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ABSTRACT
Amorphous drugs represent an intriguing option to bypass the low solubility of many crystalline formulations of pharmaceuticals. The
physical stability of the amorphous phase with respect to the crystal is crucial to bring amorphous formulations into the market—however,
predicting the timescale involved with the onset of crystallization a priori is a formidably challenging task. Machine learning can help in this
context by crafting models capable of predicting the physical stability of any given amorphous drug. In this work, we leverage the outcomes of
molecular dynamics simulations to further the state-of-the-art. In particular, we devise, compute, and use “solid state” descriptors that capture
the dynamical properties of the amorphous phases, thus complementing the picture offered by the “traditional,” “one-molecule” descriptors
used in most quantitative structure–activity relationship models. The results in terms of accuracy are very encouraging and demonstrate the
added value of using molecular simulations as a tool to enrich the traditional machine learning paradigm for drug design and discovery.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156222

I. INTRODUCTION

Most modern pharmaceutical drugs are packaged as crystalline
formulations.1 The crystalline structure has significant effects on
several physical properties of the drug, such as its solubility, its
stability, and its bioavailability.2 Crucially, almost 90% of phar-
maceutical drugs are categorized as poorly water soluble,3,4 which
clearly limits their effectiveness, chiefly in terms of bioavailability.

Packaging pharmaceutical drugs as amorphous formulations
represents a viable way forward in order to improve the solu-
bility of modern drug formulations5 as they present several ben-
efits in comparison to crystalline drugs. First, most amorphous
compounds are intrinsically much more soluble than their crys-
talline counterparts.6–8 As such, amorphous drugs typically act more
quickly than crystalline drugs.9,10 In addition, amorphous drugs can
be more easily packaged into different formulations—such as tablets,
capsules, or suspensions.8,11 In fact, the lack of crystalline structure
can also allow for greater flexibility in designing drug delivery sys-
tems with specific properties, such as sustained release or targeted
delivery.8

While amorphous drugs appear to have an edge over their crys-
talline counterparts, they also have some disadvantages that can
make their development and formulation challenging—chiefly their
lack of stability. Amorphous solids are almost always metastable
with respect to their crystalline phases, which means that amor-
phous drugs have a tendency to crystallize12—within a timescale
that is very challenging to predict. This represents a serious prob-
lem,12 in that the properties of the crystalline form might differ from
that of the amorphous phase—which poses a severe clinical risk.
In addition, the structural relaxation of the glass alone might alter
the functional properties of the amorphous formulation.13 It is also
important to note that the production of amorphous drugs can be
more challenging than that of crystalline drugs, requiring specialized
manufacturing techniques.14 When it comes to delaying the onset of
the crystallization process, for the purposes of prolonging the shelf
life of the amorphous drug formulation, the usage of so-called amor-
phous solid dispersions (ASDs) represents a common strategy.15

An ASD is an heterogeneous system obtained by incorporating
the amorphous phase within a (usually) polymeric matrix. This
helps to stabilize the amorphous phase, thus delaying the onset of
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crystallization. ASDs can be created using various different tech-
niques, including spray drying and co-precipitation.16,17

For the purposes of this work, it is important to mention the
actual process by which most amorphous drugs formulations are
actually obtained experimentally, namely, by quenching from the
melt. This process involves heating the drug to a temperature higher
than its melting point (Tm) so that it forms a liquid. This liquid is
then rapidly cooled by immersing it in liquid nitrogen, placing it on a
cold surface or blowing cold gas over it. If the drug is cooled rapidly
enough, it is prevented from reorganizing itself into its crystallize
form, and an amorphous solid is formed. To create an ASD, the exact
same process is used—except the amorphous drug is melted together
with a polymer. This technique is simple and effective and can be
used with a wide range of drugs and polymers. However, the high
temperatures used can lead to drug degradation.18 Other approaches
to manufacture amorphous formulations can be used, such as spray
drying16 or freeze drying. The experimental data generated for use
in this work,19,20 however, refer to amorphous drugs obtained via
melt-quenching.

One of the most pressing issues, in terms of adopting amor-
phous drugs as reliable formulations for modern pharmaceuticals, is
that it is very challenging to predict a priori their physical stability.
In addition, measuring the physical stability experimentally can be
a challenging endeavor in itself, given that the timescales involved
with the onset of the crystallization process range from seconds to
years—depending on the specific amorphous drug. As such, building
a computational framework capable to predict the physical stability
of novel drugs would be massively beneficial for the pharmaceuti-
cal industry. Indeed, a few attempts to harness machine learning
(ML) algorithms as a tool to predict the physical stability of amor-
phous drugs can already be found within the recent literature.21–23

As it often is the case, the main hurdle in this context is the rather
limited amount of experimental data available to us—an issue that
is particularly stark in the case of the physical stability of amor-
phous drugs. To complicate matters even further, the stability of
an amorphous drug is affected by many different external variables,
such as the storage conditions (chiefly temperature and humidity)
as well as the method used to create the amorphous drug in the first
place. Clearly, these factors constitute a major source of variability
and uncertainty within the experimental data, which is especially
challenging to pinpoint in the absence of exhaustive information
about both the manufacturing and the storage of the amorphous
formulation.

In this work, we improve on the current state-of-the-art in
terms of predicting the stability of amorphous drugs. This is
achieved by adopting a combination of methodological improve-
ments in terms of the underlying machine learning algorithms
and, crucially, by leveraging the outcomes of molecular dynamics
simulations to both complement and enhance the portfolio of the
descriptors (or features, or fingerprints) traditionally used in the
context of ML for drug design and/or discovery.

Due to the extremely limited amount of reliable data on the
stability of amorphous drugs, we focus on two key properties that
are closely related to the stability of amorphous pharmaceuticals.
First, we consider the glass transition temperature (T g), which is
correlated with the propensity of the system to form a disordered
solid as opposed to a crystal in the first place24 and it also corre-
lates with a good extent with the physical stability of the amorphous

phase.25 Amorphous drugs characterized by high values of T g are
typically more stable and thus less likely to crystallize within a given
timescale.26 The second property we focus on in this work is the
so-called “crystallization class.” This is a classification system orig-
inally developed by Baird et al.,27 whereby drug-like molecules can
be separated into three distinct classes, based on their propensity to
crystallize during a specific annealing (heat/cool/heat) cycle. These
three classes are defined as follows:

● Class I drugs. Crystallization is observed while cooling from
the melt. Clearly, drugs that belong to this class are not
suitable for amorphous drug formulations.

● Class II drugs. No crystallization is observed when cooling
from the melt to below T g . However, the system will crys-
tallize when re-heated above T g during the annealing cycle.
This is perhaps the most interesting class of amorphous
drugs from a fundamental perspective.

● Class III drugs. No crystallization is observed, either during
the quenching from the melt or the annealing cycle. Drugs
belonging to this class are probably the most suitable candi-
dates from a practical point of view in terms of amorphous
drugs formulations.

The state-of-the art, with respect to machine learning-based
models for predicting both the T g and the crystallization class of
amorphous drugs, is largely defined by the pioneering work of
Alhalaweh et al., particularly Refs. 19 and 28. Indeed, our work relies
on the data that were made available via these publications.

This paper is organized as follows: we begin with Sec. II, dis-
cussing the data in our possession, as well as the details of the
MD simulations we have used to generate the models of amor-
phous drugs. We also discuss the machine learning algorithms we
have used, with specific reference to optimization strategies. Novel
aspects of our work in this context include the usage of genetic algo-
rithms (GAs) to improve the accuracy of specific descriptors, as well
as the combination of multiple classes of descriptors via ensemble
learning.

In Sec. III, we present the outcomes of our models in terms of
the prediction of T g (a regression problem) and of the crystalline
class (a classification problem) as well. We start with the results
pertaining to isolated classes of different descriptors, all of them
obtained by considering single molecules in isolation, and discuss
the accuracy improvements obtained via both descriptor optimiza-
tion and ensemble learning. We then move to the descriptors we
have obtained by leveraging actual MD simulations. To be specific,
we have generated amorphous models for each drug within our
dataset. As a striking result in itself, the T g obtained via MD simu-
lations correlates very well with the experimental results. This serves
as a validation of our computational protocol, and it strengthens
the notion that MD simulations can be used to extract information
about amorphous systems that are not directly available when con-
sidering single molecules “in vacuum.” From our MD simulations,
we have computed both the diffusion coefficient and the relaxation
time of the supercooled liquid phase at a specific temperature that
varies for different drugs according to the calculated T g . These
dynamical properties can be used as descriptors themselves—and
indeed, we show that they make important contributions to the
accuracy of our ML models. Finally, we combine these “solid
state” descriptors to the “one-molecule” descriptors discussed in
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Sec. II to yield a ML model that, we argue, represents a significant
improvement with respect to the state-of-the-art.

