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Abstract

Because of the normalization in relational databases, joins are ever-present in analytical

environments. However, joining multiple large tables raises critical challenges for modern

databases as the operation is both time- and resource-consuming.

In this work, we investigate the use of Machine Learning (ML) and statistical mod-

els to reduce join costs at multiple levels. More specifically, we look at how learning the

distribution of the join result might help us deal with the costs of joins. The distribution

should be learned without generating the join result; otherwise it defeats the point. To do

so, we map the join problem into Probabilistic Graphical Models (PGMs) in order to de-

rive the factorized distribution of the join result. This is accomplished simply by scanning

the tables once. Then, using the factorized distribution and tweaked versions of PGMs’

algorithms that are efficient, principled, and easy-to-understand, we propose three different

PGM-based solutions to three different problems with joins.

First, we present the PGM-Join sampler, a PGM-based algorithm for generating a

uniform and independent sample of the join result without producing the join result, and we

demonstrate that our solution is up to 28 times faster than the state-of-the-art join sampling

methods.

Second, we propose Graphical Join (GJ), a new physical join algorithm. GJ gener-

ates a frequency-based summary of the join result, which is subsequently de-summarized to

retrieve the exact join result (after optionally storing and loading the summary from disk).

GJ significantly reduces the time and storage cost of joins.

Furthermore, while doing our research on joins, we found out that a new challenge

in ML-driven modern relational databases is emerging, called the model join problem. For

several reasons, sometimes the tables may not be accessible, but models of the tables are.

So, how can one join the models rather than the tables? We define the model join problem

for the first time and suggest the first solution for that which is PGM-based.
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Chapter 1

Introduction

The overarching goal of this work is to investigate how machine learning (ML) and
statistical models might assist data management systems in fulfilling their responsi-
bilities more effectively. More specifically, in this thesis, the use of ML and statistical
models to reduce the costs associated with joins, as well as the emergence of new
challenges (e.g. joining models), are explored, and, of course, solutions are provided
as well. In particular, Probabilistic Graphical Models (PGMs) serve as our central
idea for tackling join challenges.

This section begins with an explanation of what a join operation is, followed
by a discussion of the challenges and costs associated with join operations. Next, the
thesis’s research questions are listed. Then, our core idea, which is used to answer
the majority of the questions, is briefly explained. After that, the contributions of
the thesis are listed, and then the structure of the thesis is given.

1.1 The Join and its Challenges

To preserve the data’s integrity and save time and space in transactional systems, the
data is typically normalized into many tables. However, when it comes to analyzing
the data in analytical environments, the normalized tables need to be joined, hence
the join operations are ever-present.

The join operation merges data from multiple tables into a single one. Infor-
mally, a join is the process of combining multiple tables by inserting records from
each table into the same row if and only if their fields match.

The following example equi-join serves as a case study for the entirety of this
thesis.

Running Example: Assume the three normalized tables D1, D2 and D3

1



D1 D2 D3

. . . A B . . . . . . B C . . . . . . C D . . .
. . . a0 b0 . . . . . . b0 c0 . . . . . . c1 d0 . . .
. . . a0 b0 . . . . . . b0 c0 . . . . . . c1 d0 . . .
. . . a0 b0 . . . . . . b1 c0 . . . . . . c1 d0 . . .
. . . a1 b1 . . . . . . b1 c0 . . . . . . c1 d0 . . .
. . . a1 b1 . . . . . . b1 c0 . . . . . . c2 d2 . . .
. . . a2 b1 . . . . . . b2 c1 . . . . . . c2 d2 . . .
. . . a3 b3 . . . . . . b2 c1 . . . . . . c2 d2 . . .
. . . a3 b3 . . . . . . b2 c1 . . . . . . c2 d2 . . .
. . . a3 b4 . . . . . . b3 c2 . . . . . . c3 d3 . . .
. . . a3 b4 . . . . . . b4 c3 . . . . . . c3 d3 . . .
. . . a3 b4 . . . . . . b4 c3 . . . . . . c4 d4 . . .
. . . a3 b4 . . . . . . b4 c4 . . . . . . c4 d4 . . .

Figure 1.1: Example with three tables

Join Result
id A B C D
0 a3 b3 c2 d2
... ... ... ... ...
7 a3 b3 c2 d2
8 a3 b4 c3 d3
... ... ... ... ...
23 a3 b4 c3 d3
24 a3 b4 c4 d4
... ... ... ... ...
31 a3 b4 c4 d4

Figure 1.2: The join result for the running example

shown in Figure 1.1 and the join query Q as below:

SELECT A,B,C,D FROM D1, D2 , D3
WHERE D1 .B = D2 .B and D2 .C=D3 .C

Figure 1.2 depicts the join result of Q with 32 entries.
Nowadays, data is expanding at a rapid rate, and join operations in this era

of big data can become excessively expensive in terms of execution times, resource
consumption (memory and disk), and monetary charges (in cloud environments).
This cost is considerably greater when joining (many) very big tables, especially
when they involve many-to-many relationships.

When the join size is too large, sampling the join result is a promising al-
ternative to computing the actual join, as it can lower the time and space costs
of joins. If one wants to analyze the join result and perform various learning and
knowledge discovery tasks, uniform and independent samples of the actual join re-
sult are great to avoid the above issues while facilitating such analytics, due to their
well-understood theoretical guarantees. However, computing the join first and then
sampling is obviously defeating the point. One option would be to just uniformly
sample each table first and then join the uniform samples. Unfortunately, it is well-
known that this would produce a join-result sample of poor quality. In Chapter 3,

2



we present our solution, called PGM-Join sampler, to the join sampling problem to
generate a uniform and independent sample of the join result without generating the
join result. The PGM-Join sampler is based on PGM principles.

However, sampling is not always sufficient; even when the join size is too
large, it is occasionally necessary to find the full join result and store/retrieve it.
This is especially true for situations in which we want exact answers to queries. Or
when the result of a join query is input for another join query. This problem is
referred to as the PJA problem (problems related to the Physical Join Algorithms)
in this thesis.

A good solution for the PJA problem is the one that can produce the join
result as quickly as possible while avoiding extra costs for redundancy in the join
result and Unneeded Intermediate Results (UIRs) for multi-way joins. It should
also be able to represent the result in a way that takes up less space and is easy
to store and retrieve. A possible method is to generate the result of the join, then
summarize it (e.g., using Run-Length Encoding RLE), and then store it on disks.
Although the RLE summary over joins is easily stored/retrieved and de-summarized
(particularly in columnar databases), generating it after the join result generation
defeats the point. In fact, the goal is to skip generating the full join results. In
Chapter 4, we discuss how a summary like RLE can be produced without generating
the join result. One exciting achievement of Chapter 4 is that we demonstrate for
the first time that the idea of producing the RLE without generating the join result
and de-summarizing it can be considered as a novel PJA capable of outperforming
state-of-the-art PJAs on queries with UIRs and redundancy. We demonstrate that
our new PJA (called Graphical Join or GJ for short) is a Worst-case Optimal Join
Algorithm (WOJA). A WOJA is a join algorithm that efficiently handles UIRs (to
be explained in Chapter 2).

Our recent efforts to solve join problems have revealed a need to run joins
even when the tables are inaccessible. Sometimes we have access to models over
tables, but we do not have access to the tables, particularly in Approximate Query
Processing (AQP) where the models are trained over data and queries are answered
by using the models. The models are updated when the new data comes in, and it
seems impractical to maintain the massive underlying data. Hence, the data can be
forgotten (deleted) [Kersten and Sidirourgos, 2017; Milo, 2019]. In the case of AQP,
methods like DeepDB [Hilprecht et al., 2020], DBEst [Ma and Triantafillou, 2019]
and DBEst++ [Ma et al., 2021] are some of the successful models over relational
data. Furthermore, sometimes the tables exist but because of privacy concerns or
in federated learning settings, we may not have access to them. For any reasons,
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we sometimes have models rather than tables, and we have to still perform a join
query on them. So, how can we join models? In Chapter 5, for the first time,
we define the model join problem as a new challenge in today’s ML-driven relational
databases. We also introduce a framework to deal with the model join problem, called
the Model-Join framework. The Model-Join framework generates approximately
uniform samples of the join results. The approximation stems from the models, and
the framework does not add any additional error to the uniformity.

Thus, in this thesis, we focus on three main problems: (i) the table-join
sampling problem, in which all of the tables are available for joining; (ii) the PJA
problem, when an exact-full join result is needed, but where redundancy and UIRs
would be a burden; and (iii) the model join problem, in which ML models substitute
the tables to be joined.

For all the aforementioned challenges, we have a single core idea (explained
in Section 1.3); Learn the distribution of the join result with PGMs, then generate
the samples or summaries.

1.2 Research Questions

Following is a list of the specific research questions that this thesis attempts to
answer:

• How are table-join sampling and model-join sampling problems, as well as the
PJA problem, formulated using PGMs?

• How may PGM algorithms be adjusted to handle the three join problems men-
tioned?

• How to efficiently generate a uniform and independent sample of the join with-
out generating the joint result?

• How can a PJA deal with UIRs and redundancy?

• How can the RLE-based summary over joins be generated without generating
the join result?

• Is summarization-then-desummarization idea a suitable alternative to standard
PJAs that directly generate join tuples? If so, in what scenarios?

• How to enumerate the join result in a columnar way?
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Joint Distribution
id A B C D Freq
0 a3 b3 c2 d2 8
1 a3 b4 c3 d3 16
2 a3 b4 c4 d4 8

Figure 1.3: The joint distribution of the join result of the running example

• How to perform model joins more accurately and generate a uniform and in-
dependent sample of the join result where the tables are absent.

• How can models be joined with other available tables?

• What are the main obstacles to learning ML models on tabular data? And
what are the solutions for those obstacles?

• What are other open challenges with the model join problem?

1.3 The Core Idea

The key to resolving most of these challenges with joins is in learning the distribution
of the join result (the joint distribution). For example, a uniform sample of the join
result may be generated, if we already had the joint distribution. For instance, the
joint distribution illustrated in Figure 1.3 contains the distinct tuples of the join
result of Q (the running example) and their frequencies, and the uniform sample can
be generated using this information. Note, it is straightforward to convert frequencies
to probabilities by dividing the frequencies by the join size. Or, if we need to produce
the full join result regarding the PJA problem, we can save time by producing the join
tuples from the joint distribution. In other words, the joint distribution provides the
frequencies of the join tuples, so we can replicate the tuples based on their frequencies
(and without repeatedly accessing the indices of different tables). Additionally, the
joint distribution is smaller than the join result, so the space consumed is likewise
less. These are only a few examples of how joint distributions could be used to
address our problems.

However, the question that needs to be answered is how the joint distribution
may be determined. The obvious answer would be to first construct the join result
and then learn the joint distribution; however, this would defeat the point! We intend
to avoid generating the join result since joins are costly in terms of time, space and
money (in clouds). The good news is that we can quickly discover another kind
of the joint distribution (namely, factorized joint distribution) from a normalized
database by scanning each to-be-joined table once. Factorized distributions are
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Figure 1.4: PGM graph for the running example

Factor on D1 Factor on D2 Factor on D3

A B Freq B C Freq C D Freq
a0 b0 3 b0 c0 2 c1 d0 4
a1 b1 2 b1 c0 3 c2 d2 4
a2 b1 1 b2 c1 3 c3 d3 2
a3 b3 2 b3 c2 1 c4 d4 2
a3 b4 4 b4 c3 2

b4 c4 1

Figure 1.5: The factorized distribution for the running example

represented by PGMs. Essentially, a PGM model consists of a number of factors
(potential functions) whose product is proportional to the joint distribution without
factorization. In relational databases, normalization is analogous to distribution
factorization. Since the data is already normalized in a relational database 1, the
distributions learnt from individual tables can be utilized as factors for a factorized
joint distribution, and the product of those factors will give the factorized joint
distribution. Therefore, all that remains is to scan the tables, calculate the exact
frequencies for the involved attributes, and generate the table-specific factors. Add
every factor to a PGM graph to obtain the factorized joint distribution.

However, dealing with the factorized distribution differs from working with
the unfactorized joint distribution. Effective inference techniques are required when
dealing with factorized distributions, and this is exactly what PGMs give us.

We explain PGMs in Chapter 2, but for now, assume PGMs have nodes
(in our case, table attributes) and edges among them (the dependencies among at-
tributes). Having two attributes in the same table indicates that they are dependent.
For example, Figure 1.4 depicts the PGM graph for our running example. The de-
pendencies among attributes are exactly determined by scanning the tables once.
Note, all attributes that are not involved in the query are simply ignored. Figure
1.5 shows the dependencies (the factors) in the edges of the graph in Figure 1.4.

In this thesis, we intend to formulate our three main join problems with
PGMs. PGMs are principled machinery that provide a variety of efficient tools and
standard algorithms for examining factorized distributions and performing statistical
inference (e.g. calculating the marginals). PGMs are both time- and space-efficient
(will be explained in Chapter 2). We first find the factorized distribution for a given
query by scanning the tables once, and then employ PGMs’ principled algorithms

1Certainly, if we are asked to run a join query, it means that the database has already been
normalized to some extent; otherwise, we would not have more than one table to join.
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to overcome our join sampling problems and the PJA problem. However, the known
standard algorithms of PGMs cannot be applied directly to solve our problems. We
shall modify the algorithms to make them specific to our problems.

1.4 Contributions

Contributions are categorized into three groups: those that address the join sampling
problem, those that address the PJA problem, and those that address the model join
problem.

1.4.1 PGM-Join Sampler: A New PGM-Based Join Sampling Method

• The adaptation of PGMs for uniform join sampling. The PGM formulation
makes the problem and solutions easier to understand and prove. We show
how to construct PGMs for the join sampling problem and the optimizations
we put forth, leveraging the PGM Markov properties and PGM inference algo-
rithms. These optimizations refer to (i) the PGM structure itself and (ii) to the
inference process and algorithms. Notably, the PGM-Join sampler performs
exact inference, producing uniform samples of the true join result.

• A solution that relies only on the number of distinct values per attribute
(NDVs) and not on all tuples. As NDVs are typically much fewer, this has
significant performance advantages.

• A new, more efficient method to deal with cyclic join sampling.

• A new (adapted to uniform join sampling) Variable Elimination Algorithm
(VEA) to build a uniform sample generator.

• Detailed performance evaluation comparing the PGM-Join sampler against two
state-of-the-art methods using queries and data from TPC-H, JOB, TPC-DS
and Twitter.

The code can be found at hhttps://github.com/shanghoosh1/PGMJoins

1.4.2 GJ: A Novel Worst-Case Optimal Physical Join Algorithm
with PGMs

• A mapping from the physical n-way equi-join problem to PGMs.

• A different way of thinking about physical n-way equi-join algorithms: instead
of building indexes and using binary-join algorithms or WOJAs over raw data
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tables, first produce a (PGM-based) join summary, followed by optionally stor-
ing it to disk and retrieving it from disk when called to (re)produce the join
result, and finally desummarizing it. The summary can be stored on and re-
trieved from a disc simply; hence it is compatible with relational databases
and very compact.

• A novel algorithm to generate an RLE-style summary over the grouped join
result without executing the expensive join operation and without paying the
costs related to UIR. This is based on leveraging PGM principles and on
tweaked PGM inference algorithms for statistics calculation. (This summary
has other important applications of its own).

• An algorithm for efficiently producing the tuples from the factorized distribu-
tion (columnarly).

• A complexity analysis showing worst-case optimality.

• A detailed performance evaluation using JOB, lastFM and TPCH data and
queries, comparing GJ against join processing in PostgreSQL [Drake and Wors-
ley, 2002], MonetDB [Idreos et al., 2012]) and the WOJA in Umbra [Fre-
itag et al., 2020]. We also compare GJ against FDB [Olteanu and Schleich,
2016]. This study showcases GJ’s large gains in space and time and high-
lights (less) favorable use cases for GJ. The code for GJ and its parallel version
are available at https://github.com/shanghoosh1/Graphical_join and at
https://github.com/shanghoosh1/Parallel_Graphical_Join.

1.4.3 Model-Join Sampler: Join Models, Forget Tables

• A definition of the model join problem.

• The first framework (coined Model-Join) which essentially can join the models
(which have replaced tables) without adding any extra error. The framework
is based on the PGM principles.

• An altered inference algorithm that, instead of calculating marginals, calculates
all of the statistics needed to construct a sample generator. The end result
is a generative model, able to generate an arbitrary number of high-quality
approximations of the data tuples in the join result.

• If we need to conduct a model join query involving multiple models and tables,
Model-Join learns all of the necessary models on those available tables with
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a new efficient and accurate method, then joins the models. Each per-table
model entails a novel blending of embeddings, clusterings, and feed-forward
Neural Networks (NN).

• A detailed experimental evaluation, analyzing this new problem and quanti-
fying the quality of the produced sample, the efficiency of Model-Join, and
its appropriateness for downstream analytics tasks. The code is available at:
https://github.com/shanghoosh1/ModelJoin.

• A list of open challenges to be addressed en route.

1.5 Thesis Structure

Six chapters make up this thesis.
Chapter 2 is devoted to discussions of background, in which we explain PGMs

and PJAs, as well as several analytical engines over joins. Chapter 3 describes
and evaluates the PGM-Join sampler. In Chapter 4, a novel PJA is presented and
assessed. In Chapter 5, we define the model join problem and present our proposed
framework. Finally, Chapter 6 outlines the conclusions and future work.
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Chapter 2

Background

This chapter includes an overview of all the necessary concepts, algorithms, and tech-
niques required to understand the remainder of the thesis, as well as an explanation
of some related work required for all chapters.

Since PGMs form the basis for our solutions, we begin by providing an
overview of these factorized models and the inference procedures that can be ap-
plied to them. Moreover, as a new PJA is introduced in Chapter 4, we study the
existing PJAs here, including binary PJAs (Nested-Loop, Sort-Merge, and Hash join
algorithms with their derivatives) that join tables two-by-two and multi-way PJAs
that join all tables simultaneously (a.k.a. WOJAs). Then we describe the methods
for analytics over joins. These analytics are performed without generating the join
result.

2.1 Probabilistic Graphical Models

A PGM factorizes a distribution by using a graph G(V,E) and certain rules M,
where V is a collection of vertices (also known as variables or nodes) and E is a
set of edges between the nodes. The graph and M determine the model type. The
model is called a Bayesian Network (BN) [Pearl, 1985] if the graph has directed
edges, and a Markov Random Field (MRF) [Kindermann and Snell, 1980] if the
graph has undirected edges. Also, the M for MRFs and BNs varies. Because BNs
are outside the scope of our work, we will solely discuss MRFs.

An MRF is a type of PGM having an undirected graph G and three (Pairwise,
Local and Global) Markov properties as M which are defined by the concept of
conditional independence. Two variables A and B are conditionally independent
given C if P (A,B|C) = P (A|C)× P (B|C).
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GivenG(V,E), the Pairwise Markov property expresses that two non-adjacent
variables Xu and Xv are conditionally independent if all other variables are observed:
Xu ⊥⊥ Xv|XV \{u,v}.

The Local Markov property says if the neighboring variables of a variable are
fully observed, that variable is conditionally independent from all other variables:
Xu ⊥⊥ XV \N [v]|XN(v), where N(v) is the set of neighbors of variable v, and N [v] is
{v} ∪N(v) is called the closed neighborhood of v.

Finally, the Global Markov property states that two sets of variables are
mutually independent if a separating set of variables are observed: XA ⊥⊥ XB|XS

where XA and XB are separated by XS ; in other words, all the paths from XA to
XB go through variables in XS .

A PGM consists of two components: qualitative (a.k.a. structure learning)
and quantitative (a.k.a. parameter learning). Qualitative learning entails learning
the structure of the PGMs (the vertices and edges), whereas quantitative learning
entails learning the factors (a.k.a. potential functions). The factors should be learned
over the joint distribution in such a way that the product of the factors yields the
same joint distribution. In most PGMs, learning the structure and factors is a time-
consuming process that requires human understanding of the structure as well as
approximate learning approaches such as Maximum likelihood. However, as will be
explained in Chapter 3, due to normalization in relational databases, the structure
and factors of PGMs for join queries are already available. This is the primary reason
why we map the join problem to PGMs to obtain the factorized distribution of joins.

To show the effect of the factorization with PGMs, imagine a distribution
p(A,B,C) in which we know A and C are conditionally independent given B. Instead
of keeping a large probability function holding the full joint distribution p(A,B,C),
we can learn and keep a small factorized version of p like ψ(A,B) × ψ(B,C) with
lower storage cost, where ψ is called a factor (a.k.a. as a potential or potential
function). Note that not only can PGMs reduce the storage cost by keeping smaller
local factors, but also they can make the probabilistic inference (e.g. marginaliza-
tion) more efficient. For example, to calculate the marginal of A in the factorized
distribution ψ(A,B)× ψ(B,C) with an elimination order O = {C,B}, first, we can
sum out C from ψ(B,C) and calculate a factor for B as ψ(B) then we can sum out
B from ψ(A,B) × ψ(B). This dynamic programming-based paradigm to calculate
the marginals is known as the Variable Elimination Algorithm (VEA). Summing B
and C out from the factorized distribution by VEA is faster than summing them out
from the larger unfactorized distribution p(A,B,C). Section 2.1.1 explains VEA in
detail.
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Definition 1 (Cliques C(G)). A clique c is a set of fully connected nodes in a graph
G(V,E). C(G) contains all the cliques that exist in G. In other words, if c ∈ C(G),
and u, v ∈ c then the edge (u, v) ∈ E(G)

Given a graph G(V,E) with cliques C(G), the probability distribution p(xV )
of an MRF can be represented as follows

p(xV ) =
1

Z

∏
c∈C(G)

ψc(xc) (2.1)

where ψ is a factor that is a non-negative function over the joint domain of a set of
variables. xc is the set of variables in clique c. All xc variables form xV which is the
set of all variables in the model. p(xV ) is the product of all factors of cliques in the
MRF. Z is called the partition function which is a normalization constant:

Z =
∑
xV

∏
c∈C(G)

ψc(xc) (2.2)

In our case, Z is the join size. Since in our work we just need the frequencies of
distinct values (not the probabilities), we can omit Z simply from the Equation 2.1.

Definition 2 (Maximal Cliques/ maxcliques C(G)). A maximal clique (or max-
clique) is a clique which by adding any v ∈ V in that clique, makes it no longer a
clique.

Any clique can be absorbed by its maxclique. So, we can replace C with C
in Equation 2.1. That absorption is accomplished by calculating the product of the
factors of cliques inside a maxclique.

2.1.1 VEA

At its heart, this thesis relies on probabilistic inference. Probabilistic inference is
essentially a task of calculating quantities (e.g., marginals) of some variables over
a distribution [Koller and Friedman, 2009]. VEA is one of the exact algorithms
introduced to perform probabilistic inference.

To calculate a marginal over the distribution presented in Equation 2.1, VEA
eliminates the variables one by one based on an elimination order O by using a sum-
product operation presented in Equation 2.3 per variable. For example, let us assume
we have n variables in V = {x1, x2, ..., xn}. To calculate the marginal of a variable
x1, all other variables should be eliminated (summed-out) one-by-one. The formula
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for the sum-product operation for eliminating one of them (xi) is as follows:∑
x2,...,xi−1,xi+1,...,xn

∏
c∈Oxi

ψc(xc)
∑
xi

∏
c∈Ixi

ψc(xc) (2.3)

where Ixi and Oxi contain the cliques that do and do not involve xi, and ψ is the
potential function. In essence, a sum-product operation involves calculating the
product of all the factors that include the variable xi and then summing the variable
xi out from the product result. The result of the summing out will be a new factor
for the xi’s neighbors.

Thus, we can say that the complexity of calculating the marginals is specified
by the size of the largest I (how many variables it contains). Assume I has m
variables and each variable has r distinct items in its domain, the complexity of the
VEA to eliminate all variables is O(rm).

Note that after eliminating a variable, all its neighbors should make a single
clique, and if the neighbors are not fully-connected in the corresponding graph, new
edges are added. The new edges are called fill-in edges. These edges are added
because there exist no functions like g(x) and h(y) in summing out of z:

g(x)h(y) =
∑
z

f1(x, z).f2(z, y) (2.4)

and the output of the summing out should be a function of both x and y, f(x, y). In
other words, x and y are dependent on each other via z, and if z is removed, we should
maintain the dependency via a function that includes both x and y. These new edges
make the inference inefficient and we want to avoid them because they make larger
cliques and the larger cliques make larger I in the sum-product operation. Hence,
the elimination order should be chosen carefully so that it creates the fewest new
fill-in edges.

In trees, each node has just one parent, meaning that there is at least one
elimination order O that does not introduce any new fill-in edges. We call that O a
perfect elimination order. An elimination order is perfect when, by eliminating the
variables, no fill-in edges are added to the graph. Eliminating the leaves of the trees
results in no new fill-in edges, and after the leaves are eliminated, new leaves appear,
and eliminating the new leaves results in no new edges too. Trees thus have a perfect
elimination order starting from the leaves to the root (note, not all eliminations are
perfect in trees), and VEA can calculate the marginals optimally. But what about
graphs with cycles?
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2.1.2 VEA on Graphs

Generally, to run VEA on graphs, people translate the graph into a structure that
has the same characteristics as trees. In other words, a tree of maxcliques is made
from the graph. So, every node may represent more than one variable. The Running
Intersection Property (R.I.P) is one of the characteristics that the tree of maxcliques
should hold, as it holds for trees. R.I.P is identical to Cluster Intersection Property
(C.I.P). Both are explained below.

R.I.P of maxcliques: Let C1, C2, ..., Cl be an ordered sequence of max-
cliques in graph G where l is the number of maxcliques. We say the ordering obeys
the R.I.P if for all i>1, there exists j < i such that Ci ∩ (∪k<iCk) = Ci ∩ Cj

In Figure 2.1 (e), assume the order is C1, C2 and C3 then the intersection
between C2 and C3 (which is the node (C,D)) is equal to C3 ∩ (C2 ∪ C1). The
union (C2 ∪ C1) is called the history of C3.

C.I.P of maxcliques Suppose we have a tree of maxcliques T . For any pair
of maxcliques Ci and Cj in T , there should be a unique path between Ci and Cj ,
and Ci ∩ Cj should appear in all the maxcliques along the path from Ci to Cj . For
example, in Figure 2.1 (e), the node C is the intersection of maxcliques C1 and C3
and it appears in the maxclique C2 as well.

Interestingly, a tree of maxcliques that possesses C.I.P also possesses R.I.P
and vice versa.

Junction Tree (JT) of maxcliques: JT of maxcliques is a tree of the
maxcliques which possesses the R.I.P and C.I.P properties. There have exist many
algorithms to translate graphs to JTs [Koller and Friedman, 2009; Cowell et al., 2007;
Jensen and Nielsen, 2007]. Here, we just provide a brief explanation of JT creation.
JT creation is used in Chapter 4 where a new PJA is introduced.

For a graph, there may be more than one JT. We need to find the best JT
where the size of the largest maxclique is smaller than the size of largest maxcliques
in other possible JTs from the same graph. Recall that the complexity of finding a
marginal is dependent on the size of the largest clique in the graph. For example, we
could take all the variables as one maxclique by adding fill-in edges, but in this case,
the size of the largest maxclique would be equal to the size of V and the complexity
of the inference (VEA) on that tree will be exponentially high. Extracting the best
JT is NP-Complete.

