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Abstract 
Quantitative assessments of the recent state of an epidemic and short-term projections for the near future are 
key public-health tools that have substantial policy impacts, helping to determine if existing control measures 
are sufficient or need to be strengthened. Key to these quantitative assessments is the ability to rapidly and 
robustly measure the speed with which an epidemic is growing or decaying. Frequently, epidemiological 
trends are addressed in terms of the (time-varying) reproductive number R. Here, we take a more 
parsimonious approach and calculate the exponential growth rate, r, using a Bayesian hierarchical model to 
fit a Gaussian process to the epidemiological data. We show how the method can be employed when only 
case data from positive tests are available, and the improvement gained by including the total number of 
tests as a measure of the heterogeneous testing effort. Although the methods are generic, we apply them 
to SARS-CoV-2 cases and testing in England, making use of the available high-resolution spatio-temporal 
data to determine long-term patterns of national growth, highlight regional growth, and spatial heterogeneity. 
Keywords: Bayesian hierarchical modelling, epidemiological trends, Gaussian processes, growth rate estimation, 
public-health tools, spatial heterogeneity 

1 Introduction 
Statistical analysis of the SARS-CoV-2 pandemic has been instrumental in both assessing the cur-
rent status of infection at a local or national level (Davies et al., 2021, 2020; Flaxman et al., 2020;  
Hellewell et al., 2020; The Royal Society, 2020), and extrapolating to generate short-term projec-
tions. Arguably good statistical knowledge is a key to the control of epidemics, as it provides a 
quantitative assessment of control measures and can highlight sectors of the population in which 
additional targeted controls may be needed. Five elements combine to make the statistical analysis 
of the SARS-CoV-2 pandemic difficult: many infections are asymptomatic and go undetected; the 
regular use of lateral flow devices, which would detect asymptomatic infection, is heterogeneous 
across time, space, and age groups; the use of polymerase chain reaction (PCR) testing (adopted as 
the gold standard in the UK) also changes across time and space, presumably as individuals react to 
changes in perceived risk; infection and testing are inherently stochastic processes; and there are 
distributed lags between infection and detection. These five factors mean that the prompt 
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identification of rising infection (especially in relatively small populations) requires sophisticated 
statistical methods. 

The reproductive number, R, has gained substantial media and political interest during the 
SARS-CoV-2 pandemic as a simple statistical indicator of the current epidemiological trends, 
with R < 1 corresponding to a declining outbreak and R > 1 corresponding to a growing outbreak 
(Vegvari et al., 2021). During 2020 in England, the nationwide estimate of R (UK Health Security 
Agency, 2020a) was one of the key metrics in determining the national alert level with implications 
for changes in control measures (UK Health Security Agency, 2020b); hence placing great political, 
economic, and public-health importance on this single value. A robust and rapid estimation of R (or 
the epidemic growth rate r), together with levels of uncertainty, remains a key public-health tool. 
The estimation needs to be rapid, such that prompt action can be taken before the burden on health 
services becomes too great; the estimation also needs to be robust, as the economic and social con-
sequences of action can be costly and so should only be enacted when there is considerable certainty 
that such measures are needed. As such there is a clear need for continued development of statistical 
methods that can extract a meaningful signal from complex and noisy epidemiological data. 

Obtaining an accurate and timely measure of R generally requires a robust estimate of either the 
generation time or the infectiousness profile over time (Wallinga & Lipsitch, 2007) (capturing the 
expected level of transmission at time t after infection). Both of these necessitate detailed 
individual-level observations (Abbott et al., 2021, 2020; Hart et al., 2022) and may therefore 
be context dependent, leading to a diversity of R estimates from the same population-level data 
(Funk et al., 2020). Here, we adopt the more parsimonious approach of working with the growth 
rate r (such that the number of infections grows like I(t) ∼ exp(rt)), in which case our threshold for 
a growing or declining outbreak becomes where r is greater or less than zero, respectively. 

Given the importance of real-time estimation of the growth rate, r, or the reproductive number, R, 
multiple statistical methods have been developed (Gostic et al., 2020; The Royal Society, 2020). All 
methods have advantages and potential problems, with an inevitable trade-off between robustness 
and timeliness (Favero et al., 2022; Parag et al., 2021). Most naively, the growth rate can be esti-
mated by simply measuring the rate of change of log (infection), where infections are often approxi-
mated as being proportional to reported cases. This naive approach is confounded by the stochastic 
nature of transmission and reporting, requiring either smoothing of the data or fitting the growth 
rate over a defined time window—longer windows and more smoothing eliminate stochastic effects, 
but mean that real-time estimates of the growth rate and R are considerably lagged. The UK govern-
ment dashboard (UK Health Security Agency, 2020c) expands on these simple ideas to produce es-
timates of the growth rate at the national scale, calculated as the relative change over seven days in 
the smoothed number of cases (smoothed by taking a mean over a seven-day window). In recent 
years, EpiEstim (Cori et al., 2013) has grown in popularity as a method of estimating changing R 
values, due to its flexibility and accuracy (Funk et al., 2020). EpiEstim uses a Bayesian framework 
to compare the reported number of cases over a time window with the projection based on the in-
fectiousness profile and historic reporting to generate an estimate of R in a given window. 

In this paper, we develop a novel method to generate a real-time estimate of the growth rate of 
infection in small stochastic populations. Our flexible method uses a Bayesian approach to com-
pute the posterior distribution of the growth rate at any point in time and produces samples of the 
joint posterior distribution of the growth rate for any given interval. We use Gaussian processes 
(GPs) to fit the reported data, which gives us flexibility in smoothing the count of new cases accord-
ing to the GP parameters. We fit two different measures: the raw number of recorded cases in a 
region, as defined by PCR positives in the community; or the proportion of community PCR tests 
that are positive. We show that using both measures copes well with potential biases from time- 
changing patterns in testing, as the latter provides a more stable estimate when testing patterns 
are changing rapidly. 

We first outline the basic methodology and illustrate its use on surrogate data sets where the 
growth rate is known. We then apply our model to data on SARS-CoV-2 cases in England, initially 
at a national level by estimating the daily growth rate of SARS-CoV-2 from 1 September 2020 to 6 
December 2021 (as available at the time of writing). Finally, we explore the spatial heterogeneity 
in cases at the lower tier local authority (LTLA) level in April 2021 when the Delta variant was 
increasing in the North–West of England—a time when the spatial variability of epidemic behav-
iour was key to understanding the impact of the new variant.  
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2 Methods 
We describe a model framework to estimate the growth rate, r, of an epidemic based on the count 
of reported infections (cases). If the counts are recorded through a testing programme, to adjust for 
changes in testing effort the model can also incorporate the total number of tests performed over 
time. We assume that the underlying process generating the count of cases is given by a one- 
dimensional Gaussian process (Section 2.1), and obtain the growth rate by sampling from the de-
rivative of the process (Section 2.2). 