It is crucial at this stage to remind the reader that this field is
in its very infancy: with the very limited amount of experimental
data in our possession, we are in no position to argue that our model
can be reliably used to predict the physical stability of amorphous
drugs with an accuracy compatible with the needs of the pharma-
ceutical industry (albeit reliable applications of ML to specific classes
of, e.g., ASDs, can be found in the recent literature22,23,29). However,
our classification model specifically has shown a remarkable poten-
tial in identifying Class I molecules: this alone is a rather crucial
achievement, in that it allows us to discard potential candidates for
amorphous formulations very rapidly—without the need of involv-
ing any experimental measure at all. The—important—distinction
between Class II and Class III drugs is—unsurprisingly—more
difficult to pinpoint exactly, and we can only hope that this work
will serve to accelerate the rate at which data re: the physical stability
of amorphous drugs are being collected at present. These aspects are
analyzed in more details in Sec. IV.

II. METHODOLOGY
A. The datasets

The results presented in this work have been obtained with
reference to two datasets: the “Amo-Reg” dataset and the “Amo-
Class” dataset. The Amo-Reg dataset has been constructed from
literature data: 47 data points have been taken from Ref. 19, and
131 data points have been taken from Ref. 28. The unique entries
across these two datasets total 136. For each data point, we have
the molecular structure [in the form of the Simplified Molecular
Input Line Entry System (SMILES)30] and the T g of its amorphous
phase, measured via very similar experimental protocols in Refs. 19
and 28. This is important as the glass transition is not a thermo-
dynamic property—given its value depends on the cooling/heating
rate. As such, it is key that the T g of the different systems have
been measured in a consistent fashion. Given the nature of the T g ,
this dataset lends itself to regression models. The Amo-Class dataset
is a subset (131 molecules) of the Amo-Reg dataset and features
as the target property the crystallization class we have discussed

FIG. 1. The datasets. (a) Probability density function (PDF) of the T g re: the Amo-Reg dataset (see text). The continuous distribution has been obtained via a kernel density
estimation (KDE). (b) The population of each crystallization class re: the Amo-Class dataset (see text). (c) The correlation between T g and Tm re: the Amo-Reg dataset. The
marginal distributions refers to all the available data, notwithstanding the crystallization class. (d) PDFs (via KDE) of the molecular weight re: the Amo-Reg dataset. (e) PDFs
(via KDE) of T g re: the Amo-Reg dataset, with information about each different crystallization class. (f) PDFs (via KDE) of Tm re: the Amo-Reg dataset.
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in the Introduction. Clearly, the nature of this dataset calls for a
classification model instead.

We summarize in Fig. 1 some information about the target
properties of both datasets. The distribution of T g across the whole
Amo-Reg dataset [Fig. 1(a)] appears to be peaked at around room
temperature. However, the T g of molecules belonging to Class III
is rarely <250 K [Fig. 1(e)], which is consistent with the assump-
tion that molecules characterized by high T g are less prone to
crystallize. Note that Class II is substantially under populated if
compared with either Class I or III [Fig. 1(b)]—an issue we will
discuss in greater detail in Sec. II C. It is also instructive to look
at the distributions of the molecular weight across the different
classes, reported in Fig. 1(d): specifically, Class I molecules appear
to be characterized by, on average, lower molecular weight if com-
pared to molecules in either Class II or Class III. This suggests that
smaller molecules have a stronger tendency to crystallize. Intuitively,
this might be explained in terms of diffusivity as smaller molecules
tend to be characterized by higher self-diffusion coefficients, which,
in turn, might facilitate the crystallization process (as it impacts
the kinetic pre-factor re: the nucleation rate31). In contrast, it is
challenging to extract any meaningful trend from the distributions
of Tm [Fig. 1(f)], despite the fact that there exists a strong correlation
between Tm and T g , as illustrated in Fig. 1(c).

In terms of the chemical composition of the drug molecules in
the dataset, we have summarized in Table I the frequency by which
the relevant chemical elements appears in either the Amo-Reg or
the Amo-Class datasets. The relative populations of these chemi-
cal elements are in line with those expected when considering small
drug-like organic molecules.

B. Molecular dynamics simulations
One of the novel aspects of this work is the usage of MD sim-

ulations to gain access to descriptors that are simply not available
when looking at single molecules in isolation. The datasets in our
possession, and, indeed, the vast majority of datasets for, e.g., quan-
titative structure–activity relationship (QSAR) models, only provide
information about the molecular structure in the form of SMILES
strings. Through OpenBabel,32 we have added hydrogen atoms
where needed and generated a 3D model for each drug molecule

TABLE I. Frequency by which chemical elements appears in either the Amo-Reg
or the Amo-Class datasets (see text). We report the overall occurrence of a given
chemical element (“Atoms” columns) as well as the number of molecules containing
a given chemical element (“Molecules” columns).

Chemical element

Amo-Reg Amo-Class

Atoms Molecules Atoms Molecules

H 2138 136 2092 131
C 2138 136 1874 131
O 410 133 355 121
N 227 98 205 89
F 48 19 38 16
Cl 43 28 40 25
S 37 31 34 28
P 1 1 1 1

within the Amo-Reg dataset. Note that the Amo-Class dataset is a
subset of the Amo-Reg dataset (see Sec. II A). From the resulting
.mol2 files, we have used CGenFF (version 4.6) to obtain the relevant
topologies and force field parameters according to the CHARMM36
force field (version July 2021).33–36

The choice of the CHARMM36 force field was simply dictated
by the fact that the authors are familiar with it—and that they have
previously used this particular force field with good results in the
context of a variety of problems, ranging from the formation of
ice at biological interfaces37–41 to molecular glasses.42 We have no
reason to believe that the CHARMM36 force field is particularly
well-suited to study molecular glasses—albeit the results discussed
in Sec. III definitely support this assumption. We remark that as we
are interested in extracting descriptors for the purposes of building
ML models, we are not necessarily interested in the accurate param-
eterization of every drug molecule in the dataset. Indeed, whichever
the choice of the force field, we argue that optimizing in an efficient
fashion the parametrization of more than 100 molecules is unfeasible
in this context. Moreover, while we do have access to the penal-
ties associated with the parameterization of each drug molecule, we
have chosen to not include these in our ML models—something
that can be done via assigning uncertainties to each molecule
according to their penalties. Ultimately, this choice might have had
some impact in terms of the predictive power of the “solid state”
descriptors discussed in Sec. III, but it did not prevent us to lever-
age said descriptors to improve the overall accuracy of our ML
models.

The GROMACS package43 (version 5.1.4, single precision, no
GPU acceleration) has been used to perform all the MD simula-
tions reported in this work. Periodic boundary conditions have been
applied along each Cartesian direction. As we assume that both
liquid and glass phases will be isotropic, we adopted cubic simula-
tion boxes, which exact dimension was dictated by the equilibrium
density of each system. Broadly speaking, the extent of the edge
of said cubic boxes for the glass phases we have obtained ranges
between four and six nm. The cutoff for both the van der Waals and
electrostatic interactions was set to 12 Å. The van der Waals inter-
actions were switched to zero between 10 and 12 Å. The P-LINCS
algorithm44 was used to constrain the hydrogen bonds within each
molecular species. A leap-frog integrator with a time step of 2 fs was
used to integrate the equations of motion. We have employed the
Bussi–Donadio–Parrinello thermostat45 and the Berendsen baro-
stat,46 with coupling constants of 0.5 and 4 ps, respectively, to
sample either the NVT and the NPT ensemble. While we appre-
ciate that the Berendsen barostat represents a sub-optimal choice
when it comes to the accurate sampling of the isothermal–isobaric
ensemble, both numerous and often drastic change in terms of
simulation conditions drove us to favor the robustness of the
Berendsen barostat in favor of the accuracy of more sophisticated
barostats.