A triangulated graph is a graph that the number of nodes in any cycle is not
greater than 3. It has already been proved that if a graph is triangulated, it has a
JT of maxcliques which possesses R.I.P. [Wainwright and Jordan, 2008; Blake et al.,
2011]. The triangulated graphs have a perfect elimination order and eliminating any
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node will not introduce any new fill-in edges. However, not all PGM graphs have
a perfect elimination order. For example, in Figure 2.1 (a), there is a cycle with
4 nodes and eliminating each of them will introduce a fill-in edge. If the graph is
not triangulated (e.g. Figure 2.1 (a)), finding the best elimination order and adding
new fill-in edges can lead us to the best triangulated graph, thus we can have the
best JT as well. One should check all the combinations to find the best elimination
order, hence finding the best elimination order is NP-Complete as well. The good
news is that, in our join problem, the number of nodes is small and hence one can
find the best elimination order with a small number of fill-in edges, exhaustively.
Nonetheless, greedy heuristic algorithms, such as min fill-in, work well even on the
graphs with thousands of nodes. We will use this algorithm in our solutions.

Moreover, other efficient greedy ways in [Abo Khamis et al., 2016] can be
utilized to convert a cyclic graph to an acyclic one.

The Min Fill-in Heuristic: In each step, the min fill-in heuristic adds one
node in the elimination order O, and that node is the node which introduces the
minimum number of new fill-in edges. If there is more than one node with minimum
fill-in edges, it breaks the ties arbitrarily. In Figure 2.1 (a), A should be eliminated
first then among B,C,D and E, one is chosen randomly, and so on and so forth.

The min fill-in heuristic can provide the triangulated graph. For a given
graph G(V,E), we find the new fill-in edge set E′ with the min fill-in heuristic and
make the triangulated graph as G′(V,E ∪ E′). Figure 2.1 (b) is one of the possible
triangulated graphs for the graph Figure 2.1 (a). Note that when we add a fill-in
edge, it is as if we add a potential equal to 1 that can join with any other potentials.
The main potentials for fill-in edges are calculated during inference. The min fill-
in heuristic can also output all the maxcliques in the graph during triangulation
since after elimination of a node, all its neighbors should be a clique. Any pair of
maxcliques that have some shared variables are connected to each other so that they
make a graph of the maxcliques (e.g. Figure 2.1 (c)).

So, the output of the min fill-in heuristic contains an elimination order O, a
triangulated graph, and a graph of the maxcliques. The issue is how to derive a JT
of maxcliques from the graph of maxcliques. There are several ways, and the easiest
way is to apply the maximal spanning tree algorithm. This algorithm finds all the
separator sets among maxcliques and chooses the edges with maximum separator
sizes one-by-one to span the graph of maxcliques. A separator set is a set of nodes
in the graph G that if we remove it, G is divided into disconnected sub-graphs.

Figure 2.1 shows all the steps of translating the graphs to JTs of maxcliques.
(a) shows the original graph G, (b) shows the triangulated G, (c) contains the graph
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Figure 2.1: Example non-tree graph translation to a tree

of maxcliques. (d) shows the weights (separator sizes) and finally (e) is the JT of
maxcliques after applying the maximal spanning tree algorithm.

Once the graph is translated to a JT, the same VEA can be used to calculate
the marginals.

For more information about translating graphs to JTs, please refer to [Koller
and Friedman, 2009; Cowell et al., 2007; Jensen and Nielsen, 2007; Wainwright and
Jordan, 2008; Blake et al., 2011].

2.1.3 Applications of PGMs

PGMs have a wide range of potential uses; some examples include image processing
(de-noising, in-painting, and generation), natural language processing (generation,
and translating), audio (super-resolution, speech synthesis, and speech recognition),
and healthcare. We are also not the first to use PGMs in relational databases. PGMs
have a long history of application in database research for cardinality estimation,
aggregation computation, and regression learning over join result without creating
the join result [Wang et al., 2008; Deshpande and Sarawagi, 2007; Singh and Graepel,
2012; Tzoumas et al., 2011, 2013; Garrouch and Omri, 2017; Abo Khamis et al., 2016;
Olteanu and Schleich, 2016]; nonetheless, our use of PGMs in this thesis is different as
we attempt to solve different challenges (the join sampling, performing the physical
joins, and the model join sampling).

2.2 Physical Join Algorithms (PJAs)

PJAs are joins that are not used in SQL queries by users. Rather, query process-
ing engines implement these as operators or algorithms to accomplish logical joins
(e.g. inner and outer joins). Query processing engines typically apply all filters and
predicates to single tables before employing a PJA (or a mix of PJAs) to perform
the actual join. In other words, PJAs are concerned with generating (enumerating)
any tuples in the join result that fulfill the join predicates; other predicates and
operations (e.g., aggregations, group-by, etc.) are not of interest.
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The PJAs that join the tables two-by-two are known as binary PJAs. Those
that join all the involved tables together simultanously are known as multi-way PJAs.

2.2.1 Binary Physical Join Algorithms

Binary PJAs are the most common and widely deployed PJAs in commercial re-
lational databases. The three main binary PJAs used in relational databases are
hash joins, nested-loop, and sort-merge algorithms. When running the join queries,
the optimizer selects one (or a combination of them), each of which has advantages
and downsides of its own. For full information about those algorithms please refer
to [Mishra and Eich, 1992; DeWitt et al., 1993; Dittrich et al., 2002; Graefe, 1994;
Kitsuregawa et al., 1983; DeWitt et al., 1984], however, we quickly review each of
them and discuss their advantages and disadvantages.

Nested-Loop Join

A simple nested-loop join is implemented using two level nested for-loops. The
outer loop reads rows one at a time from the first (outer) table, passing each row to
a nested loop that processes the next (inner) table in the join. The inner table is
fully scanned for each tuple in the outer table. The matched tuples are returned as
the join results. This simple algorithm works best with cross joins.

Block Nested-Loop Join is a version of nested-loop join that pairs each inner
relation block with each outer relation block. In order to accomplish this, the re-
lations are processed per block rather than per tuple. Blocks are stored in buffers.
When the buffer size is sufficient to store the complete relation in memory, the block
nested-loop join reduces block access significantly.

Indexed nested-loop join builds an efficient index on the inner table, which
significantly improves efficiency.

Despite being costly with large tables, nested-loop join can be used with any
type of joins, making it suited for any join condition. Nested-loop will operate even
if there is no index and the tables are not sorted. This approach is superior to other
binary PJAs when the tables to be joined are small. Last but certainly not least,
this algorithm suffers from UIRs because of its binary nature.

Sort-merge Join

With a sort-merge join, both relations are sorted based on their join attributes, then
scanned in the order of their join attributes. The resulting relation is formed by
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merging tuples that meet the join requirement. In other words, it merges two sorted
tables in a zipper-like fashion.

Sort-merge has the advantage that each relation is only scanned once if it
is sorted, and the join condition can be any condition. Moreover, the memory
usage is usually low with sort-merge join. The issue with the sort-merge join is the
requirement that relations must be sorted on the join attribute prior to merging.
This algorithm also suffers from UIRs.

Hash Join

Hash join creates an in-memory hash table on the join column of the inner table,
then scans the outer table for matches to the hash table and joins the corresponding
data from the two tables.

If the complete hash table fits in memory, a hash join is less expensive than
any other binary PJAs. However, hash join cannot be utilised for inequality joins
(a.k.a. theta joins), and this approach undoubtedly suffers from UIRs the same as
other binary PJAs.

2.2.2 Worst-case Optimal Physical Join Algorithms

WOJAs were invented to deal with UIRs as much as possible in the multi-way
many-to-many joins (where UIRs exist). Any join algorithm that has a complexity
of O(N

ρ
) is a WOJA. ρ is the edge cover number of the fractional edge cover and

N is the size of largest table in the join. In the following, we first explain the edge
cover and then the fractional edge cover. Then, we will overview the state-of-the-art
WOJAs and present a general pseudo-code for all WOJAs.

Edge Cover

Assume a hyper-graph (V,E) is constructed over the involved tables; V is the set of
all nodes (a node per attribute) and E is the set of the hyper edges among them,
which are inserted as follows: For each table, there is a hyper-edge including all the
nodes coming from the same table. Edge cover is a subset C ⊆ E of edges such that
each node appears in at least one edge. Finding the edge cover can be formulated as
an integer programming problem by assigning to each edge ei ∈ E a weight λi, with
λi = 1 when ei ∈ C and λi = 0 when e /∈ C. For example, for a "triangle" join TQ of
tables D1(A,B), D2(B,C), D3(C,A) with the sizes |D1|, |D2| and |D3| respectively,
the integer program can be defined as below:
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Minimize λD1 + λD2 + λD3 , subject to

A: λD1+ λD3 ⩾ 1

B: λD1 + λD2 ⩾ 1

C: λD2 + λD3 ⩾ 1

For query TQ, the edge cover is 2 and the upper bound for the join size is O(N
2
)

where N is the max of |D1|, |D2|, |D3|.

The Fractional Edge Cover ρ

Atserias et al. in [Atserias et al., 2008] proved a tight bound based on the "fractional
edge cover" for the maximum join size for full conjunctive queries. ρ is computed
by relaxing the integer program to a linear programming problem, allowing the edge
weights to range between 0 and 1. For example, choosing λD1 = λD2 = λD3 = 1/2

for TQ yields a valid fractional cover and the upper bound is O(N
3/2

).

General WOJA

WOJAs have enjoyed significant attention in the last decade and several WOJAs have
been introduced, e.g., NPRR in [Ngo et al., 2012], Leapfrog TrieJoin in [Veldhuizen,
2012] and the versions of WOJAs with new data structures to build the tries including
[Freitag et al., 2020], [Arroyuelo et al., 2021] and [Fekete et al., 2019]. The WOJA
presented in [Freitag et al., 2020] offers the state-of-the-art WOJA for RDBMSs.

Algorithm 1 describes a general algorithm for WOJAs. This algorithm resem-
bles Algorithm 1 from [Freitag et al., 2020]. All to-be-joined tables should be sorted
with all WOJAs, and they are attribute-based (not table-based) and require specific
attribute generation order. The attributes are generated sequentially in accordance
with this order.

The idea is that WOJAs simultaneously process the related tables with the
same join attributes (let us call those tables as Djoin). They efficiently discover the
matches in those tables Djoin by using structures like tries and trees. Finding the
matches is similar to a sort-merge join algorithm, however it is performed on many
tables with the identical join attribute (refer to [Veldhuizen, 2012]). For each tuple
ki in the result of Djoin (of the first join attribute), the same approach is used to
identify the matching tuples in the Djoin of the succeeding join attribute. π and σ

are the projection and selection operators, respectively. This procedure will continue
until the algorithm has covered all of the join attributes and enumerated all of the
linked tuples. To enumerate all join tuples, the procedure is recursive and backtracks
numerous times.
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Algorithm 1 General Algorithm for WOJAs

For a given hyper-graph HQ(V, E) of query Q where V = {v1, v2, ..., vn} is the set of all
involved attributes and E = {e1, e2, ..., em} is the set of hyper-edges over V , the recursive
function (WOJArec) will return all the tuples in the join result of m tables.
i is the index for join attributes, and D is the set of tables involved in the join query.

1: procedure WOJArec(i, D)
2: if i <= n then ▷ If any attribute remains
3: Djoin ← {Dj ∈ D|vi ∈ DEDj

} ▷ Djoin contains all tables that include vi
4: Dother ← {Dj ∈ D|vi /∈ DEDj

} ▷ Dother contains all tables that exclude vi
5: for each ki ∈

⋂
Dj∈Djoin

πvi(Dj) do ▷ ki is the shared value among tables in Djoin

6: Dnext ← {σvi=ki(Dj)|Dj ∈ Djoin} ▷ Dnext contains the matching tuples
7: WOJArec (i+ 1,Dnext

⋃
Dother) ▷ The recursive part for the next attribute

8: end for
9: else

10: product ( ×
Dj∈D

Dj) ▷ Enumerates all the tuples in the result of the product

11: end if
12: end procedure

2.3 Analytics over Joins

The traditional way of calculating aggregations or performing any other kind of
analytics over joins is to first find the join result, and then perform the analytics
over it. However, these days, several new solutions have been proposed, and their
goal is to perform analytics over joins without generating the results. Hence, they
are not physical join algorithms.

Sampling over joins (join sampling) (see Chapter Chapter 3 and 5), learning
regressions or any other machine learning models over joins without generating the
join result (e.g. [Olteanu and Schleich, 2016]), calculating the aggregations over joins
without generating the join result (e.g. [Olteanu and Závodnỳ, 2015; Abo Khamis
et al., 2016]) and generating a compressed version of the join result (e.g Run-Length
Encoding in Chapter 4) without generating the join result are some of examples for
analytics over joins. In this section, we give a high-level overview of the existing
solutions for analytics over joins, and in subsequent chapters, we introduce our own
solutions for some of the applications involving analytics over joins.

2.3.1 Uniform Join Sampling Methods

Join sampling (without first computing the join) has a long history as a topic of study
within our community. This thesis focuses specifically on uniform and independent
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samples due to their extensive applicability in AQP, ML and any other data analytic
tasks.

Olken’s method in [Olken, 1993] is based on rejection sampling and gives
uniform and independent samples over 2-way joins. Assume two tables R0 and R1.
His approach first selects a tuple t1 from R0 randomly, and next finds (t1 ▷◁ R1)

and randomly selects t2 from it, and then accepts (t1 ▷◁ t2) with the probability of
the frequency of t2 over the maximum frequency in R1, otherwise rejects it. This
approach has been found to be inefficient because of the high number of rejections
and is only applicable on two-way joins.

Chadhuri et al’s method in [Chaudhuri et al., 1999] generates uniform and
independent samples for 2-way joins. If t1.ja is the value of the join attribute in tuple
t1, their approach selects a tuple t1 from R0 with the probability of the frequency
of t1.ja in R1 over the size of R1. Once t1 is selected, t2 is then selected randomly
from (t1 ▷◁ R1).

Both Chadhuri et al. and Olken’s approaches need indices in the second table
to be efficient, and they only work on 2-way joins.

Going beyond two-way joins, [Acharya et al., 1999] proposed join synopses for
computing uniform n-way join samples, albeit only for foreign key joins. In general,
when using foreign key joins, joining a uniform sample of the first table with other
tables in the join query yields a uniform sample of the join result.

Zhao et al. in [Zhao et al., 2018b] introduced an extended framework for
Olken’s and Chadhuri et al’s approaches for arbitrary n-way joins. This is currently
the state of the art. It requires all tables (and related metadata like indexes) to be
brought into memory. Their algorithm calculates the weights per tuple in a table
over the join result in a dynamic programming way. Processing cyclic joins is not
very efficient with their method as they need to perform the actual join on some
part of the query. Authors in [Zhao et al., 2018b] introduced several methods, but
Exact Weight (EW) and Online Exploration (OE) were the most efficient ones. We
compare our method to these two methods in Chapter 3. Both of them are multi-way
join sampling methods and have two phases: preparation and generation.

Exact Weight (EW)

EW uses a dynamic programming approach in the preparation phase that computes
the exact weight for every tuple in a join. This is a generalization of the original
Chaudhuri el al.’s algorithm [Chaudhuri et al., 1999]. Then it starts to generate the
samples based on the exact weights.

EW has a slower preparation phase than OE, but it has a faster generation
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phase.

Online Exploration (OE)

The OE algorithm employs Wander join [Li et al., 2016] and rejection sampling to
generate uniform and independent samples. The preparation phase for OE is faster
than for EW, but the generation time is longer because of the rejection sampling.

Both EW and OE require the tables and indices over the tables to be in
memory during the preparation and generation phases.

The generated samples by these approaches can be used for AQP, learning
models, visualization, or any other downstream tasks.

2.3.2 Factorized Databases (FDB)

The primary goal of FDB [Olteanu and Schleich, 2016] is to represent the join result
as succinctly as possible so that analytics can be performed on it at a lower time and
space cost. In other words, FDB can calculate aggregations and train regressions
more efficiently without generating the join result. Therefore, FDB attempts to
maximally factorize the join result. Please note that the factorized join result (data)
is different than the factorized join distribution.

Assume the query is to calculate the natural join of two tables R(A,B) and
S(A,C), and that both tables contain A values as {a1, a2, ..., an} for a large n.
Attributes B and C of the two tables are partitioned such that there is one partition
per A-value for i ∈ {1, 2, ..., n}.

Ri = πBσA=ai(R) and Si = πCσA=ai(S).
The join result can be obtained by the Cartesian product of those partitions

in R and S. The expression includes product and union operations.
R ⋊⋉ S = {(a1)} ×R1 × S1 ∪ ... ∪ {(an)} ×Rn × Sn
However, FDB is not intended to calculate all partition products; rather, it

maintains an unmaterialized version of partitions (implemented by views) in a tree-
like structure with sum and product operations (considered as factorized result).
Therefore, analytics (like aggregations) can be performed on this tree rather than on
the actual join results. The FDB community calls this f -representation [Olteanu
and Závodnỳ, 2012]. Also, keep in mind that FDB cannot perform analytics without
the tables since f -representation just consists of unmaterialized views.

The authors of FDB also added two more join result representations. When
more than two tables are to be joined, some partitions are recurred numerous times
in their tree, thus they give a name (pointers) to each partition and simply reuse
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the names in the f -representation to lower the size of the factorized result. The
term for this representation is d-representations [Olteanu and Závodnỳ, 2015]. In
addition, they give cover representation [Kara and Olteanu, 2017], which is a listing
of the minimal edge cover of a bipartite graph generated from the tables. The tuples
of the tables are nodes in the bipartite graph, and the edges are between the tuples
that can join.

However, there are times when the enumeration cannot be avoided. The
authors of [Olteanu and Závodnỳ, 2015] also propose a constant-delay enumeration
approach that allows them to enumerate all join tuples from factorized representa-
tions. It is a Depth-First Search (DFS) algorithm with a backtracking-heavy ap-
proach for graph tracing. Even FDB can be deemed PJA with this enumeration
algorithm. However, they do not implement it and compare it to other PJAs, as
they do not aim to generate the join result. In fact, FDB strives to keep the join
result representation as compact as possible and to avoid the join tuple enumer-
ation. The enumeration algorithm generates join tuples row-by-row, necessitating
access to indices for each value in each tuple. Furthermore, recall that FDB only
works with factorized data and not factorized distribution, and thus it does not know
the column values’ frequencies in advance. Consequently, FDB cannot enumerate
the join tuples columnarly, and hence the join result enumeration by FDB is not
efficient. We believe columnar join result generation may be more efficient than row-
by-row enumeration because columnar generation requires fewer index accesses than
row-by-row enumeration. This will be experimentally demonstrated in Chapter 4.

Given that FDB is an in-memory engine, it is not clear how the factorized
representation of the join result can be stored on a disk and retrieved into the
memory.

For more information, refer to the main page for FDB 1.

2.3.3 FAQ problem

The authors in [Abo Khamis et al., 2016] define and investigate the Functional Aggre-
gate Query problem (FAQ). They recognized that many frequently asked questions
in constraint satisfaction, databases, matrix operations, probabilistic graphical mod-
els, and logic had similar properties, therefore they grouped them all together as a
FAQ problem and proposed some efficient solutions for them all.

FAQ is related to our work because the FAQ solutions are based on PGM’s
principles, and the authors have modified the basic algorithms (such as the hyper-
tree decomposition algorithm and the variable elimination algorithm) to address the

1https://fdbresearch.github.io/index.html.
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frequently asked questions in a variety of settings (which is very useful, especially in
PGMs and FDB).

The FAQ solution can be used to calculate aggregations over joins without
generating the result of the join. FAQ solution works with factorized distributions.
On this factorized joint distribution of the input tables, aggregations across a join
query can be calculated. Their approach is not to enumerate the join result, however
they claim that the enumeration algorithms from FDB may be utilized to enumerate
the join results from the factorized joint distribution of a join query. Thus, the FAQ
approach shares the same disadvantages as FDB in that it cannot enumerate the
join tuples columnarly.

The main technical contribution in [Abo Khamis et al., 2016] is to propose
heuristic algorithms to find the hyper-tree decomposition, which is very useful in
PGMs. These heuristic algorithms can also be utilized in our join algorithms.

2.3.4 Approximate Query Processing (AQP)

In this section, we cover AQP techniques, applications, and new issues that have
evolved in this field, such as the AQP over joins.

There are multiple well-established approaches.
For instance, online aggregation [Hellerstein et al., 1997] is a technique whereby

the user receives online estimates of an aggregate query as soon as the query is is-
sued. For example, if the final answer is 500, the user initially receives estimates
such as 480 (or 520), and the estimate error continues to decrease as the AQP engine
processes more samples.

AQP can also be performed with data sketching [Cormode and Muthukrish-
nan, 2005] and sample-based methods [Park et al., 2018a; Agarwal et al., 2013]. Using
the sample-based method, samples are generated based on the workload, and when
a query is received, an approximation of the answer is derived using the samples.

Nonetheless, AQP research has made significant progress in recent years.
ML/statistical models that are accurate, efficient, and lightweight have altered the
other AQP techniques. For example, DeepDB [Hilprecht et al., 2020], DBEst [Ma and
Triantafillou, 2019; Ma et al., 2021], deep generative models [Thirumuruganathan
et al., 2020], etc. are the most popular ones.

DeepDB: DeepDB applies Sum-Product Networks (SPNs) [Poon and Domin-
gos, 2011] to tabular data and discovers the table’s full distribution. Fundamentally,
DeepDB attempts to cluster the table to the greatest extent possible until the at-
tributes become independent. Then, for each attribute per cluster, a histogram is
constructed. The model is a tree in which the histograms are the leaves and the
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sum and product operations are intermediate nodes. The aggregate calculation in
DeepDB is a bottom-up approach. Therefore, an aggregation computation begins
at the leaves by examining the frequencies in the histograms, then ascends by per-
forming the sum and product operations, and at the root, the answer to the query
is obtained. DeepDB is trained on a sample, hence its estimated statistics are ap-
proximations.

DBEst: Based on a specific workload, DBEst trains density estimators and
regression models to approximate query template answers. Assume a regression
model y = R(x) and density estimator D(x), where x is the range predicate and y

is the select attribute for which aggregations are to be calculated. This formula is
used to calculate an aggregate SUM (y).

SUM(y) = S ·
∫ ub

lb
D(x)R(x)dx (2.5)

where S represents the scaling factor and lb and ub represent the lower limit and
upper bound of the range predicate, respectively. S depends on the sample size that
the DBEst models have been trained.

For a group-by query, DBEst keeps a density estimator and a regression
model for each group of a grouping attribute. If the number of groups is quite high,
the size of models may swell. To solve this issue, in DBEst++ paper [Ma et al.,
2021], we replaced all those models with a single conditional regressor called Mixure
Density Networks (MDNs) [Bishop, 1994] and Embeddings (Skip-Gram [Mikolov
et al., 2013]). DBEst++ is more accurate, lighter, and faster than DBEst.

These models are also capable of being updated. Therefore, when an exact
response is not required, the underlying data can be forgotten. In this thesis, we
refer to the forgotten tables as absent tables. There are further reasons why some
tables are absent, such as privacy concerns. We will discuss those reasons in Chapter
5. The challenge with the absence of tables is that the learnt models cannot be used
to perform AQP over the join of tables. Hence, this is a newly-emerging challenge
in AQP, which is the subject of our Chapter 5. We will introduce the first model
join framework to join AQP models so that queries on the joint distribution of the
models can be answered. The framework is based on PGMs.
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2.4 Embedding Learning: Skip_Gram with Negative Sam-
pling

Learning embeddings is important for us because we are going to learn real-valued
vector representations for each distinct value in the categorical attributes (e.g. join
attributes) in Chapter 5.

Word embeddings are a type of word representation that bridges the gap be-
tween human and computer language comprehension. These are necessary for solving
the majority of NLP problems. With word representation, words are represented as
real-valued vectors, and the proximity of two word vectors indicates their relationship
to one another. There are many embedding learning approaches; embeddings like
Continuous Bag-of-Words (CBOW) and Skip_Gram [Mikolov et al., 2013] have been
highly successful for NLP tasks because of the deep linguistic theory behind them
(coined distributional hypothesis). In this work we use Skip_Gram with negative
sampling [Mikolov et al., 2013] which is faster than the naive Skip_Gram.

Skip_Gram is a simple Neural Network (NN) with a single hidden layer
with n dimensions as embedding vectors. The goal is to learn embedding vectors.
Formally, given a sequence of training words w1, w2, w3, ..., wK , the objective of the
Skip_Gram model is to maximize the average log probability

1

K

K∑
k=1

∑
−c≤j≤c,j ̸=0

log p(wk+j | wk) (2.6)

where c is the size of the window in the context, and K is the number of words in
the vocabulary.

In the last layer of the Skip-Gram NN, a Softmax function is used to turn
the logits to probabilities. To find p(wO|wI) the following formula is used:

p(wO|wI) =
exp(v′wO

⊤ × vwI )∑M
w=1 exp(v′w

⊤ × vwI )
(2.7)

where vw and v′w are the input and output vector representations of the word w.

Negative sampling

The Skip_Gram has a large number of weights and all of them should be updated
according to (in our case, maybe millions of) training data instances. Instead of
updating all weights, negative sampling [Mikolov et al., 2013] helps to change the
problem to a binary classification problem and randomly select just a small number
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of negative words and then try to distinguish between randomly chosen negative
words and the current word, so that there is no need to compute the similarity of
one word with all other words in the corpus. The following equation is replaced with
every log p(wO|wI) in the Skip-gram loss function Equation 2.6.

log p(v′wO
⊤ × vwI ) +

n∑
i=1

Ewi∼Pn(w)[σ(−v′wi
⊤ × vwI )] (2.8)

where there are n negative samples, and where σ(x) = 1/(1+exp(−x)) and Pn(w) is
the noise distribution. (For more information please refer to [Mikolov et al., 2013].)
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Chapter 3

A New Join Sampling Algorithm
with PGMs

3.1 Motivation

Join operations are ever-present. However, they are expensive operations, in terms of
execution times, resource consumption, and monetary costs, especially when joining
(several) very large tables and when they entail many-to-many relationships. In the
era of big data and of the high importance of fast big data analytics, the join opera-
tion can become prohibitive (e.g., taking days to complete [Zhao et al., 2018b]). As
explained in the introduction section, sampling of the join result presents a promis-
ing alternative to computing the actual join: If one wants to analyze the join result
and perform various learning and knowledge discovery (LKD) tasks (e.g., AQP, re-
gression, clustering/classification, build advanced ML models, etc.) uniform and
independent samples of the true join result are great to avoid the above issues while
facilitating such analytics, due to their well-understood theoretical guarantees. For
example, the state-of-the-art AQP methods are either based on such samples (Ver-
dictDB [Park et al., 2018b]) or are based on ML models built from such samples
(DBEst [Ma and Triantafillou, 2019; Ma et al., 2021], DeepDB [Hilprecht et al.,
2020]). Likewise for selectivity estimation tasks [Yang et al., 2020].

However, computing the join first and then sampling is obviously defeating
the point. One option would be to just uniformly sample each table first and then
join the uniform samples. Unfortunately, it is well-known (Acharya et al [Acharya
et al., 1999] and Chadhuri et al. [Chaudhuri et al., 1999]) that this would produce a
join-result sample of poor quality. High quality samples in this setting are defined as
those observing the qualities of uniformity and independence. In essence, the goal is
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two-fold: First, to derive a sample of a certain size, by repeatedly and independently
selecting a tuple at a time from the join-result with the same probability; and second
to generate such a uniform and independent sample without the cost of computing
the join result first. Although other types of join samples, such as hash sampling
[Hadjieleftheriou et al., 2008] and the sampling techniques used in wander join [Li
et al., 2016] and ripple join [Haas and Hellerstein, 1999; Haas, 1997; Jermaine et al.,
2008] are adequate for certain applications, clearly these fail to ensure uniformity
and/or independence.

