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3.8 Parameter sweep for the CE model, confer with figure 3.4. Order (ϕ),
opacity (Θ), and convex hull number density (ρC) using the path en-
tropy method (SCE) across a broad range of model parameters. Here
note ρC is plotted on a log10 scale. We find across this parameter
set average order ∼ 0.95 (SD ∼ 0.03) with a minimum and max-
imum values of 0.86, 0.99 respectively. Lower orders are driven by
fragmentations of the main group. Each data point corresponds to 3

simulations which were run for T = 1000 time steps, statistics were
calculated over time steps T = 500 to T = 1000. . . . . . . . . . . . 68

3.9 Order (first column), largest cluster size (second column), and largest
cluster order (third column) for ∆θ = 15◦, 25◦, 30◦ (across rows) for
groups with τ = 5, N = 50, ns = 40. Each group was simulated
for 5000 time steps with colour as the mean across three replicates,
normalised according to the colour bar. Each statistic, ϕ, C, and ϕC

are defined in the range [0, 1]. We find two regions of high order
and high cohesion and low order but still high cohesion. These are
indicative of highly ordered cohesive groups with persistent directed
motion (the former) and a swarming phenotype (the latter). The
swarming phenotype is more stable across parameter space (v0,∆v)
at increased ∆θ ≈ 30◦. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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τ = 5, ∆θ = 30◦, ∆v = 0.75, and v0 = 1. We see coexistence
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∆θ = 30◦ but with a different actions space, two speeds vt = 1 or
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4.1 Schematic representation of the occlusion problem as overlapping vi-
sual projections, from the perspective of the blue agent (b). The
diagram on the left represent agent position and the diagram on the
right the resultant visual state. Note the overlaps between the visual
projection of the orange (o) and green (g) agents. . . . . . . . . . . . 76

4.2 Sketch of the occlusion algorithm as applied to the situation in figure
4.1. (a) projection intervals are sorted by distance from the agent
calculating the visual state. (b) overlaps are identified, i.e. by the
dashed line covering the overlap between the orange and green inter-
vals (c) for each overlap the furthest interval is contracted to remove
the overlap, indicated by the faded region on the green interval. . . . 77

4.3 Parameter sweep for SCE using four occlusion thresholds, (a,b,c,d)
O = O∗ (no occlusion), 0.0, 0.5, 0.95 respectively. This data suggests
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(2) the standard set and systems with higher τ = 5, 6, 7 appear largely
unchanged (3) the model appears less robust to changes in ∆θ,∆v and
the presence of orientational noise post decision, but this decreases
with O increasing (4) density appears to have decreased slightly on
average, but with significant variation. (5) opacity appears reduced
on average but with significant variation. . . . . . . . . . . . . . . . 81

4.4 Varying occlusion threshold has decreasing effect for future time hori-
zons τ ≳ 4, except in larger groups N ≳ 500. Figures (a-c) show
the order parameter, equation 3.16 resulting from simulations with
τ = 2, 4, 6 futures respectively. Figures (a-c) insets show the time
averaged size of the largest cluster as a fraction of N , a low value
(approaching 1/N) indicates mass fragmentation which is usually as-
sociated with low order, a value of 1 indicates total cohesion. Error
bars represent the standard deviation of 3 simulations, where agents
are positioned uniformly at random in a box of side length L with
initial number density is N/L2 = 0.005, and orientations are drawn
from a normal distribution with mean 0 and standard deviation of
∆θ◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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4.5 (a) Fine structure in the effect of occlusion for τ = 6. Error bars
represent the standard deviation of 3 simulations, where agents are
positioned uniformly at random in a box of side length L with initial
number density is N/L2 = 0.005, and orientations are drawn from
a normal distribution with mean 0 and standard deviation of ∆θ◦.
(b) Long time (10, 000 times steps) simulations for N = 500, τ = 6,
individuals for varying occlusion thresholds, error bands indicate one
standard error on the mean of 4 simulations. The increased order ϕ
is maintained at least up to t = 10, 000, although all series continue
to lose some order across time. Compare also with the inset of figure
3.5 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Figures (a-c) show the morphology parameter (equation 3.20)log10
scale, the ratio of eigenvalues in equation 3.19, for the τ values 2, 4, 6

respectively. Left to right on the x axis represents an increasingly
strong occlusion threshold (from no occlusion). Figures (a-c) insets
represent the opacity Θ defined as the ratio of active sensors to inac-
tive sensors. Error bars represent the averaging over 3 simulations,
where agents are positioned uniformly at random in a box of side
length L such that the initial number density is N/L2 = 0.005, and
orientations are drawn from a normal distribution with mean 0 and
standard deviation of ∆θ◦. . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Density of the entire group ρ and of the largest cluster ρC∗ for τ = 4

(a,c) and τ = 6 (b,d). Error bars are the standard error on the mean
for three repeats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Snapshots for various parameters and group sizes showing the varied
morphology we observe. (a) An N = 50 group with τ = 4 futures
and no occlusion. (b) A group of N = 1000 agents with τ = 6 and
an occlusion threshold of 0.95 (c) N = 100 agents with an occlu-
sion threshold of 0.5 and including states past future collisions (d)
N = 1000 agents with τ = 6 but occlusion off (e) N = 1000 agents
with τ = 6, occlusion 0.95 and enumeration past collisions in the fu-
ture states tree (collisions off) (f) N = 50 and a occlusion threshold
of 0.95. Note also the small fragmentation in (c) at approximate co-
ordinates (x = 9000, y = 1800). The arrow in (c) denotes the average
heading direction of the group (by eye), observe the stretching in (d)
is along the direction of travel (although this sometimes fluctuates in
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4.9 Order and largest cluster size for different groups sizes with τ = 6 for
(a) collision branch cuts on the FST (b) no collision branch cuts on
the FST. Data for the largest cluster sizes. Error bars indicate one
standard error on the mean computed over 5 replicates for time steps
500 to 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 Effect of post-decision orientational noise on global order ϕ, largest
cluster size C (inset) for N = 50, 100, 250 group sizes (a,b,c.i) and τ

values 2, 4, 6. In each case a rotational additive noise term is applied
directly to the output of the FSM decision process sampled from a
normal distribution with variance η2, statistics are calculated after a
burn-in of 500 time steps up to time step 1000. τ = 2 is generally not
enough for ordered motion to arise, with τ = 4, 6 we see a transition
from high order ϕ ∼ 0.98 to disorder ϕ ∼ 1/

√
N (dashed line) with

a slightly more robust ordered phase with τ = 6 compared to τ = 4.
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Abstract

Active matter is an expanding field of physics covering a diverse range of

complex and beautiful phenomena. From examples we see in our everyday lives,

such as the flight of birds and organisation of insects, to more esoteric bacteria and

other micro-scale biological systems. What we can learn about the physical rules

that pin these diverse systems together is important not just for our understanding

of physics but our ability to utilise the natural world around us. The core of our

understanding of Active matter spans between out-of-equilibrium analogues of well-

known thermodynamics to the realm of complex intelligent decision-making. From

a top-down view point, we observe phenomena such as aggregation, ordered motion,

dynamic pattern formation, leader-follower relationships, long range interactions,

collisions avoidance, and coordinated motion to name a few, and model these directly

within a mathematical formalism. From a bottom-up perspective we attempt to

explain the generation of these phenomena from intrinsic process driving individual

agents. In this thesis we consider a data-driven analysis of collective motion in an

insect system, a top-down approach, as well as developing a model of individual

decision making based upon future path entropy, a bottom-up approach. The latter

results in the spontaneous emergence of some basic features of collective motion seen

in real world examples, lending explanatory power.
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Chapter 1

Introduction

1.1 Active Matter

The term Active Matter (AM) refers to physical systems that (1) consume energy
and dissipate this energy in order to move and (2) do this at the level of the indi-
vidual constituents of the system [1]. Examples include groups of animals, insects,
or bacteria which we encounter regularly in our everyday lives. As a Physicist AM
is a fundamentally out-of-equilibrium theory of systems, and particularly their con-
stituent objects, that are driven not solely from an external field but are intrinsically
driven by energy in- and out-flow of their constituents.

The constituents themselves are variously termed as Self-Propelled Particles
(SPPs) or Active Particles (APs) or by reference to some specific model of AM
such as Active Brownian Particles (ABPs), or by the details and context of their
movement as in Micro-Swimmers. Examples in these categories span many length
scales from microscopic (µm to nm) to macroscopic (mm to m), and are found both
in nature as well as in man-made form.

1.1.1 Experimental and Real World Examples

The requirement for individual constituents to consume energy and move is a very
general statement about AM, covering a diverse range of naturally occurring and
man-made examples. Each case usually involves a particular method of self-propulsion,
often inextricably linked to particular environmental conditions, which introduce
case-by-case idiosyncratic phenomenology to model and explain. Nevertheless the
commonalities across these diverse systems often lend to general descriptions or at
least common approaches to theoretical modelling.

Arguably interest began in natural systems at the macro-scale; one does not
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Figure 1.1: Four macroscopic examples of Active Matter (a) a group of Barracuda
fish, Rob Hughes, cc-by-sa-2.0 (b) a man-made swarm of “Kilobots” capable of
group communication and individual programming [2], cc by-sa 4.0 (c) a Honey Bee
swarm cc by 3.0 (d) a swarm of Starlings and predator, cc by-sa 4.0. Each image
was sourced from Wiki-media Commons.

need to be a scientist to marvel at the complex collective dynamics exhibited by
birds, fish, insects, and of course humans. The beginnings of the scientific litera-
ture are often prescribed to Reynolds [3] who modelled swarms of birds or fish by
coining his eponymous rules: (1) Avoid collisions (2) Match velocity (3) Remain
cohesive. Soon followed by interest in the Statistical Mechanics literature by Vicsek
et al [4]. Experimentally speaking, for birds, perhaps the archetypal example are
Starling flocks, which have given rise to understanding of scale free correlations [5],
information transfer among members of flocks [6], and complex pattern formation
[7]. Other birds also exhibit similar behaviours, for example hierarchical motion in
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carrier pigeon flocks [8], and for grounded birds the structure of and appearance of
travelling waves in Emperor penguin huddles [9]. Human behaviour and movement
also occupy a place in AM research in particular the study of pedestrian dynamics
[10, 11], leading to applications in pedestrian tracking and the understanding of
human crowd movement. Fish and insects comprise particularly useful examples in
experimental terms, compared with birds, due to the quasi-two dimensional nature
a top-down camera perspective can bring, for example Whirligig Beetles [12, 13],
and fish schools [14, 15] in shallow water tanks. At the microscale studied natu-
ral examples include Escherichia coli [16] and spermatozoa [17, 18], among many
others. Understanding and manipulation of the properties of both systems have
important potential for health applications e.g. fertility for Spermatozoa.

Motivated by such real-world examples there are now several human fabri-
cated examples at the microscale and macro-scales such as “Janus particles”, which
exploit their two-faced nature to cause self propulsion by e.g. light stimulation of one
face [19] or [20] by chemical reaction on one face, heating of one face via laser stim-
ulation [21], and external electric field acting on one face [22]. Other mechanisms
include external forcing via magnetic field [23], local charge symmetry breaking
[24], and flow (Marangoni) across droplet-fluid interfaces due to droplets containing
Bromine [25], to name a few [26]. Experiments at the macro-scale are commonly
conducted using a “shaker” which rapidly vibrates a plate containing specially fab-
ricated particles, which have lead to realisation of active Brownian particles with
and without significant inertial effects [27, 28, 29, 30, 31, 32]. Alternatively particles
are driven locally e.g. by vibration motors [33] which have even been designed for
programmable control of individuals and communication between individuals [2].

1.1.2 Theoretical Approaches

The expansion of real world data on microorganisms, synthetic micro-swimmers,
bird motion, and human motion etcetera, have supplied ample stimulation for the
construction of phenomenological models of these particular examples and AM in
general. The lack of open access peer-reviewed data repositories in the field is
noteworthy, with a culture of data being made available on request to authors of in-
dividual studies. Notable exceptions do exist however, such as the work of Davidson
et al. [34].
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Reynolds, Vicsek, and Couzin

Initially, as mentioned above, Reynolds [3] and Vicsek et al. [4] developed theoret-
ical approaches based upon individual agent equations of motion via agent-based
approaches. Reynolds’ work proposed a framework for realistic simulation of large
groups of autonomous agents, aimed at computer graphics, whilst Vicsek et al de-
veloped these ideas into a simple dynamical system, given by equations 1.1 and
1.2.

dxi(t)

dt
= v0

[
cos θi(t)

sin θi(t)

]
, (1.1)

θi(t) = ⟨θj(t)⟩j∈Ni(t) + ηi(t). (1.2)

There are i ∈ 1, 2, . . . , N circular agents of radius r in two dimensions with positions
xi(t) and orientations θi(t) at time t. The model implements Reynolds’ velocity
matching rule by performing orientational averaging over the neighbour set Ni(t) =

{j : ||xi(t)−xj(t)||2 < rc}. Where rc defines a distance based cutoff point at which
velocity averaging stops. ηi(t) is a uniform noise term with zero time or inter-agent
correlations, taking values in [−η/2, η/2] for a noise strength η. Thus, the model
describes individuals with a finite interaction radius, rc, that move in such a way to
take the average orientation of their neighbours within this interaction radius, while
a controllable noise disrupts this process. The averaging process itself should be
understood as the value of arctan (⟨sin θi(t)⟩/⟨cos θi(t)⟩) taken over the neighbour
set Ni(t) which includes i itself.

The interest in this model stems from the transition from order to disorder
with increasing noise, η. Order here was defined by the order parameter

ϕ(t) =
1

Nv0

∣∣∣∣∣∣∣∣ N∑
i=0

vi(t)

∣∣∣∣∣∣∣∣
2

, (1.3)

where v0(t) is the average agent speed, and vi(t) is agent i’s velocity at time t.
ϕ(t) shows a transition, in a non-equilibrium system, remarkably like those seen in
equilibrium systems close to phase boundaries, when N is large.

The key contribution was a dynamical analogue of familiar physics of fer-
romagnetic alignment; an out of equilibrium system analogous to an equilibrium
process. Instead of static ferromagnetic alignment of magnetic spins, as found in the
Ising or XY models [35], alignment of velocity occurs between self moving individual
particles. Further this phase transition, in ⟨ϕ⟩, was found also to be dependent on
density N/L2 (for system length L) in direct analogy to continuous phase transitions
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in classic equilibrium models.
This Vicsek model uncovered interesting physics directly from a system solely

employing Reynolds’ 2nd rule, velocity alignment, by adding a Stochastic variable.
Couzin et al probed further the collision avoidance and cohesion rules, proposed by
Reynolds, by defining a model using three spherical interaction zone: (with a blind
angle): zr a zone of repulsion, zo a zone of alignment, za a zone of attraction. Each
zone was a sphere/circle centred at an agents’ position xi(t) with radii rr, ro, and
ra respectively, with zo and za also given the possibility of a “blind angle” behind
the agent. The dynamics are that each individual selects a self-propulsion direction
based on the populations of agents within these regions,

dr(t) = −
nr∑
j ̸=i
x̂ij , (1.4)

do(t) =

no∑
j=1

v̂j , (1.5)

da(t) =

na∑
j ̸=i
x̂ij . (1.6)

The values of xij = xj −xi indicate relative position vectors from agent i to j, with
hats denoting unit vectors. The summations should be understood as over the sets
of agents: {j ̸= i ∈ 1, 2, . . . , N : |xij | < rr} which has size nr, {j ∈ 1, 2, . . . , N :

rr ≤ |xij | < ro} with size no, and finally {j ∈ 1, 2, . . . , N : ro ≤ |xij | ≤ ra}
with size na with |x| the Euclidean norm of the vector x. The model priori-
tised collision avoidance by stipulating an agent’s velocity in the next time step,
vi(t +∆t) = dr(t) whenever nr > 0. Otherwise, given na > 0 and/or no > 0 then
vi(t+∆t) = 1

2(do(t)+da(t)). For the case of no agents within the interaction zones,
an the focal agent continues ballistically. By analysing the dynamics which emerges
from simulations under these rules, Couzin et al. [36] found four main phenotypes
by varying the model parameters: (1) a swarm characterised by a low group po-
larisation 1

N

∣∣∑N
i=1 vi(t)

∣∣ and low angular momentum 1
N

∣∣∑N
i=1 ric(t)× vi(t)

∣∣ (where
ric is the vector from particle i to the groups centre) resulting in a group that
is disordered but cohesive (2) A milling group rotating around a central point on
toroidal trajectories (low order and high angular momentum) (3) Dynamic parallel
groups with high order and low angular momentum characterised by higher mobility
than the toroidal group. Finally, a highly aligned group which moves in straight line
trajectories. Further they demonstrated an ability to control the group level dynam-
ics (transitions between the four phenotypes) by altering individual level behaviour
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Figure 1.2: The four phenotypes found from the Couzin model, adapted from [36].
(A) agents swarm by remaining cohesive but not ordered. (B) milling agents char-
acterised by circular motion. (C) a roughly aligned group and (D) a group showing
almost total alignment.
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by controlling ro, including a hysteresis effect by ro. Thus, the model successfully
demonstrated transitions between dynamical phenotypes reminiscent of nature, e.g.
bird flocks for (1) and milling fish for (3), controlled by the three interaction zones
in question.

Following the Couzin and Vicsek models and Reynold’s rules, alternative
models have been proposed which often share some similar structure. For example
by suppressing or amplifying the effect of a Couzin-like cohesional “social force” by
a measurement of an individual’s centrality to a flock [37]. With the idea being that
an agent on the periphery of a group may more strongly attract to the group than
one within the bulk. Additionally, Hildenbrandt’s model includes a more detailed
treatment of environmental forces. For example by explicitly including gravitational
and drag forces (from the air). And like the Reynolds’ model, a treatment of bird
movement e.g. by modelling banked turns. Other variations have focused on the
geometry of agent visual sensing. The Couzin model included a set angle α defining
a spherical sector. This sector defined lines of sight along which agents would not
interact with others in their perception zones. More detailed models of visual sensing
include two zones, one for each “eye”, which allow for non-contiguous region of visual
sensing [38].

Finally, both the Vicsek and Couzin models include metric interactions. That
is agents interact with others based upon specific distances, beyond which agents
do not interact. Agent interactions based upon explicit metric criteria have been
questioned, with experimental data indicating Starlings interact on average with a
fixed number of individuals (6-7), not with all flock-mates within a specific distance
[39]. This has resulted in topological variations of the same interaction rules as
e.g. the Vicsek model. The topological variation of the Vicsek model replaces the
alignment interaction with all neighbours Ni(t) within the cut-off distance rc. This
is done by identifying all agents j that are Voronoi neighbours to an agent i and
using this definition in place of Ni(t) as defined in equation 1.2 above [40].

A particular ubiquitous model that we shall draw upon in latter chapters
is the Active Brownian Particle (ABP). The model is based mathematically on
the work of Paul Langevin, in particular his eponymous underdamped/overdamped
Langevin equation introduced in 1908 [41]. The modern day simulation of the ABP
model is outlined by Volpe et al. [42], and Bechinger et al. offer an extensive review
on theoretical research into ABP models as well as their experimental relevance
[26]. The model itself consists in two spatial dimensions, without inertial effects or
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hydrodynamics, as the coupled stochastic partial differential equation in equations

∂x(t)

∂t
= v0n(t) +

√
2DTηT , (1.7)

∂θ(t)

∂t
=

√
2DRηR, (1.8)

also known as the overdamped-Langevin equations.
Here we are considering a single particle with position vector x(t) ∈ R2, for a

two-dimensional system although three and higher is possible, dependent on time, a
self-propulsion speed of constant value v0, with heading direction vector (sometimes
called polarity vector) n(t) = [cos θ(t) sin θ(t)]T for angle θ(t), with translational
and rotational diffusion coefficients DT and DR. η(t) is a two-dimensional Wiener
process and ηR a one dimensional Wiener process with no self or cross correlations
in time.

At its core the ABP models a particle with some agency over its velocity,
given by v0n(t), this is the active part. The model also includes a translational
diffusion term giving the model its Brownian character. In particular this mimics a
standard thermal noise process 1 e.g. as seen pollen grains [43]. It is the interplay
between the ABP’s ability to drive itself and the thermal fluctuations that give rise
to its fundamentally out-of-equilibrium nature [44, 45]. Indeed retaining non-zero
noise terms ηT and ηR in equations 1.7 and 1.8, but setting zero self-propulsion speed
v0 = 0 gives us the passive Brownian particle (PBP) within standard equilibrium
statistical mechanics.

ABPs have been applied widely to simulate the dynamics seen in many forms
of micro (e.g. [19]) and sometimes macro (e.g. [31]) systems, with examples of ag-
gregation [29, 46, 47]. In particular what is now known as motility induced phase
separation (MIPS) occurs in active systems like ABPs [48, 49]. MIPS is a process
that can lead to a co-existence of aggregated (clustered/high density) regions with
sparse regions, even in systems with purely repulsive interactions. This particu-
lar phenomenology resembles a theoretical treatment of run and tumble bacteria
[50] that shows phase separation, and more recently computational work [48], on
a-polar self-propelled (2D circular) particles, with no translational diffusion and
small rotational diffusion rate. The model undergoes a phase transition (controlled
by the systems packing fraction) from non-aggregated Brownian motion to the co-
existence of aggregated and non-aggregated regions. Particularly striking was the
fact this system included only repulsive steric contact forces and no alignment or

1i.e collisions between the comparatively marco-particle and the microscopic particles of the
medium (gas or liquid) in which it resides.
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other interactions. This behaviour was also seen experimentally in liquid colloids
[51], similarly experiments on nematic liquid crystals [47] further showed dynami-
cal properties, such as clustering, could present in systems without communication
mechanisms and only collision based interactions.

The mechanism by which the dense phase forms in these systems can be
understood by considering the competition between reorientation time facilitating
escape from a cluster and further accretion of particles. When a particle collides
with another cluster, the persistence of each particle’s motion delays the escape of
the particle. If particles collide before others can escape a cluster can form. The
formation and stability of small clusters, pairs, or triplets will be approximately
related to the ratio of particle reorientation time to the rate of collisions. The
former will arise from diffusion statistics and the latter from both local/system
density and particle propulsion speed. As the mean collision time falls sufficiently
lower than the particle re-orientation time scale large clusters will begin to form
and grow. This effect can be considered as an “effective cohesive” force which was
carefully examined with reference to experiment and computational work across
intermediate densities by Ginot et al. [52]. This effect is also closely linked to the
fact that active particles in general will aggregate in regions where they move more
slowly [53]. When combined with a self propulsion speed inversely related to local
density [49] there is a natural feedback loop between density, increased by particle
slowing, and slowing, induced by particle density.

Further inertial ABPs [54] have seen a growing interest in recent years both
experimentally: in synthetic vibrated systems [31], beetles in flight on the air-water
interface [55] and whirling fruits [56], as well as theoretically [57]. Particular theo-
retical interest lies in relation to (kinetic) temperature differences which appear to
be motility induced and the presence of inertia, causing MIPS to break down with
large self-propulsion (giving a re-entrant phase diagram) [58, 59]. In this case we
use the underdamped-Langevin equations,

M

ν

∂2x(t)

∂t2
= v0n(t) +

√
2DTηT − ∂x(t)

∂t
, (1.9)

J

νr

∂2θ(t)

∂t2
=

√
2DRηR − ∂θ(t)

∂t
. (1.10)

Where we have introduced acceleration terms, a mass M , moment of inertia J , and
translational and rotational drag coefficients ν and νr.
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1.2 Top Down to Bottom Up

Reynolds’ rules, the Vicsek and Couzin models, and ABPs are all, in a sense, a “top-
down” approach to active matter. For example in the Couzin model it is assumed
that zones of attraction, repulsion, and alignment exist. Reynolds begins with col-
lision avoidance, velocity matching, and cohesion as a given. Similarly, the Vicsek
model examines a group which by definition follows velocity alignment. These as-
sumed behaviours are quite reasonable, and clearly do give predictive power, but
from where do they arise? Reynolds writes “[flocking is evolutionary selected for due
to] protection from predators, statistically improving survival of the (shared) gene
pool from attacks from predators, profiting from a larger effective search pattern in
the quest for food, and advantages for social and mating activities”. These attri-
butions do have some evidence to support them. Examples of predator avoidance
are known in biological experiments [60] and in attraction-repulsion (Couzin-like)
simulations [61, 62, 63] there is evidence for group behaviours as a flock benefiting
the individual, in particular the ability of the group to rapidly alter its shape is
attributed to confusing predators. Similarly, it is known Emperor penguins huddle
for warmth (a clear benefit of collective behaviour) [64, 9], and Phalaropes circulate
in groups to draw up food [65]. But still much numerical work relies upon an impo-
sition of attraction-repulsion based (or other) rules as a given in the model, making
them dependent on these rules arising in the first place.

Multiple studies have been made on unpicking individual equations of motion
and responses to group mates as a bottom-up, data-driven, approach. For example
by attempting to fit Vicsek-Couzin-Reynolds like equations of motion to real data
[66]. Or by examining closely the average force response of individuals correlated
with nearest neighbour position [67, 68, 69, 15, 70]. The motivation being that
an animal may be choosing how to self-propel based on its relative position to its
neighbours. In a sense determining these behavioural “force response maps” from
data is a generalisation of Couzin-like models, i.e. the nature of the force response
is not limited to circular regions or to a linear or non-linear function.

A bottom up approach, as we understand it in this thesis, to collective mo-
tion involves the definition of a generative or motivational model intrinsic to the
agents that results in emergent collective dynamics. That is naturally generat-
ing collision avoidance, velocity alignment, and cohesion (Reynolds rules), or even
predator/object avoidance. In particular a physical model that leads to collision
avoidance or velocity alignment without these characteristics being “baked in” to
the equations of motion (or decision-making process) would be an example of the

10



bottom up approach. Data-driven examples as we introduced above are quite var-
ied in the literature but often still involve using data-driven force responses to fit
pre-determined equations of motion.

Understood in these terms, bottom-up and top-down are approaches to mod-
elling which are relative to the phenomena being investigated. The top being starting
from an assumption that the particular phenomena exists, and typically fitting some
explicit model of that phenomena to data. On the other hand the bottom begins
without the assumption of the phenomena existing and instead some more basic
property. For example, we may impose a repulsion term in a model to explicitly
include collision avoidance, perhaps with some strength parameter which can be
fitted to data (top-down). Alternatively as we will see in the next section, we could
define a general principle, “keeping option open”, by which collisions may reduce
the number of options leaving a rational agent to avoid them (bottom up). Both
approaches investigate a phenomenon (collision avoidance). The top-down approach
is more suited to investigating the effects of the phenomenon, whilst the bottom-up
approach is more suited to investigating why it may exist at all.

1.2.1 Intrinsically Motivated Collective Motion

One major example of a bottom up approach, directly applied to active matter is
Intrinsically Motivated Collective Motion (IMCM) [71, 72], that will be redeveloped
in the latter chapters of this thesis and explored in further detail. The approach
outlines a model (Future State Maximisation, FSM) constructed by each agent’s
intrinsic motivation to (loosely speaking) “maximise their future options” with ref-
erence to their estimations of the future. As an example to gain intuition consider
playing a game of Chess. When losing the game a player will most likely experi-
ence a progressive waning of their pieces directly limiting their future options, until
eventually there is no option to take; the game is lost. This example also given by
Charlesworth and Turner labours the point that “winning” and “losing” can often
be cast into a paradigm of increasing or decreasing viable futures (viable options).
It is precisely this general mechanism IMCM proposes as a generative process for
collective motion. The result is that collision avoidance, velocity alignment and
cohesion emerge without being imposed directly; a bottom-up model.

IMCM considers N agents moving in two-dimensional space and able to
select from a small set of actions (1) ballistic movement vi(t) = v0ni(t) (2) slow
speed vi(t) = (v0 −∆v)ni(t) (3) fast speed vi(t) = (v0 + ∆v)ni(t), and a positive
(4) or negative (5) increment to the angle between the agent’s direction ni(t) and
the x-axis. These actions are visualised in figure 1.3 (A). The core idea was that

11



each agent independently decides based upon current and future visual information
which of the 5 actions to take. Each agent does this by reference to visual states
defined by tracing lines to other (circular) agents representing their visual size [73].
A sketch of this process is shown in figure 1.3 (B). The method used in [73] and

Figure 1.3: Visual summary of intrinsically motivated collective motion, reproduced
from [71] (A) visual depiction of the action space. (B) a diagram showing an example
visual state calculated by first finding the visual projection (thick blue lines) and
then determining the coverage of each sensor (segments defined by thin black lines)
for the central (red) agent. (C) The future states tree generated by actions (A)
showing one complete branch up to time τ = 5 into the future, as well as one
ballistic agent and future collisions with it (dashed red circles).

.

[71] invokes the formulation shown by the red dashed triangles in figure 1.4, that
is the size of the projection is calculated using the value of arctan (r/x) (the angle
made a point x in the figure by the red dashed triangle). An alternative is to use
the tangent lines resulting in the value arcsin r/x (blue solid triangles), with the
difference reducing as a function of distance. One benefit (as far as numerics are
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concerned) of the arctangent formulation is that it exists up to x = (0, 0) when agents
are perfectly coincident, whereas the arcsin formulation fails to exist if one agent’s
centre is within the radius of another. The mathematical difference can be noted
by converting the arcsin to an arctangent via arcsin(r/x) = arctan (1/

√
x2 − r2).

