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ASYMPTOTIC RESULTS OF A MULTIPLE-ENTRY REINFORCEMENT

PROCESS

CAIO ALVES, RODRIGO RIBEIRO AND DANIEL VALESIN

Abstract. We introduce a class of stochastic processes with reinforcement consisting of a sequence

of random partitions {Pt}t≥1, where Pt is a partition of {1, 2, . . . , Rt}. At each time t, R numbers
are added to the set being partitioned; of these, a random subset (chosen according to a time-

dependent probability distribution) joins existing blocks, and the others each start new blocks on

their own. Those joining existing blocks each choose a block with probability proportional to that
block’s cardinality, independently. We prove results concerning the asymptotic cardinality of a given

block and central limit theorems for associated fluctuations about this asymptotic cardinality: these

are proved both for a fixed block and for the maximum among all blocks. We also prove that
with probability one, a single block eventually takes and maintains the leadership in cardinality.

Depending on the way one sees this partition process, one can translate our results to Balls and

Bins processes, Generalized Chinese Restaurant Processes, Generalized Urn models and Preferential
attachment random graphs.

1. Introduction

The term reinforcement in behavioral psychology refers to an effect applied to an organism, trig-
gered by a manifestation of a certain behavior, with the intention of either strengthening or weakening
that behavior. In probability, the term describes a large collection of models, such as Balls and Bins
models [6, 15], Random Graphs models with Preferential Attachment [1, 2] and Reinforced Random
Walks [5]. Although it may be hard to trace its origin, the use of the term reinforcement in the context
of random processes has a clear parallel with its meaning in behavioral psychology.

One of the most important processes in the family of reinforced random processes is the classical
Pólya urn model. In this model, the act of adding balls of a given color with probability proportional
to the amount of balls with that color is a reinforcement whose effect is strengthening the presence of
that color. In preferential attachment random graphs, the reinforcement strengthens the behavior of
choosing high-degree vertices. We do not intend to cover the huge bibliography in the subject, and
refer the interested reader to R. Pemantle’s survey on reinforced random processes [16] and references
therein.

In a high level, one of the main goals when dealing with reinforced random processes is to understand
the long-run effect of the reinforcement: one wants to check whether the reinforced behavior propagates
forever. In the case of models in which the intensity of reinforcement can be tuned via a parameter,
one of the main questions is if the model undergoes some sort of phase transition.

In this paper, we introduce and study a class of stochastic processes with reinforcement which
can be seen as a meta-model in the sense that by changing the terminology it becomes either an
alternate version of Pitman’s Chinese restaurant model [17, 18] or a Balls and Bins models or a
random (hyper)graph model with preferential attachment. In order to better introduce and discuss
our results we will define the model in an abstract setup in Section 1.1 and then in Section 1.3 we
discuss how the model and our results can be interpreted under different perspectives.

1.1. Definition of the Model. Our model has as parameters a natural number R and a sequence
of probabilities on the R-simplex, that is, a sequence of vectors (gt(0), . . . , gt(R))t≥2 with gt(r) ≥ 0

for every r, t and
∑R
r=0 gt(r) = 1 for every t. The dynamics is defined from a sequence X2,X3, . . .

Date: October 26, 2021.

1

ar
X

iv
:1

90
8.

10
26

0v
2 

 [
m

at
h.

PR
] 

 2
6 

Fe
b 

20
21



2 CAIO ALVES, RODRIGO RIBEIRO AND DANIEL VALESIN

of independent random elements of {0, . . . , R} such that the distribution of each Xt is given by the
probability mass function gt. The process defines a sequence of random partitions {Pt}t∈N, where
for each t, Pt is a random partition of {1, 2, . . . , Rt}. We construct these partitions as follows. At
time t = 1, we start with the set {1, . . . , R} and the partition P1 consisting of a single block equal
to {1, . . . , R}, labeled block 1. Assume that the model has been defined up to time t, and that at

time t, there are Nt blocks, labeled from 1 to Nt, with d
(i)
t numbers in block i, for i ∈ {1, . . . , Nt}.

Then, at time t+1, from the partition Pt of {1, . . . , Rt} we obtain a partition Pt+1 of {1, . . . , R(t+1)}
as follows:

• the numbers Rt + 1, . . . , Rt + Xt+1 join blocks that were already present in Pt, as follows.
Independently, each of these numbers joins block i ∈ {1, . . . , Nt} with probability

(1)
d

(i)
t∑Nt

j=1 d
(j)
t

(in case Xt+1 = 0, this step is skipped);
• the remaining numbers Rt + Xt+1 + 1, . . . , R(t + 1) are each included in a new block of its

own; these new blocks receive labels Nt + 1, . . . , Nt + R − Xt+1 (in case Xt+1 = R, this step
is skipped).

By setting d
(i)
t = 0 in case block i has not yet been started at time t, the above gives rise to a

process (d
(1)
t , d

(2)
t , . . .)t≥1 on (N0)N which counts the size of each block in the random partition of the

sets ({1, . . . , Rt})t≥1.

1.2. Main results. We now present the main results of the paper. In Section 1.3, we will present a
deeper discussion of our results and relate them to other results in the literature. In order to properly
state our results we will need some assumptions and definitions.

We make the following assumptions concerning the sequence (gt)t≥2. These assumptions are in
force throughout the paper, so we only mention them once here.

Assumptions. We assume that (gt)t≥2 satisfies

(A.1)

∞∑
t=2

(1− gt(R)) =∞.

By the Borel-Cantelli lemma, this assumption is equivalent to the assumption that infinitely many
blocks appear in the process. We also assume that there exists a function g∞ : {0, . . . , R} → [0, 1]
with g∞(0) < 1 and

(A.2)

∞∑
t=2

1

t
·
R∑
r=0

|gt(r)− g∞(r)| <∞,

which can be seen as a regularity condition for the convergence of gt → g∞.
Let βt be the expected proportion of numbers included in previously existing blocks at time t, that

is,

(2) βt :=
1

R

R∑
r=0

r · gt(r), t ∈ N,

Also let β be its ‘infinity’ counterpart, that is

β :=
1

R

R∑
r=0

r · g∞(r) = lim
t→∞

βt.

We note that 0 < β ≤ 1. The case β = 1, which is equivalent to g∞(R) = 1, is somewhat special: in
this case, even though it still happens that infinitely many blocks are created (by (A.1)), the expected
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number of new blocks created at each time step vanishes as t → ∞. In several of our results, our
model undergoes a phase transition at β = 1.

Our first result shows that the cardinality of a given block in the random partition grows as tβ

multiplied by a random limiting value.

Theorem 1 (Convergence). For each i ∈ N, as t → ∞, d
(i)
t /tβ converges almost surely and in Lp

(for any p ∈ [1,∞)) to a strictly positive (and finite) random variable ξ(i).

Recall that at time t our model gives a random partition of {1, 2, . . . , Rt}. The above theorem
reveals a phase transition on the proportion of {1, . . . , Rt} taken by any fixed set of the random
partition. In the regime β < 1, this proportion vanishes as t goes to infinity, whereas in the regime β =
1, it converges to a non-zero limit.

Our next result provides finer information about the almost sure convergence stated in Theorem 1.

We have a central limit theorem, that is, the random process {d(i)
t /tβ}t has fluctuations given by a

mixed normal distribution around its random limit ξ(i).

Theorem 2 (Central limit theorem). For each i ∈ N,

tβ/2 ·

(
d

(i)
t

tβ
− ξ(i)

)
t→∞−−−→
(d)

µ(i),

where µ(i) is the distribution of W · Z(i), where W,Z(i) are independent random variables, W is a
standard Gaussian and

(Z(i))2 ∼

{
ξ(i) if β < 1;

ξ(i)
(

1− ξ(i)

R

)
if β = 1.

Since, by Theorem 1, |d(i)
t /tβ − ξ(i)| converges a.s. to zero as t goes to infinity, Theorem 2 gives

additional information on the rate of convergence. Its statement guarantees that |d(i)
t /tβ−ξ(i)| rescaled

properly has Gaussian fluctuations.
The next result concerns the blocks with the largest cardinality.

Theorem 3 (Persistent leadership). Almost surely, there exists I ∈ N such that

d
(I)
t −max

i 6=I
d

(i)
t

t→∞−−−→∞.

