected over a non-parametric approach due to the

superior interpretability that it provides and the ability to enforce model constraints in

line with physiological limitations. It additionally reduces the likelihood of overfitting to

the DSA data given their noisy and sparse characteristics.

5.3.2 Modelling form

In this chapter data-driven models are developed based upon differential equations. Dif-

ferential equations offer several advantages in the task of model development over alter-

natives such as difference models. (1) The estimated model is defined by a unique set

of parameters, allowing for extrapolation of the model beyond sampled data. (2) Dif-
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ferential models can easily accommodate for introduction of prior information through

model initial conditions. (3) Irregularity in the sampled data is handled better compared

to difference models. (4) Although at a molecular level a system may be discrete in na-

ture, i.e., the creation/ destruction of a single antibody at a time, practically speaking the

physiological system behaves as though it constantly evolves with time - resulting in a

differential model being the more appropriate choice [34].

There are two main properties of a physiological system which aim to be captured. The

first is that natural systems are inherently non-linear. Unlike linear systems - which can

only lead to combinations of exponentially decaying/growing or damped periodic oscil-

lating solutions - a nonlinear solution system can introduce irregular behaviour not nec-

essarily attributed to an external input [173]. There is no general approach to developing

a nonlinear parametric model found in the literature [168], meaning that a framework

typically reduces to a trial-and-error process with a range of nonlinear solutions consid-

ered. In many cases, model non-linearity can be closely approximated by a linear model,

which can be an attractive idea due to the simplicity and gain in interpretibility. Linear

solutions for a non-linear system however may only approximate well for a given range.

The second consideration is that of stochasticity. In a perfectly deterministic model the

outcomes of a system can be reproduced given the same initial conditions, whereas for a

stochastic system the model outcomes can only be estimated probabilistically. Stochas-

ticity in a physiological model may originate from a number of external causes, such as

unaccounted factors, environmental influences or even regulatory actions in response to

the original disturbance [174] - however it is not practical to attempt to model these high

dimensional dynamics. A small amount of stochastic noise can have a dramatic influence

on a system response and should therefore not be ignored in the modelling process. By

accounting for stochasticity a model can provide a more realistic representation of the

underlying physiological system. To mimic the stochastic nature of a system without in-

troducing additional factors (i.e., extra degrees of freedom) a deterministic model can be

considered in conjunction with ‘noise’ which represents the uncertainty of the unconsid-

ered variables. In this chapter a concept known as measurement noise is introduced which

corresponds to the uncertainty in the value of an observation - typically manifesting itself

as having a blurring effect on the solution.
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5.3.3 Parameter inference

Two main schools of thought are often presented for parameter estimation. The first is

based on classical (or frequentest) approaches where unknown parameters are considered

deterministic and can be represented by a single value. The second are Bayesian based

approaches where a probability density function is given to unknown parameters. In clas-

sical based approaches the parameters of each model need to be estimated before model

selection. Model parameters are typically estimated via minimising of a cost function

which represents the goodness of fit (GoF) of a model to the data. The GoF is evaluated

by comparing the difference in observed values with expected values under the model in

question and the differences between the two values are known as ‘residuals’. Perhaps the

most widely used method to minimise the cost function is the sum of squared residuals,

named least squares (LS) estimation.

Other than constructing a cost function there are other approaches to where the most pop-

ular is known as the ML method. The ML method looks for the optimised parameters

by maximising the likelihood of obtaining the measurement time series y given the pa-

rameters θ of model M. The likelihood is given by P(y|θ ,M). In both cases LS and

ML optimise the GoF; however, a model with a better GoF (smaller cost or higher like-

lihood) does not necessarily produce a better model. With a sufficiently complex model,

parameters can be found to fit the observed data with a high precision but may ultimately

have been overfit to the data through fitting of noise as well. Overfit models tend to be

overly sensitive towards small fluctuations in measurements often leading to incorrect

predictions. To compensate a penalty term is usually added to the model (such as Akaike

information criterion (AIC) and Bayesian information criterion (BIC)) along with cross

validation techniques to assess for model overfitting. Correct choice of the penalisation

term is an essential task in model selection as one that is too large can also result in an

underfit model. Underfitted models fail to capture important features in the experimental

data, which introduce approximation errors into the model known as bias. A model is

considered underfit if there are serial correlations between residuals. The model with the

appropriate order and structure needs to balance both under and over fitting of data.

Compared with these classical approaches, Bayesian approaches have emerged as a more

effective and informative alternative in the tasks of parameter estimation and model selec-

tion which can be done simultaneously without the need to select an appropriate penalty
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term. Bayesian approaches interpret probability as a quantity that represents a state of

knowledge instead of a frequency of an event happening. The states of knowledge are

updated when more information is available in a process known as Bayes’ rule. Applying

Bayes’ rule to model selection, a preference over several models p(M) before accounting

for any data is defined as the prior. Given the data y the conditional probability p(M|y)

of the model M being true is defined as the posterior distribution, and can be described

mathematically as,

p(M|y) = P(y|M)× p(M)

P(y)
(5.3.3.1)

where p(·) represents the probability density function (normalised function that integrates

to one), P(·) represents a likelihood function which is not necessarily normalised. P(y)

can be referred to as the normalisation factor and represents the likelihood function of the

data itself.

The model with the largest p(M|y) is considered among the model candidates to be the

most probable model. When there is no prior preference for any model, p(M|y) is de-

termined by the likelihood function P(y|M), defined as the marginal likelihood. To cal-

culate P(y|M) the parameters of the model need to be estimated. There are three main ap-

proaches to estimating parameters: ML (classical method), maximum-a-posteriori (MAP)

(bridge between classical and full Bayes’ method), and full Bayes’ method.

Maximum likelihood and Maximum-a-posteriori

As suggested, the ML looks for the most probable parameter values θ̂ML by maximis-

ing the likelihood function P(y|θ ,M), which is the likelihood of obtaining y given the

parameter θ and the model M as,

θ̂ML = argmax
θ

P(y|θ ,M) (5.3.3.2)

The ML parameter estimation method is widely used in practice due to its simplicity -

however is not without some limitations. In some circumstances for example estimating

the most probable parameter based only on data can be misleading. For example, assume

model M includes a parameter which represents the probability of a car breaking down

with no previous history of any breakdowns. The most probable value of the model would
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be zero based on the record, and would underestimate the risk of a breakdown - especially

if it was known that the car was old, had high mileage, and had been looked after poorly.

Such information - known before taking the data into account - is known as the prior

for the parameter. MAP methods incorporate this prior information into the ML model,

which can be expressed as:

θ̂MAP = argmax
θ

p(θ |M)P(y|θ ,M) (5.3.3.3)

where p(θ |M) is the prior of the model parameters, and P(y|θ ,M) is the likelihood of

obtaining y given the parameter θ and the model M. The MAP method just as in the

ML method only estimates the mode of the posterior distribution of the parameters. In

situations where the confidence of the estimated parameter is of interest, both the ML and

MAP methods are not sufficient and the full Bayes’ method is required.

Full Bayes’ method

The full Bayes’ method provides the probability distribution of the parameters rather

than the point estimations of parameters. Given the prior distribution of the parameters,

p(θ |M), the posterior distribution of the parameters can be obtained by normalising the

right hand side of Equation 5.3.3.3. This yields,

p(θ |y,M) =
p(θ |M)P(y|θ ,M)

P(y|M)
, (5.3.3.4)

where the denominator is the marginal likelihood P(y|M) and normalises the right hand

side of the equation. It can be obtained by integrating over the parameter space

P(y|M) =
∫

P(y,θ |M)dθ =
∫

P(y|θ ,M)p(θ |M)dθ = 〈P(y|θ ,M)〉p(θ |M) (5.3.3.5)

where 〈·〉p denotes the expectation with respect to the probability density function p in

the subscript. As the marginal likelihood is the normalisation constant of the posterior

distribution of the parameters, it is obtained as a by-product of the parameter distribution

estimation. As previously stated the model with the largest marginal likelihood is chosen

to the most probable model; therefore the task of model selection is achieved simultane-
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ously with the task of parameter estimation using the full Bayes’ method.

5.3.4 Approximation schemes for Bayesian parameter estimation

For most models it is challenging to directly calculate the posterior distributions of un-

known parameters and model evidence analytically. This has led to the development of

approximation schemes for Bayesian parameter estimation. These can generally be cate-

gorised as either: stochastic or deterministic methods. Stochastic techniques, or sampling

methods, construct the posterior density through iterative algorithms which are based on

drawing random samples of parameters p(θ |y,M) (from Equation 5.3.3.4). The idea of

these iterative sampling methods is to draw a set of samples θ (i) (where i represents the ith

sample of θ , i = 1,2, ...,N) independently from a sequence of distributions that converge,

as iterations continue, to the posterior distribution p(θ |y,M). This process is known as

Monte Carlo (MC) integration. One of the most prominent algorithms for this task is

the Markov chain Monte Carlo (MCMC) approach which offers a transition probability

for the next sample θ (i+1) based on the previous sample θ (i) improving convergence ef-

ficiency. Given enough computational power and time these processes will converge to

the true posterior distribution. MCMC has been, and still is, one of the most prominent

tools for Bayesian inference due to its flexibility in sampling from general distributions,

however they are not without their shortcomings which manifest in the forms of: com-

putational expense, uncertainty in convergence, and the inability to directly calculate

the marginal likelihood. As such these approaches are typically reserved for parame-

ter estimation tasks only. An alternative to the stochastic methods is the deterministic

methods which do not need to take samples from the posterior probability distribution

of parameters. They approximate the posterior distribution analytically by assuming it

has certain properties such as taking a specific parametric form. In return they are com-

putationally far less expensive and can approximate the model evidence along with the

posterior distribution of unknown parameters, however at the cost of never truly repre-

senting the exact posterior distribution. Comparing deterministic and stochastic methods

may then be viewed as a compromise between accuracy and time complexity with the

former having the advantage of being faster and the latter of being non-parametric and

asymptotically exact [175]. One particular deterministic sampling method, known as the

variational Bayesian (VB) method, forms the structure of this work and a brief overview

of the method is provided in the following section.
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Variational Bayesian scheme

In the VB scheme the marginal likelihood is a key quantity used to compare different

models in the task of model selection and is often referred to as the ‘model evidence’. In

this section the model evidence approximation is discussed. The goal of the VB algorithm

is to approximate the posterior distribution p(θ |y,M) and to quantify the model evidence

P(y|M). For that, an approximation of the true posterior distribution, q(θ), is introduced

and the Kullback-Leibler divergence, DKL between the two distributions is formulated,

DKL(q(θ) || p(θ |y,M)) =
∫

q(θ)log
q(θ)

p(θ |y,M)
dθ (5.3.4.1)

= E
[

log
q(θ)

p(θ |y,M)

]
q(θ)

(5.3.4.2)

providing a measure for the difference of the distributions. Through replacement of the

posterior with the expression in Equation 5.3.3.4 and subsequent simplification proce-

dures, the following expression for free energy F can be derived [176],

E[logP(y|θ ,M)+ logp(θ |M)− logq(θ)]q(θ)︸ ︷︷ ︸
F

=

logP(y|M)−DKL(q(θ) || p(θ |y,M)) (5.3.4.3)

DKL is restricted to positive values, meaning that if DKL = 0, then q(θ) and p(θ |y,M)

are the same and the free energy F is equal to the log of the model evidence, logP(y|M).

Maximising the free energy with respect to q(θ) is thus equivalent to minimising the DKL,

and simultaneously provides an approximation of the true posterior through q(θ) and of

the lower bound of the model evidence through F .

5.4 Model selection methodology

This section provides an overview of the methodology required for model selection as

applied in this chapter. There are primarily three stages to the selection process - a dia-
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gram of which is illustrated in Figure 5.1. Firstly, a series of candidate models is specified

which are to be assessed for fit to the DSA response data. Each of these candidate mod-

els are then passed a through modelling criterion phase whereby models or modelling

solutions which fail to meet the criterion are discarded. Within this criterion stage are

three areas of consideration surrounding structural identifiability, practical identifiability

and lastly physiological considerations. All successful models are then considered in the

model selection phase whereby the best candidate model is identified based on fitness and

stability of modelling solution. This final model is then to be used in subsequent analysis

of the DSA dynamic response.