Recently, [Zhao et al., 2018b] made a significant step forward generalizing
previous efforts in [Chaudhuri et al., 1999; Olken, 1993] and being able to handle
general n-way joins while computing uniform samples of joins without computing
the join first.

However, the current state of the art [Zhao et al., 2018b] leaves plenty of
opportunity for improvement, and the overall approach is not only inefficient but
also complex and difficult to follow. We contribute a principled solution, coined
PGM-Join sampler. The PGM-Join sampler adapts Probabilistic Graphical Models
to deriving provably uniform samples of the join result for (n-way) key-joins, many-
to-many joins, and cyclic and acyclic joins. The PGM-Join sampler contributes
optimizations both for deriving the structure of the graph (especially with cyclic
joins) and for PGM inference (with VEA). It also contributes a novel inference
algorithm to build a uniform sample generator which from it generates the uniform
sample of the joint distribution (join result) efficiently and a novel way to deal
with cyclic joins. Despite the use of PGMs, the learned joint distribution is not
approximated and the uniform samples are drawn from the true distribution.

The key idea is that [Zhao et al., 2018b] uses the real data tuples and creates
indices over the data. However, the PGM-Join sampler concentrates on the distribu-
tion of the join query and does not access the underlying data when it is processing
the join query. Additionally, the PGM-Join sampler is based on the established prin-
ciples underlying PGMs, making it easier to understand, prove correct and come up
with new solutions.

In this chapter, first, an overview of the PGM-Join sampler is provided. The
creation of MRF graphs is then discussed. It is then described how the PGM-Join
sampler processes (acyclic and cyclic) joins, which involves two phases: inference
and sample generation. Furthermore, the uniformity of the generated samples is
examined and proven. At the end, the experimental evaluation using queries and
datasets from TPC-H, JOB, TPC-DS, and Twitter is shown.
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3.2 Related Work

Join sampling. We have already discussed join sampling approaches in the back-
ground section and section 3.1, so we will refrain from repeating ourselves and instead
concentrate on other related works.

Machine Learning for Data Analytics. ML models are being increasingly
used in the data management community. An apparent good fit for this are ana-
lytical queries in approximate query processing (AQP) engines. [Anagnostopoulos
and Triantafillou, 2015, 2017b] and [Park et al., 2017] showed how to build models
which exploit previous data system answers to predict answers for future queries.
[Anagnostopoulos and Triantafillou, 2017a] extended the above to predict answers
for regression queries. More recently, [Ma and Triantafillou, 2019; Ma et al., 2021;
Hilprecht et al., 2020; Thirumuruganathan et al., 2019; Kumar et al., 2015] all uti-
lized various types of ML models to improve accuracy and efficiency for AQP engines.
Also, [Yang et al., 2020] uses models for cardinality estimation over joins. All these
works rely strongly on having random join samples when dealing with joins. Beyond
AQP, ML has been playing an increasingly significant role in DB research. SageDB
[Kraska et al., 2019] argues for a new DB design where deep ML models are first
class citizens, able to learn base data distributions and guide the tasks of indexing,
join processing and query optimization. Deep ML models have also been applied
to learn index structures [Kraska et al., 2018], estimate join cardinality [Kipf et al.,
2018], [Ortiz et al., 2018], and for analytical query forecasting [Ma et al., 2018] and
performance prediction [Venkataraman et al., 2016].

PGMs. The majority of PGM learning algorithms are utilized when the
joint distribution is known and we wish to factorize it. In join sampling problem,
however, we already possess the factorized data, so we only learn the distribution of
the factorized tables. Existing approaches like Monte Carlo methods [Hastings, 1970]
approximate the distribution, leading to an approximate uniform sample. Markov
chain approaches [Kass et al., 1998] also generate dependent uniform samples. The
most common general Markov Chain Monte Carlo algorithm is called Gibbs Sampling
[Gilks and Wild, 1992] and also Metropolis-Hastings Algorithm [Robert and Casella,
1999] which both generate dependent sample rows and approximate the uniformity.

In join sampling, we have a small graph with just a few nodes (a node per
attribute) in the graph and cycles are easy to break. In this case, instead of executing
VEA twice (as it is usual in PGMs) to find the exact factors for the joint distribution
and then sample from it, we show that with one VEA execution the samples can be
derived correctly and efficiently.
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Figure 3.1: An overview of PGM-Join sampler

3.3 A Brief Overview of PGM-Join Sampler

Figure 3.1 depicts an overview of how the PGM-Join sampler generates uniform
samples for given join queries.

For a given query, the PGM-Join sampler builds an MRF graph. There are
qualitative and quantitative aspects to graph construction. In qualitative learning,
a node is added to the graph for each involved attribute in the query, and an edge
is added between attributes if they are in the same table. In quantitative learning,
the tables are scanned and the exact dependency among the nodes is captured in
the form of frequency tables. In this thesis, these frequency tables are called factors,
potentials, and potential functions interchangeably.

Cycles may be present in the resulting MRF graph. The graph’s cycle-forming
elements are selected out as remainder components. If the remainder components
also contain cycles, a portion of them is likewise pulled out once more to get rid of
all the cycles. Several trees might appear in the end. However, most of the time
there is just a single remainder component with a singe edge. Section 3.4 has further
information.

Inference is performed on all of the resulting MRF trees in order to build
sample generators for each tree. The PGM-Join sampler begins the inference process
over the MRF trees with Algorithm 2 based on an elimination order that begins with
the leaves and progresses to the root. Only the join attributes are used in inference.
More information can be found in Section 3.5.

Once the sample generator for each tree is constructed, the PGM-Join sampler
begins to generate samples (as explained in Algorithm 3.6.2) from the root to the
leaves (the reverse order of the elimination order). The PGM-Join sampler generates
samples for join attributes first, then adds non-join attributes to the sample. When
there is more than one tree (indicating that the query is cyclic), the PGM-Join
sampler employs a rejection mechanism to ensure that the samples are uniform.
More information can be found in Section 3.6.
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3.4 Modelling Join Queries with MRFs

PGMs are heavy machinery and learning the structure of the PGMs and their dis-
tribution factors is a time-intensive process. At first glance, it may appear that
mapping joins to PGMs is not a good idea, but in normalized databases, the factors
are already present and we do not need to learn or approximate them (as explained in
Section 1.3). Any normalization in relational databases is analogous to distribution
factorization. Basically, when a table D is normalized to many tables D0, D1, ..., Dm,
the product (join) of the normalized tables will yield the exact D. That means if
we have the exact distribution of the normalized tables and calculate the product
of the distributions, we can obtain the exact joint distribution. In other words, the
factors from the normalized tables can be integrated and form a PGM. An equiva-
lence for the conditional independence of the PGMs in relational databases could be
the fact that non-join attributes from different tables are conditionally independent
from each other if the shared join attributes are observed. It is worth mentioning
that factorizing a distribution does not necessarily imply that the underlying data
has been properly normalized.

To be able to obtain uniform samples without generating join results, we
desired to learn the joint distribution; hence, we formulate our solutions for the
join sampling problem utilizing PGM principles. As a general example, assume all
attributes in the normalized table Di as a clique ci in the query graph, and ψi as the
distribution (potential function/factor) of the normalized table Di. The factorized
distribution of the join result of D1 ⋊⋉ D2 ⋊⋉ ... ⋊⋉ Dm based on Equation 2.1 is like:

pD(xV ) =
1

Z

m∏
i=1

ψi(ci) (3.1)

pD is the joint distribution and xV are the attributes/variables in the join result. Z
is the normalization constant and can be ignored in the inference process. In our
case, Z is the join size.

Here, we discuss how we map a join query to an MRF (a kind of PGM), and
in the next sections, we explain how uniform samples are efficiently derived from the
MRF.

Prior to initiating the join operation for a query, all conditions other than
join conditions can be applied. In other words, filters and predicates can be pushed
down and executed before anything else. Therefore, for the sake of simplicity, we will
assume that the queries contain only join conditions. It goes without saying that
our queries should lack aggregations as well, given that we wish to generate samples
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of the join result.
For a given join query, the PGM-Join sampler learns an MRF. As explained in

the background section, learning any kind of PGM has two components: qualitative
and quantitative. For the qualitative component, the PGM-Join sampler adds a
node in the MRF graph per join attribute. The same join attributes in different
tables have a single node in the MRF graph. The attributes not involved in the
join query (neither as a join attribute nor a projection attribute) are ignored. All
non-join attributes are considered as a single node (a maxclique) in the graph. If
the corresponding attributes of the two nodes are present in the same table, an
edge between those nodes is added, showing that their variables are dependent on
each other. We use undirected edges. It should be noted that only join attributes
have an impact on sample uniformity. The MRF’s leaves are all non-join attributes,
while their parents are all join attributes from the same table. In other words, non-
join attributes are only linked to join attributes in the same table. These parents
act as separators, separating the leaves from the other nodes. In accordance with
the Global Markov property, the non-join attributes are dependent exclusively on
their parents (the join attributes from the same table) and independent of all other
attributes once their parents have been observed.

non− JAi ⊥⊥ AV \JAi | JAi (3.2)

non − JAi is the set of non-join attribute of the ith table, which is involved in the
query. JAi is a set of join attributes of the ith table involved in the query, and
AV \JAi is the set of all other attributes involved in the query. This fact makes the
inference simpler and more efficient since we can first build a uniform sample of all
join attributes and then add values for the desired non-join attributes to each data
point in the sample. To accomplish so, we need to keep ψ(non − JAsi|JAsi) for
each table and use them for adding the non-join attributes’ values in the sample of
the join attributes.

We call the potential functions related to the join attributes as skeleton, and
non-skeleton for the potential functions related to the non-join attributes. The non-
skeleton potentials are added to the sample generator directly without performing
any kind of inference over them.

As previously stated, learning the potentials in PGMs is a time-consuming
process, but in our case, the factors are already ready due to normalization. To
identify the potential functions per clique in the factorized distribution, we just need
to scan the tables. These potential functions return the frequency of the distinct
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tuples (only the involved attributes in the join). Each edge or node in the graph
may have more than one potential. In that case, we just multiply the potentials.
The complexity of the building potential is O(N), where N is the size of the largest
table in the join. Note that competitors require the tables and indices over the tables
beforehand in order to execute their algorithms. The complexity of creating indexes
is the same, and at least a full scan is needed. Consequently, as the competitors
pre-build the indices, in our case, the graph can also be offline pre-built. Pre-built
potentials, like pre-built indices, can be reused for several queries. In addition, they
can be utilized for a variety of other applications, such as cardinality estimation and
aggregation calculations.

As explained in the background section, trees have a perfect elimination order
and running the inference from the leaves to the root of the tree is efficient. Hence,
we want to make trees from any cyclic MRF graphs. Two ways are possible: either
eliminate the edges that make the graph cyclic and then use the eliminated edges
in a rejection mechanism (similar to the rejection mechanism explained in [Zhao
et al., 2018b]), or apply a hyper-tree decomposition algorithm like the junction-tree
creation algorithm to the cyclic graph to turn it into an acyclic one. With both, we
will end up with a tree structure. Here, we will use the first option that we pull-out
some parts of the graph to make it a tree. Our reason is that making the junction
trees and the potentials for the maxcliques are time-consuming, however in the join
sampling problem (especially with online AQP), the response time is very important.
We will talk about the complexity of the junction tree creation in Chapter 4. So,
instead of searching for the best junction tree and calculating the product of clique
factors in maxcliques, here, we just pull out the edges that make cycles.

The MRF graph G is simple with a small number of nodes. Any cycles in G
can easily be broken by pulling out some part of the graph (usually just an edge).
This operation divides the graph G into two graphs G0 and G1. G0 is referred to
as the main component, while G1 is referred to as the remainder component. To
remove an edge from G, we need to add two related nodes into G1 as well. So, G0

and G1 have nodes in common. Note, in rare cases G1 is also cyclic and its cycles
need to be broken as well. This will create another graph G2. G1 and G2 also have
some shared nodes. This continues until all the components are acyclic. Hence, in
the end, several MRF graphs for a query may emerge. PGM-Join sampler uses G0

as the main graph and generates a sample point for G0 nodes, then it uses other
remainder components with its rejection mechanism to reject the generated sample
point. If not rejected, the attributes in the remainder components are also added
into the sample point.
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Figure 3.2: The MRF for the running example

ψD1(B) ψD2(B,C) ψD3(C)
B freq B C freq C freq
b0 3 b0 c0 2 c1 4
b1 3 b1 c0 3 c2 4
b3 2 b2 c1 3 c3 2
b4 4 b3 c2 1 c4 2

b4 c3 2
b4 c4 1

Figure 3.3: Potentials for the skeleton of the graph in Figure 3.2

Authors in [Zhao et al., 2018b] showed that splitting the join into two parts
and using a rejection mechanism can still yield a uniform sample. Our mechanism
follows the same concepts but at an attribute level. Another difference is that they
always make two parts and run the actual join on the pulled-out part of the query
(which defeats the point), but we may build several parts and we do not run the
actual join at all.

Figure 3.2 shows the MRF graph for our running example. A and D are the
non-join attributes, and B and C form the skeleton. The factorized joint distribution
for the skeleton of the MRF is proportionally equal to:

p(B,C) ∝ ψD1(B)× ψD2(B,C)× ψD3(C) (3.3)

here, the subscript for ψ indicates the table’s name. Note that ψ is a potential
function that includes frequencies, not a probability distribution.

The potentials for the skeleton after scanning the tables are shown in Figure
3.3.

For the non-join attributes, we build conditional potentials conditioned on
the join attributes of the same table. These conditional potentials maintain the
cumulative distribution of the dependent attributes (non-join attributes) for each
distinct value in the independent attributes (join attributes). We use the cumula-
tive distribution to make the sampling easier. The potentials for the non-skeleton
attributes are shown in Figure 3.4. For example, in Table D1, the frequencies of a1
and a2 related to b1 in the join attribute B are 2 and 1, respectively. Therefore, the
cumulative frequencies for a1 and a2 are 2 and 3, respectively. For other B values,
there is just one A value, so they remain as they are.

The potentials depicted in Figure 3.3 will be utilized to conduct the inference
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ψD1(A|B) ψD3(D|C)
B A freq C D freq
b0 a0 3 c1 d0 4

b1
a1 2 c2 d2 4
a2 3 c3 d3 2

b3 a3 2 c4 d4 2
b4 a3 4

Figure 3.4: Potentials for the non-skeleton attributes in the graph in Figure 3.2

(a)

(b)
(c)

Figure 3.5: MRF graphs for TPC-H queries: a. MRF for Q3 b. MRF for QX and c.
MRF for QY

and construct a uniform sample of the skeleton. The potentials in Figure 3.4 are
used to add non-join attributes to the sample once the skeleton has been produced.

Figure 3.5 shows the MRFs for TPC-H queries Q3, QX and QY (cf. the
experimental section for query specifics). The factorized distributions for the skeleton
of Q3, QX and QY (pq3, pqx and pqy, respectively) are listed below.

pq3(custkey,orderkey) ∝ ψc(custkey)× ψo(custkey, orderkey)× ψl(orderkey) (3.4)

For non-join attributes ψl(lineNumber|orderkey)) is also needed.

pqx(nationkey,custkey,Orderkey) ∝ ψn(nationkey)× ψs(nationkey)×

ψc(custkey,nationkey)× ψo(orderkey, custkey)× ψl(orderkey) (3.5)

for non-join attributes ψs(suppkey|nationkey) and ψl(lineNumber|orderkey) are also
needed.
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pqy(nationkey,custkey1,custkey2,orderkey1, orderkey2,partkey) ∝

ψc1(nationkey,custkey1)× ψc2(nationkey,custkey2)×

ψo1(custkey1,orderkey1)× ψo2(custkey2,orderkey2)×

ψl1(orderkey1,partkey)× ψl2(orderkey2,partkey) (3.6)

QY is a cyclic query and the skeleton should be cyclic. In this case, one of
the edges should be pulled out to make it acyclic (to be explained later). Also
ψl1(lineNumber1|orderkey1,partkey) and ψl2(lineNumber2|orderkey2,partkey) are required
to handle non-join attributes.

Complexity of the Graph Building To build each of the potentials we
need just to scan each table once. Assuming N is the largest table in the join, the
complexity of building the graphs for a join query is O(N).

Once the MRF model for the provided join query is ready, the inference step
begins preparing the necessary statistics (the sample generator) to generate uniform
samples.

3.5 Inference Phase

Typically, the inference (e.g. VEA) is performed in PGMs to calculate a quantity
(e.g. a marginal) over the factorized distribution in a dynamic programming manner,
by eliminating the variables one-by-one from the leaves to the root, utilizing the sum-
product operation.

We also utilize VEA to perform inference on the factorized joint distribution
of our join queries; however, our goal is not merely to calculate a marginal, but rather
to construct a uniform sample generator. The sample generator is then employed to
produce the sample points. The inference is performed only on the skeleton, while
the non-skeleton potentials are added directly to the sample generator. After the
sample for join attributes is generated, the non-skeleton potentials are used to add
the non-join attributes in the sample too.

If the MRF graph for a join query is not cyclic then we have a single G,
otherwise we may have several remainder componentsG0, G1, ... . PGM-Join sampler
runs inference on all the graphs of a join query. Recall that with cyclic queries, G0

has some shared nodes with G1; those shared nodes should be the root of G1 because
adding the nodes of G1 is dependent on the all the shared nodes in G0. G1 and G2

also have some shared nodes which should be assumed as the root for G2, so on so
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ψ(B,C)× ψ(C)

B C freq
b2 c1 12
b3 c2 4
b4 c3 4
b4 c4 2

Figure 3.6: The result of the product in sum-product operation

ϕ
�C
(B)

B freq
b2 12
b3 4
b4 6

Figure 3.7: The result of the sum-product operation to eliminate the variable C

forth.
For each graph, PGM-Join sampler begins eliminating nodes from the leaves

to the root, one by one. This elimination order is denoted by the letter O and
is determined in the same manner for all graphs of a join query. A sum-product
operation is used in each variable elimination that is being performed. Our running
example is a nice example of how the sum-product of the PGM-Join sampler may be
used to remove a single variable from a factorized distribution. Assume the graph in
Figure 3.2 with the factorized distribution for its skeleton in the Equation 3.3 and
the actual exact potentials for the skeleton in Figure 3.3. Let’s assume we want to
eliminate C first from the skeleton. The sum-product operation has two steps. It
first calculates the product of the all potentials that include C and then it sums out
C from the result of the product and builds a new factor for B (the parent of C).
Based on the potentials in Equation 3.3, the potentials that include C are ψD2(B,C)

and ψD3(C). The result of the product operation is shown in Figure 3.6.
Note that the entries with zero frequencies are ignored.
And after summing out C from the result of the product in Figure 3.6, the

factor ϕ�C(B) (shown in Figure 3.7) is created.
The new potential created for B is notated with ϕ to make it more readable

and to indicate that the factor is temporary and will not be kept after finishing the
join processing. We usually refer to ϕs as factors, not potentials, but in essence
both potentials and the factors are just frequency tables with random access to the
entries.

During performing the sum-product operation, the PGM-Join sampler also
calculates a conditional potential (ψ(C|B)). ψ(C|B) is calculated based on the
result of the product operation (shown in Figure 3.6). It is a conditional potential
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that gives the frequencies of C given B over the distribution of all B’s descendants’
eliminated variables. The returned frequencies are cumulative per distinct value. For
example, ψ(C|B) is shown in Figure 3.8. The frequencies for c3 and c4 given b4 are 4
and 2 respectively based on Figure 3.6, but the accumulative frequencies in ψ(C|B)

(shown in Figure 3.8) are 4 and 6, respectively. This helps to uniformly choose either
c3 or c4 given that b4 has already been selected. All conditional potentials resulting
from each sum-product operation are added to the sample generator, and later they
are used to generate the samples. Recall that the conditional potentials related to
non-skeleton attributes have already been added into the sample generator.

ψ(C|B)

B C freq
b2 c1 12
b3 c2 4

b4
c3 4
c4 6

Figure 3.8: The conditional and cumulative potential added in the sample generator
after eliminating C.

Algorithm 2 Building the uniform sample generator

For a given query graph G:
V = {v1, v2, ..., vn} is the set of variables in G.
O is a dictionary containing all v ∈ V with the elimination order index.
P is a dictionary includes the parent of each variable v ∈ V .
E = {e1, e2, ..., en−1} is the set of edges in G. Each e contains two nodes.
Ψ = {ψ1, ψ2, ..., ψm} is the set of potentials in G per edge.
φ is the sample generator.

1: procedure Build_Sample_Generator
2: for i = 1 to n− 1 do ▷ The loop is run per variable
3: vi ← O[i] ▷ The current variable to eliminate
4: Ψ′ ← {ψj ∈ Ψ|vi ∈ ej} ▷ All the potentials which include vi
5: Ψ′′ ← Ψ−Ψ′ ▷ All the potentials which exclude vi
6: ψα ←

∏
ψ∈Ψ′ψ ▷ Product of all the related potentials

7: ψ(vi|P [vi])← conditionalize_cumulative(ψα, P [vi])
8: φ← φ

⋃
ψ(vi|P [vi])

9: ϕβ ←
∑
vi
ψα ▷ Summing out vi from the product

10: Ψ← Ψ′′ ⋃{ϕβ} ▷ The new Ψ includes potentials/factors without vi
11: end for
12: ϕroot = cumulative(

∏
ψ∈Ψ ψ) ▷ Unconditional-cumulative potential for the root(s)

13: φ← φ
⋃
ϕroot

14: end procedure

A pseudo-code for the PGM-Join inference is provided in Algorithm 2. The
algorithm eliminates all variables one by one (except the root) inside a for-loop
statement (lines 2-11). In each loop, based on the elimination order O, one variable
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vi is chosen to be eliminated in line 3. Line 4 collects all potentials that include vi.
Ψ contains all the potentials initially, and Line 5 removes the potentials that include
vi from Ψ. Line 6 calculates the product of the potentials that include vi and line
9 runs the sum-out operation on the product result. Line 7 builds the conditional
potentials to be added in the sample generator φ at line 8. Line 10 adds Ψ′′ and
the new factor for the parent of vi (generated by the sum-product operation) into
Ψ. So, Ψ has all correct potentials with the exception of those associated with the
eliminated variable.

After the for-loop statement, what remains in Ψ are the potentials for the
root. If many potentials exist for the root, it is necessary to determine a single
unconditional potential for the root. Because we wish to efficiently generate uniform
samples, this potential should also be accumulative. After calculating the product
of the root potentials and making it cumulative, the result is then added into the
sample generator. The final potential of the root is not conditional and serves as the
starting point for sample generation. The join size is determined by summing the
root out. The join size is exact because the sum-product operations are applied on
the exact potentials.

Example: Consider the query QX’s skeleton in Figure 3.5 and its factorized
distribution in Equation 3.5. The graph has 3 nodes in its skeleton. Assuming
that orderkey is the root, the elimination order is O = {(1, nationkey), (2, custkey),
(3, orderkey)}. Equation 3.5 can be represented as below in order to eliminate the
variables. The subscripts for the potentials show the table names.

∑
orderkey

∑
custkey

∑
nationkey

ψl(orderkey)× ψo(orderkey, custkey)×

ψc(custkey,nationkey)× ψn(nationkey)× ψs(nationkey) (3.7)

If we are to eliminate nationkey first, Equation 3.7 can be changed to Equa-
tion 3.8 based on distributive law. This is an important feature of VEA: instead of
running sum-product on all potentials at once to eliminate nationkey, it considers
only the potentials related to nationkey (the last three potentials).

∑
orderkey

∑
custkey

ψl(orderkey)× ψo(orderkey, custkey)×

∑
nationkey

ψc(custkey,nationkey)× ψn(nationkey)× ψs(nationkey) (3.8)
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As shown in Equation 3.9, the result of the sum-product operation to elim-
inate the nationkey is a factor for custkey, and all three potentials related to
nationkey are eliminated. The subscript for the factors that resulted from the vari-
able eliminations shows the eliminated variables. In addition, a conditional potential
ψ(nationkey|custkey) with cumulative distributions per distinct value of custkey is
generated and added into the potential set of the sample generator.

∑
orderkey

∑
custkey

ψl(orderkey) × ψo(orderkey, custkey) × ϕ((((nationkey(custkey) (3.9)

Now it is time to eliminate custkey. The product of the last two potentials
that include custkey is calculated, and the custkey variable is then summed from
the product result, as shown in Equation 3.10.

∑
orderkey

ψl(orderkey)× ϕ
(((((((
nationkey,custkey(orderkey) (3.10)

ϕ
(((((((nationkey,custkey(orderkey) is the factor of orderkey after eliminating nationkey

and custkey. It contains the frequencies of the orderkey values over the eliminated
variables. In addition, a conditional potential ψ(custkey|orderkey) is added to the
sample generator. ψ(custkey|orderkey) is a potential function that returns the fre-
quency of custkey values given orderkey values over the eliminated part of the
distribution starting from custkey.

Now, orderkey is the only variable remaining. The product of the potentials
related to orderkey is calculated first, then the accumulative frequencies per distinct
value is calculated. The result of the product is a factor ϕ

(((((((nationkey,custkey(orderkey). As-
sume ϕ(orderkey) is the accumulative version of ϕ

(((((((nationkey,custkey(orderkey) that re-
turns the accumulative frequencies of orderkey over whole distribution (in the join
result). The sum of the frequencies in the last factor will result in the exact join
size.

Figure 3.9 depicts the sample generator for query QX. Note that the non-join
attribute potentials ψs(suppkey|nationkey) and ψl(lineNumber|orderkey) are already in
the sample generator. ϕ(orderkey) is the last factor resulted from the inference and
is considered as the starting point for generating the samples.

This inference is run for all the graphs related to the join query. However,
the roots of the remainder components should be those nodes that are shared among
the graphs. The roots may have more than a node.

Complexity of the Inference Since we never encounter a cycle in the
graphs when we run inference (all cycles are broken during the MRF construction
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Figure 3.9: The sample generator for QX after inference

phase), the inference complexity for a join query is always O(M), where M is the
size of the largest potential in the MRF.

3.5.1 The Altered VEA vs. Standard VEA

By tweaking the VEA, a new VEA was created for the purpose of generating uniform
samples of a factorized distribution. Hence, our goal with the altered VEA is not
to identify a single marginal, but to construct a sample generator. The conditional-
cumulative distributions per variable after eliminations form the sample generator.

Another difference is that to deal with cyclic queries, we do not create junction
trees; rather, we extract some edges from the graph to make it acyclic and then use
those pulled-out edges in our rejection process. This is because response time is
crucial in AQP applications, particularly when sampling is involved. Therefore,
it is unreasonable to devote a great deal of time to constructing the junction trees
before beginning the sampling process. By breaking the cycles, the process of sample
generation begins earlier and the AQP engines can offer the initial replies more
quickly.

Furthermore, in our VEA, all non-join attributes are also treated as single
nodes. These nodes are omitted during inference because they have no influence on
the sample uniformity. This also helps us deal with cyclic graphs.

3.6 Sample Generation Phase

After inference, once the sample generator is prepared, the phase of sample gener-
ation begins. First, we describe how sample points for an acyclic query are con-
structed, and then we describe how we handle cyclic queries.