2.1 Model structure 
For a given community, let T = {1, . . ., T} be a set of time indices at which data are collected. For 
each t ∈ T , yt denotes the number of positive test results at time t and nt denotes the total number 
of tests. In the context of SARS-CoV-2, data are generally collated daily with the potential for 
missing data, which our proposed models allow for; for other infections data may be collected 
over larger or irregularly spaced intervals. 

2.1.1 Positives model 
We first propose the following Bayesian hierarchical model, labelled as the positives model, which 
only requires knowledge of yt (the number of positive cases at time t) and is therefore applicable in 
situations where nt (the number of tests at time t) is not available. The model assumes that yt fol-
lows a negative binomial distribution parameterised by its mean μt and a time-homogeneous over-
dispersion parameter η. The probability mass function of yt under this parameterisation is 

Prob(yt|μt, η) =
Γ(yt + η)

Γ(η)Γ(yt + 1)
(μt/η)yt

(1 + (μt/η))η+yt 

The parameter log (η) is assigned a normal prior N (mη, τ−1
η ). The log relative risk, log (μt), is de-

composed into the sum of a smooth term xt and an optional error term ϵt whose distribution 
and dependencies are problem-dependent. The model can therefore be expressed as 

yt|μt, η ∼ Negative binomial(μt, η)
log (η) ∼ N (mη, τ−1

η )
log (μt) = xt + ϵt

(1) 

where the hyperparameters underpinning the distribution of the overdispersion (mη and τ−1
η ) are 

specific to the problem and quoted in the results. Choices for the distribution of the error term 
ϵt are discussed at the end of the section. 

The prior on the smooth terms xt is given by a Gaussian process f on R such that xt = f (t), where 
f has mean zero, covariance kθ(f (s), f (s′)) between the value of the process f at times s and s′, and 
hyperparameters θ 

xt = f (t)
f (s)|θ ∼ GP(0, kθ(f (s), f (s′)))

(2) 

A comprehensive summary of such regression models using Gaussian processes can be found in 
(Rasmussen & Williams, 2006, Ch. 2). Here, we use a one-dimensional Matérn covariance family 
(Stein, 1999), since the resulting process f is stationary and isotropic, and the smoothness can be 
specified through a single smoothing parameter ν. We choose ν = 3/2 which results in the covari-
ance function 

k(l,σ)(f (s), f (s′)) = σ2 1 +
��
3
√ |s − s′|

l

 

exp −
��
3
√ |s − s′|

l

 

which also depends on the additional hyperparameters θ = (l, σ); where l is the length-scale, and σ2 

is the marginal variance of the process (other covariance functions are explored in Appendix E).  
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We set the joint prior of l and σ as ( log (l), log (σ)) ∼ N (( log (l0), log (σ0)), B−1) where l0 and σ0 

are baseline values for the length scale and precision, respectively, and B is the precision matrix 
of the joint prior. A diagram of the model is shown in Appendix A. 

The error term ϵt could be omitted in this formulation since variation in the model is included 
through the use of the negative binomial distribution. However, its inclusion can be used to capture 
other elements of the dynamics that are not otherwise present in the model. For example, reported 
SARS-CoV-2 cases in England have a pronounced day-of-the-week effect, with fewer cases re-
ported on weekends (see Figure 2, Panel a). The day-of-the-week effect can be included in the model 
by allowing ϵt = wd(t), where d(t) is the day of the week associated with time t, thus capturing the 
weekly pattern of testing and reporting. This is the approach we adopt for the remainder of the pa-
per, assuming that the wd(t) are a priori independent identically distributed with Gaussian hyperp-
rior with zero mean and precision τw ∼ Γ(aw, bw). To avoid identifiability issues with the terms xt, it 
is important to impose a sum-to-zero constraint 


d wd = 0. For other applications, the error term 

could be used to capture other temporal factors such as seasonal effects or known changes in report-
ing or test availability. 

2.1.2 Proportions model 
If the number of tests is known, then an alternative model formulation is possible that accounts for 
changes in testing behaviour over time; we label this model the proportions model and seek to capture 
the proportion of tests that are positive. In this case, yt (the number of positive cases at time t) given nt 

(the number of tests at time t) is assumed to follow a beta-binomial distribution with mean parameter 
μt, overdispersion parameter ρ, and number of trials nt. We use a beta-binomial distribution to ac-
count for both the bounded nature of yt (which is bounded above by nt) and the overdispersion. 

The probability mass function of yt under this parameterisation is given by 

Prob(yt|μt, M, nt) = nt

yt

 
Γ(M)

Γ(Mμt)Γ(M(1 − μt))
Γ(yt + Mμt)Γ(nt − yt + M(1 − μt))

Γ(nt + M) 

where M = (1/ρ) − 1. Given the bounded nature of the positive tests, such that μt ∈ (0, 1), we utilise the 
inverse logit transform (logit−1), and assume that logit−1(μt) is decomposed into the sum of a smooth term 
xt and an optional error term ϵt whose distribution and dependencies are problem-dependent. The trans-
formed overdispersion parameter logit−1(ρ) is assigned a normal prior N (mρ, τ−1

ρ ). As in the positives 
model, the prior on xt is given by the Gaussian process described in Section 2.1.1 

yt|μt, ρ, nt ∼ Beta−binomial(μt, ρ, nt)

logit−1(ρ) ∼ N (mρ, τ−1
ρ )

logit−1(μt) = xt + ϵt

(3)  

2.2 Growth rate sampling 
The instantaneous growth rate is defined as the per capita change in the number of new cases per 
time period. In other words, if wt is the process generating new cases at time t, the growth rate 
corresponds to rt = ∂t(wt)/wt, or equivalently, rt = ∂t( log wt); where ∂t signifies the time deriva-
tive. However, wt is unknown in practice, so we instead approximate the growth rate using our 
fitted Gaussian process. For the positives model, we approximate rt as the growth rate of the pro-
cess fitting the number of newly reported cases, exp (f (t)). In other words, rt ≈ rA

t = 
∂t( log [exp {f (t)}]) = ∂tf (t) and therefore, rt can be estimated as the derivative of the Gaussian pro-
cess f. For the proportions model, we approximate rt as rB

t = [∂t{f (t)}]/[1 + exp {f (t)}], such that rB
t 

corresponds to the growth rate of new reported cases minus the growth rate the new tests per-
formed (see Appendix B). 