The visual state produced is visualised in figure 1.3 (b) as the blue regions, which

Figure 1.4: Detailed formulation of the visual projection angles as defined in [73]
and used in [71] (red, dashed triangles) and the tangent line method (blue, solid
triangles). a, b, and c show the construction for increasing inter-agent spacing x
along the x-axis for clarity. The methods differ at small distances, we will use both
in this thesis, partly for exact comparisons sake and secondly to show the minor
impact of choosing one over the other. Motivation for the arc-tangent approach is
that particles are defined as “phantoms” with no constraints on overlaps, even a
small overlap will lead to the arc-sine formulation becoming undefined.

are then processed into a finite binary vector (0’s and 1’s) representing ns sensors
(segments defined by black lines). Each agent also projects the current positions
of all other N − 1 agents ballistically τ time steps into the future forming a future
states tree (FST) by all possible sequences of τ actions, visualised in figure 1.3
(c). Thereby at a node at depth t′ ∈ {0, 1, 2, . . . , τ} in the future states tree (an
imagined future time t+t′) an agent computes a future visual state by the projection
method, using its position having taken that t′ length sequence of actions and the
ballistic positions of the rest of the flock. Collecting these states the decision on
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which action to take at time t is to select the action with the largest count of
unique states 2 on the FST branch corresponding to taking that action initially (or
randomly among degenerate maxima). This simple criterion was shown to result
in highly ordered ( 1

N

∣∣∑N
i=1 vi(t)

∣∣ ∼ 0.98) and cohesive groups which move across
two-dimensional space, at groups sizes N = 50 to N = 500 studied in the model.
Whether cohesive and ordered groups emerge at a particular value of N depends
cruicially on the value of τ , the time horizon. τ < 4 results groups fragmenting
into smaller ordered subgroups. Sufficiently large τ ≥ 5 maintains an ordered and
cohesive group. Groups larger than N ≳ 100 exhibit a slow rate of individual
fragmentations from the main group depending on τ , which can largely be eliminated
with τ ≳ 6.

Although functioning in two-dimensional space, in principle, the model of
vision can be extended to a three-dimensional setting. Models such as that by
Reynolds, and Hildenbrandt et al. [3, 37] both incorporate detailed models of
bird flight in three-dimensional space. The Couzin model also function in three-
dimensional space without such a detailed flight model. With IMCM the visual
state is the most difficult part to extend to three-dimensional space. The visual
state defined in IMCM, based upon an earlier work [73], can be extended by con-
sidering not pairs of tangent lines to other agents, but tangent cones. However,
distributing ns sensors within a sphere as apposed to a circle is not quite as sim-
ple. Nor is calculating overlap between unions of tangent cones and sensors on the
sphere. In the two-dimensional case discretising the range [0, 2π) gives regularly
sized sensors. In 3D we would need to find an analogous method to distributed
regularly sized sensors on a sphere. One approach to spherical tessellation is the
Hierarchical Triangular Mesh (HTM) [74] which recursively subdivides a triangular
mesh, beginning with an Octahedron. A mesh such as the HTM could be used to
place sensors. However, these sensors would not be uniformly spaced or sized. Ad-
ditionally, the HTM allows meshes with 8 · 4d−1 “Trixels” for recursion depth d ≥ 1.
For IMCM in two dimensions ns = 8 is too few sensors for order to emerge, ns = 32

is, and ns = 128 is too many sensors. It is not clear a priori how many sensors
would be optimal in three dimensions.

The significance of the result was to show a process by which velocity align-
ment and cohesion could be obtained through a bottom-up physical approach. In
this case the bottom up criterion was the notion of maximising available future
states.

2Although states at which a collision is detected between an agents future position and a flock-
mates future ballistic position are discounted, as well as subsequent states.
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1.2.2 Intelligent Decisions and Causal Entropy

Agents or systems of many agents making autonomous intelligent decisions has ap-
plications in a variety of domains, especially with the rise in reinforcement learning
(RL) [75] (including the multiple agent case), deep learning [76], and their combina-
tion with other methodologies like Monte-Carlo tree searches (MCTS) [77] to solve
increasingly complex and abstract problems such as Go [78]. Indeed, attempts have
been made to develop general frameworks for defining what an “intelligent decision
maker” is. For example Fractal Artificial Intelligence (FAI) [79], which draws heav-
ily from work on postulated Causal Entropic Forces (CEFs) by Wissner-Gross et al
[80]. CEFs were also one motivation for IMCM [71].

CEFs envisage a general thermodynamic system by defining macro-states X
by relating any paths (through phase space) x(t) to any other path x′(t) if and
only if the two paths share the same initial state x(0) = x′(0). This generates a
unique set of macro-states defined by unique initial conditions x(0). The Causal
Path Entropy of X is defined as the integral equation 1.11 which integrates the
entropy of paths, given the initial state, over all possible paths up to some future
time horizon. A gradient is then taken, in equation 1.12, which defines the causal
entropic force. Using their theory Wissner-Gross and Freer demonstrate a particle
moving to a central position in a confining box under the influence of F , maximising
the diversity of causal paths that the system could access (in this case via Brownian
motion). Similarly, they demonstrate a cart-pole system spontaneously up-righting
itself; maximising path diversity. And finally show emergent behaviours claimed
to demonstrate tool-use and social cooperation, both thought of as hallmarks of
“intelligence”.

S(X, τ) = −kB
∫
x(t)

P(x(t)|x(0)) logP(x(t)|x(0))dx(t) (1.11)

F (X0, τ) = Tc∇XS(X, τ)

∣∣∣∣
X0

(1.12)

1.3 Outline

In chapter 2 we will begin by studying experimental data from a real world active
matter system, namely groups of Dineutus discolor (Coleoptera: Gyinidae) more
commonly known as the Whirligig beetle, swimming freely on the surface of water.
The experiments consisted of observations of motion of beetle groups ranging in size
within a circular arena of shallow water, and we will consider undisturbed groups.
In terms of author contribution, the data acquisition phase was completed prior to
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this thesis and is outside its scope. The main hypothesis of the chapter is that large
groups of Whirligig beetles are exhibiting a type of motility induced/ dynamic phase
separation into high and low density (slow and fast moving) regions. We will explore
evidence for this hypothesis and confounding factors by a top-down analysis of the
dynamics. Using motion statistics from video data we compare to extant literature
on active phase separation and develop a self-propelled particle model inspired by the
phenomenology. Concretely we introduced a Delaunay tessellation based approach
to computing a local density value for each beetle. We use this method to show how
a local density dependent speed is present within each group, that is a decreasing
speed with increasing local density; a crucial ingredient for motility induced phase
separation. We also find the presence of weak inertial effects. Some evidence is found
for the same velocity-density curve we measure in inertial systems of active Brownian
particles, but cannot rule out a possible role of more complex behavioural effects.
Finally, we introduced a modified ABP model including a local density dependent
re-orientation term inspired by the paths of individuals take on excursion from the
main cluster. We show that bi-modal local density distributions (averaged over
time) naturally arise within this model for large N ≳ 100, and we are able to fit the
model to experimental data.

Next in chapter 3 we change focus to a bottom-up approach to active matter.
We develop the ideas of FSM and IMCM by defining an agent based model in which
individuals take actions which maximise future path entropy over the future. Our
initial hypothesis in this chapter is that we can define such a model by considering
all paths on the future states tree generated by each possible sequence of actions
into the future and forming an empirical count distribution of visual states along
these paths. We show that this does lead to cohesive and highly ordered collective
motion of comparable character. As a second hypothesis we test whether we can
define a notion of entropy by a measure of compressibility of the (continuous) visual
state function itself, i.e. we ask whether an analogous model can be formed avoiding
discretisation of the visual states into binary vectors. We find that this is indeed
possible, generating cohesive and highly ordered collective motion, and relates to the
number of boundaries on the visual state. However, we find that in order to achieve
this we must directly impose a “resolution” parameter on the visual state where
agents appearing smaller than a given angular size threshold are ignored, effectively
creating a level of discretisation. We find the resolution required creates an effective
discretisation comparable to the discretisation implied by the sensor model, and in
fact the two models are largely equivalent in motion statistics. We interpret this
as the sensors, and resolution parameter, being one step up in an agents cognitive
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process, meaning the exact number of sensors should be compared to an abstract
cognitive process rather than for example, the number of cells in the retina.

Armed with this new model, in chapter 4 we examine in detail two hypothe-
ses based upon perturbing the input into and output of the cognitive processes of
agents. First we hypothesise that incorporating an explicit model of visual occlusion
will, to leading order, have little effect on the stability and order and other motion
characteristics of the model. But we expect higher order changes could be possible
in opacity and morphology of the agents, and if occlusion can be more or less se-
vere we expect order to drop with more severe occlusion. To test this we define an
explicit occlusion model based upon the visual state and the circular nature of our
agents that is tune-able in “strength”. Whereby other agents are not considered in
an agent’s cognitive processing if they are obscured by more than a certain percent-
age. We find that our hypothesis holds in small groups N ≲ 100 but in larger groups
we find significant increases in order and stability coincident with drastic changes
to morphology (N = 500, 1000) even with severe occlusion, although of course to a
limit. We hypothesise this is due to a building of errors in the ballistic modelling
assumption in these large groups, that is occlusion naturally regulates the amount
of information an agent processes and this leads to a more accurate picture of the
future.

Our second hypothesis in chapter 4 is that by applying noise processes to the
input and output of each agent’s cognitive process we will observe a transition from
cohesive and ordered motion to disordered and fragmenting groups. We examine
two cases: first a Vicsek-like noise process applied by perturbing agent orientations
after actions are selected, and secondly we replace the ballistic modelling assumption
with a stochastic process where modelled agents choose random speeds and rotations
that on average forms a ballistic trajectory. In both cases we find order-disorder
transitions, but crucially we find small noise values at which order is paradoxically
promoted. In the ballistic case we interpret this increase in order as a self-consistent
noise value, i.e. the noisy predictions are of higher accuracy than the ballistic
assumption.

Finally, in chapter 5 we hypothesise that the path entropy model can be re-
cast as a sampling algorithm. In particular, we hypothesise that paths from the FST
can be sampled directly at random to result in ordered cohesive motion. That we
can apply a Monte-Carlo Tree Search (MCTS) to build paths from individual action
selections for more efficient sampling, and that we can apply these ideas to sample
from continuous action spaces. We find that sampling paths with replacement is not
a workable solution, it results in rarely ordered groups that are highly unstable, this
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however is completely rectified by sampling paths without replacement. In doing so
we find significant advantages to sampling paths deeper rather than fully enumerat-
ing at lower tree depths. That is a depth first tree search results in cohesive highly
ordered motion with less evaluation of states (in some cases up to 40% less) than a
breadth first search of the FST, i.e. enumerating all nodes at a given time horizon
before enumerating nodes at greater time horizons. We interpret this as our model
predicting, for agents in such groups, it is more efficient to prioritise computing
partial information about their state further into the future than full information
about the immediate future.

Encouraged by this we apply an MCTS to the problem of action selection by
building sample paths actions-per-action. We do this by sampling the next action
to evaluate on the FST by a probability weighted by the current estimate of future
entropy subsequent to it. We hypothesise this will be a more efficient approach to
sampling paths without replacement and that we need to regulate the distribution
by the number of subsequent unsampled paths. In fact, we find marginal benefit
for any MCTS compared to uniform sampling without replacement. Especially
considering the increased computational load for tracking entropy estimates and
selecting actions to sample.

Given this knowledge we close chapter 5 by applying sampling to continuous
actions spaces. We hypothesise that actions composed of continuous orientation
increments and speeds selected from a continuous range can be used along with
uniform sampling of path actions to result in ordered cohesive motion. We found
however that fully uniform sampling of path actions only resulted in ordered and
cohesive motion for an extreme number of futures, τ ≈ 512. We found this was due
to a trade of between the number of initial actions an agent judged and the number
of paths sampled. Controlling for this we found that when limiting the number
of initial actions to judge, e.g. to 5 randomly chosen initial actions, we do realise
ordered motion with future time horizons and a number of samples comparable to
the discrete sampling case.
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Chapter 2

A Data Driven Study of
Whirligig Beetles

2.1 Introduction

In this chapter we will examine a top-down study of group motion of Dineutus dis-
color (Coleoptera: Gyrinidae) or “Whirligig Beetles”. The data involved is composed
of experimental footage, filmed from above, of different groups of Whirligig beetles
ranging over three population sizes. The beetles were allowed to move freely on the
(shallow) waters surface of a circular arena, and their motion observed. We will
outline the tracking of individual trajectories, the analysis of group motion statis-
tics with a careful focus on a measure of local density, and the construction of a
top-down model based upon the Active Brownian Particle formalism. We will then
discuss the process of fitting the model’s free parameters to data and the conclu-
sions we can draw from the model and analysis on the mechanism of the dynamical
clustering behaviour seen in the laboratory footage.

The theoretical basis for the direction of research is the growing body of work
on Motility Induced Phase Separation (MIPS) in active particles, which attempts
to answer whether MIPS or a MIPS-like mechanism could explain the dynamical
aggregation we see in the data. As outlined in the introduction to this thesis, MIPS
is a fundamentally out of equilibrium phenomenon seen in AM. In particular MIPS
arises due to the natural tendency of active particles to aggregate due to a self-
propulsion speed inversely related to local density [53, 49]. It is also known that
inertial effects can greatly change the phase behaviour in ABP systems compared
to the non-inertial case, particularly regarding the onset of MIPS [58, 59]. We use
this to determine a measure of local density and therefore seek to quantify the local
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density dependent self-propulsion speed of beetles, including inertial effects.

2.1.1 Experimental Data

Figure 2.1: Snapshot of experimental footage of N = 200 Whirligig beetles within
the circular arena of diameter 95.25 cm. A typical beetle measures 12±1 mm along
its body length. The body itself is roughly elliptical with a 2 : 1 aspect ratio between
its major and minor axes. The beetles are able to propel themselves freely on the
waters surface and are not observed diving in the footage used for our analysis. The
experiments used for this chapter do not involve startling of the beetles or any other
stimulus except for the constant illumination of the arena (730 lx). The camera is
placed for a top-down view of the tank, captured at spatial resolution 1920× 1080
and time resolution of 30 frames per second.

An example snapshot of the movie data is shown in figure 2.1. The setup
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consisted of a circular arena (diameter 95.25 cm) filled with water to allow the beetles
to move freely on the surface. The beetles were filmed from a top-down perspective
at resolution 1920× 1080 and 30 frames per second, after acclimatisation periods of
20 minutes. No stimulus was applied in the data we use except for the constant 730
lx illumination of the tank for filming purposes.

In terms of experimental design a shallow tank was chosen in part to mitigate
diving behaviour. And in the data (footage) tracked from the experiment we do not
see this behaviour. The circular nature of the tank acts to reduce boundary effects.
For example a square shaped tank would likely cause a tendency for beetles to
aggregate at the boundaries. This is a generic feature of many self-propelled agents,
but it is possible beetle behaviour may result in aggregation in corners as well. The
tank’s camera facing base was chosen to contrast well with the dark black colouration
of the beetles, to aid in later post-processing. The recorded data was post-processed
into individual frames, which were then thresholded into binary images, both using
the ImageMagick software [81].

Processing Video Data to Extract Trajectories

The processed data we use can be split into two types: (1) fully tracked by hand
and (2) tracked by algorithm. The human tracked data is complete with both detec-
tions (beetle positions) and tracks (temporal linking of detections). The algorithmic
tracking and detection shall be outlined here, and is part of a work in preparation
to be published [82]. The detection workflow consisted of training a neural network
to detect beetles, which was trained upon the human detections. This was done
by coding input images as being a beetle or not (classification encoding) in one in-
put channel, and using the distance (horizontal and vertical separately) between a
pixel and the head or tail as four more input channels. These human created input
data where fed into a neural network utilising the DenseBox method architecture
[83]. The output of this methodology are sets of position-orientation coordinates,
Xt = {xt1,xt2, . . . ,xtNt} for xti ∈ R2 × [0, 2π), for each frame (discrete time point)
t. The notation Nt denotes the number of detections at a given frame t, which can
and does vary even though we have a constant number of beetles N . This pro-
vides one way to identify detection errors e.g. (N−Nt)

N . The neural network itself
was trained on the error in position and orientation of a given detected beetle with
comparison to the actual detection of a beetle by hand at the pixel level. The exact
form of the error is a sum of the classification and regression error, i.e. the pixel
level error between the classification channels combined with total error across the
four regression channels. As will be discussed shortly with our tracking method-
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ology, accurately assigning detections to tracks in a mutli-object setting requires
accurate spatio-temporal data. The camera sets a spatial (pixel resolution) and
temporal (framerate) timescale. Objects approaching the pixel resolution in size,
or approaching inter-frame displacements of one or more body lengths per frame,
become increasingly impossible to accurately detect and track. Additionally, given
a reasonable resolution the detector will also introduce error, i.e. by assigning in-
dividual position coordinates offset from the ground-truth. A position error much
less than the size of individual objects is desired. Deviations from the ground-truth
larger than the typical object size will lead to a greater number of identity swap
errors on tracking. Identity swaps occur when a trajectory following one individual
“swaps” to tracking another. Typically, the detector error reached within 5% of one
beetle body length.

The processed (detected) data consisted of sets of detected beetles at separate
time points. In order to obtain trajectory data across time for individuals the next
step was to perform a multi-object tracking procedure. That is to link a detection of
beetle i, xti, to the same beetle at time xt′i for all t′ ̸= t, with reference to the human
tracked results. Multi-object tracking remains a difficult problem that is not fully
resolved in many disciplines, with numerous approaches detailed in the literature.
Particular examples are idTracker [84] which uses machine learning to generate
“fingerprints” for each tracked object, Kalman Filter based approaches [85] utilising
the Kalman Filter for a linear motion model, global data association techniques [86],
and with high spatio-temporal resolution the Hungarian/Kuhn-Munkres algorithm
[87] can be used for nearest-neighbour matching.

Our data was tracked using a modification of the global data association
methodology of Zhang et al. [86]. The modification was to enforce a global constraint
on the number of objects within each frame, N , and to handle missing objects in
any particular frame by adding a linear motion assumption to allow for resolving
the problem when any particular track has a missing segment. The method was
based solely on distance data, i.e. the distance between an objects position at
time t and t + 1, since we seek to track almost indistinguishable objects at the
resolution of our camera. When resolution is high enough, or objects are in some
other way distinguishable, then it is possible to use methods such as idTracker which
use this information to build unique identities of individuals by machine learning
methods [84]. Alternatively, it is not impossible for experimenters to introduce that
distinguish-ability by simple marking individuals, although of course care must be
taken this marking does not confound whatever the purpose of the experiment is
e.g. by somehow modifying inter-agent behaviours.
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The goal of our multi-object tracking based on distance data here is to iden-
tify N true positive detections (i.e. the actual known number of beetles) and join
them into time sequences in such a way to match the human tracked data as closely
as possible. The difficulty of this task is in a sense directly related to the spatio-
temporal resolution, and in particular on average inter-frame displacements of agents
compared to their body size. That is if each agent has a size scale of r and the average
inter-frame displacement d is strictly less than this length scale d < r then multi-
object tracking is (largely) trivially solved by nearest neighbour assignment between
pairs of frames, with further improvements achieved using the Hungarian/Kuhn-
Munkres algorithm [87] with inter-frame distance costs. This is because (distance
based) multi-object tracking errors (with a perfect detector) typically occur when
one object (A) in one track moves closer to another object’s (B’s) previous position
in the next frame than (B) is, which can result in an identity swap where one track
swaps to tracking another object in error.

Our data is unfortunately quite far outside the regime where nearest-neighbour
and Hungarian based methods work, this is due to our temporal resolution. Here
we find (1) individuals move in a highly non-linear way (2) average inter frame dis-
placement exceeds 2 − 3 times beetle body length. Issue (1) also precludes linear
motion model methods such as the Kalman filter [85], and although non-linear mo-
tion model trackers exist we find that a method based on (global) data-association
[86] is easier to work with since we do not need to find a motion model to track a
priori. Compared to the human tracked data we do find a ≈ 99.8% accuracy rate
when computing the multi-object tracking accuracy statistic [88] an improvement
over the 88.9% accuracy that can be obtained from employing a Hungarian matching
approach with inter-frame distance costs and the same linear motion assumption for
missing detections. The difference being the global nature of our modified method
over the “greedy” local nature of inter-frame Hungarian matching.

2.2 Towards a Measure of Local Density

We begin by collecting density and motion statistics. In this section we will discuss
the novel methodology we use for local density and the results obtained from it.
The calculation of density will be of great interest due to the fact MIPS is intri-
cately linked to a self-propulsion speed that is dependent on local density [49]. In
the following discussions we will discuss the typical methodologies for global and
group density in active matter, providing specific examples. Following this we will
describe our method for local density, and how this relates to other methods. Unless
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otherwise stated, we assume a two-dimensional geometry due to the nature of our
final application - tracking beetles in 2D. It is possible to use the methods outlined
below in three and sometimes higher dimensions, although we shall not discuss this.

Global Density

To understand our local density calculation we will begin with global density. Global
density of a group of confined individuals (in 2D) is usually computed in the MIPS
literature via a packing fraction. This measure takes the coverage of the system size
A by particles of size r. For N circular particles of uniform radius r this calculation
gives Nπr2

A for a system area A. This is a particularly useful measure in simulations
of Active Brownian particles, including MIPS simulations, confined to “hard” or
periodic boundaries, and is a primary parameter of interest for the onset of MIPS
[48]. This measure becomes difficult to use in unbounded or effectively unbounded
systems where either A → ∞ or A ≫ Nr2 (approximating particles as circles). In
both cases the value of the packing fraction is driven to or close to 0 even if the system
has spontaneously clustered into a cohesive group (e.g. bird flocks or fish schools), or
even a MIPS like assembly. In computational work a truly unbounded space can be
achieved, i.e. by simply not including boundary conditions in the simulation code,
whereas in nature there is often a lack of a well-defined system size. E.g. consider
a flock of starlings, the analogous packing fraction in 3D would scale as ∼ Nr3

V but
in this case what should one take for V ? One could take the volume of the earth’s
atmosphere, or less extremely the volume of atmosphere around a city. In either
case the density approaches zero for realistic N . Yet a group of starlings can remain
at high density; clearly a different approach should be used.

In these situations (A1/d ≫ r) another method of group density computation
is usually used with the methodology of determining the “shape of the group” as a
whole and using the area (or volume) of this shape as the area denominator. Two
particular approaches to this we will report as the Convex Hull group density, ρCH ,
and the α-shape group density ρα. These are closely related. The Convex Hull is
a geometric object that can be defined for an arbitrary set of points X in Rd as
(i) the unique minimal convex set containing X or (ii) the union of all simplices
with vertices in X [89]. The analogy usually used to describe this is to imagine a
rubber band being stretched to enclose all points in X then allowing it to become
taut around the points, this is the convex hull. As such ρCH will use the area of the
convex hull in the density calculation. This can be computed in 3D for the Starlings
considered above giving a natural interpretation of density, provided the group does
not fragment.
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The Delaunay Triangulation (DT) and α-shape are intricately related, given
that the latter is constructed from the former [90]. Briefly the DT is a set of triangles
(in 2D) that triangulate a set of points X, such that no point in X is contained
within a circumcircle of any triangle in the DT. An α-shape can be constructed via a
“carving”-process on the DT using a “spoon” or “scalpel” defined by a circle/sphere
with radius α. The carving proceeds to remove segments of the triangulation’s shape
via the circular scalpel whenever one (or many) may occupy that space without
enclosing a point of the Triangulation (a point of X) [91]. This means the α-shape
can form holes within the body of the original convex hull. For example a “donut”
shaped point cloud (2D) or a torus can be recovered using an α-shape construction,
whereas a convex hull will not generate the hole. Similarly, we now use the area
of the α-shape (or more accurately the α-hull) as the denominator for our density.
The advantage of the α-shape is its more form fitting nature, as well as its ability
to “carve out holes” in the shape of data, however this comes at the cost of the α
hyperparameter which must be selected [90].

The α-shape approach was used by Sosna et al. [92] to compute a group
density measure applied to fish schools. Of note here is their similar experimental
setup involving a top-down perspective on freely moving animals where the tank
area is much larger than the size of an individual, and indeed the “area of the
group”.

The α-shape methodology provides a more form fitting “shape” than the con-
vex hull, and therefore a more accurate calculation of (number) density. This comes
at the cost of a hyperparameter α which is not clear a priori. One method to fit the
α parameter is pick α by minimising the area subject to all data points remaining
within the resulting α shape. This methodology leaves the only subjectivity as when
to end minimisation. One approach being to select a suitable minimal change in the
area between optimisation iterations. But optimisation comes at the cost of com-
puting power. Applications involving large data sets, or otherwise high-throughput
algorithms, may be unable to handle this additional hyperparameter optimisation.
Such applications may judge the convex hull more efficient at the cost of its less
form fitting nature.

Local Density

We have seen how group density can be defined for unbounded systems, using many
related concepts such as the convex hull, DT, and the α-shape construction. We
will now discuss one particular methodology for local density and finally construct
our method of local density. The most natural extant method is the Delaunay Tes-
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selation Field Estimator (DTFE) which constructs a density estimate for a point
xi by dividing the (normalised) mass or weight of i by the area of the Contiguous
Voronoi Cell (CVC). This is defined as the union of Delaunay triangles which share
the data point xi as a common vertex (pictured in figure 2.2 inset). The density
field for the points can then be constructed via linear interpolation procedure taking
advantage of the triangulation to perform a type of gridded interpolation [93]. This
methodology has seen success in estimating density fields in astrophysics applica-
tions. Here we are less concerned about constructing a field and more focused on
the local density at data points i, and are in particular concerned about boundary
effects in the algorithm. The boundary effect we are most concerned about is that
an agent internal to the triangulation (not on the convex hull) will naturally have
all 360◦ around it within some Delaunay triangle, whereas points on the convex hull
often have a much smaller angular coverage. I.e. compare the starred agent (for
which the CVC is shown) and the bottom right agent (with the length scale marker)
in figure 2.2. What’s more the Delaunay triangles associated with boundary points
are more often acute triangles (triangles of tiny area), which can cause large density
values to be computed when applying the DTFE. For these reasons we take the step
to improve upon the ideas of the DTFE method rather than use it directly.

Weighted Delaunay Tessellation Local Density

The method used here starts by considering both the Delaunay triangles T (j)
i as-

sociated with the ith data point xi which form a set indexed by j, and the set of
angles θ(j)i made in the triangle at the vertex xi. We assign the value A(j)

i to be the
area of triangle T (j)

i , and use these to form the density

ρ(xi) =
1

2

∑
j θ

(j)
i∑

j θ
(j)
i A

(j)
i

. (2.1)

This notation is visualised on actual data in figure 2.2. Using this notation we define
our density measure by considering beetle i as contributing θ(j)i of its mass to the
triangular area A(j)

i , this gives a normalised area per particle of 1
πA

(j)
i contribution

for j. We then calculate the average (over j) of these areas weighted by the angles
made and invert it to form the local density for this i. We further normalise this
density by 2π, since an internal point i will have

∑
j θ

(j)
i = 2π, but a boundary

point will have
∑

j θ
(j)
i ≤ π. The aim of this construction is to compute an accurate

density, whilst accounting for any boundary effects. Note that since we are implicitly
taking the mass as 1 at each point we generate a number density. Similarly„ the
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Figure 2.2: An overlay showing the Delaunay Tessellation local density computation
applied directly to the data shown in figure 2.1 once positions were extracted. The
inset details the geometry relating to the starred beetle indicated by particle index
i (associated with a position coordinate xi), we show the internal angle θ(j)i made
by the j-th Delaunay triangle to beetle i. This triangle has area denoted by A

(j)
i .

The index j is understood to enumerate the set of Delaunay triangles which share
the point xi as a common vertex. We calculate the weighted average triangle area
across the indices j, weighted by the angles they make at i. Our density measure is
then the inverse of this mean suitably normalised by beetle length r. Reproduced
from [94].

units of area will also be inherited through the areas A(j)
i . We will be pre-scaling

our spatial units to the body length of beetles, or the diameter of circular particles
in simulations, as will be detailed whenever necessary.

The result of this methodology can be examined for a particular case as given
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in figure 2.3 (b) and (c). Here we calculate the density for a compact square lattice
of circular particles each with radius r = 1, using 32 and 62 particles in panels
a and b. This example is slightly pathological in terms of the DT since it leaves
the triangulation non-unique (due to point co-linearity), however it does illustrate
the motivation behind our use of the triangle areas A(j)

i and angles θ(j)i which are
motivated by similar methodologies in condensed matter physics when analysing the
stochiometry of crystal lattices.

In this example one may calculate a density for the green (dashed) particle
by noting its four associated triangles all have area A(j)

i = 2 and the angles made at
xi are all equal θ(j)i = π/2. Therefore, it is simple to calculate ρ(xi) = 1

2
2π

4·(π
2
·2) =

1
4 ,

which should be interpreted as a number density 1
4 of particles per particle area.

Figure 2.3: Density computed using the DTFE (a.1, b.1) and the proposed method
(a.2, b.2) for a lattice of circular discs (radius r = 1), panels a.x show a lattice of
N = 32 and panels b.x show a lattice of N = 62. Panels a.3 and b.3 show a naked
Delaunay tessellation of the input data for reference (computed using Qhull [95]),
note due to the co-linearity of points the tessellation is not unique. The colour scale
is normalised to the output of the DTFE method in both cases (giving an arbitrary
scale [0, 1] and colour scale). Note the variance in the DTFE method (b.1) and the
uniform nature of the local density in the proposed method (b.2).
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2.3 Self-Propulsion Statistics

We define self-propulsion speed by using a two point stencil [96] definition for the
first derivative of beetle position as a function of time i.e

vi(t) =
xi(t+∆t)− xi(t−∆t)

2∆t
, (2.2)

and taking its norm. Here we identify ∆t as the inter-frame time which is 1
30 seconds.

We use the 2-point stencil as apposed to a forward or backward Euler method for
lower error, O(∆t2). We could use a higher-order stencil however increasing orders
requires the use of data points at larger temporal gaps which means more data
cannot be used. The 2nd order stencil was chosen to give increased accuracy at
shorter timescales (our frame rate is 1/30) without reducing the quantity of data
significantly around the boundaries (start and end of the video data). We analyse
the statistics of speed |vi(t)| to investigate the role of inertia in our data.

2.3.1 Inertial Delay

Interest in inertial particles in active matter, and particularly inertial ABPs, has
seen a growing interest in the context of motility induced phase separation. One
characteristic of inertial SPPs is the delayed correlation between actual particle
velocity and self-propulsion direction, which can be quantified with the correlation
function [31]

C(δt) = ⟨V̂ i(t+ δt) · n̂i(t)⟩i,t. (2.3)

That is for a given time lag δt we measure the dot product between the major axis
orientation of a beetle n̂(t) at time t, and its normalised velocity v̂i(t+ δt) at time
t+ δt. Examining this function across positive and negative time lags δt, averaged
over beetle index i and time t, should elicit a peak correlation at lag δt = 0, for
non-inertial particles, and some finite time lag, for inertial particles. By computing
the correlation function C(δt) on the N = 200 beetle data (shown in figure 2.4)
we obtain a small but positive delay time of 13 ms between beetle orientation and
velocity, this means that the velocity is on average lagging behind beetle orientation
by a corresponding timescale.