Figure 5.1: Diagram visualising model selection methodology. Initially a set of can-
didate models are proposed and considered in analysis. Each of these models must pass
through a series of modelling criterion. Failure at any stage of the modelling criterion will
result in the model not being considered in the modelling selection phase. Each of the
successful candidate models which have passed through the modelling criterion are com-
pared to one another for superior model fit and stability before a single model is selected
and used in subsequent analysis of the DSA response.

5.4.1 Formulation of candidate models

The mathematical models explored in this chapter are those of ordinary differential equa-

tion (ODE) which describe how a system evolves through time in the absence of any

external force. Several different system models are considered for the purpose of model-

ing DSA responses and each take the general form displayed in Equation 5.4.1.1,

dn

dtn xt +
n−1

∑
i=0

fi+1
di

dt i xt + f0 = F(t), (5.4.1.1)

where xt and its derivatives correspond to the states of the system. The functions fi allows

for increased model complexity relative to the higher order ODE terms, and F(t) allows

for the introduction of external inputs. Additionally, each observation available in model
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formulation is determined as a result of a measurement process subject to a random noise

element εt . This measurement uncertainty can be mathematically represented by,

yt = xt + εt , where, ε ∼N (0,σ2) (5.4.1.2)

where yt is the unobserved true value or DSA level. The measurement noise is assumed

to be additive and follows a normal distribution with mean zero and standard deviation,

σ . Model formulation is operated systematically and independently for each of the in-

vestigated groups, beginning initially with the least complex linear first order model from

Equation 5.4.1.1 before progressively increasing model order. Additionally, increased

model complexity could also be achieved through the inclusion of nonlinear terms (i.e.

polynomial based) or introduced via external inputs to the system. The increased model

complexity - though useful in describing a wider range of system behaviours - may

present an increased risk overfitting data and so the simplest model which describes the

data is explored first in analysis with non-linear models only considered if necessary.

5.4.2 Structural identifiability analysis

Often in systems modelling the structure of the system is unknown and its parameters

are determined in relation to the input data. For some systems multiple combinations of

parameters may be possible with each yielding the same system output – this is often un-

desirable where the values of the parameters themselves are of most interest. Analysis of

a systems’ structural identifiability therefore asks whether a unique recovery of parame-

ter values is possible. Equation 5.4.2.1 highlights an instance of an unidentifiable system,

given that q1 and q2 are unknown. This is because an infinite number of parameter com-

binations can yield the same output. Furthermore, if q1 was known then the system could

be described as locally identifiable – as two possible solutions exist, i.e.,−q2 and q2 both

yielding the same output.

ẋ = q1q2
2x, x(0) = x0, y(t) = x(t) . (5.4.2.1)

There are several approaches to testing structural identifiability of a system with some

examples being: differential algebra methods, the Similarity Transform approach and the

Taylor series approach. In this thesis we make use of the Taylor series approach and so
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only this is described below. The Taylor series expansion of a model around a known

time t0 ≥ 0, which is typically performed at t=0, is given by,

y(t,θ) = y(0)(t0,θ)+ y(1)(t0,θ)
t− t0

1!
+ . . .+ y(k)(t0,θ)

(t− t0)k

k!
+ . . . (5.4.2.2)

where,

y(k)(t0,θ) =
dk

dtk y(t0,θ) (5.4.2.3)

For Taylor series expansion to term k, k+1 Taylor coefficients are produced alongside

subsequent derivations of the model with respect to time. The coefficients of the Taylor

series can theoretically be determined by the model output y(t,θ) and so to demonstrate

whether a unique set of parameters θ exist for a given model the following k+1 simulta-

neous equations need be solved,

y(0) (t0,θ) = y(0)
(
t0, θ̄

)
(5.4.2.4)

y(1) (t0,θ) = y(1)
(
t0, θ̄

)
(5.4.2.5)

... (5.4.2.6)

y(k) (t0,θ) = y(k)
(
t0, θ̄

)
(5.4.2.7)

For a uniquely or globally identifiable system, parameters will have the solution θ = θ̄ -

whereby all Taylor coefficients have a unique solution. If a set of distinct and countable

solutions exist for a particular parameter, then the system is only locally identifiable.

Selection of the number of expansion terms, k, is an important factor to consider. Too

few and a system may be incorrectly assigned unidentifiable. Work from Margaria et al.

[177] has shown that for rational systems with a single model output, n+m+ 1 Taylor

coefficients, where n is the number of state variables of the model and m the number

of unknown parameters, is sufficient to determine the identifiability. To illustrate this

approach an example is considered in Appendix B.1.
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5.4.3 Parameter inference

In this chapter both the model and parameter identification were carried out using the VB

scheme for the inversion of nonlinear state-space models. The approach itself is used to

identify optimal states and parameters of a system given a set prior values and probability

distributions for each. Specifically, this approach was conducted within a freely available

MATLAB (The MathWorks, Inc., Natick, MA, USA) toolbox, referred to as the VBA

toolbox, which implements an algorithm that iteratively optimises said states and param-

eters to maximise free energy – thus approaching the model log-evidence log(p(yt |M)).

Its mathematical details are shown thoroughly in the literature [178–180], however for

completeness, and a brief summary of the underlying theory is provided in Appendix B.

For the differential models used in this work there are three types of unknown quanti-

ties, model parameters p, model initial conditions x0, and the measurement uncertainty

ε . Each of these unknown quantities - as previously mentioned - are characterised by

probability density function (PDF) under the Bayesian approach. Within the VBA tool-

box the quantities p and x0 are handled simultaneously and can therefore be described as

a single variable ϑ = {p,x0}. For ϑ , prior distributions in the toolbox must be modelled

with a normal distribution, and are therefore specified with sufficient statistics µ0
ϑ

and

Σ0
ϑ

,

ϑ ∼N (µ0
ϑ ,Σ

0
ϑ ). (5.4.3.1)

The result of this calculation is a Gaussian PDF over the unknown parameters that is

specified by a mean and covariance matrix. For measurement uncertainty, ε , the prior

distribution is limited to only positive values in the toolbox by defining the precision,

κ = σ−2, using a Gamma distribution,

κε ∼ Ga(a0
ε ,b

0
ε) (5.4.3.2)

In order to maximise the free energy of the model across its multiple parameters, θ =

{ϑ ,κ}, it is required to assume that the approximate combined distribution q(θ) can be

factorised into the separate densities of the two individual and unknown parameters -
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known as the mean-field approximation. This can be summarised by,

q(θ) = qϑ (ϑ)qκ(κ). (5.4.3.3)

With this assumption it is possible to maximise the free energy, F , by optimising each

parameter sequentially while keeping the other parameter fixed. The optimisation rules

for this function are based off of variational calculus approaches determined by the Equa-

tion 5.3.4.3, hence the name of the approach. The optimisation process is iterative and is

repeated until convergence, a visualisation of the approach is demonstrated in Figure 5.2.

Figure 5.2: Schematic of the free energy maximisation used for VB parameter esti-
mation. This approach seeks to minimise DKL by maximising the free energy, F , during
the parameter optimisation scheme. Updated quantities are represented by *.

Input and output of the toolbox

In summary, to complete model inversion of a nonlinear state-space model within the

VB toolbox it is crucial to specify both the model parameter and initial condition prior

Gaussian distributions. This is introduced to the toolbox via two vectors containing their

respective mean values, in addition to two covariance matrices. All priors in this chapter

are loosely defined and with wide variances to allow for a large search space during model

convergence. Non-diagonal elements of the covariance matrices are set to zero, indicating

no prior covariance. Additionally, the measurement precision uncertainty element simi-

larly needs defining prior to model inversion. In this case a Gamma distribution defined

by shape and rate quantities is required. As an output the VB toolbox gives posterior

distributions of all model parameters, initial conditions, and measurement uncertainty in

the same forms as discussed for their respective prior inputs. These values allow for an

approximation of the model sensitivity, discussed next in an assessment of practical iden-
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tifiability. Lastly, the VB toolbox provides a single value calculation of the free energy F

which is used in subsequent comparisons between model candidates of the same order.

5.4.4 Practical identifiability analysis

Throughout the structural identifiability phase a model is assessed for its ability to uniquely

recover its parameters considering a continuous, error free data-set. In practice however

model inference takes place using data which will likely not uphold these characteristics.

There are certain scenarios then in which a model proven structurally identifiable does

not necessarily equate to such under realistic modelling conditions - as in the case where

parameter precision estimates are limited due to a large measurement error. Parameters of

this nature are considered practically unidentifiable, and practical identifiability analysis

is therefore performed following model inference to evaluate the precision of obtained

parameters [181]. In the context of Bayesian parameter estimation as is the case in this

chapter, unknown parameters are handled as random variables specified by a PDF - mean-

ing that quantifying their uncertainty is already incorporated into the Bayesian method-

ology. Posterior estimates of parameter uncertainties therefore provide a direct method

for assessing practical identifiability [182]. There are two ways considered for analysing

the practical identifiability, otherwise referred to as the system sensitivity, within a given

system through the VB toolbox. The first is a deterministic approach for which the model

states at each time step are calculated directly from the covariance model parameters,

the covariance of the initial conditions, and the model sensitivity trajectories (discussed

in Appendix B) [183]. Though relatively easy to implement it is required to make an

assumption that the model output is normally distributed - which may not necessarily be

the case. An alternative stochastic approach instead makes use of Monte-Carlo sampling

of individual parameter point estimates from their respective distributions. The approach

then records many such samples which are used to plot a one-standard deviation range at

each time point - thus representing the sensitivity of the system without the assumption

of a distribution type. Though this approach comes at the expense of a larger simulation

time it was deemed necessary due to the potential influences of system noise.

5.4.5 Physiological considerations analysis

In modelling of the DSA responses it must be recognised that the system represents the

physical presence of antibodies and with it comes a set of physiological considerations
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or constraints. Breaking of these constraints would be a strong indicator that the model

is not representative of the underlying DSA dynamics.

The first constraint is that the modelled response is always positive as DSA measurements

can only exist in the positive domain. Negative DSA estimates represent a clear indica-

tion of an incorrectly fitted model. In some cases this may occur due to few samples

and correcting for this constraint was achieved through more strict prior distributions on

parameters. ‘Positivity’ was assessed via observing if the stochastic sensitivity analysis

demonstrated a 1-σ range exceeding the boundary of zero at any point in the response.

Lastly, each of the DSA responses have demonstrated a tendency to approach a settling

value: groups 1 and 2 levels initially rise rapidly before subsequently falling and con-

verging on a settling level, group 3 approaches one gradually following an initial rise,

and group 4 cases are close to their settling levels immediately following transplantation.