To capture the inherent uncertainty in the process f, we sample from the derivative of the process 
f to obtain samples of the growth rate. Note that Gaussian processes with the Matérn covariance 
are mean-square differentiable if ν > 1, which is satisfied by our choice of ν = 3/2 (Stein, 1999). We 
obtain samples of the derivative by taking numerical approximations of the derivative (∂t) of  
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samples drawn from the process f. In other words, for a given sample g of f, we approximate the 
derivative as g′(s) ≈ g(s+h)−g(s−h)

h with error O(h), where h is the window size of the approximation. 
Samples of the derivative can be directly sampled from the derivative of the Gaussian process, pro-
viding more accurate results but requiring more computational time (see Appendix F). 

2.3 Implementation 
We implement the model in R using the package INLA (Rue et al., 2009), where the posterior dis-
tribution of the parameters of the model is obtained using a Laplace approximation. The Gaussian 
process with Matérn kernel is computed as the solution of a stochastic partial differential equation 
(Lindgren et al., 2011), obtained by the finite element method (FEM). To fit the model using the 
FEM implementation in INLA, we create a one-dimensional mesh with equally-spaced nodes that 
represent time points. The nodes are located according to the frequency of reported counts; that is, 
if the data are reported daily, one node per day is located, even if there is missing data. To avoid 
boundary effects, the mesh domain is extended by at least the length of the studied period (extra 
nodes are added before the first observation and after the last observation) (Lindgren & Rue, 
2015). The code is available in GitHub/juniper-consortium/growth-rate-estim. 

The Laplace approximation is suitable if the target distribution is unimodal. To verify the cor-
rectness of this approximation for the positives and proportions models, we also implement both 
models using the Hamiltonian Monte Carlo algorithms in the software STAN and compare them to 
the results in Section 3.2, as explained in Appendix C. It also allows us to implement different co-
variance functions not available in INLA. 

For the rest of the paper, we use weakly informative priors to the overdispersion parameters of 
the models, such that log (η) ∼ N (0, 1) and logit−1(ρ) ∼ N (0, 0.5−1). More restrictive priors could 
reject values of the hyperparameters possibly explained by the data (Rasmussen & Williams, 
2006, Ch. 5). Choices of τϵ, l0, σ0, and B are case-specific and are detailed in the results. 
Sensitivity analyses of the Gaussian process hyperparameters are explored in detail in Appendix D. 

2.4 Model validation 
To validate the accuracy of the models, we generate synthetic epidemiological data from a single 
homogeneous population of size N = 1,000,000. We assume for the first 100 days there is an 
underlying growth rate of r = 0.03 per day. For the second 100 days, we assume that controls 
are enacted and the epidemic goes into decline with a rate of r = −0.02. More precisely, the number 
of infections y(t) on day t are sampled from a Poisson distribution with rate r

6
i=3 y(t − i) for t > 6 

and exp (rt) for t ≤ 6 (where r = 0.03 for t ≤ 100, r = −0.02 for t > 100, and y(0) = 100). This ap-
proach aims to simulate data with a known growth rate using a model different to the method-
ology proposed in Section 2.1 to test if the positives and proportions models are capable of 
recovering the truth growth rate under a quick behaviour change (at t = 100). 

We compare two scenarios for the number of daily tests n(t). As our purpose is to test the model 
accuracy under a known growth rate, rather than discuss the effect of the test sampling, we make 
highly optimistic assumptions for the frequency of testing. In the first scenario, a random 10% of 
the population is tested daily, n(t) = 0.1N; in the second scenario, tests increase linearly from 
n(0) = 0.01N to n(200) = 0.1N. 

We run both the positives model and proportions model for each scenario. We set l0 = 50, 
σ0 = 1, and impose B = I to have non-informative priors for the parameters of the Gaussian pro-
cess (where I is the identity matrix). For the approximation of the derivative, we set a window of 
h = 3 days for all times except near the boundary, where we choose h = 1 for t = 1,200, and h = 2 
for t = 2,199. 

For simulation 1, with a constant daily testing rate, for both models the true growth rate is in the 
posterior credible interval (CI) for all time steps, except near t = 100 (Figure 1, top row). The lack 
of abrupt transition at the t = 100 breaking point is due to the smoothness of the Gaussian process 
(as captured by the assumed length-scale, l0). Although we could use a less smooth covariance 
function, such a covariance function choice would overfit the data, responding to small stochastic 
variations and hence not capturing the true underlying growth rate. 

For simulation 2, which has a linearly increasing daily testing rate, the positives model generally 
overestimates the growth rate. The overestimation in the positives model is more dramatic for the  
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first 100 time steps, where the exponential growth rate of testing was higher (Figure 1, bottom left 
panel). In contrast, for the proportions model the true growth rate lies within the posterior credible 
interval for the majority of time steps, as in simulation 1 (Figure 1, bottom right panel). 

2.5 Heterogeneity measure 
Although the method is not inherently spatial, treating each set of temporal data as statistically in-
dependent, we can nevertheless use the spatial position of each spatially sampled location to address 
localised effects. In this way, we introduce a heterogeneity measure to assess whether exceptionally 
high or low growth rates within a given spatial location are a localised pattern or are caused by a 
larger, more widespread, phenomenon. We define the heterogeneity hi of a spatial element i as 

hi =
1
Ni



j∈Nbd(i)

(ri − rj)
2 sign(ri − rj) 

where ri is the growth rate within location i, j ∈ Nbd(i) denotes all spatial locations that neighbour 
element i (where for simplicity we assume this means share a boundary, but could be any measure of 
spatial locality), and Ni is the number of neighbours of i. Samples of hi are taken by sampling from ri 

and rj. As such, hi provides a measure of local covariance, with its sign reflecting whether it has high-
er or lower growth than its neighbours. Moreover, we can estimate other quantities that allow us to 
compare the heterogeneity measure of different spatial elements. For instance, we estimate 
Prob(hi > 0), allowing us to identify elements with considerably high heterogeneity. 