29



Figure 2.4: Orientation velocity correlation function C(δt) plotted for large (a) and
small (b) time lags δt. Dashed line in (b) shows δt = 0. Note we find a small
but positive value of δt at which the correlation function attains a maximum. Data
plotted is for the N = 200 case only, we fit a Gaussian function to the data to obtain
a delay of 13 ms. The small delay would be a natural consequence of inertial effects.

2.3.2 Speed and Density

As previously mentioned the relationship between speed and local density is char-
acteristic of MIPS. Armed with a measure of local density we will now use this to
examine the relationship between speed and density that we see in the trajectory
data.

Using our definition of self-propulsion speed, vi(t) = ||vi(t)||2 from equation
2.2, for beetle i at time t, we can associate this data with local densities ρi(t). This
data is then averaged over both time t and beetle index i, by first binning the density
on a log-spaced scale and taking the average value of the bins, to form the density
dependent speed v(ρ) which we plot against density on a log-log scale in figure 2.5.

2.3.3 Features in the Speed Density Relationship

Three features are most prominent in the data (1) we see a self-propulsion speed
decay (roughly ρ−0.4) with increasing local density, this lasts between approximately
ρ ∼ 10−2.5 to ρ ∼ 1, two orders of magnitude (2) we also see a significant and abrupt
upward trend in self-propulsion speed after around ρ ∼ 1. Finally (3) the N = 50 is
notably offset from the N = 100, 200 groups, and the N = 100 groups is somewhat
offset from the N = 200 group, both in terms of an increased speed for a common
density.

For the three most prominent features we can interpret that there is a signif-
icant dependence of beetle self-propulsion speed with local density in all three group

30



Figure 2.5: Relationship between beetle self-propulsion speed v(ρ) and local density
ρ. Local density is computed using the method proposed in section 2.2 and outlined
in figures 2.2 and 2.3. Data is plotted for three groups (N = 50, 100, 200) on a
log-log scale, a guide to the eye showing a proportionality of v(ρ) ∼ ρ−0.4 is also
plotted. We see a decay in self-propulsion speed with increasing density up to around
ρ ∼ 1 where a notable uptrend is seen, this occurs over two orders of magnitude.
Approximately from ρ ∼ 10−2.5 to ρ ∼ 1. The upturn may be due to collisions or
a change in beetle behaviour near collision. Data is plotted after first binning the
density axis (on a log-scale) and averaging speeds in the bins, error bars show the
standard deviation within bins.
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sizes. This phenomenology is commensurate with MIPS or a MIPS like mechanism.
Our SPPs (beetles) display a decreasing speed with increasing local density.

Two further questions immediately spring from figure 2.5 (1) why does the
power law arise (2) why does the power law break and speed increase at density
∼ 1. For (1) we could conjecture that either this is a generic property of ABPs
with collisions or it is somehow related to beetle behaviour, or perhaps over motion
phenomena such as inertial effects. For (2) we could also conjecture the same,
perhaps collisions cause this increase in speed. Although conservation of momentum
suggests otherwise, or perhaps this is due to some sort of behavioural response of
the beetles e.g. recognising immediate collisions and attempting to avoid them by
increasing speed away from the possible collisions.

Velocity density relations in ABP Simulations

Analysis of whether behaviour is causal for (1) and (2) is not answerable directly
from our data, we would require a dedicated experiment. However, we can give a
partial answer by determining if this v(ρ) phenomenology is seen in ABP assemblies.
If so this would at least allow us to say with confidence that these features can be
the result of collision forces and active diffusion processes alone, rather than just
“behaviour”.

To do this we will simulate an assembly of N ABPs. We assume circular
particles of radius r, with equations of motion

∂xi(t)

∂t
= v0

[
cos θi(t)

sin θi(t)

]
+ µ

∑
j ̸=i
F ij(t), (2.4)

∂θi(t)

∂t
=

√
2Dr∆tηi(t). (2.5)

Each particle, i, has a position xi(t) and orientation θi(t) at time step t. The
force term is F ij(t) = 0 when i = j or when ||rij ||2 > 2r with rij(t) = xj(t) −
xi(t) otherwise F ij = (||rij ||2 − 2r)r̂ij , where hats denote unit vectors throughout.
Finally, ηi(t) is Gaussian white noise with no time (or inter-agent) correlations. For
the sake of this experiment we will hold constant the free parameters N = 200,
the number of particles, µ = 3000, the velocity close to first contact (chosen to
be as large as possible for computational stability), ∆t = 1 × 10−5 the time step
which is chosen while balancing run time with numerical instability, speed v0 = 10,
rotational diffusion Dr = 0.005, and finally r = 1 the particle radius. The value of
µ was chosen (with ∆t for stability/runtime) to ensure minimal particle overlaps,
since this is a soft-potential. The typical particle overlap 2−δ can be discerned from
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relating active and collision forces, v0/µ ∼ 2r−δ. Which for our selected speed gives
≪ 1% of a radius r for v0 = 10. The spring potential itself is chosen since as part
of the Fily and Marchetti model [48] it represents a purely repulsive minimal model
of MIPS in ABPs.

Implicitly we have neglected inertia, hydro-dynamics, and translational noise
which could all play a role. Numerically we solve the first order Stochastic differential
equation (SDE) using the Euler-Maruyama method [97], which with a time step of
10−5 is sufficient to avoid numerical instability. Our units normalised from the
particle diameter 2r (length) and by using the self-propulsion speed 2r/v0 (time).

On simulating the trajectory data for N = 1000 and R = 5 separate repli-
cates (using a random seed) we then compute speed and density statistics using
the same methodology as for the beetle data. Except we account for the periodic
boundaries so that a particle at the simulation boundary do not generate extremely
large anomalous speeds or under-estimated densities. To this end we take a speed
and density measurement on a trajectory if at all three times (for the 2-point stencil
velocity) t − ∆t, t, t + ∆t a boundary is not crossed. For the speed we could use
the nearest image convention to account for boundary crossing. However, for the
density methodology this is in principle possible but more complex to implement.
We would need to enclose the system by all nine image cells, realising the nearest
images. Then compute the Delaunay triangulation on this modified position data.
After which we would need to discount the data corresponding to the nine image
cells in our statistics. Which is effectively the same as not collecting statistics at
the boundary.

The speed and density data is plotted in figure 2.6 (a). We see a downward
trend in speed with increasing local density, but this dependence is better explained
by a linear fit than by a power law (see inset) unlike the beetle data. Theoretically
the linear scaling might make sense due to the linear nature of the force response,
although this data is not the force response itself but an aggregate of speeds at given
densities.

Including Inertia

It is clear that non-inertial ABPs do not show a clearly non-linear relationship
between speed and density. In fact, it appears that a linear relationship best explains
the data. Since we find a small inertial effect in our data, the natural question is
can inertial effects account for the non-linearity in v(ρ)?

To answer we can also conduct the same computer experiment but with
inertial ABPs. Inheriting the same terminology from equations 2.4 and 2.5. We
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define a system of N inertial ABPs with translational and rotational equations of
motion

M
∂2xi(t)

∂t2
= ξt

(
v0

[
cos θi(t)

sin θi(t)

]
− V i(t)

)
+ µ

∑
j ̸=i
F ij(t), (2.6)

J
∂2θi(t)

∂t2
= ξr

(√
2Dr∆tηi(t)− ωi(t)

)
. (2.7)

Where V i(t) =
∂xi(t)
∂t and ωi(t) = ∂θi(t)

∂t are a particle’s velocity and angular velocity
respectively. Note compared to non-inertial case we now have some extra parame-
ters: the particle mass M , moment of inertia J , and the translational and rotational
friction coefficients η and ηr. For clarity on the units, for the translational equation
we can measure space and time as 2rxi(t) = xi(t), 2r/v0t = t. For the rotational
equations note J has units of mass × length2 which it inherits from the units taken
in the translational equation. We take θ in radians meaning Dr will be transformed
with the chosen time units.

We set M = J = ξt = ξr = 1 initially as a simple example, with large inertial
effects. We also choose, as in the non-inertial case, Dr = 5×10−3, v0 = 10 and r = 1.
Due to the second order nature of the equations of motion numerical integration
needs to be completed with more care to avoid instabilities 1. For stochastic second
order equations, particularly those in molecular dynamics arising from the Langevin
formalism, the Euler-Maruyama is accurate up to first order in the time step. Un-
fortunately some higher order methods such as the Milstein method [97] reduce to
EM since our diffusion term is constant in space and orientation e.g. our rotational
SDE for one particle can be written in the form dω = a(ω, t)dt+Constant× dW (t)

for dθ(t)/dt = ω(t), and Wiener increment dW (t). However simple methods accu-
rate up to second order in the time step can be found such as the Grønbech-Jensen
Farago (G-JF) method [98] which is analogous to Verlét integration schemes, but in
the stochastic setting. To apply the G-JF scheme we must be careful of the periodic
boundary conditions due to the integrator using positions at time t and t−∆t, one
way to solve this is to set the previous position equal to the current at the time when
the position wrapping happens, a second would be swapping to an Euler-Maruyama
step for that time point. In either case we are careful not to include particles near

1We are also careful with the initial positions of particles, each particle is randomly placed
in a box of constant size L =

√
Nπr2/ϕ for density ϕ = 0.1, subject to the condition it does

not overlap with any previously placed particles. Overlaps in the initial configuration can cause
dramatic numerical instability in the inertial simulation, much more so than the non-inertial case,
and so much so it bears writing explicitly for reproducibility’s sake. We also do the same in the
non-inertial case to be safe.
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the boundary in our statistics anyway. We opt for the velocity free form, equation
24 in [98], and take a time step of ∆t = 10−5. Note the relevant time scales are
given by M/ξt, J/ξr,

√
M/µ and v0/Dr and we must have ∆t small enough to resolve

these. For the inertial system we find a non-linear relationship between v(ρ) and ρ,

Figure 2.6: Speed density relationship for non-inertial (a) and inertial (b) ABPs. In
(b) the inertial parameters are M = 1, J = 1, ηr = ηt = 1 In both cases a linear
v(ρ) = aρ + b and power-law v(ρ) = aρb + c have been fitted (least squares) as
solid and dashed lines respectively. For both (a) and (b) common parameters are
v0 = 10, Dr = 5 × 10−3, r = 1, µ = 3000 and time step ∆t = 10−5. Particles were
initialised in a box with packing fraction 0.4 such that n particles were overlapping
at time t = 0. Notable is the non-linear best fit for inertial particles, and the lack
of an increasing speed at higher densities.

shown in figure 2.6 (b). From this we can conclude that a non-linear relationship is
a better fit to the data than a linear one, for these parameters.

The Effect of Mass and Moment of Inertia

The experiments above take the simplifying step of setting a constant M = ξt = 1

and constant J = ξr = 1 to examine one particular case with large inertial effects. To
explore more systematically we will examine the effect of varying mass M from small
10−3 to large masses 1, and analogously for J , but keeping the friction coefficients
ξt = ξr = 1. We might expect that a mass and moment of inertia approaching zero
would result in similar statistics as simulating equations 2.4 and 2.5, namely the non-
inertial equations, with M = 0 equation 2.6 mathematically reduces to equation 2.4.
Numerically we need to be careful when reducing M → 0 (or J) since numerically
solving equation 2.6 implies a division by M ; if M is too small the numerical solver
becomes unstable unless ∆t is greatly reduced to compensate. For this reason we
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Figure 2.7: Results for simulating equations 2.6 and 2.7 using masses M and mo-
ments of inertia J , Dr = 5× 10−3, and v0 = 10 and r = 1. Colours show the differ-
ence in root-mean-square error between the linear and power law models scaled to
[0, 1] where 1 indicates the power law has a lower fitting error.

choose masses M ∈ [0.001, 1.0] and similarly for the moment of inertia J .
Figure 2.7 is used to summarise the results. The plot details the linear

and power law fits in each grid point with a background colour indicating the
(normalised) improvement of the power law over the linear fit. We find that at
M ∼ J ∼ 1 a power law emerges as a better model for v(ρ) whereas for increasingly
small inertial effects a linear fit is superior.

In the simulations data presented above the particles are either moving at
speed v0 (non-inertial), accelerating to speed v0 (inertial), or are slowed due to
collision forces. There is no active decision-making in this model. From this it
makes sense to examine the effect of a collision on speed, in one spatial dimension
we can examine the collision response quite easily.

If we assume a particle that is a unit circle, which is initially at x(0) = 0 with
speed v(0) = v0, and we hold its orientation constant θ(t) = 0 along the positive x-
axis. If an immovable object, a potential, sits at x = 2 applying the force −k(2− r),
keeping t ∼ 0, we obtain a simple ordinary differential equation

dx

dt
= v0 − kx, (2.8)

for the particle’s velocity. Since this equation is the speed of the particle it is clear
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we expect a linear speed dependence on x. However, considering an inertial particle
we instead obtain a second order equation which we can easily solve for the function
x(t) and therefore the speed giving solutions of the form

dx

dt
= αc1e

αt + βc2e
βt. (2.9)

The constants are α, β = 1/2(±
√
4k + 1 − 1) and c1, c2 given by the initial values

x(0) = 0, v(0) = v0. To connect these equations to v(ρ) we would need to find the
speed as a function of density, dx/dt(ρ(t)). For this toy model we cannot compute
a DT (we cannot even form a triangle), and so cannot use our density methodology
directly. But by construction of the problem, if we imagine the potential as a par-
ticle, initially increasing t from 0 (i.e. increasing x from 0) represents an increasing
density, implicitly. It is possible then that the collision response gives the linear
and non-linear character in the non-inertial and inertial models respectively.

It appears that a power law v(ρ) could be explained by inertial effects in the
data however we already have determined a small inertial effect in our data, on the
order of a 10-millisecond delay time.

2.4 Corralled Active Brownian Particles

To model our data we wish to use as simple a model as possible that we know
displays MIPS, but also one that functions in fully unbounded space (R2), with
open boundary conditions. This necessitates some form of net attractive force in
the dynamics, to avoid the density of the system tending to zero. To meet these
goals we define our model to be as close to the basic model of Fily and Marchetti
[48] as possible to make as clear contact with MIPS as we can numerically. But we
modify the model to function in unbounded space with open boundary conditions.
The model assumes N circular particles of radius r following equations of motion

∂xi(t)

∂t
= v0

[
cos θi(t)

sin θi(t)

]
+ µ

∑
j ̸=i
F ij(t), (2.10)

∂θi(t)

∂t
=

√
2Dr∆tηi(t) + κi(t). (2.11)

We use a density dependent re-orientation term in the rotational dynamics. i.e. a
phenomenological torque of the form κi(t) = τρi(t)

−α(vi(t)×R̂i(t)) where α ≥ 0 and
τ ≥ 0 are free parameters, ρi(t) is the local density of particle i at time step t, vi(t) is
the velocity of particle i at time t, and R̂i(t) is the unit vector pointing from particles
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i’s position toward the geometric centroid (GC) Ri(t) = ⟨xj(t)⟩j−xi(t). We choose
a density dependent strength, and are careful to use a unit GC vector to create
a “metric-free” torque, or at least a torque not explicitly increasing with distance
from the GC (which leads to large torques, and spinning particles). The parameter
α is a dimensionless exponent which controls the re-orientations dependence on local
density, and the coefficient τ is a rate (s−1) parameter controlling the strength of
re-orientations.

The motivation for the geometric centroid dependence biologically can be
seen in experiments on Whirligig Beetle dispersal events [12] and in particular Romey
et al [13] examine which of: “(1) the first individual to startle, (2) the geometric
centre or (3) the point of highest density” correlate most strongly with the direc-
tion of travel startled beetles take in a flash-expansion event, they report beetles
moving more strongly away from the GC. We argue this experimental evidence at
least motivates knowledge of the relative direction of the GC (the unit vector) is
biologically reasonable. Of course in reality beetles will likely suffer some error on
their perception of the GC based on their visual input and cognitive process.

Before continuing we remark on two potential issues that exist, (1) the case
where ρi(t) = 0 and (2) the case where xi(t) = ⟨xj(t)⟩j . Note (1) will not usually be
the case unless the group has fully fragmented which can happen when α ∼ 0 but
even in this case the group would need to disperse far enough for Delaunay triangle
areas to exceed machine precision (∼ 10−16), and (2) will imply the cross product,
vi(t)×R̂i(t), is zero and so avoids an infinite torque (at least for the purposes of the
numerics). Our model is then defined with the equations 2.10 and 2.11 using the
same definitions as in section 2.3.3 except we have no boundary conditions. We treat
α, τ , and also µ, as free parameters. µ is free here due to the error in approximating
(roughly) 2 : 1 elliptical beetles with circles that leads to overlaps, to account for
this geometric error in fitting. v0 and Dr we “fit” using human analysis for motion
data as apposed to using a fitting procedure which we use for α, τ and µ. We take
r = 1 and scale our parameters extracted from beetle data appropriately by body
lengths.

2.5 Fitting the Model

We have a model, data, and free parameters to fit the model. Such problems have
wide-ranging solutions in the literature. One broad distinction of fitting procedures
is “Gradient” vs “Gradient-free”. The former involves a priori knowledge of the
analytic gradients of the optimisation target f(p) with respect to the parameters p.
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Figure 2.8: (a) Schematic diagram of the model showing the geometric centre (GC)
the soft-body force including overlap, and the velocity, orientation, and GC director
(not normalised here) data used to compute the re-orientation V ·, θ·,R· and the
rounded arrows respectively. (b) resultant density obtained from fitting the model
to theN = 200 data set only. The error bars on the data curve (blue) indicates a
standard deviation of kernel density estimates taken at n = 100 temporal windows in
the data, each window had equal width of T/n where T is the total number of time-
frames in the data. The error bars on the model indicate one standard deviation
between three separate simulations with different initial conditions. Reproduced
from [94]
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Parameter α τ (s−1) µk (s−1) v0 (s−1) Dr (rad2s−1)

best-fit value 1.1 19.6 316 13.19 2.34

Table 2.1: Best fit parameters corresponding to the data in figure 2.8. Note the
exponent α is a dimensionless number, and we have re-scaled lengths to the beetle
length/ particle diameter.

For example back-propagation in neural network fitting is a gradient based approach.
The latter does not take gradients as input, but may however compute gradients
(or estimates of them in Stochastic systems) a posteriori, during optimisation. In
our case our objective function involves computing a (Stochastic) simulation with
parameters p to give trajectories T , computing analysis of the simulation, i.e. some
observable f(T |p), and comparing to experimental realisations of f , simply put we
cannot analytically compute gradients for an optimiser, at least not without great
difficulty.

Knowing this we opt to use gradient-free methods by using Bayesian optimi-
sation, we use a popular package to implement this procedure [99]. For us the only
non-trivial aspects of the optimisation process are the plethora of local minima, and
the large computational cost of a simulation (on the order of one minute) and its
Stochasticity. The latter meaning we must simulate each parameter set multiple
times to reduce fluctuations. Typically, we take 3− 5 runs per parameter set. Even
with GPU acceleration optimisation typically lasted 24 to 48 hours. To solve these
we use a large initial random search of roughly 50% of the parameter queries which
gives the optimisation procedure a large amount of seed data to find the best mini-
mum, similarly due to the Stochasticity we set the optimiser to take an average of
three runs of each parameter set (three to balance the large computational cost). Fi-
nally, for us the objective function f is the mean square error between the Gaussian
kernel density estimate of the probability distribution function of density for the
candidate simulation and the experimental data. Thus, we aim to find parameters
α, τ and µ which produce a simulation with as close to the density distribution we
see in the experimental data as possible.

The fitting results can be seen in figure 2.8, where the model was fitted only
to the N = 200 group. We do find that the model computed on non-training data
(n = 50, N = 100) is broadly accurate, i.e we recover a largely un-clustered phase
for N = 50 but see slight bi-modality in N = 100. We expect that the fitting
parameters place a phase boundary (separating unclustered and phase-seprated/
bi-modal) at roughly N ∼ 100. In the next section we will explore this and the
variance of the model in α− τ space.
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Figure 2.9: The CABP model in α − τ space. For N = 200 (a), N = 100 (b) and
N = 50 (c). We see a region of uni-modal densities (left of boundary) and another
region of bi-modal densities (right of boundary). Data with circles indicate values
for which we believe a steady state has not been reached, it is likely this is due
to the effect of too weak a reorientation causing dispersal. Filled squares indicate
unexplored parameters. The unfilled square in (a) indicates the best fit for the
N = 200 case.

2.6 Phase Behaviour

To understand the model we can look at how the density distribution varies across
different choices of α and τ . The other parameters we will keep fixed. We show this
data in figure 2.9

Varying α and τ gives us information on the quality of the fitting process
and a measure of uncertainty on the best fit parameters. The same data gives us a
phase diagram of the model, i.e. unimodal to bi-modal density distributions across
parameter values α and τ , which define the strength of reorientation. To see this
fact a-priori consider τ = 0, clearly as τ is the pre-factor of the re-orientation term,
in this case there will be no re-orientation. With no reorientation the model reduces
to active Brownian motion in unconfined space meaning the density will decrease
with time to zero. As in this regime the model is unconfined active Brownian
motion, the density should tend in distribution to a strongly peaked uni-modal
distribution around ρ = 0. The phase boundary 2.9 (a) (drawn by eye) indicates
a rough cutoff between uni-modal and bimodal density distributions controlled by
the reorientation term. Notably there are examples of much more extreme bimodal
distributions that do not fit the data, and that bimodal density is quite a generic
property of the model. The best fit distribution is bi-modal (N = 250), so we
expect then that there is some intermediate values where uni-modal densities give
way to bi-modal densities. The best fit simulation result is well within the phase
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boundary, but we can see a significant variance in parameters with similar results.
Similarly, for N = 50 and N = 100 we also compute the phase diagrams in figures
2.9 (c) and 2.9 (b) respectively. The N = 50 case does not show clearly bimodal
distributions. For N = 100 the bi-modality is clearer but still not as obvious as
for N = 200. Both N = 100 and N = 50 include much larger areas of clear uni-
modal distributions and in particular larger regions where the density is tending to
a concentrated distribution around 0 density meaning the group has not remained
cohesive.

2.7 Conclusions

In this chapter we have followed a top-down approach to understand the phe-
nomenology seen in a particular example of active matter. We began with an out-
line of the experimental data collection and processing from raw data into trajectory
data. Then with the context of MIPS we discussed various extant methodologies for
the calculation of density in active matter, from global to local definitions. Follow-
ing this we introduced our own method for local density calculation, based upon the
DT, which we then use alongside beetle speed statistics to examine the relationship
between beetle local density ρ and beetle self-propulsion speed v(ρ). This elicited
numerous features, at leading order a speed decaying with density that is one core
constituent of MIPS, and at higher order what appears to be a power-law decay
that breaks to an increasing speed at high densities. To attempt to explain these
features we studied simulation data for non-inertial and inertial ABP’s. Following
the same methodology, we found a decaying speed with increasing local density in
all cases, with a linear dependence in the non-inertial case and a non-linear, per-
haps power law, dependence in the inertial case. In both we die not find the upward
trend at high densities ρ ∼ 1 as seen in the beetle data. Although we cannot rule
out non-trivial beetle behaviour generating the features we see in the experimental
data for v(ρ) (figure 2.5), we can at least say the power-law phenomenology can be
explained by active diffusion processes with collisions at sufficient density combined
with inertial effects.

Our behavioural data for Whirligig beetles fulfill one criterion associated
with MIPS; a self-propulsion speed decaying with increasing local density. We show
this could be explained by inertial ABP’s. Interestingly though we did find that
inertial effects, which alter the MIPS phase diagram, are weakly represented in the
experimental data, as we found in examining the correlation function between beetle
orientation and velocity in figure 2.4. Whatever the case the density decay is present
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in the experimental data consistent with our hypothesis of a MIPS like mechanism.
After examining the experimental data, we moved on the fitting of a model

inspired by the phenomenology observed in the data. We identify the fact that bee-
tles re-orientate back into the cluster when the have large excursions, and present the
CABP model to include such a re-orientation term dependent on local density. We
found this is sufficient to explain the emergence of the bi-modal density distribution,
and examining the model in the space of the re-orientation term’s free parameters
we find a clear transition from uni- to bi-modality in the density distribution.

One unanswered question in our analysis is what exactly does generate the
behaviour we see in the local density dependent speed. Future research could in-
vestigate to what extent, if at all, this is natural behaviour by Whirligig beetles
perhaps by a detailed assessment of Whirligig biomechanics in large groups and
especially just after collisions. However, this and what we have seen in this chap-
ter are top-down approaches to the problem. Another avenue of future research
from a bottom-up perspective could be to determine the equations of motion in a
completely non-biased way. For example in the literature we find examples of de-
termining interaction rules by fitting equations of motion by comparing individual
trajectories [66] and/or responses to neighbour position [67, 68, 69, 15, 70]. It would
be interesting to do the same in Whirligig beetles, especially over different groups
sizes. But more importantly fitting equations of motion by comparing individual
trajectories or individual responses start with an already biased model, that is one
informed by the context of the field up to now, giving a pre-defined equation of
motion.

One novel directions would be to attempt the fitting of an “intelligence”
based method, that is instead of fitting response forces to those seen correlated
with nearest neighbour positions, and using this in a pre-determined equation of
motion, one could attempt to generate these response maps from sensory input,
say visual input using a neural network or other machine learning approach in an
unsupervised fashion. The difficulty will likely be in the quantity and quality of
data required to do this, and in how decipherable the fitted model is. A second
would be to use recent methods for data-driven discovery of differential equations
and their parameters [100, 101], and extensions to work with Stochastic differential
equations [102]. The torque term we introduce as part of our CABP model is an
ideal candidate for these discovery methodologies. The data we have used in this
thesis is however the limiting factor in appyling these methodologies, more data
with higher spatio-temporal resolution would be required to pursue this direction.
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Chapter 3

Collective Motion from Future
Path Entropy Maximisation

In this chapter we will introduce a future path entropy maximisation algorithm to
be applied to active matter. The model will be built with a bottom-up approach,
and yields behaviour reminiscent of bird flocks, insect swarms, and fish. The model
is built from the stipulation that all members of the group, individually, aim to max-
imise their estimations of visual state entropy over future paths that they perceive.
Physically this is motivated by the idea of “keeping options open” as a heuristic
for intelligent decision-making. Here we cast this idea directly as an entropy over
future paths, the paths being formed by a particular set of actions an agent may
take (e.g. choosing a speed, changing velocity direction), calculated by the empirical
count distribution of future visual states agents anticipate over these paths. The
maximisation of path entropy is then understood as an agent selecting the action
leading to the highest path entropy (or in some way selecting among degenerate
maxima). The paths and states along them are also conveniently thought of as
part of a Future States Tree (FST). The algorithm itself, individuals maximising
future path entropy, is completely deterministic. With the possible exception of
action selection with degenerate maxima. Nevertheless, we will see this determin-
istic algorithm leads to cohesive, highly-ordered, group motion. As well as other
motion phenotypes. Biologically we propose this model as a reasonable cognitive
process real-world active matter may follow, such as birds or insects. The visual
state represents input to an individual’s retina, or as will be discussed an abstract
representation of this “higher” up an agents cognitive processing. The future paths
represent a reasonable judgement individuals can make about the potential future
given their information about the present. Throughout and in the conclusion to this
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chapter, as well as the next two chapters (4 and 5), we will continuously return to
discussion of how reasonable our model is in the real-world and the predictions it
makes.

We will outline two methods in which to achieve the model outlined above,
at a surface level the first takes as input discrete visual states (into sensors) along
paths, and forms an empirical entropy distribution from the counts of each state
along paths. The second will construct a compression-based entropy by devising a
suitable encoding for non-discretised visual states. We will see that both result in
spontaneous collective motion. But the compression approach necessitates a notion
of “eye-resolution”; an effective discretisation of the visual state. The effective
discretisation is commensurate with the number of sensors in the discrete state
approach.

3.1 Visual Input and the Cognitive Process

Figure 3.1: (a) A sketch of a visual state, the outline of the central agent indi-
cates sensors which are considered “activated” or “filled” or not by an opaque black
outline of translucent black outline respectively. Faint lines emanating from the
central agent indicate pairs of angles defining the ns = 40 sensors. (b) A sketch of
an agent’s future states tree (FST) (red). The blue and green agents represent two
models of other agents. The bold black lines highlight the paths following on from
one particular initial action. Anticipated collisions can occur on the FST, indicated
by the Green agents fourth state (transparent). We choose to either continue enu-
merating paths and states past these “collisions” or prematurely stop enumerating.
Both cases will be discussed, by default we perform the latter.
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We imagine the i-th agent, as part of a larger group of N agents, at a given
position xti ∈ R2, in unbounded space, and orientation θti ∈ [0, 2π) for discrete
time t. Each is modelled as a disc of radius 1 which defines our units of length.
For time we will use a time step ∆t, typically 1 unless otherwise stated, defining
our time units. Each agent is able to compute a visual state defined by the visual
projection method briefly outlined in the introduction, which we sketch in figure 3.1
(a). Mathematically this visual state can be expressed as an integral

ψni = Θ

[∫
σn

Θ
[∑

j

Iij(χ)I
′
ij(χ)

]
dχ− π

ns

]
. (3.1)

The terms in equation 3.1 have the following conceptual purposes (1) the integrand
indicates 1 if for angle χ ∈ σn = [2π(n − 1)/ns, 2πn/ns], at least one other agent
j ̸= i is intersected by a line of sight from i at angle χ, where Θ[x] = 1 iff x > 0

and 0 otherwise is the Heaviside step function (2) the integral counts the proportion
of angles χ ∈ σn which intersect some agent j ̸= i (3) the outer Heaviside function
registers a 1 for sensor n if at least half of all lines of sight from i at angles χ ∈ σn

intersect some agent j ̸= i. That is if for a given sensor, defining a set of angles, if
at least half of the lines of sight along those angles intersect at least one agent j ̸= i,
the sensor ψni is considered activated.