The above theorem implies not only that we have a unique block with the maximum cardinality in
the random partitions for large enough t, but that this block remains far ahead of its “competition”
forever. This result gives an appealing picture of leadership in the various interpretations of our
model. It also has important technical implications. It guarantees in particular that we can extend
our central limit theorem to the size of the largest block.

Theorem 4 (Convergence and central limit theorem for the maximum). Letting I be as in Theorem 3,
we have

maxi d
(i)
t

tβ
t→∞−−−→ ξ(I) = sup

i∈N
ξ(i) ∈ (0,∞),

the convergence holding almost surely and in Lp for any p ∈ [1,∞). Moreover,

tβ/2 ·

(
maxi d

(i)
t

tβ
− ξ(I)

)
t→∞−−−→
(d)

µ∗,

where µ∗ is the distribution of W · Z∗, where W,Z∗ are independent, W is a standard Gaussian and

(Z∗)2 ∼

{
ξ(I) if β < 1;

ξ(I)
(

1− ξ(I)

R

)
if β = 1.
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1.3. Discussion of the results and related work. In this section we discuss our results in more
detail and show how they can be interpreted under the terminology of other classical models. En
passant, we mention how our model can be seen as a generalization of other well-known reinforced
random processes.

Cardinality distribution. In this paper, we are concerned with cardinalities of specific blocks,
as well as the maximum cardinality. A natural follow-up question would then be: how are the
cardinalities, taken as a whole, distributed? More specifically, what is the proportion of blocks with a
given cardinality k? Calculations similar to the proof of Theorem 8.3 of [20] show that, when β < 1,
this cardinality distribution has power-law with exponent 1 + 1/β ∈ (2,∞). When β = 1 however,
the speed of convergence of βt to β directly influences the cardinality distribution, some sequences
might not necessarily yield processes with power-law cardinality distribution. We plan to study these
properties in depth in the future.

Universality. Note that our limit random variables ξ(i) depend on the choice of the sequence of
vectors (gt)t≥2, where gt is a point of the R-dimensional simplex. On the other hand, qualitatively,
our results depend on a functional of the limiting point g∞. Moreover, this functional has a simple
formula: it is just the expected value associated to g∞ divided by R. In other words, there exists

universality on the asymptotic behavior of the observables d
(i)
t ’s as well as their maximum: the order

of magnitude of those observables is determined by a functional of the limiting point g∞. Thus,
any sequence of points (gt)t≥2 in the R-dimensional simplex satisfying assumptions (A.1) and (A.2)

produces the same asymptotic behavior, though the distributions of limiting random variables ξ(i)’s
may depend on the choice of sequence (gt)t≥2.

Balls and Bins models. In this case there is a natural correspondence between the terminology of
random partitions and a balls and bins model with the feature that at each step a random number of
new bins is added by the process. The bins are the blocks in the random partition and the natural
numbers corresponds to labels to the balls: interpret each natural number as a ball labelled with that
number, and a block of a partition as a bin. Hence, the state of the process at time t describes an
assignment of Rt balls (labelled from 1 to Rt) into bins. At each time step, R new balls and a random
number of bins join the process.

In the balls and bins scheme, one of the central questions regards dominance and monopoly. Domi-
nance means that after some (random) time there will be a single bin with more balls than the others,
whereas monopoly means that after some (random) time only one bin will receive all the balls. In
these terms, Theorem 3 states that we do observe dominance. However, Theorem 1 guarantees there
is no monopoly, since it guarantees that the number of balls in any bin goes to infinity almost surely.

Still in the context of balls and bins models, one feature of our results stands out: the dependence
of the quantity β. Our results state that under assumptions (A.1) and (A.2), the growth rate of the
number of balls inside each bin is determined by β, which in this context reads as the limiting average
proportion of balls added to already existing bins.

Urn model: One vs. All. If one desires to keep track of the size of a single block, then our model
becomes the usual urn model with one urn and two colors, red and green, and the additional feature
of immigration. The model consists in a urn which at time t contains a collection of Rt balls colored
either red or green: red balls represent numbers included in a chosen block of the partition, and green
balls represent every other number. At each time t, Xt new balls are put into the urn with colors
chosen in the usual fashion without reposition, together with R−Xt green balls.

In this context, βt becomes the average proportion of non-immigrant balls added at time t. Our
results then make the effect of immigration clear: when the asymptotic proportion of immigrant
balls being added is zero (in which case β = 1), the limiting proportions of red and green balls are
comparable in the sense that

lim
t→∞

#red balls at time t

#green balls at time t
=

ξ(i)

R− ξ(i)
,
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which is a strictly positive random variable. On the other hand, when the asymptotic proportion of
immigrant balls being added is positive, β < 1, then

lim
t→∞

#red balls at time t

#green balls at time t
= 0.

We refer the interested reader in the subject of urn models with immigration to [15] of E. Peköz, A.
Röllin and N. Ross about urn model with random immigration and references therein.

Generalized Chinese Restaurant Process. Given α ≤ 1 and θ ≥ −α, the Generalized Chinese
Restaurant Process, denoted by GCRP(α, θ), is a model introduced by J. Pitman [17] as a generaliza-
tion of Ewens formula for sampling [7]. In this process, a configuration at a given time t is given by
a finite collection of tables, each table having a finite number of customers and a natural number as
index. The process is constructed inductively, at time t+ 1 a customer arrives at the restaurant and
either: sits in the already existing i-th table with probability

#(number of customers in the i-th table at time t)− α
t+ θ

or sits in a new table with probability

α · (#number of tables at time t) + θ

t+ θ
.

When α = 0 and θ = 1, this is the usual Chinese Restaurant Process.
If we let Tt be the number of tables at time t, GCRP(α, θ) presents different behaviors which can

be summarized as follows:

(1) Finite number of tables: Choosing α < 0 and θ = −mα, for some m, then Tt → m and after
a finite random time the model behaves like a balls and bins model with m bins;

(2) Logarithmic growth: Setting α = 0 and θ > 0, we have Tt of order log t;
(3) Polynomial growth: For α > 0 and θ > −α, Tt grows like tα.

The interested reader may see [18] for an overview of such regimes.
Under the terminology of the GCRP, our model becomes a quite natural alternate version of it

and reads as follows: at each time t, R customers arrive to the Chinese restaurant; Xt of them sit in
already set tables, choosing their tables with probability proportional to the number of customers at
each table; and R−Xt customers sit each one on a new table.

Regarding the growth of the number of tables, by choosing the sequence (gt)t≥2 properly all the
behaviors described above may be achieved. On the other hand, in contrast to GCRP with α > 0, in
our case the growth of the number of tables is driven by the process {Xt}t≥2 and not only {Tt}t≥1.
This distinguishes our model from the GCRP even when both have polynomial growth in the number
of tables, and puts it into a new category of Chinese restaurant processes.

When dealing with GCRP the central questions regard the number of tables of a given size (the
amount of customers sitting at the table) and the size of the tables, see [favaro2015,favaro2018,OPR20].
In this context our results regard the size of the tables (Theorem 1), the size of the largest table
(Theorem 4), the existence of a single largest table (Theorem 3). All of these results are sensitive to
the asymptotic proportion of new tables being added, 1− β.

Random Graph model. In the context of random graph models whose vertex set may increase with
time, our model can be seen as a building block and give rise to different random graph models. Here
each block of the random partition Pt can be interpreted as a vertex. The new blocks which may be
introduced at each step are new vertices. Then, in order to generate a graph from this configuration,
one has to impose a rule of connection which is a rule to link the blocks in the random partition.

In order to better illustrate this rule of connection, let us define a rule which introduces geometry
to our model. In this analogy, the starting partition P1 = {{1, 2, . . . , R}} will correspond to a starting
graph consisting of one vertex with Rd loops. Assume then that the graph generated from the
partition Pt is already constructed, and let us inductively define the graph associated to time t + 1.
Let Hd be a d-regular graph with R vertices labeled h1, h2, . . . , hR (notice that the existence of such Hd
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Figure 1. A simulation of the resulting graph with circa 250 vertices, when Hd is
the triangle K3 and gt(1) ≡ 1. In this case β = 1/3.

implies Rd is even). We also denote by BRt+i, with i ∈ {1, 2, . . . , R}, the block of the partition Pt+1

which receives the number Rt + i at time t + 1. Then our rule of connection works as follows: we
add an edge between blocks BRt+i and BRt+j if and only if hi and hj are connected in Hd. When
BRt+i = BRt+j we add a loop to the corresponding vertex. Note that, since the graph Hd associated
to the rule of connection is d-regular, the degree of a vertex corresponds to d times the cardinality of
its associated block. Therefore, we can translate our results to the degree of a given vertex and the
maximum degree in this graph process. Given the interest in graph observables related to counting
specific subgraphs such as triangles, see [10, 11, 14], choosing Hd and gt’s properly may lead to
interesting models.