In each case an argument is presented that fitted solutions must be stable and converge

upon a settling level. To validate system stability the Routh-Hurwitz stability criterion is

used which requires assessment of both the necessary and the sufficient conditions. The

necessary condition is that the coefficients of a models’ characteristic polynomial should

all be positive and nonzero - implying that the roots of the characteristic equation should

have negative real parts. A solution is stable if all roots have negative real parts, however

the inverse is not necessarily true. Satisfying the necessary condition is required for sys-

tem stability however does not ensure it which is why a secondary sufficient condition

is also used in analysis. The sufficient condition is satisfied when no sign changes are

present in the first column of the Routh table. To illustrate these conditions the following

general case is presented for linear and homogeneous differential equations,

any(n)+an−1y(n−1)+ · · ·+a1y′+a0y = 0, (5.4.5.1)

where ai is the ith coefficient for term y(i). By assuming the solutions to this differential

equation will be in the form y(t) = ert Equation 5.4.5.1 is simplified to

ert(anrn +an−1rn−1 + · · ·+a1r+a0) = 0. (5.4.5.2)

By next simplifying with the removal of the exponential term ert Equation 5.4.5.2 is

reduced to the characteristic equation,
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anrn +an−1rn−1 + · · ·+a1r+a0 = 0. (5.4.5.3)

At this point the roots, r1,r2, · · · ,rn, of the characteristic equation can be calculated to

validate the necessary criterion. The general form of the Routh table, shown in Table

B.3(a), is constructed first of the coefficients of the characteristic equation before subse-

quent rows are calculated sequentially via the determinant of the entries from the previous

two rows (first column and next column following coefficient) divided by the first entry

in the previous row. For example bk could be calculated via,

bk =−

det

∣∣∣∣∣∣a0 a2k

a1 a2k−1

∣∣∣∣∣∣
a1

. (5.4.5.4)

By observing that the first row of the Routh table cannot change signs (number of changed

signs indicates number of negative real parts) else face instability a set of parameter con-

straints can be determined to ensure system stability. Table 5.1(b) shows an example of

the solved Routh table for a third order linear ODE. With slight simplification it is pos-

sible to extract the following constraints for stability of the model: A > 0, B > A/C, and

C > 0.

sn a0 a2 a4 a8 · · ·
sn−1 a1 a3 a5 a7 · · ·
sn−2 b1 b2 b3 · · ·
sn−3 c1 c2 · · ·

...
...

...
...

s1 ...
...

s0 an

(a)

s3 1 B
s2 C A
s B−A/C
1 A

(b)

Table 5.1: Routh-Hurwitz stability criterion. (a) general form of the Routh table. (b)
a solved form of the Routh table for the third order linear ODE,

...x +Cẍ+Bẋ+Ax = 0.

5.4.6 Model selection criteria

Internally the VB toolbox optimises model fit through maximising the lower bound of the

model evidence, otherwise known as the model free energy, F . This metric is therefore

easily extractable and a useful indicator for model selection as it naturally penalises for
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increased complexity in the model. To compare the free energy values of model candi-

dates a difference in F was calculated between each pair. The superior model is then

either the model with a greater value of F or the simpler model if the difference is not

significant (∆F < 3). Free energy is effective as a model selection criteria however is

limited in scenarios where the candidate models being compared are of a different or-

der. This is because increasing the model order not only introduces additional degrees

of freedom to the parameter space - but also adds dimensions to the system states, thus

dramatically decreasing the free energy of the system and rendering comparisons less

meaningful. For situations where different model orders are present a second modelling

criterion is utilised - the normalised root mean squared error (NRMSE). NRMSE, is used

to compare the quality of models which have different orders. First, mean values for the

inferred parameters and initial conditions are fed back into the system equation to gen-

erate the deterministic solution for each DSA time series. Next, DSA measurements, yt ,

and the inferred deterministic solution, ŷt , are then used to calculate the NRMSE,

NRMSE =
1

ymax

√
∑

n
t=1 (ŷt− yt)

2

n
(5.4.6.1)

where n is the number of data points in the measured DSA time series and ymax is the

maximum value of y used as a normalisation factor. Normalising the DSA response adds

further utility as opposed to comparing RMSE due to the vastly different DSA levels that

are present amongst each case in the cohort – for example Case 057 has a maximum DSA

level of 34,000 MFI in contrast to Case 064 with a maximum DSA level of 3,200 MFI.

A lower NRMSE is considered optimal as it demonstrates the model is more capable

of capturing the data accurately. NRMSE values have been used as a model selection

criteria before in published works on DSA response with values < 0.15 considered sat-

isfactory under the known inter-assay coefficient of variability for DSA measurements

which is cited as between 10-30 [34]. As such this value will also be used in this work

as a benchmark for model performance. Further to evaluating model fit an approach to

model validation is also performed. Model validation is an important step in assessing

whether a solution is stable given small perturbations to the original data set. This is par-

ticularly useful in the case of evaluating NRMSE where no penalty exists for increasing

model order. Higher order models likely provide a better fit to data compared to lower

order models due to the extra degree of freedom in the parameter space - at the cost of
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being more likely to suffer from the problem of over-fitting. To assess for stability in

the solution, a validation technique known as leave-one-out cross validation (LOOCV)

is applied to compare between candidate models [184]. For a time series, y with length

n the procedure outlined in Algorithm 4 is performed with each model M. By compar-

ing NRMSEcv for two models - one with greater fit but a higher model order - it can be

assessed if the improvement is a consequence of over fitting.

Algorithm 4 Assessing model stability with LOOCV.
1: for i = 1 : n do
2: Leave out data point i from the measurement time series.
3: Perform parameter inference on time series using VB method.
4: Obtain an estimate for missing data point ŷi.
5: Compute the estimation error term ei = yi− ŷi.
6: end for
7: Compute the NRMSEcv from error terms e1, ...en.

5.5 Results

For each of the found dynamic cluster groups (i.e., not Group-0) candidate models are

presented and compared based on increasing complexity as outlined in the methodology.

Table 5.2 highlights the first three models which were considered for each response group.

Model name Model Initial conditions
M1 ẋ+ xθ1−θ1θ0 = 0 x0 = x10
M2 ẍ+ ẋθ2 + xθ1−θ1θ0 = 0 ẋ0 = x20, x0 = x10
M3

...x + ẍθ3 + ẋθ2 + xθ1−θ1θ0 = 0 ẍ0 = x30, ẋ0 = x20, x0 = x10

Table 5.2: A list of the five candidate models list used in Chapter 5 For each of the
DSA model selection tasks the listed models were considered.

In each model the constant term is defined by θ1θ0, which benefits the modelling process

due to simplifying to xθ1− θ1θ0 = 0 at stable conditions (i.e., ẋ = ẍ =
...x = 0). This

can then be manipulated to show that when stable, x = θ0, otherwise referred to as the

settling level in this analysis. Before model fit θ0 prior distribution can be established

based off of the last known DSA value. When applied to a particular group a model,

M, is designated by a superscript, n, (model priors given in detailed in Appendix B.0.1).

Each of the above models have been validated as structurally identifiable via Taylor series

expansion implemented in Wolfram Mathematica, the number of terms required for each

model is indicated in Table 5.3.
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Model name Taylor Series Expansion n terms
M1 Globally identifiable 3
M2 Globally identifiable 5
M3 Globally identifiable 7

Table 5.3: Results of structural identifiability analysis for models M1, M2, and M3.
Each of the explored candidate models were shown to be structurally globally identifi-
able via the Taylor series expansion approach, as implemented in Wolfram Mathematica
software (example shown in Appendix B.1).

5.5.1 Early application of candidate models to Groups 1, 2, and 3

For Groups 1, 2, and 3 model candidates began at second order complexity (M2) due

to notable rise and fall characteristics requiring at least two time constants. Early appli-

cation of both models M2 and M3 provided generally poor results in large part due to

the early adsorption period noted in almost every case for DSA responses. This period,

which had an estimated range of 2-7 days, typically resulted in model fits compromising

between accurate estimation of peak height or settling level while estimation of early post

transplant period was poor in all cases. To overcome this challenge DSA were fit with

models M2† and M3†. These models were established as a compromise to the challenge

and excluded early adsorption data points, ultimately beginning analysis at the start of the

rise - a time point independently identified for each case which represented the first data

point of the rising phase in the dynamic response. Although assessing from this period

onwards excluded the adsorption period from each model, it ultimately allowed for far

more accurate peak and settling values to be inferred by both models M2 and M3.
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(a) Example Case COV028 (Group-1).
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(b) Example Case COV105 (Group-1).

Figure 5.3: Visual comparison of model fit for M21† and M31† from start-of-rise
period. Models M21 and M31 provided poor fit to the data due to the adsorption period
following transplantation. In response each subsequent model (†) is fit from the start-of-
rise period allowing for improved fit of DSA dynamics such as peak and settling level.
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Figure 5.3 shows an example of the fit for two Group 1 cases modelled by M21† and

M31† where parameters are inferred from start-of-rise data with early adsorption points

excluded. In both cases the rise and fall dynamics are modelled similarly, capturing

approximately similar and correct peak values according to the presented data. The rate

of rise and fall in addition to the period spent at the peak can be inferred accurately. The

differences in each model becomes apparent following the initial fall with model M31†

being seen to capture a deeper level of dynamics within both of the shown cases. For

Case 028, model M31† identifies two stages in reaching settling levels: the first, between

days 20-35, is approximately twice that of the true settling level seen from days 35-110.

In contrast model M21† shows only one settling value between the two. For Case 105,

model M31† additionally captures a secondary oscillatory motion following the first rise

and fall - before highlighting a much longer decay to a lower settling level than seen in

M21†. By comparison it can be seen that the true settling level is only approximately

achieved by the end of the 200 day period in M31† in contrast to M21† which shows

settling level achieved at day 35. Ultimately this analysis was effective at retrieving

useful clinical data however is limited in that it requires manual selection of the starting

day - a feature which can be subjective. To overcome this limitation an external input is

considered known as a delayed impulse function.

The delayed impulse function, here on referred to as fp, is typically defined as an in-

finitely high, infinitely narrow pulse with an area of unity - which is of course impossible

to realise in a physical sense [185]. In this work a Gaussian impulse is used which pro-

duces a unit response with finite height and standard deviation designated σ2, as shown,

fp(t) =
θp1√
2πσ2

exp
(
(t−θp2)

2

2σ2

)
. (5.5.1.1)

With a small but finite standard deviation the Gaussian impulse will serve the same pur-

pose as a unit impulse to initiate the model response. In this work σ2 = 0.2 which is suf-

ficiently smaller than the daily time frame which DSA observations may occupy. Given a

pre-defined σ there are two additional parameters in the Gaussian impulse response, θp1,

and θp2 which define the magnitude of the impulse and time to mean respectively. The

effects of these are illustrated in Figures 5.4a and 5.4b.

From here on the analysis conducted for Groups 1, 2, and 3 will utilise a delayed impulse

function as shown in Table 5.4. Modelling will benefit from less bias due to θp2 being
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(a) Effects of increasing θp1.
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Figure 5.4: Demonstration of the Gaussian impulse function. The Gaussian impulse
function, fp, has three parameters σ ,θp1,and,θp2 of which σ2 = 0.2 is fixed. The effects
of magnitude parameter θp1 and time delay parameter θp2 are investigated.

optimised for in contrast to manually selected. Additionally, the model will be capable

fully capturing the dynamic response, including the adsorption period.

Model name Model
M2p ẍ+ ẋθ2 + xθ1−θ1θ0 = fp
M3p

...x + ẍθ3 + ẋθ2 + xθ1−θ1θ0 = fp

Table 5.4: Model list used in Chapter 5 for Groups 1, 2, and 3.

Following the introduction of models M2p and M3p each of the new models were as-

sessed for their global structural identifiable via the Taylor series expansion approach

as implemented in Wolfram Mathematica software however the approach was unable to

ascertain a result. For these results a MATLAB (The MathWorks, Inc., Natick, MA,

USA) software package known as STRIKE_GOLDD (version 3.0, created by Alejandro

F. Villaverde, afvillaverde@uvigo.gal) was used that is capable of analysing nonlinear

ODE models for parameter structural local identifiability (example shown in Appendix

B.1). Both models were shown to be locally identifiable, as indicated in Table 5.5.

Model name Taylor Series Expansion Symbolic Engine
M2p Did not solve Locally identifiable
M3p Did not solve Locally identifiable

Table 5.5: Results of structural identifiability analysis for models M2p, and M3p.
Each of the explored candidate models were shown to be structurally locally identifiable
via the MATLAB software package STRIKE_GOLDD (example in Appendix B.1).
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5.5.2 Group-1 model selection

By introducing the delayed impulse Group 1 cases could now be assessed for model fit

to models M21
p and M31

p, as indicated in Figure 5.5. Model fit is objectively improved

upon those seen in M21† and M31† due to the ability to capture early adsorption period

dynamics (seen within the first 2-7 days following transplantation). Cases COV010 and

COV037 demonstrate this fact with little to no dynamic activity seen in the early period.