In detail, the notation ψni denotes a visual state’s n-th component for an
agent i, with ns sensors. Each sensor defines a range of angles χ ∈ σn, along which
lines of sight n̂i = R(χ)v̂i are projected. Here ·̂ denotes a unit vector and R(χ) is
the rotation matrix

R(θ) =

[
cos θ sin θ

− sin θ cos θ

]
. (3.2)

To determine if a given line of sight intersects at least one agent j ̸= i two indicator
functions are used

Iij(χ) = Θ[1− |xij × n̂i(χ)|], (3.3)

I ′ij(χ) = Θ[xij · n̂i(χ)] (3.4)

The first determines if the shortest distance between the ray ni(χ) from i is less
than the agent radius (here set to 1). The second restricts the first to apply only
along the direction from i towards j. This is required since Iij will be satisfied along
either direction.
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For each indicator function the relative position vectors xij = xj − xi are
used. Where time indices have been dropped for clarity. Finally the subtraction of
π
ns

can be generalised to 2π
ns
θc, here θc defines the proportion a sensor must be filled

to register a 1 in the visual state. Unless otherwise stated θc = 1/2 throughout this
thesis.

Core to our model is the computation of future states by each agent. To
write this down we will adopt a convention that realised positions, orientations, and
velocities of agent i at times t will be written as xti, θti , and vti respectively. For
futures, we will adopt the notation qti, ϕti, and pti for the positions, orientations,
and velocities of agents i at future times t. For speeds, we will use the shorthand
||vti||2 = vti and ||pti||2 = pti, and if we need to distinguish between actual time t
and future time t′ we will use primes. For realised actions we will use αti ∈ A to
denote agent i’s action at time t and for future actions, as yet un-realised, we will
use βti ∈ A.

The agent has available a selection of actions with which it can modify its
velocity. The set of actions A indexed by α ∈ {1, 2, . . . , nα}, an agent to update its
velocity vector by the operator

Aαti [v
t
i] = vαtiR(θαti)v̂

t
i. (3.5)

(3.6)

These agents select speeds vαti and rotation angles θαti (possibly zero). Our default
action set is v1 = v4 = v5 = v0, v2 = v0 + ∆v, v3 = v0 − ∆v and rotations
θ1 = θ2 = θ3 = 0, θ4 = −∆θ and θ5 = ∆θ. This is written as the set A. This
gives agents access to three speeds and a positive or negative reorientation, which
are measured in our dimensionless length and time units defined by particle radius
r = 1 and time-step ∆t = 1. Each agent then follows the equations of motion

xt+1
i = xti + v

t+1
i ∆t, (3.7)

vt+1
i = Aαti [v

t
i] (3.8)

The core of our model then, is how the actions Aαti are selected. We first
build a Future States Tree (FST) from the actions A. A priori agents may take all
possible τ length combinations of β ∈ A; paths in the FST. Figure 3.1 (b) shows a
sketch of an FST with τ = 4 futures. One path of length τ can be written explicitly
as the sum of products
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qt+τ
′

i = qti +
t−1+τ ′∑
t′=t

p
βt

′
i

t′∏
t′′=t

R(θ
βt

′′
i
)pti. (3.9)

This represents summing the τ selected velocity vectors resulting from action
choices {βt′=ti , βt

′=t+1
i , . . . , βt

′=t+τ
i } starting from the present time t′ = t. We can

use equation 3.9 to determine future positions at leaf nodes in the FST (at time
horizon τ) when τ ′ = τ , and all internal nodes qt+τ ′i where 1 ≤ τ ′ ≤ τ .

In each agent’s cognitive process we apply equation 3.9 to the position of
other agents j ̸= i and define some model as to how agents select actions. That is
each agent i imagines the future positions qtij of the other agents, where we write ij
subscripts to indicate i’s prediction of j’s future state. In principle, we can define
any model for how actions βtij are chosen for agent j in agent i’s cognitive process,
by default however we will use a ballistic assumption. In our notation this is βt′ij = 1.
The FST then consists of |A| branches defined by the initial actions βt′=ti with paths
given by equation 3.9.

In order to make a decision about which action to take in the present time
t, an agent can group the future paths by their initial action βt′=ti ∈ A. In this way
an agent can generate, via its cognitive process, a set of (τ − 1)|A|τ−1 visual states
(which may not be unique), denoted as the sets Bt

βti
= {ψ1, ψ2, . . . , ψ(τ−1)|A|τ−1}, for

each initial action βti defining a branch of the FST. This set contains all the visual
states generated from the |A|τ−1 paths after having taken action βi at time t′ = t.
We refer to the visual states as ψk rather than explicitly as the vectors ψi defined
by equation 3.1 calculated with different sets of relative position vectors {qt′i −qt

′
j }.

We wish to develop a notion of path entropy based upon the visual states
an agent predicts during its cognitive process, Bt

βti
, for each action βti , and use

this measure to judge which action to take i.e to choose αti. There are two ways
to do this in the current setting which will turn out, in a sense, to be equivalent.
It is noteworthy that both lead to ordered and cohesive motion. First we can
use the discretised visual states ψ, binary vectors of length 2ns , where ns ∈ N
defines the visual sensors. Then an entropy for a branch on the FST is formed
by the empirical distribution of these predicted possible discrete states an agent
calculates. Secondly in an attempt to avoid discretisation by integral equation 3.1,
we define a compression-based entropy for an arbitrary visual projection function
ψ, without discretisation into sensors, and use this to find an entropy along each
branch. This will be done in sections 3.1.1 and 3.1.2 respectively. The motivation
for attempting this is to understand the importance of the number of sensors, ns,
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and in particular why 40 sensors appears optimal. Biologically speaking ns is far
smaller than the number of cells in the retina of higher animals or insects, e.g.
in compound insects eyes like Drosophila’s there are 700 units making up the
eye [103]. We have previously eluded that the sensors represent a step up in the
cognitive process, and not simply a count of retina cells. Our hypothesis is that by
forming a compression entropy, ns can be avoided, leaving only discretisation by the
computational accuracy of decimal values (e.g. floating point arithmetic).

Under either of these entropies the algorithm is the same. Each agent indi-
vidually builds a prediction of all possible futures states to a finite time horizon τ ,
calculates an entropy for each possible action and chooses the action in the present
with the highest entropy. Algorithm 1 details the agent action selection by the path
entropy method. The algorithm makes use of a function to collect visual states along
a particular branch of the FST. This is detailed as a recursive algorithm in algorithm
2. The tree search enumerates all states along a branch of the FST. At any given
node in the FST algorithm 2 collects the visual state associated with the appropriate
positions given by equation 3.9. In the case of internal nodes, where multiple paths
exist deeper into the tree, this visual state is added multiple times. This reflects the
fact the state is present in multiple future paths. Algorithm 3 details calculation
of a visual state. The algorithm produces states commensurate with equation 3.1.
The algorithm avoids the costly integral by instead determining visual projection
intervals for each j ̸= i. Overlapping intervals are removed as they are redundant.
Finally, the coverage of each sensor n ∈ [1, ns] by the non-overlapping projections
intervals defines the sensor array ψi.

Both (1) and (2) can lead to flocking behaviour of similar character which
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we will discuss in detail over the following sections.
Algorithm 1: FSM Decision

Result: Action selection
1 Function decision(i,Xt,A) is
2 ψ0 ← visualState(i,Xt);

/* Initialise future ballistic positions of j ̸= i, and action positions
for i */

3 FST ← futureStatesTree(i,Xt);
4 for α ∈ A do
5 distributions[α] ← [ψ0];
6 u← nextNode(root,FST);
7 distributions[α].append(statesOnBranch(u,FST));

/* Unique states found on the FST */
8 Ψ[α]← uniqueValues(distributions[α]);
9 norm ← 0;

/* Compute the count distribution for these states */
10 for ψ ∈ Ψ[α] do
11 c← counts(ψ, Ψ[α);
12 P [α][ψ]← c;
13 norm ← norm +c;
14 end
15 normalise(P [α],norm);
16 S[α]← entropy(P [α]);
17 end
18 return argmaxαS;
19 end

Algorithm 2: FSM State enumeration
Result: Visual states along one branch of the FST

1 Function statesOnBranch(Node,FST) is
/* Empty state array */

2 states ← [];
3 t′ ← Node.depth;
4 τ ← FST.τ ;
5 if ¬isCollided(Node,q[t′]) then

/* at a non-collided state */
6 p← futurePaths(Node,FST);
7 states.append(visualState(i, q[t′]),p);
8 if ¬isleaf(Node);
9 then

10 for α ∈ A do
11 u ← nextNode(Node,α,FST);
12 states.append(statesOnBranch(u,FST));
13 end
14 return states;
15 end
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Algorithm 3: FSM Visual State Vector
Result: Visual State for agent i from agent positions X

1 Function visualState(i,X) is
/* Obtain visual projections for each j ̸= i */

2 for j ∈ [1, N ] \ i do
/* 0, 2π boundary must be handled with care */

3 θ[j][0], θ[j][1]← project(i,j,X);
4 end

/* Merge overlapping intervals, to avoid multiple counting sensor
overlaps */

5 mergeOverlaps(θ);
/* Compute sensor coverage */

6 for s ∈ [0, ns − 1] do
7 ψ[s]← 0;
8 start ← s · 2π

ns
;

9 end ← (s+ 1) · 2π
ns

;
/* Compute coverage of sensor s by merged intervals */

10 c ← overlap(start,end,θ);
11 if c > θc then
12 ψ[s]← 1;
13 end
14 return ψ;
15 end

3.1.1 Discretised Sensor Entropy

For an action βti we consider the set Bt
βti

∈ Ψ(ns)
|Bt

βt
i
|

by equation 3.1, as a distri-
bution of states generated by action βti . Where the set Ψ(ns) contains all possible
discretised visual states for ns sensors. That is Ψ(ns) is precisely the list of all
binary numbers up to 2ns − 1 with their digits interpreted as the ns sensors states
1. This provides for an efficient way to implement the visual state computationally,
by manipulating a single ns-bit integer value for each visual state.

We then form a count distribution by the function nt
βti
(ψ) which counts how

many times an arbitrary visual state ψ appears in Bt
βti

. Our entropy is then simply
calculated as a sample entropy of the empirical distribution given by

Hβti
= −

∑
ψ∈Bt

βt
i

P tβti
(ψ) logb P

t
βti
(ψ), (3.10)

1i.e Ψ(1) = {1, 0}, Ψ(2) = {00, 11, 10, 01}, and Ψ(3) = {000, 111, 100, 010, 001, 110, 011, 101}, . . .
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where the probability is

P tβti
(ψ) =

nt
βti
(ψ)∑

ψ∈Bt
βt
i

nt
βti
(ψ)

. (3.11)

We find that using this entropy measure the agents generally attain cohesive and
highly order collective motion. We do however see some fragmentation in large
groups at finite τ .

Using this definition of path entropy we may also calculate the maximum en-
tropy possible for a given action set size |A| and time horizon τ which is independent
of N . In appendix B we derive this maximum entropy by assuming all visual states
on the FST are unique. The value we obtain can be used To normalise entropies for
finite tau. Ultimately though we find in the limit τ → ∞ the maximum entropy is
undefined. Which can also be seen from equation 3.11. Since if the time horizon is
infinite, so is both the number of unique visual states, and count of each. That is
we obtain a probability P t

βti
(ψ) → ∞/∞ when τ → ∞. Biologically τ → ∞ would

require an organism capable of projecting future movements of a group infinitely far
into the future. Therefore, practically speaking the case of an infinite time horizon
should be infeasible in any case. Similarly, for |A| → ∞ a similar problem will
emerge. Although in this case the maximum entropy tends to ∞.

3.1.2 Compression Entropy

To develop the compression based approach we first outline a method of compression
of the visual state, using a run-length encoding in section 3.1.2. We will then use
the length of this compressed form to estimate the entropy of that visual state
via Shannon’s source coding theorem [104]. Finally, we will assume selecting the
branch βti , which maximises the sum of these entropies over the visual states in
Bt
βti

(all paths subsequent to it), will be equivalent to maximising path entropy. To
apply the compression we will re-define a non-discretised visual state as a function
ψi : [0, 2π] 7→ {0, 1}, given a set of relative position vectors {qti − qtj}.

Firstly we will recall Shannon’s source coding theorem. Shannon proves his
source coding theorem that implies a message X = {x1, x2, . . . , xL} where each
symbol xi is independent and identically distributed can be compressed into no less
than L · H(X) bits without risk of information loss, where the Shannon entropy
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H(X) is given by

H(X) = −
∑
i

P (xi) log2 P (xi), (3.12)

for some probability distribution P (xi) of the symbols.
Stated another way, if we take a message and compress it losslessly into b bits

we should find that b is proportional to the entropy of the message, and at minimum
L·H(X). In particular the entropy, empirical or analytic, itself gives rise to Huffman
codes [105] and Shannon (Shannon-Fano) codes. These use the entropy given by the
empirical/analytic probability distribution of the alphabet making up a message to
define a minimal lossless encoding. For example taking a corpus of English text, we
compute the probability of any given letter (like P (“a”), P (“b”) . . .) and calculate
the information content − log2 P (x) for each symbol x ∈ {“a”, “b”, “c”, . . . , “z”}.
Symbols with higher information content are prioritised as code words in the en-
coding. E.g “e” is the most common letter, in the English language, so will have
the shortest encoding.

Run-length Encoding

To estimate entropy of a visual state we will define a lossless compression scheme of
a non-discretised visual state (to be defined later). To do this we will first outline
one such scheme, the run-length encoding.

Entropy based codes require knowledge of the underlying probability distri-
bution P (xi) to find an optimal encoding. However, some lossless encoding strategies
do exist that do not require knowledge of P (xi) empirical or otherwise. One exam-
ple is the run-length encoding (RLE) which has historically been widely used to
compress data, especially image data [106]. The intuitive idea is that if a stream of
data includes long runs of repetition, e.g. 00000011111 or 111111001111, the data
can be compressed by calculating run-lengths of repeated data. The “runs“ may
then be replaced by a run-length at a corresponding bit. The utility of such a code
for our purposes is to use it to compress a non-discretised visual state and use the
length of the compressed form to approximate the entropy. We will outline this
process by first outlining the RLE in this section.

To illustrate the RLE we compress one example sequence of binary values.
Consider the sequence 00111110000001111111000000. We can compress this se-
quence (using integers as code-words) by finding the run lengths of each bit (0, 1)
to produce the sequence 0, 2, 1, 5, 0, 6, 1, 7, 0, 6, that is two zeros, five ones, six zeros,
etc. Further we can recognise that we only need to know the parity of the sequence,
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i.e. if we know the first run is of 0’s we can include that information by writing
the encoding as 0, 2, 5, 6, 7, 6 and noting after each run-length integer we flip the bit
outputted by the decoder, starting with that bit as the first term in the sequence.
To return to binary we can realise each integer has a binary form and write our com-
pressed data as 0, 010, 101, 110, 111, 110 where we implement our decoder to take the
first bit (parity of the data) and then parse the code in chunks of three bits, the run
lengths. Generalising this, our data will have some maximum run length, and we
represent each run length as a bit string of the lengths binary representation with
zeros prepended if necessary. So if our largest run length is 30 (11110 in binary),
and one run length is 3 we write three as 00011 instead of 11.

In the example above we started with a sequence of 26 bits and compressed
it to a sequence of 16 bits, a compression ratio of 16/26 ≈ 0.6. For bit strings of e.g.
26 1’s or 0’s we would find compressed sequences 111010 and 011010 respectively,
which both have compression ratios of 6/26 ≈ 0.357, whereas a string of alternating
1’s and 0’s would have the compressed form 110111011101 · · · 11, i.e a compression
ratio of > 1 indicating it is better to not compress under this scheme. In these three
cases the empirical entropies are − log2(12/26) − log2(14/26) ≈ 0.996, (all ones)
− log2(1)− 0 log2(0) = 0, and (alternating) − log2(1/2) = 1 respectively.

In general for any binary sequence of data the encoding computed in this
way will yield a sequence of length 1+ b ·k where 1 is for the parity, b ∈ {0, 1, 2, . . .}
is the total number of boundaries in the sequence (where the bit flips) and k is the
total length of the binary representation of the largest run-length. This method
is somewhat naïve. By carefully choosing our encoding of the integer run-lengths
we could shorten the code length further by carefully choosing code words. One
example is Elias-γ coding [107] used when the largest run-length is unknown, in this
case the run-length 1 is encoded as 1 and 2 as 010, however 7 would be 00111, a
little longer. In general choosing code words carefully often leads to some encodings
being more optimal and some less and one must be careful to keep codes uniquely
decodable e.g (1 7→ 10, 2 7→ 00, 3 7→ 11, 4 7→ 110, for symbols 1, 2, 3, 4), and even
better instantaneous (1 7→ 0, 2 7→ 10, 3 7→ 110, 4 7→ 111, for symbols 1, 2, 3, 4) where
when a decoder reads 0 it knows the decoding must be 1 since 0 is not a prefix to any
other code [108]. For simplicity, we will take the 0-prepended binary representation
for code words since in any case the compressed size will be proportional to the
number of run-lengths, and therefore the entropy as required.
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Run length Encoding of a Visual State

Having recalled the idea of lossless compression and the run-length encoding as
particular examples, we will now apply this to the visual state of an agent in the
next section. First we will make solid the idea of a non-discretised visual state ψ.
To do this we simply take the integrand in equation 3.1 interpreted as a function
ψi(χ) : [0, 2π] 7→ {0, 1}. That is

ψi(χ) = Θ
[∑

j

Iij(χ)I
′
ij(χ)

]
. (3.13)

This function, given some relative position vectors {qtj−qti}, will be 1 where at least
one agent j is intersected by some line of sight directed at angle χ from i. And will
be zero otherwise.

Figure 3.2: Circles represent visual states over [0, 360◦), black regions are 1 and
white/blank regions are 0. Here 1, 90◦, 0, 180◦, 1, 90◦ means a run of ones anti-
clockwise from angle 0 to 90◦, a run of zeros for 180◦ and finally another run of
90◦ back to the 0 360◦ boundary. The length of the run-length encoding is propor-
tional to the number of boundaries on the visual state, if the 0, 360◦ boundary is
always considered a boundary, and decimal run-lengths are approximated to a con-
stant number of digits. Note the run-lengths in each encoding contain a list of bits
and a corresponding angular length (decimal value) where this length must also be
converted to a sequence of bits, implying a discretisation. I.e on a computer these
decimal values are approximated as 32 or 64 bit floats, even analytically this process
necessarily implies a discretisation (like the sensor model) at some level even if it is
much finer than e.g 40 sensors, otherwise decimal and transcendental numbers will
yield extremely large even infinite codes. E.g even picking a code word, say 00, to
represent π requires storing the value of π once for later decoding which we can only
approximate in reality.
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Therefore, if we directly interpret the visual state ψi : [0, 2π) 7→ {0, 1} as a
source can we determine its entropy? Unfortunately we do not know the underlying
distribution that generates any particular ψi so we cannot directly find the entropy
analytically. However, we could try to compress ψi, losslessly, and use this as an
approximate entropy. Consider any ψi, we know that it maps any given χ to a
bit ({0, 1}), further ψi will be composed of different contiguous regions of 1’s or
0’s even if such a region is infinitely small. With this information we can trivially
apply a run-length-encoding to a given ψi, up to the encoding of decimal (even
transcendental) values, which as we will see require some approximation.

To do this start at χ0 = 0 and note the parity ψi(χ0), then find the next
χ1 ∈ (0, 2π) such that ψ(χ1) ̸= ψ(χ0) and note this value. Repeat this process
until the limit of χb → 2π for some b ∈ {1, 2, . . .}. This scheme will convert the
information in ψ down to a list of b decimal values (run lengths χi+1 − χi, for
0 ≤ i ≤ b) and a parity bit. i.e a visual state ψ(χ) = 1 will be compressed to
1, 2π (or 1 by convention) and for the visual state ψ(χ) = Θ[cos(kχ)], k ∈ N where
Theta[x] is the Heaviside step function we would find a list of 2k angular runs (of
equal size) and the parity bit. This scheme is presented visually in figure 3.2.

Immediately we have two issues (1) the values of χi+1−χi are real numbers.
This means to actually complete this compression (compress the run lengths like
in the binary sequence example in the last section) we need to approximate the
run-lengths, in principle to arbitrary numerical precision. For finite numerical ap-
proximation this necessarily implies a number of “sensors” i.e. taking decimal values
at two decimal places gives a minimal interval of 0.01 radians implying ⌈ 2π

0.01⌉ = 629

“sensors”. Here a higher number of “sensors” resolves the boundaries of the run χi

to higher accuracy, and does not present problems for calculating entropy, unlike ns
in equation 3.10 where ns → ∞ actually leads to maximal entropy with a finite FST.
Given this fact we would typically choose a very precise approximation, e.g. 32- or
64-bit floats that imply ≈ 108 or ≈ 1016 [109] “sensors” (via the machine epsilon)
(2) As raised by the cosine example, if the angular sizes are in some regular pattern,
we could compress even further due to the repetition of interval sizes by choosing an
appropriate encoding of them. I.e. if χi+1 −χi = constant for all intervals we could
truncate the constant and define a code word to represent it, c. Then we could write
a decoder to refer to and replace the code word c with the actual run-length. This
would save repeating the same data many times. For a small number of repeating
patterns we could do something similar for each. Applying this to the cosine exam-
ple we could achieve a compression of length 1+ b+k (+k since we do need to store
the constant run-length at least once for decoding) as apposed to 1 + b · k where
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k is the length of the decimal approximation of the constant decimal run-length
in bits. For simplicity, we will continue by taking just the RLE as outlined above
without applying additional optimisations such as finding repeated run-lengths and
optimising their code-words. One justification for this choice is that it otherwise
implies a different decoding scheme on a per-example basis.

In general, the length of the run-length encoding of a visual state performed
as above is exactly 1 + bk where b is the number of boundaries in the visual state
and k is the length of the encoding of the b (approximated) decimal run-lengths
(truncated to k-bit representation). For example, we could use 64-bit floating point
numbers to approximate interval sizes, giving k = 64 and so ≈ 1016 implied “sen-
sors”. In any case the length of this run-length encoding of a visual state, L(ψi), is
directly proportional to the number of boundaries in the visual state, neglecting the
constant 1. This is particularly interesting given the use of the boundary angles,
the χ0, χ1, . . . , χn used above, by Pearce et al [73] for their model of a bird flock.

To directly link L(ψi) to the Shannon entropy of a given visual state ψi would
imply that this simple encoding is equivalent to entropy codes, such as Shannon
codes or Huffman codes [105, 104]. Which is likely not the case. We can assume,
by Shannon’s source coding theorem, that it is at least proportional i.e L(ψi) =

cH(ψi) to the true entropy H, and use L(ψi) as an approximation where a larger
L(ψi) means a larger entropy. Since we are ultimately going to be comparing (and
maximising) entropies, a scalar proportionality constant will not affect our ability
to judge agent actions by approximating H(ψi) ≈ L(ψi), i.e maximising L will
maximise H.

Path Entropy and Eye Resolution

The main issue with the compression approach is that it defines an entropy for a
given visual state, and not for a distribution of states along a path. This would
not be a problem for calculating path entropies if each ψ were independent and
identically distributed, where we could sum the entropies, this is likely not the case
since a state along path is in effect conditioned on the previous states within the
same path, and all are conditioned on the root visual state. Mathematically, if we
examine one branch of the FST, for an agent i at time t, by enumerating a set of all
visual states on all paths along it, Bt

βti
, we can write the entropy using the inequality
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[108]

HCE
βti

= H(ψ1, ψ2, . . . , ψ|Btβi |
) ≤ 1

|Bt
βi
|

∑
ψ∈Btβi

H(ψ) (3.14)

=
1

|Bt
βi
|

∑
ψ∈Btβi

L(ψ). (3.15)

We can see the issue of converting entropies of states to an entropy of a path
via the inequality. We hypothesise thought that maximising equation 3.15 will in
turn maximise HCE

βti
through the inequality.

There is one caveat to the hypothesis above, a priori; the maximum entropy
of H(ψ), roughly equivalent to the maximum number of boundaries, can be attained
when all visual projections of the other N − 1 agents are non-overlapping, that is
when there are 2(N−1) boundaries on the visual state. This case can, and will occur,
in groups that are completely non-cohesive even at an arbitrary distance from one
another. This also presents a problem for the minimum timescale for visual states to
change. That is for agents at arbitrary distance small changes in the configuration
Xt

i will largely not effect i’s visual state. Taking τ → ∞ in theory may resolve this,
but this is not computationally feasible.

Therefore, we secondly hypothesise we can resolve this by introducing a visual
resolution parameter, s ∈ (0, 2π], that defines how large a visual projection must be
(in angular size) to be visible to an agent. This in effect implies a length-scale at
which two agents are invisible to one another arcsin a

d > s for agent radius a and
inter-agent distance d. Further, given a marginally opaque (circular in 2D) flock at
distance d and radial size r from an agent the flock as a whole becomes invisible at
the length scale arcsin r

d > s.
This is the point of “equivalence”, the choice of s does present interesting

phases of behaviour as we will cover subsequently, but as it will turn out a choice
of s ∼ 2π

80 commensurate with ns = 40 in the discrete state entropy model, produces
groups of high order ϕ ∼ 0.98. Even across the spectrum of behaviour governed
by s, each implies an effective sensor discretisation. In particular a discretisation
coarser than that implied by the approximation of decimal numbers, i.e a resolution
of 2π/80 compared with ≈ 10−16 for a 64 bit floating point approximation.
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3.2 Both Path Entropy Methods are Phenomenologi-
cally Equivalent

We have now defined two methods of calculating an entropy of future paths, in this
section we will show that both lead to spontaneous flocking behaviour. We will also
compare the specific idiosyncrasies of using HBti

(equation 3.10), which we will refer
to as the State Count Entropy (SCE), and HCE

βti
(equation 3.15) which we will call

the Compression Entropy (CE), and what these properties mean physically.
In order to make our comparisons quantifiable we will focus on notions of

order, density, opacity, morphology, “clustering”, and in some cases vorticity. Order
for our purposes will be defined similarly to Vicsek et al. [4] namely

ϕ =

⟨
1

N

∣∣∣∣ N∑
i=1

n̂ti

∣∣∣∣⟩
t

. (3.16)

The global order is the normalised sum of director vectors n̂ti = [cos(θti), sin(θ
t
i)]

T ,
where θti is the i-th agents orientation at time t. The order, density and opacity of
flocks will also be of interest in quantifying behaviour, the density we will typically
measure in the sense of the convex hull area fraction of area At. Density ρt is defined
by

ρ =
Nπr2

⟨At⟩
. (3.17)

The density measures the coverage of the convex hull of agent positions by
the agents, given that our model includes agents with physical size. We will also
measure the opacity. For our model opacity is defined via the proportion of sensors
activated in a visual state, averaged over realised visual states across agents and
time. Or the proportion of 1’s and 0’s in the CE model. We identify this quantity
as

Θ =

⟨
1

ns

ns∑
s=1

ψs
⟩
. (3.18)

Marginal opacity of the field of view, Θ ∼ 0.5, is defined in analogy to opacity in
bird flocks. The meaning being that a group of birds assembles in such a way to
allow an observer to see substantial areas of clear sky and hence not other agents,
measurements have indicated opacity of 0.25 to 0.6 [73].

To understand the behaviours we see in our model and their effects on ubiq-
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uitous measurements in the collective motion literature (order, density, opacity) we
will also quantify morphology, vorticity, and clustering. Morphology we define from
the positions of agents at a given time by use of the Eigenvalues of the position
covariance matrix,

Kxy =
⟨
(xti − µtx)(y

t
i − µty)

⟩
i,t
. (3.19)

Where xti and yti denote the spatial positions in the x and y axis for agent
i at time t, and µtx = ⟨xti⟩i and µty = ⟨yti⟩i denote the average projected over
each dimension. The Eigenvalues λ1, λ2 of the matrix Kxy are used to define the
morphology

Mt =
λ2
λ1
. (3.20)

The indices 1 and 2 are chosen so that λ1 ≤ λ2. For example a group with a circular
shape will have λ1 ∼ λ2 and so M ∼ 1, a group stretched along one particular
direction (a line at the extreme) will have M ≫ 1. To quantify vorticity we use the
average cross-product of an agent’s position in the centre of mass frame, xti − ⟨xtj⟩j
and its current director n̂ti. The cross product in two-dimensions can be defined as
the value a× b = a1b2 − a2b1 for vectors a = [a1, a2]

T and b = [b1, b2]
T . The metric

captures the degree to which agents are circulating around some central point. The
vorticity metric is

ν =

⟨
1

N

N∑
i=1

(xti − ⟨xtj⟩j)× n̂
t
i

||xti − ⟨xtj⟩j ||2

⟩
. (3.21)

Finally, and perhaps most importantly, we seek to measure a sense of clustering.
Why clustering of agents is present in the model at all is first worth considering. Here
agents choose actions associated with maximal future path entropy of visual states.
The variation among visual states comes from different relative spatial positions of
agents within the group, and a visualising agent. Given circular agents of radius
r, and a sensor coverage threshold θc, a length scale can be derived. Namely, the
distance at which one agent may “sense” another. That is when a second agent is
able to fill a sensor. The angular size of a circle at distance d is 2 arcsin r/2d. This
means for an agent to be visible the distance must satisfy θc ≤ 2 arcsin r/d. So the
critical distance (using the small angle approximation sinx ∼ x, x≪ 1) is dvis =

2r
θc

.
For θc = π/40 as commonly used in this thesis, dvis ≈ 25 radial units (in this thesis
r = 1). The same argument can be used for an agent’s ability to “see” a group,
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Figure 3.3: Example clustering of a group (in open space) using the method outlined
below. (a) the group is cohesive (b) a smaller group splits from the main group and
is identified as a second cluster (c) multiple groups have split from the main cluster,
some are single-agent clusters. We use DBScan utilising “density” in space and
orientation-space to detect order and cohesive groups as clusters. Lone agents are
identified as clusters for accurate fragmentation statistics.

taking instead dvis =
2N
θc

for a group at marginal opacity with group radius scaling
as N [73]. Agents far beyond this distance are unlikely to cluster with other except
by random chance (if random decision are made with degenerate maxima). This is
a simple consequence of an agent “seeing” little and therefore receiving no activated
sensor input. For agents within this distance of some other (or others) a greater
variety of visual states may be experienced by continuing to be close. This is the
mechanism for clustering. Indeed, we hypothesised (and will investigate in section
3.2.2) for the case of compression entropy, where no such length scale exists a priori
due to the lack of sensors, we must re-impose this length scale to see clustering.
Otherwise, maximum entropy is trivially attained with other agents set at arbitrary
distance.