For instance, by taking R = 2, d = 1 and Hd as a single edge between the two vertices we can
recover preferential attachment graphs. By setting gt(1) = 1 this is an instance of the A. Barabási

and R. Álbert random tree [2]. Whereas, by taking gt(1) = 1 − gt(2) = f(t) our model becomes the
preferential attachment random graph recently introduced in [1], in which one can add edges between
already existing vertices.

By choosing a different rule of connection, our model can generate random hypergraphs as well. In
this variant of the model, the vertices will still be the blocks of the partition at time t, but now we
add a single hyper-edge between all the vertices (or blocks) which have increased its degree at each
time-step, instead of connecting them based on the chosen graph Hd. This random hypergraph model
behaves similarly to the Hollywood model introduced by H. Crane and W. Dempsey in [4]

Under these terminologies, Theorem 3 guarantees that, for large t, there exists only one vertex
with maximum degree, which keeps its leadership forever. Moreover, Theorem 4 guarantees a phase
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Figure 2. A simulation of the resulting graph with circa 250 vertices, when Hd is
the cycle C15, gt(1) ≡ 0.7, and gt(15) ≡ 0.3. In this case β = 26/75.

transition on the order of the maximum degree. In the regime β < 1 we have that

lim
t→∞

maximum degree at time t

t
= 0, a.s.

On the other hand, for β = 1, the model achieves a maximum degree of linear order, that is

lim
t→∞

maximum degree at time t

t
> 0, a.s.

1.4. Organization of the paper. In Section 2, we will study a process given by the cardinality of
a given block divided by a normalizing function of t. This will allow us to use martingale arguments
and results: we use Freedman’s inequality to obtain an exponential upper bound for the tail of the
normalized cardinality; Móri’s martingale [13] to study moment bounds and Lp-convergence of the
normalized cardinality; and a generating function argument based on [19] to prove a.s. positivity of
the limiting random variable, thus proving Thorem 1.

In Section 3, we will prove the CLT result of Theorem 2, based on an application of Corollary 3.5
of [9]. In order to show that our process satisfies the hypotheses, we will study the convergence of
sums of squared increments of the normalized process.

In Section 4 we will prove the persistent leadership result, Theorem 3, based on a Lyapunov function
argument stated in [12]. Finally, in Section 5, we show that the maximum cardinality also satisfies
results similar to the ones proven for the cardinality of a given block, thus proving Theorem 4. Here,
it will be crucial to use Theorem 3 in order to show that, for large t, the maximum cardinality behaves
like the cardinality of a given vertex.
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1.5. Notation and conventions. We write N = {1, 2, . . .} and N0 = {0, 1, . . .}.
Keeping consistency with the notation “d

(i)
t ”, we use super-indices (inside parentheses) to denote

table indices (as well as other parameters, as in Definition 2 below) and we use sub-indices for time
or time-related indices. In general, for an expression with a sub-index, such as xt, we write

∆xt := xt+1 − xt.
Given n,m ∈ N0 and p ∈ [0, 1], we denote by B(n, p,m) the probability that a Binomial(n, p)

random variable is equal to m.

2. Concentration and convergence

The goal of this section is to prove Theorem 1 together with exponential tail bounds for the normal-
ized cardinality of a given block i. In order to do that, we need to prove several intermediate results.

The almost sure convergence of {d(i)
t /tβ}t≥1 will follow from martingale theory. Then, convergence in

the Lp sense and positiveness of the limiting random variable ξ(i) will require more work.

2.1. Martingales and concentration. In this part we will make sure {d(i)
t /tβ}t≥1 converges almost

surely by finding a related martingale. In order to do this the following lemma is vital.

Lemma 1. For each i, t ∈ N the following identity holds

(3) E[∆d
(i)
t | Ft] = βt+1 ·

d
(i)
t

t
, almost surely.

Proof. The proof follows by direct computation

E[∆d
(i)
t | Ft] =

R∑
r=0

r · P(∆d
(i)
t = r | Ft)

=

R∑
r=0

r ·
R∑
u=0

gt+1(u) ·B

(
u,
d

(i)
t

Rt
, r

)
=

R∑
u=0

gt+1(u) · u · d
(i)
t

Rt
= βt+1 ·

d
(i)
t

t
.

�

Recall by the definition of the process that the time the i-th block is introduced is random and
depends on the sequence {Xt}t≥2, for this reason we need the following definitions: for each i ∈ N,
define the stopping time

τ (i) := inf{t ≥ 1 : d
(i)
t > 0}.

Also define, for i, n ∈ N, with n ≥ i, the conditional probability measures

P(i)
n ( · ) := P( · | τ (i) = n).

Remark 1. In the above definition and in the rest of the paper, whenever we fixed pair i, n and refer
to the event {τ (i) = n}, we assume tacitly that i, n are such that this event has positive probability.
Note in particular that i = 1 then also forces n = 1.

The next result ensures the i-th block is eventually created, for all i ∈ N. In other words, infinitely
many blocks are created.

Lemma 2. Almost surely, τ (i) <∞ for all i ∈ N.

Proof. Notice that the probability that at least one block is created at time t is 1 − gt(R), so by
the assumption (A.1) and the Borel-Cantelli Lemma, almost surely the number of blocks created is
infinite. �

In the next results we will show that the cardinality of a given block properly normalized is a
(sub)martingale. The factor of normalization at each time together will proper notation is introduced
below.



ASYMPTOTIC RESULTS OF A MULTIPLE-ENTRY REINFORCEMENT PROCESS 9

Definition 1. Define the sequence (φt)t≥1 by

φ1 := 1 and φt :=

t∏
s=2

(
1 +

βs
s− 1

)
, t ≥ 2

and for each i ∈ N, define the process

X
(i)
t :=

d
(i)
t

φt
, t ≥ 1.

Note that X
(i)
t = 0 for t < τ (i).

The next lemma provides the right order of magnitude of the sequence (φt)t≥1.

Lemma 3. There exists b > 0 such that

(4) lim
t→∞

φt
tβ

= b.

Proof. Letting E(x) := log(1 + x)− x for x > −1, we have, for t ≥ 2,

φt = exp

{
t∑

s=2

(
βs
s− 1

+ E
(

βs
s− 1

))}

= exp

{
β · log(t) + β ·

(
t∑

s=2

1

s− 1
− log(t)

)
+

t∑
s=2

βs − β
s− 1

+

t∑
s=2

E
(

βs
s− 1

)}
,

then
φt
tβ

= exp

{
β ·

(
t∑

s=2

1

s− 1
− log(t)

)
+

t∑
s=2

βs − β
s− 1

+

t∑
s=2

E
(

βs
s− 1

)}
.

Now, it is well known that
∑t−1
s=1

1
s − log(t) converges as t → ∞ to the Euler-Mascheroni constant.

Next, the series
∑∞
s=2

βs−β
s−1 is convergent due to (A.2). Finally, the series

∑∞
s=2 E

(
βs
s−1

)
is convergent

since E(x) = o(x2) when x→ 0. �

As a consequence of Lemma 1, we will show that the normalized cardinality of a given block is a
(sub)martingale.

Lemma 4. For any i ∈ N, the process {X(i)
t }t≥1 is a submartingale under P, and the process {X(i)

t }t≥n
is a martingale under P(i)

n .

Proof. For the first statement, we start noting that, for any i, t,

E[X
(i)
t+1 | Ft] = 1{τ (i) ≤ t} · d

(i)
t + E[∆d

(i)
t | Ft]

φt+1
+ 1{τ (i) > t} · P(τ (i) = t+ 1 | Ft)

φt+1
,

where the expression for the second term on the right-hand side follows from the fact that d
(i)
t+1 = 1

if τ (i) = t+ 1. Now, we clearly have

1{τ (i) > t} · P(τ (i) = t+ 1 | Ft)
φt+1

≥ 0 = 1{τ (i) > t} ·X(i)
t ,

and, using (3), we also have

1{τ (i) ≤ t} · d
(i)
t + E[∆d

(i)
t | Ft]

φt+1
= 1{τ (i) ≤ t} · d

(i)
t + βt+1 · d(i)

t /t

φt+1
= 1{τ (i) ≤ t} ·X(i)

t .