For each drug molecule, we have constructed an initial config-
uration containing 216 molecules, arranged in a simple cubic lattice
in such a way to avoid any overlap between them [as illustrated in
Fig. 2(d)]. We have adopted this strategy (as opposed to, e.g., ran-
dom arrangements at higher densities) to enhance the mobility of
the molecules within the early stages of the equilibration process.
The exact simulation protocol we have employed to generate the
amorphous models is summarized in Fig. 2(a). We start at very high
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FIG. 2. Molecular dynamics simulations. (a) Computational protocol used to generate the amorphous phases of each molecule in the Amo-Reg dataset (see text). (b) A
representative snapshot of an amorphous phase (for celecoxib) from a MD trajectory at 100 K. (c) Mean-squared displacement (MSD see text) for chrysin as a function of
temperature—with respect to T g. Solid and dashed lines refer to heating and cooling ramps, respectively. (d) Initial configuration for the celecoxib system. (e) Volume V as a
function of temperature T for chrysin, reported along either the heating and cooling ramp. T g can be estimated as the temperature at which the two V(T) lines (obtained via
linear regression, also shown) cross. (f) Self-part of the intermediate scattering function (SISF, see text) for chrysin as a function of temperature—with respect to T g. Solid
and dashed lines refer to heating and cooling ramps, respectively. The intersection between each curve and the horizontal line (at y = 1/e) marks the structural relaxation
time τ for the system.

temperature (1000 K) and relatively high pressure (1000 bar) to ran-
domize the system as much as possible. We then switch to ambient
pressure and cool the system into a glassy state at 100 K (cooling rate:
22.5 K/ns). From there, we anneal the glass to 460 K and quench it
again to 100 K (cooling rate: 4 K/ns). A representative snapshot of
an amorphous phase obtained according to this protocol is shown
in Fig. 2(b). Note that at this stage, we have no information about
the simulated T g of the system, hence why we have picked the same
temperatures (100 and 460 K) for simulating the glass and the super-
cooled liquid phase notwithstanding the different drug molecules.
Importantly, 100 and 460 K are below and above, respectively, the
range of experimental T g within our dataset.

C. Machine learning
At present, a rather diverse portfolio of ML algorithms are

readily available to the scientific community. While we have exper-
imented with several different algorithms, we have found that our
results are rather robust with respect to any specific choice in that
context. As such, we shall limit our discussion to neural networks

(NNs) alone, which we have used in this work for both regression
and classification.

In terms of the architecture of our NNs, a two-layer architecture
with 2Ns + d nodes in each layer is, in principle, perfectly capable
to deal with a dataset of Ns samples with feature dimensionality
d.47 With this in mind, we proceed with the assumption that the
optimal number of nodes will be between d and 2Ns + d. To find the
number of nodes in this interval that are sufficient for our use, we
multiply 2Ns + d by a scaling factor k, where k ∈ {0.2, 0.4, 0.6, 0.8, 1}.
0.2 < k < 0.8 seems to give the best result for every descriptor we
considered. We also note that descriptors characterized by high
dimensionality tend to perform better with a lower scaling factor,
whereas low-dimensionality descriptors prefer larger values of k.
As we have found that different scaling factors do make a signifi-
cant impact on the performance of several descriptors, we have used
different scaling factors for each different descriptor.

The Rectified Linear Unit (ReLU) function has been utilized
as the activation function within the hidden layers of our NNs.
The ReLU function is slightly more computationally efficient than,
e.g., a sigmoid function. Additionally, since the ReLU function is
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piece-wise linear, it is inherently easier to optimize than a non-
linear function and also does not suffer from the vanishing gradient
problem since the value of the node activations are proportional to
the gradients.48 When it comes to the output layer, we have used a
linear activation function for the regression tasks. This is standard
practice as the linear activation function can output any value (it is
unbounded). For the classification tasks, it is also standard practice
to use the softmax function. This function is capable of converting
the outputs of the neural network into j probabilities that sum up to
one, where j is the number of classes.

For simplicity and to prevent us from having yet another para-
meter (the NN learning rate) to tune, we have opted to use the Adap-
tive Moment Estimation (Adam) optimizer49 for every NN model,
since the Adam optimizer is generally regarded as one of the most
robust gradient decent optimization algorithms.50 An argument
could be made that stochastic gradient descent (SGD) can general-
ize better than the Adam optimizer.51 However, we have explicitly
verified that this is not the case here. Concerning the objective
function, we have chosen the mean squared error (MSE) and the cat-
egorical cross entropy for our regression and classification models,
respectively. In order to normalize the values of our features, we have
used a min–max scaler.

Feature selection is often an overlooked aspect when devel-
oping machine learning models, particularly in QSAR models. It
is tempting, given the availability of so many different molecular
descriptors, to leverage as many of them as possible: for instance,
the DRAGON software52 can calculate more than 4800 descrip-
tors.53 As such, this approach is not only incredibly simple these
days, but it may also enhance the flexibility of the ML algorithm
of choice, in that the more the descriptors we add into the mix,
the higher the chances to include those features that are actually of
relevance to improve the predictive capabilities of the framework.54

However, this strategy suffers from at least two major issues: (1)
redundancy/correlation: the more the descriptors we choose to use,
the higher the chance they will feed similar if not identical infor-
mation to the ML algorithm,55 with the risk of introducing artificial
noise that can be detrimental to both the accuracy and the reli-
ability of the predictive framework; (2) lack of transparency:56,57

it becomes quite challenging to pinpoint the structural features
that have the largest impact on the functional properties of inter-
est. While from a purely practical perspective one may not care
about this pitfall, understanding the structure–function relation is
key to achieve the truly rational design of the novel generation of
drugs.58

Both redundancy and lack of transparency can be mitigated by
using feature selection.19 Feature selection is the process of reduc-
ing noise in the feature space by removing a subset of features. It
is important to note that, in our case, feature selection does not
just reduce noise within the feature space. Since we are working
with such a small dataset, we must be conscious of the dimension-
ality of the features we are using. For many of our descriptors, it is
possible that the dimensionality of the features they return can be
significantly greater than the number of data points in the training
set. For this reason, the curse of dimensionality becomes a concern,
and preventative measures, such as feature selection, must be taken
to avoid this occurrence. To this end, we have trailed different fea-
ture selection strategies—the most effective of which turned out to
be backward feature elimination. We start by using all the features

available to obtain a measure of how well each individual feature
can evaluate the target. Each variable is assigned a score based on
how well they do at this. The lowest scoring feature is then iteratively
removed until a stopping criteria is met.

As we are dealing with very small datasets, we have chosen to
use the so-called leave-one-out cross validation (LOOCV) to ensure
the robustness of our results. The LOOCV is a k-fold cross valida-
tion where k is equal to the number of points in the dataset. Thus,
in our case, each molecule will form a test set by itself and every
other molecule will be used to train the model. This is done for each
molecule in the dataset, and the accuracy of the predictions can then
be evaluated. The benefits of this strategy are that it allows us to train
on a larger training set, mitigating some of the pitfalls of using a
small amount of data to train. The main issue with LOOCV is the
substantial computational cost—as we have to train a model for each
data point.

Aside from its limited size, the major issue with the Amo-Class
dataset is that the populations of the three crystallization classes are
severely imbalanced [see Fig. 1(b)], particularly with respect to Class
II molecules (which are substantially under-represented compared
to the other two classes). To mitigate this drawback, we adopted
the Synthetic Minority Over-sampling Technique (SMOTE, see, e.g.,
Ref. 59), which is a method for generating synthetic data in a rela-
tively simple way for classification datasets. This method does not
learn any underlying distribution, and it does not verify that the
generated data are physically viable. However, this is not an issue,
in that SMOTE is used on individual descriptors instead of the
underlying dataset, and as such, it generates artificial descriptors as
opposed to artificial molecules. SMOTE works on a class-by-class
basis: it chooses two descriptors from the same class and draws a line
between those descriptors in feature space. A point along that line
is then randomly selected and that point is mapped to a descriptor
vector. This is a simple and straightforward approach to data gen-
eration. It is important to note that we apply SMOTE after we have
optimized each ML model. The newly generated features are used for
training together with the original features—however, they are not
used for predictions. This is because if we used the synthetic data we
generated via SMOTE for prediction purposes, we would artificially
enhance the accuracy of our ML models.

Throughout our work, we need to be able to combine different
descriptors. To this end, one might be tempted to simply concate-
nate each feature into one (usually rather long) feature before feed-
ing that into a single NN. However, that is a sub-optimal approach
as each descriptor can be optimized by using, e.g., different regular-
ization rates and network architectures. In order to retain the ability
of optimizing each descriptor, we have leveraged ensemble methods
instead. Broadly speaking, ensemble methods in machine learning
are defined as the process of combining multiple models to improve
the accuracy of the overall predictions. The purpose of this strategy
is to reduce over-fitting, improve the extent to which the model gen-
eralizes to new data, and reduce the significance of potential outliers.
First, we have attempted to train a separate NN for each descriptor.
The terminal hidden layer of each NN was then merged into a sin-
gle hidden layer that was then trained as a regular NN to output
a single prediction. However, this approach led to only a marginal
improvement of our results. This is because in merging different
NNs together, we lose the ability of being able to optimize the over-
all NN to each descriptor. This is especially true, given that the
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dimensionality of our descriptors spans several orders of magni-
tude, from just a single scalar (the simulated T g) to vectors featuring
up to 103 components (SOAP descriptors). As such, we have even-
tually chosen what is perhaps the simplest approach, namely, that
of training models for each descriptor in isolation (thus optimiz-
ing the model specifically for a given descriptor), and then combine
the predictions obtained via different descriptors. In the case of
regression, this is achieved by simply taking the average of the
different predictions. In the case of classification, we have adopted
the widely used max-voting approach, whereby a drug molecule gets
assigned to a certain crystallization class according to the highest
numbers of predictions (or “votes”) for that class across multiple
models/descriptors. Note that this approach prevents us from using
combinations of an even number of descriptors as that leads to
situation where equal numbers of votes are obtained for different
classes.