In order to detect fragmentations in our data, i.e. when one agent or a
number of agents leave the main group, we develop an algorithmic definition of a
cluster. The goal of the method is to identify ordered and/or cohesive groups as
clusters, e.g. figure 3.3 (a). For example a group of N agents with high order,
ϕ ∼ 0.99, and high cohesion (a number density say of ∼ 1/N , indicating a flock at
marginal opacity of radial size N) should be recognised as a single cluster. If however
one agent leaves the group we should find two clusters, or if the group splits into two
highly ordered and cohesive flocks moving apart we should also have two clusters,
e.g. figure 3.3 (b). We also seek to allow for clusters of diverse morphologies, such
as stretching along one direction or the formations seen in figure 3.3 (a), (b), and
(c).
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To determine clusters from data is difficult algorithmically, however intuitive
it may be to the human eye. Often there is a requirement for the tuning of clustering
algorithm hyperparameters. These parameters are either determined by domain
knowledge of the data to be clustered, or by a data-driven discovery process, both
leave room for bias and subjectivity. We would like to limit reliance on the need for
a data-driven approach, and subjectivity.

We choose to use the density based clustering algorithm DBScan [110] to
identify clusters using agent position and orientation data, since in essence a cluster
in our data represents highly ordered and cohesive groups. Clearly a cohesive group
will have higher (spatial) density than a fragmented one, and an ordered group
will similarly have a high “angular density” (in orientation space accounting for the
periodicity). What remains is to select hyperparameters informed by our applica-
tion. The DBScan method has two hyperparameters Eps and MinPts (as named
by M. Ester et al). Briefly Eps is a parameter which defines a distance cut-off as
to whether points can be in the same cluster (this is a transitive relationship so
two points may be mutually too far, but connected by an intermediate point), and
MinPts is simply a number for the smallest cluster size. We aim to find these hy-
perparameters via a physical argument, i.e. using the domain knowledge approach.
MinPts is simple to identify, we wish to identify single agents “clusters” in order to
capture single agent fragmentations, so MinPts = 1. For Eps we must first define
distance, and then a length scale cutoff separately for position and angular data.
At a given time t in a simulation we take the agents positions xti = [xti, y

t
i ]
T and

orientations θti (interpreted in the range [0, 2π)) to compute the distance matrix dtij

dtij =
1

2
(dxtij + dθ

t
ij). (3.22)

Entries in the matrix are the average of the Euclidean distance for the positions,

dxtij =

(√
(xti − xtj)

2 + (yti − ytj)
2

π
√
N

)
, (3.23)

scaled to units of the inter-agent distance at marginal opacity ∼ π
√
N (equation

3.23). And the 2π-Periodic Euclidean distance on the orientation data,

dθtij =
Min(|θti − θtj |, 2π − |θti − θtj |)

2∆θ
, (3.24)

scaled to units of the orientational move parameter: ∆θ (equation 3.24).
The reasoning for this choice is that the spatial part of our distance covers the
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cohesive characteristic and the orientational part covers the ordered characteristic.
In particular, as we will show, our algorithm targets marginal opacity, so we can use
a scaling argument for the length scale cutoff in the spatial data. For the angular
data we choose a particular parameter from our model which is more arbitrary (in
general across different models or parameters), and if we change the ∆θ parameter
in our model may need to be re-thought, but here ∆θ = 15◦ is typically a constant,
so we consider it a reasonable choice for the data we present.

An alternative method could take an order threshold, say ϕ > 0.9, and use
this to compute an approximate angle to use as a scaling from the definition of
ϕ. However, this method then falls to a justification of a particular ϕ-value. For
example taking small θti ∼ 0 we could write the order as ϕ ∼ ⟨cos θti⟩ ∼ 1− ⟨(θti)2⟩

2 so√
⟨(θti)2⟩ ∼

√
2(1− ϕ), for ϕ = 0.9 this gives approximately 25◦. Which is similar

to taking 2∆θ anyway, which is normally 30◦.
We choose to additively combine our distances in space and orientation (with

a normalisation factor) and choose Eps = 1 when actually calling on the DBScan
algorithm. We can now apply all group level statistics such as ϕ,Θ,M etcetera to
individual clusters, or average these over clusters, and detect/measure fragmenta-
tion. For example, we can calculate the order of a particular cluster Ctγ , at time t,
as

ϕ(Ctγ) =
1

|Ctγ |

∣∣∣∣∑
i∈Ctγ

n̂ti

∣∣∣∣. (3.25)

Similar equations apply for density, vorticity or other group measures. Through-
out when reporting cluster level statistics we will make this clear in figures main text,
when we are comparing cluster level (usually the largest cluster) to global statistics
we will adopt a notation ϕC , ρC to represent statistics computed over the largest
cluster in the data, for order and density respectively. Mathematically these statis-
tics make use of the output from the clustering methodology. This is a set of sets
of indices for each time step t, Ct = {Ct1, Ct2, . . . , Ctn} for indices n ∈ [1, 2, . . . , N ].
Each set of indices Ctγ ⊆ {1, 2, . . . , N} satisfies Ctγ∩Ctγ′ = ∅ ∀γ ̸= γ′ and

∪N
γ=1C

t
γ =

{1, 2, 3, . . . , N}. We call each set of indices Ctγ a cluster at time t. These indices
can be summed over as in equation 3.25 to determine the average order of cluster a
cluster over time.

Given the understanding of our statistics of comparison we will move on to
examining our path entropy models.
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3.2.1 State Count Path Entropy

Figure 3.4: Order (ϕ), opacity (Θ), and time averaged convex hull number density
(ρ), equations 3.16, 3.18, 2.1 respectively, using the path entropy method (SCE)
across a broad range of model parameters. Here note ρ is plotted on a log10 scale.
We find across this parameter set average order ∼ 0.95 (SD ∼ 0.03) with a min-
imum and maximum values of 0.86, 0.99 respectively. Lower orders are driven by
fragmentations of the main group. Each data point corresponds to 3 simulations
which were run for T = 1000 time steps, statistics were calculated over time steps
T = 500 to T = 1000.

To begin we will look at our model’s behaviour over varying parameters
sets. In figure 3.4 we find high order across a broad range of model parameters, in
particular we see a minimum order of 0.86 in the N = 200 and τ = 4 case. Notable
reductions in order are seen for larger groups with lower numbers of future states
(τ = 4) and for increased ∆θ = 20◦ and decreased ∆v (e.g. ∆v = 1). Opacity Θ

appears to be targeting marginal opacity Θ ∼ 0.5 with increased τ and increased
N . We will explore the parameter space in ∆θ, v0, and ∆v in latter sections.

For long timescales we find a slow rate of individuals fragmenting from the
main group, which is increasing with group size and decreases with τ . Figure 3.5
shows simulations ranging across time horizons τ for two group sizes, N = 50

(left) and N = 250 (right). Three specific examples are shown in figure 3.6 for
group sizes N = 50, 100, 250. Indicated on the plots are agent orientations and
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Figure 3.5: Long run-time simulations (T = 30000) of (left) N = 50 and (right)
N = 250 groups, in each case ns = 40,∆θ = 15◦, v0 = 10,∆v = 2, for increasing
τ values from τ = 2 to τ = 6. We find a rapid increase in global order past τ > 3
caused by a decreased rate of fragmentation across time. Note that fragmentation
is increased a large time-scales for large groups, this represents individual agents
leaving the main group at a slow rate across time. Error bars indicate one standard
deviation on three replicates.

the Eigenvectors used to calculate the morphology. Note the global order, density,
and morphology statistics for (b) and (c) show decreased order and for N = 100

(b) a band-like morphology. These values are due to fragmentations. In (b) there
was a single fragmentation (over 1000 time steps) and in (c) there were ≈ 7, note
the statistics for the main cluster in (b) and (c) at the bottom of the caption. In
particular morphology reduces from > 1000 to ∼ 8 highlighting the importance of
clustering in our data. A trend is beginning to emerge already in figure 3.6, namely
with increasing group size a stretching of the main group appears to be present;
a morphology change from marginal opacity. For the SCE model we have found
broadly stable highly ordered and cohesive flocks over a range of model parameters.
We have also probed the long-time behaviour of small and large systems revealing
a slow rate of fragmentation in groups of increasing τ .

3.2.2 Compression Entropy

We mentioned previously that in the CE model we find that a necessary additional
parameter is required, namely a restriction on the minimum angular size an object
can take to be visible. Recall that under CE the maximum entropy will be attained
for a given visual state if that visual state has 2(N − 1) visual boundaries. 2(N − 1)

comes from the fact N − 1 agents project as at most 2 tangent lines from a given
agent’s perspective, and if there are no overlapping visual states this produces 2(N−
1) visual state boundaries. This state can be attained at arbitrary spatial separation.
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Figure 3.6: Three example simulations with ns = 40,∆θ = 15◦, v0 = 10,∆v =
2, τ = 6 with (a) N = 50 (b) N = 100 (c) N = 250. In each case the Eigenvectors
used to calculate the morphology are indicated in (dashed) red scaled by a common
constant for visibility. (b) and (c) include some fragmentations (≈ 1 and 2 respec-
tively) not pictured. In these three cases the (global) order, morphology and density
(ϕ,M, ρ) are (a) 0.986, 1.89, 0.092 (b) 0.975, 1168, 0.068, and (c) 0.954, 57.23, 0.051.
The reduction in order for (b) and (c) and band-like morphology in (b) is due to
fragmentation of ≈ 1 and 7 agent/s from the main group respectively, accounting
for these fragmentations by computing statistics on the largest cluster, gives (main
cluster ϕ,M, ρ) of (b) 0.981, 8.96, 0.068 and (c) 0.98, 81.9, 0.05.

Figure 3.7: The order ϕ (blue circles) and largest cluster convex hull density ρC (red
triangles) depend on (a) the number of sensors ns and (b) the resolution parameter
for the unique state counts and compression entropy models respectively. Indicated
as a dashed line is the value of ns = 40 and s = π/40 which is indicative of the
size of a projection (or union of projections) needed to activate a sensor in both the
USC and SCE models (with discretised sensors) and a sensor count of ns = 40. Here
τ = 6, N = 50 and error bars correspond to one standard deviation of the order
across 10 replicates. Note also density begins to increase before order in (b). This
measurement indicates decorrelated motion but with a sense of group cohesion, like
a swarm of insects for example.
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In fact N − 1 agents placed “at infinity”, with position vectors r[cos(i2π/(N −
1)), sin(i2π/(N − 1))]T for agent index i ∈ 1, 2, . . . , N − 1, as r → ∞ will attain
maximum visual state entropy. It is perhaps then unsurprising that agent’s target
this state, see figure 3.7 (b) around s = 0 and note the density in red squares.
Compare this data with figure 3.7 (a) as ns increases.

In the CE model, the resolution parameter s ∈ [0, 2π] defines a minimal
angular size below which a visual projection is removed on an agents visual state.
This encodes a constraint on a combination of object size and object distance, a
close but small object will have a relatively large angular size compared to a much
larger object if it is far enough away.

We see that in figure 3.7 that low values s ≲ 0.01 result in no onset of order.
Intermediate 0.01 ≲ s ≲ 0.8 results in ordered motion. Large values of s will lead to
highly degenerate visual states and therefore low order, i.e. at the extreme where
s → 2π the visual state will be completely barren containing no projections at all.
It is worth comparing figure 3.7 (a) and (b) to see the effect of the number of sensors
and the resolution parameter on order, note of course that ns and s have an inverse
relationship i.e a small ns should be compared to a large s. Remember also the
implicit criterion of a half-full sensor in (a) meaning an angular size constraint can
be derived as π/ns i.e. projections (or unions of them) smaller than this will not
be visible. Given this data we now produce the same data as computed for figure
3.4 using the CE model with a parameter s = π/40 as shown in figure 3.8. We find
broad agreement with the SCE model across the parameters tested indicating that
both models are largely equivalent in their outputs. There are a few deviations, for
example with ∆θ = 5◦ and all other parameters standard, the CE model appears to
result in an improved order against SCE. Deviations in density can be noted with
lower density in the CE model than in the SCE model.

3.3 Phenotypes

We have found a sizeable regime with minimal changes by varying ∆θ, v0, and
∆v separately when comparing the SCE and CE models but have yet to explore
combinations of these parameters. For motivation consider what we know a priori
about these parameters. Changing v0 alone has the effect of increasing or decreasing
how far agents explore in the future. In particular v0 → 0, but non-zero, implies that
visual states on the FST are to within a small variance equal to the root’s (current
time’s) visual state, meaning entropy will shrink to 0 in this limit. We might expect
when v0∆tτ ∼ r, the agent radius, that we find a low order but collision avoiding
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Figure 3.8: Parameter sweep for the CE model, confer with figure 3.4. Order (ϕ),
opacity (Θ), and convex hull number density (ρC) using the path entropy method
(SCE) across a broad range of model parameters. Here note ρC is plotted on a log10
scale. We find across this parameter set average order ∼ 0.95 (SD ∼ 0.03) with a
minimum and maximum values of 0.86, 0.99 respectively. Lower orders are driven
by fragmentations of the main group. Each data point corresponds to 3 simulations
which were run for T = 1000 time steps, statistics were calculated over time steps
T = 500 to T = 1000.

swarm, since agents are unable to reason much about the quality of far away future
states, but can reason about collisions in the near future. Alternatively if we change
∆v alone we can observe the limit of ∆v → 0 with behaviour dependent on v0,
and ∆v → v0 or ∆v > v0. In the latter two cases we imply “stand still” and
“reverse” actions, a priori it is unclear what this will mean for resultant dynamics.
Finally, when changing ∆θ one scale of interest is the ratio 180◦/∆θ, in particular
comparing this to τ , for example with ∆θ = 15◦ we need 180/15 = 12 same sign
rotation actions in order to complete a full rotation, whereas with ∆θ = 30◦ we need
only 6 which makes this possible at τ = 6. It is reasonable a priori that we might
find increased rotation with increased ∆θ and maybe even a turning flock. However
it seems unlikely the group will pick and maintain a direction of turning.

Clearly the interplay between these parameters could define varied behaviour
in the model. To test this hypothesis we examine the effect of varying ∆v ∈ [0, 2],
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v0 ∈ [0, 5] and ∆θ ∈ {15◦, 25◦, 30◦} in figure 3.9 where each row shows the order,
the largest cluster size, and order of the largest cluster for each ∆θ value. We
find that increasing ∆θ decreases the order in the regime v0 ≳ 3, ∆v ≳ 1 which
is commensurate with the data in figure 3.4. We also find that stepping along the
v0 or ∆v axes from the top right to the bottom-left corner leads to disorder, and
the same is true along any vector from the top-right corner. However, the largest
cluster size shows a different picture. The regime ∆θ = 15◦ with v0 ≳ 2 and
∆v ≳ 1 shows the behaviour we expect if the disordering in ϕ for the same range
is due to fragmentation, i.e. the largest cluster size reduces, this is still the case for
∆θ = 25◦, 30◦ in this regime. However, looking in the regime v0 ≲ 2 with ∆v > 0

we are seeing a decreasing order ϕ → 0 with higher largest cluster sizes, and with
∆25◦, 30◦ the largest cluster size is actually bigger. This is indicative of a disordered
yet cohesive swarm, which is further confirmed by the largest cluster order ϕC ≈ 0.
Further we find the onset of this swarm at ∆v ≳ v0 with ∆θ = 15◦ but by ∆θ = 30◦

we find the swarm existing with ∆v ≲ v0 as well.
Some examples of these behaviours are shown in figure 3.10. For example

figure 3.10 (a) shows the familiar ordered, cohesive and travelling group, figure
3.10 (b) shows a circulating disordered by cohesive group which includes velocity
reversals, figure 3.10 (c) involve a “stopping” action which does was less cohesive
but not fully fragmented i.e. agents on the periphery returned during the simulation
time (T = 1000). Figures 3.10 (d,e) show the same parameters with N = 250, 50

respectively, in this case ∆v = 0.75 whilst v0 = 1 we find a group which breaks and
reforms across time swarming around a roughly stationary centre of mass point,
(e) shows the group about to reform. Figure 3.10 shows a “balanced” action space
with two speed and two orientation change moves which leads to another swarm like
disordered group (v0 = 1), increasing v0 leads to behaviour like (a).

3.4 Conclusions

We have seen that agents deciding on actions by independently maximising future
path entropy of visual states generates spontaneous collective motion. Further by
attempting to move away from discrete states of ns sensors by use of a compression
entropy measure of entropy of a general visual state, we must re-impose an effective
discretisation into sensors by an angular size constraint. The constraint meaning
individual agents, or groups of them, projecting into a smaller angle than the con-
straint angle are removed from an agents visual state. We find these two methods,
SCE and CE, are broadly equivalent in phenomenology. We therefore established

69



that a compression entropy model could be formulated, with the angular size con-
straint. We found that across a broad range of parameters the two approaches are
largely equivalent in terms of order and density, with some change in the opacity
values.

An important point with the SCE method is that the visual state is discre-
tised into ns sensors. While there is biological basis for sensors, no clear biological
basis is apparent for the number ns = 40, which is approximately optimal for e.g.
τ ≈ 4, N ≈ 50. One may note that a birds eye has far more than ns = 40 “sensors”
making up its eye, if a “sensor” can be equated to the light sensitive cells in the eye.
Even in compound eye insects like Drosophila there are 700 units making up the
eye [103]. Fundamentally it is not too difficult to accept a discretisation, but it is
difficult to explain ns = 40.

Synthesising this chapter’s results we propose that the explanation for this
difference is that the sensors themselves are not directly related to the number of
“units in the retina”, but rather they represent (at least) one step up in the cogni-
tive process; an abstract representation of the visual state. That is the visual state
itself is a representation of raw retina activation, and the sensors are how the agent
processes this information to a use-able state. Our evidence being that, computa-
tionally, the visual state is discretised by floating point numbers to the range of 108

and 1016 for 32- and 64-bit representations, which might be better placed as the
direct comparison to the “units in the retina” rather than the number of sensors.
This is because coarse floating point representation will corrode visual information,
i.e. tangent line projection lines for this model, but increasingly fine floating point
representation will resolve this information more accurately. We also require an
angular size threshold of coverage of a sensor at which it becomes activated. Fur-
ther we saw that even without sensors, as in the CE method, we still require the
imposition of this angular length scale, below which projections (or unions of them)
are ignored.

Interpreting the angular length scale itself as an abstraction in the cognitive
processing of the visual state, would mean a bird or insect sees the visual state, to
a degree of precision dictated by the accuracy of the retina (floating point numbers
computationally), and this is processed in such a way to ignore objects that are
too small or too far (small in angular size) to be recognised. This could be due
to a property of the cognitive process, not the resolution of the retina, discounting
information of little perceived value as well as information which is too difficult
to make out. I.e a far away or small object may not matter for decision-making
even if it is perfectly visible and at high visual fidelity. Theoretically this could
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be tested with actual biological examples. Take Drosophila as an example, how
far away does one individual need to be from another before (1) it can no longer
see the other [eye resolution] (2) its decisions are no longer impacted by the other
individual [ignoring information of little value]. These length scales could be equal
or unequal, to one another giving real evidence for the interpretation of sensors in
our model. Experimentally these questions are likely more difficult to answer than
stated here, if it were possible it presents an avenue to experimentally test the visual
projection and sensor component of the model proposed, or at least the importance
of the angular size in decision-making in the real world.

By varying the model parameters, in particular ∆θ, ∆v and v0, we revealed
a number of different phenotypes, qualitatively distinct dynamical modes, in our
model. Firstly, a translating highly ordered parameter regime v0 ≳ 2, ∆v ≲ v0

e.g. figure 3.10 (a), secondly swarming groups characterised by low order but high
cohesion around v0 ≲ 2 and ∆v ≲ v0 e.g. figure 3.10 (d), and finally swarming
groups with higher group rotation v0 ≲ 2 and ∆v > v0 e.g. figure 3.10 (e). This
provides one avenue for fitting our model to real data, i.e. by fitting the action
set parameters themselves. We shall return to this idea in the final chapter of this
thesis, chapter 5, when we extend the action space to a continuous setting.
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Figure 3.9: Order (first column), largest cluster size (second column), and largest
cluster order (third column) for ∆θ = 15◦, 25◦, 30◦ (across rows) for groups with
τ = 5, N = 50, ns = 40. Each group was simulated for 5000 time steps with colour
as the mean across three replicates, normalised according to the colour bar. Each
statistic, ϕ, C, and ϕC are defined in the range [0, 1]. We find two regions of high
order and high cohesion and low order but still high cohesion. These are indicative
of highly ordered cohesive groups with persistent directed motion (the former) and
a swarming phenotype (the latter). The swarming phenotype is more stable across
parameter space (v0,∆v) at increased ∆θ ≈ 30◦.

72



Figure 3.10: Various phenotypes observed by varying model parameters, common
parameters are τ = 5 and ns = 40, all include trials plotted for 100 timesteps. (a) the
ordered and cohesive phenotype with parameters N = 50, ∆θ = 15◦, v0 = 10,∆v =
2. (b) Persistent rotation here with velocity reversals i.e. N = 50, ∆θ = 15◦, v0 = 1,
∆v = 2 implying speeds −1, 1, 3, rotation is long-lived but not always with the same
sign across different initial conditions, and possibly run-time. (c) Not cohesive but
not completely fragmented group, N = 50, v0 = 1, ∆v = 1, ∆θ = 15◦ (i.e. including
a stopping action vt = 0). (d,e) N = 250, 50 respectively with common parameters
τ = 5, ∆θ = 30◦, ∆v = 0.75, and v0 = 1. We see coexistence of multiple clusters
breaking and forming whilst swarming around a largely stationary central point, in
(e) the two clusters are about to reform and then break again, reducing ∆θ to 15◦

and lower results in large scale fragmentations within ∼ 100 time steps. (f) N = 50
∆θ = 30◦ but with a different actions space, two speeds vt = 1 or vt = 2 and two
angle increments ±∆θ.
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Chapter 4

Visual Information and the
Cognitive Process

We have seen how maximising environmental state entropy can result in sponta-
neous collective motion. In the first method, state count entropy (SCE), agents
individually calculate hypothetical future visual states, accessible by an action set
available to them and a model of other agents (typically ballistic). Each use this
information to pick the action now which maximises the entropy along all hypothet-
ical subsequent paths. The entropy being calculated using the empirical state count
distribution along paths. The second, compression entropy (CE), instead defined an
entropy for an arbitrary, non-discretised visual state by the length of an encoded rep-
resentation of it. Agents then pick the action maximising the average compression
length, across all subsequent paths. Both highlight the importance of the diversity
and quality of visual information input in this decision-making environment, and
both lead to emergent flocking behaviour.

One particular assumption has been implicit in our discussion of these meth-
ods thus far, all agents have complete and perfect information of the group dynamics.
That is an agent knows exact positions and orientations of all other agents, and is
able to use these to project “perfect” ballistic trajectories into the future, even if
these trajectories are not accurate predictions of the future group dynamics. One
can now ask what happens if we disrupt this perfect information, e.g. by introduc-
ing some noise - do we still get collective motion? Or said another way, how robust
is this decision-making process with imperfect or noisy information? We will take
two threads to attempt to answer this question using deterministic and stochastic
perturbations respectively to disrupt the cognitive process.

For the deterministic approach we will develop an explicit occlusion model,
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that is we will examine the case where if an agent j is obscured by another agent
(or agents) k from the perspective of agent i then agent j is considered invisible to
agent i. In particular this will mean agent i will not be able to use the information
from agent j, its position, orientation etc., in its cognitive process; agent j will be
absent from i’s visual state now and in the future projections. Key to this is the
criterion by which “an agent j is obscured by another agent k from the perspective of
agent i”, we will make this precise using a geometric construction, involving a single
control parameter. This occlusion control parameter will allow us to control how
much another agent must be obscured to be discounted, in the sensory acquisition
stage of the algorithm.

The stochastic approach involves considering a variety of random processes.
In particular, we will examine the effect of adding a noise term post-decision. This
will play the role of modelling uncertain decisions or simply decision error which
will of course feed back into future decision-making. Secondly we will apply noise
directly to the cognitive process itself. Here within each agent’s cognitive process
involves using trajectories of the other agents drawn from a stochastic process. In
particular, we will use a process where actions, speeds and rotations, are drawn
from normal distributions, independently, in place of the ballistic model for the
hypothetical futures 1, 2, . . . , τ . We will use zero-mean normal distributions with
two variances (for speeds and rotations separately) so that the mean trajectory is
ballistic.

For this chapter our hypotheses are that the occlusion model will have a
minor effect on the order and cohesion of groups, but may change morphology,
density and opacity. We also expect any de-stabilising effects to diminish with
increasing future time horizons τ , since higher values of τ generate more stable
groups. In the presence of noise processes we expect to uncover some form of order-
disorder transition in the presence of increasing noise.

4.1 Perturbing Visual Information Deterministically: Oc-
clusion

In the real world visual occlusion would involve the obscuring of one object by
another e.g, when a nearby object is directly in front of a more distant object.
Whether the object is totally or partially obscured will depend on the relative sizes
of the objects, their shapes, and relative positions. In two-dimensions with identical
circular agents, using the visual projection method we can exactly identify occlusions
by examining overlapping intervals on the visual state. As shown in the sketch in
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Figure 4.1: Schematic representation of the occlusion problem as overlapping visual
projections, from the perspective of the blue agent (b). The diagram on the left
represent agent position and the diagram on the right the resultant visual state.
Note the overlaps between the visual projection of the orange (o) and green (g)
agents.

figure 4.1.

4.1.1 Explicit Occlusion Model

To understand this consider an example of a visual state of an agent, figure 4.1. Here
the blue agent (b) see’s three others: the green (g) the orange (o) and the red (r)
agents. Under the visual projection method these agents map to the intervals defined
by the angles [θLbg, θ

R
bg], [θLbo, θRbo], [θLbr, θRbr]. Where the index bo means the blues (b)

projection of the orange agent (o), while L and R refer to the “left”=smallest and
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“right”=largest angle for the interval. Of course the [0, 2π) boundary must be
carefully handled, typically we split any projections crossing the boundary into two
pieces to maintain the smallest-largest classification. Note that (1) the projections of
the orange and green agents overlap (2) the green agent is further than the orange
from blue. Naturally this means the orange agent is obscuring the view of the
green agent, but not totally. The proportion of the obscurance is given by the ratio
θLbo−θ

L
bg

θRbg−θ
L
bg

, which represents contracting the projection interval of the green (furthest)
agent, so it no longer overlaps with the orange, then calculating the percentage of
the original size lost by this process. Clearly with one dimensional intervals like

Figure 4.2: Sketch of the occlusion algorithm as applied to the situation in figure
4.1. (a) projection intervals are sorted by distance from the agent calculating the
visual state. (b) overlaps are identified, i.e. by the dashed line covering the overlap
between the orange and green intervals (c) for each overlap the furthest interval
is contracted to remove the overlap, indicated by the faded region on the green
interval.

this there are numerous cases of overlapping that can be found, e.g. one interval
may be totally contained within another, or overlap on one side or the other. Since
we have identical circles the overlaps we will get will not include “splitting”, where
an agent’s projection is split into multiple pieces, since further agents always have
smaller angular sizes than closer ones. With elliptical particles this will not be
the case, e.g. if two ellipses, with 2:1 aspect ratio, lie on the same vector, relative
to a visualising agent, the closest with its major axis parallel to the vector and
the furthest with its minor axis parallel to the vector, the effect of occlusion on the
furthest agent will be to split its projection into two pieces. We will assume identical
circles here to avoid this problem.
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The occlusion model then involves calculating the “visibility ratio”,

γij =
θR

∗
ij − θL

∗
ij

θRij − θLij
. (4.1)

Where the interval [θL∗
ij , θ

R∗
ij ] represents the smaller contracted interval, or for non-

occluded agents the original interval. The γij should for some agent i then contain
information on “how visible” the j’th agent (i ≠ j) is from the perspective of the
i’th agent. I.e. γij = 1 implies agent j is fully visible to agent i (js projection
interval is unchanged), and γij = 0 implies agent j is fully obscured to agent i (j’s
projection interval is entirely redundant; it is contained within another projection
or union of projections).

The problem of finding the γij ’s can be solved as a weighted partial set cover
problem, where weights are the distance from the visualising agent, and the cost is,
for example, amount of an interval contracted multiplied by the inverse distance.
Therefore, “sets” also includes all possible contractions of the original sets (visual
projection intervals), and “partial set cover” means covering the interval [0, 2π] as
completely as possible. For illustration figure 4.2 (a) shows sorting the projections
in figure 4.1 by distance from the reference agent (b, blue), figure 4.2 (b) shows
an identified overlap (dashed line), and figure 4.2 (c) shows a contraction of the
“furthest projection”.

Although considering all pairs of intervals, which is O(N2) for N agents, ap-
pears computationally expensive, it does not necessarily mean poorer scaling with
N (per time step) when compared with the non-occlusive case. is because occluded
agents are excluded from decision-making. The decision-making itself relies on mul-
tiple O(N2) operations for e.g. visual state calculations. Since the occlusion process
leaves No ≤ N agents to process in hypothetical futures, this fact can actually
decrease run-time for moderate N ≲ 1000.

The information in γij allows us to define a criterion for occlusion. At what
point is an agent unable to project another obscured agent into the future? Clearly
a totally obscured agent is an obvious candidate for exclusion, but otherwise one
can pick any number O ∈ [0, 1] where an agent is discounted if its visibility is less
than a chosen O, i.e.

γij ≤ O. (4.2)

Taking O = 0 means all agents will be visible except for the fully obscured, taking
O = 1 means all agents are considered invisible. We can also define a special value
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O∗ < 0 which would mean all agents are visible regardless as to their actual visibility.
Before moving on we should note firstly that, in theory equation 4.2 can be

extended to three-dimensional space. To see this recognise that γij is a ratio of two
angular sizes, in 3D this is readily computed using solid angles in place of these
angular sizes. The difficulty of course lies in finding the overlaps of projections in
3D space, the added dimension of the visual projections (now spherical caps) creates
an infinite number of different overlap types (curves on the sphere). This leads to
finding the area of a “dissected” spherical cap; a spherical cap “dissected” by the
curves of overlapping spherical caps. In principle this can be solved, although it is
not clear if an analytic technique is possible or if an approximate method is required.
We will not dwell on this in this thesis as the extension to 3D is left for the future.