This completes the proof of the first statement. For the second statement we write, note that for t ≥ n,

we have, P(i)
n -almost surely,

E(i)
n [∆d

(i)
t | Ft] = E[∆d

(i)
t | Ft]

(3)
=
βt+1 · d(i)

t

t
,
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thus

E(i)
n [X

(i)
t+1 | Ft] =

d
(i)
t + βt+1 · d(i)

t /t

φt+1
= X

(i)
t ,

which concludes the proof. �

For the proof of the coming proof and several other points in the paper, it will be useful to write

(5) ∆X
(i)
t = At −Bt

where

At :=
∆d

(i)
t

φt+1
, Bt := X

(i)
t ·

∆φt
φt+1

= X
(i)
t ·

(
φt+1

φt
− 1

)
= X

(i)
t ·

βt+1

t
.

It will be useful to control how large the cardinality of a given block can be. In the next lemma

we prove exponential tail bounds for d
(i)
t /φt. The result is the first consequence of the fact that the

process {X(i)
t }t≥1 is a martingale under P(i)

n .

Lemma 5. There exist c1, C1 > 0 such that, for any i, n ∈ N and any α > 0,

(6) P(i)
n

(
∃t ≥ n : d

(i)
t ≥ α ·

φt
φn

)
≤ C1 exp{−c1α}.

Proof. Fix i, n ∈ N. We start with some bounds involving ∆X
(i)
t , for t ≥ n. First, using (5) and the

facts that φt+1 ≥ φt, ∆d
(i)
t ≤ R, βt+1 ≤ 1 and d

(i)
t ≤ Rt, we have

(7) |∆X(i)
t | ≤

R

φt+1
+
d

(i)
t · βt+1

φt · t
≤ 2R

φt
.

Next, again using (5) and the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

E(i)
n [(∆X

(i)
t )2 | Ft] ≤ 2 · E

(i)
n [(∆d

(i)
t )2 | Ft]

(φt+1)2
+ 2 ·

(
d

(i)
t

t · φt

)2

≤ 2R2

(φt+1)2
· P(i)

n (∆d
(i)
t 6= 0 | Ft) + 2R · d

(i)
t

t · (φt)2
.

Using the bound P(i)
n (∆d

(i)
t 6= 0 | Ft) ≤ R · d

(i)
t

Rt =
d
(i)
t

t and again using φt+1 > φt, we obtain

(8) E(i)
n [(∆X

(i)
t )2 | Ft] ≤ 4R2 · d

(i)
t

t · (φt)2
.

We now fix α. It is sufficient to prove the inequality (6) for α large enough (by increasing C1 if
necessary), so we assume that α > R. Define

η := inf

{
t ≥ n : X

(i)
t ≥

α

φn

}
and

Zt := X
(i)
t∧η −X(i)

n , t ≥ n,

which is a martingale under P(i)
n by Lemma 4. It is worth noting at this point that the case i = 1 is

somewhat special: it implies that n = 1 also, and X
(1)
1 = R/φ1 = R. On the other hand, if i > 1 we

have X
(i)
n = 1/φn. We thus obtain

(9) Zt ≥ X(i)
t∧η −

R

φn
, t ≥ n.

Next, from (7) it follows that

(10) |∆Zt| ≤
2R

φt
≤ 2R

φn
, t ≥ n.
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Finally, from (8) it follows that∑
t≥n

E(i)
n [(∆Zt)

2 | Ft] ≤
∑
t≥n

1{η ≥ t} · 4R2 · d
(i)
t

t · (φt)2
≤ 4R2α ·

∑
t≥n

1

t · φt
,

since d
(i)
t /φt = X

(i)
t ≤ α on {η > t}. Then, using the fact that φt/t

β → b we obtain

(11)
∑
t≥n

E(i)
n [(∆Zt)

2 | Ft] ≤ Cα ·
1

φn

for some C > 0 that does not depend on i, n or α. Equations (10) and (11) allow us to apply Freedman’s
inequality, Theorem 6 in the Appendix, with λ = (α − R)/φn, K := 2R/φn and σ2 := Cα/φn, to
bound:

P(i)
n

(
∃t ≥ n : d

(i)
t ≥ α ·

φt
φn

)
(9)

≤ P(i)
n

(
∃t ≥ n : Zt ≥

α−R
φn

)

≤ exp

−
(
α−R
φn

)2

2 · Cαφn + 2
3 ·

2R
φn
· α−Rφn

 ≤ exp

{
− (α−R)2

2Cαφn + 4
3R(α−R)

}
.

It is now not hard to see (using φn ≥ 1) that there exist constants C1, c1 > 0 (not depending on i, n, α)
such that the right-hand side above is smaller than C1 exp{−c1α/φn}. �

2.2. Higher moments and positivity of the limit. By Lemma 4, the cardinality of a given block,
when properly normalized and considered under the right measure, is a martingale. In this case,
almost sure convergence comes from the fact that we have a positive martingale. This however does
not imply a crucial property present in Theorem 1, namely, the fact that the limiting random variable
is strictly positive.

Under our general setting, this is another point in which our model imposes technical difficulties.
In other classical and related models, see [13], the positivity of the limiting random variable comes
naturally from the fact that such limit has a known distribution (a beta distribution in many contexts).
Moreover, in many contexts, see [13], one of the reasons why it is possible to obtain a explicit formula
for the limiting random variable is that at each step only one number is added to the set to be
partitioned. Thus, one of the main goals of this section is to derive positivity of the limiting random
variable ξ(i).

Our approach was inspired by [13] and part of it relies on the so-called Mori’s martingales, whose
definition we give below.

Definition 2. For each m ∈ N with m ≥ 2, define the sequence (φ
(m)
t )t≥1 by

φ
(m)
1 = 1 and φ

(m)
t :=

t∏
s=2

(
1 +m · βs

s− 1
+
R(4m)R

(s− 1)2

)
, t ≥ 2

and for each i ∈ N, define the process

Y
(i,m)
t :=

1

φ
(m)
t

·
(
d

(i)
t +m− 1

m

)
, t ≥ 1,

with the convention that
(
a
b

)
= 0 when a < b (so that Y

(i,m)
t > 0 if and only if t ≥ τ (i)).

We then have

Lemma 6. For any i, n,m, we have that under P(i)
n , the process {Y (i,m)

t }t≥n is a positive super-
martingale.
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Proof. We start noting that, on the event {τ (i) = n}, for t ≥ n,(
d

(i)
t + ∆d

(i)
t +m− 1

m

)
=

R∑
r=0

1{∆d(i)
t = r} ·

(
d

(i)
t + r +m− 1

m

)

=

R∑
r=0

1{∆d(i)
t = r} ·

r∧m∑
j=0

(
d

(i)
t +m− 1

m− j

)
·
(
r

j

)

=

m∧R∑
j=0

(
d

(i)
t +m− 1

m− j

) R∑
r=j

(
r

j

)
· 1{∆d(i)

t = r}.

This gives

(12) E(i)
n

[(
d

(i)
t + ∆d

(i)
t +m− 1

m

)∣∣∣∣∣Ft
]

=

m∧R∑
j=0

(
d

(i)
t +m− 1

m− j

) R∑
r=j

(
r

j

)
· P(i)

n (∆d
(i)
t = r | Ft).

We now consider the terms in the outer sum on the right-hand side separately for different values of j.
For j = 0, we have(

d
(i)
t +m− 1

m− 0

) R∑
r=0

(
r

0

)
· P(i)

n (∆d
(i)
t = r | Ft) =

(
d

(i)
t +m− 1

m

)
.

For j = 1,(
d

(i)
t +m− 1

m− 1

) R∑
r=1

(
r

1

)
· P(i)

n (∆d
(i)
t = r | Ft) =

(
d

(i)
t +m− 1

m

)
· m
d

(i)
t

· E(i)
n [∆d

(i)
t | Ft]

=

(
d

(i)
t +m− 1

m

)
· m · βt+1

t
.