By utilising a weak model prior for the delayed impulse mean time, θp2, set approxi-

mately at the start of rise for each case, the VB algorithm was able to optimise naturally

without strong human bias. Comparing for fit in M21
p and M31

p little to no difference

is seen in COV010 with both capturing the same peak and settling values in addition to

demonstrating similar rise and fall rates. For COV037 model M31
p demonstrates slight

improvement over M21
p at capturing the sudden change from fall to settling level dynam-

ics, however as these deviations are within DSA expected coefficient of variation (CV)

and should be assessed if this is a consequence of over fitting to the response data.
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(a) Example case COV010 (Group-1).
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(b) Example case COV037 (Group-1).

Figure 5.5: Example of model fit for Group-1 candidate models. Models M21
p and

M31
p are compared for model fit. Objective improvements are seen over previous models

M21 and M31 due to the ability to model the entire dynamics response including the early
adsorption period following transplantation.

Following model inference parameter values are assessed for their practical identifiabil-

ity, or sensitivity. For a given case, n = 1000 samples are taken from parameter poste-

rior distributions and their response calculated. Figure 5.6 uses this analysis to visualise

the model one-standard-error uncertainty at each time point (shown in dark blue). Ad-

ditionally, a second analysis is performed including the measurement uncertainty and

model uncertainty into the analysis (shown in light blue). Immediately it can be seen that

confidence in model parameters are high in both M21
p and M31

p due to the tight bounds

surrounding the mean parameter response with similarly strong performance for the in-
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clusive measurement uncertainty analysis. Notably both models demonstrate high confi-

dence in the start-of-rise period. Least confidence is shown in the model when capturing

the transition from falling dynamics to settling level.

(a) Case COV036, model M21
p. (b) Case COV036, model M31

p.

Figure 5.6: Example of model sensitivity for Group-1 case COV037. Models M21
p

and M31
p are compared for model sensitivity. n = 1000 samples are taken from parameter

posterior distributions and used to determine model and measurement noise uncertainty
(dark blue and light blue respectively). One standard deviation bands are illustrated.

Assessing of the physiological considerations required analysis of model stability and

confirmation that one-standard-error model uncertainty remained above the minimum

established criteria of being positive. Model stability for a second and third order model

were checked for by first calculating eigenvalues (Matlab solver) and confirming that all

real parts were negative. Next parameter values were checked in accordance with Routh

table criterion and in all cases satisfied the requirements. Similarly model uncertainty

was also confirmed to meet positivity requirements meaning that both models M21
p and

M31
p were able to successfully pass forward to the model selection phase.

As models M21
p and M31

p are of a differing model order the method of comparison will

be that of NRMSE. NRMSE assesses model fit of the mean parameter value response

compared to the observed data with a value of zero being a perfect fit. Figure 5.7 shows

the results for all Group-1 cases comparing by both model type and showing standard

and LOOCV stability assessments. When comparing for model stability a highly stable

model will not deviate greatly under small perturbations of the data set - as experienced

under LOOCV. By comparing LOOCV against the standard (all data) NRMSE an ideal

result showing good stability will be indicated by little to no deviation. As seen in Figure

5.7 model M31
p shows a large deviation for the LOOCV result with a substantial increase

in NRMSE compared to the M21
p model - despite the marginal difference seen in the

standard NRMSE results. Due to the large difference it can be concluded that M31
p model

parameters are unstable under small perturbations to the data set and are likely over fit-
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ting. In contrast M21
p models perform substantially better - albeit still with some losses

to NRMSE - leaving it a strong candidate for analysis of the Group 1 responses.

Figure 5.7: Comparison of NRMSE results for the Group 1 cases. Left - NRMSE box
plots are shown comparing the fit for models M21

p and M31
p across Group 1. A standard

NRMSE represents the fit of the mean parameter response to the observed data. LOOCV
NRMSE is a measure of model stability. Large deviations from the standard NRMSE are
a sign of unstable model inference. Right - a boxplot showing the difference between
models M21

p and M31
p NRMSE.

5.5.3 Group-2 and Group-3 model selection

Despite undergoing separate model selection processes Groups 2 and 3 bare striking re-

semblance to the model selection for Group-1 cases and as such will be summarised

more succinctly in this section. For Group-2 cases models M22
p and M32

p were used and

for Group-3 cases models M23
p and M33

p were used (prior values detailed in Appendix

B.0.1). Similar advantages were seen in these models over the implementation of M2†

and M3† due to the ability to capture the adsorption period following transplantation as

seen in the Group-1 cases. Two example cases shown in Figure 5.8, one from each group,

show that model fits generally captured the data well. For the Group-2 case, COV036,

there are large differences in the two model fits. While initially both models capture early

DSA response similarly - including adsorption and rising period - model M32
p notably fits

peak DSA values more closely. Following from the peak M32
p model offers a far superior

fit by capturing the aggressive decay rate and identifying a secondary oscillatory motion.

For the Group-3 case, COV071, little difference is seen between the two models with

both seemingly capturing the adsorption period, rise and settling level dynamics.

Next, Groups 2, and 3 are assessed for their practical identifiability by investigating the

results of the Monte Carlo stochastic sensitivity analysis. Figure 5.9 displays these re-
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(a) Example case COV036 (Group-2).
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(b) Example case COV071 (Group-3).

Figure 5.8: Example of model fit for Group-2 and Group-3 candidate models. Mod-
els M2p and M3p are compared for model fit. Objective improvements are seen over
previous models M2 and M3 due to the ability to model the entire dynamics response
including the early adsorption period following transplantation.

sults for two typical cases, COV036 from Group-2 and COV071 from Group-3. Model

sensitivity among the four examples shows a strong level of confidence in the inferred

parameters, owing to the tight dark blue band representing the model one-standard de-

viation uncertainty. When additionally considering the measurement uncertainty in the

Monte Carlo analysis (shown in light blue) both models M2p and M3p offer convincing

solutions and capture the observed data within the one-standard-error band. All cases in

Groups 2, and 3 demonstrated similar such sensitivity characteristics and were considered

to have passed the requirements for practical identifiability criterion.
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(a) Case COV036, model M22
p. (b) Case COV036, model M32

p.

(c) Case COV071, model M23
p. (d) Case COV071, model M33

p.

Figure 5.9: Example of model sensitivity for Group-2 case COV036 and Group-3
case COV071. Models M2p and M3p are compared for model sensitivity. n = 1000
samples are taken from parameter posterior distributions and used to determine model
and measurement noise uncertainty (dark blue and light blue respectively). One standard
deviation bands are illustrated.

Comparison of models M22
p and M32

p for Group-2 cases and models M23
p and M33

p for

Group-3 cases similarly required use of the NRMSE criteria due to the differing model or-

ders between model candidates. The results of this analysis are shown in Figures 5.10 and

5.11, respectively. Notably for Group-2 cases there is little difference between NRMSE

values in the two candidate models and the values are generally higher than seen in

Group-1 cases. The subsequent LOOCV analysis also suggests that there is little gain

in model fit by introducing an extra degree of freedom in model M32
p. For Group-3 mod-

els there may be some argument to be made about the use of model M33
p over M23

p due

to an improvement in performance LOOCV NRMSE in the majority of cases. Despite

this however, model M23
p still shows strong performance with NRMSE well within CV

criterion established at <0.15. The marginal improvement seen in M33
p LOOCV NRMSE

is therefore not considered significant enough to warrant its use over M23
p.
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Figure 5.10: Comparison of NRMSE results for the Group 2 cases. Left - NRMSE
box plots are shown comparing the fit for models M22

p and M32
p across Group 2. A

standard NRMSE represents the fit of the mean parameter response to the observed data.
LOOCV NRMSE is a measure of model stability. Large deviations from the standard
NRMSE are a sign of unstable model inference. Right - a boxplot showing the difference
between models M22

p and M32
p NRMSE.

Figure 5.11: Comparison of NRMSE results for the Group 3 cases. Left - NRMSE
box plots are shown comparing the fit for models M23

p and M33
p across Group 3. A

standard NRMSE represents the fit of the mean parameter response to the observed data.
LOOCV NRMSE is a measure of model stability. Large deviations from the standard
NRMSE are a sign of unstable model inference. Right - a boxplot showing the difference
between models M23

p and M33
p NRMSE.
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5.5.4 Group-4 model selection

A lack of the rising DSA characteristic in Group-4 cases allowed for the consideration of

the M14 candidate model for analysis as many cases appeared to demonstrate a slow de-

cay over longer periods of time (exceeding that completed within the time series cluster-

ing task in Chapter 4). Additionally, without a time dependent rise the delayed Gaussian

impulse served little to no purpose. As such, two candidate models were investigated for

their possibility to fit the DSA responses, models M14 and M24 (prior values detailed in

Appendix B.0.1). In almost all cases the two models showed little to no difference and

generally followed the same decaying pattern - with M24 models tending only to fit to a

marginally slower decaying pathway (shown in Figure 5.12). There were typically few

characteristics to assess for model fit. Additionally, Group-4 cases appeared to demon-

strate much greater levels of noise than other groups and many extreme value deviations

can be seen in the data (such as Figure 5.12b data points 4→ 5→ 6 showing wild changes

in DSA levels from 14→ 10→ 14 kMFI).
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(a) Example Case COV063 (Group-4).
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(b) Example Case COV125 (Group-4).

Figure 5.12: Example of model fit for Group-4 candidate models. Models M14 and
M24 are compared for model fit. Little difference is seen between candidate models with
the main difference noted that M24 tends to take a shallower decay than M14 across the
cohort.

The sensitivity of the two candidate models also illustrated a much lower degree of con-

fidence in model fit across all cases. In both models a wider sensitivity (dark blue band)

was demonstrated relative to model performance seen in Groups 1, 2, and 3. Of the two

candidate models, M14 has the greater confidence - however the difference is slight.
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(a) Case COV063, model M14. (b) Case COV063, model M24.

Figure 5.13: Example of model sensitivity for Group-4 case COV063. Models M14

and M24 are compared for model sensitivity. n = 1000 samples are taken from parameter
posterior distributions and used to determine model and measurement noise uncertainty
(dark blue and light blue respectively). One standard deviation bands are illustrated.

Lastly, to compare models M14 and M24 for the Group-4 cases the NRMSE measurement

criteria was used due to the differing model orders between model candidates. The results

of this analysis are shown in Figures 5.14. Model M24 notably exceeds the minimum

criterion of NRMSE<0.15 on a number of cases in contrast to model M14 which stays

within expectations. Additionally, M24 shows the most extreme drop in LOOCV NRMSE

seen amongst any group and model showing large instability in the model results. This is

potentially due to an increased number of extreme data points seen in the Group-4 DSA

samples leading to overfitting from model M24. Final model selection for Group-4 is then

to use model M24 for further analysis of the group.