3 Case-study 
3.1 Data 
We apply the models described above to data on daily counts of SARS-CoV-2 cases in England and 
in LTLAs between 1 September 2020 and 6 December 2021, dataset provided by Public Health 
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Figure 1. Validation of the ‘positives model’ and the ‘proportions model’. Posterior distributions of the growth rate 
for simulated data under two scenarios (top—constant testing; bottom—increasing testing) and two models (left— 
positives model; right—proportions model). We display the median (solid line), 50% credible interval (dark shaded 
ribbon), and 90% credible interval (light shaded ribbon). The dotted lines indicate the true growth rate.   
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England (now UK Health Security Agency (UKHSA)). The data correspond to the count of people 
from the wider population (Pillar 2 of the UK government testing programme, UK Health Security 
Agency, 2021) with at least one positive PCR test, reported by specimen date and residence loca-
tion (by LTLA). The data also include the count of negative tests. The dataset includes a total of 
4.51 million positives cases (time series shown in Figure 2, Panel b), with test positivity ranging 
between 0 and 0.3 (Figure 2, Panel c), and a total test count of 62.8 million (time series shown 
in Figure 2, Panel a). We applied the models at a national level, to case counts in England 
(Section 3.2), and at a local level, to cases per LTLA in England (Section 3.3). 

3.2 Growth rate estimation of SARS-CoV-2 in England from 1 September 2020 to 6 
December 2021 
We apply the positives and proportions models to the count of cases of SARS-CoV-2 in England 
between 1 September 2020 and 6 December 2021. For both models, we chose l0 = 50 days and 
τ0 = 1 as the baseline value for the length-scale and precision, respectively, and B = I. We replicate 
the same choices for h for the approximation of the derivative as in Section 2.4. Following the im-
plementation details in Section 2.3, the model takes less than 3.0 s of CPU time to estimate the pos-
terior distribution of the parameters (using the package INLA 21.07.10 in R 4.1.0 using a 
MacBook Pro with the Apple M1 chip) and an additional 4.7 s to generate 1000 samples of the 
parameters. 

Our time period of study contains both the second wave of infections (punctuated by a short- 
term imposition of strong non-pharmaceutical interventions from 5 November 2021 to 2 
December 2021) and the protracted third wave. It is clear from the data that there is a pronounced 
effect of weekends on the testing patterns, with lower testing but a higher proportion of positives 
on a weekend (shown as filled circles in Figure 2). 

Both the fitted positives and proportions models had reasonable correspondence with the em-
pirical data (Figure 2, Panels b and c). The dark-shaded ribbon shows the credible interval of 
the underlying Gaussian process, while the light-shaded ribbon shows the model fit including 
day-of-the-week effects. Our posterior distributions for the hyperparameters of the Gaussian pro-
cess were confined to a narrow region of the prior distribution, showing we had garnered knowl-
edge from the available data (Figure 3, Panel a). For the positives model, the standard deviation σ 
had a posterior median of 5.97 (95% credible interval 3.93–10.88) and the length-scale l had a 
posterior median of 120.97 (95% credible interval 89.12–187.73). The proportions model had 
a similar pattern with lower values, where the standard deviation σ had a posterior median of 
2.26 (95% credible interval 1.56–3.81) and the length-scale l had a posterior median of 59.34 
(95% credible interval 43.71–91.34). 

There was usually a high level of concordance in the qualitative relationship between the growth 
rate estimates from the positives model and proportions model, with the models particularly well- 
agreeing whether the growth rate was positive or negative (Figure 2, panel d). This agreement pro-
vides additional confidence that we are seeing a robust signal from the data. Nevertheless, there 
were sustained periods with the two models producing dissimilar quantitative estimates, such as 
during December 2020. Higher differences in testing correspond to higher differences in growth 
rate estimation (Figure 3, panel b). This helps explain the discrepancies observed in December 
2020, when testing practices are likely to be affected by the holiday period. 

3.3 Spatial heterogeneity in cases of SARS-CoV-2 in the North–West region in 
England, April 2021 
We applied the proportions model to the count of positive cases of SARS-CoV-2 in England for 
each of the 317 LTLAs. Since data at a lower resolution can be noisy, setting weak priors for 
the hyperparameters of the Gaussian process can lead to unrealistic length scales to account for 
the noise. To overcome that issue, we assume that the covariance function of the underlying 
Gaussian process at a local authority level has a similar shape to the national data. Therefore, 
we set the baseline values σ0 and l0 for the LTLA level to be the posterior median of σ and l ob-
tained with the national data in Section 3.2, respectively, with precision B = 10I. 

We focus on the results from 23 April 2021, when infections with the Delta variant were increas-
ing in the North–West of England, particularly in Bolton where our proportions model gave an  
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Figure 2. Model fitting and posterior distribution of the growth rate for SARS-CoV-2 cases in England from 1 
September 2020 to 6 December 2021. (Panel a) Number of tests conducted. Triangle markers correspond to reported 
test counts on weekdays, whilst circle marker correspond to reported test counts on weekends. (Panel b) Median 
(lines) and 95% credible interval (shaded ribbons) of the model fitting (light-coloured solid line, which includes a 
day-of-the-week effect) and the Gaussian process (dark-coloured dashed line) for the positives model. Circles and 
triangles correspond to the daily count of positives on weekdays and weekends respectively. (Panel c) Median (lines) 
and 95% credible interval (shaded ribbons) of the model fitting (light-coloured solid line) and the Gaussian process 
(dark-coloured dashed line) for the proportions model. Circles and triangles correspond to the proportions of positives 
per day. (Panel d) Median (lines) and credible interval (darker shaded ribbons for 50%, lighter shaded ribbons for 95%) 
for the growth rate estimations in the positives model (dashed line) and proportions model (solid line).   
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estimated positivity of 3.25% (95% PI: 2.65%–3.90%) (Figure 4, Panel a). Multiple neighbouring 
LTLAs in the North–West region had median estimates for proportion of tests being positive 
above 2%. In other regions at that time, some urban centres had a similar high incidence of 2% 
or above, which included Manchester and Sheffield. However, we generally measured incidence 
to be lower in other regions compared to the North–West. For example, all LTLAs in the 
South–West and along the southern coast had low median incidence estimates (below 1%). 

Though there was regional structure to the magnitude of test positivity, for growth rates we ob-
served spatial variability in areas experiencing high growth in cases and those where incidence was 
declining (Figure 4, Panel b). Areas expressing the greatest heterogeneity were regionally discon-
nected (Figure 4, Panel c). LTLAs whose probability of positive heterogeneity exceeded 0.95, 
thereby indicating high growth rates larger than the surrounding areas, included Erewash in the 
East (median heterogeneity: 1.42), Sefton in the North–West (median heterogeneity: 1.00), 
Bedford in the East (median heterogeneity: 0.79), and Bolton in the North–West (median hetero-
geneity: 0.50). For Bolton, our heterogeneity measure suggested that area was having a localised 
increase (>99% probability of heterogeneity being greater than zero) rather than a regionally- 
driven event. 