D. Descriptors
The molecular descriptors described in this work can be divided

into two classes: “one-molecule” and “solid-state” descriptors. One-
molecule descriptors are computed from the structure of a single
drug molecule, considered as an isolated object in vacuum. The
vast majority of descriptors utilized at present for QSAR models
would fall in this category. On the other hand, solid-state descrip-
tors are computed from the outcomes of MD simulations, which
enable access to many structural and dynamical properties of the
actual material. Indeed, the fundamental hypothesis at the heart of
this work is that it is possible to leverage MD simulations to both
complement and enhance the portfolio of traditional one-molecule
descriptors.

1. One-molecule descriptors
Standard descriptors [Std]: The most rudimentary descriptor

we have used is an array of what we are going to label as “standard”
descriptors. These are physical properties that can easily be obtained
via many different software packages, such as the RDKit60 Python
package. This package gave us access to a set of 170 2D and 3D
descriptors calculated from only the molecular SMILES. In order to
make use of the 3D descriptors, we had to generate 3D conform-
ers of the molecules. We deliberately used a very basic procedure to
do this whereby we leveraged the ETKDG conformation generation
protocol61 followed by UFF forcefield optimization.62 These descrip-
tors ranged from very basic properties, such as the molecular weight
and the number of hydrogen atoms within each molecule, to more
complicated ones, such as the sphericity index.63 Although a num-
ber of these parameters (such as the WHIM descriptor64) can be
optimized, we have mimicked the minimal effort methods used
in our previous work where we show that using a large number
of descriptors is not as effective as using a few carefully selected
descriptors.65

Cliques descriptors [Cliques]: A rather simplistic and yet
remarkably effective descriptor we have used in the past65 is the
so-called “cliques” descriptor. This is inspired by the work of Jin
et al.,66 where the authors have decomposed a given molecular struc-
ture into sub-graphs (“cliques” in graph theory), thus providing
a coarse-grained molecular representation. Instead of connecting
these components into a tree (as it was done in Ref. 66), we have

created a vocabulary of the unique cliques across the entire dataset
of interest. Thus, different sets are typically characterized by cliques
vocabularies of different length. Then, we index each of the cliques
in the vocabulary via an integer i = 0, 1, . . . , Nclq − 1, where Nclq
is the total number of unique cliques in the vocabulary. Through
one-hot encoding, each molecule in the dataset is converted into
a vector of length Nclq; the value of the ith element of said vector
is equal to the number of occurrences of the ith clique within that
particular molecule.

In the context of natural language processing, we are thus treat-
ing the clique vocabulary as a “bag of words” to form sentences—i.e.,
molecules, in a similar fashion to the “bag of bonds” descriptor
explored in, e.g., Ref. 67. As the meaning of a given sentence may
usually be determined to a good extent from its word content alone
(i.e., without considering syntax), we are assuming that the pres-
ence of the cliques alone, without any information about the order
by which they appear in a given molecular structure, would be
enough to allow us to establish a structure–function relation between
SMILES strings and the functional property of interest. It is thus
reasonable to treat the cliques as a descriptor that is looking exclu-
sively at the “chemistry” of the molecules, in that it highlights the
presence or absence of specific molecular fragments and/or func-
tional groups as opposed to the overall structure, albeit information
about the size of the molecule is indirectly contained into the cliques
vector.

Histograms of atom-centered symmetry functions
[H-wACSFs]: Atom-centered symmetry functions are popular
three-dimensional descriptors in the context of ML-based inter-
atomic potentials for molecular simulations (see, e.g., Refs. 68–70).
While different variations of this descriptor exist, they usually com-
prise sets of both radial and angular symmetry functions (SFs). In a
nutshell, one sits on each atom i and computes the value of (typically
Gaussian) functions that depend on either ri j = ∣r̄ j − r̄i∣ distances
(radial SFs) or θijk angles (angular SFs) between pairs or triplets
of atoms—up to a certain cutoff radius Rc. The interested reader
can find a thorough introduction to SFs in Ref. 71. Crucially, the
original formulation of SFs72 required a distinct set of SFs for each
combination of the different chemical species within a given
molecule. While this is a perfectly sensible option in most
materials science applications, where the number of elements
involved is usually well below five (in fact, it is incredibly challeng-
ing to build ML-based interatomic potential for multi-component
systems68,73,74), in the context of drug design and discovery, a molec-
ular dataset may very well contain more than ten elements, which
leads to a huge number of SFs. Gastegger et al. recently devised75 a
clever workaround to this issue by introducing so-called weighted
SFs where element-dependent weighting functions depending on
the atomic weight of a given atom are used to eliminate the need
for separate sets of SFs for each combination of different elements,
thus massively reducing the number of SFs needed as a whole.

Even weighted SFs, however, suffer from an issue of consis-
tency, in that molecules with different elements and/or number of
atoms are characterized by different numbers of SFs. As a result, the
SF vectors we would like to use as inputs for our ML algorithms
are not of the same length. This problem may be circumvented in
several ways, none of them optimal. As a start, if one seeks to pre-
dict a functional property that can be written as the sum of atomic
contributions, the original approach of Behler and Parrinello72 can
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be straightforwardly used. However, while one can think of some
thermodynamic quantities, such as energy or enthalpy as addi-
tive, functional properties, or biomedical activities can often not
be treated as such. Here, we have decided to build histograms of
weighted-SFs (H-wACSFs): by binning the values of all the weighted
SFs for each molecule, we obtained a representation that is inde-
pendent from the number of atoms in a given molecule. Note that
we have considered every atomic species included in Table I. While
the number of bins is one of the parameters we seek to optimize
(see the following section), broadly speaking low and high num-
bers of bins provide more or less coarse-grained representations
of the molecular structure. This interesting feature can be easily
leveraged in the context of three-dimensional models of crystalline
or amorphous drugs—where we believe that materials science-
inspired descriptors, such as H-wACSFs, could deliver important
contributions.

SOAP descriptors [SOAPs]: One descriptor that in many cases
has proven to be self-sufficient in offering an accurate represen-
tation of any given molecular structure is the Smooth Overlap
of Atomic Potential (SOAP) descriptor,76 even though its most
commonly used form only encodes up to three-body correlations.77

The SOAP descriptor has been gaining popularity lately, given
its impressive performance across a plethora of widely different
classes of materials and applications, ranging from hydrogen absorp-
tion of nano-clusters78 to the development of bespoke interatomic
potentials.79,80 The premise of the SOAP descriptor is that, simi-
larly to ACSFs, it offers a convenient method to describe atomic
environments that are invariant to any form of rotation, translation,
reflection, or permutation of equivalent atomic species. The SOAP
descriptor formalism76 leverages a set of orthonormal radial and
angular basis functions to expand the local neighborhood density
around each atom. An individual expansion is used for each species
of atom in the neighborhood.

Several parameters can and indeed should be optimized when
building a SOAP vector, namely, the number of radial basis func-
tions, the maximum degree of the spherical harmonics, the cutoff
distance for the basis function, the Gaussian smearing width of atom
density, the atomic species used as centers for the basis functions,
and the atomic species used as neighbors for the basis function. The
optimization of these parameters is no easy feat, particularly when
dealing with heterogeneous datasets. It is not obvious which sets
of parameters will work when working with datasets that contain
diverse molecular structures or models characterized by a variety of
atomic species or environments. Initially, it may seem intuitive to
simply use trial-and-error or even an exhaustive grid search strategy
to optimize these parameters; however, due to the large compu-
tational costs of generating SOAP descriptors, these methods are
rather inefficient. A number of approaches have been proposed
in the last few years to optimize the performance of the SOAP
descriptor.76,78,79 In a recent study,80 we have leveraged genetic
algorithms (GAs)84,85 in order to optimize the above mentioned
SOAP parameters for one or multiple SOAP descriptors—given
a certain choice of centers and neighbors. The very same GA-
based strategy has been applied in this work to optimize the
parameters of both H-wACSFs and SOAPs. Note that we have
considered every atomic species included in Table I with the excep-
tion of P (only found in one instance across the whole Amo-Reg
dataset).

2. Solid state descriptors
The glass transition temperature [T g ]: As discussed in Sec. I,

T g is a very important property in the context of the physical
stability of amorphous drugs.24–26 In this work, T g is both the target
property for the regression problem concerning the Amo-reg dataset
(see Sec. II A) and one of the descriptors we use for the classifica-
tion problem of the Amo-Class dataset (see Sec. II A), where we seek
to predict which crystallization class a given drug molecule belongs
to. As we have access to the experimental values of T g for all the
molecules in the Amo-reg dataset, it is instructive to compare those
values with the estimates of T g that we can obtained from our MD
simulations.