Figure 5.14: Comparison of NRMSE results for the Group 4 cases. Left - NRMSE
box plots are shown comparing the fit for models M14 and M24 across Group 4. A
standard NRMSE represents the fit of the mean parameter response to the observed data.
LOOCV NRMSE is a measure of model stability. Large deviations from the standard
NRMSE are a sign of unstable model inference. Right - a boxplot showing the difference
between models M14 and M24 NRMSE.
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5.6 Analysis of parameters

Groups 1, 2, and 3 were all found to be best modelled with a second order ODE with

a delayed Gaussian impulse and can therefore be compared to one another to observe

any significant differences between group responses. Differences between parameter and

initial condition means are assessed via box plot analysis as shown in Figure 5.15. Signif-

icant difference between groups is determined by the non-parametric Wilcoxon rank sum

test which assessed the null hypothesis that there is no difference between groups. Two

distributions are considered significantly different when the test yields p < 0.05 for this

work. From Figure 5.15 all five parameters in model M2p are compared alongside model

initial condition x01. A tight prior distribution was used to constrain initial condition x02

at zero for models M2p and is therefore not shown in further analysis. Within each box

plot red and green markers represent the colour coded sample values in accordance with

case censorship.
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Figure 5.15: Parameter and initial condition mean values for model M2p. Dynamic
DSA groups 1, 2, and 3 are compared for differences in their response characteristics.
Significant difference assessed via the non-parametric Wilcoxon rank sum test for differ-
ences between groups. In addition to the box plots sample values are indicated via green
(censored) and red (not censored) markers, representing censorship.
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The relative influence of a given variable on the response of the system when controlled

independently can be seen in Figure 5.16 allowing for assigning intuition to the results in

Figure 5.15. θp2 for example correlates directly to the delayed impulse response time and

indicates that no significant difference is seen between any of the groups. θp1 has a large

influence on the magnitude and steepness of the response, with higher values significantly

associated with Group-1 response types. X01 and θ0 correspond to the initial value and

settling value of the DSA before and after the dynamic response has occurred. In both

cases Group-3 is shown to have significantly higher DSA levels than Groups 1, and 2.
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Figure 5.16: Univariate analysis of variable impact on the response for model M2p.
This set of subplots shows the impact of varying a single variable at a time for the re-
sponse in an M2p model. An typical response taken from the Group-1 data set is shown
in black consistently for each subplot. A colour spectrum is used to represent the shift be-
tween low variable values (blue) through to high variable values (red). Particular values
for the low through to high are shown in the legend.

The inferred parameter and initial condition means were next analysed for relationship

to graft survival in line with methodology outlined in Chapter 3 and will now be referred

to collectively as variables. A short modelling pipeline was developed which included

a standard scaling function applied individually to each of the variables. This stage al-

lows for comparison between variables and also serves to limit the influence of outliers -

such as the single occurrence of θ1 = 0.5 (Figure 5.15). Following this a univariate cox

proportional hazards model was developed for each variable with bootstrapped sampling

utilised to indicate confidence in the inferred output. Output in this case is HR. For every

1 unit increase in standard deviation for a given variable a corresponding increase in HR

is expected. Bootstrapped confidence intervals are given at two standard deviations from

the mean encompassing approximately 95% of observed results.
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Due to Groups 1, 2, and 3 sharing the same model, M2, it was possible to assess their

parameters under the same analysis, thus increasing the available cases and improving

confidence in HR estimates. Figure 5.17 illustrates the histogram results of the boot-

strap analysis for each of the model variables. From top left to bottom right variables

are ordered according to their mean difference from zero - suggesting that X01, θ0, and

θ1 are likely to be the most informative variables for graft survival. In this case the 95%

confidence intervals are indicated in the orange band. Confidence intervals are used to

determine a significant finding by observing if > 97.5% of bootstrap samples are either

side of the value one. In this case only two variables X01 and θ0 demonstrate significance.

In either case a higher value indicates a greater HR and therefore a lower chance of sur-

vival. For X01, which corresponds to the initial value of DSA following transplantation,

an increase in 1860 MFI is expected to increase the HR by 2.7. Similarly for θ0, which

corresponds to DSA settling level, an increase of 6470 MFI corresponds to an increase

in HR by 1.95. Variables which correspond to the magnitude and time constants for rise

and fall, such as θ1, θ2, and θp1 are shown to have little influence on graft survival. Of all

variables θp2, which determines the position of the impulse response in time, is shown to

have the least impact on long term graft outcome.

Figure 5.17: Univariate analysis of model M2p variables against graft survival.
Groups 1, 2, and 3 model M2p variable means and combined in a univariate Cox propor-
tional hazards survival analysis to determine associations with graft survival. Histograms
represent the results of n = 5000 bootstrap samples, black dotted line indicates a HR=1,
blue dashed line indicates the bootstrap mean. The 95% confidence interval is indicated
by the orange bands. Significance is determined by > 97.5% of the bootstrap samples
being on either side of HR=1.
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With only a few cases (n = 16) in Group 4, bootstrap confidence intervals were far reach-

ing and offered little value to explore. Where settling and initial DSA values had pre-

viously shown to be significant an alternative approach is used where Group 4 cases are

now reassessed for these variables with all dynamic cases. The results of this are shown

in Figure 5.18 alongside a reference distribution "Random" which is the results for an

additional variable generated from a random number generator. Notably, the initial DSA

variable which was previously significant when observed for cases in Groups 1, 2, and

3 is no longer demonstrated. This finding suggests that the value of observing the initial

DSA value may be group specific and not necessarily a bad indicator for Group 4 cases

though this is not possible to confirm without a larger sample size. Settling DSA level

shares the same rounded standard deviation of 6470 MFI when including Group 4 cases

(as compared to θ0 in Figure 5.17) and is also similarly significant as in the previous

study. A higher settling DSA level results in a larger HR and worse graft outcome for

the patient. Observing a completely random variable is used here to check model perfor-

mance is in line with expectations, where a tight confidence interval about one shows that

the random variable has no association with graft survival.

Figure 5.18: Univariate analysis of DSA initial and settling level variables against
graft survival. Groups 1, 2, and 3 model M2p variables X01 and θ0 are combined with
Group-4 model M1 X01 and θ0 to form initial and settling level DSA mean estimates
for all dynamic cases. A univariate Cox proportional hazards survival analysis is then
used to determine associations with graft survival. Histograms represent the results of
n = 5000 bootstrap samples, black dotted line indicates a HR=1, blue dashed line indi-
cates the bootstrap mean. The 95% confidence interval is indicated by the orange bands.
Significance is determined by > 97.5% of the bootstrap samples being on either side of
HR=1. A "Random" result is introduced to confirm the intuition of a baseline model.
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5.7 Discussion

In this Chapter the primary aim was to mathematically describe the evolution in each of

the previously identified DSA response groups (from Chapter 4), and, following a suc-

cessful modelling approach, the secondary aims were to compare the dynamic responses

between groups and then identify any response characteristic associations with long term

graft outcome. The primary aim of this chapter was approached via three main stages:

identification of a modelling framework, implementation within the VBA toolbox, and

lastly, development of a model selection methodology. The secondary objectives of com-

paring group dynamics and observing associations with graft survival were assessed on

inferred model parameters using both statistical techniques and univariate Cox propor-

tional hazards models as outlined in Chapter 3.

In preparation of the primary aim, an appropriate framework for modelling physiological

responses was considered, whereby decisions were made on modelling approach, model

form, and parameter inference method. For the modelling approach a physiological based

method was ultimately thought unfeasible due to the complexity of the underlying im-

mune response system in addition to uncertainty limitations found within the current

SAB DSA sampling methodology (Chapter 2). As a result a parametric data-driven mod-

elling approach was utilised with a form based on an ODE. These choices allowed for

great flexibility in selecting candidate models when seeking to capture the underlying

physiological characteristics, and have been used before as the basis for forming such

physiological studies [34, 176].

Inference of model parameters may commonly be performed within either a frequentest

or Bayesian framework, where the former considers parameters as represented by a single

value, and the latter considers them as a PDF. The advantages of utilising the Bayesian

framework for this modelling task was two-fold as it served not only to give confidence

distributions over model initial conditions, parameters, and uncertainties, but also al-

lowed for establishing prior values to loosely nudge the response based on intuition. Both

model and parameter identification were carried out using the MATLAB VBA toolbox

which employs a VB scheme for the inversion of nonlinear state-space models. This is

a deterministic approach and approximates parameter posterior distributions through the

assumption of certain properties taking a parametric form.
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Model selection as a process was split into three main sections: developing candidate

models for each group, assessing model suitability via modelling criterion, and lastly

the model selection stage which analysed successful models for final representation of

the DSA group. Candidate models were considered sequentially with simplest first or-

der ODE models considered first before introducing additional degrees of freedom with

higher order models. External inputs were to be introduced as required. For a model

to be suitable there were three main criteria it must satisfy: be structural identifiable, be

practically identifiable, and satisfy the physiological considerations of demonstrating a

stable (i.e., not diverging) and positive DSA output. In all considered cases in this work

models were shown to be at least locally structurally identifiable and offered a high level

of confidence in model output when considering their respective practical identifiability

- presenting a strong degree of confidence in parameter estimates. Physiological consid-

erations were also satisfied. Identifying a suitable model selection process would need

to accommodate in particular for the large and inconsistent uncertainties presented in the

sampling of DSA measurements. This process would manifest itself as an additional

blurring effect on model confidence. Measurement uncertainty can be as high as 30 %

in some DSA samples or considerably lower in others. Several factors can influence this

uncertainty which may manifest during the SAB measurement process and result in the

stated value itself being highly variable. To assess then that models were not being over

fit to noise, a LOOCV scheme was considered during the model selection stages to cal-

culate stability under perturbations of the data. Final model selections were based upon

models which performed strongly in both quality and consistency of model fit relative to

others.

For groups Groups 1, 2, and 3 which demonstrated similar rising characteristics, second

and third order linear ODEs were considered in the form of models M2 and M3 - however

resulting model fits were poor. The poor model fit was attributed to the early saturation

phase in the first few days following transplantation whereby DSA levels demonstrate

little dynamic activity. To accommodate for this process the introduction of an external

input - the delayed Gaussian impulse - was considered. This input crucially introduced

two extra degrees of freedom to the models (labelled M2p and M3p) allowing for response

to occur following a saturation phase. Only Group 4 differed in this modelling approach

as there was little to no evidence of a delayed response amongst cases. In these cases the

linear first and second order models M1 and M2 were considered. Final model selection
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highlighted some important similarities between the previously identified cluster groups

whereby model M2p was found to best represent Groups 1, 2, and 3 despite separate

model selection processes. Amongst these groups, and for a minority of cases, model

M3p was able to produced a superior fit compared to M2p - as compared via both model

fit and stability - however improvement was always slight. For this work a generalisable

model for each group was desired - due to the benefit it provided to subsequent stages

of analysis, i.e., allowing for direct comparison of model parameters to one another. For

the Group-4 cases, the first order model, M1 was shown to be superior both in terms of

fitness and stability - indicating that the DSA dynamic response could be represented as

just a single exponential decay from time of transplantation with a half life.

Results for the secondary objectives were conducted on the parameters and initial condi-

tions of each system, with the mean value of said quantities taken as a reference point in

analysis. Combined, Groups 1, 2, and 3 make up 78% of dynamic responses (56/72) and

the characteristics of their respective DSA evolution following transplant are all shown

to be well captured by the second order system with delayed Gaussian impulse. At only

22% of dynamic responses (16/72), Group-4 was the only group to be best described with

an alternative model, M1.

By sharing the same model form it was possible to directly compare the parameters of

each of these groups 1, 2, and 3 to one another. One area of interest in this work has sur-

rounded the period of inactivity following transplantation. This period of subdued DSA

levels following transplantation has been noted in several studies before [26, 64, 113],

with potential causes arising due to adsorption of HLA antibodies onto the kidney allo-

graft [26]. The median period of inactivity was between six and eight days however no

significant difference was found between groups. More significant was analysis of the ini-

tial DSA and settling DSA values which highlighted how Group 3 cases had higher levels

of DSA both immediately following transplantation and after dynamic periods were over.

When considering that graft survival rates differ between Groups 1, 2, and 3 (Chapter 4),

and that Group 3 cases have worse 1, 3, 5, and 10 year survival compared to Groups 1

and 2 it may be hypothesised that the rates of rise and fall dynamic are less important

than the initial and settling DSA levels.

Following up on this analysis each model parameter was assessed for its influence on

graft survival using an independent univariate Cox proportional hazards model (method-
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ology as detailed in Chapter 3). This analysis echoed the previous sentiment on initial

and settling DSA levels by highlighting a significant association between the factors and

long term graft survival. For the initial DSA value an increase in only 1860 MFI would

correspond to a HR factor of 2.7. Similarly, for the settling level DSA value an increase

in DSA by 6470 MFI corresponded to an increase in HR by a factor 1.95. Like our study,

others reported these same longer term findings [110, 112, 114], however these were de-

fined based on a single time-point at month-3 following transplantation. For Group 4

cases it was not possible to analyse characteristics directly due to the limited sample size

(n = 16), however a subsequent analysis included initial and settling level DSA values

into an a larger study including all dynamic response types. In this case both of the pre-

viously significant characteristics saw reduced confidence in their HR and the estimate

for initial DSA lost significance completely. These finding potentially indicate that set-

tling and initial DSA levels may be important factors in the prediction of long term graft

survival - but perhaps only for DSA responses demonstrating rise and fall dynamics.