Through concurrently considering the growth rate and the proportion of tests with a positive 
result, we could discern those LTLAs suffering from both high prevalence and high growth rates 
(thereby possibly requiring further support), such as Bolton and Blackburn with Darwen, and 
LTLAs to monitor closely due to having low prevalence but high growth rates, including 
Erewash, Bedford, and Sefton (Figure 5, Panel a). Although Selby has the highest estimated pro-
portion testing positive (4.19%), the growth rate had been decreasing in the prior week 
(Figure 5, Panel b). 

4 Discussion 
In this paper, we have proposed two model structures, the positives model (which only uses data 
on confirmed positive cases) and the proportions model (which uses both positive and negative test 
information), to estimate the instantaneous growth rate of cases. We note that any measure based 
on cases is necessarily a lagged indicator of infectious processes due to the delay between infection 
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Figure 3. (Panel a) Comparison of the prior and posterior distributions of length-scale l (in days) and standard 
deviation σ for the positive and proportion models when applied to SARS-CoV-2 cases in England. Filled circles 
correspond to samples from the prior distribution. Triangles correspond to samples from the posterior distribution in 
the positives model. Squares correspond to samples from the posterior distribution in the proportions model. The 
dashed ovals represent the 95% posterior density region of each distribution. (Panel b) Comparison between the 
difference in testing (change in the count of tests in seven days, y-axis) and the difference between the growth rate 
estimations of the positives and the proportions model (x-axis). The filled circle markers correspond to the median 
growth rate difference between the two models, with horizontal bars representing the 95% credible interval of the 
difference between growth rates.   
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and notification of disease, which generally only occurs once symptoms arise. However, as we 
show for simple models, our methods can robustly estimate both the growth rate and temporal 
changes in the growth rate, which are often related to external epidemiological factors of 
public-health interest. 

The latent structure of both models includes a GP that interpolates the epidemic curve and ap-
proximates the underlying process that generates the disease incidences. We then take samples of 
the derivative of the GP to estimate the growth rate. We use a Matérn covariance function in the 
Gaussian process as a default choice due to its properties for simulating natural phenomena (Stein, 
1999). Other covariance functions can accommodate additional assumptions, such as noise mod-
els with dependencies or seasonal effects. The models are implemented using the Laplace approxi-
mation incorporated in the INLA package in R. 
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Figure 4. Epidemiological trends at the LTLA level in England on 23 April 2021. (Left) Estimated median of posterior 
of incidence, with lighter shading corresponding to higher incidence estimates. (Centre) Estimated median of 
posterior of growth rate. Regions with thicker borderlines correspond to LTLAs where the probability that the 
growth rate is greater than zero exceeded 95%. (Right) Median of heterogeneity. Regions with thicker borderlines 
correspond to LTLAs where the probability that the heterogeneity is greater than zero exceeded 95%.  
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Figure 5. (Left) Smooth estimation of positivity (y-axis) and growth rate (x-axis) of every LTLA in England on 23 April 
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the estimated growth rates. (Right) Trajectory of incidence-growth rate for LTLAs with high prevalence (top 2.5%) or 
high growth rate (top 5%) from 15 April 2021 to 23 April 2021 (squares correspond to 23 April).   
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Both positives and proportions models use data on positive reported infections, while the pro-
portions model also incorporates testing counts, enabling us to account for changes in test-seeking 
behaviour. We believe our approach has four benefits over existing methods. First, it is rapid, ro-
bust, and computationally efficient—all of which are considerable advantages when dealing with a 
rapidly changing epidemic in multiple spatial locations. Second, by focusing on growth rate rather 
than the reproduction number, we by-pass the complexities of estimating generation-time distri-
butions that can substantially hinder other methods early in an outbreak. Third, the combined use 
of positive reported infections and number of tests allows us to deal with the proportion of tests 
that are positive, a measure that is relatively insensitive to changes in testing behaviour. Finally, the 
use of Gaussian processes means that the method is also relatively robust to missing data, allowing 
us to provide continuous estimates even if some of the data streams are considered unreliable (for 
instance, the high rate of false negatives reported by the Immensa Health Clinic in some regions in 
the UK in September 2021, Torjesen, 2021). 

Throughout we applied our method to reported cases of SARS-CoV-2 infection in England as 
confirmed by PCR testing. We perform our analysis both at a national scale (Figure 2) and at a 
small regional scale (Figures 4 and 5). Our choice of pathogen was determined by the need to quan-
tify and explain the ongoing pandemic, feeding our findings through SPI-M-O (Scientific Pandemic 
Influenza Group on Modelling, Operational sub-group) to policy advisers. England has seen three 
major waves of infection, broadly associated with the wild-type, Alpha and Delta variants. The 
first wave which began in March 2020 led to large numbers of hospital admissions and deaths, 
but was poorly quantified in terms of infection due to the low level of community testing. The se-
cond wave began in September 2020 and peaked in late December 2020 or early January 2021 
with over 60,000 cases reported on 29 December 2020. The third wave from June 2021 has 
been characterised by a prolonged period (over five months) of high cases, but with relatively 
low hospital admissions and deaths due to high vaccine uptake. 

The national trends in growth rate highlight the complex pattern of growth (r > 0) or decay 
(r < 0) over time (Figure 2). Some notable changes that correspond to mitigation activities include: 
a pronounced negative growth rate during November 2020 due to the National four-week lock-
down, although the growth rate had been lower in October 2020 than in September 2020; the 
negative growth rate during January–April 2021, during which time England was in lockdown fol-
lowed by Steps 1 and 2 of the Government’s COVID-19 response (UK Cabinet Office, 2021), 
which transitioned into high growth rates by late May 2021; a sharp drop in growth rate (especial-
ly as estimated by the positives model) in July 2021 which has been labelled as the ‘pingdemic’ due 
to the large number of individuals contacted through the Test-and-Trace App, and the potential 
changes in behaviour to avoid this; finally, we observe that much of August–November 2021 is 
characterised by growth rates close to zero, reflecting the high level of cases that have been main-
tained through this period. 

Both the positives model and proportions model aim to capture the instantaneous growth rate of 
new cases and, if the efforts in testing are constant, both methods provide equivalent results. 
However, the estimations can differ when testing behaviour has a temporal trend - as seen during 
the COVID-19 outbreak in England. For instance, if the testing rate increases, the positives model 
can underestimate the actual growth rate (Figure 3, Panel b). In contrast, the proportions model 
accounts for changes in the number of tests and can give more reliable estimates. However, 
both models can be affected by more nuanced changes in testing behaviour; our proportions model 
assumes that any change in test-seeking behaviour affects all sections of the population equally—if 
this is not true (such as the introduction of twice-weekly lateral flow testing for secondary school 
children) then there can be biases. We propose to include both approaches into routine analysis 
since they give different perspectives to the same data, particularly when there is little knowledge 
of the processes driving testing behaviour in the population. 