To do so, we look at thermal expansion and to be specific at
the volume V of the system as a function of temperature T, as illus-
trated in Fig. 2(e). In the temperature ranges corresponding to either
the glass and supercooled liquid well below or above T g , V is a lin-
ear function of T. In fact, the intersection between the two V(T)
linear regressions for the glass and supercooled liquid provides an
estimate of T g . Note that we can consider the volume variations with
temperature during either the cooling or the heating ramps
described in Sec. II B. This gives us two estimates for T g , which
should, in principle, be identical—but due to the thermal hysteresis
caused by our rather rapid cooling/heating rates gives us a measure
of the uncertainty associated with our estimate and an indication
as whether our simulation protocol can be considered sufficiently
accurate. Importantly, once we have obtained an estimate for the
simulated T g for each drug, we can revise our heating and cool-
ing ramps so as to sample different systems at temperatures equally
distant from their T g . This is important because, as explained in
Secs. III A–III C, we need to be consistent when producing
dynamical descriptors across different drugs.

The self-diffusion coefficient [D]: Through the simulation
protocol detailed in Sec. II B, we have access to the dynamical prop-
erties of the system across a wide range of temperatures. Perhaps
the most basic of such properties is the self-diffusion translational
coefficient, D. The latter can be obtained via either the Green–Kubo
relation involving an integral of the velocity auto-correlation func-
tion or, and this is the approach we have adopted here via the
Einstein relation,

D = 1
2d
⋅ lim

t→∞

d
dt

1
N

N

∑
j=1
⟨∣r j(t0 + Δt) − r j(t0)∣⟩t0 , (1)

where d is the dimensionality of the system (three in our case), N is
the number of molecules in the system, rj is the position vector of
the center of mass of a given ith drug molecule, and ⟨. . . ⟩t0 refers to
the time average over different, statistically independent time origins
across the MD trajectory. In our case, care must be taken to identify
the linear regime of the MSD: while well above T g , the supercooled
liquid is practically in a well-behaved hydrodynamic regime where
the MSD grows linearly with time across the whole timescale of the
simulation (exception made for the ballistic regime at very short t,
which we always ignore), the MSD is basically constant for a glass as
translational motion is almost absent on our timescales. A prototypi-
cal example of the variation of the MSD as a function of temperature,
with respect to the T g of the system, is reported in Fig. 2(c).
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The situation becomes problematic in the proximity of T g ,
where substantial deviation from linearity can be observed as the
dynamics of the system progressively slows down even within the
isothermal–isobaric ensemble as we are effectively attempting to
extract an equilibrium dynamical property for a system that is not
truly ergodic in that regime. As we need to compute D for different
temperatures and more than 100 systems, however, we are forced to
apply a common criterion when it comes to apply Eq. (1): specif-
ically, we have elected to ignore the first 500 ps and last 500 ps
of the MSD when calculating the slope of the linear regime. While
this choice is not perfect, the results presented in Secs. III A–III C
support its validity.

The structural relaxation time [τ]: The structural relaxation
time τ is a measure of the timescale required for the structure of
the system to evolve to a “significant” extent. In the context of the
dynamics of strongly supercooled liquids and glasses, we can iden-
tify three separate relaxation timescales: (1) the above-mentioned
ballistic regime, observed for very short timescales within which
molecules do not have time to even collide with each other; (2) the
cage-motion/rattling regime, which is absent in the hydrodynamic
regime (it is a hallmark of supercooled liquids and to an even greater
extent of glassy systems) and corresponds to the timescale involved
with the “rattling” of the molecules within the “cages” formed by
their neighbors, and the relevant timescale is often indicated as the
β-relaxation of the system; (3) the α-relaxation regime, which corre-
sponds to a significant structural change of the system due to the
molecules leaving their “cages.” These three timescales can all be
probed by means of the (self-part of the) incoherent intermediate
scattering function, which is defined as

Fs(q, t) = 1
N
⟨

N

∑
j=1

exp[iq(r j(t) − r j(t = t0)]⟩, (2)

where the sum runs over the jth molecule with center of mass posi-
tion rj(t) at time t, ⟨. . .⟩ denotes a time average, and q is a vector in
reciprocal space. Note that in an isotropic system, Fs(q, t) depends
only on the magnitude q of the vector q. We have explicitly verified
that this is the case by computing Eq. (2) by choosing q vectors along
each Cartesian direction. Also note that the intermediate scattering
function we obtained from our MD simulations can, in principle,
be directly compared to experimental results from, e.g., inelastic
neutron or x-ray scattering measurements.

As illustrated in Fig. 2(f), for a liquid in its hydrodynamic
regime [see, e.g., the data re: T = T g + 150 K in Fig. 2(f)], there is no
β-relaxation regime, and Fs(q, t) decays smoothly from one to zero
via a single exponential decay. For a supercooled liquid, however,
the emergence of the cage-rattling motion results in a characteristic
plateau of the Fs(q, t) [see, e.g., the data re: T =T g + 30 K in Fig. 2(f)],
which only decays to zero from the onset of the α-relaxation regime.
To extract a single metric that reflects the timescale associated with
the onset of the α-relaxation regime, a common choice we have also
adopted in this work is that of choosing as the structural relaxation
time, τ, the time for which Fs(q, t) is equal to 1/e = 0.368. Longer
relaxation times are indicative of a slower dynamics, which, in turn,
should be characteristic of a lower propensity for the drug molecules
in either the supercooled liquid or the glass to crystallize. τ must be
related to D in some fashion, albeit τ is a much more robust quan-
tity for a supercooled/glassy system, where not just one D exists. In

fact, one can define a D characteristic to each of the timescales we
have discussed. In this work, we have attempted to focus on the D
associated with the α-relaxation regime, which should be directly
correlated with τ. Note that below and/or in the proximity of T g ,
τ might be longer than the extent of our MD simulations [see, e.g.,
the data re: T = T g −10 K in Fig. 2(f)].

Other solid-state descriptors: In this work, we focused on
three specific dynamical quantities. However, it is important to note
that many more solid-state descriptors are directly available as the
result of MD simulations. Examples involving the structural prop-
erties of the system would include the radial distribution function,
the Voronoi network (and its dual tessellation, which captures the
network of empty spaces within the system), and structural descrip-
tors, such as SOAPs, that can be modified to take into account inter-
molecular interactions as well. The efficiency of such descriptors will
be the subject of future work.

III. RESULTS
A. One-molecule descriptors

As a first attempt to predict either the T g or the crystallization
class of the drug molecules in the Amo-Reg and Amo-Class datasets,
respectively, we have used different one-molecule descriptors (see
Sec. II D 1).

In Table II, we report the results we have obtained re: the
prediction of T g (Amo-Reg dataset). In particular, we report the
MSE for both the training and the test sets (MSE-Train and MSE-
Test, respectively). Note that due to the nature of the LOOCV (see
Sec. II C), we have constructed the MSE for the test set from the
difference between the experimental and predicted T g relative to
individual predictions of T g for one molecule /model. Hence, the
very large values of MSE-Test, which should be interpreted as a
relative measure of the variance of our results for different descrip-
tors as opposed to the actual uncertainty associated with our results.
We also report the Pearson correlation coefficient (PCC) for both the
training and the test sets (PCC-Train and PCC-Test, respectively).
The lack of an error bar re: PCC-Test is due to the above mentioned
nature of the LOOCV.

The Std descriptor is the most accurate overall, which is to be
expected as it is, in fact, a collection of 170 different descriptors. Sur-
prisingly, the Cliques descriptor alone, despite its simplicity, shows
similar accuracy. This is important as the Cliques descriptor—in
stark contrast re: e.g., the Std descriptor—is a very transparent fea-
ture that can be straightforwardly leveraged to, e.g., identify specific
functional groups that have an impact on, in this case, the value of
T g . The usage of genetic algorithms (GAs) is effective in improv-
ing the accuracy of the SOAP descriptor, which is consistent with
our recent results83 but only marginally effective in doing the same
for H-wACSFs. Feature selection (FS) further serves to improve
the accuracy of some—but not all—descriptors. Overall, Std (with
FS), Cliques, and SOAPs (with FS) provide similarly accurate pre-
dictions. We will discuss how exactly our results compare to the
state-of-the-art (particularly Ref. 19) in Sec. III C.

The results we have obtained re: the prediction of the crystal-
lization class for the drug molecules in the Amo-Class dataset are
reported in Table III. In this case, we have chosen Matthew’s cor-
relation coefficient (MCC86) to quantify the accuracy of our ML
models. The MCC is much more robust than, e.g., the traditional
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TABLE II. ML predictions re: the Amo-Reg dataset: one-molecule descriptors. Accuracy of our ML models in predicting the
T g re: the Amo-Reg dataset via different one-molecule descriptors (see text).