5.8 Conclusions

In this chapter the primary aim was to mathematically describe the DSA evolution of each

of the previously identified dynamic response groups (Chapter 4). To achieve this aim a

model development pipeline was implemented to complete the task of model selection.

For the task of modelling physiological based systems one can either look to physiolog-

ical or data-driven approaches. A physiological based model can offer superior insight

into the underlying immune response - however requires a deep understanding of the un-

derlying dynamical systems. For the DSA immune response a complete understanding of

the components and interactions of the physiological system is not known and this task

instead focuses on the latter which can be implemented in its absence. The data-driven

models in this work are formed using ODE’s and are based within a Bayesian frame-

work for parameter inference. For both the tasks of model and parameter identification

a MATLAB VBA toolbox was used which employs the VB scheme for the inversion of

nonlinear state-space models - allowing for a deterministic approximation of parameter

posterior distributions via the assumption of certain parametric properties. For model de-

velopment each of the DSA group responses would be investigated for suitability and fit

versus a set of candidate models. Results of this process highlighted important similari-
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ties and differences between dynamic groups:

• Groups 1, 2, and 3. For each of these DSA response groups it was independently

found that the second order delayed Gaussian impulse model, M2p, produced su-

perior fit while considering model stability under LOOCV analysis.

• Group 4. For group 4 it was found that the linear first order model, M1, produced

superior fit and stability to the alternate considered second order model, M2.

Via model M2p, DSA responses in groups 1, 2, and 3 were shown to demonstrate a de-

layed response characteristic - previously noted by other groups [26, 64, 113] and hypoth-

esised to arise due to adsorption of HLA antibodies onto the kidney allograft [26]. For

the secondary objectives of the work the dynamic response characteristics were compared

between groups for association with long term graft outcome. In this work the length of

the delay period was captured for each of the group 1, 2, and 3 responses, however ulti-

mately showing no association under Cox proportional hazards univariate analysis. Two

characteristics were found to be significant for group 1, 2, and 3 responses: initial DSA

level, i.e., in the immediate period of saturation following transplantation, and the settling

DSA value which occurs following the period dynamic activity (length varies depending

on response type). For both characteristics a higher DSA level was found to be indicative

of worse long term outcomes. Group 4 by itself showed no significant outcomes - perhaps

due to its relatively small group size (n = 16) - however its estimates for initial and set-

tling levels could reliably be interpretted alongside other groups. Inclusion of these cases

proved to weaken the association of those characteristics with respect to graft outcome -

potentially indicating that settling and initial DSA levels may be important factors in the

prediction of long term graft survival, however perhaps only for DSA responses demon-

strating rise and fall dynamics. One potential avenue for future work in this area may

be to include modelling in relation to more detailed characteristics of antibodies. An ex-

ample of this may be to assess DSA individually as opposed to an aggregated sum - it is

known for example that some patients have up to seven different DSA allele types. Al-

ternatively this work may see application in the area of synthetic generation of response

data - stimulating more detailed research into optimal monitoring protocols.
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Conclusions and future work

Kidney graft failure is a major problem following HLAi transplantation [25], and has

resulted in considerable efforts by the research community to identify high risk patients.

This information is likely to be highly valuable in clinical practice, potentially allowing

for early preventative action to be taken [186]. Preferable approaches towards this task

have been through the investigation of different minimally invasive biomarkers that can

assessing risk [187], including the monitoring of DSA levels which has been shown to be

a promising tool for clinicians. The role of post-transplant monitoring of DSA is not fully

established however - even in cases that had pre-formed DSAs - and as such monitoring

protocols are typically centre specific with wide variation amongst the different transplant

centres [188]. The work conducted in this thesis sought to contribute new domain knowl-

edge to the area of AiT kidney transplantation that may better equip clinicians for patient

care in the future. More specifically the thesis aim is then structured to investigate the

associations between early post-transplant DSA dynamics with long-term graft outcome.

To fulfil this aim, four thesis objectives were devised (Chapter 1) and achieved - resulting

in three main contributions of the work to the area of HLAi kidney transplantation:

1. Recommendations for optimal DSA monitoring periods around transplantation that

associate most strongly with long term graft outcome.

2. Identification of the early period DSA dynamic response types following HLAi

kidney transplantation.

3. Development of data driven dynamical models for parametric based description of

DSA dynamic response types.

For each of these results analysis was based upon the HLA AiT kidney transplant cohort

provided by the UHCW. In total 99 cases were assessed and collected between June 2003
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and February 2014, with follow-up data available up until March 2019. Use of this cohort

provided some of the first novelty in the work due to a high frequency of DSA monitoring

in the early post-transplant period. Cases here had a median of 19 samples in the first 2

months following transplantation. Such high frequency is uncommon in clinical practice

due to the costly DSA sampling process. Even in literature, studies typically either make

use of single pre- and/or post-transplant DSA levels only, with just a select few studies

found to be monitoring over the weeks or months following transplantation [27, 64].

Ultimately this has allowed for more detailed analysis of the early post-transplant period

than others have achieved.

For the first contribution, work was conducted in Chapter 3 and looked to build upon the

results of more recent publications that focused on use of DSA as a bio marker in asso-

ciative or predictive models - such as those completed through classical statistical mul-

tivariable approaches [36–38, 189], or more sophisticated machine learning algorithms

[39]. Motivation for this analysis formed due to the general recognition that presence of

DSA both before and after transplantation correlates strongly with poorer graft outcome

[187, 190–192] - however best practice in monitoring and use of DSA was still a develop-

ing area of research. A consistent and well defined protocol amongst different practices

would benefit clinicians in decision making while also improving statistical power of fu-

ture studies through an increased cohort size spread across multiple centres. To achieve

the main aim of identifying the most informative DSA measurement period, a separate

multivariate survival model was developed for each day surrounding transplantation, i.e.,

from 7 days prior up to 88 days post (day range based on minimum graft failure sample

size of 10). Results of this work began prior to the model development where additional

(i.e., non-DSA) factors were assessed under bootstrapped conditions for inclusion in mul-

tivariate models. Variables: patient age, crossmatch status at time of transplant, and time

on dialysis, were found to be informative of long term graft outcome and subsequently

included. These findings corroborated those of others [15, 33, 38, 48, 106–108]. Com-

parison of daily models revealed that monitoring in either the pre-transplant period or

between 6-12 weeks post transplant offered strongest DSA associations with graft fail-

ure, with higher DSA values indicating worse outcome. Recommendations of this work

would suggest that if few observations are to be made due to financial considerations, a

monitoring protocol of two DSA samples on days -2 and 70 are likely to be most infor-

mative of long term graft outcome. This consistency would additionally allow for results
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to be verified on a larger multi-centre cohort.

The second contribution of this thesis was the discovery and description of the early

period DSA dynamic response types. Following kidney transplantation, allorecognition

and memory response to the re-exposure of previously exposed HLA-protein produces

immune response with an associated rise in DSA and rejection [193]. The response fol-

lowing can be variable [194] and may depend on the type of sensitisation events [195],

age, baseline immunosuppressant, time since sensitisation and level of crossmatch be-

fore transplantation. Of these response types, a rising DSA trend is often considered

more worrying and more clinically useful than a steady state or drop in the MFI values.

Previously reported dynamic patterns have been seen in individual donor-specific HLA

antibodies and third party HLA antibodies before, primarily identified via using visual

description [26, 34] - however these studies did not investigate all outcomes. For the first

time in this work (detailed in Chapter 4 and published in [196]), an unsupervised cluster-

ing approach was applied to DSA MFI time series - revealing five different types of re-

sponse: fast-modulation (group-1), slow-modulation (group-2), rise-to-sustained (group-

3), sustained (group-4), and no-response (group-0). Modulation of DSA post-transplant

versus sustained DSA production has been observed by others [34, 110, 113, 114] with

variable outcomes, however what is novel here is the ability to define a fast modulation

group that has good outcomes - even though DSA levels may appear significant at 20-

30 days post-transplantation. Clinically, these results additionally support observations

that early acute ABMR is not generally deleterious to longer term transplant survival

[65, 85, 195]. That is not to say that hyperacute ABMR and some cases of overwhelm-

ing acute ABMR may not cause graft failure, but that once acute ABMR is resolved the

longer term outcome may be good. The results from this study have important implica-

tions for the practical management of HLAi transplants, and also for the understanding

of the immunological dynamics post-transplantation. The role of unsupervised machine

learning [118, 132] was important here, because clusters of DSA behaviour were not

created in order to satisfy any pre-exisiting hypotheses; indeed, although the importance

of the fast modulation group was expected, the critically important separation between

the slow modulation group and the sustained groups was not anticipated in advance of

the analysis. This is the first description of an objective, mathematical classification of

transplant-driven HLA responses, and it is believed to be the first such high-resolution

classifications of acute humoral responses in humans. The procedures that have been
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used may therefore be generalisable to other specific responses, such as to pathogens and

vaccines. Lastly, analysis was not able to indicate exactly what factors may determine

modulation versus a sustained response, but they do provide an tight period for interroga-

tion of immune responses. By not confusing slow modulation with a sustained response

it will now be possible to search for the underlying physiological mechanisms.

For the third contribution a data-driven modelling task was completed whereby a para-

metric model was developed for each of the previously identified DSA post-transplant

dynamic response types. Certain effects such as the subdued DSA levels following trans-

plantation have been noted in studies before [26, 64, 113] - however mathematical de-

scriptions of complete DSA response profiles are novel results. This work builds upon

the results of a previous PhD project [197] which outlined a robust methodology, and ulti-

mately published a mathematical model for the partial (decay phase) description of what

is now recognised as the fast-response type [34]. Candidate models were proposed in the

form of ODE and model parameters subsequently inferred via a VB parameter estimation

task. The VB method makes use of a deterministic and efficient algorithm to approximate

the true posterior distribution over unknown parameters, while simultaneously providing

a lower bound on the model evidence. The work in this thesis (conducted in Chapter 5) fo-

cuses on the application of the VB method through use of a MATLAB toolbox - referred

to as the VBA toolbox, with mathematical details found in [178, 179, 197]. A model

selection framework was implemented whereby each group would be assessed indepen-

dently. For Group 1, 2, and 3 cases it was found that a second order ODE with delayed

response, fit best across their respective cases. This model allowed for representation of

key features, such as the aforementioned subdued DSA levels dynamics and rise-and-fall

dynamic phase. Group 4 cases produced different results from the others, where neither a

subdued period nor rise-and-fall dynamics were experienced. It was instead found that a

simple 1st order ODE produced best fit - indicating that these responses may be described

by a simple decay rate when on a longer time frame. Lastly, parameters were assessed

for their relationship with long term graft outcome - ultimately showing that for groups

1, 2, and 3, higher initial DSA and settling DSA levels were strongly associated with

worse survival. However when including group 4 cases in analysis associations were less

important or even non-significant. These findings may partly suggest why early period

DSA levels in the daily DSA analysis (Chapter 3) had wide uncertainty - indicating that

magnitude of DSA level may only be important for certain types of DSA response.
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This study consisted of 99 cases transplanted at a single University Hospital with pa-

tients from multi-centre UK and Republic of Ireland and the results reflect specific im-

munosuppressive protocol, management and monitoring protocols, and case selections

- limiting generalizability to wider patient groups. Ideally, a larger multi-centre study

is required to confirm the findings. Other limitations for the study include cases dis-

charged back to parent units, and management protocol that may have influenced long

term outcomes; additionally, protocol biopsies were not employed and may have missed

sub-clinical ABMR, which has been shown to influence long-term outcomes. Finally,

SAB are the best available option for determining DSA levels [58] and have improved

the ability to identify and manage allosensitised transplant patients [59]. They provide

a semi-quantitative measurement of DSA in the form of a MFI reading however are not

without limitations in measurement accuracy. It is recognised there can be a large coef-

ficient of variation between assay runs [198] which increases with lower antibody levels

and also these data were obtained without any form of serum treatments such as EDTA to

resolve complement interference, which may mean MFI levels in some cases could be an

underestimate. Despite these limitations an in-depth and detailed analysis of early post-

transplant DSA dynamics and their associations with long term graft outcome has been

conducted. These approaches improve the understanding and aids in the development

of a DSA monitoring protocol by highlighting two main periods which demonstrate the

most value to monitor in clinical practice, while also indicating key differences in early

post-transplant DSA dynamics. This work may help in future tailoring of treatment, so

that lower risk HLAi patients are not subjected to over-immunosuppression even if they

have had early acute rejection and that high-risk patients can be looked at more carefully

even if they haven’t had an early acute rejection.