Where, for j ≥ 2, we bound:(
d

(i)
t +m− 1

m− j

) R∑
r=j

(
r

j

)
· P(i)

n (∆d
(i)
t = r | Ft)

≤
(
d

(i)
t +m− 1

m

)
· m(m− 1) · · · (m− j + 1)

d
(i)
t (d

(i)
t + 1) · · · (d(i)

t + j − 1)
· 2R · P(i)

n (∆d
(i)
t ≥ j | Ft).(13)

Using the simple bound

P(i)
n (∆d

(i)
t ≥ j | Ft) ≤ 2R ·

(
d

(i)
t

Rt

)j
,

the right-hand side of (13) is smaller than(
d

(i)
t +m− 1

m

)
· (4m)R

tj
.

Plugging these results in (12), we obtain

E(i)
n

[(
d

(i)
t + ∆d

(i)
t +m− 1

m

)∣∣∣∣∣Ft
]
≤
(
d

(i)
t +m− 1

m

)
·
(

1 +
m · βt+1

t
+
R(4m)R

t2

)
.

Hence,

E(i)
n [Y

(i,m)
t+1 | Ft] ≤

φ
(m)
t

φ
(m)
t+1

· Y (i,m)
t ·

(
1 +

m · βt+1

t
+
R(4m)R

t2

)
= Y

(i,m)
t .

�

We will need the following relations between the normalization factors φ
(m)
t and φt.
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Lemma 7. For every m ≥ 2, the limit

(14) Cm := lim
t→∞

φ
(m)
t

(φt)m

exists, is finite and strictly positive.

Proof. For t ≥ 2, define

F (t) := 1 +m · βt
t− 1

, E1(t) :=

(
1 +

βt
t− 1

)m
− F (t), E2(t) :=

R(4m)R

(t− 1)2
,

so that

φ(t)k

φk(t)
=

t−1∏
s=1

F (s) + E1(s)

F (s) + E2(s)
=

t−1∏
s=1

(
1 +

E1(s)− E2(s)

F (s) + E2(s)

)
, t ≥ 1.

It is easy to check that

F (s) + E2(s)
s→∞−−−→ 1,

∞∑
s=1

E1(s) <∞,
∞∑
s=1

E2(s) <∞.

Putting these observations together, the result easily follows. �

The following is an easy consequence of the above lemma.

Lemma 8. For every m ≥ 2 there exists C ′m > 0 such that

E[(d
(i)
t /φt)

m] ≤ C ′m for all i ∈ N and t ∈ N.

Proof. Fix m ≥ 2 and i, n ∈ N. For all t < n we have E(i)
n [(d

(i)
t /φ(t))m] = 0, since almost surely

under P(i)
n we have τ (i) = n > t, so d

(i)
t = 0. For every t ≥ n we have, for some C ′m that does not

depend on i, t or n,

E(i)
n [(d

(i)
t /φt)

m] ≤ C ′m · E(i)
n [Y

(i,m)
t ] ≤ C ′m · E(i)

n [Y (i,m)
n ] = C ′m · (φ(m)

n )−1 ≤ C ′m,(15)

where the first inequality follows from Lemma 7 and the second inequality from Lemma 6. Now,
since P(τ (i) <∞) = 1, we have

E[(d
(i)
t /φt)

m] =

∞∑
n=1

P(τ (i) = n) · E(i)
n [(d

(i)
t /φt)

m]
(15)

≤ C ′m.

�

A consequence of the results we have so far for the process {X(i)
t }t≥1 is its convergence in the

almost sure and Lp senses.

Proposition 1. For each i ∈ N, the process {X(i)
t }t≥1 converges almost surely and in Lq(P) (for

any q ∈ [1,∞)) to a non-negative random variable ζ(i).

Proof. By Lemma 4, we have that (X
(i)
t )t≥1 is a non-negative submartingale. Lemma 8 implies that

this process is bounded in Lm(P) for every m ∈ N; hence, it is bounded in Lq(P) for every q ∈ [1,∞).
The result then readily follows from (sub)martingale theory. �

Now we will establish two important properties of the random variables ζ(i) given in Proposi-
tion 1. The first is an upper bound for its moments. This will be very useful in Section 5, where we

study maxi d
(i)
t and supi ζ

(i).

Lemma 9 (Moment bounds for ζ(i)). For any m ≥ 2 there exists C ′′m > 0 such that

(16) E[(ζ(i))m] ≤ C ′′m · i−βm, i ∈ N.
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Proof. Fix m ∈ N. For now, also fix i, n ∈ N. We have by Proposition 1 that X
(i)
t = d

(i)
t /φ(t)

t→∞−−−→
ζ(i) P-almost surely (hence also P(i)

n -almost surely), so

Y
(i,m)
t =

(d
(i)
t +m− 1) · · · (d(i)

t + 1) · d(i)
t

φ
(m)
t ·m!

t→∞−−−→ (ζ(i))m

Cm ·m!
P(i)
n -a.s.,

where Cm is the constant of Lemma 7. Moreover, since {Y (i,m)
t }t≥n is a positive supermartingale

under P(i)
n (by Lemma 6), we have

E(i)
n

[
(ζ(i))m

Cm ·m!

]
≤ E(i)

n [Y (i,m)
n ] =

1

φ
(m)
n

=⇒ E(i)
n [(ζ(i))m] ≤ Cm ·m!

φ
(m)
n

≤ C

(φn)m

for some C > 0 depending only on m, by Lemma 7. Using the fact that τ(i) ≥ bi/Rc, we then obtain

E[(ζ(i))m] =

∞∑
n=i

P
(
τ (i) = n

)
· E(i)

n [(ζ(i))m] ≤ C

(φbi/Rc)m
.

Since φt/t
β t→∞−−−→ b > 0, we have φt ≥ ctβ for some c > 0; this completes the proof. �

As we discussed at the beginning of this section, another important property of the random vari-
ables ζ(i) is its positiveness. In the next result we will prove is that they are almost surely positive,

which means that the process {d(i)
t }t≥1 goes to infinity with the same rate as φt.

Proposition 2 (Positiveness of ζ(i)). For each i ∈ N, ζ(i) is almost surely strictly positive.

The proof of the above proposition follow ideas from [19] in the context of Balls and Bins models
with immigration. The following lemma is the key ingredient needed for this result.

Lemma 10. Let i ∈ N. For any s, t ∈ N with s < t we have

(17) E

[
exp

{
−λ · d

(i)
t

φt

}]
≤ E

[
exp

{
−

(
λ− λ2R ·

t−1∑
u=s

1

u · φu

)
· d

(i)
s

φs

}]
, λ > 0.

We postpone the proof of this lemma to the end of this section. For now, let us see how it implies
Proposition 2, which then gives Theorem 1.

Proof of Proposition 2. The proof is based on the inequality, for fixed i,

P
(
ζ(i) = 0

)
= P

(
exp{−λζ(i)} = 1

)
≤ E

[
exp{−λζ(i)}

]
, λ > 0,

which follows from the Markov inequality. Our strategy is to prove, using Lemma 10, that the right-
hand side can be made arbitrarily small by taking λ large.

Fix i ∈ N. Also fix s ∈ N. Using Proposition 1, dominated convergence and (17), we have

E
[
exp{−λζ(i)}

]
= lim
t→∞

E

[
exp

{
−λ · d

(i)
t

φt

}]
≤ E

[
exp

{
−

(
λ− λ2R ·

∞∑
u=s

1

u · φu

)
· d

(i)
s

φs

}]
for all λ > 0. Now, using (4), assume s is large enough that R

∑∞
u=s

1
u·φu <

2
bβsβ

and take λ = bβsβ/4;

then, the right-hand side above is at most E
[
exp

{
− bβs

β

4 · d
(i)
s

φs

}]
. Now, since P(d

(i)
s

s→∞−−−→ ∞) = 1,

again using dominated convergence we obtain E
[
exp

{
− bβs

β

4 · d
(i)
s

φs

}]
s→∞−−−→ 0. This concludes the

proof. �

Now Theorem 1 is a straightforward consequence of the results we have proven up to this point.

Proof of Theorem 1. The statement readily follows from Lemma 3 and Propositions 1 and 2, with

ξ(i) = ζ(i) · b,
where b is the limit that appears in Lemma 3. �
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We finally conclude this section proving Lemma 10.