The MRF graph for an acyclic join query will always be acyclic after sepa-
rating the non-join attributes as the non-skeleton from the graph. The acyclic graph

42



will be a tree if one of the nodes is assumed to be the root. As a result, we can create
samples for any acyclic query without employing the rejection mechanism. Once the
sample for the skeleton is generated, the non-join attributes are added to the sample
too.

The PGM-Join sampler takes the sample generator produced by the inference
and begins to generate samples from the root to the leaves in the reverse order of
the variable elimination order.

Here, we describe how a single point sample is obtained. To obtain a sample
of the size n, this process is repeated n times independently.

Upon completion of the inference phase, the root’s unconditional-cumulative
factor and the size of the join are available. A random number is generated between
zero and the join size, and the associated distinct value s0 in the root potential is
selected using a binary search algorithm (very similar to inversion sampling method).
s0 is the uniformly chosen value for the root. Given s0, s1 for the next variable is
chosen based on the corresponding conditional-cumulative potential in the sample
generator. The process is continued until all the variables are added into the sample.
It is known as ancestral sampling. Calculating the cumulative frequencies during the
inference phase increases the sampling’s efficiency since the cumulative frequencies
are computed once and used several times, and the PGM-Join sampler does not
need to calculate them for each sample point generation. Once the values for the
join attributes (the skeleton) have been produced, the non-skeleton attributes are
generated based on the potentials derived from scanning the tables.

In our example sample generator, as shown in Figure 3.9, a value for orderkey
is chosen using ϕ(orderkey), then a value for custkey is chosen using ψ(custkey|orderkey),
and finally a value for nationkey is added using ψ(nationkey|orderkey). Once the
skeleton sample is generated, the values for the lineNumber and suppkey variables
are added based on their corresponding join attributes orderkey and nationkey,
respectively.

So far, we have described how the sample points for a single acyclic MRF are
generated. Next, we prove that the samples generated are uniform. In Section 3.6.2,
the generation of samples for cyclic queries with multiple MRF graphs is described.

3.6.1 Proof of Sample Uniformity

Theorem 1. Using the sample generator, ancestral sampling produces uniform sam-
ples.

Proof. The frequencies in the root factor of the sample generator and the join size
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are exact due to use of an exact inference algorithm and the fact that all primary
potentials contain the exact frequencies after scanning the tables. Thus, the sample
points generated for the root (based on the frequency of the root values over the join
size) are uniform. Given the root value, subsequently, the other values are chosen
uniformly by using the intermediate conditional factors in the sample generator.
This uniformity is proved by the Global Markov Property (GMP).

Recall, GMP states that two sets of variables are mutually independent if a
separating set of variables are observed. xA ⊥⊥ xB | xS where xA and xB are
separated by xS , in other words all the paths from xA to xB go through xS .

Note that our query graph is always a tree, and each node separates its
children from its parent. This means that based on GMP, the probabilities for
any intermediate variables in the tree are only dependent on their children to the
leaves if the parent of that intermediate variable is observed. The observed parent
here has the separator role. In our running example, if custkey is observed then
generating nationkey values is solely dependent on the frequencies of nationkey
values conditioned on the custkey values across the sub-tree from custkey to the
leaves (the corresponding factor in the sample generator is ψ(nationkey|custkey)),
and is unaffected by orderkey values or any other variables. And since we have
already calculated the exact ψ(nationkey|custkey) in our sample generator, it proves
that PGM-Join sampler has (uses) the correct and exact probabilities to generate
the uniform samples for the intermediate variables as well.

NB1: Based on GMP, if a node xi has more than one child in a tree, the
children are independent from each other once xi is observed. Thus, each of the
children can be generated independently.

NB2: According to GMP, all non-skeleton (non-join) attributes are dependent
only on the join attributes from the same table and are independent of all other
attributes. As a result, after the values for their parents (join attributes from the
same table) are observed, the non-join attributes can be uniformly added to samples.

3.6.2 Sample Generation for Cyclic Queries

For a cyclic join query, more than one MRF is built. One of them is the main
graph, and the others are the remainder components, which are used in the rejection
mechanism to make the samples uniform. These MRF graphs have shared nodes, and
these shared nodes are the roots for the remainder components. Each of the graphs
has an elimination order, and the inference is done on all the MRFs according to
that elimination order. During inference, a sample generator is built per MRF. The
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Algorithm 3 Generating a sample point uniformly and independently

i = {0, ...,m} where m is the number of MRF graphs for the given join query
Gi is the ith graph. G0 is the main graph and others are the remainder components.
φi is the sample generator for Gi

γi contains the root nodes for the ith graph. For i > 0, γi contains the shared nodes between
Gi−1 and Gi

Υi is the potential for the root ( γi) of Gi in φi

ωi is the largest frequency in Υi

S is a sample point and S[γi] is the chosen value for the root of Gi

1: procedure Uniform_Sampler
2: while (true) do ▷ keeps on until an unrejected sample point is reached
3: S ← generate a sample point for G0 nodes by using the ancestral sampling on φ0

4: i ← 1
5: rejected ← false
6: while (i < m and rejected=false) do
7: if (S[γi] ∈ Υi and ωi > 0) then
8: r ← rnd(0, 1)

9: if (r < Υi[S[γi]]

ωi ) then ▷ Rejects with the probability of 1− Υi[S[γi]]

ωi

10: add nodes of Gi into S using ancestral sampling on φi

11: i++

12: else
13: rejected ← true
14: end if
15: else
16: rejected ← true
17: end if
18: end while
19: if rejected <> true then
20: return S and break the While statement
21: end if
22: end while
23: end procedure
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PGM-Join sampler starts with the main graph and generates the samples by using
the ancestral sampling method (explained in Section 3.6) with the reverse order of
the elimination order. Once the sample point for the main MRF is generated, the
root potentials of the remainder components are used to reject the sample point.
If the sample point is not rejected, the values for the other nodes in the remainder
components are added to the sample point with the same ancestral sampling method.
Algorithm 3 uniformly generates a single sample point for a cyclic join query. The
next sample point is drawn independently of all previously obtained samples. The
outer While statement is a loop that is not terminated until a sample point that was
not rejected is reached. Line 3 generates a sample point for the nodes in the main
graph in a way that is explained in Section 3.6. In the inner While statement, the
generated sample point is examined according to all the remainder components to
check whether the sample point should be rejected or not. Most of the time, there
is just a single remainder component with a small number of nodes because the
number of involved attributes in join queries is typically not excessively large. It is
however feasible to have many remainder components. For now, assume there is one
remainder component and the graphs are G0 and G1. The sample point generated
for the main graph G0 is rejected if the values for the shared nodes do not exist in the
unconditional factor of the root in the sampler generator of the remainder component
(G1). If not rejected yet, in line 9, the sample point is checked again to be rejected
with the probability of 1−Υ[S[γ]]

ω where Υ is the root factor in the sample generator of
the remainder component, and S[γ]] returns the values in the generated sample point
for the shared nodes between the main graph and the remainder component. ω is
the largest frequency in Υ. Authors in [Zhao et al., 2018b] showed that this rejection
mechanism makes the random samples uniform. If the sample point is not rejected in
line 9, the nodes in the remainder component are added to the sample point (in line
10). If there is more than one remainder component, the same process is followed
in the inner While statement for other remainder components. It may be easier to
think of this as, G1 is the main graph and G2 is the remainder component. In lines
19-21, it is determined whether or not the values for all MRF graphs are generated.
If not, the outer While statement continues the procedure until a complete sample
point is reached.

3.7 Experimental Evaluation

We study the PGM-Join sampler’s performance against the Exact Weights (EW ) and
Online Exploration (OE) methods in [Zhao et al., 2018b]. In the context of acyclic
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queries, we refer to the PGM-Join sampler as PGMJoins, while in the context of
cyclic queries, we refer to it as rej_PGMs. We use the queries in [Zhao et al.,
2018b] plus two many-to-many join querys on TPC-DS, and a join query from JOB.

We report separately the building, inference and sample generation times.
All times are reported in seconds.

All algorithms require a "preparation" phase. PGMJoins builds the graph.
EW and OE build indices per join attribute. All of these require O(N) time, where
N is the size of the largest table. As the preparation times can be shared among
several queries, both we and [Zhao et al., 2018b] separate it from query response
time.

Query processing time in PGMJoins is inference time plus sample gener-
ation time. EW and OE spend time on dynamic programming (DP) and sample
generation. For ease of comparison, here, we call DP time as inference time.

The code and use instructions are publicly available in 1. Our code operates
directly on the raw data from CSV files.

Queries: The tested join queries do not include any selection operators (fil-
ters).

TPC-H Benchmark. The TPC-H benchmark data with different scaling
factors (1 and 10) is used. We use three queries Q3, QX and QY. The queries have
been taken from [Zhao et al., 2018b].
Q3: A foreign key join.

SELECT c . custkey , o . orderkey , l . l inenumber
FROM customer c , o rde r s o , l i n e i t em l
WHERE c . custkey = o . custkey AND l . orderkey = o . orderkey ;

QX: An acyclic join.

SELECT n . nationkey , s . suppkey , c . custkey , o . orderkey , l . lnumber
FROM nat ion n , s upp l i e r s , customer c , o rde r s o , l i n e i t em l
WHERE n . nat ionkey=s . nat ionkey AND s . nat ionkey=c . nat ionkey
AND c . custkey = o . custkey AND o . orderkey = l . orderkey ;

QY: A cyclic join.

SELECT l 1 . l inenumber , o1 . orderkey , c1 . custkey , l 2 . l inenumber ,
o2 . orderkey , s . suppkey , c2 . custkey
FROM l i n e i t em l1 , o rde r s o1 , customer c1 , l i n e i t em l2 ,
o rde r s o2 , customer c2 , s upp l i e r s
WHERE l 1 . orderkey = o1 . orderkey AND o1 . custkey = c1 . custkey
AND l 1 . partkey = l2 . partkey AND l 2 . orderkey = o2 . orderkey
AND o2 . custkey = c2 . custkey AND c1 . nat ionkey = s . nat ionkey
AND s . nat ionkey = c2 . nat ionkey ;

1https://github.com/shanghoosh1/PGMJoins
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Join Order Benchmark (JOB) queries. The data comes from IMDB.
Queries are taken from [Leis et al., 2015]. Here, we use query Q16b.

SELECT an . person_id , t . id
FROM an , c i , cn , k , mc , mk, n , t
WHERE an . person_id = n . id AND n . id = c i . person_id
AND c i . movie_id = t . id AND t . id = mk. movie_id
AND mk. keyword_id = k . id AND t . id = mc . movie_id
AND mc. company_id = cn . id AND an . person_id = c i . person_id
AND c i . movie_id = mc . movie_id AND c i . movie_id = mk. movie_id
AND mc. movie_id = mk. movie_id ;

Twitter Data and Queries. This data refers to follower links and profiles
of twitter users – also used in [Cha et al., 2010; Zhao et al., 2018b]. A tuple in the
data represents a connection with source and destination. We scale up the twitter
data (the users dataset) 10 times then uniformly sample from it with different sizes
1x, 2x, 4x, 6x, 8x and 10x. Here, the number of distinct values increase slightly
with different scaling factors. The popular-users dataset remains unchanged. We
use queries QT and QS on this data as done in [Zhao et al., 2018b].
QT: A cyclic join.

SELECT ∗ FROM pop−user A, tw i t t e r −user B, tw i t t e r −user C
WHERE A. dst = B. s r c AND B. dst = C. s r c AND C. dst = A. s r c ;

QS: A cyclic join.

SELECT ∗ FROM pop−user A, tw i t t e r −user B, tw i t t e r −user C
, tw i t t e r −user D

WHERE A. dst = B. s r c AND B. dst = C. s r c AND C. dst = D. s r c
AND D. dst = A. s r c ;

TPC-DS Benchmark To study many-to-many joins we use the TPC-DS
database and create meaningful fact-table join queries. The queries are as follows:
QDS1: An acyclic query.

SELECT SS . promo_sk , SR. sr_reason_sk ,WR. wr_reason_sk ,
CR. cr_raeson_sk ,CS . c_page_sk , WS. web_page_sk , SS . store_sk
FROM SS , SR, WS, WR, CS, CR
WHERE SS . promo_sk = WS. promo_sk AND WS. promo_sk =
CS . promo_sk AND SS . store_sk=SR. store_sk AND WS. web_page_sk
= WR. web_page_sk AND CS. c_page_sk=CR. c_page_sk ;

QDS2: A cyclic query.

SELECT CS. c_page_sk ,WS. web_page_sk ,WS. promo_sk ,
WR. wr_reason_sk
FROM WS, WR, CS, CR
WHERE WS. promo_sk = CS. promo_sk AND WS. web_page_sk =
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Q3 QX QY QDS1 QDS2 Q16b QT QS
SF1 (1X) 15.6 15.6 37.9 4.1 1.1 20.8 169.9 192.2

SF10 (10X) 224.2 243.4 575.1 25.4 10.7 168.9 430.2 634.1

Table 3.1: Building time in seconds for PGMJoins

WR. web_page_sk AND CS. c_page_sk = CR. c_page_sk AND
WR. wr_reason_sk = CR. cr_reason_sk ;

Setup We use one core of an Intel(R) Xeon(R) CPU E5-2660 with 2.60GHz
on a server with 64GB RAM. Graphs are memory-resident; there is no I/O during
inference or sample generation.

The building times of the PGM-Join sampler for all queries with SF1 and
SF10 are shown in Table 3.1.

3.7.1 TPC-H Experiments

Figure 3.10 shows the results for TPC-H queries Q3, QX and QY with different
scaling factors to generate a sample of one million. Blue parts relate to inference,
and orange to generation times. PGMJoins is faster than OE and EW by 2X and
3X for Q3 and QX and 30-40% faster for QY, for SF=10. Since OE uses random
walks, the result of the preparing step is not the exact, and that is why it is fast in its
DP step, but slow in the generation phase because it needs a lot of rejections. EW
and PGMJoins provide the exact weights at the end of the inference step, making
them faster in the generation phase.

QY is cyclic and more challenging. Our rejPGMs randomly selects one
of the edges to pull out and make the graph acyclic, but OE and EW apply an
optimization process to find out which one of the tables should be pulled out. If
there is more than one table to be pulled out, the exact join is carried out over the
pulled-out tables which destroys the goals of avoiding exact joins. The superiority of
rejPGMs for cyclic queries is showcased with QY. The generating time of rejPGMs

for QY is smaller owing to the lower rejection rate as it pulls out an edge instead
of a whole table. When entire tables are extracted by [Zhao et al., 2018b] from a
cyclic query, the actual join is conducted on the tables, which defeats the point. We
do not want to conduct the actual join. Also, the more attributes you pull out, the
more rejections you encounter.

Figure 3.11 shows the overall time to generate different-size samples for Q3,
QX, and QY, with SF = 10. PGMJoins is much faster across the board. The
efficiency of OE becomes worse when the sample size is increased because it requires
more rejections.
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Figure 3.10: Query processing time to generate a sample of 1 million for Q3, QX
and QY (SF1 and SF10)
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Figure 3.11: Query processing time to generate 1K, 10K, 100K, and 1M sample for
Q3, QX, and QY on SF10
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Figure 3.12: Query processing time to generate a sample of 1 million for Q16b of
JOB

3.7.2 JOB Experiments

We tested EW and PGMJoins on 1X, 5X, 10X, and 20X scaled-up (replicated)
JOB data without raising the number of distinct values. The code for OE did not
run on this query and the authors claimed that the performance of OE would be
very similar to EW .

Figure 3.12 depicts the time required to infer and construct a sample of size 1
million using different SFs. It also demonstrates that scaling the data has little effect
on the performance of PGMJoins, but has a significant impact on EW . This is
due to the fact that PGMJoins concentrates on the frequency of distinct attribute
values, but not tuples. As data amounts increase, the gap between the algorithms
increases. PGMJoins is ∼23 times faster than EW for 20X data.

3.7.3 Twitter Experiments

Both [Cha et al., 2010] and [Zhao et al., 2018b] replicate the twitter-user file to test
scalability. We also do this, not only to show scalability, but also to show that our
PGMJoins becomes better when there are more repetitions in join attribute values.
So, we increase 10x the file twitter-users then sample from it with 1x, 2x, 4x, 6x, 8x
and 10x. We do not change the popular-users file.

Figure 3.13 shows the inference and generation times for QT with a sample
size of 1 million for different SFs. It shows that by increasing the frequency values,
the comparative gains of PGMJoins improve. The reason for this improvement is
because PGMJoins learns the distribution of the join result first, and the repeated
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Figure 3.13: Query processing time to generate a sample of 1 million for QT

Figure 3.14: Times for QS Inference, Sample generation and total cost to generate
1M-sample
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values do not affect its performance (only the frequencies become larger). However,
EW scans the large tables with lots of repetitions to calculate the weights of join
tuples.

Figure 3.14.a shows that the efficiency of the inference phase follows the same
trend as QT by scaling up the data for QS.

Figure 3.14.b shows the generating time with different sample sizes with SF10.
The improvement is due to the lower rejection rate, since as mentioned before EW
pulls out tables. This makes the DP phase faster with a slower generation phase.
Figure 3.14.c shows the overall time for DP (Inference) and generation phases to
generate a sample of a million for QS.

3.7.4 TPC-DS Experiments

Calculating the full join of TPC-H queries posed by [Zhao et al., 2018b] is very
expensive as shown in their experiments. For instance, the authors say, “As a result,
the full join becomes too expensive to complete in a day”, as shown in Figure 3b of the
paper [Zhao et al., 2018b]. TPC-H and twitter queries are computationally expensive
with barely small enough join sizes to store in external storage, but TPC-DS queries
are not only computationally expensive, but they are also expensive storage-wise.
For example, query QDS1 has more than 5 ∗ 1027 tuples in the join result, and
PGMJoins can generate a uniform sample of 10 million in just a few seconds.

Table 3.2 shows that PGMJoins is dramatically better (up to 28X) than
EW in both cyclic and acyclic queries and both scale factors. (OE results are not
included for TPCDS queries the same as Q16b on JOB– the authors of [Zhao et al.,
2018b] have not provided the code for them. They expected results to be similar to
EW ).

In inference time for QDS1, PGMJoins is ∼20X and ∼85X times faster
than EW, with scaling factors 1 and 10 respectively. For QDS2, it is ∼7X and ∼30X
times faster with different scaling factors. It is expected with larger scale factors the
difference will increase more. This difference is because PGMJoins focus on the
frequencies of the distinct values, and the number of distinct values in our TPC-DS
queries are small with lots of repetitions. With respect to sample generation time
for a sample size of 106, the PGM-Join sampler is slightly better than others on
QDS1, but on QDS2 its generation time is ∼16X and ∼28X times faster than EW

for scaling factors 1 and 10, respectively. This difference also exists with different
sample sizes. One reason for that, as mentioned, is that our method pulls out the
edges that make cycles, but not tables.

The take-away message is that across all studied scenarios sometimes EW is
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TPCDS
QDS1 QDS2

SF=1 SF=10 SF=1 SF=10
EW PGMJoins EW PGMJoins EW rej_PGMs EW rej_PGMs

Inference 0.720 0.037 9.330 0.109 0.270 0.038 3.640 0.120
1k 0.003 0.002 0.003 0.002 0.038 0.002 0.053 0.002
10k 0.022 0.015 0.025 0.016 0.386 0.020 0.521 0.018
100k 0.207 0.169 0.228 0.180 3.795 0.240 5.220 0.180
1m 2.077 1.846 2.286 1.860 37.887 2.275 52.390 1.917
10m 20.782 17.542 22.866 20.141 378.474 21.891 524.412 19.843

Table 3.2: TPCDS query response time results in seconds

better (worse) than OE. Nonetheless, PGMJoins is never outperformed by OE nor
EW and often achieves strong improvements.

3.7.5 Uniformity Test

PGMJoins generates a uniform sample of the join as it uses exact inference on
exact frequencies. To show the uniformity of the samples, smaller tables are used so
that the exact join result could be computed readily. After the inference phase, the
exact join size is computed. If we need, say, a 1%percent sample, this can then be
generated.

The KS-test [Massey Jr, 1951] calculates the maximum difference between
the CDF of distinct tuples in the exact join results and the CDF of distinct tuples
in the PGMJoins results. It reveals whether the generated sample is a uniform
sample of the exact join result. The null hypothesis is that the sample is a uniform
sample. The two-sample KS-test is used, which is calculated as follows:

Dn,m = Supx|F1,n − F2,n| (3.11)

where F1,n and F2,m are the CDF functions of the first and the second sam-
ples. First sample should be the exact join result2. Supx is the supremum function.
With significance level α the null hypothesis is rejected if Dn,m > C(α)

√
n+m
n×m , and

C(α) is calculated from
√
−1

2 ln
α
2 which gives us the critical value. To use the KS-

test we need to order the sample tuples in the same way as in the join result and
give an index number for each distinct tuple in both tables. If Dn,m is less than
the critical value, we conclude that the null hypothesis holds (i.e., the sample is a
uniform sample of the exact join).

The full results of the ks-test (ks-statistic and critical values) on different
queries are illustrated in Table 3.3. Table 3.3 shows that all of the samples for all

2While the exact join result and the join sample are strictly speaking not a sample from a
continuous distribution as required by the KS-test, they behave similarly enough that no practically
noticeable effects can be observed in this context.
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Figure 3.15: CDFs of KS-tests for Q16b

KS-test PGMJoins sample-then-join
CV KS CV KS

Q3 0.430 0.005 0.615 0.242
QX 0.036 0.005 0.050 0.131
QY 0.147 0.002 0.208 0.633

Q16b 0.196 0.024 0.26 0.394
QT 0.396 0.004 0.558 0.396
QS 0.242 0.020 0.343 0.323

QDS1 0.052 0.048 0.072 0.317
QDS2 0.056 0.049 0.079 0.082

Table 3.3: KS-test results for all queries

the queries are not rejected by the test and they are uniform. Figure 3.15 is an
example to show how ks-test works. Figure 3.15 compares the CDFs of indexed
tuples for the sample generated by PGMJoins for Q16b against the sample-then-
join method and exact join result. The Y axis are CDFs and X axis are the tuple
indices. The red line is for the ground truth exact join result, the blue line is for the
sample generated by PGMJoins, the black one is for the sample-then-join method
and yellow lines are the boundaries for the sample generated by PGMJoins. If the
blue line crosses the yellow lines, it means that our generated sample is not uniform
with significance level of 0.01.
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3.8 Summary

This study focused on uniform sampling over joins, contributing a principled solu-
tion. The solution, PGM-Join sampler, generates uniform samples efficiently and
independently. It leverages PGM principles and shows optimizations for deriving
the PGM graph structure and for running inference over the graph. It proposes a
modified version of the message passing algorithm, and a new way to handle cyclic
joins. Generated samples are proved to be uniform, leveraging PGM fundamentals.
The experimental results showed that the PGM-Join sampler is consistently faster
than competitors, for both cyclic and acyclic joins.

57



Chapter 4

A New Physical Join Algorithm
with PGMs

Physical n-way join operations (especially when involving many-to-many joins) are
known to be very time- and resource-consuming. At large scales, with respect to
table and join-result sizes, state of the art PJAs, even fail to produce any answer
given reasonable resource and time constraints. In this chapter, we introduce a
scalable PJA for equi-join queries, coined the Graphical Join (GJ), as it leverages
PGMs. GJ deals with both fundamental problems facing PJAs, namely Unneeded
Intermediate Results (UIRs) and redundancy in the join result. The novelties lie in
that: (i) GJ leverages PGMs, tweaking known exact inference algorithms in order
to derive a statistical summary of the join result, which can be optionally stored
and retrieved for reuse very efficiently; (ii) GJ offers algorithms that desummarize
the summary, enumerating thus all join result tuples. The proposed enumeration
introduces performance gains due to its columnar orientation, producing result values
on a per attribute basis, independently of other attribute values. (iii) GJ’s summary
is a type of Run-Length Encoding (RLE) over join results, but here for the first
time it is shown how to generate it without first generating the join result. (iv) It is
shown for the first time that a join algorithm, like GJ, which produces the above join-
result summary and then desummarizes it, can be highly competitive against binary-
join plans and WOJAs in both time and space. Comprehensive experimentation is
undertaken with join queries from the JOB, TPCDS, and lastFM data and queries,
comparing GJ against PostgreSQL and MonetDB and a state of the art WOJA
implemented within the Umbra RDBMS. We also implement a parallel version of
the GJ and compare it against the parallel versions of the other competitors. In
addition, we compare GJ against FDB in calculating the aggregations. The results
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show that GJ can often achieve dramatic performance gains in space and time and
also exemplify under which circumstances GJ is more appropriate.

4.1 Motivation

PJAs are concerned with generating (enumerating) all tuples in the join result sat-
isfying the join predicates – other predicates and operations (e.g., aggregations,
group-by, etc.) are not of interest.

PJAs are known to be expensive operations, especially for multi-way joins
with many-to-many relationships (involving joins on non-key attributes) which are
frequent in analytics. In these cases, the state of the art approaches suffer in both
time and space. The main source of inefficiency stems from algorithms exerting
redundant effort. First, some produce intermediate join results (after binary joins)
which contain tuples which do not make it in the final n-way join result. Second, even
the final join result (tuples) typically has a lot of redundancy which introduces space
and time inefficiencies. One can distinguish two use cases for PJAs. In "compute-
and-forget", the join result is to be computed once, typically in memory (and then
likely forgotten). In "compute-and-reuse", a join result is to be stored on disk
(e.g., in order to be re-used in the future). In both cases computing unnecessary
intermediate tuples and/or storing, and retrieving redundant result tuples incurs
significant overheads.

Despite the large attention PJAs have received, there is still lots to be done
in order to minimize both time and space overheads and be applicable in both
the compute-and-forget and compute-and-reuse scenarios. Specifically, the most
popular PJAs (such as the Nested-loop/Hash/Sort-merge Join algorithms and their
derivatives [Mishra and Eich, 1992; DeWitt et al., 1993; Dittrich et al., 2002; Graefe,
1994; Kitsuregawa et al., 1983; DeWitt et al., 1984]) occupy a significant part of
the code base in all RDBMS products. These algorithms become inefficient when
handling multi-way joins with at least one many-to-many relationship in the joined
tables. This inefficiency stems from their binary nature: they join two tables at a
time [Avnur and Hellerstein, 2000; Zhang et al., 2012] and this yields intermediate
join results that include tuples that are not included in the final result. Avoiding
this problem has been the source of many investigations. The Yannakakis algorithm
(YA) described in [Yannakakis, 1981; Bagan et al., 2007] can be thought of as a PJA
that handles UIR, especially on acyclic queries. YA employs semi-join reduction
operations to remove dangling tuples from tables. Later, Ngo et al. [Ngo et al.,
2012, 2018] introduced a new "worst case optimal" join algorithm (WOJA) which
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avoids generating UIR. A WOJA behaves similarly to a multi-way sort-merge join
algorithm in that it does not generate UIR for acyclic queries and minimizes UIR
for cyclic queries. WOJAs are the cutting-edge solution for UIR. Nonetheless, even
WOJA algorithms do not fully address space concerns, as redundancy exists even in
the final result. This is especially important in the compute-and-reuse case where
extra space directly translates to extra time (to store and retrieve this redundant
data).