Another strength of our growth rate estimation method is the relatively low computational 
expense and run time, using the Laplace approximation implemented in INLA (Rue et al., 
2009), permitting the application of the model at a local level (to each of the 317 LTLAs in 
England). Spatially, the English COVID-19 case data are either broken into seven National 
Health Service regions, or into 317 LTLA. LTLAs range in size from just over 2,000 people 
(Isles of Scilly) to well over a million (Birmingham), but most contain around 140,000 inhabi-
tants. Performing our analysis at this spatio-temporal scale allows us to identify both highly  
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localised outbreaks (as shown in the maps in Figure 4) or wider regional trends, enabling scru-
tiny of locations exhibiting atypical data patterns. Furthermore, introducing a heterogeneity 
measure enabled comparisons of the growth rates between neighbouring LTLAs. The heterogen-
eity measure has been used during the pandemic to highlight places with abnormal growth pat-
terns, generally identifying LTLAs with significantly higher growth. The process has also be 
extended (by considering S-gene target failure) to quantify the spread of new variants (e.g. 
Alpha and Delta) to pinpoint localities that were increasing above mere noise (Challen et al., 
2021). 

Our analysis of LTLAs was focused around 23 April 2021; at this time the Delta variant had 
begun to establish across England (with about 20% of cases attributed to Delta), hospital admis-
sions and deaths were continuing to decline, but community cases had reached a nadir. 
Understanding the spatial patterns of growth at this time, and linking it to the prevalence of the 
Delta variant, was important for assessing the invasion of the new variant. We observe a mixed 
mosaic of growth rates across England (Figure 4) with a few regions where the growth rate is sig-
nificantly above zero. Many of these regions also appear in the heterogeneity map as islands of 
growth amid a sea of declining cases; which suggests a rapid localised growth in these areas. 
Focusing on LTLAs that either have high growth rates or high prevalence (Figure 5) we identify 
three main groupings that may require further epidemiological investigation. First, there are 
four LTLAs (South Hams, South Northamptonshire, Erewash, and Hyndburn) that have high 
positive growth rates and where we expect cases to continue to rise. Second, there is a group of 
15 LTLAs where a high proportion of tests (between 2% and 4%) are positive; of these Bolton, 
Trafford, and again Hyndburn (all in the North–West of England) are of the greatest concern 
due to their positive growth rate. Finally, Selby in the North–East of England (clearly identifiable 
on the incidence map of Figure 4) has an extremely high proportion of tests that are positive, and 
while the mean growth rate is slightly below zero this is not statistically significant suggesting that 
cases will remain high over the short term. 

Our approach for estimating the growth rate is a purely statistical method and therefore has lim-
itations. First, the model is non-mechanistic and does not incorporate any epidemiological as-
sumptions. Therefore, it is not suitable for predicting future changes in infections or making 
long-term forecasts, particularly as it cannot account for the depletion of susceptible through in-
fection or vaccination. Second, we assume that the spatial regions investigated are independent 
and homogeneous, we do not account for the movement of infection between regions (Kraemer 
et al., 2021) nor the spatial and social structure within a region. A lack of internal structure could 
be important for public-health concerns; for example, an outbreak that is primarily increasing in 
the young has very different health implications compared to one that is increasing in the elderly. 
There is no reason why richer data structures cannot be incorporated within our methodology (for 
example looking at the growth rate in a set of age-groups), but such an analysis requires large 
amounts of data and is increasing complex to interpret. Third, the data analysed in this study 
come from PCR testing (or individuals that have performed a lateral flow test followed by 
PCR). Therefore, there are limitations due to specificity and sensitivity of the test and the ability 
of individuals to swab reliably. Associated with this, and discussed above, changes to test-seeking 
behaviour beyond a simple increase in testing could introduce a range of biases. It is important to 
stress that throughout we are fitting to positive tests not infections, although we believe the two are 
highly correlated. Finally, though Gaussian processes provide a flexible tool, some prior knowl-
edge of the patterns of the disease is required to inform the subjective choice of the covariance 
function and its priors. If the data sources are not consistent over the time course of the study, 
it will affect both models. Moreover, abrupt changes in the epidemic curve are harder to pick 
for certain covariance functions (e.g. smooth covariance functions). This highlights the need for 
further studies around how to design more complex covariance functions that allow such abrupt 
changes to be captured. 

In summary, we have presented a general structure for estimating instantaneous growth rates 
that uses a Bayesian hierarchical model to fit a Gaussian process to the epidemiological data. 
Applied to high-resolution spatio-temporal SARS-CoV-2 case and testing data from England, 
we have demonstrated the ability of parsimonious models estimating instantaneous growth rate 
to both determine long-term patterns of growth at a national scale, and highlight growth and spa-
tial heterogeneity at a regional scale.  
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Appendices 
Appendix A. Directed acyclic graph of the models 
We display the directed acyclic graph and the description of the parameters corresponding to the 
positives model described in Section 2.1.1 (Figure A1 and Table A1) and the proportions model 
described in Section 2.1.2 of the main document (Figure A2 and Table A2), respectively. 

Appendix B. Growth rate comparison 
Let w, n, and z be continuous functions on R ∪ {0}, such that at a given time t ∈ {0, 1, . . .}, w(t) 
denotes the number of new cases, n(t) denotes the number of tests, and z(t) denotes the number 
of positive tests. Note that although w, n, and z are continuous functions, their values have an in-
terpretable meaning only on discrete times (for instance, daily counts). Our goal is to estimate the 
growth rate r(t), defined as the per capita change in the number of new cases per time; that is 
r(t) = ∂t(w(t))/w(t). 

In the positives model, we approximate r(t) as the growth rate of observed positive tests z(t), 
denoted rz(t) = ∂t(z(t))/z(t). We describe z(t) in terms of a latent function x(t) such that 
z(t) = exp (x(t)), which simplifies the growth rate as r(t) ≈ rz(t) = ∂t(x(t)). 