Secondly, equation 4.2 defines a condition on matrix elements, this can be
used as a natural connectivity matrix that varies temporally. In the context of
the literature on consensus algorithms [111, 112] and their application to flocking
phenomena [113], this connectivity matrix could be used. In this context agents
interact through a connectivity matrix by e.g. averaging heading direction and
speed. In particular, it is known that as long as the network is connected then
consensus can be achieved, with a rate of convergence related to the degree of
connectivity [111, 112]. For a flock modelled in this way this means agents attempt
to reach consensus on velocity. As such it would be surprising if using the visibility
matrix defined by equation 4.2 as e.g. the velocity or position graph used by Tanner
et al.’s model or indeed as the only graph in a modified model, did not lead to robust
flocking behaviour. For O < 1.

4.1.2 Effect of the Occlusion Threshold

To understand how taking into account occlusion in the visual state will affect the
model, we will first examine the effect of occlusion on some visual state. Given
a visual state of agent i, ψi, the occlusion model will find the visibility values γij
for agent j. When calculating these values intervals are contracted so as to not
overlap, i.e. redundancy is removed from the visual state. As such the contraction
process itself will not change the appearance of the visual state at all. The next step
is to ignore agents who are occluded, via equation 4.2. In future states occlusion
is not applied, we assume the modelling agent can project future trajectories and
therefore model agents even when they are, temporally, occluded from its perspective
in hypothetical futures.

At this point there is a choice we can either take (1) ψi as is or (2) remove
agents from the visual state that are considered occluded. Case (1) does have an

79



advantage in consistency, that is in hypothetical future states we do not apply the
occlusion model whereas with (2) this removal process would not be completed in
hypothetical futures. (1) does have the disadvantage that for small perturbations
to the system configuration agent relative positions may have changed little, but on
the removal of occluded agents the visual state one hypothetical step in the future
will change relatively dramatically. This problem also is more severe for “sensitive”
occlusion parameters e.g. O ≲ 1.0. However, removing projections on the visual
state in (2) is somewhat unrealistic since by definition the removed sections are
actually visible. For consistency in the visual state at time t and hypothetical visual
states, we will opt for choice (1).

More complex criteria could be used to determine agent visibility. Here if an
agent is obscured at time t it is not projected into hypothetical futures. We could
define a “memory” parameter, say ∆τ ∈ [1, 2, . . .], such that each agent can recall
past positions for previous times [t − ∆τ, t]. Meaning that if an agent is obscured
at time t, but was visible for at least one t′ ∈ [t−∆τ, t] the agent is projected into
hypothetical futures. This memory could also be taken over discrete time points
t′ ∈ {t −∆τ, t −∆τ + 1, . . . , t} as apposed to the continuous interval. However, in
defining agents with memory for the purposes of occlusion, we may also want to
define how agents use that memory in their cognitive process in other ways. For
example by fitting a heuristic model based upon each agent’s past positions and
actions, to use in place of the ballistic model. For this thesis we will continue with
memory-less agents, leaving this as a future research avenue.

Given this specification we can compute the effects of occlusion on the input
to agents. At time t in the simulation an agent will find its current visual state
ψi and which agents are visible given the occlusion parameter. Without occlusion
the agent i calculates future states by taking actions and modelling agents. With
occlusion any agents considered occluded will not be propagated into hypothetical
futures, and therefore will not impact future visual states and decision-making. A
priori this is all we can say as to how the occlusion model affects the model, we
know the current visual state at some time t may be changed and that, potentially,
the future states as well if occlusion is applied. We will now examine any changes
in phenomenology via the usual statistics.

Occlusion and Model Parameters

First looking at the order across various parameters in figure 4.3 we see the effect
of varying occlusion. Figure 4.3 (a) is the non-occlusive case and figure 4.3 (b,c,d)
show results of simulation obtained with O = 0.0, 0.5, 0.95 respectively. It appears
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Figure 4.3: Parameter sweep for SCE using four occlusion thresholds, (a,b,c,d)
O = O∗ (no occlusion), 0.0, 0.5, 0.95 respectively. This data suggests (1) occlusion
promotes order in larger groups (N = 200) in this case (2) the standard set and
systems with higher τ = 5, 6, 7 appear largely unchanged (3) the model appears less
robust to changes in ∆θ,∆v and the presence of orientational noise post decision,
but this decreases with O increasing (4) density appears to have decreased slightly
on average, but with significant variation. (5) opacity appears reduced on average
but with significant variation.

that for N = 50 and τ > 4 occlusion has little impact, although the order is so
high it is perhaps somewhat unsurprising. However, for N = 200, τ = 5 we see an
increase in order across all occlusion values, but with N = 200, τ = 4 we see the
opposite. The standard parameter set appears largely unaffected. On average there
appears to be a decrease in density and opacity for all occlusion values, but this
does vary, e.g. N = 200, τ = 5 we see an increased opacity and decreased density
at O = 0.0 figure 4.3 (b) but across (c-d) we find the opacity reduces and is lower
than in (a) for (d). Changes in ∆v and ∆θ result in (b) we see fragmentation in
the orientational noise case and with ∆θ = 20◦ resulting in large error bars that
disappears in (c) and (d), but the reduced order remains. Changing the activation
threshold to θc = 0.3 appears to be unaffected in each occlusive case where we see
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a higher order, but this looks likely within one standard error.

Varying Effects of Occlusion for Small and Large Groups

Figure 4.4: Varying occlusion threshold has decreasing effect for future time horizons
τ ≳ 4, except in larger groups N ≳ 500. Figures (a-c) show the order parameter,
equation 3.16 resulting from simulations with τ = 2, 4, 6 futures respectively. Fig-
ures (a-c) insets show the time averaged size of the largest cluster as a fraction of
N , a low value (approaching 1/N) indicates mass fragmentation which is usually
associated with low order, a value of 1 indicates total cohesion. Error bars represent
the standard deviation of 3 simulations, where agents are positioned uniformly at
random in a box of side length L with initial number density is N/L2 = 0.005,
and orientations are drawn from a normal distribution with mean 0 and standard
deviation of ∆θ◦

Continuing with the order we will examine it more closely by varying N

and τ . Figure 4.4 shows the global order ϕ and largest cluster size (inset) for the
values τ = 2, 4, 6 and for N = 50, 100, 500, 1000. Clearly τ = 2 is not enough at

82



any occlusion values or system size, unsurprisingly. For τ = 4, Figure 4.4 (b), we
have the emergence of order, which reduces with system size due to fragmentations.
The fragmentation rate is greatly reduced as occlusion is introduced, in particular
we see a jump to a much larger order in the N = 500, 1000 cases when occlusion
is operating. This effect is diminished for smaller groups N = 50, 100 giving way
to a reduction in order, although for both this appears well within the error bars
(one standard deviation here). For N = 500, 1000 there appears to be some optimal
values around 0.25 ≲ O ≲ 0.5 for ϕ, followed by reduced values for ϕ past O = 0.95.
For N = 50, 100 occlusion appears to reduce the order at all values, although in
some cases the error bars are to large to be conclusive (e.g. N = 100,O = 0.95).
For τ = 6 Figure 4.4 (c) the picture changes again, occlusion has almost no effect
for N = 50, 100. Whilst for N = 500, 1000 the increase from no occlusion to
some occlusion appears reduced but still significant, and after 0.25 ≲ O increasing
occlusion has little to no effect. It appears then that occlusion has a stabilising
effect on the order of large groups, perhaps on setting around N ≈ 200, τ ≈ 4 given
the data in 4.3, and with τ ≳ 6 occlusion has little to no impact on order even with
increasing N .

Examining the high order cases, by limiting the y-axis to ϕ ≥ 0.95, we see
the small structure in that data in figure 4.5, we see that for N = 50 occlusion
actually causes a small decrease in the order. For N = 100, with increasing occlu-
sion thresholds, the order declines, but all cases have a higher order than the no
occlusion case. N = 500, 1000 are more complicated showing a peak at an inter-
mediate occlusion value, as mentioned before, followed by a similar reduction. As
for significance of these data (τ = 6), we test how significant the increased average
order is at the O = 0.0 case over the non-occlusive simulation against the null hy-
pothesis that this increase is zero (i.e. the order is the same as the non-occlusive
case). Applying these tests using a left tailed t-test (unequal variance form) we find
p-values of ≈ 0.238, 0.065, 0.010, 0.037 for the cases N = 50, 100, 500, 1000 respec-
tively. This indicates no significant increase for N = 50, 100 and significance at the
0.05 level for N = 500, 1000 with the highest significance for N = 500. Comparing
to the peak (O = 0.25) with N = 500, 1000 gives p-values 0.010, 0.0272 respectively.
Finally comparing to the final data points (O = 0.95) we obtain p-values 0.0172

(right-tailed), 0.381 (right-tailed), 0.013 (left-tailed) and 0.029 (left-tailed), mean-
ing that for N = 50 occlusion O = 0.95 lowered the order significantly compared to
the non-occlusive case, for N = 100 the test is inconclusive, and for N = 500, 1000

the O = 0.95 case remains at a significantly increased order. The data then suggests
that for sufficient τ ≳ 4 and N ≳ 1000 occlusion plays a beneficial role, even when
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severe, in maintaining an ordered group, but for small groups N ≲ 50 occlusions
plays a negligible to obstructive role in maintaining ordered groups. We can also
see from the inset for 4.4 (c) that the increase in order is likely a consequence of
a decrease in fragmentation, indeed using another unequal variance t-test we find
p-values 0.026 and 0.0036 that the reduction in fragmentation (increased C) be-
tween no occlusion and O = 0.95 for N = 500, 1000 respectively. In fact note that
this effect is large enough that fragmentation is almost completely eliminated in
N = 500, 1000, for N = 1000 in particular the average (using the data in 4.4 (c))
fragmentation rate (fragmentations per time step) was 0.005 for O = 0.95 up from
5.6 with no occlusion.

We also find in figure 4.5 (b) that the increased order persists for 104 time
steps against the non-occlusive case for N = 500 groups (n = 4) with τ = 6

Figure 4.5: (a) Fine structure in the effect of occlusion for τ = 6. Error bars repre-
sent the standard deviation of 3 simulations, where agents are positioned uniformly
at random in a box of side length L with initial number density is N/L2 = 0.005,
and orientations are drawn from a normal distribution with mean 0 and standard
deviation of ∆θ◦. (b) Long time (10, 000 times steps) simulations for N = 500,
τ = 6, individuals for varying occlusion thresholds, error bands indicate one stan-
dard error on the mean of 4 simulations. The increased order ϕ is maintained at
least up to t = 10, 000, although all series continue to lose some order across time.
Compare also with the inset of figure 3.5 (b).

Seeing a reduction in fragmentation and increasing order in large groups
is one impact of accounting for occlusion, but the structure of the flock through
the opacity, morphology and density of the group is another. Figure 4.6 details
the impact of occlusion on morphology and opacity (insets) for τ = 2, 4, 6 and
N = 50, 100, 500, 1000. Again τ = 2 is unsurprisingly indicative of large-scale
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Figure 4.6: Figures (a-c) show the morphology parameter (equation 3.20)log10 scale,
the ratio of eigenvalues in equation 3.19, for the τ values 2, 4, 6 respectively. Left to
right on the x axis represents an increasingly strong occlusion threshold (from no
occlusion). Figures (a-c) insets represent the opacity Θ defined as the ratio of active
sensors to inactive sensors. Error bars represent the averaging over 3 simulations,
where agents are positioned uniformly at random in a box of side length L such
that the initial number density is N/L2 = 0.005, and orientations are drawn from a
normal distribution with mean 0 and standard deviation of ∆θ◦.

fragmentation. For τ = 4, 6 both tell a similar story the morphology is at first
quite extreme but with increasing occlusion tends towards a more circular group
with the N = 50 case being largely unchanged. Figure 4.8 (a) shows a typical
example of a N = 50 agent group, note the circular symmetry (non-occlusive case),
whilst (b) and (d) detail an occlusive O = 0.95 and non-occlusive example with
N = 1000, τ = 6 respectively. Note the extreme morphology in the non-occlusive
case that gives way to a fully cohesive roughly circular flock. From figure 4.4 (c) inset
that flocks do not fragment on average with these parameters and occlusion, but
do show fragmentation at a large scale without. Accounting for occlusion results
in a large-scale change in the morphology of the group and a large reduction in
fragmentation in large groups. The change from a “line” formation to a roughly
circular one is particularly striking. Finally, note also figure 4.8 (e) this example
uses the same parameters as (b) but we do not discount future states subsequent to

85



a collision the morphology change is again drastic, we see no fragmentations (in this
example), and the stretching is now along the direction of travel unlike (d) which
is perpendicular to it. Similarly, the arrangement in (d) is quite stable whereas
(e) undergoes quite extreme bending and flexing across time in a highly complex
manner including breaking into two groups and then reforming.

Along with the substantial variance in morphology we see by accounting for
occlusion, we also find significant changes in density. Consider figure 4.7 which
shows the global (ρ) and largest cluster ρC densities with (a,c) using τ = 4 and
(b,d) using τ = 6. For ρ we find at τ = 4 (4.7 (a)) that the density for N = 50

decreases with increasing occlusion strength the opposite is true for the N = 1000

case. We know that the order and morphology (circular) for N = 50 are largely
unaffected by occlusion (figures 4.4, and 4.6), and now we see that the density
is decreasing with stronger occlusion. This means the flock is expanding roughly
isotropically; the inter-agent distance is increasing. This makes reasonable sense, the
agents are remaining cohesive but at a larger distance to retain information about
the flock state in the presence of occlusion. For the large groups, N = 1000, we
can understand the increasing density as a factor of the decreasing fragmentation
we saw earlier. Moving to τ = 6 (4.7 (d)) the picture remains the same, except
for N = 100, 5000 which where marginal before. Now N = 500 is approaching
the same phenomenology as N = 1000 and the same is true for N = 100 and
N = 50. For the largest cluster (4.7 (c,d)) τ = 4 shows little effect given the
error bars, whereas in τ = 6 we are see decreasing density in all cases which are
significant for N = 50, 100 (p-values < 10−5, 10−6 respectively) and not significant
for N = 500, 1000 (p-values ≈ 0.065) when comparing the non-occlusion case to
the O = 0.95 case in an unequal variance t-test. Given the purpose of the largest
cluster density is to remove fragmentations from the analysis the decrease makes
sense according to the same argument for the N = 50 case, i.e. the largest cluster
expands in order to remain cohesive, but with a larger inter-agent distance so each
agent retains information about the flock state.

Understanding Occlusion by Ignoring Hypothetical Collisions

In the last section we have seen how occlusion appears to drive decreased fragmen-
tation, decreasing largest cluster density, and a transition to circular morphology in
large groups whilst only driving a decrease in density for small groups (all for suffi-
cient τ). These changes may explain an increased order, that is if occlusion results
in an increase in inter-agent spacing to promote visibility of the group as a whole,
maybe this allows for better decision-making that targets order? This is possible,
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Figure 4.7: Density of the entire group ρ and of the largest cluster ρC∗ for τ = 4
(a,c) and τ = 6 (b,d). Error bars are the standard error on the mean for three
repeats.

but it is difficult to test this hypothesis. Another hypothesis is that the way in
which occlusion aids large groups might be by reducing errors in each agent’s deci-
sion process. The ballistic trajectories of other agents are not accurate prediction of
actual agent trajectories. A priori the effect of occlusion is two-fold (1) potentially
reducing the number of ballistically modelled agents into the future (2) altering fu-
ture visual states due to any ignored agents. The changes to the visual state are
less easy to examine directly, but reducing the number of agents projected into the
hypothetical future will also reduce the number of collisions an agent anticipates in
large, relatively dense groups. An assumption in the decision process is that when an
agent anticipates a collision, states subsequent to that hypothetical collision are not
calculated. These hypothetical collisions may or may not be accurate predictions.
If occlusion reduces the number of these hypothetical collisions (increasingly so in
large groups), it is possible agents’ decision processes operate on more visual states.
That is perhaps, occlusion, by eliminating ballistic trajectories, might increase order
by giving agents more freedom in exploring the FST. We can test this hypothesis
directly by counting states beyond hypothetical collisions. If the mechanism is due
to collisions on the FST interfering with an agents decision process, we should see
little effect of occlusion when discounting collisions.
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Figure 4.8: Snapshots for various parameters and group sizes showing the varied
morphology we observe. (a) An N = 50 group with τ = 4 futures and no occlusion.
(b) A group of N = 1000 agents with τ = 6 and an occlusion threshold of 0.95 (c)
N = 100 agents with an occlusion threshold of 0.5 and including states past future
collisions (d) N = 1000 agents with τ = 6 but occlusion off (e) N = 1000 agents
with τ = 6, occlusion 0.95 and enumeration past collisions in the future states tree
(collisions off) (f) N = 50 and a occlusion threshold of 0.95. Note also the small
fragmentation in (c) at approximate coordinates (x = 9000, y = 1800). The arrow
in (c) denotes the average heading direction of the group (by eye), observe the
stretching in (d) is along the direction of travel (although this sometimes fluctuates
in the simulation).

Figure 4.9 shows this data with (a) indicating collision branch cuts and (b)
not cutting branches. If we compare figure 4.9 (a) directly to figure 4.9 (b) for
N = 1000 we find that the increase in the order data is significant for no occlusion
(p-value 0.0055), marginal for O = 0.0, 0.25 (p-values ≈ 0.03), and inconclusive for
O = 0.5 (p-value ≈ 0.3) when testing if the data with collision detection has a higher
order (unequal variance t-test) data point by data point, but the reverse becomes
significant for O = 0.75, 0.8, 0.9, 0.95 with p-values of orders 10−6, 10−8, 10−8, 10−7

in each case. That is the data with collision detection and high occlusion has a
higher order. However, for the largest cluster size (insets) we find that the data with
collision detection has higher average largest cluster size for O = 0.0, 0.25 (p-values
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0.0014, 1.3 × 10−5 respectively), marginally so for O = 0.5 and no occlusion (p-
values 0.013, 0.018) but is inconclusive otherwise. This data suggests that occlusion
does play a role in promoting order whether we cut FST branches at collisions
or not. But for low occlusion thresholds not cutting FST branches appears to
suppress the largest cluster size with high statistical significance, and marginally so
for suppressing order. In fact the lag we see for N = 1000 in C and ϕ at O = 0.25, 0.5

when comparing (b) to (a) is some evidence for our hypothesis that occlusion is (at
least partially) working via suppressing erroneous collisions on the FST. Since, when
continuing past collisions on the FST this suppression has no effect, a significantly
higher occlusion threshold is needed for N = 1000 to order (O ≳ 0.8 as apposed to
O ≳ 0 in figure 4.4).

We can also remark on the opacity and morphology. Without collision branch
cuts the opacity should be understood as a product of greatly suppressed collision
avoidance, and we find average opacity around Θ ≈ 0.9 decreasing across occlusion
values to around Θ ≈ 0.8. For example observe figure 4.8 (c,e,f) which are cases
without the FST collision branch cutting, the overlapping means visual states are
largely filled; at such an extreme, where two agent overlap, visual projection will
leave large portions of an agents visual field obscured, hence the increase in opacity.
Density is similar, recalling density units are scale by agent radius, at low occlusion
values it is in excess of 1. Density decreases with occlusion in all cases to around
ρ ≈ 10−0.5 for N = 500, 1000 and 10−0.25 for N = 50, 100. The morphology is more
complex in the large groups where unlike in the N = 50, 100 cases where we see a
denser circle, we find stretched and highly unstable examples such as figure 4.8 (d)
which as we remarked upon earlier varies greatly across time (bending, splitting and
reforming).

4.2 The Role of Noise in the Cognitive Process

Adding occlusion, in effect, deterministically changes the visual state of an agent
ψi. This, in fact, deterministically changes the information an agent processes to
make decisions. In this section we will examine the role of noise on the dynamics.
Specifically we will examine (1) a Vicsek-like noise process by which agents make
decisions deterministically but suffer a degree of noise on the actualised orientation
update (2) a “cognitive” noise process by which agents model others as moving
ballistically with an additional degree of noise on rotation and/or speed updates,
such that the average projected future path is ballistic. With both noise processes we
hope to understand how the dynamics change with the inclusion of noise processes.
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Figure 4.9: Order and largest cluster size for different groups sizes with τ = 6 for
(a) collision branch cuts on the FST (b) no collision branch cuts on the FST. Data
for the largest cluster sizes. Error bars indicate one standard error on the mean
computed over 5 replicates for time steps 500 to 1000.

4.2.1 Vicsek-Like Noise

In a Vicsek-like noise process we mean applying orientational noise after an agent
has made its decision. Using equations 3.7 and 3.8, we can apply noise by re-writing
the equations of motion as

xt+1
i = xti + v

t+1
i ∆t, (4.3)

vt+1
i = vαtiR(θαti + ηti)v̂

t
i. (4.4)

That is agents select actions at the present time step t, αti, and apply them to
their velocity vector vti. In the presence of a Vicsek-like noise process the random
variable ηti ∼ N (0, η2) is applied to the selected orientation. This random variable
is a mean zero Gaussian random number with variance η and zero correlation across
time t or agent index i. The expectation is that low values of η will produce an
ordered regime and high values will result in random dynamics dominated by the
orientational noise term.

We expect there to be some critical value of the noise η separating an ordered
and disordered phase. Vicsek et al find an almost completely disordered group (with
N=10000 agents) with values of noise ≳ π rad and a consistently ordered phase
with noise ≲ 0.5 rad (note the use of a random increment sampled from a uniform
distribution in [4]). Therefore, we might expect a comparable completely disordered
phase with noise around 180◦ and an ordered regime ending somewhere around the
η ≈ 30◦ mark. Our equation of motion is rather different to Vicsek et al., meaning
we do not expect any exact replication of results.

90



Figure 4.10: Effect of post-decision orientational noise on global order ϕ, largest
cluster size C (inset) for N = 50, 100, 250 group sizes (a,b,c.i) and τ values 2, 4, 6.
In each case a rotational additive noise term is applied directly to the output of
the FSM decision process sampled from a normal distribution with variance η2,
statistics are calculated after a burn-in of 500 time steps up to time step 1000.
τ = 2 is generally not enough for ordered motion to arise, with τ = 4, 6 we see a
transition from high order ϕ ∼ 0.98 to disorder ϕ ∼ 1/

√
N (dashed line) with a

slightly more robust ordered phase with τ = 6 compared to τ = 4. We see from C
that this is driven by large scale fragmentation. Error bars indicate 1 standard error
computed from 3 replicates. We also plot the global order and order of the largest
cluster (ϕC) for low noise values in the N = 250 case (c.ii,c.iii).

Order Increase With Small Noise Values

To test this we observe the data shown in figure 4.10 for group sizes N = 50, 100, 250

across the τ values 4, 6. As expected we do find the ordered regime around small
noise values η ≈ 0 and ending with complete disorder (ϕ ≈ 1/

√
N) by about η ≈ 30◦.

Figure 4.10 (c.i) shows an interesting peak in the order for τ = 6 at non-zero noise
whereas for N = 50, 100 the order is monotonically decreasing. We examine this
data point further by plotting in figure 4.10 (c.ii) and (c.iii) the order and largest
cluster order ϕC for small noise values up to η = 3. We perform an upper tailed t-test
to judge the significance of the difference in the mean order for the zeros noise case,
µ0, and the cases 0 < η ≤ 1.5 averaged, µ, (shown by the red dashed lines), using
the null hypothesis µ0 > µ. This was done for both ϕ and ϕC , collecting enough
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samples for the η = 0 case to match the (63) total number of combined samples in
the noise case, i.e. all data for the scatter points 0 < η ≤ 1.5.

For ϕ we reject the null with a p-value < 10−13 (n=63). For ϕC we reject
with p-value < 10−13. The tests confirm that for noise values 0 < η ≤ 1.5 the
average order (and order of the largest cluster) is higher than the case without no
noise, η = 0, with high significance.

The significance test for ϕ suggests that the order does increase for small but
non-zero noise values. But we also find an increase in the largest clusters and ϕC .
This suggests that the ordering effect of a small addition of post-decision noise, is not
just due to increased cohesion. For the smaller group sizes we already know that at
the zero-noise case groups of N = 50 and N = 100 remain stable and cohesive with
τ = 6, but that N = 250 groups suffer persistent fragmentations, this is likely why
we see the effect in N = 250 but not the two smaller group sizes i.e. they are already
cohesive so see little benefit. From our analysis of the role of occlusion we know that
for large groups (N = 500, 1000 for certain) occlusion promotes order in a similar
fashion by reducing fragmentation and thereby increasing cohesion. Our hypothesis
was that, since the ballistic modelling assumption is merely an approximation for
true agent future states, the errors in each agent’s cognitive process build with N .
Occlusion has a “culling” effect on how many agents any particular agent models
based upon vision. This reduces these errors leading to more robust decision-making.
One explanation then is that, again for large groups suffering fragmentation, small
amounts of noise improve decision-making based upon ballistic assumptions.

4.2.2 Cognitive Noise

The cognitive process depends on the function mapping the current, or a previous,
estimate of a future state into the next prediction an agent makes of the future which
we took (implicitly) as ballistic previously. In particular, we will keep the function
as mapping the other agents into ballistic trajectories on average by adding a noise
process at each step. Now we add noise to the hypothetical trajectories of other
agents.

We add both rotational noise ηtij with the same statistics as ηti in the Vicsek-
like noise process but now also zero correlation across both indices ij and time. As
well as a Gaussian speed noise ζt′ij with zero mean, variance ζ2, and zero correlation
across ij and time. The random variables are added to hypothetical agent decisions
such that p

βt
′
j
= v0 + ζt

′
ij , and θ

βt
′
j
= ηt

′
ij .

On average the model will apply a speed v0 and an identity rotation, i.e.
ballistic future states, but now with two noise parameters to vary uncertainty in
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each agent’s cognitive process. These parameters are θθ and ηv for rotation and
speed standard deviations respectively. We plot this data in figure 4.11, in the same
fashion as for the Vicsek-like noise process.

Figure 4.11: Impact of increasing “cognitive” noise on global order ϕ and largest
cluster size C for groups of sizes N = 50, 100, 250 (a,b,c.i), for each a burn-in of 500
was used with statistics calculated up to time step 1000. Figures c.ii and c.iii detail
the effects with low rotational noise η and 0 speed noise ζ. Cognitive noise is noise
applied to each agent’s model of other agents one or both of orientational noise
(Gaussian and white with variance η2) or speed noise (Gaussian and white with
variance ζ2) applied to the base ballistic model. i.e. η = ζ = 0 implies a ballistic
model and non-zeros values indicate diffusive trajectories/ increasing uncertainty.

In each case however we only consider τ = 6 and instead vary the value of
ηv and ηθ. For no speed noise ηv = 0, there is an increase in global order. This
appears generic for panels 4.11 (a,b,c) occurring around ηθ = 15◦, ηv = 0, i.e. for all
N = 50, 100, 250. We hypothesise this indicates a cognitive process with noise (as
apposed to ballistic) is a better predictor of actual future states leading to greater
order, this effect appears to disappear at η ≳ ∆θ = 15◦. We see a transition from
high order to a disordered phase with increasing noise in both ηv and ηθ. Note
however that the plateau in ϕ is slightly higher than 1/

√
N , this is due to the fact

that the fragmentations driving these transition lead to the formation of “trains” of
agents (at τ = 6 shown here), i.e. groups of agents moving as a string one following
the other. These trains are characterised by high internal order but with a greatly
increased inter-agent spacing compared to marginally opaque groups, meaning they
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are not detected as clusters. We expect with increased run time (T = 1000 here)
these trains would fragment.

For the global order ϕ an upper tailed t-test on the difference of the means,
µ0, in the noise-free case (η = 0) and, µ, the mean of the data with noise (0 < η ≤ 10,
dashed red cross) rejected the null hypothesis µ0 > µ, p-value< 0.00016 with n = 80.
The same t-test for ϕC at low noise was significant for the same range 0 < η ≤ 10, p-
value < 10−45. These results confirm that the increase in order ϕ, with orientational
noise in hypothetical agent trajectories, and largest cluster order ϕC are both highly
significant.

The data in figure 4.11 show that a small value of orientational noise in
the cognitive process of agents, promotes order and largest cluster order, over a
purely ballistic assumption. The peak increase appears to be around η = 5◦ in the
largest cluster order for N = 250 and disappears by η = 15◦. We can compare this
approximate peak with the characteristic orientational noise found in the ballistic
model. That is we can approximate ⟨v̂ti · v̂t+δi ⟩ ≈ ⟨1 − 1

2ϑ
2⟩ for a discrete time lag

δ ∈ {1, 2, 3, . . .}. Using this we can find ⟨ϑ2⟩. If we interpret this as the result of
summing δ independent and identically distributed normal random variables with
mean 0 and common variance σ2 we find for δ = 6 = τ and N = 250 that σ =√

⟨ϑ2⟩
6 ≈ 5.79◦ (average of 10 repeats, standard deviation 0.022). This value is

slightly larger than the approximate peak for η. It is possible then that the optimal
noise value is one which emulates the natural fluctuations in the model without
noise, which would be self-consistent.

4.3 Conclusions

We examined the effect of perturbing the model, first deterministically by intro-
ducing occlusion and secondly by introducing noise processes to agent actions and
the cognitive processes. The occlusion model we introduce is based upon simple
geometry (for circles) and defines a natural interaction network for our agent-based
model. By varying the free parameter, occlusion strength O, we found that the
SCE model was to a first approximation, and low N ≲ 100, robust to occlusion,
which makes sense biologically due to the presence of occlusion in the real world,
but at high N ≳ 100 we found significant impact for the better. That is we found
occlusion can actually promote order in our model. We hypothesised this was due
to an increasing error from ballistic models as N increases, being offset by occlusion
naturally ignoring larger quantities of agents as N increases. To test this hypothesis
we found that by not cutting branches prematurely on the FST, when a collision
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is detected between a ballistic model and an agent’s hypothetical future position,
largest cluster size and order were initial reduced with statistical significance, but
then both increased compared to cutting branches as occlusion became more severe.
This effect occurred for N ≳ 500. The discounting of agent providing a benefit in
large groups could be interpreted as a sign of diminishing returns, i.e. it is unnec-
essary or even harmful to model every member of the group. Given the success of
topological rather than metric models of collective motion, and the evidence for the
former in nature [39], it is perhaps unsurprising that we find this effect in our model.