Future work would benefit most from a larger multi-centre cohort which could serve to

validate this work beyond AiT patients at UHCW. This is not only due to the various

treatment and monitoring protocols seen across transplant units, but also as the relatively

small UHCW cohort did not have sufficient cases to perform predictive analysis which

requires splitting of the data into test, train and validation subsets. Other avenues of work

could focus on data that is already available, such as exploring the influence of different

allele types on transplant outcome. Throughout this thesis DSA levels are formed of the

aggregate of all DSA within a patient, however one could consider how results perform

given use of the immuno-dominant DSA or even including multiple in a multivariable
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analysis. Lastly, this work has shown that DSA response types play an important role in

long term outcome - however it is not yet clear how DSA sampling can be specified in

order to obtain class type. Development of group specific parametric models has now pre-

sented an opportunity to synthesise new data sets which may be used to conduct analysis

into the effects of different sample rates.
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Appendix A

Additional theory

A.1 Kaplan-Meier survival function

A clear definition of the Kaplan-Meier survival curve can be given as “the probability

of surviving in a given length of time while considering time in many small intervals”.

There are three assumptions to consider:

1. Patients who are censored have the same survival prospects as those who continue.

2. Survival probabilities are consistent for patients who have joined at any point in the

study.

3. The event occurs at a specific time.

This may present a limitation when events are only determined at regular examinations.

The survival probability for any point is calculated by the formula,

st =
Nliving at start−Ndied

Nliving at start
(A.1.0.1)

At each time interval the survival probability is calculated as the number of patients sur-

viving divided by those at risk. At risk patients are those who are still in the study at

the time interval of interest and do not consider those who have dropped out or whose

follow-up time is shorter. Patients with lower follow-up time are considered as censored

data from their last recorded update and not counted in the denominator. The product

limit method (Kaplan and Meier 1958) is used to estimate S:

Ŝt = ∏
ti≤t

[
1− di

ni

]
(A.1.0.2)
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Where ti is the duration of the study at point i, di is the number of deaths up to point i and

ni is the number of individuals at risk just prior to ti. S is considered the probability of an

individual surviving to the end of a time interval (given that the individual was present at

the start of the time interval). The variance of S is estimated using the Greenwood (1926)

method,

var
(

Ŝt

)
= Ŝt

2
∑
ti≤t

di

ni (ni−di)
(A.1.0.3)

However, at the extremes of S this yields unrealistic confidence intervals (<0 and >1)

so the confidence interval applies an asymptotic maximum likelihood solution by log

transformation (Kalbfeisch and Prentice 1980).
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Application of VBA toolbox

Model specification and ODE solution

When working in the context of the VB toolbox an ODE system will be represented in

terms of its state space formula. The state space formula consists of a set of first order

differential equations relating each of the state space variables which, when considered

together, describe the various aspects of the system dynamics. The state space formula is

denoted by,

dx(t)
dt

= F(x(t),p,u(t), t), (B.0.0.1)

with system initial conditions,

x(0) = x0. (B.0.0.2)

In the context of Equations B.0.0.1 and B.0.0.2 bold letters represent vectors and matri-

ces. Given n system states, F = {F1, ...,Fn} is the set of formula which relate system state

variables x = {x1, ...,xn} to ẋ = {ẋ1, ..., ẋn} at time t. Parameter vectors p and u(t) corre-

spond to the constant and time-dependent inputs o fthe system. For each system state an

associated initial condition x0 = x01, ...,x0n exists at x(0).

During VB model inversion process, as previously described in Section 5.3.4, the ODEs

defining the system have to be solved such that the current model estimation y(t) can be

compared to the observed data y. To achieve this the user must specify an update rule for

calculating the next value of the state space vector xt+1, from the current value xt , within

a fixed and pre-defined time step size ∆t. This process allows for approximation of a
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continuous state space model solution from discrete time steps and is performed using

the Euler discretisation scheme [199],

xt+1 = xt +FFF(xt , p,ut)∆t xt=0 = x0 (B.0.0.3)

Within the toolbox only the mean of the model parameters, p, is passed to the user as

an estimate of the associated PDF. A set of vector inputs, ut , can also be specified at

a given time t, allowing for the inclusion of time dependent model events. Time itself

is considered a model input and is included in this manner. Through this approach an

adequate approximation of model state trajectories can be computed if the time step ∆t is

at resolution smaller than the fastest decay of the system [199]. For all models explored

in this chapter a step size of 0.1 days was selected and shown to be sufficiently small

enough to approximate the true model solution while not compromising substantially in

computational processing time.

In order to update the model parameters a Gauss-Newton optimisation scheme is imple-

mented, as indicated in Section 5.3.4, whereby it is necessary to calculate the trajectory

of the model sensitivity, i.e., the derivative of the model states relative to the unknown pa-

rameters, p, and initial conditions, x0. Mathematical details on this procedure is provided

below [176]. The equations for continuous time trajectories of the model sensitivity are,

Sp(t) =
dx(t)
d p

and Sx0(t) =
dx(t)
dx0

, (B.0.0.4)

where Sx0(t) and Sp(t) are the sensitivities of the model states relative to the initial con-

ditions and parameters respectively. After application of the multi-variate chain rule to

the state space representation of the system (shown in Equation B.0.0.1) the following is

derived,

dSp(t)
dt

=
d
dt

(
dx(t)
d p

)
=

∂FFF
∂ p

+
∂FFF

∂x(t)
dx(t)
d p

, (B.0.0.5)

dSx0(t)
dt

=
d
dt

(
dx(t)
dx0

)
=

∂FFF
∂x(t)

dx(t)
dx0

(B.0.0.6)
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where dx(t)
d p |t=0 = 0 and dx(t)

dx0
|t=0 = III. Symbols FFF and III are defined by the model equations

and identity matrix respectively. At this stage a user defined input is provided to the

toolbox for the partial derivatives of the model equations FFF relative to the model states

x(t) and parameters p,

∂FFF
∂x(t)

= JJJ(t) and
∂FFF
∂ p

= HHH(t), (B.0.0.7)

which, for the models investigated in this thesis, are analytically calculated by the compu-

tational software Wolfram Mathematica (Wolfram Research, Inc., Champaign, IL, USA)

- an example is shown in Appendix B.1. Alternatively these solutions can also be ap-

proximated within the toolbox itself at the cost of additional computational time. Next

by accounting for expressions B.0.0.4 and B.0.0.7, the equations B.0.0.5-B.0.0.6 can be

reformulated as,

dSp(t)
dt

= HHH(t)+Sp(t)JJJ(t) (B.0.0.8)

dSx0(t)
dt

= Sx0(t)JJJ(t) (B.0.0.9)

where Sp(0) = 0 and Sx0(0) = III. These equations are solved along with the ODE itself in

discrete time using Euler’s method,

Spt+1 = [HHH +Spt JJJ]∆t +Spt (B.0.0.10)

Sx0t+1 = [Sx0t JJJ]∆t +Sx0t (B.0.0.11)

where Spt=0 = 0 and Sx0t=0 = III. At each discrete time step the terms Spt and Sx0t are m×n

and n× n dimensional matrices respectively. Final implementation into the VB update

cycle requires manipulation into the following format,
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Spt+1 = [∆tJJJt + III]Spt +∆tHHHt (B.0.0.12)

Sx0t+1 = [∆tJJJt + III]Sx0t . (B.0.0.13)

B.0.1 Model prior values

Previously it was discussed that the VB method assumes certain parametric distributions

over the unknown parameters - in particular the Gaussian and Gamma distributions. Prac-

tically it was beneficial to utilise different distribution types for model parameters prior

to model estimation. Two such parametric transforms are applied: restriction to positive

values and the transform of noise parameters.

Restriction to positive values

By assuming that a model parameter p has a PDF specified via Gaussian density fp, with

mean µ and standard deviation σ , a restriction to positive values can be achieved through

the introduction of a substitute parameter s and then applying an exponential mapping

whereby s = exp(p). To calculate the density fs the following theorem is used. If fx is

the PDF of a random variable x, and y = h(x) is introduced as a mapping function, then

the PDF over y is,

fy(y) = fx(h−1(y))

∣∣∣∣∣dh−1(y)

dy

∣∣∣∣∣ . (B.0.1.1)

Which when considering the density fs yields,

fs(s|µ,σ) =
1

s
√

2πσ
exp
(
−(logs−µ)2

2σ2

)
. (B.0.1.2)

This expression is recognised as the log-normal distribution. This transform finds appli-

cation in promoting stability of model solution. Further details pertaining to its imple-

mentation within the VB toolbox can be found in [176].
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Transformation of noise parameters

The precision, κ = 1/σ2, of noise parameter measurement uncertainties within the VB

toolbox are defined via a Gamma PDF and are specified via shape and rate parameters a

and b,

fκ(κ|a,b) =
ba

Γ(a)
κ

a−1exp(−κb) for κ,a,b,> 0, (B.0.1.3)

where Γ(·) is the Gamma function. The mean and variance of the precision PDF is,

E[κ] fκ =
a
b

and Var[κ] fκ =
a
b2 . (B.0.1.4)

In this chapter the measurement process is modelled by the expression given in Equa-

tion B.0.0.1, where the measurement noise is characterised by the standard deviation λ .

Defining measurement noise by λ instead of κ is beneficial in modelling. Firstly, it al-

lows for characterising of uncertainty based off of the known inter-assay CV of luminex

assays - which can be used to deduce λ . Secondly, it offers a more practical interpreta-

tion of κ . Transforming between N (µ,σ2) and Γ(a,b) can be treated as a constrained

numerical optimisation task, the details of which are included in [176, 200]. An official

implementation of the function is included in the VB toolbox and validated under the

following conditions:

• 0.005 < µ0 < 104

• 0.005µ0 < σ0 < 5µ0,

where the values in this range are shown to be recoverable to within a 1% error. As such,

this implementation will be used in this work to assist in defining noise uncertainty.
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·ȳ
,C

V
·ȳ
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B.1 Structural identifiability

An example of the Taylor series expansion to check for structural identifiability within

a system i.e., to check if it is possible to determine the values of a systems’ parameters

from measurements of its model outputs. The approach is illustrated for the following

nonlinear 2nd order system,

ẍ =−(θ1 +θnx) ẋ−θ2x+θ2θ3 (B.1.0.1)

with known initial conditions x0 = 0 and ẋ0 = F . Substitution of the initial conditions

into Equation B.1.0.1 yields,

ẍ0 =−(θ1 +θnx0) ẋ0−θ2x0 +θ2θ3 =−θ1F +θ2θ3 (B.1.0.2)

Here we can compare the derivative terms determined through both the parameter vector

θ and θ̄ ,

θ1F +θ2θ3 = θ̄1F + θ̄2θ̄3 (B.1.0.3)

Further equations can be identified through subsequent derivations of the system,

...x 0 =−(θ1 +θnx0) ẍ0−θnẋ2
0−θ2ẋ0 = F

(
θ

2
1 −θ2−θnF

)
−θ1θ2θ3 (B.1.0.4)

Which yields,

F
(
θ

2
1 −θ2−θnF

)
−θ1θ2θ3 = F

(
θ̄

2
1 − θ̄2− θ̄nF

)
− θ̄1θ̄2θ̄3 (B.1.0.5)

As previously stated in Chapter 5 Section 5.4.2, n+m+1 defines the upper bound of Tay-

lor coefficients terms required to determine the systems identifiability. In this case there

are two states and four parameters thus 2+4+1 =7 Taylor coefficient terms are required

and a further three derivations x(4)0 , x(5)0 and x(6)0 should be calculated to solve the system.