A related research thread addressed both UIR and redundancy in the result
offering algorithms and analyses for computing analytics (e.g., aggregations and
regressions) over the join result. Factorized Data Bases (FDB) [Olteanu and Schleich,
2016] and the solutions introduced in [Abo Khamis et al., 2016] for the Functional
Aggregate Query (FAQ) problem are leading exemplars of this thread. We will refer
to those solutions in [Abo Khamis et al., 2016] as "FAQ" in this thesis. FAQ works
were never intended as a PJA – they skip join result generation and calculate the
aggregations directly without computing the join. They also target the compute-
and-forget scenario only. Algorithms for enumerating the join result tuples do exist
to be used for FDB and FAQ. However, there is much room for improvement as the
existing join result-generating algorithms are all based on row-by-row enumeration,
this method is inefficient in comparison to columnar generation.

With this work, we show how to leverage PGMs to develop factorized dis-
tributions of the join result (as opposed to factorized join-result data) and how to
utilize these to develop PJAs that define the new state-of-the-art for compute-and-
reuse and compute-and-forget scenarios.

FDB and FAQ research are important, as there are many applications for
efficient analytics over joins. However, this does not take away from the importance
of PJA efficiency, as producing the actual join result is very important, e.g., for
training any kind of models (not just simple regressions), deriving different types
of samples, facilitating query pipelines, etc., or for migrating from one database to
another (for example, converting structured data to unstructured data in BigQuery)
[Melnik et al., 2010; Gubarev et al., 2020]. As a result, two new side problems
emerge, which this work targets: for a given factorized distribution, how can one
make join result tuple enumeration much faster and what is a better mechanism
for efficiently/simply supporting the compute-and-reuse scenario (e.g., storing and
retrieving the join result).

In summary, our goal is to introduce a PJA that deals with both UIR and
redundancy problems, introduce a statistical join summary that is compatible with
RDBMSs, facilitating an efficient mechanism to store/retrieve the summary, and
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D1 D2 D3

. . . A B . . . . . . B C . . . . . . C D . . .
. . . a0 b0 . . . . . . b0 c0 . . . . . . c1 d0 . . .
. . . a0 b0 . . . . . . b0 c0 . . . . . . c1 d0 . . .
. . . a0 b0 . . . . . . b1 c0 . . . . . . c1 d0 . . .
. . . a1 b1 . . . . . . b1 c0 . . . . . . c1 d0 . . .
. . . a1 b1 . . . . . . b1 c0 . . . . . . c2 d2 . . .
. . . a2 b1 . . . . . . b2 c1 . . . . . . c2 d2 . . .
. . . a3 b3 . . . . . . b2 c1 . . . . . . c2 d2 . . .
. . . a3 b3 . . . . . . b2 c1 . . . . . . c2 d2 . . .
. . . a3 b4 . . . . . . b3 c2 . . . . . . c3 d3 . . .
. . . a3 b4 . . . . . . b4 c3 . . . . . . c3 d3 . . .
. . . a3 b4 . . . . . . b4 c3 . . . . . . c4 d4 . . .
. . . a3 b4 . . . . . . b4 c4 . . . . . . c4 d4 . . .

Figure 4.1: The running example tables (the same tables from Chapter 1)

introduce a new way to enumerate join tuples in a columnar way, leveraging this
summary. And, perhaps most importantly, to show that the above approach to PJA
can be highly competitive vis-a-vis the current state of the art PJA.

4.2 The Problems and Goals

More formally, the sources of inefficiency with PJAs are as follows. Assume T1, T2, T3
, ..., Tn are the tables to be joined. Given a query execution plan consisting of
binary joins, call Stmp = {R{1,2}, R{1,2,3}, ... , R{1,2,...,n−1}} the set of all intermediate
temporary tables. Any tuple t ∈ Rt where Rt ∈ Stmp is called an intermediate tuple
and if t ∈ Rt but t /∈ R{1,2,...,n}, we call t a UIR. Generating UIR tuples is a key
source of inefficiency. Especially when the size of any Rt ∈ Stmp becomes much
larger than R{1,2,...,n}.

Consider our running example from the introduction section (re-shown in
Figure 4.1): If D1 and D2 are joined first, there will be 15 tuples with b0 and b1

which will be ignored when they are joined with D3 because there is no c0 in D3.
This makes binary join plans sub-optimal. Note that this sub-optimality still remains
if the D2 and D3 are joined first because D1 does not include b2, so this is not a
join-ordering problem.

Another inefficiency is the redundancy in the join result itself. Consider the
join result of the running example in In Figure 4.2. Column A has one distinct
value (a3), repeated 32 times, while a3 is repeated only 6 times in (normalized) D1.
Such redundancy leads to inefficient join algorithms (in time and space), especially
in compute-and-reuse cases where results are to be stored and reloaded.

As mentioned, FDB and FAQ research have tried to address both UIR and
redundancy problems. FDB and FAQ produce different types of factorized join re-
sult representations, but it is unknown how one can store and reuse such factorized
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Algorithms Physical Join Specific for RDBMs UIR Redundancy Storing method RLE Uniform Sampler Columnar Enum.
Binary JAs S-I-C ✓ × × Tuples × × ✓
WOJAs S-I-C Some ✓ × Tuples × × ×
FAQ S Deductive DBMS ✓ ✓ Unknown Not Studied Not Studied ×
FDB S ✓ ✓ ✓ Unknown × × ×
Yannakakis S-I-C ✓ ✓ × Tuples × × ×
PGM-Join × ✓ ✓ ✓ Samples Not Studied ✓ ✓
GJ S-I-C ✓ ✓ ✓ RLE ✓ ✓ ✓

Table 4.1: A summary of all related works. Abbreviations: S (studied and discussed),
I (implemented), C (compared to the other physical JAs) and RLE (run-length
encoding)

representations in RDBMSs efficiently. And, the enumeration algorithm outlined in
both FDB and FAQ proceeds row by row, seemingly requiring the actual tables and
indexes for efficiency as it jumps from attribute value to attribute value. Although
there is no available implementation of this enumeration algorithm, it is apparent
that the row-oriented result enumeration and the dependence on indexes are signifi-
cant performance disadvantages.

4.3 Related Work

In the background section, we have already covered PJAs, WOJAs, analytics over
joins such as FDB, FAQ, and join sampling approaches. In Table 4.1, we provide a
comprehensive summary and comparison of related work.

All binary join algorithms can be regarded PJAs for RDBMs that have been
thoroughly studied, Implemented, and Compared (S-I-C). They all store the results
as tuples but are plagued by UIRs and redundancy inefficiencies. To generate RLE
or uniform samples over joins, binary PJAs must first produce results. WOJAs and
YA are similar to binary PJAs, but they also handle UIRs.

The FDB and FAQ enumeration methods have been discussed, but none
of them have been implemented and compared to existing PJAs. FAQ and FDB
both address UIRs and redundancy, but generate distinct types of representations.
One join result representation by FAQ is the factorized distribution of the result
using PGMs (this is the same for GJ), while one join result representation by FDB
is the factorized join result (data, not distribution). Since neither FAQ nor FDB
has a strategy to store/retrieve their result representations in a manner compatible
with RDBMSs, they must first enumerate the tuples before storing them. As FAQ
maintains a factorized distribution (with frequencies), it is able to construct an RLE
or a uniform sample of the join result, but none of these has been examined or
addressed (but FDB cannot because it does not know the frequencies in advance).
FAQ and FDB cannot list the join tuples in a columnar manner.

The PGM-Join sampler is a sampler over joins that can provide columnar
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Full join result Summary of the join result
id A B C D A B C D
0 a3 b3 c2 d2 a3,32 b3,8 c2,8 d2,8

. . . . . . . . . . . . ... b4,24 c3,16 d3,16
7 a3 b3 c2 d2 c4,8 d4,8
8 a3 b4 c3 d3

. . . . . . . . . . . . ...
23 a3 b4 c3 d3
24 a3 b4 c4 d4
. . . . . . . . . . . . ...
31 a3 b4 c4 d4

Figure 4.2: Join result and GFJS

sample points, however, it is not considered a PJA.
Overall, to the best of our knowledge, this work is the first to derive a fresh

approach for n-way join query processing, putting forth its principled, PGM-inspired,
summarization-desummarization approach, studying its performance in detail, com-
paring it against the state-of-the-art physical join processing approaches, and show-
ing that (and when) it is a preferable approach in both compute-and-reuse and
compute-and-forget scenarios. GJ is the first method for generating RLE-type sum-
maries over joins without first computing the join results. This RLE is efficient and
simple to store and retrieve in RDBMSs. And, although the asymptotic complexity
of the join result generation is the same as that of FDB and FAQ’s row-oriented enu-
meration algorithms, GJ can generate the join tuples in a columnar manner, which
is more efficient in practice.

4.4 A Brief Overview of GJ Algorithm

For a given join query, GJ learns an exact MRF model from the data. The aim of
GJ is to first derive the factorized distribution from the normalized tables. Learning
the factorized distribution is accomplished by scanning each table just once and
calculating the exact frequencies as explained in Chapter 3. The denormalization
(join) in relational databases can be considered as the de-factorization in PGMs, but
with the key difference that in PGMs what is defactorized is the distributions, not
data. However, please note that storing, retrieving and defactorizing a factorized
distribution is a complex task in a RDBMS. GJ’s solution for this is to build a kind
of RLE over join (called GFJS, to be defined below) from the factorized distribution,
and store/retrieve/desummarize GFJS rather than the factorized distribution itself.
GFJS, unlike factorized distributions, can be easily stored/retrieved in RDBMS and
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desummarized in a columnar way. Below, we formally define our GFJS.

Definition 3 (Grouped Frequentist Join Summary (GFJS)). GFJS is a result of the
summarization over the grouped join result per column. It is formed by replacing the
repeated values, v, with pairs (v, freq) where v is the value and freq is its frequency.

One may view GFJS as follows. Calculate the full join result, and then sort
it according to all columns in the output. Then, for each column, produce an RLE
encoding of its values: starting from the top of each column, replace all repeated
values v in the column with the pair of the value and its frequency, like (v, freq).
This will yield GFJS.

Figure 4.2 shows the GFJS for the join result of the running example join.
The join result in that figure is already sorted, so per column in the join result we
can start from the top and replace the repeated values with a pair of the value and
its frequency. For column A, there is one distinct value (a3) with frequency of 32.
For column B, there are two distinct values, b3 and b4, with the frequencies of 8 and
24, respectively. The sum of all frequencies in different columns should be equal.

The whole process of GJ is shown in Figure 4.3. The user submits a join
query. GJ builds a PGM (MRF) for the given query. Note if the graph is cyclic, the
junction tree creation is applied on the graph to make it acyclic (unlike the PGM-
Join sampler). The aim of junction tree creation is to find a tree of maxcliques
where the size of the largest maxclique in that tree is minimum in comparison to
all other possible trees of maxcliques. Once the junction tree with all potentials for
the query is ready, GJ uses VEA to build the generative model for GFJS based on
an elimination order (recall trees have always at least a perfect elimination order).
During variable elimination, GJ prunes all MRF paths related to UIR using a dy-
namic programming based approach with time complexity of the size of the largest
potential function in the model. Next, GJ uses Algorithm 5 to generate GFJS by
using the GFJS generator. The generation process is done in the reverse order of
the elimination order. Here, the RLE generation over joins without doing the actual
join is accomplished. Note that GJ does not go through the paths related to UIR
tuples, and this is how it achieves WOJA status. After GFJS generation, it can be
stored for later use. In the end, GFJS is desummarized columnarly whenever the
full join result is needed. Desummarization is straightforward.

4.5 Building MRF Graphs

As explained before, the structure and the factors of the PGM for a join query are
already available in the relational databases and we just need to scan the tables

64



Figure 4.3: Overview of GJ

Figure 4.4: Graph for the example join

once and find all the potentials. Here, with a few exceptions, the mapping of the
PJA problem to PGMs is similar to that of the PGM-Join sampler: i) the non-join
attributes are not separated from the skeleton in this case, and ii) the junction tree
creation is used to deal with cyclic joins.

In qualitative learning, for each join attribute and non-join attribute (projec-
tion attribute) in the query, GJ adds a node in the graph. If two attributes are in
the same table, an edge is added between their corresponding nodes in the graph.
All involved attributes from the same table make a clique in the graph.

Examples: Figure 4.4 shows an acyclic MRF for the running example (nat-
ural join of the tables) in Figure 4.1. Figure 4.5(a) is for the lastFM_cyc query
(refer to Section 4.12). Figure 4.5(b) is for the junction tree derived from the cyclic
graph. Please see the background section for more information on how the junction
tree is created.

Quantitative learning starts after identifying the cliques and creating any
junction trees. Cliques can be considered as hyper edges. In this step, GJ scans

Figure 4.5: a. Triangulated graph for lastFM_cyc b. Junction Tree with three
maxcliques of size 3 for the graph
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all the tables just once and calculates the potential functions of all variables whose
corresponding attributes come from the same table. Each table is scanned once and
the complexity of learning the model fully is O(N), where N is the size of the largest
table (assuming the number of the tables is small and constant). After creating
the junction tree, if there is a macxlique with nodes from multiple tables, we must
calculate the product of all the potentials in that maxclique. One of our innovations
is that we do not join tables and then find potentials; instead, we present a novel
approach for joining distributions (potentials).

Note that a potential can be calculated on a table only once for all queries.
In other words, quantitative learning can be offline which can reduce join-query
processing time.

In practice, these potentials/factors are implemented with hash maps which
give the frequencies of given keys in O(1). The potentials are not necessarily un-
conditional; they could be conditional in which case, nested hash maps are built for
them. Converting a joint distribution to a conditional one and vice versa needs to
go through all the entries in the potential, so the complexity is equal to the size of
the potential, O(M) where M is the size of the largest potential.

Joining the Distributions (Potentials) for Cyclic Queries

Figure 4.5.a is for the lastFM_cyc query after triangulation. The dotted lines show
the fill-in edges after running the min fill-in heuristic. Figure 4.5.b is for the junction
tree derived from the cyclic graph. In this junction tree, there are maxcliques whose
edges come from different tables, so we need to join (product) the potentials inside
the maxcliques. For example the edges (Ar, U1) and (Ar, U4) come from different
tables. With our implementation, our inference algorithm requires a single potential
per maxclique. To join the potentials and make the joint distribution (a single
potential) for the maxclique, a novel WOJA algorithm is devised. This is shown in
Algorithm 4. This algorithm is very similar to generic WOJAs (introduced in the
background section), but the novelty is that it joins potentials (distributions) rather
than the data.

Algorithm 4 is a recursive function that takes a maxclique C whose clique po-
tentials come from different tables and generates a single potential that includes all
the variables in C. In Algorithm 4, VC is the set of all variables in C, OC is the elim-
ination order, EC contains all hyper edges (which represent the cliques coming from
different tables) in C, m is the number of potentials in C, ΨC contains all potentials
in C and i is the index of the variables to be considered. The algorithm starts with
i = 0 and a recursion happens for each next variable. For each variable vi it finds
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the potentials that include vi as Ψ′
C and those that do not include vi as Ψ′′

C in lines
4 and 5, respectively. Next, for each distinct value ki, a shared value for vi among
all potentials in Ψ′

C , the algorithm filters all the entries from all potentials in Ψ′
C

that have the value ki for their vi and makes new smaller potentials in Ψnext which
contains only the entries with ki (in line 7). Then a new potential set ΨC from the
union of Ψnext and Ψ′′

C is made to be used to materialize the entries for the next vari-
ables recursively (in line 8). If vi is the final variable, function Bucket_Product is
called. This function calculates a product of all the entries in all the potentials in the
last ΨC and makes the final joint potential for C. Each entry has a frequency, so they
are multiplied during the product calculation. For example, assume a triangle query
having three potential functions coming from T1(A,B), T2(B,C) and T3(C,A) which
can be considered as a maxclique (A,B,C). For the entries (a1, b1, 5), (b1, c1, 10) and
(c1, a1, 20) in the three potentials, an entry is added to the joint potential for the
maxclique (A,B,C) like (a1, b1, c1, 1000) which shows the frequency of a1, b1, c1 in
the join result of the three potentials.

Asymptotic Complexity Analysis for Algorithm 4: As explained, Al-
gorithm 4 follows the same paradigm as all WOJAs, but the difference here is that
Algorithm 4 joins the distributions (frequency tables or potentials). In other words,
the same WOJA method joins the potentials’ entries and computes the product of
their frequencies. The important note here is that the size of potentials is always
equal to or smaller than the size of the tables and thus joining the potentials is faster
than joining the data tables. It has already been shown in all WOJA papers (such as
[Freitag et al., 2020; Ngo et al., 2012; Veldhuizen, 2012]) that the WOJAs have the
complexity of O(N

ρ
) where ρ is the fractional edge cover and N is the largest table

size. Thus assuming that the largest potential in the maxclique is M , the complexity
of Algorithm 4 is O(M

ρ
). It always holds that M ≤ N .

4.6 Inference Phase

Similarly to the PGM-Join sampler, GJ employs VEA to perform inference; however,
the goal of GJ is to construct a GFJS generator (not a sample generator), and all
of the algorithms have been modified accordingly. GJ utilizes the junction tree
creation for cyclic joins; consequently, the VEA changes as well. Additionally, it is
no longer necessary to calculate cumulative distributions because GJ is a PJA and
not a sampler.
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Algorithm 4 A New WOJA algorithm to calculate the joint potential of all cliques
in a given maxclique

For a given maxclique C:
VC = {v1, v2, ..., vn} is the set of variables in C.
OC is a set of all v ∈ VC but with the elimination order.
EC = {e1, e2, ..., em} is the set of hyper edges which makes the cliques in C. Each e contains a
subset of VC
ΨC = {ψ1, ψ2, ..., ψm} is the set of to-be-joined potentials in C per hyper edge.
i is the index for the current variable.

1: procedure Potential-Join(i,ΨC)
2: if i < n then
3: vi ← OC [i] ▷ vi is the variable to be eliminated
4: Ψ′

C ← {ψj ∈ ΨC|vi ∈ ej} ▷ All the potentials that include vi
5: Ψ′′

C ← ΨC −Ψ′
C ▷ All the potentials that exclude vi

6: for each ki ∈
⋂

ψj∈Ψ′
C

πvi(ψj) do ▷ ki is the shared value

7: Ψnext ← {σvi=ki(ψj)|ψj ∈ Ψ′
C} ▷ σ, selection operator

8: Potential-Join(i+ 1,Ψnext
⋃

Ψ′′
C) ▷ The recursive part

9: end for
10: else
11: Bucket_Product ( ×

ψj∈ΨC
ψj) ▷ Potential product with freqs

12: end if
13: end procedure

4.6.1 Building GFJS Generator: Inference on Trees

As stated, the inference process is quite similar to the inference algorithm for the
PGM-Join sampler (see Algorithm 2). Here, we clarify the distinctions using some
examples.

Consider the graph in Figure 4.4 (our running example). The potentials for
the edges are shown in the top part row of Figure 4.7. These potentials are calculated
by scanning the tables. Based on Equation 2.1, the joint distribution of the three
tables is:

p(A,B,C,D) ∝ ψ(A,B)ψ(B,C)ψ(C,D) (4.1)

Given an elimination order O = {D,C,B,A}, GJ eliminates the variables D,C,B
and A, respectively. A is the root according to O.∑

D,C,B,A

ψ(A,B)ψ(B,C)ψ(C,D) (4.2)

Based on the distributive law, this can be represented as:∑
C,B,A

ψ(A,B)ψ(B,C)
∑
D

ψ(C,D) (4.3)
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At the beginning, we have the full graph with no eliminated nodes and an empty
GFJS generator, please refer to the first row of Figure 4.6. The black graph on
the left is the main graph, while the orange graph on the right shows the GFJS
generator.

After summing out variable D, a new potential (factor) is added for C. This
new factor is shown in the middle row of Figure 4.7 (the right most factor).∑

B,A

ψ(A,B)
∑
C

ψ(B,C)ϕ�D,C(C) (4.4)

While eliminating D, a conditional ψ(D|C) is also calculated to be added in our
GFJS generator. This conditional potential gives the frequency of D values given
C values over the sub-tree starting from C to the leaves (D). Since D is a leaf, the
sub-tree contains only the edge from C to D. The conditional potential is shown in
the bottom row of Figure 4.7 (the right most one). Each entry of the conditional
factors contains the variable(s) vj on which the condition is on (C in our example),
the dependent variable/variables vi (D in our example), a bucket value which shows
the local frequency of vi given vj in the table containing both vj and vi (the table
D3, in our example), and a fac value which shows the frequency of vi in the factor
coming from the children of vi (there are no children in this step for D). For the
conditional factors where the dependent variable is a leaf, fac values are 1s. The
graph for this conditional factor is shown in the second row of Figure 4.6 (the right
one).

Keeping the bucket makes it possible for GJ to produce the full join result.
With PGM-Join sampler, we did not have to keep track of bucket values because
sampling disregards the number of times a value has already been generated. This
is one of the distinctions between GJ and the PGM-Join sampler.

Next, C is eliminated. After elimination, we have∑
B,A

ψ(A,B)ϕ
��D,C,B(B) (4.5)

This operation will add a factor for B (refer to the middle factor in the middle part
of Figure 4.7), and a conditional factor ψ(C|B) in the GFJS generator as shown in
the bottom part of Figure 4.7. The new conditional factor is shown in the third row
of Figure 4.6 (on the right), and C is eliminated from the main graph (on the left).
In fact, ψ(C|B) gives the frequency of C given B over the sub-tree from B to the
leaves (D).

Next, B is eliminated. This will add a factor for A, as shown in the middle
part of Figure 4.7 (the left most one), and a conditional factor ψ(B|A) in the GFJS
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Figure 4.6: Join graph and the GFJS generator for the running example join

as shown in the bottom part of Figure 4.7 (the left most one). ψ(B|A) gives the
frequency of B given A over the whole tree. The changes in the main graph and the
GFJS generator are shown in the lowest row of Figure 4.6.

ϕ���D,C,B,A(A) (4.6)

The unconditional ϕ���D,C,B,A(A) is the last factor in the GFJS generator. The sum of
all the frequencies in ϕ���D,C,B,A(A) gives the join size.

Asymptotic Complexity of Inference on Trees

Since trees have a perfect elimination order and each variable has a single parent,
each elimination involves a single potential with two variables. This potential comes
from a single table and there is no repetition in the entries of the potentials. Thus,
given that the size of the biggest potential is M , the complexity of eliminating all
variables is O(M).

4.6.2 Building GFJS Generator: Inference on Graphs

If the query graph is not a tree, it must be translated to a new structure having the
same properties (e.g., R.I.P) as trees. Hence, a junction tree (a tree of maxcliques)
is created using standard algorithms as explained in the Background section. Once
the junction tree is created, the above inference algorithms run over junction trees.

Concretely, query lastFM_cyc from our experiments is cyclic yielding a cyclic
graph. One of the possible junction trees for that query is shown in Figure 4.5. The
joint distribution for the junction tree in Figure 4.5 is:

p(Ar,U1, U2, U3, U4) ∝ ψ(U2, U3, U4)ψ(U1, U2, U4)ψ(Ar,U1, U4) (4.7)

Given an elimination order like O = {Ar,U1, U2, U3, U4}, the variables are
summed out from Equation 4.7 one by one. Below all the steps of eliminating the
variables are shown. Figure 4.8 depicts the modifications made to the main junction
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Potential for D1 Potential for D2 Potential for D3

A B freq B C freq C D freq
a0 b0 3 b0 c0 2 c1 d0 4
a1 b1 2 b1 c0 3 c2 d2 4
a2 b1 1 b2 c1 3 c3 d3 2

a3
b3 2 b3 c2 1 c4 d4 2
b4 4

b4
c3 2
c4 1

ϕB→A(A) ϕC→B(B) ϕD→C(C)
A freq B freq C freq
a3 32 b2 12 c1 4

b3 4 c2 4
b4 6 c3 2

c4 2

ψ(B|A) ψ(C|B) ψ(D|C)
A B bucket fac B C bucket fac C D bucket fac

a3
b3 2 4 b2 c1 3 4 c1 d0 4 1
b4 4 6 b3 c2 1 4 c2 d2 4 1

b4
c3 2 2 c3 d3 2 1
c4 1 2 c4 d4 2 1

Figure 4.7: The first row contains the raw potentials from the tables; the second
row contains the factors resulting from each sum-product operation; and the third
row contains the conditional potentials added to the GFJS generator after each
elimination. All of these are for the running example with the graph shown in
Figure 4.4
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tree and the GFJS generator for each of the elimination steps detailed below. The
difference here is that the conditions are on composite keys (the separator sets).

The elimination steps:

1− F i r s t s tep with a l l p o t e n t i a l s :∑
U1,U2,U3,U4

ψ(U2, U3, U4)ψ(U1, U2, U4)
∑
Ar

ψ(Ar,U1, U4) (4.8)

2− After e l im ina t i ng Ar :∑
U2,U3,U4

ψ(U2, U3, U4)
∑
U1

ψ(U1, U2, U4)ϕ��Ar,U1,U4(U1, U4) (4.9)

3− After e l im ina t i ng U1 :∑
U2,U3,U4

ψ(U2, U3, U4)ϕ���Ar,U1,U2,U4(U2, U4) (4.10)

4− After e l im ina t i ng U2 : ∑
U3,U4

ϕ((((Ar,U1,U2,U3,U4(U3, U4) (4.11)

5− After e l im ina t i ng U3

ϕ(((((Ar,U1,U2,U3,U4(U4) (4.12)

ϕ((((((
Ar,U1,U2,U3,U4(U4) is the last factor which is added to the GFJS generator in

the 6th step. We show ϕ((((((
Ar,U1,U2,U3,U4(U4) as ψ(U4) and consider it as the starting

point to generate the GFJS.

Asymptotic Complexity of Inference on Graphs

The asymptotic complexity of the inference on cyclic graphs is different from that
on trees. In a junction tree, it is possible to have a maxclique with some potentials
(cliques) that come from different tables. In this case, we use the Algorithm 4 to
join potentials (frequency tables, not data tables) and make a single potential for
the maxclique. Recall that the complexity of the inference on trees was equal to the
size of the largest potential (O(M)), but here the largest potential can be larger as
the maxclique may involve several potentials. In the worst-case (which is very rare),
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Figure 4.8: Inference on the junction tree of Figure 4.5

Figure 4.9: The DAG for the GFJS generator in Figure 4.8

all variables are added into a single maxclique during the junction tree creation. In
this case, joining all potentials of the graph with Algorithm 4 is O(M

ρ
). This is

because Algorithm 4 is a WOJA.

4.7 Summary (GFJS) Generation

We have selected GFJS as the join result representation. GFJS has less redundancy
and can be stored/retrieved and de-summarized efficiently and with minimal effort.

Let’s show the GFJS generators with ϑ. ϑ for a chain MRF is a chain, for
a tree MRF is a tree and for an MRF with a junction tree, it is a directed acyclic
graph (DAG).

The orange graph in the lowest row of Figure 4.6 is the GFJS generator for our
three-table running example. This generator has 4 levels and the root is A. For our
cyclic query, it is shown in Figure 4.9 with 5 levels and the root is U4. Note, in our
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examples, we have a variable per level, but it is possible to have several variables in
a level. For example, if O is {D,C,A,B} to do inference in our three-table example,
B would be the root and it would have two children A,C. Note that on the same
level of trees and DAGs, it is possible to have nodes with different parents.

The summary generation is done in reverse order of the elimination order.
The summary for the root is already ready. Assume ψ0 is the last (root)

potential from the inference and keeps the frequency of the root variable over the
join result. For our running example, the potential for the root in the GFJS generator
has only a single value a3 with the frequency of 32, so (a3, 32) is added to the GFJS
of A.