Proof of Lemma 10. We will argue by induction on t − s. Hence, for the base case of the induction,
we prove that for any s ≥ 1,

(18) E

[
exp

{
−λ ·

d
(i)
s+1

φs+1

}]
≤ E

[
exp

{
−
(
λ− λ2R · 1

s · φs

)
· d

(i)
s

φs

}]
, λ > 0.

To prove this, note that the left-hand side is

E
[
exp

{
− λ

φs+1
· d(i)
s −

λ

φs+1
·∆d(i)

s

}]
≤ E

[
exp

{
− λ

φs+1
· d(i)
s

}
·
(

1− λ

φs+1
·∆d(i)

s +
λ2

2(φs+1)2
· (∆d(i)

s )2

)]
,

where the inequality follows from applying e−x ≤ 1 − x + x2/2, which holds for all x ≥ 0. Now,
taking E[· | Fs] inside the above expectation and using 1− x ≤ e−x, the above is smaller than

(19) E
[
exp

{
− λ

φs+1
· d(i)
s −

λ

φs+1
· E[∆d(i)

s | Fs] +
λ2

2(φs+1)2
· E[(∆d(i)

s )2 | Fs]
}]

.

Recalling that E[∆d
(i)
s | Fs] = βs+1

s · d
(i)
s , we have

λ

φs+1
· (d(i)

s + E[∆d(i)
s | Fs]) =

λ

φs+1
·
(

1 +
βs+1

s

)
· d(i)
s =

λ

φs
· d(i)
s .(20)

Next, using ∆ds(i) ∈ {0, 1, , . . . , R}, we have:

E[(∆d(i)
s )2 | Fs] ≤ R · E[∆d(i)

s | Fs] = R · βs+1

s
· d(i)
s ≤

R

s
· d(i)
s .(21)

Now, using (20) and (21), the expression in (19) is bounded from above by

E

[
exp

{
−λ · d

(i)
s

φs
+

λ2 ·R · d(i)
s

2 · (φs+1)2 · s

}]
≤ E

[
exp

{
−
(
λ− λ2R

s · φs

)
· d

(i)
s

φs

}]
,

where the inequality follows from φs+1 > φs. This concludes the proof of (18).
We now assume that for some ` ∈ N, we have proved the inequality in the statement of the lemma

for all s, t with 1 ≤ t− s ≤ ` and all λ > 0. Fix s ≥ 2 and let t = s+ `; we will carry out the induction
step by proving that

(22) E

[
−λ · d

(i)
t

φt

]
≤ E

[
exp

{
−

(
λ− λ2R ·

t−1∑
u=s−1

1

u · φu

)
·
d

(i)
s−1

φs−1

}]
, λ > 0.

To do so, we observe that if λ > 0 is such that the expression inside parentheses on the right-hand
side is negative, then the inequality trivially holds. So we will assume from now on that

(23) 0 < λ <

(
R ·

t−1∑
u=s−1

1

u · φ(u)

)−1

.

By the induction hypothesis (applied to the pair s, t), we have

E

[
exp

{
−λ · d

(i)
t

φt

}]
≤ E

[
exp

{
−

(
λ− λ2R

t−1∑
u=s

1

u · φu

)
· d

(i)
s

φs

}]
.

Note that (23) implies that the expression inside parentheses on the right-hand side is positive. So we
can again apply the induction hypothesis (this time to the pair s− 1, s) to obtain that the right-hand
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side above is smaller than

E

exp

−
λ− λ2R ·

t−1∑
u=s

1

u · φu
−

(
λ− λ2R ·

t−1∑
u=s

1

u · φu

)2

· 1

(s− 1) · φs−1

 · d(i)
s−1

φs−1




≤ E

[
exp

{
−

(
λ− λ2R ·

t−1∑
u=s

1

u · φu
− λ2 · 1

(s− 1) · φs−1

)
·
d

(i)
s−1

φs−1

}]

= E

[
exp

{
−

(
λ− λ2R ·

t−1∑
u=s−1

1

u · φu

)
·
d

(i)
s−1

φs−1

}]
.

�

3. Central limit theorem

In this section, we prove Theorem 2, which gives a central limit theorem for the process {X(i)
t }t≥1,

the normalized cardinality of block i. For the sake of organization, we first assume Propositions 3 and
4 stated below and show how Theorem 2 follows from them. Then, the remainder of this section is
dedicated to prove both propositions. So, throughout this section we will fix a block index i ∈ N.

3.1. Martingale central limit theorem. Theorem 2 will be obtained as a consequence of a mar-
tingale central limit theorem from [9] which we replicate in the appendix (Theorem 7 in Section A.2).
As said above, the theorem will follow from the two propostions below.

Proposition 3. For any n, we have that

φt ·
∑
s≥t

E(i)
n [(∆X(i)

s )2]
t→∞−−−→

E(i)
n [ζ(i)] if β < 1;

E(i)
n

[
ζ(i) ·

(
1− ζ(i)b

R

)]
if β = 1.

Proposition 4. We have that, almost surely,

φt ·
∑
s≥t

(∆X(i)
s )2 t→∞−−−→

{
ζ(i) if β < 1;

ζ(i) ·
(

1− ζ(i)b
R

)
if β = 1.

Remark 2. Note that the convergence in Proposition 4 holds P-almost surely, hence also P(i)
n -almost

surely for any n. A natural strategy to prove these two results would be to start proving Proposition 4,
and then give a justification for swapping a limit with an expectation to obtain Proposition 3. This
is not, however, the approach we follow: since we have not found a way to justify the swapping that
is easier than computing the limit in Proposition 3 directly, we just carry out the direct computation.

We postpone the proofs of both propositions to Sections 3.2 and 3.3 repesctively. Let us now see
how they are combined in order to yield Theorem 2.

Proof of Theorem 2. Fix n ∈ N and define st :=
(∑

s≥t E
(i)
n [(∆X

(i)
s )2]

)1/2
for t ≥ n. Proposition 3

implies that
√
φt · st converges to a positive limit, and moreover, using φt/t

β → b and ζ(i) = ξ(i)/b,

(24) tβ/2 · st
t→∞−−−→


1
b ·
(
E(i)
n [ξ(i)]

)1/2

if β < 1;

1
b ·
(
E(i)
n

[
ξ(i) ·

(
1− ξ(i)

R

)])1/2

if β = 1.

Whereas, Lemma 4 guarantees that {X(i)
t }t≥n is a martingale under P(i)

n ; let us show that, under this
probability measure, this process satisfies the assumptions of Theorem 7. We will use the bound

|∆X(i)
t | ≤

2R

φt
, t ≥ 1
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obtained in (7). We have

1

st
· sup
s≥t
|∆X(i)

s | ≤
1√
φt · st

·
√
φt ·

2R

φt

t→∞−−−→ 0

and

1

(st)2
· E
[
sup
s≥t

(∆X(i)
s )2

]
≤ 1

φt · (st)2
· φt ·

(
2R

φt

)2
t→∞−−−→ 0,

so conditions (55) and (56) are satisfied. Condition (57) is given by Propositions 3 and 4 together:

1

(st)2
·
∞∑
s=t

(∆X(i)
s )2 t→∞−−−−−→

P(i)
n −a.s.

η2,

where

η2 =
ξ(i)

E(i)
n [ξ(i)]

if β < 1 and η2 =
ξ(i) ·

(
1− ξ(i)

R

)
E(i)
n

[
ξ(i) ·

(
1− ξ(i)

R

)] if β = 1.

Hence, the conclusion of Theorem 7 tells us that, under P(i)
n ,

1

st
· (X(i)

t − ζ(i)) = − 1

st
·
∑
s≥t

∆X(i)
s

t→∞−−−→
(d)

ν(i)
n ,

where ν
(i)
n is the distribution of W · Z ′, where W,Z ′ are independent, W is a standard Gaussian and

the law of Z ′ is equal to the law of η (under P(i)
n ). Now, using (24),

tβ/2 ·

(
d

(i)
t

tβ
− ξ(i)

)
= (tβ/2 · st · b) ·

1

st
·

(
φt
btβ
· d

(i)
t

φt
− ζ(i)

)
t→∞−−−→
(d)

µ(i)
n ,

where µ
(i)
n is the distribution of W · Z, where again W,Z are independent, W is a standard Gaussian

and

Z2 (d)
=

{
ξ(i) if β < 1,

ξ(i) ·
(

1− ξ(i)

R

)
if β = 1,

the distribution of the random variables on the right-hand side being under P(i)
n .