In the proportions model, we describe the proportion of positive tests z(t)/n(t) in terms of 
a latent function x(t) such that z(t)/n(t) = logit−1(x(t)). The derivative of xt is not directly related 
to rz(t) as in the positives model; however, we show below it is related to rz(t) and rn(t),  
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where rn(t) = ∂t(n(t))/n(t) is the growth rate of number of tests performed. First, we compute the 
derivative of the function x(t) 

∂t(x(t)) = ∂t log
z(t)

n(t) − z(t)

  

=
n(t) − z(t)

z(t)

 
n(t)∂t(z(t)) − z(t)∂t(n(t))

(n(t) − z(t))2

 

= {rz(t) − rn(t)}[1 + exp {x(t)}] 

Then, we approximate r(t) as the growth rate of positive tests minus the growth rate of number of 
tests: r(t) ≈ rz(t) − rn(t) = ∂t(xt)/[1 + exp {x(t)}]. 

Figure A1. Directed acyclic graph describing the hierarchical conditional independence structure of the positives 
model, described in Section 2.1.1. The parameters η, μt , xt , and wd(t) and the hyperparameters l, σ, and τw are 
enclosed in circles. Inputs of the model are enclosed in squares.  

Table A1. Description and the prior distribution of the parameters of the positives model  

Parameter description Prior distribution  

yt Number of positive tests on day t yt|μt, η ∼ Negative binomial (μt, η) 

η Overdispersion of the negative binomial distribution log (η) ∼ N (mη, τ−1
η ) 

μt Median of the negative binomial distribution μt = xt + wd(t) 

xt Observations of the Gaussian process f (t) 
xt = f (t),
f (s)|θ∼GP(0, kθ(f (s), f (s′))),
θ = (l, σ) 

l
σ 

Length - scale parameter of the Gaussian process
Standard deviation of the Gaussian process 

(log (l), log (σ)) ∼ N ((log (l0), log (σ0)), B−1) 

wd(t) Day-of-the-week effect (d: day of the week on day t) wd(t) ∼ N (0, τ−1
w ) 

τw Precision parameter of the day-of-the-week effect τw ∼ Γ(aw, bw)   
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Appendix C. MCMC model fitting 
Model fitting in the main manuscript is performed using the integrated nested Laplace approxima-
tion implemented in the R package INLA. This approximation is suitable if the posterior distribu-
tion is unimodal. However, for the proposed models, there is no guarantee this condition is 
fulfilled, which might lead to the incorrect inference of the posterior distribution of the model pa-
rameters. As an alternative to model fitting, we have implemented both positives and proportions 
models using the Hamiltonian Monte Carlo algorithms in the software STAN and compared them to 
the results in Section 3.2 of the main manuscript. The MCMC was started at random initial values, 
with 1,000 burn-in iterations and a total of 2,000 iterations. For both models, the posterior dis-
tribution of the hyperparameters agrees with the results of the Laplace approximation imple-
mented in INLA. Figure C1, Panel a, shows the trace plot of the hyperparameter of the 
positives model. Panel b shows the posterior distribution of the hyperparameters for both 
MCMC and the Laplace approximation. Figure C2 shows similar results for the proportions 
model. 

Figure A2. Directed acyclic graph describing the hierarchical conditional independence structure of the proportions 
model, described in Section 2.1.2. The parameters ρ, μt , xt , and wd(t) and the hyperparameters l, σ, and τw are 
enclosed in circles. Inputs of the model are enclosed in squares.  

Table A2. Description and the prior distribution of the parameters of the proportions model, described in Section  
2.1.2  

Parameter description Prior distribution  

yt Number of positive tests on day t yt|μt, ρ, nt ∼ Beta−binomial (μt, ρ, nt) 

nt Number of tests on day t   

ρ Overdispersion of the beta-binomial distribution logit−1(ρ) ∼ N (mρ, τ−1
ρ ) 

μt Median of the Beta-Binomial distribution μt = xt + wd(t) 

xt Observations of the Gaussian process f (t) 
xt = f (t),
f (s)|θ ∼ GP(0, kθ(f (s), f (s′))),
θ = (l, σ) l

σ 
Length−scale parameter of the Gaussian process

Standard deviation of the Gaussian process 
( log (l), log (σ)) ∼ N (( log (l0), log (σ0)), B−1) 

wd(t) Day-of-the-week effect (d: day of the week on day t) wd(t) ∼ N (0, τ−1
w ) 

τw Precision parameter of the day-of-the-week effect τw ∼ Γ(aw, bw)   
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Figure C1. (Panel a) Traces of the hyperparameters of the positives model (overdispersion, precision of the 
day-of-the-week effect, standard deviation of the GP, and length-scale of the GP) using MCMC and three different 
initial values. (Panel b–d) Comparison of the posterior distribution of the hyperparameters of the positives model 
obtained from the MCMC vs the Laplace approximation (INLA).  
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Figure C2. (Panel a) Traces of the hyperparameters of the proportions model (overdispersion, precision of the 
day-of-the-week effect, standard deviation of the GP, and length-scale of the GP) using MCMC and three different 
initial values. (Panel b–d) Comparison of the posterior distribution of the hyperparameters of the proportions model 
obtained from the MCMC vs the Laplace approximation (INLA).   
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The code to estimate the posterior distributions of the parameters of the model using STAN is 
available in the repository GitHub/juniper-consortium/growth-rate-estim. The estimates in  
Figures C1 and C2 take 5–7 hr of CPU time for both models (using a MacBook Pro with the 
Apple M1 chip). 

Appendix D. Sensitivity analysis of the Gaussian process parameters 
In this section, we evaluate the sensitivity of the results presented in Sections 3.2 and 3.3 of the 
main manuscript under different prior assumptions of the Gaussian process parameters (length- 
scale l and standard deviation σ). First, we fit the positives model using the same data 
for England as in Section 3.2 of the main manuscript, with prior 
( log (l), log (σ)) ∼ N (( log (l0), log (σ0)), B−1), under three scenarios: 

• Scenario 1: same prior as before, with l0 = 50 days, σ0 = 1, and B = I, 
• Scenario 2: l0 = 100 days, σ0 = 0.5, and B = 10I, 
• Scenario 3: l0 = 25 days, σ0 = 2, and B = 10I. 

Scenarios 2 and 3 represent more restrictive priors than scenario 1. Figure D1, Panel a, shows sam-
ples and the 95% density region for the prior (light-coloured lines) and posterior distributions 
(dark-coloured lines) of the Gaussian process parameters under these scenarios. Changes in the 
prior distributions did not greatly impact the posterior. Moreover, the growth rate estimates 
were not considerably changed under the different scenarios (Figure D1, Panel b). 