GFJS for other variables is generated recursively, per level of the generator.
In other words, all the variables in the same level are dependent to each other when
we want to generate the exact full join result even if their parents are different. This
is because we want to generate the exact join result, not a sample (instance) of the
join result. In sampling, if a node has two children, the sample for each of them is
generated independently.

Recall the GFJS generator for our running example shown in the bottom row
of the Figure 4.7. After finding an entry for A, then B entries are generated for the
GFJS of B. For this, ψ(B|A) of the GFJS generator is used. So, for a3, there are 2
buckets of b3 and each bucket’s size is 4, hence an entry (b3, 8) is added to the GFJS
of B. The entry for b4 is added later after backtracking. In fact, our algorithm is a
kind of DFS algorithm with backtracking steps on a factorized distribution. Using
ψ(C|B) in the GFJS generator, for each bucket of b3, there are 1 × 4 of c2 values.
Here, the bucket size of b3 (which is 2 in ψ(B|A)) is used to find the right frequencies
for c2. To do so, the bucket size of b3 from ψ(B|A) and the bucket size of c2 from
ψ(C|B) are multiplied then the result is multiplied with the fac of c2. The result is
(c2, 8) which means all values related to b3 is c2. The bucket values are recursively
pushed down until we reach the leaves. Thus, although the bucket of c2 is 1 in
ψ(C|B), the bucket value that is pushed down to level of D is 2 (the product of all
the buckets seen in the path). One of the differences between the GJ’s inference and
the PGM-Join sampler’s inference is that the GJ algorithm retains bucket values
throughout inference. In the PGM-Join sampler, buckets were not necessary. Once
the entry related to c2 was added to the GFJS of C, an entry (d2, 8) is added to the
GFJS of D by multiplying the pushed-down bucket values and the fac of d2. Now,
the algorithm has reached the leaves, hence the backtracking happens to generate
the other values of GFJS for C. This backtracking is continued till all the entries for
all variables are added. The final GFJS for the running example is shown in Figure
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4.2.
Algorithm 5 is for generating the GFJS for a given GFJS generator ϑ. In

Algorithm 5, for each entry in the root potential ψ0 of the generator, the recursive
function of Algorithm 6 is called which generates the summaries per level (all the
variables in the same level) of the generator.

In line 2 of Algorithm 6, all potentials in level i of the generator are condi-
tioned on the already observed values in their parents, and are added to Φ. keys is a
map from the variable names to their values that are already observed in upper levels.
The operator [] makes the conditional ψs, unconditional by applying the conditions
using the observed values in keys. Φ holds the unconditional potentials for all the
variables in the same level. If there are more than one variable in the current level,
Algorithm 6 calculates the Cartesian product of values. In the Cartesian product,
the values for all variables are combined, the bucket values are multiplied together
and fac values are also multiplied. The result is stored in R. For each row r in R,
the recursive function is called again to add the summaries for the next variables. In
line 5, the already observed values are combined with the values in r for the current
level variables. Also, the bucket value from the upper level and the bucket value for
r are multiplied. Line 7 adds the summary for the variables in the current level i
into si by multiplying the new bucket value with the fac values for each r. If it is
not the last level, the recursive function is called again in line 9.

Since ψ0 does not include any unneeded value for the root, and since we do
not have any entry in ψ ∈ ϑ with zeros, GFJS generation will avoid UIR; hence, GJ
is a WOJA.

To handle projection operations, if a node in the graph is not in the projection
list (i.e., an output attribute), one can ignore the summary for that node and simply
pass to the next level. This happens when some of join attributes are not in the select
clause (non-join attributes that are not involved in the join query are simply ignored
during MRF building). However, Section 4.9 will explain how one can efficiently
apply projections on graphs before starting the summary generation, by deleting
those variables from the models. Consequently, the join attributes that are not in
the output will be deleted from the GFJS generator.

Asymptotic Complexity Analysis for GFJS Generation

The asymptotic complexity for GFJS generation is O(M
ρ
) since it does not generate

any information that is not in the join result and it adds an entry in the GFJS per
distinct value (not for the whole data).
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Algorithm 5 Generates the GFJS given a generator ϑ

ψ0 is the root potential for the GFJS generator ϑ.
S = {s0, s1, ..., sm−1} is the set of summaries per level of the GFJS generator.
m is the number of levels in ϑ.
root is the variable name for the root.

1: procedure gen_GFJS( )
2: for each entry in ψ0 do ▷ each entry is (value,freq)
3: keys ← {root,entry.value} ▷ root value, observed
4: s0 ← s0∪(entry.value,entry.freq) ▷ GFJS for the root
5: REC_GFJS(1, 1, keys) ▷ which generates {s1, ..., sm−1} for other levels
6: end for
7: S ← {s0, s1, ..., sm−1} ▷ S is the final GFJS
8: store S on disk, if needed
9: end procedure

Algorithm 6 Recursive algorithm used in Algorithm 5

ϑ is the GFJS generator.
ϑi gives all the generative potentials ψs for the level i of ϑ.
s1, s2, ..., sm−1 are the summaries per level.
m is the number of levels in ϑ.
keys is a map of the variable names to their chosen values.
i is the current level index.
p_bucket is the bucket size from the upper level.

1: procedure REC_GFJS(i, p_bucket, keys)
2: Φ←

⋃
ψ∈ϑi ψ[keys] ▷ keys contains the observed values

3: R← ×
ψ∈Φ

ψ ▷ all ψ ∈ Φ are unconditional

4: for each row in R do
5: keysnew ←keys

⋃
row.keys ▷ new values for next keys

6: bucketnew ←p_bucket×row.bucket
7: si ← si ∪ (row.keys,bucketnew× row.freq)
8: if i < m− 1 then ▷ if any variable remains then recur
9: REC_GFJS(i+ 1,bucketnew, keysnew)

10: end if
11: end for
12: end procedure
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4.8 Join Result Generation (Desummarization)

One of the advantages of RLE ( in our case, the columns of GFJS) is that RLE can
be stored/retrieved/desummarized straightforwardly. Each column of the RLE can
be stored/retrieved and de-summarized separately. De-summarization starts from
the top of the column (let us say s1) in S and replaces any (v, freq) pair with freq
of v values, where v is the value and freq is the value’s frequency. The cost of de-
summarization is exactly the same as the join size |Q|. De-summarization is avoided
if the join result is to be stored on disk. Please note that if one needs to enumerate
the join result tuples from a factorized join representation (as we do in the case for
FDB and FAQ) then several index accesses should be done to enumerate each tuple
every time the join result is needed. However, with generating or storing/retrieving
GFJS, the columns are generated independently, without care about the values of
other columns.

The best known upper bound for the join size is N
ρ

and hence the complexity

of the join result generation is O(N
ρ
).

4.9 Early Projections

Not all join attributes are output attributes. In other words, we could have nodes
in the graph that are not supposed to be generated in the join result. The idea of
early projection is that, before starting the GFJS generation, one can delete these
nodes from the join graph and the GFJS generator. When finding the elimination
order, one could find two elimination orders O and O′, where O is related to the
output (projection) attributes and O′ is for the join attributes that are not output
attributes. O′ is always considered before O. First, the unneeded variables based
on O′ are deleted. Then the others are eliminated, based on O. When "a variable
is eliminated", it means that a factor for its parent is calculated (recall the second
row of Figure 4.7) and also a conditional factor is calculated (recall the third row
of Figure 4.7). But when "a node is deleted", it means that the conditional factors
for the node are not generated, and the node is deleted from the graph; note that
the factor for its parent is still calculated. Projections do not affect the asymptotic
complexity of the inference which is still O(M

ρ
), in the worst case. GJ is, to our

knowledge, the first WOJA able to apply early projections.
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4.10 Overall Asymptotic Complexity of GJ

Overall, the four main operations of GJ are: i) scanning the tables (when potentials
are not already available). This is accomplished in O(N) for tree queries and O(M

ρ
)

for junction trees; ii) running inference on the query graph to build the GFJS gener-
ator. This operation on trees is done in O(M). On graphs, it is equal to the size of
the largest potential for maxcliques. In the worst (rare) case, when creating junction
trees, we add all nodes in a single maxclique. Then the asymptotic complexity is
O(M

ρ
); iii) generating GFJS, which needs to traverse the graph one time. GFJS

generation is carried out in O(M
ρ
). Note that summary generation is performed on

graphs whose unneeded intermediate paths have already been pruned. Moreover,
since repeated values are replaced with frequencies, the summary is typically much
smaller than the join result; iv) desummarizing, whose cost is equal to the join size
|Q|. The join size complexity is O(N

ρ
). Thus, if the join tuples are to be generated,

all WOJAs, FDB, FAQ, and GJ have the same asymptotic complexity of O(N
ρ
). In

practice, however, as GJ retains the GFJS, de-summarization is performed colum-
narly, which is significantly faster than other competitors. This is because GJ has
the frequencies of distinct values beforehand. We shall illustrate this through our
experiments.

4.11 Parallelism

We employ OpenMP [Chandra et al., 2001] with parallelism at two levels. In two-
level parallelism, tasks that can be executed concurrently are formed, and each task
can contain several threads. The tasks themselves can be run in parallel. A task
consists of executable code and a data environment. Each variable elimination (sum-
product operation) leads to the creation of a task, and each task can be handled by
many threads. This allows GJ to utilize all CPU cores effectively. Note that all
leaves can be eliminated from a tree in parallel with parallel tasks. Once the old
leaves have been eliminated, the new leaves can be eliminated in parallel too. This
continues until the root is reached by the algorithm.

Each sum-product operation in a task is comprised of four steps: i) compute
the product of all potentials ii) sum out the to-be-eliminated variable from the prod-
uct result; iii) construct a new factor for the remaining variables. iv) construct the
conditional potential of the GFJS generator.

For (i), there may be multiple potentials for a sum-product operation. GJ
divides the smallest potential into n segments (for each thread), where n represents
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the number of available cores. Each thread takes a segment and, for each entry within
that segment, checks all other potentials and calculates the products. Consequently,
each thread will result in a different product result. Due to the use of hash tables,
the complexity of calculating the products over all threads is equivalent to the size of
the smallest potential. Since the hash table for each product result (of each thread)
does not share distinct values with other product results (from other threads), each
thread sums out the to-be-eliminated variable and calculates a sub-factor for the
remaining variables, separately. The thread also makes the conditional sub-factor
from its product result to be used in the GFJS generator. At the end, all the
sub-factors are merged together to build a single factor for the remaining variables
with the complexity of the size of the factor. And all the conditional sub-factors are
merged together to build the conditional factor to be added into the GFJS generator.
The complexity of this is also the same as the size of the conditional factor as there
is no shared distinct values among the conditional sub-factors.

The elimination of leaves in node-level parallelism is known as topological
parallelism, and the elimination of each node using a parallel sum-product operation
is known as in-clique parallelism. Please refer to the papers [Kozlov and Singh, 1994;
Xia et al., 2009] for additional information about these.

As GJ stores the summary of the join result, which is significantly smaller
than the join result, GJ is a CPU-bound join method, whereas other algorithms
spend a great deal of time storing large join results on disk.

Experiments will demonstrate that the performance of the parallel GJ algo-
rithm is superior to that of its competitors.

4.12 Experimental Evaluation

Setup and Baselines. We study the performance of GJ against PostgreSQL
(PSQL), MonetDB, and the WOJA in Umbra, hereafter referred to as "Umbra"
which is a state-of-the-art WOJA for RDBMSs. We set Umbra to use its WOJA
algorithm (UmbraEAG) as the aim is to use it to compare GJ against WOJAs. These
competitors are full-fledged systems, whereas GJ is a C++ code library working with
CSVs. Systems incur additional overheads when executing a join. Thus, to ensure
a fair comparison, we obtained (from the authors of Umbra) a version that works
with CSV files (e.g., escaping other system overheads, such as dealing with ACID
properties, logging, etc). Thus, two versions of Umbra are used in the experiments,
one as an RDBMS and another one which works with CSV files (like GJ). Also,
note that the aforementioned overheads in full-fledged RDBMSs represent typically
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a small percentage of execution time, whereas the differences between GJ and them
are large, as will be shown later.

We test under two different scenarios. The first scenario, compute-and-reuse,
involves taking into account the costs of completing joins, storing results on disk,
and then reloading results into memory. In this scenario, GJ stores/reloads GFJS
on/from disk, and then desummarizes it as a flat join result (whereas PSQL, Mon-
etDB and Umbra store/reload the flat join result). We also compare the storage cost
of GJ and other competitors.

In the second (compute-and-forget) scenario, GJ generates GFJS and from
it then generates the flat join result. Furthermore, we show the PGM building time
for GJ.

Additional experiments are conducted to demonstrate the difference between
a factorized join result (by FDB) and the factorized join distribution (by GJ) in
regards to GJ’s performance against a simulated version of FDB.

We use a server with one Intel Core™ i5-8500 3.00GHz CPU, with 32GB
RAM, and 1TB SSD disk. We run each query 5 times and then report averages.
Parallelism on MonetDB, PSQL, Umbra and GJ is disabled in an effort to compare
solutions without spending more resources to address inefficiencies. We have also
developed a parallel version of GJ and compared against the parallel versions of the
competitors.

Data: We use the JOB [Leis et al., 2015] and TPCH benchmarks1 (with
scaling factor 1), as well as lastFM2, a real-world data set [Brusilovsky et al., 2010].
MonetDB builds its own indices. For PSQL, we pre-built B-trees on all join attributes
before running queries. Umbra builds its own tries.

Queries: We use queries from JOB, lastFM, and TPCH. When selecting our
queries for experiments we wanted to bring out salient features of joins and how they
impact GJ and the competitors. JOB queries include some many-to-many relations.
Hence they have more redundancy in the join result and UIR. lastFM queries have
less redundancy in the result, but suffer from higher UIR. TPCH queries occupy
the other extreme, being foreign key (FK) joins, having low redundancy in the join
result and there are no UIR. Since we focus on physical joins, all non-join predicates,
aggregations and group-by statements are removed. The queries are as below :
JOB−A (JOB) :
SELECT t . t i t l e
FROM keyword AS k , movie_info AS mi , movie_keyword AS mk, t i t l e AS t
WHERE t . id = mi . movie_id AND t . id = mk. movie_id AND mk. movie_id = mi . movie_id AND
k . id = mk. keyword_id ;

1http://tpc.org/
2https://grouplens.org/datasets/hetrec-2011/
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JOB_A JOB_B JOB_C JOB_D lastFM_A1 lastFM_B lastFM_cyc FK_A FK_B
444,340,632 31,588,599,792 1,037,051,092 146,527,949,388 61,664,382 12,538,289,270 706,351,348 6,001,194 5,760,999

Table 4.2: Join sizes per query

JOB−B (JOB) :
SELECT mi . in fo , t . t i t l e
FROM aka_t i t l e AS at , company_name AS cn , company_type AS ct , info_type AS i t1 ,
keyword AS k , movie_companies AS mc, movie_info AS mi , movie_keyword AS mk, t i t l e AS t
WHERE t . id = at . movie_id AND t . id = mi . movie_id AND t . id = mk. movie_id AND
t . id = mc . movie_id AND mk. movie_id = mi . movie_id AND mk. movie_id = mc . movie_id AND
mk. movie_id = at . movie_id AND mi . movie_id = mc . movie_id AND mi . movie_id = at . movie_id
AND mc. movie_id = at . movie_id AND k . id = mk. keyword_id AND i t 1 . id = mi . info_type_id AND
cn . id = mc . company_id AND ct . id = mc . company_type_id ;

JOB−C (JOB) :
SELECT mi . i n f o as i , mi_idx . i n f o as i i , t . t i t l e
FROM cast_in fo AS c i , info_type AS i t1 , info_type AS i t2 , movie_info AS mi ,
movie_info_idx AS mi_idx , name AS n , t i t l e AS t
WHERE t . id = mi . movie_id AND t . id = mi_idx . movie_id AND t . id = c i . movie_id AND
c i . movie_id = mi . movie_id AND c i . movie_id = mi_idx . movie_id AND mi . movie_id = mi_idx . movie_id AND
n . id = c i . person_id AND i t 1 . id = mi . info_type_id AND i t 2 . id = mi_idx . info_type_id ;

JOB−D (JOB) :
SELECT mi . i n f o , mi_idx . in fo , n . name , t . t i t l e
FROM cast_in fo AS c i , info_type AS i t1 , info_type AS i t2 , keyword AS k , movie_info AS mi ,
movie_info_idx AS mi_idx , movie_keyword AS mk, name AS n , t i t l e AS t
WHERE t . id = mi . movie_id AND t . id = mi_idx . movie_id AND t . id = c i . movie_id AND
t . id = mk. movie_id AND c i . movie_id = mi . movie_id AND c i . movie_id =mi_idx . movie_id AND
c i . movie_id = mk. movie_id AND mi . movie_id = mi_idx . movie_id AND mi . movie_id = mk. movie_id AND
mi_idx . movie_id = mk. movie_id AND n . person_id = c i . person_id AND i t 1 . id = mi . info_type_id AND
i t 2 . id = mi_idx . info_type_id AND k . id = mk. keyword_id ;

lastFM−A1 (LastFM ) :
SELECT ua1 . u s e r i d as u1 , ua1 . weight as w1 , ua2 . user id , ua2 . weight
FROM u s e r_a r t i s t s ua1 , u s e r_a r t i s t s ua2 , user_fr i end uf1
WHERE ua1 . u s e r i d=uf1 . u s e r i d AND uf1 . f r i e n d i d=ua2 . u s e r i d ;

lastFM−A2 (LastFM ) :
SELECT ua1 . u s e r i d as u1 , ua1 . weight as w1 , ua2 . user id , ua2 . weight
FROM u s e r_a r t i s t s ua1 , u s e r_a r t i s t s ua2 , user_fr i end uf1 , user_fr i end uf2
WHERE ua1 . u s e r i d=uf1 . u s e r i d AND uf1 . f r i e n d i d=uf2 . u s e r i d AND uf2 . f r i e n d i d=ua2 . u s e r i d ;

lastFM−B (LastFM ) :
SELECT ut1 . a r t i s t ID , ut1 . userID , ut2 . userID , ut2 . a r t i s t I d
FROM user tag ut1 , use r tag ut2 , user_fr i end uf1 , user_fr i end uf2
WHERE ut1 . userID=uf1 . userID AND uf1 . f r i e nd Id=uf2 . userID AND uf2 . f r i e nd Id=ut2 . userID ;

lastFM\_cyc (LastFM ) :
SELECT uf1 . userID , uf1 . f r i e nd Id as f , uf2 . f r i e nd I d as f1 , uf3 . f r i e nd Id as f 2
FROM user tag ut1 , use r tag ut2 , user_fr i end uf1 , user_fr i end uf2 , user_fr i end uf3
WHERE ut1 . userID=uf1 . userID AND uf1 . f r i e nd Id=uf2 . userID AND uf2 . f r i e nd Id=uf3 . userID
AND uf3 . f r i e nd Id=ut2 . userID AND ut1 . a r t i s t ID=ut2 . a r t i s t ID ;

FK−A (TPCH) :
SELECT name , d i scount
FROM customer , orders , l i n e i t em
WHERE customer . custkey=order s . custkey AND order s . orderkey=l i n e i t em . orderkey ;

FK−B (TPCH) :
SELECT regionkey , s upp l i e r . suppkey
FROM customer , orders , l ine i t em , nation , s upp l i e r
WHERE customer . custkey=order s . custkey AND order s . orderkey=l i n e i t em . orderkey AND
customer . nat ionkey=nat ion . nat ionkey AND l i n e i t em . suppkey=supp l i e r . suppkey ;

The join sizes per query are listed in Table 4.2 where sizes range from ca. 5
million tuples to ca. 146 billion tuples.
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4.12.1 Results for Query Time and Space

The compute-and-reuse scenario. Here, we show the key costs for: i) running
the join and storing the result on disk, ii) loading time of the result into memory,
and iii) storage. Time costs to run and store the join result on disk are shown
in Table 4.3. Results with ’>’ mean that after a certain time the database crashed
(typically, running out of storage - exceeding the available 1TB). The "-" means that
after exceeding 1TB, Umbra-CSV neither crashed nor finished the job. The results
show that GJ is always better than competitors, except for the FK TPCH joins (as
expected). Since GJ does not store the actual join results (but GFJS), the speedup
is drastic: up to 820X faster than PSQL; more than 717X faster than MonetDB;
up to 165X faster than Umbra; and 94X faster than Umbra-CSV. Table 4.3 shows
that the idea of calculating the summary of the join result without computing the
join result, can have a significant impact on join performance. MonetDB is always
better than PSQL when the join results are supposed to be stored on disk, likely as a
result of the columnar nature of MonetDB. FK queries have less redundancy, no UIR
and also their join sizes are small; hence, GJ is worse than MonetDB and Umbra.
None of the competitors could run JOB_D due to its large join size, exceeding 1TB
with PSQL/MonetDB/Umbra/Umbra-CSV. GJ managed JOB_D in 51.8 seconds
with a meagre storage cost of 260MB! Queries like JOB_D showcase the scalability
afforded by GJ.

Other competitors must construct the join result fully, sort the result, and
afterwards calculate the frequencies per column to generate RLE over joins. As a
result, in the RLE case, the cost of sorting and calculating frequencies should be
added to the competitors’ time cost. GJ, on the other hand, generates the RLE
directly.

Time costs for loading the join result from disk are shown in Table 4.4. GJ
needs to load GFJS into memory and desummarize it. Results in Table 4.4 show
that GJ is always faster that PSQL in preparing the join result in memory up to
356X (with query JOB_A). GJ is also always better than MonetDB (up to 11.5X
with query FK_A) except for lastFM_A1. GJ is always better than Umbra (up to
118X with query JOB_B) except for lastFM_A1 and lastFM_cyc. GJ is always
faster than Umbra-CSV (up to 132X with query FK_A).

The reason that Umbra-CSV is slower than Umbra in loading results into
memory is that Umbra-CSV needs to parse strings from CSV files, which takes
significant time. Note that GJ also parses the strings in CSV files. This overhead is
not incurred in an RDBMS which may make GJ even faster if implemented within
an RDBMS.
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JOB_A JOB_B JOB_C JOB_D lastFM_A1 lastFM_B lastFM_cyc FK_A FK_B
GJ 8.8 27.6 45.2 51.8 5.8 80.8 9.8 2.49 5.12
Umbra 36.2 4,560 140.8 >2,664 7.1 1,792 97.6 1.68 2.71
Umbra-CSV 23.7 2,610 157.6 - 11.9 423 154.7 1.82 2.74
MonetDB 42.3 >19,794 480.9 >4,537 8.4 6,810 1,639 0.91 2.85
PSQL 324.5 22,633 808 >26,533 61 11,508 862 7.3 8.67

Table 4.3: Time cost in seconds for generating and storing the join result in disk
(GJ stores the GFJS)

JOB_A JOB_B JOB_C JOB_D lastFM_A1 lastFM_B lastFM_cyc FK_A FK_B
GJ 0.17 26.7 3.7 264 3.4 83.4 1.9 0.004 0.007
Umbra 0.58 3,156 139.8 - 0.72 2,016 118.8 0.056 0.055
Umbra-CSV 15.96 2,731 113.2 - 10.2 2,418 136.7 0.53 0.57
MonetDB 1.34 - 9.4 - 0.99 763 10.1 0.046 0.044
PSQL 60.6 7,063 232 - 6.4 3,458 203 0.91 0.39

Table 4.4: Time cost in seconds for loading the results into memory

In general, GJ shines when there are UIR, high redundancy in the results,
and join sizes are big.

Storage costs per query are shown in Table 4.5. For all queries GJ is dra-
matically more efficient, up to 21,488X (with query JOB_B) better than PSQL, up
to 38,333X (with query FK_A) better than MonetDB, and up to 78,750X (with
query FK_A) better than Umbra and up to 54,666X (with query FK_A) better
than Umbra-CSV. MonetDB could not store the result for JOB_B and JOB_D,
and all competitors could not finish JOB_D.

The compute-and-forget scenario. The times to compute the join result
in memory are shown in Table 4.6. GJ is always better than PSQL and MonetDB,
especially on lastFM queries, as expected. The impact of GJ for FK joins is less,
again as expected. GJ is better than Umbra for all many-to-many queries except for
JOB_A and JOB_C. GJ is faster than PSQL by up to 64X (with query lastFM_B);
faster than MonetDB by more than 388X (with query JOB_B); and faster than
Umbra by more than 6X (with JOB_B and lastFM_B). The results for Umbra-
CSV are almost the same as Umbra as we do not generate, store and reload the CSV
files for in-memory runs. Generally, wherever the join size is larger, the efficiency
gain from GJ’s summarization/desummarization is higher.

Table 4.7 shows the percentage of GJ’s in-memory runtime which is spent
on building the PGM - actually, this refers to the cost to compute the potentials

JOB_A JOB_B JOB_C JOB_D lastFM_A1 lastFM_B lastFM_cyc FK_A FK_B
GJ 4.4 50.8 351 260 312 5,529 89 0.0024 0.4
Umbra 7,639 994,099 49,624 - 3,993 777,206 11,195 189 181
Umbra-CSV 3,174 461,824 23,040 - 2,867 592,998 32,870 131.2 120.3
MonetDB 1,976 - 11,980 - 1,845 384,102 21,640 92 148
PSQL 15,360 1,091,584 44,032 - 3,068 623,616 35,148 247 236

Table 4.5: Storage cost in MBs
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JOB_A JOB_B JOB_C JOB_D lastFM_A1 lastFM_B lastFM_cyc FK_A FK_B
GJ 8.9 51 43.9 302 0.62 33.14 9.96 2.51 5.12
Umbra 4.7 305 39.2 1620 1.02 221.2 29.61 1.17 2.15
MonetDB 38.5 >19,776 411 >4,155 3.13 3,466 1,713 0.66 2.69
PSQL 40.6 2,219 109 10,660 7.51 2,101 253 4.1 5.28

Table 4.6: Time cost in seconds for running the joins in memory

JOB_A JOB_B JOB_C JOB_D lastFM_A1 lastFM_B lastFM_cyc FK_A FK_B
62% 31% 49% 9% 9% 0.3% 1% 99% 52%

Table 4.7: The percentage of in-memory running times spent on building PGMs

(frequency tables), as creating the graph structure is trivial. For example, 99%
of the time for query FK_A, 62% for query JOB_A, and 0.52% for FK_B are for
PGM building. We refer to these queries in particular as GJ performs worse for these
queries, cf. Table 4.6. Noting this, one could pre-build the frequency tables and keep
them in memory for frequently used tables for joins. The pre-built frequency tables
can also be used for other purposes (e.g. for cardinality estimation). Prebuilding
PGMs for frequent joins can actually make GJ competitive, even for FK-joins.

4.12.2 Sensitivity Analysis: UIR and Redundancy

Query lastFM_A1 is a good candidate to examine the sensitivity of the algorithms
on UIR and the redundancy. This is because most of the algorithms have almost
the same performance on this query and also, we can easily control the UIR and the
redundancy. So we use this query as our main query. The query is about users and
their friendship and it joins tables user_artists, user_friends and user_artists. We
now evaluate a variation, lastFM_A2, to see how larger UIR can affect performance.
lastFM_A2 entails users and their relation with their friends of friends. lastFM_A2
joins tables user_artists, user_friends, user_friends and user_artists. The addi-
tional join operation increases UIR. Furthermore, we introduce lastFM_A1_dup,
which is the same as lastFM_A1, except the size of each table is doubled by repli-
cating each tuple once. This can show the impact of a higher result redundancy.
Figures 4.10(a) (and 4.10(b)) show the times for generating the join result and stor-
ing it on a disk (and the in-memory running time). Figure 4.10(c) and Figure 4.10(d)
show the storage cost and the loading time for the aforementioned queries.