Descriptor MSE-Train MSE-Test PCC-Train PCC-Test

Std 1455.899± 333.474 1625.971± 2 637.659 0.442± 0.096 0.459
Cliques 1967.728± 608.089 1995.273± 2 690.114 0.266± 0.212 0.393
H-wACSFs 1916.213± 508.731 2594.003± 6 422.134 0.326± 0.121 0.157
H-wACSFs-GA 2203.201± 359.928 2356.687± 4 482.981 0.19± 0.105 0.166
SOAPs 2101.346± 796.46 3001.488± 13 712.585 0.353± 0.079 0.285
SOAPs-GA 2063.968± 321.171 2237.609± 3 135.72 0.293± 0.061 0.316

Feature selection

Std 1331.376± 244.329 1458.926± 2095.038 0.495± 0.066 0.511
H-wACSFs 1818.283± 428.084 2446.945± 4816.482 0.351± 0.109 0.186
SOAPs 1706.709± 516.041 2105.706± 6532.711 0.407± 0.109 0.359

definition of classification accuracy, namely, the ratio between the
number of correctly classified samples and the overall number of
samples, and it is especially well-suited to deal with unbalanced
datasets, such as the Amo-Class dataset.87 Again, the absence of
error bars re: the MCC for the test set is due to the nature of the
LOOCV we have used. Clearly, the usage of the SMOTE oversam-
pling technique (see Sec. II C) substantially improves the predicting
capabilities of every descriptor we have considered, nearing perfect
accuracy re: the training set and leading to very robust results for
the test sets as well. Interestingly, the performance of each individual
descriptor appears to be more uniform across the Amo-Class dataset
then what we have observed for the Amo-Reg dataset (where specific
descriptors performed significantly better or worse). Our best result
for the Amo-Class dataset has been obtained by applying SMOTE,
GA, and FS on H-wACSFs—but the resulting accuracy is not dras-
tically superior to that of any other descriptor we have considered.

This is encouraging as the prediction of the crystallization class is the
most useful aspect for practical considerations related to the physi-
cal stability of amorphous drugs. Again, we will discuss how exactly
our results compare to the state-of-the-art (particularly Ref. 28) in
Sec. III C.

B. Solid state descriptors
Before we analyze the accuracy of the ML models we have

built by using solid state descriptors, it is instructive to discuss the
dynamical properties we have obtained across our datasets. It is
worth pointing out that, to our knowledge, this is the first, consistent
collection of dynamical properties computed via MD simulations for
100+ molecular glasses, which required almost 30 μs of simulation
time (roughly 3 × 106 CPU hours).

TABLE III. ML predictions re: the Amo-Class dataset: one-molecule descriptors. Accuracy of our ML models in predicting the
crystallization class re: the Amo-Class dataset via different one-molecule descriptors (see text).

MCC-Train MCC-Test
Descriptor MCC-Train MCC-Test SMOTE SMOTE

Std 0.837± 0.101 0.573 0.999± 0.003 0.746
Cliques 0.982± 0.016 0.282 0.990± 0.011 0.655
H-wACSFs 0.957± 0.06 0.405 0.421± 0.023 0.579
H-wACSFs-GA 0.423± 0.133 0.587 0.401± 0.111 0.601
SOAPs 0.543± 0.055 0.432 0.955± 0.057 0.659
SOAPs-GA 0.349± 0.104 0.59 0.979± 0.048 0.694

Feature selection

Std 0.993± 0.014 0.544 0.999± 0.040 0.747
H-wACSFs 0.687± 0.133 0.49 1.000± 0.020 0.757
H-wACSFs-GA 0.738± 0.175 0.464 1.000± 0.075 0.746
SOAPs 0.693± 0.154 0.399 0.975± 0.057 0.694
SOAPs-GA 0.918± 0.093 0.418 0.964± 0.054 0.655
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We begin by comparing the estimates of T g we have obtained
from our MD simulations (see Sec. II B) with the experimental data.
The results are summarized in Fig. 3(a). The raw data [gray circles
in Fig. 3(a)] are very strongly correlated (Pearson Correlation Coeffi-
cient, PCC = 0.96) with the experimental data, albeit it systematically
overestimates the latter. This is to be expected as the cooling rates we
are forced to use in MD simulations are orders or magnitude faster
than the rates achievable experimentally. However, this discrepancy
appears to be entirely systematic in nature: in fact, upon shifting the
raw simulation data by −70 K, we recover a very good quantitative
agreement with the experimental data, as illustrated in Fig. 3(a) (col-
ored points). This result demonstrates the robustness of our MD
protocol and suggests that MD can indeed be used to estimate the T g
of molecular glasses with good accuracy—once the systematic error
due to the non-physically fast cooling rates characteristic of typical
MD timescales has been corrected for. To be specific, the cooling
rate we have used here, 4 K/ns, is several orders of magnitude higher

than the cooling rates achievable by means of, e.g., conventional dif-
ferential scanning calorimetry (DSC), which range between 1 × 10−8

and 1 × 10−11 K/ns.
Next, we move onto the self-diffusion coefficient D. As we

now have an estimate of the T g from our MD simulations, we can
measure D for the different drugs utilizing their different T g as
our reference. For instance, with “T g + 30 K,” we label the result
obtained for a MD simulations at a temperature 30 K above the T g
of each specific drug. The distribution of D across the whole Amo-
Reg dataset is reported in Fig. 3(d) at different temperatures. Note
that we have taken the logarithm (base 10) of the actual values for
visualization purposes. As expected, the higher the temperature, the
higher the diffusion coefficient, which spans almost three orders
of magnitude. The opposite trend can be observed for the struc-
tural relaxation time τ, also reported as a function of temperature
in Fig. 3(e). In fact, D decays exponentially as τ increases, as shown
by the log–log plot of D as a function of τ reported in Fig. 3(f). While

FIG. 3. Solid state descriptors. (a) Correlation between the experimental values of T g-Exp. and the estimate of T g obtained via our MD simulations (Tg-Sim). The raw MD
results correspond to the empty, gray circles. The points colored according to the crystallization class of the corresponding molecule have been obtained by shifting the raw
MD results by −70 K (see text). (b) PDF of the self-diffusion coefficient D of the supercooled liquids, labeled by crystallization class, at T = Tg + 110 K for each molecular
specie in the Amo-Reg dataset. (c) PDF of the structural relaxation time τ (see text) of the supercooled liquids, labeled by crystallization class, at T = Tg + 110 K for each
molecular specie in the Amo-Reg dataset. (d) PDF of the self-diffusion coefficient for each molecular specie in the Amo-Reg dataset at different temperatures. For visualization
purposes, we have taken the logarithm (base 10) of the values of D. (e) PDF of the structural relaxation time for each molecular specie in the Amo-Reg dataset at different
temperatures. For visualization purposes, we have taken the logarithm (base 10) of the values of τ. (f) Correlation between the (logarithm, base 10, of the) diffusion coefficient
and the (logarithm, base 10, of the) structural relaxation time, color-coded according to different temperatures.
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intuitive, we are not necessarily aware of a universal relation between
D and τ for molecular glasses—an interesting finding in itself.

The crucial question is whether any of these dynamical quan-
tities is related to either T g and/or the crystallization class. Inter-
estingly, we observe no simple relationship between either D or τ
and T g . However, there is a strong correlation between D or τ and
the crystallization class, as illustrated in Figs. 3(b) and 3(c), respec-
tively. In particular, the diffusion coefficient of class I molecules is
on average much higher than class II or class III molecules. The
distributions reported in Fig. 3(b) refer to the data obtained at a spe-
cific temperature above T g (T = T g + 110 K), but for the diffusion
coefficient, this trend is present to some extent for each temperature
we have considered. Note that there is no point in considering tem-
peratures below T = T g − 10 K as the vast majority of the glasses
has impossibly low(long) diffusion coefficients(structural relaxation
times). In fact, one can easily discard any drug with a D > 50 Å2/ps
at T = T g + 110 K for the practical purposes of determining whether
it might be suitable as an amorphous formulation. The same can be
said for τ, albeit we note that the correlation between τ and the crys-
tallization class is less strong—in that it holds to different extents
according to the specific temperature chosen. These findings are of
great practical relevance as they can offer a rather inexpensive route
to probe whether novel candidates for amorphous drugs would fall
in Class I.

Regression [T g ]: We have used these three solid state descrip-
tors (T g , D, and τ) to predict the experimental T g . The results are
summarized in Table IV. Unsurprisingly, given the strong correla-
tion between simulated and experimental T g that we have discussed
above, the simulated T g gives very accurate results: the MSE for
both the training and test set is an order of magnitude lower than
that obtained for any other descriptor we have used (one-molecule
descriptors included, see Sec. III A).