A similar analysis was performed for a dataset with noisier data. We chose to analyse Rutland, the 
English Local Authority with the lowest number of cases in our dataset. We fit the proportions mod-
el with the same prior shape (log (l), log (σ)) ∼ N ((log (l0), log (σ0)), B−1), under three scenarios: 

• Scenario 1: same prior as before, with l0 = 59.34 days, σ0 = 2.26, and B = I, 
• Scenario 2: l0 = 50 days, σ0 = 1, and B = I, 
• Scenario 3: l0 = 15 days, σ0 = 0.5, and B = 10I. 

Scenario 2 represents a non-informative prior, while the prior in scenario 3 has a low length-scale, 
and low standard deviation compared to the original prior in scenario 1. The results are shown in  
Figure D2. Panel a in figure shows the samples and the 95% density region for the prior (light- 
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Figure D1. (Panel a) Prior and posterior distributions of the Gaussian process parameters under three different prior 
choices. Results were obtained by applying the positives model to the positive cases of England, as presented in 
Section 3.2 of the main manuscript. (Panel b) Comparison between the median and 95% CI of the posterior of the 
growth rates obtained under scenario 1 (x-axis) and the median and 95% CI of the posterior of the growth rates 
obtained under scenarios 2 and 3 (y-axis).   
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coloured lines) and posterior distributions (dark-coloured lines) of the Gaussian process parame-
ters under these scenarios. The posterior distributions under scenarios 2 and 3 differ from the pos-
terior obtained under the original prior setting. The model relies on the prior to obtain information 
about the Gaussian process when data are poor. However, the effect in the growth rate posterior is 
not as pronounced. Figure in Panel b shows the median and 95% confidence interval of the growth 
rate posterior distribution for each case. The median does not differ greatly although the confi-
dence intervals under the prior in scenario 3 are larger. 

Appendix E. Exploring other covariance functions 
The models presented in the main manuscript are based on a Gaussian process with the Matérn 
covariance function and smoothing parameter ν = 3/2. In this section, we explore the effect of 
changing the smoothing parameter or using a squared exponential covariance function in the pos-
terior distribution of the growth rate. We consider only covariance functions k(x, x′) (or k(r)) that 
are strictly decreasing with respect to r = |x − x′|. For other applications, terms can be added to the 
covariance function to obtain different model structures, such as stationary autoregressive proc-
esses to incorporate noise models with dependencies (Murray-Smith & Girard, 2001) or terms 
with a seasonal component. 

We repeated the analysis in Section 3.2 of the main manuscript and estimated the posterior dis-
tribution of the growth rate in England using the positives model and different covariance 
functions: 

• Matérn covariance function with ν = 3/2, as in Section 3.2, of the main manuscript, with pa-
rameters length-scale l and standard deviation σ (Stein, 1999, Ch. 2): 

kM32
(l,σ) (f (s), f (s′)) = σ2 1 +

��
3
√ |s − s′|

l

 

exp −
��
3
√ |s − s′|

l

 

• Matérn covariance function with ν = 5/2, with parameters length-scale l and standard devi-
ation σ 

kM52
(l,σ) (f (s), f (s′)) = σ2 1 +

��
5
√ |s − s′|

l
+

5
3

(s − s′)2

l2
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Figure D2. (Panel a) Prior and posterior distributions of the Gaussian process parameters under three different prior 
choices. Results were obtained by applying the proportions model to cases in Rutland, a UK Local Authority, as 
presented in Section 3.2 of the main manuscript. (Panel b) Median and 95% CI of the posterior of the growth rates 
obtained under three scenarios for the prior of the Gaussian process hyperparameters.   

18                                                                                                                                   Guzmán-Rincón et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlad056/7209012 by U
niversity of W

arw
ick (inactive) user on 12 July 2023



• Squared exponential covariance function, with parameters length-scale l and standard devi-
ation σ 

kSE
(l,σ)(f (s), f (s′)) = σ2 exp −

(s − s′)2

l2

 

Figure E1 shows the comparison of the growth rate posterior distribution using a Matérn covari-
ance function with ν = 3/2 and a smoother version of the Matérn function with ν = 5/2 (Panel a). 
A similar analysis comparison is shown for the Matérn ν = 3/2 and the squared exponential co-
variance function (Panel b). Samples of the process with Matérn ν = 3/2 are less smooth since 
they are one-differentiable. Samples of the process with Matérn ν = 5/2 are smoother as they 
are two-differentiable, while samples using a squared exponential covariance are infinitely 
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Figure E1. Comparison of the posterior distribution of growth rates in England using different covariance functions 
for the positives model. (Panel a) Comparison between the squared exponential function (solid line, dark ribbon) and 
the Matérn function with μ = 3/2 (dashed line, light ribbon). (Panel b) Comparison between the Matérn function with 
μ = 1/2 (solid line, dark ribbon) and the Matérn function with μ = 3/2 (dashed line, light ribbon).   
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differentiable, and therefore unrealistic. Samples from the Matérn ν = 3/2, as used in the main 
manuscript, are more realistic to simulate natural phenomena than processes from the squared ex-
ponential class (Stein, 1999). 

Appendix F. Estimation of the growth rate using Gaussian processes 
In Section 2.2, the derivative of the Gaussian process f is estimated by taking numerical approx-
imations of the derivative from samples of the process f. Alternatively, samples of the derivative 
can be directly obtained by sampling from the derivative of the Gaussian process. Let d

dt f (t) be 
the derivative of the process f with covariance function kθ( · , · ) and parameters θ. If we observe 
n points of the original process f for t1, . . . , tn, then the derivative of the process at t1, . . . , tn is 
given by 

d
dt

f (t1), . . . ,
d
dt

f (tn)
 T

|f (t1), . . . , f (tn) ∼ MVN(ΛΣ−1f , Δ − ΛTΣ−1Λ) 

where f : = (f (t1), . . . , f (tn))T, and Σ, Λ, and Δ are n × n matrices such that Σij = k(f (ti), f (tj)), 

Λij = ∂
∂ti

k(f (ti), f (tj)), and Δij = ∂2

∂ti∂tj
k(f (ti), f (tj)) (Rasmussen & Williams, 2006). 

We repeated the analysis in Section 3.2 of the main manuscript using the positives model in 
England, sampling from the posterior distribution of the growth rate using two methods: finite dif-
ferences and direct samples from the process d

dt f (t). Figure F1 shows the comparison of the poster-
ior distribution of growth rates by approximating the derivative with finite differences and taking 
samples of the process d

dt f (t). The 95% confidence interval for direct samples from the derivative is 
less wide. However, it involves sampling from the multivariate Normal distribution and the in-
verse of the matrix Σ, which increases with n. Producing the results in Figure F1 takes around 
5–10 min (using a MacBook Pro with the Apple M1 chip). 
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