In practice solving these large sets of simultaneous equations can be time consuming and

prone to human error and as such several computational solutions are used. In this thesis
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the symbolic software package Mathematica (Wolfram Research, Inc., Champaign, IL,

USA) is used, allowing for solutions to be extracted simply. Through these means the

example system can be shown to be uniquely identifiable with the following solutions

extracted from the simultaneous equations.

θ1 = θ̄1, θ2 = θ̄2, θ3 = θ̄3, θn = θ̄n, (B.1.0.6)

B.1.1 Structural identifiability example task

To reiterate the example, Equation B.1.1.1 highlights an instance of a unidentifiable sys-

tem, given that q1 and q2 are unknown. This is because an infinite number of parameter

combinations can yield the same output.

ẋ = q1q2
2x, x(0) = x0, y(t) = x(t) . (B.1.1.1)

To validate for structural identifiability in investigated candidate models the Taylor se-

ries approach was first trialled and implemented into Wolfram Mathematica software

(Wolfram Research, Inc., Champaign, IL, USA). In some models however this approach

was not able to determine a result, such as for models M2p and M3p. For these re-

sults a MATLAB (The MathWorks, Inc., Natick, MA, USA) software package known as

STRIKE_GOLDD (version 3.0, created by Alejandro F. Villaverde, afvillaverde@uvigo.gal)

was used that is capable of analysing nonlinear ODE models for parameter structural local

identifiability. Both solutions will be demonstrated on the example task.

B.1.2 Wolfram Mathematica solution

Structural identifiability analysis was first conducted analytically through use of the Tay-

lor series implemented into Wolfram Mathematica software. A coded example is pro-

vided below following the example outlined in Chapter 5. The problem established in

Mathematica by defining the model equation, initial conditions and output with,

1 (* 1st order sample problem *)

2 x’[t] = -(p1^2*p2)*x[t];

3 x[0]=x0;

4 y[t] = x[t];
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Next, the Taylor series expansion is defined to expand around time t0 up to Nt coeffi-

cients. Additionally, the vectors of unknown substitution parameters, subst is defined,

1 (* Define model conditions *)

2 Nt =5;

3 t0 = 0;

4 subst={p1 ->p1b , p2->p2b};

Lastly, this piece of code determines the Taylor coefficients before subsequently creating

and solving for the system of simultaneous equations,

5 (* Calculates *)

6 Cof = {{y[t]/.t->t0}};

7 For[i=2,i<=Nt,i++,Cof=Append[Cof ,{D[y[t],{t,i -1}]/.t->t0}]]

8 Cof

9 (* eqn = eqn with substitutes *)

10 Eqns = {Cof [[1]]==( Cof [[1]]/. subst)};

11 For[i=2,i<=Nt,i++,Eqns=Append[Eqns ,Cof[[i]]==( Cof[[i]]/. subst)]];

12 Solve[Eqns ,{p1b ,p2b}]

The result of this script is documented below showing that the parameters are not identi-

fiable,

13 (* Output *)

14 Out [556]= {{x0},{-p1^2 p2 x0},{p1^4 p2^2 x0},{-p1^6 p2^3 x0},{p1^8

p2^4 x0}}

15 Out [559]= {{p2b ->(p1^2 p2)/p1b ^2}}

Furthermore, if q1 was known then the system could be described as locally identifiable

– as two possible solutions exist, i.e., −q2 and q2 both yielding the same output.

B.1.3 STRIKE_GOLDD implementation

A similar approach is used when implementing the exmaple problem in the STRIKE_GOLDD

MATLAB software package. First the system states, parameters and output are defined

symbolically within MATLAB,

1 % 2 states

2 syms x1 x2; x = [x1];

3 % 1 output

4 h = x1;

5 % 2 parameters
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6 syms p1 p2; p =[p1; p2;];

Next the initial conditions of the system are defined along with the model equation in

state space form,

7 % initial conditions

8 syms x10; ics = [x10;]; known_ics = [1];

9

10 % dynamic equations

11 f = [-((p1^2)*p2)*x1];

The script, once executed saves the system into a ‘.mat’ file,

12 % save model

13 save(’Example ’,’x’,’p’,’h’,’f’,’ics ’);

Once saved the ‘STRIKE_GOLDD.m’ file is activated and produces the results summary

for the above defined system (once linking to the appropriate ‘Example.m’ file in options).

The results of the function are indicated below,

1 --------------------------------

2 >>> STRIKE -GOLDD toolbox 3.0

3 --------------------------------

4 Analyzing the Example model ...

5 >>> The model contains:

6 1 states:

7 x1

8 1 outputs:

9 x1

10 0 known inputs:

11 0 unknown inputs:

12 2 parameters:

13 [p1; p2]

14 >>> Building the observability -identifiability matrix requires at

least 2 Lie derivatives

15 Calculating derivatives: 1 2

16 >>> Observability -Identifiability matrix built with 2 Lie

derivatives

17 (calculated in 2.374540e-02 seconds)

18 >>> Calculating rank ...

19 Rank = 2 (calculated in 6.087200e-03 seconds)
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20 >>> Observability -Identifiability matrix built with 3 Lie

derivatives

21 (calculated in 3.746700e-02 seconds)

22 >>> Calculating rank ...

23 Rank = 2 (calculated in 4.522500e-03 seconds)

24 The model is structurally unidentifiable as a whole

25 => Parameter p1 is structurally unidentifiable

26 => Parameter p2 is structurally unidentifiable

27 ------------------------

28 >>> RESULTS SUMMARY:

29 ------------------------

30 >>> The model is structurally unidentifiable.

31 >>> These parameters are identifiable:

32 >>> These parameters are unidentifiable:

33 [p1 , p2]

34 >>> These states are directly measured:

35 x1

36 Total execution time: 2.224679e-01

Similarly to the Wolfram alpha approach this system has been defined as structurally

unidentifiable along with parameters p1 and p2.

B.2 Candidate models

In Chapter 5 there were five candidate models considered for analysis of the four DSA

dynamic response groups. Each of these models are listed in Table B.2. In this section

each model is assessed for its structural identifiability using

Model name Model Initial conditions
M1 ẋ+ xθ1−θ1θ0 = 0 x0 = x10
M2 ẍ+ ẋθ2 + xθ1−θ1θ0 = 0 ẋ0 = x20, x0 = x10
M3

...x + ẍθ3 + ẋθ2 + xθ1−θ1θ0 = 0 ẍ0 = x30, ẋ0 = x20, x0 = x10
M2p ẍ+ ẋθ2 + xθ1−θ1θ0 = fp(t) ẋ0 = x20, x0 = x10
M3p

...x + ẍθ3 + ẋθ2 + xθ1−θ1θ0 = fp(t) ẍ0 = x30, ẋ0 = x20, x0 = x10

Table B.2: A list of the five candidate models list used in Chapter 5 For each of the
DSA model selection tasks the listed models were considered. The external force fp(t)

represents the delayed Gaussian impulse, θp1√
2πσ2 exp

(
(t−θp2)

2

2σ2

)
, where σ2 = 0.2 is fixed.
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Appendix B. Application of VBA toolbox

B.2.1 Model stability

To determine model stability, as described in Chapter 5 Section 5.4.5, there are two crite-

ria: all of the real parts of the system eigenvalues must be negative, and there cannot be

any sign changes in the first column of the Routh table.

Validating eigenvalues

Calculating eigenvalues can be achieved by first representing a higher order system in

terms of a set of linear state space models shown here in matrix notation,

ẋ = Ax+Bu, (B.2.1.1)

y = Cx+Du, (B.2.1.2)

where x= {x1, · · · ,xn} are the states, u= {u1, · · · ,um} the model inputs, and y= {y1, · · · ,yr}

the model outputs. These may then be re-written in the Laplace domain as,

sX(s) = AX(s)+BU(s), (B.2.1.3)

Y(s) = CX(s)+DU(s). (B.2.1.4)

The state equation may then be re-written to form,

sX(s)−AX(s) = [sI−A]X(s) = BU(s). (B.2.1.5)

where I is the identity matrix. The eigenvalues of the system may then be found by taking

the determinant of [sI−A] and calculating the roots of the characteristic polynomial,

det [sI−A] = 0. (B.2.1.6)

Practically this is conducted within MATLAB using the eig() function. The results of this

process are illustrated in Table B.1. For all instances models demonstrate stability.
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Figure B.1: Eigenvalues assessment of model stability. For each of the investigated
candidate models M14, M24, M21,2,3

p , and M31,2,3
p their eigenvalues are calculated and the

real parts of those solutions shown. In all cases models are demonstrated as stable due to
negative real parts to the eigenvalues.

Validating Routh criterion

Table B.3 shows the results of the Routh tables for the candidate models indicated in

Table B.2. The criterion for stability is then deduced for model M1: θ1 > 0, for models

M2, M2p: θ1 > 0, θ1θ2 > 0, and models M3, M3p: θ1 > 0, θ2 > θ1/θ3, and θ3 > 0. In

all instances it can be seen that models satisfy the required conditions for model stability.

s θ1
1 1

(a) M1.

s2 1 θ2
s θ1 0
1 θ1θ2

(b) M2, M2p.

s3 1 θ2
s2 θ3 θ1
s θ2−θ1/θ3
1 θ1

(c) M3, M3p.

Table B.3: Routh-Hurwitz stability criterion. Routh tables are displayed for the five
candidate models presented in this work are detailed in Table B.2.
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Figure B.2: Results for Routh table stability requirements. For each of the investi-
gated candidate models M14, M24, M21,2,3

p , and M31,2,3
p the results of the Routh stability

requirements are displayed. Given negative real components to their respective eigen-
value solutions, the illustrated criterion must additionally be positive in order for solution
to be stable. In all cases solutions are demonstrated to be stable.
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Appendix C

Additional results

C.0.1 Results for three cluster groups

In Figure C.2 the three DSA response groups identified via the DTW agglomerative hi-

erarchical clustering approach are shown. Figure C.2 shows the mean response and stan-

dard deviation for each group.
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Figure C.1: Agglomerative hierarchical structure of DSA cohort formed using DTW
distance measure (k = 3 groups). The three clusters are highlighted by red (Group-A),
blue (Group-B), and green (Group-C) colour code. Similarity is shown on a log-scale.
The end of each branch designates a DSA response.

C.0.2 Results for five cluster groups

In Figure C.3 the five DSA response groups identified via the DTW agglomerative hierar-

chical clustering approach are shown. Figure C.4 shows the mean response and standard

deviation for each group.
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Appendix C. Additional results

Figure C.2: Each of the three identified response clusters are shown (Groups A-C).
Dark blue line represents cluster mean response and shaded region the cluster standard
deviation. Dotted lines represent each individual response belonging to a given class.
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Figure C.3: Agglomerative hierarchical structure of DSA cohort formed using DTW
distance measure (k=5 groups). The five clusters are highlighted by blue (Group-
D), yellow (Group-E), red (Group-F), purple (Group-G), green (Group-H) colour code.
Similarity is shown on a log-scale. The end of each branch designates a DSA response.
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Appendix C. Additional results

Figure C.4: Each of the five identified response clusters are shown (Groups D-H).
Dark blue line represents cluster mean response and shaded region the cluster standard
deviation. Dotted lines represent each individual response belonging to a given class.
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