For D and τ, we have not just one value but multiple values
for each drug molecule as we have computed these dynamical quan-
tities at several temperatures below and above their corresponding
T g . In fact, the descriptor vector for both D or τ relative to each
molecule contains five elements for T g − 10 K, T g + 30 K, T g + 70 K,
T g + 110 K, and T g + 150 K. This allow us to use information about
the dynamical behavior of each system as a function of tempera-
ture. While we do have data at lower/higher temperatures as well
(down/up to T g − 50 K, T g + 190 K), virtually every system behaves
in exactly the same fashion—the dynamics is either impossibly slow
at T g − 50 K or similarly fast at T g + 190 K. As such, including
D or τ for those temperatures does not increase the accuracy of our
models—if anything, it introduces noise.

The results for the diffusion coefficient are as accurate as our
best results we have obtained for the one-molecule descriptors

upon both optimization (GAs) and feature selection—which is quite
impressive. Interestingly, τ performs very poorly in terms of pre-
dicting the experimental T g . This is not entirely unexpected as D
varies much more smoothly than τ as a function of temperature. For
low/high temperatures, τ tends to be either beyond the timescale that
we have simulated or equally short notwithstanding the molecular
species. As such, the fact that we do not observe a strong correlation
between Tg and τ is probably due to the inability of our MD simula-
tions (due to their limited timescale) to probe the full extent of τ in
the proximity of T g .

Classification [crystallization class]: We now move onto the
results we have obtained with the three solid state descriptors
(T g , D, and τ) in terms of the prediction of the crystallization
class of the drug molecules in the Amo-Class dataset. The results
are summarized in Table V and Fig. 4. Similar to what we have
observed in the case of the one-molecule descriptors, the usage of the
SMOTE technique consistently improves the accuracy of our results.
In terms of numerical accuracy, the results we have obtained via our
solid state descriptors perform slightly worse than the one-molecule
descriptors. To be specific, our best result for the one-molecule
descriptors (H-wACSFs, upon FS and SMOTE, see Table III) is a
MCC—for the test set—of 0.757, while our best result for the solid
state descriptors (τ, upon SMOTE, see Table V) is 0.605.

In stark contrast to one-molecule descriptors, however,
the solid state descriptors are characterized by a very low
dimensionality—just one for Tg and five for both D and τ, while
descriptors such as SOAPs can easily count 103 elements per SOAP
vector. As such, the fact that the solid state descriptors can achieve
a respectable accuracy in terms of our ML models is quite encour-
aging indeed. In addition to this, the solid state descriptors are very
much transparent—in that they are representative of well-defined
dynamical properties of the system. Again, this is a substantial
advantage with respect to most one-molecule descriptors: in our
case, the Cliques descriptor alone can be considered as a transparent
descriptor.

Thus, it is instructive in the case of solid state descriptors to
inspect the confusion matrices relative to our predictions. These are
reported in Fig. 4 and refer to the results we have obtained upon
applying SMOTE—for the test set only. We report a single confusion
matrix per descriptor as these have been obtained via LOOCV (see
Sec. II C).

We begin with T g , which appears to be able to classify correctly
the vast majority of Class II and Class III molecules, while it almost
entirely mislabels Class I molecules as Class II molecules. By looking
at the PDFs of the T g for each crystallization class [see Fig. 1(e); the
PDFs for the simulated T g are very similar, given the strong correla-
tion between the two, see Fig. 3(a)], the T g of Class II and Class III

TABLE IV. ML predictions re: the Amo-Reg dataset: solid state descriptors. Accuracy of our ML models in predicting the T g
re: the Amo-Reg dataset via different solid state descriptors (see text).

Descriptor MSE-Train MSE-Test PCC-Train PCC-Test

Tg 421.759± 103.799 432.236± 902.112 0.859± 0.220 0.866
D 1404.177± 502.664 1444.206± 1886.394 0.487± 0.106 0.441
τ 1690.300± 233.864 1864.220± 2522.985 0.140± 0.151 0.058
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TABLE V. ML predictions re: the Amo-Class dataset: solid state descriptors. Accuracy of our ML models in predicting the
crystallization class re: the Amo-Class dataset via different solid state descriptors (see text).

MCC-Train MCC-Test
Descriptor MCC-Train MCC-Test SMOTE SMOTE

Tg 0.241± 0.059 0.276 0.079± 0.063 0.578
D 0.271± 0.155 0.396 0.374± 0.035 0.543
τ 0.837± 0.101 0.573 0.207± 0.036 0.605

FIG. 4. Confusion matrices for the solid-state descriptors. Confusion matrices relative to our prediction of the crystallization class re: the Amo-Class dataset via different solid
state descriptors. These results have been obtained upon applying the SMOTE technique and refer to the test sets only—as we adopted a LOOCV (see text).

molecules is very rarely lower than ∼ 250 K. This helps in explaining
why Class II and Class III are never predicted as Class I molecules
in our T g ML model, but it does not explain the close-to-perfect
distinction between Class II and Class III, nor the mislabeling of
almost every Class I molecule as Class II molecules.

The accuracy we have obtained when using the diffusion coeffi-
cient D as our descriptor is very similar (in terms of MCC) to that of
T g . However, as illustrated in Fig. 4, the model sacrifices some accu-
racy in telling apart Class II from Class III molecules to improve on
the labeling of Class I molecules. Similar to what we have observed
for T g , however, no Class II or Class III molecules are ever predicted
as Class I molecules.

The relaxation time τ gave us our best result in terms of accu-
racy. This was somehow expected as τ is a rather “binary” measure,
in our case, of whether the system is behaving like a supercooled liq-
uid (for which we observe a τ well within the timescale of our MD
simulations) or a glass (in which case, we simply assign a blanket
value of 9999 to the descriptor at that given temperature as we have
no way to probe τ across the relevant timescale). On the contrary,
τ performed rather poorly as a descriptor for the regression prob-
lem of T g , particularly compared to D (see Table IV). The confusion
matrix we have obtained for τ (see Fig. 4) is more balanced across the
different classes. However, the two distinct features of all our classi-
fication models we have obtained via solid state descriptors persist,
namely, (1) a substantial mislabeling of Class I molecules as Class II
molecules and (2) no Class II or Class III molecules ever classified as
Class I molecules.

As it stands, our models seem to be able to predict with incred-
ible accuracy whether a drug molecule belongs to Class II or Class
III—but not Class I. This is a practically important aspect. However,
ideally one would be able to either “filter out” Class I molecules with
great accuracy or to classify correctly Class III molecules—which
are the most suitable candidates in terms of amorphous drugs for-
mulations. For now, these models cannot achieve the former and
only partially meet the expectations of the latter. We shall put our
results into context re: the state-of-the-art in Sec. III C, where we
will combine our descriptors into an ensemble learning framework.

C. Ensemble learning
At this stage, we have assessed the performance of a number

of descriptors for both the regression problem targeting the experi-
mental T g and the classification problem posed by the crystallization
classes. In order to increase the accuracy of our models, it is only
natural to attempt to combine the predictive power of different
descriptors. As discussed in Sec. II C, we have chosen to do so by
training (and crucially, optimizing) models for each descriptor in
isolation and combine the different predictions. The results of this
ensemble approach are summarized in Fig. 5.

Regression [T g ]: We begin by discussing the results with
respect to the prediction of the experimental T g . As illustrated
in Fig. 5(a), averaging our predictions over multiple descriptors
does indeed lead to an improvement in the overall accuracy of our
models. It is important to distinguish between two sets of results:
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FIG. 5. Ensemble learning. (a) MSE relative to the test set for our predictions of the experimental T g (Amo-reg dataset) as a function of the number of descriptors we have
combined via ensemble learning (see text). The simulated T g is included as a descriptor in the “Tg” results, but it has not been included in the “no Tg” results. (b) Scatter plot
of the predicted vs the experimental T g for our best regression models. The color code is the same as in panel (a). (c) MCC relative to the test set for our predictions of the
crystallization class (Amo-class dataset) as a function of the number of descriptors we have combined via ensemble learning. (d) Confusion matrix for our best classification
model.

ensemble models that did not include the simulated T g as a descrip-
tor [“no Tg” label in Fig. 5(a)] and models that did include the
simulated T g as a descriptor [“Tg” label in Fig. 5(a)]. In the latter
scenario, we are effectively using a computational estimate of the
target property as a descriptor—which clearly leads to much more
accurate predictions.