The results show that the two sources of inefficiency do not affect GJ, but
they affect competitors significantly in both in-memory and in-disk runs. Note, the
effect of UIR on Umbra is also not significant (as it is a WOJA), but higher result
redundancy affects Umbra’s performance. In terms of space, GJ is as expected
drastically better. Interestingly, the loading time of GJ on lastFM_A1 is slower
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than MonetDB and Umbra, but this is not the case for lastFM_A1_dup (with larger
redundancy) or for lastFM_A2 (with higher UIR). Finally, GJ performs better as
join sizes increase. The join sizes for lastFM_A1, lastFM_A1_dup and lastFM_A2
are ∼61 million, ∼493 million, and ∼2 billion.

4.12.3 Parallel GJ

We use OpenMP for parallelism with both topological and in-clique parallelism ideas
for implementing the parallel version of GJ.

We implement the parallel code for the lastFM_A1 query and also run the
experiments for other versions of that query lastFM_A2 and lastFM_A1_dup. Our
experiments are for both the scenarios compute-and-forget and compute-and-reuse.

The results in Figure 4.11(a),(b), and (c) show the time cost with 1 to 6
cores for the queries lastFM_A1, lastFM_A2 and lastFM_A1_dup, respectively.
The results show that the improvement with GJ and the other WOJA (Umbra)
follows the same trend. For all three queries, GJ is faster than others.

The results for on disk runs in Figure 4.11(d),(e), and (f) show the great
improvement with GJ when the number of the cores increases. This is because GJ
is a CPU-bound algorithm where other algorithms need to store a huge join result.
The improvement for other competitors is almost nothing, and sometimes the higher
number of cores results in a worse performance because they are I/O-bound.

4.12.4 GJ vs. FDB

FDB is not a PJA, making comparisons between FDB and GJ difficult. As described
in the background section, FDB’s primary goal is to identify the most succinct form
of the join result, not to generate the join tuples. The factorization of the data
with FDB is a higher level of normalization where any single value is assumed as
a table. In contrast, GJ has been designed as a PJA for scenarios where the join
result is required. For example, when the result of one query serves as the input for
another. Or for migration between databases (for example, converting structured
data to unstructured data in BigQuery [Melnik et al., 2010; Gubarev et al., 2020]).

The only conceivable comparison is to run GJ and FDB to calculate aggre-
gations such as Count and compare the amount of time required to build their join
result representations while calculating the count aggregation. We execute GJ and
FDB to determine the count aggregations of the lastFM_A1 and lastFM_A2 queries
with varying data scaling factors. With a greater scaling factor, redundancy in the
result rises, and this can demonstrate how the factorized distribution of GJ and

85



(a)

(b)

(c)

(d)

Figure 4.10: a, b, c and d are for the in-disk time cost (in seconds), in-memory
time cost (in seconds), storage cost (in MB) and loading time cost (in seconds),
respectively
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: a, b and c are the in-memory run time costs in seconds for the three
queries, and d,e and f are the in-disk run time costs in seconds for the three queries.
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(a) (b)

Figure 4.12: a and b are the time costs in seconds for the queries lastFM_A1 and
lastFM_A2 with diferent scaling factors of the data.

factorized join result of FDB are different.
Figures 4.12 (a) and (b) depict the amount of time required for GJ and

FDB to calculate the count values for the queries lastFM_A1 and lastFM_A2,
respectively. The results indicate that the performance of GJ is not greatly influenced
by an increase in the scaling factor, however the performance of FDB is significantly
affected.

Remember that the lastFM_A1 query has a lower UIR than the lastFM_A2
query. As both GJ and FDB can effectively manage UIRs, the performance patterns
are same for both FDB and GJ.

In [Olteanu and Závodnỳ, 2015], the FDB team has also introduced a constant-
delay enumeration algorithm that enumerates the join tuples row by row. The algo-
rithm has never been implemented, tested or compared to other PJAs. They have
also not well clarified what the constant-delay cost per tuple exactly is. They claim
that using DFS with backtracking to enumerate a tuple on an un-materialized factor-
ized result, the cost is O(|S|), where |S| is the number of attributes in the join result.
However, there are some hidden costs associated with the constant-delay term: (1)
If some of the join attributes are not included in the output (if they are ignored
in the final join result), FDB will still pay the enumeration cost for them. Recall,
GJ has the early projection solution (described in the section 4.9) to delete join
attributes from the factorized joint distribution that are not in the join result. GJ
has the frequencies of distinct values in advance, whereas FDB does not; therefore,
FDB cannot do early projections. (2) another hidden cost with FDB’s enumeration
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is that FDB needs the tables along with their un-materialized factorized join result
(recall FDB uses views; see the background section). Therefore, FDB not only has
to go over the factorized representation, but also the tables containing the related
information. To enumerate the join result, GJ does not require the actual tables
because it already has the materialized factorized distribution. (3) one other hidden
cost for FDB’s enumeration is that it must pay the same cost each time it needs
to enumerate the join results. FDB, in other words, is an in-memory engine that
does not support the compute-and-reuse scenario. It maintains the factorized re-
sult in memory and re-enumerates the tuples whenever required. If FDB wants to
store the result on a disk, the alternative is to store the enumerated tuples on the
disk. But, if FDB stores/retrieves the factorized result to/from disk, it must pay the
serialization/de-serialization cost as well as the enumeration cost each time. While
GJ generates the GFJS once and stores it simply and efficiently, and whenever we
need the join result, GJ fetches the GFJS and de-summarizes it columnarly without
incurring the cost of DFS and backtracking.

In a separate series of experiments, we attempted to simulate the enumera-
tion algorithm of FDB in order to gain a general understanding of how row-by-row
enumeration differs from columnar join result generation. In our simulation of FDB,
the DFS algorithm is used to enumerate the tuples from our materialized factorized
distribution row by row rather than using the un-materialized factorized result. This
simulation is less expensive than FDB’s actual enumeration algorithm because the
simulated algorithm lacks (1) and (2) of FDB’s hidden expenses. In other words,
the time cost for FDB reported in our experiment is a minimum cost, and the actual
costs for FDB may be greater.

For given factorized distributions of queries in the memory, Figure 4.13 shows
the speed-up of the columnar join tuple generation (by GJ) vs. row-by-row enumer-
ation of join result (by simulated FDB’s enumeration algorithm) for all the queries.
While GJ produces the GFJS, it also de-summarizes it columnarly. This is efficient
because GJ knows the frequencies of each distinct value in advance and can generate
multiples of a distinct value at once without incurring the cost of traversing graphs
and accessing indices. When the scaling factor is increased, the frequencies increase
as well, hence FDB must pay more for index access and reaching the actual data in
the tables. As it shown in Figure 4.13, columnar join result generation is up to 73X
faster than row-by-row enumeration.

NB1: Although the asymptotic complexity of both row-by-row and columnar
tuple generation is the same (restricted by the join size), in practice, GJ can generate
the flat join results much faster.
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Figure 4.13: Columnar vs. row-by-row result generation

NB2: GJ only creates the GFJS once; thereafter, GJ does not incur the
expense of graph traversal and backtracking when reusing a join result. GFJS helps
GJ to generate each column of the join result independently from other columns,
without accessing several indices.

NB3: As FDB is an in-memory engine, GJ and FDB cannot be compared
in a compute-and-reuse scenario. It is unknown how FDB stores and retrieves the
un-materialized factorized join result. Consequently, the storage costs for FDB and
GJ cannot be compared.

NB4: FAQ employs the same enumeration process as FDB and is also for
deductive databases; hence, we do not compare GJ to FAQ. FAQ’s primary technical
contribution is efficient heuristic techniques for hyper-tree decomposition. These
heuristics can also be utilized by our GJ when it builds the junction trees.

4.13 Summary

This work proposes and studies a new approach, GJ, for n-way physical equi-joins
in relational databases. GJ effectively tackles the fundamental inefficiencies of join
algorithms and it is shown to be worst-case optimal. GJ advocates the generation
of an RLE-style, frequency-based summary of the join result. It leverages PGMs
and offers the inference algorithms needed to achieve this without computing the
join first. GJ then proposes a new approach that consists of first computing the
above summary, optionally storing it to disk (to be retrieved later when needed), and
followed by desummarization to materialize the flat join result. Detailed experiments
reveal that such an approach can yield large performance improvements compared
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against both traditional RDBMS (binary) join plans, WOJAs and FDB.
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Chapter 5

Sampling Over Joins of Models
with PGMs

5.1 Motivation

In many settings, data sizes are growing at an alarming pace. At the same time,
machine learning (ML) models, trained over raw tables, are increasingly being used
(in lieu of data tables) for many learning and knowledge discovery (LKD) tasks and
for replacing traditional DB system components, e.g., for AQP. The existence of such
high-quality models can, thus, in principle afford us the ability to "forget" tables and
work only with models. This would bear significant benefits. For example, avoiding
the ever-increasing maintenance costs with ever-increasing large data by forgetting
(deleting) data [Kersten and Sidirourgos, 2017; Milo, 2019], or respecting privacy
concerns by learning high-quality models with added noise [Dwork et al., 2006],
etc. Given the necessity to perform LKD tasks over joins of tables, we initiate a
study of the problems associated with joining models, not tables, putting forth a
solution framework, Model-Join, that brings to the surface the key challenges within
a principled solution. The aim is to join models in a way that enables LKD over joins
as if it were performed on the join of the actual raw tables. The key insight is that
the framework integrates the per-table models of the absent tables as a factorized
distribution, from which it generates a uniform and independent sample efficiently
by utilizing tweaked algorithms of PGMs. The sample obtained by the Model-Join
can be used for LKD downstream tasks over joins, such as AQP, or learning models
for classification, clustering, regression, cardinality estimation [Yang and al, 2019,
2020; Kipf et al., 2018], or for visualization tasks etc. To our knowledge, this is the
first work with this agenda and solutions.
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There are many reasons to consider raw data tables as being "absent". For
example, big data operators are nowadays faced with formidable challenges managing
massive tables (e.g., historical data, IoT data, monitoring/telemetry data, etc.).
Hence, they wish to be able to forget data, but without losing the ability to re-
obtain the key information of the data [Kersten and Sidirourgos, 2017; Milo, 2019],
especially for LKD tasks where approximate answers are acceptable. In fact, the
major funder of this research is a leading communications infrastructure company,
inundated with telemetry/monitoring data spread across datasets reporting alarms,
faults, tickets, and KPI data, such as CPU and network bandwidth utilization, faults,
customer SLAs and achieved performance, etc., wishing to be able to perform LKD
tasks without maintaining the massive datasets. In response to such requirements,
several solutions have been introduced recently to make the learning on tabular
data more effective, e.g. Tabnet [Arik and Pfister, 2021] and NODE [Popov et al.,
2019] (available in Pytorch Tabular [Joseph, 2021]) and other libraries like Fastai
[Howard and Gugger, 2020]). For AQP, methods like [Ma and Triantafillou, 2019;
Hilprecht et al., 2020; Ma et al., 2021] are some successful models over relational
data tables. Another reason for forgetting tables is that access to raw data tables
may be restricted for privacy reasons. Thus, models are trained with added noise to
minimize data leaks [Dwork et al., 2014] and they are used in lieu of raw data [Dwork
et al., 2006]. Federated learning is another setting where one may have access to
models (coming from clients), but not to the underlying local data [Konečný et al.,
2016] enabling the resolution of crucial concerns like data privacy, data security,
and data access rights. Similarly, in a distributed environment, sharing huge data
tables is costly in terms of time/resources/money and it would be highly desirable
to transfer compact models rather than the data itself. We will refer to a table as
absent whenever it undesirable to access it for whatever reason.

However, it is often necessary to execute LKD tasks on the table joins. So
how can this be accomplished if the tables themselves are absent? How is a model
join query carried out in ML-driven DBs?

Definition 4 (Model Join Query). A model join query is a join query in which at
least one of the tables to be joined is absent and is replaced by a model.

Definition 5 (Model Join). The outcome of a join operation on the models of (ab-
sent/deleted) tables should enable LKD tasks as if it were conducted on the join of
the actual raw tables.

Note that due to the absence of the underlying tables, none of the existing
join sampling methods, such as [Shanghooshabad et al., 2021; Zhao et al., 2018b], are
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applicable to a model join query. Also one cannot simply ’chain’ models in a row to
generate a uniform sample of the join result. Such sample will be statistically poor.
Consider the tables and attributes: D0(A,B), D1(B,C), and D2(C,D). Suppose
models M0, M1, and M2 and M3 learn p(A), p(B|A), p(C|B), and p(D|C) on the
tables {Di}20. If we use those models in a row, they will generate a uniform sample
of p(A) ·p(B|A) ·p(C|B) ·p(D|C), which is not equal to the desired joint distribution
p(A,B,C,D) (as per the chain rule). An alternative solution would be to construct
a uniform sample of each table S(Di) using the learnt per-table models and then join
the resulting samples. However, S(D0) ⋊⋉ S(D1) ⋊⋉ ... ⋊⋉ S(Dn−1) is not equal to
S(D0 ⋊⋉ D1 ⋊⋉ ... ⋊⋉ Dn): It is well-known [Shanghooshabad et al., 2021; Zhao et al.,
2018b] that this would produce a sample of very poor quality (i.e., not uniform).

Therefore, we wish to start the investigation of joining ML-based per-table
models. We will introduce a novel framework Model-Join to generate high quality
samples over the join of models. Model-Join treats each relational model as a factor
in a factorized distribution represented by a PGM, from which it generates the
samples by tweaking the PGMs’ inference algorithms. And we will highlight the key
challenges and open research problems moving forward. The proposed solution will
be, by nature, approximate in the sense that the generated uniform sample will be
a uniform sample of the approximate joint distribution. The approximation stems
from the given models to the framework. We will prove that, if the models are exact,
the generated join samples will also be exact. In other words, the framework’s model
joining does not add any extra error – it will use exact inference algorithms.

Conversely, the Model-Join framework may act as a facilitator for forgetting
raw data tables. In other words, if joining models is feasible, then organizations will
not have trouble doing so, and therefore they may be more driven to forget data.

Occasionally, we must join models with existing tables. Therefore, the Model-
Join framework must construct its own models based on the existing tables and then
join them. Section 5.5 thus provides a discussion of the issues and initial solutions
for deriving per-table models in the event that some models are not currently avail-
able. However, any other type of model can be integrated in the framework, and
custom methods can be utilized. Each per-table model entails a novel blending of
embeddings, clusterings, and feed forward Neural Networks.

5.2 Related Work

To the best of our knowledge there is no prior research for enabling LKD tasks
over join results of absent tables. This work formulates and solves this problem.
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Figure 5.1: The model join MRF for our running example

However, there is some research on join sampling (like the PGM-Join sampler) when
the tables are readily available. Regarding the work that is related with the join
sampling methods, please refer to Section 3.2.

5.3 Building MRFs for Model Join Queries

The construction of an MRF for a model join query is similar to that of a PGM-Join
sampler, with the exception that the potentials in the edges are derived from to-be-
joined models. Because of this, we do not generate frequency tables locally because
the data is unavailable. The key insight is that gathering all the per-table models in
a graph as factors can yield the full factorized joint distribution. Hence, the graph
can be considered as a PGM.

As previously explained, there are two components to MRF creation: a qual-
itative component that includes a graph with nodes and edges, and a quantitative
component that contains the real dependencies between the nodes. For the qualita-
tive component, a node is added to the graph per join attribute/variable in tables/-
models. The attributes that are not involved in the query, are simply ignored. All
involved non-join attributes from the same table are considered as a single node. If
any corresponding attributes/variables of two nodes are in the same tables/models,
an edge between the nodes is added in the graph, indicating their dependency. Sim-
ilar to the PGM-Join sampler, we isolate the skeleton (the join attributes) from the
non-skeleton of the MRF to simplify the graph and inference process. The cycles are
handled in the same way as the PGM-Join sampler.

The Model-Join framework also first generates the samples for the skeleton
then it adds the non-skeleton attributes into the samples. Notably, if the existence
of a non-join attribute in the MRF graph does not result in a cycle, we can also
consider it to be a part of the skeleton, since this will neither increase nor decrease
the complexity of MRF construction, inference, or sample production. Therefore,
we may consider the attributes A and B to be part of the skeleton in our running
example because they do not make any cycles in the MRF graph.

Assume that models M1, M2 and M3 have been learned on our running
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example tables D1,D2 and D3, respectively and the tables have been made unavail-
able (or deleted) for any reason. Figure 5.1 is the MRF tree for that join query. The
dependencies in the edges e1, e2 and e3 are obtained from the models M1, M2 and
M3 respectively. The factorized joint distribution of the MRF in Figure 5.1 can be
represented as below:

p(A,B,C,D) ∝M1(A,B)×M2(B,C)×M1(C,D) (5.1)

The goal is to join the models by using that MRF tree, and generate a
(uniform and independent) sample of the join result, "similar" to a uniform sample of
the join of the actual tables. This sample will enable LKD tasks over joins of absent
tables. The similarity between (a sample of) the actual join result and the uniform
sample generated by Model-Join strongly depends on the quality of the per-table
models which replace the tables. (Model-Join does not add any error).

Since we use models in the edges of model join MRFs, the inference and
sample generation for Model-Join framework is slightly different than for the PGM-
Join sampler (to be explained in the next section).

5.4 Inference and Sample Generation Phases

With an example, the differences between the inference and sample generation phases
of the Model-Join framework and the PGM-Join sampler are explained.

The first difference is that the edges (dependencies) in the Model-Join frame-
work are represented by pre-learned models. If a model for an edge is not available,
a model is trained by the framework. And this leads to the next distinction: the
sample generator becomes different than what we saw with the PGM-Join sampler.
All that has changed is that the models themselves, along with some supplemental
statistics, have been included in the sample generator, as opposed to the PGM-Join
sampler that simply a single conditional frequency table for each variable is added
to the sample generator.

Consider the query MRF shown in Figure 5.1. Given an elimination order
O = {D,C,B,A}, Model-Join will eliminate (sum out) the variables D,C,B and
A, respectively from p(A,B,C,D). A is the root according to O, and D is the first
variable to eliminate. ∑

D,C,B,A

M1(A,B)×M2(B,C)×M1(C,D) (5.2)
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Based on the distributive law, this can be represented as below.∑
C,B,A

M1(A,B)×M2(B,C)×
∑
D

M1(C,D) (5.3)

After summing out D, a new factor ϕ�D,C(C) is added:∑
B,A

M1(A,B)×
∑
C

M2(B,C)× ϕ�D,C(C) (5.4)

While eliminating D, a factor (M1(C,D)× 1) is added in the sample gener-
ator. Accordingly,M1(C,D) can be used to find the frequency of D given C, which
can then be multiplied by 1. Note that the model itself is added in the sample gen-
erator. Let’s call this (M1(C,D)×1) as Factor_D. Factor_D gives the frequency
of D values given C values over the sub-tree starting from C to the leaves (D), and
will be used to generate D in sample generation. As D does not have a child, we
multipliedM1(C,D) with 1.

Next, C is eliminated. This is done by calculating the product of all the
factors containing C then summing out C from the result. After eliminating C,
ϕ�C,B(B) is replaced as below.∑

A

∑
B

M1(A,B)× ϕ�C,B(B) (5.5)

In addition, a new factor Factor_C with (M2(B,C)×ϕ�D,C(C)) is added to
the sample generator. Factor_C gives the frequency of C given B over the sub-tree
rooted at B.

ϕ�B,A(A) shows the frequencies of A values over the join result. After elimi-
nation of B, a new factor Factor_B with (M1(A,B)× ϕ�C,B(B)) is added into the
sample generator. Factor_B gives the frequency of B values given A values over
the whole tree. What remains is ∑

A

ϕ�B,A(A) (5.6)

And after eliminating A, we will obtain the join size. The join size is exact if all
the models are exact. Since ϕ�B,A(A) (let’s call it Factor_A) is the factor for the
root, Model-Join adds this into the sample generator too as the starting point for
ancestral sampling.

The final sample generator is shown in Figure 5.2. The sampler will use
Factor_A, Factor_B, Factor_C and Factor_D to generate the samples forA,B,C
and D respectively in the reverse order of O. The sample generation phase is simi-
lar to that of the PGM-Join sampler, which employs ancestral sampling. However,
in this case, the sample generators comprise the models as well as the factors that
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Figure 5.2: The uniform-sample generator for the MRF in Fifure 5.1

should be multiplied while sampling. Moreover, this framework does not build the
cumulative distributions in the inference time because of using the models in the
sample generator.

Remarks:

• If a node xi in the MRF has more than one child, to eliminate xi, there will
be more than one factor coming from the children. The product of all factors
should be calculated first then xi is summed out (eliminated) as we explained
with the sum-product operation.

• Model-Join framework, similar to the PGM-Join sampler, executes VEA only
once to obtain a sample of the joint distribution, as opposed to the conventional
method of executing VEA twice to obtain the marginals for all variable pairs.

• If the models to be joined are exact, the Model-Join framework generates a
uniform sample of the exact joint distribution. The proof is identical to that
of the PGM-Join sampler.

5.5 Learning Per-Table models

The Model-Join framework can build its own models based on the raw data tables.
Model-Join does not need to learn the whole table, but just the dependencies among
the attributes which are involved in the model join query. Alternatively, one could
use a variety of models over relational data – for example, [Ma and Triantafillou,
2019; Ma et al., 2021; Hilprecht et al., 2020] if these are available. However all
such models may suffer from poor accuracy (in estimating conditional probabilities)
when dealing with attributes having a high number of distinct values (NDVs), as
shown in [Ma et al., 2021] or when dealing with non-ordinal categorical attributes.
On the other hand, building accurate models is very important in the model join
problem because the error (from each per-table model) accumulates when we are
to join several models. Thus, we need highly accurate models. Here we present
a proposal that addresses these problems. Assume an available table to be joined
with other models that has two attributes A and B; we need to learn p(A|B) or
p(B|A) depending on the elimination order. Our goal here is to address the two
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Figure 5.3: Learning models on existing tables

mentioned main challenges: high NDVs and categorical attributes. The key problem
with categorical attributes is that even if we use one-hot or binary encoding, we
cannot learn a high-quality model over categorical attributes. This is due to the fact
that the different values for categorical attributes have no meaningful relationship.
The challenge with greater NDVs is that for a given input value, the model may
have to predict a huge number of probabilities per distinct value, and learning then
becomes impractical when there are large number of distinct values.

To address the first challenge, we learn embeddings per distinct value. In
this way, distinct values of an attribute acquire similar embeddings, (positions in the
embedded space) if they are related to similar distinct values for the other attributes.
This tends to simplify the learning task and improve accuracy as relations between
distinct values in the dependent and independent attributes can now be detected
based on how close they are in the embedded space. To address the challenge of
great NDVs, after finding embeddings for distinct values, clustering is used on the
embeddings of the dependent attribute. After clustering the values for the dependent
attribute (based on their embeddings), sub-models are learned per cluster, then all
sub-models are used as a single model. We use Feed-Forward Neural Networks
(FNNs) per cluster. Clustering makes the model more accurate because it deals
with smaller learning spaces. Furthermore, it helps to achieve higher efficiency in
predicting the conditional probabilities because for a given distinct value of the
independent attribute, only a small number of the sub-models are used to predict
the probabilities of the distinct values in the dependent attribute. Moreover, this
clustering can be considered as a mechanism to guarantee higher accuracy. If the
accuracy of the model is low then we can increase it by employing more clusters.
It is not difficult to show that clustering can improve accuracy. We may easily
employ d clusters, where d is equal to the number of distinct values, to obtain a
model with 100% accuracy. This might take the form of a nested hash table, which
gives the exact probabilities for each distinct value in the dependent attribute that
is associated to the given distinct value in the independent attribute. The exact
probabilities are calculated by scanning tables once.

Figure 5.3 shows the main steps of learning models on the existing tables.
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5.5.1 The Three Steps of Learning Models

Embedding Learning: Our proposed models are conditional and also discrete in
nature (as join attributes are categorical). This calls to mind models used in NLP
tasks, operating on individual words (which are discrete values). So, the embeddings
we seek will be adapted from NLP models. Embeddings in NLP tasks yield a learned
representation of words, so that the words with the same meaning have the same
real-valued vector representation. These vector representations are critical in deep
learning because if the input of a Neural Network (NN) model does not have mean-
ingful distances between values, it cannot work well. Since finding good models on
join attributes is not simple, specially, when the join attributes are keys (i.e., high
NDVs), the embedding approach helps us to find more accurate models. There are
many embedding approaches; embeddings like Continuous Bag-of-Words (CBOW)
and Skip_Gram [Mikolov et al., 2013] have been highly successful for NLP tasks
because of the deep linguistic theory behind them (coined distributional hypothe-
sis). In this work we use Skip_Gram with negative sampling [Mikolov et al., 2013]
which is faster than the naive Skip_Gram. However, one can employ other kinds of
embedding learning methods. The comparison between different embedding learning
methods is left for future work.

Notably, the way we adapt these embeddings for our task is based on the
values contained in all attributes of interest. Each tuple is viewed as a word sentence
and the distinct values for each join attribute as the individual words. The difference
between this Skip-Gram and the vanilla Skip_Gram NN is that here the place of
words is important (much like in [Song et al., 2018] and [Ling et al., 2015]). Assume
a tuple with attributes (A,B,C,D) and the aim is to learn embeddings for A values.
The training data will include the pairs of values for (A,B), (A,C) and (A,D).
The window size is equal to the size of the tuple. After training the embeddings,
the embedding values (real-valued vector representations) are used instead of the
distinct values of A and help the final model to distinguish easily among different
conditions in the input of the models. This technique significantly increases overall
accuracy.

For more information about Skip_Gram refer to the background chapter.
Clustering: After the embedding learning is complete, a clustering method

is used to cluster the distinct values according to their embedding vectors. To cluster
the distinct values, any clustering technique may be employed; however, we employ
the well-known clustering algorithm K-means [MacQueen, 1967; Xu and Wunsch,
2005].

Clustering is only used on the dependent variable, and a sub-model is trained
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for each cluster. A dictionary is also created so that for any distinct value v in
the independent variable, it returns the clusters in which v exists. We do not need
to call all sub-models to predict the probability of the dependent variable if we
use this dictionary. Thus, for a given distinct value of the independent variable,
the probability of just a restricted group of distinct values is determined from the
associated sub-models. The probabilities are considered to be 0 for the remainder
of the distinct values in the dependent variable. This is how we treat all sub-models
as a single model. The model then substitutes the potential functions in the PGMs’
edges.

The clustering of embeddings can enhance accuracy. As our experiments
demonstrate, if the accuracy of the sub-models is low, the number of clusters can be
raised to improve accuracy. Clustering also guarantees a high level of accuracy. For
instance, suppose we use a separate sub-model for every possible combination of two
values, so that we always get perfect accuracy.