The statement of the theorem now follows from the fact that P(·) =
∑
n P

(i)
n (·) ·P(τ (i) = n), so the

law µ(i) defined there is equal to
∑
n µ

(i)
n · P(τ (i) = n). �

3.2. Sum of expected squared increments: Proof of Proposition 3. We now give the proof of

our statement concerning the asymptotic behavior of the sum
∑
s≥t E[(∆X

(i)
s )2]. For this proof and

several of the following, the equality ∆X
(i)
t = At − Bt from (5) will play an important role, for this

reason we recall At and Bt below

At :=
∆d

(i)
t

φt+1
, Bt := X

(i)
t ·

∆φt
φt+1

= X
(i)
t ·

(
φt+1

φt
− 1

)
= X

(i)
t ·

βt+1

t
.

We also recall, for future reference, that

(25)
φt
tβ

t→∞−−−→ b,
φt
φt+1

t→∞−−−→ 1,
∆φt
φt

=
φt+1

φt
− 1 =

βt
t
, βt

t→∞−−−→ β.

Proof of Proposition 3. As in Lemma 1, we have

E(i)
n [∆d

(i)
t | Ft] =

R∑
r=0

gt+1(r) · r · d
(i)
t

Rt
= βt+1 ·

d
(i)
t

t
, t ≥ n.
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By a similar proof as the one of that lemma, using the formula for the second moment of binomial
random variables, we also get, for t ≥ n,

E(i)
n [(∆d

(i)
t )2 | Ft] =

R∑
r=0

gt+1(r) ·

r · d(i)
t

Rt
+ (r2 − r) ·

(
d

(i)
t

Rt

)2
 = βt+1 ·

d
(i)
t

t
+ β′t+1 ·

(
d

(i)
t

t

)2

,

where we define β′t := R−2
∑R
r=0 gt(r) · (r2 − r). Using this together with (5) we obtain

E(i)
n [(∆X

(i)
t )2 | Ft] = E(i)

n [(At)
2 + (Bt)

2 − 2AtBt | Ft]

=
βt+1 · d(i)

t

(φt+1)2 · t
+
β′t+1 · (d

(i)
t )2

(φt+1)2 · t2
+

(X
(i)
t )2 · (∆φt)2

(φt+1)2
− 2

βt+1 ·X(i)
t ·∆φt · d

(i)
t

(φt+1)2 · t
,

so, taking the expectation and using X
(i)
t = d

(i)
t /φt,

E(i)
n [(∆X

(i)
t )2] =

βt+1 · φt
(φt+1)2 · t

· E(i)
n [X

(i)
t ] +

(
β′t+1 · (φt)2

(φt+1)2 · t2
+

(
∆φt
φt+1

)2

− 2
βt+1 ·∆φt · φt

(φt+1)2 · t

)
· E(i)

n [(X
(i)
t )2].

(26)

We let

β′ :=
1

R2

R∑
r=0

g∞(r) · (r2 − r) = lim
t→∞

β′t.

We then obtain, using (25), the following asymptotic expressions for the quotients that appear in (26):

βt+1 · φt
(φt+1)2 · t

∼ β

bt1+β
,

β′t+1 · (φt)2

(φt+1)2 · t2
∼ β′

t2
,

(
∆φt
φt+1

)2

and
βt+1 ·∆φt · φt

(φt+1)2 · t
∼
(
β

t

)2

.

Recall that X
(i)
t → ζ(i) in Lp(P) for all p ∈ [1,∞), hence also in Lp(P(i)

n ) for all p ∈ [1,∞), so

E(i)
n [X

(i)
t ]

t→∞−−−→ E(i)
n [ζ(i)] and E(i)

n [(X
(i)
t )2]

t→∞−−−→ E(i)
n [(ζ(i))2].

We study the behavior of φt ·
∑
s≥t E

(i)
n [(∆Xs)

2] when t → ∞ by separately considering terms

obtained from (26), using the asymptotic expressions obtained above. First,

(27) φt ·
∑
s≥t

βs+1 · φs
(φs+1)2 · t

· E(i)
n [X(i)

s ] ∼ btβ ·
∑
s≥t

β

bs1+β
· E(i)

n [ζ(i)]
t→∞−−−→ E(i)

n [ζ(i)].

Next, we have:

φt ·
∑
s≥t

β′s+1 · (φs)2

(φs+1)2 · s2
· E(i)

n [(X
(i)
t )2] ∼ β′b · E(i)

n [(ζ(i))2] · tβ−1,(28)

φt ·
∑
s≥t

(
∆φt
φt+1

)2

· E(i)
n [(X

(i)
t )2] ∼ β2b · E(i)

n [(ζ(i))2] · tβ−1,(29)

φt ·
∑
s≥t

βt+1 ·∆φt · φt
(φt+1)2 · t

· E(i)
n [(X

(i)
t )2] ∼ β2b · E(i)

n [(ζ(i))2] · tβ−1.(30)

Now, when β < 1, the desired result already follows from putting together (27)-(30) in (26). For the
case β = 1, the result follows in the same way, with the additional observation that in this case we
have g∞(R) = 1, so β′ = 1− 1

R . �
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3.3. Sum of squared increments: Proof of Proposition 4. Recall that Proposition 4 concerns

almost sure convergence of the random series φt ·
∑
s≥t(∆X

(i)
s )2. Notice that the order of magnitude of

such random series is intrinsically connected to those steps when block i has increased its cardinality
as well as by how much said cardinality increased. This forces us to keep track on the times block

i received exactly r elements and investigate the behavior of φt ·
∑
s≥t(∆X

(i)
s )2 along these random

sets. For this reason, the need for results on sums along subsets of N arises naturally in this section.
For the sake of organization we will prove Proposition 4 separately for β = 1 and β < 1; the latter

will be somewhat more involved. In order to set up the stage for the first case β = 1, we start with
the following.

Definition 3. Define the random sets

T (i)(r) := {t : ∆d
(i)
t = r}, r ∈ {0, . . . , R}.

For the following statement, recall that a set Λ ⊂ N has asymptotic density α ∈ [0, 1] if

lim
N→∞

|Λ ∩ {1, . . . , N}|
N

= α.

Our first result concerns the asymptotic density of T (i)(r) in the case β = 1.

Lemma 11. Assume β = 1. Then, almost surely for each r ∈ {0, . . . , R}, the set T (i)(r) has
asymptotic density B

(
R, ζ(i)b/R, r

)
.

Proof. When β = 1, we have g∞(R) = 1 and
d
(i)
t

t

t→∞−−−→ ζ(i) · b almost surely, so for each r,

P(∆d
(i)
t = r | Ft) =

R∑
u=0

gt+1(u) ·B(u, d
(i)
t /(Rt), r)

t→∞−−−→ B(R, ζ(i)b/R, r)

almost surely, and then

1

t

t∑
s=1

P(∆d(i)
s = r | Fs)

t→∞−−−→ B(R, ζ(i)b/R, r)

almost surely. The result now follows from applying the Azuma-Hoeffding inequality (Theorem 5)
and the Borel-Cantelli lemma to the martingale

t∑
s=1

(
1{∆d(i)

s = r} − P(∆d(i)
s = r | Fs)

)
, t ∈ N.

�

We now state a result about the asymptotic value of series that are taken over sets with a given
asymptotic density. In order to keep the flow of the presentation, we give the proof in an appendix.

Lemma 12. Let Λ ⊂ N be a set with asymptotic density equal to α ∈ [0, 1]. Then,

lim
N→∞

N
∑
n≥N,
n∈Λ

1

n2
= α.

Putting the two previous results together, we obtain the following.

Corollary 1. Assume β = 1. Then, almost surely,

(31) lim
t→∞

t
∑
s≥t

∆d
(i)
s

s2
= ζ(i)b

and

(32) lim
t→∞

t
∑
s≥t

(∆d
(i)
s )2

s2
= (ζ(i))2b2 + ζ(i)b− (ζ(i))2b2

R
.
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Proof. For any h : R→ R we have∑
s≥t

h(∆d
(i)
s )

s2
=

R∑
r=0

h(r)
∑
s≥t

1{s ∈ T (i)(r)}
s2

,

so, by Lemma 11 and Lemma 12, we get

(33) lim
t→∞

t
∑
s≥t

h(∆d
(i)
s )

s2
=

R∑
r=0

h(r) ·B(R, ζ(i)b/R, r).