Finally, we examined two phase transitions in our model governed by the
introduction of noise. Firstly following closely that used in the Vicsek model, we
introduced a re-orientational additive noise. Rotational noise was applied directly
to agent dynamics. Secondly we replaced the ballistic model, used by agents to
project hypothetical future states, by a Stochastic model. In this model agents se-
lect actions, speeds and rotations, sampled from mean-zero Gaussian distributions.
In both cases we found a transition from an ordered to disordered state with increas-
ing noise strength. Surprisingly we found that low values of noise actually increased
order, both overall and realised in the largest cluster. For the added orientational
noise in the cognitive process we interpreted this similarly to the impact of occlu-
sion that is a noisy model, deviating slightly from a mean ballistic model, is more
consistent with the actual output of the model in the deterministic case. In fact,
we found a rough agreement between orientations fluctuations ⟨∆(θti)

2⟩ ≈ 5.79◦ and
the optimal rotational noise parameter in the ballistic model (η ≈ 5◦).

The two forms of perturbations we use, occlusion and noise, are not a com-
plete list of possible confounding factors in our model. Future research could explore
the impact of, for example, physical obstacles. That is how does a group react when
obstacles occlude large portions of the group? Since agents within our model, project
their flockmates into the future and seek maximum entropy of visual states. A pri-
ori it is possible when faced with an obstacle, the group at large moves to one side
of the obstacle or the other. This might occur if a majority of the flock happen to
be heading to one side of the obstacle over the other. An individual on the least
favoured side, projecting others ballistically, may select to turn towards the favoured
side of the group for maximum visual diversity in the future. On the other hand
if an obstacle would split a flock exactly into two parts, the group may continue
roughly ballistically.
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Chapter 5

Monte-Carlo Sampling of
Future Paths

In this chapter we will first discuss how FSM can be recontextualized as a Monte-
Carlo tree search, a random search on a future states tree of finite size.

Next with a basic Monte-Carlo process on a finite action space we will see
how we can extend to continuous action spaces, that is instead of |A| <∞ discrete
actions (in particular |A| = 5 as we used in previous chapters), we relax the set
A to some continuous region or distribution which instead of enumerating fully we
sample from, or more specifically we sample paths up to the time horizon τ .

We will then compare these approaches to the explicit enumeration method-
ology and discuss in the context of existing literature.

5.1 Monte-Carlo Future State Maximisation on a Finite
Action Space

Up to this point FSM has been considered by way of explicitly enumerating all pos-
sible future states, given an action space A, for all agents. This is computationally
tractable using both a discrete action space, such as the default five actions select-
ing three speeds or two orientation increments: v1 = v4 = v5 = v0, v2 = v0 + ∆v,
v3 = v0 −∆v and rotations θ1 = θ2 = θ3 = 0, θ4 = −∆θ and θ5∆θ which we have
used up to now, and a modest number of future times to search (τ ≤ 6 typically).
Increasing the size of the actions space (up to and including an infinite size) and
increasing the number of future states both lead to an exponential increase in com-
putation time for an agent to reach a decision. This is clear from the number of
paths in the future states tree, |A|τ . Not only is this a computational problem, but
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when considering real-world animal systems it is not plausible that a bird, insect
or other animal could envisage the exponentially increasing number of future states
without bound.

One way to reach greater depths is to sample futures rather than exhaustively
enumerate them. Sampling future states up to time τ > 0 (0 being the present time),
can be thought of as sampling a sequence of actions, a path, of length τ from some
distribution. In the explicit enumeration case, the sampler can be thought of as
drawing from a uniform distribution (or any as long as the probability of sampling
any particular path is not zero) over future paths without repeats, and taking exactly
|A|τ samples, one for each path. In general a sample path is defined as the sequence
of actions

sik = {βt′ik}τt′=1 : β
t′
ik ∈ A, (5.1)

for an agent i which in turn are index by k which ranges up to some pre-defined
number of samples S. Such that sik ∈ AN ·S . Clearly enumerating paths and
sampling without replacement will result in the same outcome i.e. all paths are
sampled once. We could of course pre-define some distribution over paths, or define
a distribution which changes as the number of samples progresses. We will examine
some of these cases in this chapter.

5.1.1 Sampling Actions

Since sampling a path in the FST is equivalent to sampling a sequence of actions as
defined in equation 5.1. We can think of the sampling process at the path or action
level. At the path level we define some distribution, P(sik), over entire paths and
sample these paths and the states associated with them. At the level of actions we
imagine a sample beginning at the root of the FST and selecting an action β1ik ∈ A
by some probability P(β1ik = β) at time t = 1, and at time t = 2, β2ik is selected with
probability (possibly dependent on β1ik) P(β2ik|{β1ik}), etc. This then, using the law
of total probability, generates a path which is sampled with probability

P(sik) = P(β1ik)P(β2ik|{β1ik})P(β3ik|{β1ik, β2ik}) · · · (5.2)

=
τ∏

t′=1

P(βt
′
ik = β|{βt′′ik }t

′−1
t′′=1). (5.3)

We use the convention that the empty sequence is identified with {βtik}0t=1 =

∅. The nature of the distribution P(βt′ik) and its possible dependence on the path’s
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previous selections {βt′′ik }
t′−1
t′′=1 defines the sampling scheme. For example, we can

take P(βtik) to be Markovian and uniform over A to obtain the sampling scheme
corresponding to uniform path selection with replacement, and for sampling path
without replacement, P would have to also depend on the prior sampled paths, s, in
a way that is complicated to write down in explicit analytic form. In the uniform
case, we can instead think of the sampler as selecting entire paths uniformly from
those paths not already selected. That is

P(si(k+1)| ∪kl=1 sil) =

 1
|A|τ−k s ̸∈ ∪kl=1sil

0 s ∈ ∪kl=1sil
. (5.4)

Dependence on the previously sampled paths Sm is also useful if we want our sam-
pling scheme to take advantage of the current state of information about the FST.
That is we could imagine selecting actions based upon the current estimate of en-
tropy along subsequent nodes given that action selection, or some other property
such as prioritising branches with the most un-sampled states. As such we could use
equations of motion, equation 3.7 and 3.8, to calculate the states implied by each
path s and additionally condition selection probabilities on these states.

The naïve case

Let us begin by examining a base case. Here the simplest form of equation 5.3 is to
drop dependence on the prior actions along the path being sampled, {βt′′}t

′−1
t′′=1, the

previously sampled path s and their states. This leaves us with some distribution
P(β) over the actions β ∈ A which is fixed for any agent and any path. In this
situation any form for P that is not uniform will bias sampling, so we take P(β) = 1

|A|
as the most basic case to examine.

The main test we wish to make is how many samples, s, does it take be-
fore the decisions returned based on samples approaches the decisions made on full
enumeration. Or we might also ask, how many samples are needed to reach an
ordered phase of motion? If by chance the sampling process samples every path in
the tree exactly once the output will be identical, all else being equal in terms of
implementation. But how likely is that to occur?

We can write down the process of sampling in this base case analytically.
First note the sampling process can be translated to a set of walkers (samples)
which descend a complete |A|-ary tree (from the root node to the leaves) to depth
τ . In particular each walker, at the root or any internal node, will move to one of
the available children with a uniform probability independently of the other walkers,
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importantly always descending the tree, and upon reaching a leaf node terminates.
Figure 5.1 shows an example of four walkers (four samples) traversing the com-
plete binary (2-ary) tree of depth 2. In this particular case the sampling process
reached each leaf, notice how reaching each leaf corresponds to full enumeration of
all paths from the root node in the tree to the leaves. To formalise this process

Figure 5.1: A visualisation of four walkers descending a binary tree of depth two. In
this case each leaf has received at least one walker, the probability of the pictured
event is ≈ 0.09375, in contrast if the tree was only depth one (so the third row is
cutoff and the second row becomes the leaves) then the probability is 0.875 of all
leaves being visited.

there are w distinct walkers W t
i , for i = 1, 2, . . . , w, where the notation W t

i de-
notes walker i’s position (a node in the tree) at step t ∈ 0, 1, . . . , d− 1 such that
W 0
i = the root node ∀i. The walkers traverse a complete n-ary tree of depth d

(where the root node is counted as depth zero). The stochastic process a walker
undergoes is Markovian and independent of the other walkers and lasts d steps
t = 0, 1, . . . , d− 1. At each step t < d− 1 a walker Wi(t) is at an internal node (or
the root node) v, with exactly n children identified by u1, u2, . . . , un. The transition
probability is

P[Wi(t+ 1) = uk|Wi(t) = v] =
1

n
∀ k = 1, 2, . . . , n, t < d− 1. (5.5)

The question is to work out, for a given n and d, how large w must be to insure all
paths are enumerated with a certain probability.

Probability of Visiting All Leaves

Since the process takes place on a complete n-ary tree visiting all nodes is equivalent
to visiting all leaf nodes, using this we can ignore the tree and think of the problem
as distributing w distinct balls into nd distinct bins. The balls being walkers and
the bins being the leaf nodes.

For w distinct balls and nd distinct bins there are exactly (nd)w ways to distribute
them in total, including empty bins. For non-empty (but indistinct) bins the num-
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ber of ways to distribute the balls is expressed by the Stirling number of the second
kind [114] (for n balls and k bins)

S2(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n, n ≥ k. (5.6)

Equation 5.6 can be converted to distinct bins by multiplying by a factor of k!.
Combining these facts for the w walkers and nd leaf nodes, the probability that all
leaf nodes are non-empty after the stochastic process of equation 5.5 is given by

P(All leaves visited) =


S2(w,nd)nd!

(nd)w
w ≥ nd

0 otherwise
. (5.7)

Infeasibility of the naïve Approach

Figure 5.2 (a) shows the order of a group following the Naïve approach (main plot)
and (inset) equation 5.7 alongside a Monte-Carlo simulation of the walker process
given by the transition probability 5.5. Clearly, in this naïve case the number
of samples needs to be unreasonably large considering the that at τ = 4 in full
enumeration we have 625 paths, but for the naïve sampling approach we find that
10000 samples is still not enough for a stable high order flock. The reduced order here
is due to the flock fragmenting into multiple smaller, but highly ordered subgroups.
There is significant variance in the count of these groups, and we see this reflected
in the largest cluster size 5.2 (b). However, it is clear the order roughly converges
much faster than the idealised case. This is quite encouraging. It means we likely
do not have to fully sample the tree to achieve ordered motion.

5.1.2 Sampling Paths Without Replacement

Sampling with replacement clearly is suboptimal for a deterministic FST as is the
case here since re-sampling one path will always return an identical result. We
say a deterministic FST given that in theory we could have a case where the FST
changes on each sample, stochastically. In this noisy case one could re-sample the
same sequence of action but obtain slightly perturbed visual states. For now, we
will continue with a deterministic tree, in which case it makes sense to examine
the sampling process without replacement. The hypothesis being that we achieve
convergence to the full enumeration case much earlier than the naïve case, in fact we
should obtain identical output when sampling enough paths (without replacement)
to fully enumerate the FST at a given τ .
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Figure 5.2: (a, Main plot) Global order increases with number of samples drawn
with replacement. The order does not reach the same as in explicit enumeration
due to sample degeneracy. Here N = 50 agents, and τ = 4, were simulated with
differing numbers of walkers, but identical starting conditions. Data points and
error bars correspond to the mean of 5 simulations, and one standard deviation
of 5 simulations respectively. (a, Inset) Probability of all paths being sampled in
a 5-ary tree of depth 4 with S walkers, this is the form of the future states tree
for the default FSM parameter set. For reference 99% probability is achieved at
approximately 6894 walkers. Theory indicates evaluating equation 5.7, and the
simulations are by simulating the process according to equation 5.5.

To do this we simply compute the list of all possible paths, given A and τ and
refactor the implementation to choose among possible paths at random uniformly
from paths not yet sampled, by eliminating each path from the possible distribution
once sampled. Doing this we can state with certainty that after exactly |A|τ samples
the output from the explicit algorithm and this path sampling algorithm without
replacement are identical; the decision process functions on identical input. We are
interested in two properties (1) how does the order of a group behave as a function
of the number of paths sampled? (2) If we limit the number of samples to (possibly)
cover depth τ in the tree, S = |A|τ but allow each path to continue to a higher
depth τ ′ > τ how do these extra visual states effect the order? Question (1) serves
largely as a check on the implementation of the sampling but will give us interesting
information about how much of the FST needs to be known, for example if we
eliminate a single path from the explicit enumeration does this dramatically effect
order? Question (2) is more interesting because fully enumerating at depth τ has a
certain computational cost which scales as a power (in τ) of the number of actions
with a coefficient that is the time taken to simulate one path. If however we can
see a benefit (i.e. increased order and stability) from sampling say 54 paths but
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Figure 5.3: Global order, ϕ, as a function of the number of paths (in the FST)
sampled, p, for time horizons τ = 4, 5, 6. Note the extra x-axis (top) marking
S = 54, 55, 56 show necessary but not always sufficient (depending on τ) conditions
for complete enumeration when τ = 4, 5, 6 respectively. In particular, we see that for
a common value of p and increased horizon τ promotes order. In particular observe
the increases in order across 100 to 625 paths for increasing τ . For each scatter
point N = 50 agents were simulated for 1000 time steps, with standard parameters
and paths were sampled uniformly at random without replacement. The error bars
indicate one standard error on the mean over n = 5 replicates. Statistics were
accumulated for time steps 500 to 1000.

extending each to depth τ = 5 (one extra visual state per path), we can realise some
of the benefit from sampling at higher depths for lower computational cost.

Figure 5.3 shows this data for samples in the range [7, 15625]. The experiment
conducted was to sample fixed percentages of paths from the total number of paths
at depth 5τ for τ values 4, 5, 6, 7, 10. We find the onset of order around 54 sampled
paths as expected, regardless the value of τ ≲ 10. But for τ = 10 we see the onset of
order at lower than 54 sampled paths. This reflects the fact that fully sampling the
FST at the τ = 4 depth is sufficient, and sampling further increase order, but for
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example τ = 3 is known to be insufficient in explicit enumeration. These findings
help us in two ways. Firstly we have a baseline of the effectiveness of sampling
confirming the importance of τ = 4 futures in the model. Secondly we can see the
effect of sub-sampling the tree at e.g. depth τ = 4 but continuing these samples to
larger τ values. For example consider the data points for τ = 5, 6, 7, 10 but where
p ≤ 54. Sampling 54 paths to depth τ > 4 is necessary but not sufficient number for
fully enumerating the tree at depth τ = 4, however this potential loss of information
is offset by the additional information gained by the FST nodes sampled by the
continuation above τ = 4. Importantly if the sample happened to fully enumerate
all paths at the τ = 4 level we should expect that the additional information gained
from the states at τ > 4 might promote ordered motion. We can see this effect in
the τ > 4 data points.

The significance of the increased order obtained through sampling less paths
to larger time horizons is the benefit of sampling. In short, we would like to be
able to sub-sample the FST but retain the order motion characteristic of the high τ
full enumeration of paths case. We see this already appearing in the baseline case,
in subsequent sections, encouraged by this, we shall spend time developing more
efficient sampling schemes to hopefully exploit these properties further.

5.2 Partially Sampling Deeper Tree Leads to Higher Or-
der

Being able to sample the FST, instead of fully enumerating it, and still producing
spontaneous collective motion can incur a number of advantages. Firstly if less
samples are required to reach an ordered phase, than full enumeration implies,
practically the algorithm is faster. Secondly sampling allows us to sub-sample higher
tree depths for linear (in the number of visual state evaluations) computational cost
in tree depth. It is possible we could see an onset of order with fewer samples, sub-
sampling higher depths, over fully enumerating shallower depths. This second point
if true would imply something about the problem we study, i.e. if sub-sampling
longer future times increases order or “stability” of the group more generally over
fully enumerating shallower depths this would predict flocks in the real world should
care more about the distant future (likely up to some limit) than the immediate
future.

We have seen that for a constant number of paths, 625 say, we obtain an
increased order if we extend samples to higher values of τ beyond the possibility
of full enumeration. E.g. for 625 paths we will sample (without replacement) all
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Figure 5.4: Order is increased due to a decrease in fragmentation in large groups
(N = 250 and N = 1000) when extending a constant number of samples, S = 54

here, to deeper tree depths. Paths were sampled without replacement, error bars
show one standard error on the mean over six replicates. The inset shows the largest
cluster sizes for the same simulations

paths at τ = 4, but if we allow each sample to continue on to τ = 10 we can realise
a benefit from high tree depths without the burden of fully enumerating at depths
4 < t′ ≤ 10. Indeed, the added computational load is linear (∼ Sτ ′) in the number
of futures τ ′ we allow samples to extend past τ , all else being constant. For example
τ = 10 is not feasible for N = 50 and 1000 time steps given full enumeration, but
we can sample hundreds or thousands of paths up to τ = 10 without much more
cost than full enumeration at τ = 4. For larger groups this effect is most apparent
due to the dramatic reduction in fragmentation seen. Figure 5.4 shows a constant
number of samples S = 54, enough to possible fully enumerate at depth τ = 4,
extended to increasing tree depths up to τ = 10. We see an order of approximately
(mean, standard deviation) 0.977, 0.006 and a largest cluster size of 0.99, 0.007. If
we compare this to the mean order and largest cluster size for fully enumeration
simulation of N = 250 and τ = 6 (means and standard deviations (0.939, 0.0157)
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and (0.956, 0.0152 respectively for n = 132 replicates) a t-test for the null hypothesis
that the order data for the path-sampled τ = 10 simulations in figure 5.4 comes from
a distribution with mean 0.939 is rejected with p-value (right tailed) ≈ 7 × 10−6

indicating the data has a statistically significant increased mean order over the null.
The same methodology to the cluster size mean yields a p-value of ≈ 5×10−5 which
is also significant. For N = 1000 we performed the same analysis but by simulating
only the τ = 10 case, due to the lengthy computational time, for 8 replicates, and
we obtain a p-value of 0.0035 indicating sampling at τ = 10 with S = 625 paths
does significantly increase the average order against full enumeration at τ = 6.

The significance of these results is that fully enumerating at τ = 6 implies
56 = 15625 visual state calculations, implying a longer run-time, but we achieve
more stable flocks with 40% of the visual state evaluation if we sample 625 paths
extended to τ = 10 where 625 samples extended to depth τ evaluate Sτ = 6250

visual states. Therefore, sub-sampling deeper trees can be more beneficial than fully
enumerating shallower tree; agents should prioritise a depth-first tree search over a
breadth first tree search. We will remark again on this in the closing notes of this
chapter as a falsifiable prediction of our model.

5.3 Sampling Actions: Applying a Monte-Carlo Tree
Search

We have seen that sampling paths in the FST without replacement is key to reaching
the same output as the explicit enumeration approach in the same (or less) com-
putational load. There are however two questions to answer about this approach
(1) is sampling paths uniformly without replacement the most efficient method?
Or can we use the partial information as the FST is updated to improve sampling
efficiency? (2) How can this methodology function with extremely larger values of
τ and with continuous action spaces? The first question we will explore by using
the idea of a Monte-Carlo tree Search in this section, after which we shall return to
the second question.

Monte-Carlo Tree Search (MCTS) [77] was famously used by Deep Mind’s
Alpha Go agent [78]. MCTS is usually defined in the context of a game allowing for
a sequence of actions followed by a pay-off. The structure of MCTS in this context
is to (1) search recursively in a game state tree to find a leaf, which can be totally at
random or guided (2) expand from the leaf node by taking an action in the game to
reach a new leaf-node state (3) simulate from this new leaf to an end state (4) back
propagate the payoff by updating the node values. This is the basic structure, each
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step can and has been modified for different applications. For FSM we will use the
backpropagation and recursive searching chiefly, to determine where on the FST to
sample next.

The core issue with applying MCTS to SCE is this back-propagation, since
this will inform the searching. Previously when sampling we recorded samples and
computed the entropy data once at the end of the sampling process, just like explicit
enumeration. For back-propagation after each sample we update information at each
node in the tree using the most recent sample. For example if we wish to use the
current approximation of the entropy along branches to guide future samples we will
need to find an efficient manner to update the entropy’s along nodes. Ideally we
would want to be able to define an “online” method [115] for calculating the entropy.
For example consider finding the average of a stream of numbers, if k numbers, xi,
have been seen then kth mean is simply µk = 1

k

∑k
i=1 xk, when we are given the

k + 1th number we can update the mean by µk+1 =
kµk+xk+1

k+1 , rather than re-doing
the whole calculation on the new set of k + 1 numbers. The utility is that when
back-propagating, the value at a node can be trivially updated without having to
start the calculation from scratch.

For our case we are calculating the entropy of a categorical distribution with
2ns possible categories but only a small number being seen 1. Each sample we add
new states to the FST and therefore need to update counts and entropies. For
example when a new node in the tree is sampled all nodes prior to it (existing
along some path from the root to the new node) need to account for the new state.
The state counts n(ψ) and therefore probabilities and entropies can be updated in
an online fashion using prior entropy values, see Appendix A for the details. The
problem however, is that doing this requires knowing if the new state is unique or
not. This presents a slight problem since whenever we update a node we must check
if the new state is already part of that node’s distribution by direct comparison
before apply the update rule. In SCE this is done for the root node itself, 1 node,
at the end of the “sampling” process, now we would need to do it for all nodes
along a sampled path (τ nodes) each sample. This comparison will scale linearly in
the number of unique states being compared to, e.g. if at some node we have seen
states {ψ1, ψ2, ψ3} with counts 1, 4, 2 respectively, for a new state ψ we compare
it to the three seen states regardless as to their degeneracy. This backpropagation
is done after each sample by back-propagating from the final node in the sample.
In comparison, for the CE case the quality is the average of visual state entropies

1In particular the |A|τ leaf nodes may all be unique, and there are |τ |A|τ in total across paths.
Internal nodes will not be unique by construction.
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H(ψ) along branches, therefore backpropagation is simply a case of the online mean
algorithm without needing the uniqueness check.

5.3.1 FSM and Monte-Carlo Tree Searching

Similar to Fractal AI [79] and MCTS more generally [77] our tree search algorithm
judges which action to take (which child node to move to) by comparing a notion of
quality between the candidate child nodes. For us quality could take many forms.
Ideally we would like a self-similar quality, meaning that the sampler judges which
child to take by the same algorithm as decision are made by the agent at the end of
sampling; by maximising entropy. If we only maximise entropy then the first sample
will be uniformly distributed among the total set of paths. This sample will update
entropies along the chosen path. If the “null entropy value” at un-sampled nodes is 0
the second then will always choose the same path unless it is completely degenerate
with 0 entropy. This is the exploitation-exploration problem. If the default value
were 1 for the un-known entropies, this would mitigate this problem somewhat (for
entropies normalised to [0, 1], see appendix B), but still paths with high entropy
will be re-sampled with high probability. A naïve solution to this is to simply count
the number of un-sampled nodes subsequent to a given node and use this with the
entropy to decide on child nodes. For example, we can take the default entropy at
un-sampled nodes as 1 (maximal) but their quality should be further weighted by
the count of un-sampled subsequent nodes (with leaves given a count of 1). Then
during sampling, entropies and counts are updated, and we judge which path to
take based on the combination of these.

We do this to hopefully take advantage of the information gained by recording
future entropies and un-sampled counts at the internal nodes, that is when sampling
a path we choose the next action in the path informed by these values. Here we will
do this by Boltzmann factors of the form

p(βtik)|{β1ik, β2ik, . . . , βt−1
ik }) = C(β)e−

1
T
∆Ĥ(β)∑

β′∈AC(β
′)e−

1
T
∆Ĥ(β′)

. (5.8)

Where p(βtik|{β1ik, β2ik, . . . , β
t−1
ik }) is the probability for agent i sampling action βtik

at future time t, given the previous actions β1ik, β2ik, . . . , β
t−1
ik taken at previous future

times 1, 2, . . . , t − 1. The value of ∆Ĥ(β) is the estimated gain (or loss) in qual-
ity for sampling action β at time t after sampling actions {β1ik, β2ik, . . . , β

t−1
ik }. The

pre-factors C(β), which are optional in the case of a stochastic FST, down-regulate
sample degeneracy for the reasons discussed above, and depend (as ∆Ĥ does) on
the history of samples ∪kl=1sil codified in the FST as samples are evaluated. Finally,

107



we interpret the incorporated temperature parameter T in each Boltzmann factor
as a means to manipulate the behaviour of the algorithm i.e. to control the balance
between exploration and exploitation. In fact this parameter facilitates a similar
role to the counts C, low temperatures will lead to greedy selection of high entropy
paths and high temperatures lead to increasing uniform selection. Considering this
as an optimisation-like algorithm literature surrounding simulated annealing [116],
particularly the “cooling schedule” of β is highly relevant in its interpretation and
practical implementation in our sampler.

Algorithm 4: FSM Monte-Carlo Tree Search
Result: Agent Path Samples

1 while s < S do
2 sampleStates[s] ← ∅;
3 Node ← Root;
4 sampleStates[s].add(Node.ψ);
5 α ← sampleAction(Node,FST);
6 initialAction[s]← α;
7 Node ← nextNode(Node,α,FST);
8 isCollided ← collided(Node,agentModel);
9 while ¬leaf(Node) ∧ ¬isCollided do

10 if empty(Node) then
/* Only need to fill each node once */

11 Node.ψ ← getVisualState(Node);
12 Node.add(ψ);

/* future states */
/* Record path entropy */

13 sampleStates[s].add(Node.ψ);
14 α ← sampleAction(Node,FST);
15 Node ← nextNode(Node,α,FST);
16 isCollided ← collided(Node,agentModel,1);
17 end
18 backpropagate(Node);
19 s← s+ 1;
20 end

Algorithm 5: Backpropagating Entropies
Result: Entropy Backpropagatation

1 Function backpropagate(Node,ψ) is
2 if Node == Root then
3 return;
4 Node ← parent(Node);
5 Node.add(ψ);
6 backpropagate(Node);
7 end
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Algorithm 6: Boltzmann Sampling
Result: sampled action

1 Function sampleAction(Node,FST) is
2 for α ∈ A do
3 u ← nextNode(Node,α,FST);
4 if leaf(u) ∨ isCollided(Node,agentModels) then
5 b[α] ← 0;

/* uniform among leaves */
6 else
7 ∆H ← Node.quality-u.quality;
8 b[α] ← u.FutureCount ·exp(−∆H/T );
9 end

10 if normalise(b) == 0 then
/* All options are leaves or collided, random uniform action */

11 return sample(ones(b.length)·1.0/b.length);
12 return sample(b);
13 end

To lay this out practically algorithm 4 shows the basic structure of how
agents sample the future states tree. The sampleAction and backpropagate func-
tion is defined in algorithms 6 and 5 respectively. For the utilities: the nextNode
function moves to the next node in the FST, by action α, leaf(Node) returns true
if Node is collided or at future time > τ (a leaf in the full tree), empty(Node) in-
dicates whether the node has been visited before, parent obtains the unique parent
node (or a null value for the root node), exp is the exponential function exp(x) and
normalise(b) normalises vector b in-place, finally sample(b) samples from a proba-
bility distribution given by the elements of b. Algorithm 4 represents one sample
path in the FST, in one run up to τ − 1 nodes will have new visual states calcu-
lated and the backpropagate function will update nodes on on paths leading to it
by moving up parent nodes. During one sample we always begin at the root node,
which is always added to a samples states (lines 2-4 algorithm 4). Next sample an
initial action (lines 5-8 4) using the Boltzmann sampler in algorithm 6. For a given
node the sampler calculates a probability distribution for selecting actions given by
equation 5.8 optionally weighted by the number of unsampled nodes subsequent to
taking each action (thereby potentially down regulating degenerate samples). The
returned action is then actioned to give the next state. Lines 9-17 in algorithm 4
follow that same process moving down the tree and collecting states into the sample
distribution. In line 12 of algorithm 4 and line 5 of algorithm 5 the nodes states and
back-propagated states are added to the node for use in the sampler. The optional
future counts can also be updated in an efficient manner similar to the backprop-
agation of states given that at the first sample it is simple combinatorics to write
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down the number of unsampled states after each node in the tree, once a new node
is sampled we simple decrement these initial counts by 1 for all parent nodes 2.

This methodology gives us two new parameters, the inverse temperature β
and the number of samples S. β controls how greedy or random the sampling of
actions to make paths is and the number of samples controls how many paths are
sampled. Note that taking β → 0 implies random selection as expected and β → ∞
selects the best value (or among the degenerate maxima) when searching the FST.
We can even identify β → ∞, S → ∞ as the SCE algorithm, if we are careful with
degenerate samples. To explain consider the following two wrinkles to the above
algorithm: (1) because our sampling scheme samples paths by sampling actions we
don’t sample paths without replacement, the inverse temperature β and the use of
the un-sampled counts will alleviate this, but degenerate samples will likely still
occur. In order to achieve exact convergence to explicit enumeration in the limit
of S → ∞ we can further record an identity for each path, namely its final node,
which uniquely identifies it. This identity will allow us to find and ignore degenerate
samples when calculating the count distributions at the decision step. For example
say we sample the same path s twice, this would mean in the final distribution used
for an agents decision all states in the path s will be double counted, they will all
be degenerate. But it may actually be the case that the final state in s (assuming
no collisions), being a leaf node, might be unique and further the other states in s

may be rare in the rest of the tree. With even more degenerate samples of the same
path, the entropy distribution used for decision-making will diverge from the true
distribution under explicit enumeration and in fact in the limit of S → ∞ all states
will be infinitely degenerate.

We can resolve this, even without backpropagation of counts of entropies, by
using the identity mentioned above. When we accumulate the final distribution of
states along each branch we keep track of which paths have been accounted for; if
a sample represented a path already accounted for we ignore it for the purposes of
decision-making. Not doing this will mean an erroneous degeneracy of visual states
will be collected just like the data in figure 5.2 versus figure 5.3. Note we still have
multiply counted states along paths, this is a simple fact of the structure of paths on
an FST. But in this sampling scenario it is possible for two samples to be identical;
be the same path. In this sense the algorithm can produce erroneous degeneracy.