Feed-Forward NNs as Generative Models: The final component is
the NN models. For each cluster a feed-forward NN model is used to find the
probabilities for the distinct values of the dependent attribute given the distinct
values of the first independent attribute. In the recent literature, one can find
several such models, ranging from conditional generative adversarial models (GANs)
or auto-encoders (AEs) such as [Mao et al., 2016; Michelsanti and Tan, 2017; Kingma
and Welling, 2013]. However, as the NDVs increases, these models underperform.
Furthermore, the tuning and training tasks of GANs and AEs are time- and resource-
consuming. For these reasons, we turned our attention to simpler (to train, tune, and
evaluate) models like probabilistic classifiers, which we adapted to use as conditional-
discrete generative models. Here, we re-purpose simple feed-forward NNs, which have
been used for classification with high success. Figure 5.4 shows the architecture of
our feed-forward conditional-discrete generative NN models. Since join attributes
are categorical, the output of the models are also categorical. Then the problem
resembles multi-class classification. The input layer of the model are the embeddings
of the categorical values in the independent attribute. After hyper-parameter tuning,
we chose 5 hidden layers with the tanh activation function and a softmax at the end.
This softmax layer provides the probabilities per distinct value in the dependent
attribute. The loss function is Negative Log Likelihood (NLL). NLL estimates the
dissimilarity between the empirical distribution defined by training data and the
model distribution. NLL is defined as follows:

L = Ex∼P̂data
[log pmodel(x)] (5.7)
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Figure 5.4: Per Cluster Feed-Forward NN Model

When training, the task is like classification, but the usage of the models is slightly
different. In a classification task, given an input, the softmax at the last layer yields
the probabilities per output class. Then the argmax function is applied on probabil-
ities to find the winning class. Here, instead of using argmax, we sample using those
probabilities per class. Thus, for each given distinct value in the independent at-
tribute, this finds the probability for each distinct value in the dependent attribute.
Then one can generate (as many as needed) distinct values of the dependent at-
tribute.

5.6 Experimental Evaluation

Our experimentation addresses five key issues: (i) quantification of key overheads; (ii)
accuracy of the proposed per-table models; (iii) accuracy of the overall framework;
(iv) showing that the framework’s output sample is indeed a uniform sample of
the true join result ; and (v) exemplify high-quality downstream LKD tasks being
performed on the framework’s output.

Two sets of experiments are presented. One with very large tables to show
that table sizes do not affect the framework’s efficiency and only NDVs do. However,
when tables are too large (expensive to join), the ground truth to measure actual
errors cannot be calculated. So, in the 2nd set of experiments, smaller tables are
used so the join can be computed and errors be measured.

Metrics. All reported times (space) are in seconds (MBs). For the quality of
generated samples we use (i) the KS-test for sample uniformity and (ii) the F-score
for quantifying distances from uniform-random samples of the exact join.

Note that other join sampling methods cannot be used as the to-be-joined
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DB name table name NVDs in 1st Att. NVDs in 2nd Att. 1st_2nd Distincts Num. of records
SynthDB1 tbl0 100,000 100,000 100,000 149,895,600

tbl1 100,000 100000 500,000 749,967,400
tbl2 100,000 100000 1,000,000 1,499,818,300
tbl3 100,000 100000 2,500,000 3,747,965,800
tbl4 100,000 100000 5,000,000 7,499,960,400
tbl5 100,000 100000 7,500,000 11,244,111,000

SynthDB2 tbl0 10,000 5000 1,000,000 991,047,100
tbl1 50,000 5000 1,000,000 998,403,000
tbl2 100,000 5000 1,000,000 1,284,291,300
tbl3 5,000 10000 1,000,000 988,931,000
tbl4 5,000 50000 1,000,000 998,533,100
tbl5 5,000 100000 1,000,000 1,379,785,400
tbl6 10,000 10000 1,000,000 995,563,500
tbl7 50,000 50000 1,000,000 1,000,400,900

TPC_DS Store_sales customers=273,443 items=54,000 13,745,062 1,375,167,200
Store_returns stores=27 reasons=39 1053 136,278,000
Store_sales items=54,000 stores=183,284 1,452,252 1,375,193,700
Catalog_sales ship_mode=20 items=54,000 1,064,990 716,351,500

Table 5.1: Data characteristics

tables are absent.

5.6.1 Experimental Setup

System configuration. Model training uses a GPU GeForce RTX 2080 Ti, with 11
GB memory. Model joining uses a system with 64GB main memory and the E5-2660
CPU with 20, 2.60GHz cores.

Data and queries. In Table 5.1 we show statistics for the synthetic and
benchmark data. The first synthetic data SynthDB1 has a fixed NDVs, but variant
NDVs pairs (independent attribute, dependent attribute). The second synthetic data
SynthDB2 has variant NDVs in the attributes, and the number of distinct pairs (
independent attribute, dependent attribute) is variant. All of our synthetic tables
have 2 columns, and the values are generated randomly. We also generated data
from the TPC-DS benchmark [Nambiar and Poess, 2006] with a scaling factor 10
and then replicated the data 100 times.

In Table 5.1, the first and second attributes are independent and dependent
variables of the models. The table displays the number of distinct values in the
independent and dependent variables, as well as the number of distinct pair values
in both variables and the number of records in the tables.

Note that table sizes run in the billions of rows, which is a good reason for
replacing tables with learned models.

We analyze the performance of the following four join queries, which are
sufficient to reveal the key features:

Q1(SynthDB2): tbl2 ⋊⋉ tbl3 ⋊⋉ tbl0

Q2(SynthDB2): tbl0 ⋊⋉ tbl1 ⋊⋉ tbl2 ⋊⋉ tbl3 ⋊⋉ tbl4
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DB Table Clusters Hidden_nodes Max_epochs
SynthDB1 tbl0 (att0 → att1) 100 200 3

tbl1 (att0 → att1) 100 200 3
tbl2 (att0 → att1) 100 200 3
tbl3 (att0 → att1) 100 200 3
tbl4 (att0 → att1) 100 200 5
tbl5 (att0 → att1) 100 200 5

SynthDB2 tbl0 (att0 → att1) 50 200 3
tbl1 (att0 → att1) 50 200 3
tbl2 (att0 → att1) 50 200 3
tbl3 (att0 → att1) 50 200 3
tbl4 (att0 → att1) 50 200 3
tbl5 (att0 → att1) 50 200 3
tbl6 (att0 → att1) 50 200 3
tbl7 (att0 → att1) 50 200 3

TPC_DS Store_sales(customers→ items) 50 300 20
Store_sales(items→ store_id) 5 10 10
Catalog_sales(SM_id→ items) 20 30 10
Store_returns(store_id→ reason_id) 5 10 10

Table 5.2: Hyper-parameters for training the models

Q3(TPC-DS): Web_sales ⋊⋉cus Store_sales ⋊⋉items Store_returns
Q4(TPC-DS): Ship_mode ⋊⋉SM_id Web_sales ⋊⋉SM_id Catalog_sales ⋊⋉items

Store_sales ⋊⋉store_id Store_returns ⋊⋉reason_id Reasons

With synthetic data, we test the worst case when there are no meaningful
relationships between the independent and dependent attributes’ values, and we
examine our learning method when the distinct values of variables are selected ran-
domly (uniformly).

Reproducibility. Table 5.2 shows the hyperparameters for models per table
involved in the join queries. The third column shows the number of clusters, the
fourth shows the number of nodes per layer (in all cases we use 5 layers), and the last
shows the maximum epochs. AdamOptimizer is used for all models with learning rate
0.0005. Implementation used Python and Tensorflow. The code and documentation
can be found at: https://github.com/shanghoosh1/ModelJoin

5.6.2 Efficiency and Overheads

We first illustrate the results of learning per-table models. Then, given the models,
we evaluate Model-Join.

Learning the models consists of embeddings, clustering and training NNs.
Table 5.3 shows the learning time costs per table. Table 5.4 shows total storage
costs for everything needed to treat all sub-models as a single model. These run
from a few MBs to a few hundred MBs even for tables of size of 100s of GBs which
is one of the good reasons to forget the data.

Table 5.5 shows sample-generation times. The time cost in Table 5.5 varies
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DB name table name 1st Embedding 2nd Embedding Clustering Training Total
SynthDB1 tbl0 (att0 → att1) 385 336 74 1009 1804

tbl1 (att0 → att1) 801 763 186 1939 3689
tbl2 (att0 → att1) 1389 1185 177 3655 6406
tbl3 (att0 → att1) 1562 1211 257 8595 11625
tbl4 (att0 → att1) 1046 1069 345 27344 29804
tbl5 (att0 → att1) 1190 763 434 41462 43849

SynthDB2 tbl0 (att0 → att1) 415 614 20 1295 2344
tbl1 (att0 → att1) 621 606 22 1341 2590
tbl2 (att0 → att1) 809 826 30 1691 3356
tbl3 (att0 → att1) 500 512 21 1398 2431
tbl4 (att0 → att1) 608 607 61 2186 3462
tbl5 (att0 → att1) 812 853 193 4001 5859
tbl6 (att0 → att1) 596 437 22 1402 2457
tbl7 (att0 → att1) 616 622 57 2203 3498

TPC_DS Store_sales(customers → items) 834 793 354 24537 26518
Store_sales(items → store_id) 116 167 26 575 884
Catalog_sales(SM_id → items) 97 68 28 5754 5947
Store_returns(store_id → reason_id) 33 40 3 33 109

Table 5.3: Time cost in seconds

DB name table name Embedding Clustering Freq NN Total
SynthDB1 tbl0 (att0 → att1) 70 2 2 379 453

tbl1 (att0 → att1) 110 7 3 448 568
tbl2 (att0 → att1) 111 11 3 473 598
tbl3 (att0 → att1) 114 23 3 473 613
tbl4 (att0 → att1) 116 40 3 473 632
tbl5 (att0 → att1) 117 53 3 473 646

SynthDB2 tbl0 (att0 → att1) 9 4 0.2 120 133.2
tbl1 (att0 → att1) 31 9 0.7 120 160.7
tbl2 (att0 → att1) 59 12 1 120 192
tbl3 (att0 → att1) 9 2 0.2 133 144.2
tbl4 (att0 → att1) 31 2 0.7 234 267.7
tbl5 (att0 → att1) 59 2 1 361 423
tbl6 (att0 → att1) 11 4 0.2 135 150.2
tbl7 (att0 → att1) 56 9 1 234 300

TPC_DS Store_sales(customers → items) 186 78 2 430 696
Store_sales(items → store_id) 30 3.6 0.7 0.5 34.8
Catalog_sales(SM_id → items) 6.3 0.005 0.7 24 31
Store_returns(store_id → reason_id) 0.008 0.002 0.85 0.5 1.36

Table 5.4: Storage cost in MBs

Query Inference Sampling Total
Q1 45 799 844
Q2 157 1032 1189
Q3 4060 2646 6706
Q4 35 3492 3527

Table 5.5: Time-cost for generating a uniform 100k sample
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from ca. 14 minutes to ca. 112 minutes to generate a sample with 100k rows. As
each sample data point is generated independently from others, sample generation
is embarrassingly parallelizable, so times will be decreased by N with N cores.

5.6.3 Quality of Models and Join Sample

The major purpose is to demonstrate that, despite the fact that the per-table models
have some errors, the generated samples are nonetheless uniform. Hence, we do not
compare our learning approach to other options (which will be considered as future
work.) First, we demonstrate the accuracy of the models, and then, utilizing those
models in the Model-Join framework, we demonstrate the uniformity of the generated
samples using the KS-test. The KS-test is given the actual join result and the sample
generated by the framework, just like our uniformity evaluation in Chapter 3.

Per-table Model Accuracy.

Table 5.6 shows the accuracy of per-table models. Note that F-score is already very
high. This is one of the reasons why tables can be "absent" safely, and we will not
lose much by forgetting the data. Note: in these experiments we purposely do not
allow models to be ’too’ accurate (keeping the number of the clusters low) because
we wish to see exactly the effect of errors in the samples. Recall, we proved if the
models are 100 percent accurate, the samples will be an exact uniform sample of the
join result since the Model-Join does not introduce any additional error. This has
been shown in with the PGM-Join sampler where all the potentials are exact.

KS-test of Generated Samples

The null hypothesis is that the sample is a uniform sample of the join result.
Figure 5.5 shows the actual CDFs, the CDFs of our generated samples and

the boundaries of KS-test that come from the critical values on TPC-DS queries. If
our approximate CDF line goes outside the boundaries, it means the null hypothesis
is rejected. The pattern for all queries is the same.

For Q1 and Q2, we made small tables from SynthDB2 with 20k samples,
then built models from the independent attribute to the dependent attribute in the
tables. The exact join result sizes are 162,271 and 11,840 tuples respectively for Q1
and Q2. We generate samples with sizes 20k and 2k for Q1 and Q2, respectively.
The critical values become 0.012 and 0.039. The KS-statistics for Q1, Q2 are 0.0029,
0.011. Thus the null hypothesis (easily) holds and the sample is declared uniform.
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DB name table name F-score Intervals
SynthDB1 tbl0 (att0 → att1) 0.984 0.009

tbl1 (att0 → att1) 0.9926 0.005
tbl2 (att0 → att1) 0.9929 0.005
tbl3 (att0 → att1) 0.9823 0.008
tbl4 (att0 → att1) 0.948 0.013
tbl5 (att0 → att1) 0.93 0.02

SynthDB2 tbl0 (att0 → att1) 0.944 0.014
tbl1 (att0 → att1) 0.968 0.01
tbl2 (att0 → att1) 0.973 0.009
tbl3 (att0 → att1) 0.922 0.16
tbl4 (att0 → att1) 0.918 0.017
tbl5 (att0 → att1) 0.93 0.015
tbl6 (att0 → att1) 0.932 0.015
tbl7 (att0 → att1) 0.955 0.13

TPC_DS Store_sales(customers→ tems)s 0.941 0.014
Store_sales(items→ store_id) 0.91 0.01
Catalog_sales(SM_id→ items) 0.986 0.007
Store_returns(store_id → reason_id) 0.99 0.005

Table 5.6: F-score and Confidence intervals with α = 95%

Figure 5.5: CDFs comparison, KS-test
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Figure 5.6: F-score vs. Number of Distinct Pairs

For Q3 and Q4, again, we create smaller tables. For Q3 (Q4) we take 100k (5k)
of the data points in the involved tables. Next, we build our models over them.
The sizes of the exact join results of the small tables for Q3 and Q4 in the skeleton
are 84,279 and 28,407,118. For Q3 and Q4, Model-Join generates 50k and 100k,
respectively. The KS critical values for these sample sizes are 0.0091 and 0.0051
respectively for Q3 and Q4 with α = 0.01. The KS-statistic values are 0.0032 and
0.0048, respectively. These results imply that the null hypothesis (of the generated
sample being uniform) is not rejected for both of them.

5.6.4 Impact of Numbers of Clusters

Here, we use SynthDB1 tables. The relation between the pair of attribute values
here is random to stress-test the models and highlight the clustering benefits. Figure
5.6 shows F-scores on the 6 SynthDB2 tables (with 50 clusters). Each x-axis point
refers to the number of distinct pairs (NDPs) in one of the 6 tables. The F-score
worsens when increasing NDPs.

Figure 5.7 shows the positive effect on F-score when using more clusters with
model of tbl2 in synthDB1. Thus, when NDPs and NDVs in the independent and
dependent attributes increase and accuracy worsens, more clusters can improve the
F-score. Increasing the number of clusters increases the number of models per table,
but the size of each model per cluster becomes smaller. Nonetheless, clustering helps
us have accurate models. If more clusters are used, the smaller the cluster sizes will
be, the higher the accuracy will be. Thus, we can use this knob to achieve high
accuracy. In theory, the number of clusters could be equal to the number of distinct
independent-dependent attributes’ pairs. Then, accuracy always will be perfect, but
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Figure 5.7: Effect of increasing the number of clusters

with a much higher cost.

5.6.5 Downstream LKD Over the Model Join Samples

We exemplify the usefulness of Model-Join for downstream LKD tasks. Works in
data analytics and management have already shown that uniform samples can be
used to train accurate LKD models [Hilprecht et al., 2020; Ma and Triantafillou,
2019; Ma et al., 2021; Yang and al, 2020]. Here we add to this by exemplifying that
the uniform sample generated by Model-Join can be used for classification tasks. We
show results using the join result of Q4 for a binary classification task. The labels
are the store-id (1 or 2) and the independent variables are all the other attributes
in the result. The popular XGBClassifier from XGBoost library is used to learn the
classification models with the same hyperparameter tuning.

First, we take the exact join result of Q4 (which is 7m rows) and split it
into training (80%) and testing (20%) parts, randomly. Note, this testing set is
used to test all three scenarios below: (1) We train XGBClassifier with the training
set (producing Mmain). (2) We create a 10k-sample from the training set (i.e., the
80% of the true join result) and train XGBClassifier on it (producingMsample). (3)
we train XGBClassifier over the approximate 10k-sample produced by Model-Join
(producingMModelJoin).

The F-scores forMmain,Msample andMModelJoin are 64.33, 62.89 and 62.71,
respectively. This shows two facts: i) The F-scores forMsample andMModelJoin are
close to Mmain which shows that using uniform samples from large tables instead
of the raw tables for training is a good choice. In other words, the error due to
sampling is small. ii) Msample and MModelJoin have very similar F-scores. This
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shows that Model-Join can indeed enable high-quality downstream LKD tasks over
absent tables, despite creating a sample of an approximated join result.

5.7 Open Challenges

Model joining presents a new suit of key open challenges. Below is a list of open chal-
lenges, and in the next section, we will elaborate on them and propose preliminary
solutions for some of them.

• How can Model-Join generate other kinds of samples such as weighted samples?

• How can one predict the error of the generated samples for given to-be-joined
models as the per-table models’ errors propagate down the chain and accumulate?

• How does the error of the samples impact the downstream analytics tasks?

• When Model-Join operates with different types of per-table models, how will dif-
ferent kinds of models behave when integrated with the Model-Join framework?
And how does our model learning method compares to other methods?

• How might the inference time and sampling time and quality be improved?

• How can Model-Join be utilized to improve performance for (analytics over) dis-
tributed joins in which the models are shared as opposed to the data?

• Applying the Model-Join framework as a federated learning approach for scenarios
in which the data in several clients are conditionally independent.

• To handle cyclic queries, one can utilize rejection sampling or hyper-tree decom-
position like junction tree creation (to convert the cyclic graph to an acyclic one).
Which one is superior?

• What other applications exist for the PGM of a join query?

• The KS-test reveals if the sample is uniform or not, but does not quantify the
sample’s deviation from uniformity. Are other measures for gauging uniformity
better suited?

5.8 Summary

We studied an emerging problem in modern ML-driven databases in which ML mod-
els substitute the tables for analytics. We discussed and evaluated new solutions to
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the model join problem and pointed out the key issues to be addressed at the levels of
integrating the per-table ML models (using the principles of PGMs) and addressing
the key challenges for deriving efficient per-table models (namely, high NDVs and
categorical attributes, using embeddings, clustering, and feed-forward NNs). To our
knowledge, Model-Join is the only existing solution for the model join problem. The
experimental results showed the high quality of the generated samples. We hope this
work will motivate a new line of research in ML for databases.
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Chapter 6

Conclusion and Future Work

The main goal of this thesis is to study how ML and statistical models might assist
data management systems in more successfully carrying out their tasks, specifically
in dealing with the often costly process of joining normalized tables.

Joins are considered as ever-present and expensive operations in relational
databases. When the tables and the join size are large, especially when they involve
several tables with many-to-many relationships, a number of difficulties arise: the
processing time for the join increases, the space becomes difficult to manage and
support, and the costs in the cloud skyrocket. Apart from these, this thesis also
defines and investigates a new challenge associated with the join operation. When
the tables are too huge or include sensitive information (private data), models are
typically constructed over the massive tables, and only the models are made accessi-
ble to others. Therefore, it is impossible to perform analytics on joins because there
is no solution for joining models.

To address these challenges, we presented multiple solutions in various con-
texts based on a single core idea: Learn the distribution of the join result. The key
insight is that everything becomes simple if we know what is the distribution of the
join result. Because of the joint distribution, we may quickly and simply generate
uniform samples, enumerate join tuples, and solve the model join problem.

This thesis demonstrated a method for learning the joint distribution of a
join query without having to generate the join result itself. It was clarified how
factorization in PGMs is related to normalization in relational databases. We showed
that a PGM can be easily derived for join queries in relational databases, as the non-
join attributes from the different tables are independent of each other when the join
attributes are observed. This brings to mind the conditional independence that can
be found in PGMs. Thus, we attempted to train PGMs for join queries and modified
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PGM’s efficient, principled, and easy-to-understand algorithms to address a variety
of problems.

We identified three categories of join problems where PGMs could be useful
in cutting costs: (1) join sampling problem, (2) physical join algorithm problem, and
(3) model join problem.

6.1 Sampling Without Generating the Join Result

Uniform sampling over joins without generating the join result is a promising solu-
tion to deal with both the time and space costs of the joins. In this thesis, the join
sampling problem was adopted to PGMs for the first time and the algorithms were
tweaked to efficiently generate uniform and independent samples of join results. The
learned PGMs are exact, so the drawn samples come from the exact joint distribu-
tions. We also proved that the generated samples are uniform, and by using the
KS-test we showed experimentally that our proof is indeed true. Moreover, a way of
dealing with cyclic join sampling was introduced and tested.

Lots of experiments with benchmarks and real databases (TPCH, Twitter,
and JOB) were carried out, and the results showed that the table sizes do not affect
our sampling method because of the repetitions in the data, but they do affect other
competitors. The performance of our method improves as the size of tables and the
number of repetitions in tables increase. This is an important achievement regarding
our core idea of learning the joint distribution of a join query. The improvement seen
in the experiments was up to 28X faster than other competitors.

6.2 A new PJA with Summarization/Desummarization
Technique

Sampling is not always sufficient; even when the join size is too large, it is occasionally
necessary to generate and store/retrieve the full join result. This is especially true
when we require the exact answers to the queries. Or when the results of one query
are entered into another.

In this thesis, we presented a mapping from the physical n-way equi-join prob-
lem to PGMs, allowing us to create the join result efficiently and columnarly. Instead
of constructing indexes and utilizing binary-join algorithms or WOJAs over raw data
tables, our new PJA (named GJ) first produces a (PGM-based) join summary, then
optionally stores it to disk and retrieves it from disk when requested to (re)produce
the join result, and lastly desummarizes it. The summary is a kind of RLE over
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join, and for the first time, we showed how to generate it without generating the join
result.

We also provided a complexity analysis of GJ, showing that GJ is a worst-case
optimal join algorithm.

Experiments with JOB, TPCH and lastFM data and queries showed GJ to
be faster than PSQL up to 64X, more than 388X faster than MonetDB, and up to
6X faster than Umbra. GJ shines when large join results are to be stored on disk and
reused (up to 820X faster than PSQL, up to 717X faster than MonetDB, up to 165X
faster than Umbra and 94X faster than Umbra-CSV). GJ uses less storage than all
competitors, up to 21,488X better than PSQL, up to 38,333X better than MonetDB,
up to 78,750X better than Umbra and 54,666X better than Umbra-CSV. Because
of this, GJ can actually produce the join result even in cases of very large join
results where currently RDBMS join plans and WOJAs fail. We also compared GJ
and FDB and showed that GJ’s factorized joint distribution is better than FDB’s
factorized join result as the scaling factor of the data goes up. Additionally, we
demonstrated that enumeration with FDB can be less efficient than columnar tuple
generation with GJ.

6.3 A New Framework for Joining Models Rather Than
Tables

Throughout our investigation, we uncovered a novel problem facing today’s ML-
driven, relational databases. While we may not always have access to the underlying
tables, we may be able to employ models built on top of the tables. In this thesis, we
defined a novel problem that we refer to as the model join problem; in this scenario,
ML models are joined rather than tables, and our PGM-based method is suggested
to do this.

We also looked into two fundamental problems with learning models over
tabular data (the large number of different values and categorical attributes) and
came up with solutions to solve them.

At the end, a list of open challenges to be addressed en route of model join
problem was provided (please see Section 5.7).
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6.4 Future Work

Throughout the research for this thesis, we have uncovered and recognized a number
of interesting opportunities for future work to improve and promote the utilization
of PGMs in relational databases.

For the inference phase of the PGM-Join sampler, Model-Join sampler, and
the GJ algorithm, approximation ideas could be applied. This may aid in improving
the performance of the inference phase, as well as the sample and summary gen-
eration phases. If the inference is approximate, the resulting joint distribution is
approximate, and consequently, the generated samples and summaries become ap-
proximate as well. For example, potential functions could be generated by scanning
samples of tables rather than whole tables. Or, approximate inference algorithms
from the PGMs’ world could be used.

As another opportunity, the distributed version of the three proposed meth-
ods also appears interesting for future investigation. This is particularly promising
for the GJ algorithm.

As previously stated, various open challenges remain to be investigated in
relation to the model join problem (please see Section 5.7). Here, we discuss a few
of them and suggest potential solutions.

Beyond Uniform Sampling: How can Model-Join generate other kinds of
samples over joins such as weighted sampling [Shekelyan et al., 2022] or stratified
sampling [Kandula et al., 2016]? Below, we sketch an alternative for these sample
types. Stratified sampling involves taking samples for each stratum independently.
Within each stratum, simple random sampling is used. Typically, the stratum in a
database is defined by group-by attributes. Thus, to construct a stratified sample
based on the strata of the group-by attributes, all that is required is to generate uni-
form samples per group. Our adaptation approach is to keep the group by attributes
as the MRF’s root. The VEA is the same, and by using the same VEA, we eliminate
all nodes except the root attributes. At sampling time, samples are generated for
each entry in the root. Take note that in uniform sampling, root entries are selected
at random based on their frequencies and the join size, but in stratified sampling,
samples are generated independently for each group. Uniform samples should be
generated for all group entries. For weighted sampling, the procedure is the same.
The attributes that specify the weights should be retained as the MRF’s root. All of
the remaining nodes in the MRF are eliminated using the same VEA. The weights
per entry in the root are calculated by combining the factors received by the root
from its children and the weights obtained from users. Then, during sampling time,
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the entries for the root are chosen based on their new weights, and the values for all
other nodes are added in the same way as the uniform sampling.

Aggregation Calculation without Generating Samples: How can ag-
gregations be calculated without generating the samples? Aggregations such as Sum,
Average, Count, can be calculated over joins while performing the variable elimina-
tion algorithm. In doing so, there is no need to build the sample generator anymore.
One solution could be to keep the attributes that the aggregations are on as the root
of the MRF and then eliminate all the other nodes with VEA. Methods like FDB
[Olteanu and Schleich, 2016] and [Abo Khamis et al., 2016] are some good examples
of calculating the aggregations over factorized data. In our case, those methods
can be used on our factorized models. Furthermore, if we want to calculate many
aggregations over the join of the models with different attributes, we can construct
samples and calculate all aggregations over the sample.

Efficiency Improvements: Future improvements in performance are war-
ranted. One option is to adapt approximate inference algorithms at the PGM level
[Murphy et al., 2013]. Another option is to exclude some of the distinct values when
building the per-table models or when using the models in inference. In this case,
the inference and sample generation will be faster because the number of times the
per-table models will be called will be decreased. Nonetheless, both of the above
techniques raise key issues, with respect to trade-offs between the quality of samples
for downstream tasks and efficiency, which deserve attention.

Federated Learning: Federated learning has received increased attention
in recent years as a new collaborative learning paradigm [McMahan et al., 2017;
Yang et al., 2019], and the limitations of federated learning from non-i.i.d data have
been identified, particularly for supervised learning tasks [Li et al., 2022; Zhao et al.,
2018a; Li and et al., 2020; Xie et al., 2019; Yu et al., 2020]. Using Model-Join as a
federated learning strategy for scenarios where data across several clients is (fully)
conditionally independent appears to be an appealing idea. In fact, one appealing
goal will be to learn a general AQP model from the AQP models provided by clients.

We hope this Model-Join work will motivate a new line of research in ML for
databases.
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