It is interesting to look at representative scatter plots [Fig. 5(b)]
of predicted vs experimental T g for our best regression models. The
“no Tg” model has been obtained by combining Std descriptors
and the diffusion coefficient D. The “Tg” model has been obtained
by combining the simulated T g and the diffusion coefficient D.
From these outcomes, it is evident that the diffusion coefficient
brings important information about the dynamical properties of the
system into the model. This is key as it demonstrates the potential
of the solid state descriptors, obtained via MD simulations, which
we are putting forward in this work. Interestingly, it appears that
our models tend to underestimate the experimental T g when the
latter is higher than 350 K. This is somehow counter intuitive in
that MD simulations systematically over-estimate the values of T g
[see Fig. 3(a)] due to the non-physically rapid quenching rates of the
supercooled liquid into the glass.

We can now attempt to put our results into context with respect
to the state-of-the-art, particularly Ref. 19. In that work, the authors
considered a smaller dataset—71 molecules, to be compared with
the 136 molecules in our Amo-reg dataset (see Sec. II A for further
details). The authors have reported their results re: a single, spe-
cific test set of 24 molecules (which implies that they have used a
single, specific training set containing 47 molecules). We believe
that this approach is not ideal, in that—particularly given the small
size of the dataset—the variability associated with the choice of a
specific test set is bound to be very large indeed. In particular, the
best result reported in Ref. 19 might have been obtained with an
especially “unlucky” or even especially “lucky” test set, which pre-
vents us from a direct comparison with our results. In contrast, by
adopting the LOOCV approach we have used in this work, we are
confident that our results are independent on the choice of a specific
test set.

With this in mind, the MSE re: the test set obtained in Ref. 19
is 686.44. This number refers to a model leveraging NNs in a similar
fashion to our work using a set of “molecular descriptors”—none of
which have been obtained from the outcomes of MD simulations. As
such, the descriptor we used, which is closer to the set of descriptors
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used in Ref. 19, is the Std descriptor (see Sec. III A). The PCC rel-
ative to the very same model in Ref. 19 is 0.78. In comparison, our
best regression model [see Fig. 5(b)] including the simulated T g as a
descriptor gave a MSE for the test set of 628.47 and a PCC of 0.83.
Our best regression model [see Fig. 5(b)] obtained without including
the simulated T g as a descriptor gave a MSE for the test set of 1102.50
and a PCC of 0.60. In Ref. 19, we can also find a more accurate result
(MSE = 349.69 and PCC = 0.88) obtained via support vector regres-
sion (SVR). At this stage, we do not have a robust explanation as
to why SVR would perform significantly better than NNs for this
particular problem. It is possible that the limited size of the dataset
might be less problematic for SVR to deal with if compared to NNs,
but this hypothesis will need to be verified by exploring alternative
ML algorithms in the future.

Overall, our results in terms of regression are comparable to
that of Ref. 19. Our combination of one-molecule and solid state
descriptors gave only slightly more accurate results than the set of
molecular descriptors used in Ref. 19—if we are to compare these
in the context of NNs only. However, the results obtained in Ref. 19
via SVR appear to be significantly more accurate than ours, albeit
it is difficult to make direct comparisons, given both the different
datasets and the choice of using a single, specific test set.

Classification [crystallization class]: We have seen in Sec. III B
that the relaxation time τ showed significant potential as a descriptor
to identify the crystallization class. As such, it comes as no surprise
that our best classification ensemble models, obtained via the
straightforward max-voting approach described in Sec. II C, would
include τ. The confusion matrix relative to our best classification
model, which has been obtained by combining τ, wACSFs, and
Std, is reported in Fig. 5(d). Note that, overall, combining multiple
descriptors together did consistently improve the accuracy of our
models [see Fig. 5(c)]. In contrast to the results obtained with the
solid state descriptors in isolation (see Fig. 4), Class II molecules
appear to be the most problematic ones to label correctly. This is
expected—as we discussed in Secs. I and II A.

We can now compare our results with those of Refs. 28, where
the dataset utilized (131 molecules) is identical to our Amo-Class
dataset. There are two main differences between the approach of
Ref. 28 and our work. The first one is that, in a similar fashion to
Refs. 19, the authors have opted for a single, specific test set, which
in this case encompasses 31 molecule (while the training set includes
100 molecules). Again, we do not believe this approach to be ideal.
The second difference is that, in Refs. 28, the authors do not take
into account Class I molecules at all for the purposes of their clas-
sification models. This has been justified on the basis of a fixed
threshold re: the molecular weights of the molecules. Specifically,
the authors argue that drug molecules characterized by a molecu-
lar weight (MW) <200 g/mol can be considered as Class I molecules.
While it is definitely true that a strong connection between MW and
crystallization class exists [see Fig. 1(d)], only 20 molecules belong-
ing to Class I have a MW <200 g/mol. The remaining 35 Class I
molecules are all characterized by MW > 200 g/mol. As such, we
believe that it is not fair to exclude Class I molecules from a classifi-
cation model as the MW criterion is not robust enough to provide a
practical indication in terms of choosing a given drug-like molecule
as a potential candidate for an amorphous formulation.

In Ref. 28, the authors have built a model (based on decision
trees) that distinguish between Class II and Class III molecules (as we

discussed, Class I molecules have not been taken into account) with
an accuracy of 69% relative to the single, fixed test discussed above.
Given than Class II is severely under-populated with respect to Class
III, we argue that the usage of a metric such as the MCC we have
employed here gives a better representation of the accuracy of the
model. Nevertheless, for the purposes of comparing the results of our
best model with that of Ref. 28, the model which confusion matrix
is reported in Fig. 5(d) predicts Class I, II, and III molecules with an
accuracy of 89%, 84% and 86%, respectively. Not only these numbers
indicate a substantially more accurate model, but—crucially—our
classification model does include Class I molecules as well.

Overall, our results in terms of classification are very encou
raging—albeit it needs to be said that in order to achieve a truly
predictive model, additional experimental data are certainly needed.
The fact that our model identifies Class I molecules with an accuracy
of almost 90% is especially intriguing for practical purposes—as we
shall discuss in greater detail in Sec. IV.

IV. DISCUSSION AND CONCLUSIONS
Packaging drug molecules as amorphous solids represents an

intriguing possibility for the pharmaceutical industry to circumvent
the long-standing issue of the low solubility of traditional crys-
talline formulations. One of the major hurdles in implementing
this approach, however, is the physical stability of the amorphous
phase—i.e., the timescale required for it to transition into the crys-
tal. Clearly, in order for an amorphous formulation to be marketable,
the amorphous phase needs to be stable for the entire shelf life of the
product—which is very difficult to predict a priori.

Machine learning can help in this context by developing mod-
els capable to predict the stability of a given drug molecule in its
amorphous phase. However, the limited data in our possession only
enable us to devise classification models aimed at predicting the
so-called “crystallization class” relative to a given molecule. Classes
I, II, and III correspond, loosely, to classes of drug-like molecules
with very low, intermediate, and rather high physical stability. In
this work, we build on the datasets and the previous results of
Alhalaweh et al. (particularly Refs. 19 and 28) to deliver regression
and particularly classification models that represent a step forward
re: the state-of-the-art in terms of both accuracy and reliability. In
particular, we adopt an approach that leverages the outcomes of
molecular dynamics simulations to build bespoke descriptors that
can be used to complement the picture offered by the traditional,
“one-molecule” descriptors commonly used in QSAR models.

We combine these “solid state” descriptors with an array of
optimization strategies, including genetic algorithms, feature selec-
tion, over-sampling, and ensemble learning, to craft a portfolio of
classification models that—despite the very limited size of the dataset
at our disposal—can correctly label drug-like molecules as Classes
I, II, and III with accuracies of ∼85%. The ability of our models
to “filter out” Class I molecules—which are unsuitable as candi-
dates for amorphous formulations—is especially intriguing from
a practical standpoint. The outcomes of our work demonstrate
the usefulness of combining molecular simulations with traditional
machine learning approaches, not only to increase the predictive
power of the latter but also to enable the usage of more trans-
parent descriptors that can effectively be used to build genuine
structure–function relationships between molecular structure and
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functional properties. Much work remains to be done in the context
of machine learning to predict the physical stability of amorphous
drugs. As already mentioned, the limited size of the datasets avail-
able severely limits the accuracy of our models. We do hope that
the encouraging results we have obtained here will motivate fur-
ther experimental measurements aimed at increasing the size of said
datasets.

It is also worth noting that many amorphous drugs are pack-
aged as amorphous solid dispersions (ASDs): these are heteroge-
neous systems including amorphous drugs dispersed in (typically)
polymeric matrices. Expanding the scope of our models to take into
account such systems in the future is also a possibility, given that ML
has been recently applied to predict the physical stability of a variety
of different ASDs.22,23,29

In summary, we have advanced the state-of-the-art by bring-
ing molecular simulations into the mix: at this stage, while further
computational improvement is certainly possible, we believe that
any decisive step forward in the field can only be achieved in
conjunction with bespoke experimental efforts.
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