Of course, interestingly, the problems of degeneracy among samples is a
factor of the deterministic nature of the FST in our problem. If the FST were

2Collisions can be handled in the same manner but of course require decrementing parent counts
by larger values i.e. the number of nodes lost by the branch cut.

110



itself Stochastic, degenerate sampled paths might aid decision-making. For example
consider situations such as the cognitive noise model presented in chapter 3 section
4.2.2, where each agent’s model of the others is on average ballistic but subject to a
noise process. Two samples taking identical paths through the FST will, dependent
on the noise strength, result in different visual states being collected along each
sampled path despite the same actions being taken. We will return to this when
comparing the sampling algorithm presented here to explicit enumeration.

5.3.2 Does Uniform Action Sampling Lead to Ordering?

To see if we can benefit from the Boltzmann sampling setup, or in particular whether
a uniform action selection distribution is justifiable we can vary the parameter β
in algorithm 6. High values of β indicate uniform sampling. This data is shown in
figure 5.5 (a) and (b) where we use the future SCE change (normalised) to judge
future actions and in (c) and (d) using the number of visual state boundaries (with
a resolution parameter s = π/40). In each case we vary β ∈ [1, 10, 100, 1000] and τ

as 6 and 10. For the future entropy we find an unclear relationship with τ = 6 and
a marginal benefit of uniform sampling at τ = 10. However, using the number of
boundaries we find low β = 1 to be both consistent and superior to all other cases
except for S ≈ 625 where higher β ≈ 1000 values are as good and better. For future
entropy it appears we can choose uniform sampling for large enough S ≳ 625 and
τ ≳ 10. Note though that we can get an order of ϕ ≈ 0.95 with S = 125 and τ = 10

if we use the average number of visual state boundaries method, this presents a
very significant computational saving at the expense of stability in the group i.e.
the order of ϕ ≈ 0.95 is due to fragmentations (usually into 2 groups in these data
points).
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Figure 5.5: Order for N = 50 agents using the Boltzmann sampler with future
entropy to judge actions to sample. (a) and (b) use τ = 6 and τ = 10 respectively.
(c) and (d) use the average count of boundaries on future states with τ = 6 and τ =
10 respectively. Error bars indicate one standard error on the mean for 6 repeated
simulations. Increasing β has an unclear impact at τ = 6. With τ = 10 increased β
appears to have a slight benefit implying uniform sampling is advantageous.

5.4 Continuous Action Spaces

To extend to continuous actions spaces a sampler is needed in practice if we are
to perform FSM, since it is impossible to fully enumerate a continuous space com-
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Figure 5.6: Two examples of a continuous action space in our context. (a) a model
where agents may increment their orientation by any angle θ ∈ [−∆θ,∆θ] and
choose speeds in the range v ∈ [v0 −∆v, v0 +∆v]. (b) the same as in (a) but now
since ∆v = v0 the speed can be any value in [0, 2v0]. (c) An example sampled path
to depth τ = 4 (red, thick arrows) starting with a set of na = 8 initial actions to
choose from (black, thin arrows with first red thick arrow).

putationally. First though we must formalise what a continuous action is in this
context. In the discrete case we have defined rules which increment orientation by
a magnitude ±∆θ or select speeds v0 and v0 ± ∆v. This means that each agent’s
speed is always contained within the set {v0 −∆v, v0, v0 +∆v} and its orientation
within {n∆θ mod 2π} for integers n ∈ Z. To move to a continuous analogue of this
we can proceed in a number of ways, one such example is shown in figure 5.6. We
consider v0,∆v and ∆θ as physical constraints on an agent such that in time ∆t

an agent can at most modify its heading by a magnitude of ∆θ, i.e a continuous
increment in angle from the range [−∆θ,∆θ], and select speeds within the contin-
uous range [v0 − ∆v, v0 + ∆v]. This creates a continuous action space for speed
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and orientation. One subtle point is how θti and vti are handled, i.e. we can choose
θti ∈ [0, 2π) and consider actions as increments to θti which we do, for the speed
however we must be careful. If we choose vti ∈ R meaning the speed action being
interpreted as an increment to agent speed our model may result in infinite speeds
or negative speeds without further limitations, to eliminate this we take, as above,
speed actions to be selections from a continuous range rather than selection of in-
crements from a continuous range or selection from discrete range. Finally, note
that our actions are defined as vectors taking an agent from its current position
to any of the allowed positions by ∆θ, v0 and ∆v. To be precise we can define an
action as a vector αti ∈ [−∆θ,∆θ]× [v0 −∆v, v0 +∆v] interpreted in a local polar
coordinate system (ϕ, r) defined from the position xi(t) and orientation θi(t) of the
agent under consideration, i.e. (ϕ = 0, r = 0) is the position xi(t) and vectors (0,r)
point along agent i’s heading direction at time t.

We wish to use the above continuous action space in our SCE model. To
do so we have some practical difficulties. An agent cannot enumerate all possible
paths, so we must sample, but importantly how we sample the initial actions along
paths matters. We could simply select S initial actions, one for each sampled path
1, 2, . . . , S, but this would mean each path only contains τ visual states. In terms
of the entropy in the SCE method paths sampled in this way would amount to low
entropy values for small τ . In fact in doing this we find high order cohesive groups
only with τ ≈ 512, an extreme value, as we will see shortly. Recall in the SCE
model with the discrete action space we naturally have |A| actions which our agent
chooses from, in analogy to this and to combat the problem just stated we define a
new parameter na ≤ S which defines the number of initial actions an agent considers
taking now, i.e. the set A0

i = {βi1,βi2, . . . ,βina} where each is sampled from some
probability distribution (say the same as for selecting actions along future paths; a
uniform distribution). Using na we can range up to the pathological case mentioned
above, na = S, and also consider na = 5 in analogy to the standard 5 action space
we have used in the SCE model in previous chapters, and anywhere in between.

Agents following this model will sample na ≤ S possible initial actions. Then
for each path 1, 2, . . . S will first select an initial action βil ∈ A0 at random, then
select a further τ − 1 actions β2

i , . . . ,β
τ
i uniformly, each from the whole space

[−∆θ,∆θ]× [v0 −∆v, v0 +∆v] (i.e not limited to A0) to define the sampled paths.
Along the S paths will be grouped together into distributions defined by the initial
actions. Then an agent picks the initial action αti ∈ A0 maximising the future path
entropy computed analogously to the SCE method. One example path is visualised
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in figure 5.6 (c). The equations of motion are

xt+1
i = xti + v

t
i∆t, (5.9)

vt+1
i = αvR(αθ)v̂

t
i. (5.10)

Where we use the notation αv and αθ to denote the two (polar magnitude and angle)
components of the selected action α which maximises path entropy across samples.
The model reproduces similar output to the discrete case, for example in figure 5.7 we
see one particular examples of an N = 50 group following the “default” parameters
we have used previously in this thesis, where na = 5 and S = 625 to emulate the 5

actions in the discrete case. Here the flock remains cohesive with ϕ = 0.974. The
distributions for chosen speed and rotations can both be fitted by truncated normal
distributions with means v0 and 0 respectively, with standard deviations around
≈ 4, and ≈ 19◦, in the discrete case action choices are roughly uniformly distributed
across time. Given we obtain no surprises for na = 5 and standard parameters we

Figure 5.7: Example output from the continuous model with N = 50, τ = 5, na =
5,∆θ = 15◦,∆v = 2.0, v0 = 10.0 (a), we find ϕ = 0.974. The distribution of realised
actions is shown in (b) for the speed and (c) for the orientation, in each case the
truncated normal distributions αv ∼ N v0+∆v

v0−∆v (v0,∆v
2) and αθ ∼ N∆θ

−∆θ(0,∆θ
2) are

plotted as orange dotted lines, in (b) the black line indicates a uniform distribution
over the range. The red dashed lines indicate truncated normal’s with the same
means but different variances: αv ∼ N v0+∆v

v0−∆v (v0, 4) and αθ ∼ N∆θ
−∆θ(0, 361) which

are better (b) and arguably better (c) fits. For flocks fragmenting both αθ and αv
tended to be uniform distributions. Statistics for (a) and (b) where collected for all
time-steps (1-1000) in (a).

examine the role of na in figure 5.8. We find that na depends on the number of
paths sampled, and we see the problem case na = S as mentioned above where the
order ϕ drops. It appears na = 5 is not optimal, which is not so surprising since
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for FSM more actions are exponentially more difficult to compute and that choice
was made for computational reasons mainly. For increased samples however we can
retain high order across higher na actions that agents select from. The data reflects
the trade of between how many samples are taken and how many actions there
are to choose from, more actions to choose from than samples means some actions
are completely unsampled, both equal and an agent “spreads itself thinly” by not
building much knowledge about each possible action (even probably not sampling
some at all), with na ≪ S an agent builds a more uniform and accurate knowledge
of how each actions plays out, but this limits available choices.

Figure 5.8: Order of an N = 50 group with τ = 5 dependent on the number of
initial action na an agent selects from for 625 and 3125 sampled paths. Here v0 = 10
∆v = 2 and ∆θ = 15◦ to compare directly with the SCE model with discrete action
space. na = 5 is marked for comparison. There is a trade-off between how many
initial actions an agent selects from and versus how many paths need to be sampled
to effectively judge between them.
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5.4.1 Phenotypes

As in the discrete action space model we can also explore the action space by varying
the parameters ∆θ, v0, and ∆v. We show this data in figure 5.9 (c.i) and (c.ii) as
well as four examples from that data in 5.9 (a.i-a.iv). We find a transition largely
controlled by decreasing v0 from cohesive, translating and ordered motion to swarm
behaviour at v0 = 1. Behaviour is largely unchanged in ∆v/v0 with the exception
of values around ∆v ∼ v0 = 1 which appears to show a reduction in the size of the
largest cluster at v0 = 1. At intermediate values 1 ≲ v0 ≲ 8 we find more frequent
fragmentations but with many highly ordered and cohesive sub-fragments as well as
isolated single agents.

Additionally, we can also, in the continuous model, modify the action dis-
tribution by for example biasing the rotation selection in sign. Up to now we
have taken the actions sampled uniformly and independently in each component
i.e. βθ ∼ U([−∆θ,∆θ]), βv ∼ U([v0 −∆v, v0 +∆v]) with β’s to denote unrealised
actions (i.e. on the FST, and/or being considered for actual realisation). To bias βθ
we could sample from a truncated normal distribution βθ ∼ N∆θ

−∆θ(θµ, θ
2
σ) for some

mean θµ ̸= 0 and variance θ2σ with N∆θ
−∆θ indicating truncation at ±∆θ to keep the

sampled rotation within those bounds. By increasing θσ, all else being constant, the
distribution approaches a uniform distribution across its support. Controlling the
variance allows us to see the behaviour across more severe or less severe orientational
biases. We show one example in figure 5.10.

5.5 Conclusions

In this chapter we have examined how to apply a sampling approach to the SCE
model. In particular, we began by discussing the importance of sampling paths
along the FST without replacement in the case of a deterministic FST where there
was no noise, e.g. on the ballistic models of other agents. We found that by sampling
paths without replacement by selecting S paths at random from the list of all possible
paths given by the action space |A| and the time horizon τ a benefit can be achieved
for sampling deeper in τ without fully enumerating. That is we found by sampling
a lower number of paths but extending each path to longer tree depths (e.g. τ = 10)
we can achieve the same order and stability as fully enumerating shallower trees
(e.g. τ = 5).

Encouraged by this we applied a Monte-Carlo Tree search algorithm to our
problem by considering the future path entropy at nodes in the FST. That is our
MCTS builds sample paths by selecting τ actions from a probability distribution
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Figure 5.9: Phenotypes in the continuous model, we see swarming (a.iv) and highly
ordered cohesive groups (a.i,a.ii) for low and high values of v0 respectively, with
fragmenting groups (a.iii) at intermediate values of v0. ∆v/v0 modifies this only
slightly at v0 ≈ 1 (c.i) and (c.ii). In (b) we see the result of biasing the orientation
selection to a positive sign. In all cases N = 50 and v0 = 10, ∆v = 2, ∆θ = 45◦,
S = 625, na = 5, and τ = 10 unless stated otherwise.

formed by Boltzmann factors proportional to exp(−∆Q/β) where Q, the increase
in “quality” by choosing an action is computed by the change in future entropy by
taking that action. We found however that, especially for larger τ ≳ 10 and S ≳ 625

sampling using an approximately uniform distribution β ≈ 1000 was sufficient for
ordered and cohesive flocks to emerge. We did however find that for larger groups,
N ≳ 250 sampling deeper into the FST is better than fully enumerating lower tree
depths. In particular, we found that for N = 250 and τ = 6 (15625 paths fully
enumerated) the order was lower (statistically significantly) than when sampling
less paths (625) but to depths τ = 10. Importantly this meant we could achieve a
“better result“ for less computational cost (6250 visual states versus 15625 visual
states).

Finally, using the knowledge we gained from developing a sampling approach
to the SCE model, we applied this to the development of a continuous action space
version of the model. In this case we defined agents able to increment their ori-
entation and select their speeds from continuous sets. We found, just like in the

118



Figure 5.10: Bias applied to orientation leads to a cohesive flock following a circular
path. N = 50 and v0 = 10, ∆v = 2, ∆θ = 45◦, S = 625, na = 5, and τ = 10 unless
stated otherwise.

SCE sampling results, that selecting actions uniformly when searching the future
achieved stable, highly ordered and cohesive flocks. But we had to introduce a new
parameter, na, the number of actions an agent select from initially, but no effecting
future action imagined on the FST after this initial action. For finite samples S
there is a trade-off between how many initial actions can be selected from versus the
number of samples distributed among them, when S = na we only have a single path
associated with each decision, when na ≪ S we have many paths associated with
each decision. This is reflective of the fact that if each agent is to select from a large
number of possible actions, we need to ensure that there are enough samples to gain
a clear picture of the future path entropy subsequent to them. Computationally
this quickly becomes infeasible.
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Chapter 6

Conclusions and Future Work

In this thesis we have covered a data driven top-down approach to a problem in active
matter, Whirligig beetle motion, and in detail developed a bottom-up approach from
the principle of maximising future path entropy.

In chapter 2 we used experimental data to analyse trajectories of individ-
ual beetles as part of larger collectives. By doing so we defined a methodology for
estimating local density and used this to uncover a power law speed density rela-
tionship, as well as finding minor inertial effects. We investigated how we could
explain the power law decay using inertial ABPs with some success, but we are
still left with the problem of behavioural effects that we cannot eliminate in our
analysis. From a top-down perspective unexpected results, at least no predicted
results, are often not fully explainable without additional experiment to rule out
certain confounding factors. In our case we cannot rule out the possibility of beetle
interactions driving the self-propulsion mechanism as apposed to it being the result
of purely repulsive interaction in an inertial setting, or even hydrodynamic effects.
We found that our active particle model with re-orientational torque included does
allow use to replicate the bi-modal density distribution seen in the data by repul-
sive interactions plus this reorientation. We concluded this is evidence for a MIPS
like effect seen in the experimental data that drives this separation into high and
low density regions with corresponding low and high self propulsion speed. Aside
from conducting novel experiments into Whirligig beetle behaviour, either to test
the re-orientational torque term directly or to determine casual effects generating
the speed-local density relationship we uncover, future experiments can and should
follow the bottom-up data driven approaches used to model other similar systems.
Such approaches attempt to determine individual force responses to re-occurring
situations and use these to inform equations of motion. We would argue that as
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unbiased an approach as possible should be taken, in particular we suggest that
learning a force response via machine learning methodology could prove a fruitful
avenue.

In Chapter 3 we introduced a model of collective motion capturing different
phenotypes based upon maximisation of future path entropy. We developed this
model from the extant literature on intrinsically motivated collective motion, that
maximises the count of unique future states inspired by the principle of future state
maximisation. We also found in an attempt to move away from a discrete visual
state, by defining a measure of path entropy based upon compression, that we need
to re-impose a form of effective discretisation into the model in order to achieve
spontaneous collective motion. We interpreted this as implying the number of sen-
sors should be compared not the count of cells in the retina, which is far larger in
biological systems than approximately the optimal 40 sensors in our model, but to
an abstracted representation of the raw visual state further up the cognitive process.
That is how near should a bird or insect be to another object in order to use valuable
processing time to consider it in its estimation of the future? Our model answers
this question with a range of values codified by the number of sensors in the discrete
case, or the resolution parameter s. In particular for our circular particles we find
a value of arcsin 1/d ∼ π/40 = 4.5◦ to be an approximately optimal value of this
angular size constraint for inter agent spacing d. Real biological experiments could
be attempted to unpick whether there is real world evidence for such a cognitive
discounting, where an objects angular size is too small to bother thinking about but
large enough to make-out, and if any link can be made to the value we predict for
our circular 2D agents. Whirligig beetles would make for an example group that
could be probed by an experimental setup not so dissimilar to the quasi-two dimen-
sional setup we saw in chapter 2. Confounding factors however will be that visual
input is not necessarily the only way in which beetle interact with one another, for
example hydrodynamic effect such as individuals sensing ripples will likely confound
any data. We also determined one way in which our model could be useful in real
world experiments. By tuning the parameters of orientation and speed in the action
set we could drastically affect the outcome of model. In particular we uncovered a
transition from order and cohesive motion to disorder but cohesive motion resem-
bling swarming systems not unlike Whirligig beetles. Future research could attempt
to fit these and other parameters to experimental data.

In chapter 4 we probed our models by modifying the cognitive process using
a deterministic explicit occlusion model as well as stochastic noise process on model
outputs and agent predictions of their group-mates. We determined in each case our
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model is quite robust, especially to occlusion in small groups. But unexpectedly we
found our model is improved, resulting in more stable groups, with large numbers of
individuals (1000s). This we interpreted as an interplay between occlusion pruning
the number of group-mates an agent predicts the future path of and the errors made
by this prediction process. Colloquially an “analysis paralysis” effect. Obviously in
the real world occlusion is natural. For us, it is likely we have this effect due to
the long-ranged nature of our interactions. Unlike Couzin or Vicsek like models our
agents (without occlusion) can interact over large distances. Or more accurately
an agent can interact with a large group over long ranges. That is from the sensor
size, 2π/ns and 50% activation threshold, we have arcsin r

d ∼ π
2ns

, then individuals
interact up to a scale of d ∼ 2nsr

π for agent radius r or d ∼ n2nsr
π for an n agent

group treated as a circle of radius n. This gives us approximate length scale (for
ns = 40) of ≈ 25n units (in terms of agent radius) as an interaction radius. Occlusion
naturally reduces long-range interaction in our model as further away agents are
more likely to be occluded, however this is inextricably linked to the opacity of the
group. Since our model does target marginal opacity we can expect some long-ranged
interactions to persist. We introduced cognitive noise by replacing the ballistic
prediction heuristic by a stochastic process and uncovered a significant increase in
both global and largest cluster order, in particular this increase was associated with
apply rotational noise to the prediction heuristic rather than a noisy speed. The fact
we also measure a fluctuation (without any noise in the model) of a similar scale (5◦

to 5.79◦) encouraged us to interpret this optimal noise as a self-consistent one. That
is applying some rotational noise, commensurate with the actual model output, in
the cognitive heuristic prediction results in a better prediction of the future.

We closed this thesis, in chapter 5 by relaxing the complete enumeration of
the future to a sampling process of the future. Initially we focused on sampling paths
and actions to build paths in the discrete action setting. Our major result was that
it is beneficial in our model to search distant futures sparsely over searching near
futures completely; a depth first tree search instead of a breadth first tree search.
This predicts that in the real world collectively moving individuals targeting highly
ordered and cohesive groups should care more about incomplete knowledge of the
medium term future over complete knowledge of the near future. This prediction
is perhaps somewhat difficult to test experimentally, but it is another point in our
model that offers a falsifiable test. Whatever the case this does offer an avenue for
obtaining more stable groups with less evaluation of visual states, which for practical
implementations of our model is undoubtedly useful. We secondly find that it is
better to search the future in a uniformly sampled manner (without replacement),
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or at least using the information in the future states tree as in a monte-carlo tree
search provides marginal benefit. Armed with this knowledge we defined a novel
model using a fully continuous action space by interpreting the value of ±∆θ as a
bound on a continuous selected angle increment, and v0 with ∆v as a bound on a
continuous set of speeds an agent can select. This continuous model necessitates
sampling the future. We find that the model provides commensurate output to the
discrete action space setting with the added benefit of more control in the action
set. We propose that this extra degree of control over the actions could be used
to fit the continuous model to experimental data more readily. That is one could
statistically determine the action distribution from real world data, and see if our
model is able to recover the same phenomenology.

Overall in this thesis we have investigated two complementary approaches to
AM research. Namely, the bottom-up and top-down approaches. We defined a top-
down approach as one imposing phenomenology directly in the modelling approach,
e.g. specific behavioural rules. The bottom-up approach we took to mean defining
a principle from which phenomenology emerges naturally. The terms themselves
are relative to the modelling task, physical system, and specific phenomenology ad-
dressed. The gain is to understand not just the effect of a given phenomenology, but
develop an understanding of its emergence. Here we applied these concepts to chiefly
swarming, ordered motion, and collision avoidance. In chapter 2 we took a top-down
approach by assuming a phenomenological torque term. By which individual beetles
seek to re-orientate back to the group at large. By assuming this phenomenology
and fitting data to a model we were able to investigate MIPS in the context of
Whirligig beetles. We could also take a bottom-up approach by asking by which
principle Whirligig beetles cluster. We may argue individuals gain safety within the
group, or that perhaps that as part of a dynamic group food may be drawn up as
in Phalaropes [65]. A principle such as minimising neighbour loss could be explored
here, as has been done recently as a bottom-up approach to ordered motion [117].
For example a guiding principle for Whirligig beetles may be to keep neighbours
close. This could be codified in a visual state by maximising coverage of the visual
field. Whether this naturally leads to a re-orienting torque is speculation. But the
difference is clear. Here we impose the phenomenon, but we could and should ask
why the phenomenon exists at all. We can fit a model to data, but we should always
ask why a particular model should fit.

The proposed framework of maximising future path entropy could further
the field in a number of ways. Firstly, the stipulation of future path entropy over
visual states is not a requirement. Any notion of state could be used within the
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developed framework. This allows for the application of the framework to systems
with any notion of state. For example at the microscale visual input may not make
sense, but Bio-chemical input might. The difference lies purely in the state-space of
the model. In a practical sense the frame specifically applied to visual processing
can be cast as simple mapping between visual input and action output. Here we
discretise visual input into a Boolean vector. This can be fed as input into a neural
network trained to reproduce actions as per the actual model. Such a methodology
drastically decreases the simulation time between visual input and agent action.
These ideas could be applied in any context in which collective motion is desired.
For example in video game, animation, or reinforcement learning settings. Similarly
to the ubiquitous application of Reynolds’ flocking algorithm in these contexts since
its inception [3]. Although the question of a three-dimensional application to flocking
is still open.
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Appendix A

Online Entropy Calculation

The Monte-Carlo tree search we define in algorithm 4 utilises a backpropagation
technique (algorithm 5) to efficiently add visual states to previous nodes when sam-
pling a path. Whilst doing this we also update node quality (entropy). When the
entropy is simply the number of boundaries on the visual states’ entropy is the
number of boundaries on the visual state, this can be done via a trivial online aver-
age/accumulation algorithm. Updating the entropy as calculated by the empirical
count distribution, can also be done online.

To see this consider a categorical distribution computed from a data stream,

Ck = {C(1)
k , C

(2)
k , . . . , C

(N)
k }, (A.1)

where k is an integer index denoting the number of elements seen in the data stream.
N denotes the number of categories seen in the stream. And C

(i)
k is the count

of element i in the stream after seeing k items. We assume the number N of
possible items is unbounded. Using these definitions the entropy of the categorical
distribution implied by the counts Ck is

Hk = −
∑
i

C
(i)
k∑

j C
(j)
k

logb
C

(i)
k∑

j C
(j)
k

= −
∑
i

p
(i)
k log p

(i)
k , (A.2)

for some base b, where we define p(i)k =
C

(i)
k∑
j C

(j)
k

as the probability of item k given by
Ck.

When one new item arrives we have two cases (1) the item has not been seen
previously (2) the item has been seen previously. The entropies in each case can be
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written as

Hk+1 =


N
N+1Hk + logb (N + 1)− N

N+1 logbN (1)

N
N+1

(
Hk + p

(l)
k logb p

(l)
k

)
− N

N+1 log
N
N+1(1− p

(l)
k )− Np

(l)
k +1

N+1 logb
Np

(l)
k +1

N+1 (2)
.

(A.3)

Of course the equation for (2) can be used in both cases, noting that setting pl = 0

means case (2) is case (1). For (1) we can write the entropy as

Hk+1 = −
∑
i

N

N + 1
p
(i)
k logb

N

N + 1
p
(i)
k − 1

N + 1
logb

1

N + 1
, (A.4)

since the single new element is unique. Then we remove the factors of N
N+1 from

the sum to obtain

Hk+1 = − N

N + 1

[∑
i

p
(i)
k

(
logb p

(i)
k + logb

N

N + 1

)]
− 1

N + 1
logb

1

N + 1
, (A.5)

=
N

N + 1
Hk −

1

N + 1

(
N logb

N

N + 1
+ logb

1

N + 1

)
, (A.6)

=
N

N + 1
Hk −

1

N + 1

(
N logbN − (N + 1) logb(N + 1)

)
. (A.7)

Which yields (1) after dealing with the constant via logarithm identities. For (2)
begin by noting that only for one l ∈ 1, 2, . . . , N is C(l)

k+1 ̸= C
(l)
k , as only one new

element arrives, so we can write the entropy as,

Hk+1 = −
∑
i ̸=l

N

N + 1
p
(i)
k logb

N

N + 1
p
(i)
k −

Np
(l)
k + 1

N + 1
logb

Np
(l)
k + 1

N + 1
. (A.8)

The next step is to remove the N
N+1 factors in the sum resulting in

−
∑
i ̸=l

N

N + 1
p
(i)
k logb

N

N + 1
p
(i)
k = − N

N + 1

[∑
i ̸=l
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(i)
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k + logb
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(A.9)

=
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(Hk + p

(l)
k logb p

(l)
k )− N
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logb
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(1− p

(l)
k ).

(A.10)

Which when used with equation A.8 yields (2).
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For completeness the counts and probabilities can be trivially updated by

p
(i)
k+1 =

p
(i)
k i not observed at step k
Np

(i)
k +1

N+1 i observed at step k
, (A.11)

C
(i)
k+1 =

C
(i)
k i not observed at step k

C
(i)
k + 1 i observed at step k

. (A.12)

In terms of complexity starting from scratch each time requires 1 integer addition,
2(N +1) floating point multiplications and N float-logarithm evaluations when the
new element is unseen. That is each probability needs to be updated as (Np(i)k )/(N+

1), with the new p
(l)
k = N/(N + 1), with N/(N + 1) calculated once, plus the

multiplication via each logarithm. Compared to 1 integer addition, 3 floating point
multiplications and 2 float-logarithm evaluations for case A.3 (1). With a previously
seen new element, naïvely, we need 1 integer addition, 1 float addition, 2(N +

1) floating point multiplications and N float-logarithm evaluations. Compared to
1 integer addition, 8 floating point multiplications, 4 float-additions, and 3 float-
logarithm evaluations for case A.3 (2).
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Appendix B

Maximum Discrete State
Entropy

Calculating maximum entropy for both the CE and SCE models may be useful
practically for normalisation purposes. For example within the sampling algorithm,
algorithm 4. Additionally, when these maxima occur is of theoretical interest to the
models, and their predictions.

For the CE model the maximum entropy is easy to find since there can be
at most 2N angles making up N agent visual projections on [0, 2π) even in the
case of the 0-2π boundary. Since the entropy we calculate is simply the number of
boundaries on the visual state 2N is the maximum value. Along any one branch
then we can use this result to normalise entropies.

For the SCE model the maximum value of the entropy along a branch can be
found by noting that the nodes at depth 1 ≤ t ≤ τ feature in |A|τ−t paths reflecting
the τ − t possible action choices made along a path (so leaf nodes at t = τ appear
in only 1 “path” taking x0 = 1) and there are |A|t−1 nodes at depth t. The product
of these numbers means that all the nodes at depth 1 ≤ t ≤ τ contribute |A|τ−1

visual states to the count distribution. The visual state from the root node (the
current visual state) features in |A|τ−1 paths, just like the depth t = 1 nodes since
we consider one branch at a time.

Since there are τ depths and a root node this gives
∑

ψ n(ψ) = (τ +1)|A|τ−1

visual states in total along one branch. Given the assumption all visual states are
unique (when considering nodes not paths) |A|τ−1 of these visual states (the leaf
nodes) may be unique on the branch, with all the others having degeneracy |A|τ−t

for 1 ≤ t ≤ τ and |A|τ−1 for the root. Since a node at depth t features in |A|τ−t

paths, but it’s visual state, ϕ, no-where else then n(ϕ)∑
ψ n(ψ)

= |A|τ−t
(τ+1)|A|τ−1 = |A|1−t

1+τ .

137



From this the maximum entropy is

max(Hβti
) = − 1

τ + 1
log2

(
1

τ + 1

)
−

τ∑
t=1

1

τ + 1
log2

(
|A|1−t

τ + 1

)
, (B.1)

where the first term corresponds to the root node. The sum in equation B.1 is taken
over depths in the tree and the coefficient is obtained from the count |A|t−1 of nodes
at depth 1 ≤ t ≤ τ multiplied by their shared degeneracy |A|1−t

1+τ .
Equation B.1 is also useful for sampling in the SCE model case since we can

use the same logic for any internal node we simply need to be careful what t and τ

are replaced with. For example if the tree has depth τ = 6, and we want to know
the maximum possible entropy back-propagated to a node a depth t = 5 we can
make use of equation B.1 by considering t′ = 0 the future time 5 and then summing
up to a new t′ = 1 implicitly the horizon τ ′ = 1. This fact could be used to judge
actions as sampling occurs in the MCTS algorithm, algorithm 4.
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