The result now follows by using the formulas for the first and second moments of the binomial distri-
bution. �

We are now ready to treat the case β = 1 in Proposition 4.

Proof of Proposition 4, case β = 1. We write ∆X
(i)
t = At −Bt as in (5). We then have

φt ·
∑
s≥t

(∆X(i)
s )2 = φt ·

∑
s≥t

(As)
2 + φt ·

∑
s≥t

(Bs)
2 − 2φt

∑
s≥t

(As ·Bs)

and we compute separately the limit of the three terms on the right-hand side as t→∞. For the first
term, we have

lim
t→∞

φt
∑
s≥t

(As)
2 = lim

t→∞
bt
∑
s≥t

(
∆d

(i)
s

bs

)2

= ζ(i) − (ζ(i))2b

R
+ (ζ(i))2b,

where the second equality follows from (32). For the second term,

lim
t→∞

φt
∑
s≥t

(Bs)
2 = lim

t→∞
(ζ(i))2bt

∑
s≥t

1

s2
= (ζ(i))2b.

Finally, for the third term,

lim
t→∞

φt
∑
s≥t

(As ·Bs) = lim
t→∞

ζ(i)t
∑
s≥t

∆d
(i)
s

s2
= (ζ(i))2b,

where the second equality follows from (31). Putting things together, we then obtain

lim
t→∞

φt
∑
s≥t

(∆Xs)
2 = ζ(i)

(
1− ζ(i)b

R

)
.

�

We now give some additional definitions and preliminary results concerning both the cases β = 1
and β < 1. For the missing part of the proof of Proposition 4, we will need the case β < 1, but in the
next section we will also use the results obtained here for β = 1.

Definition 4. We define a sequence of stopping times (σ
(i)
n )n∈N0

by letting σ
(i)
0 := τ (i) and, for k ∈ N0,

σ
(i)
k+1 := inf

{
t > σ

(i)
k : d

(i)
t > d

(i)

σ
(i)
k

}
= 1 + inf{t ≥ σ(i)

k : ∆d
(i)
t 6= 0}.

In words, σ
(i)
k is the k-th time the process has increased the cardinality of block i. We also define

D
(i)
k := d

(i)

σ
(i)
k

, G(i)
k = F

σ
(i)
k

, k ∈ N0.

Finally, writing ∆D
(i)
k := D

(i)
k+1 −D

(i)
k , define the random sets

K (i)(r) := {k ∈ N0 : ∆D
(i)
k = r}, r ∈ {1, . . . , R},
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That is, K (i)(r) is the set of moments when the cardinality of block i increased by exactly r. Note

that the definition of K (i)(r) above does not include r = 0 because by definition, ∆D
(i)
k is never zero.

The next lemma relates the asymptotic density of K (i)(r) and ζ(i).

Lemma 13. Almost surely for each r ∈ {1, . . . , R}, the set K (i)(r) has asymptotic density

B(R, ζ(i)b/R, r)

1−B(R, ζ(i)b/R, 0)

if β = 1 and 1{r = 1} if β < 1.

We postpone the proof of this lemma. Let us now give a second result concerning sums of series
with asymptotic densities.

Lemma 14. Let (ak)k∈N be an increasing sequence of natural numbers with ∆ak ∈ {1, . . . , R} for
each k, and such that for each r ∈ {1, . . . , R}, the set {k : ∆ak = r} has asymptotic density ρr. We
then have

lim
k0→∞

ak0 ·
∑
k≥k0

(
∆ak
ak

)2

=

∑
r r

2ρr∑
r rρr

.

Again, the proof is carried out in the Appendix. We will now obtain the following by combining
the two previous lemmas:

Corollary 2. Assume β < 1. Then,

(34) lim
t→∞

φt ·
∑
s≥t

(
∆d

(i)
s

d
(i)
s

)2

=
1

ζ(i)
.

Proof. Define

K(t) := sup{k : σ
(i)
k ≤ t}, t ∈ N;

note that d
(i)
t = d

(i)

σ
(i)

K(t)

= D
(i)
K(t) for each t. Moreover, it is easy to check that

∑
s≥t

(
∆d

(i)
s

d
(i)
s

)2

=
∑

k≥K(t)

(
∆D

(i)
k

D
(i)
k

)2

for each t. Using the fact, given in Lemma 13, that K (i)(r) has asymptotic density equal to 1{r = 1},
together with Lemma 14, we obtain

D
(i)
K(t)

∑
k≥K(t)

(
∆D

(i)
k

D
(i)
k

)2

t→∞−−−→ 1,

so

lim
t→∞

φt ·
∑
s≥t

(
∆d

(i)
s

d
(i)
s

)2

= lim
t→∞

φt

d
(i)
t

· lim
t→∞

D(i)
K(t)

∑
k≥K(t)

(
∆D

(i)
k

D
(i)
k

)2
 =

1

ζ(i)
.

�

Now we are finally able to cover the case β < 1.

Proof of Proposition 4, case β < 1. As in the proof of the other case, we write ∆X
(i)
t = At − Bt,

with At and Bt defined in (5). Again we write

φt ·
∑
s≥t

(∆X(i)
s )2 = φt ·

∑
s≥t

(As)
2 + φt ·

∑
s≥t

(Bs)
2 − 2φt

∑
s≥t

(As ·Bs)
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and consider the three terms on the right-hand side separately. For the first term, Corollary 2 gives

lim
t→∞

φt
∑
s≥t

(As)
2 = ζ(i).

Next, since Bt ∼ ζ(i) · βt and φt = o(t) when β < 1, we obtain

lim
t→∞

φt
∑
s≥t

(Bs)
2 = 0.

Finally, by the Cauchy-Schwarz inequality,

φt
∑
s≥t

(As ·Bs) ≤
√
φt
∑
s≥t

(As)2 ·
√
φt
∑
s≥t

(Bs)2 t→∞−−−→ 0.

Putting things together, we obtain φt ·
∑
s≥t(∆X

(i)
s )2 t→∞−−−→ ζ(i). �

It remains to prove Lemma 13. The proof will involve further definitions and lemmas, some of
which will be useful in the next section.

Definition 5. Define, for m, t ∈ N,

P̂m,t(r) :=

R∑
u=0

gt+1(u) ·B
(
u,
m

Rt
, r
)
, r ∈ {0, . . . , R}.

Notice that in the event {d(i)
t = m}, the following identity holds P̂m,t(r) = P(∆d

(i)
t = r | Ft).

We also define

P̂m,t(r) := P̂m,t(r) +

∞∑
t′=t+1

t′−1∏
s=t

P̂m,s(0)

 · P̂m,t′(r), r ∈ {1, . . . , R}.

Finally, also define, for α ∈ (0, 1],

Pα(r) :=
B(R,α, r)

1−B(R,α, 0)
, r ∈ {1, . . . , R}

and finally, let

P0(r) := 1{r = 1}, r ∈ {1, . . . , R}.

Note that P̂m,t(r) is the probability that, given a block of cardinality m at time t, it receives
exactly r elements at the next time it receives new elements. Since no block ever permanently stops
receiving new numbers, we have that

R∑
r=1

P̂m,t(r) = 1.

Moreover, we have

(35) P(∆D
(i)
k = r | G(i)

k ) = P̂
D

(i)
k ,σ

(i)
k

(r), r ∈ {1, . . . , R}.

With the above notation in mind, the next lemmas will play important roles in the proof of Lemma 13.

Lemma 15. Assume that β = 1. Let (mn), (tn) be increasing sequences of natural numbers with

mn/tn
n→∞−−−−→ αR, with α > 0. Then,

P̂mn,tn(r)
n→∞−−−−→Pα(r) for all r ∈ {1, . . . , R}.
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Proof. For each n ∈ N, let

πn(0, r) := P̂mn,tn(r), r ∈ {1, . . . , R}

and

πn(t, r) :=

(
t−1∏
s=0

P̂mn,tn+s(0)

)
· P̂mn,tn+t(r), t ≥ 1, r ∈ {1, . . . , R}.

Next, define

Pα(r) := B(R,α, r), α ∈ (0, 1], r ∈ {0, . . . , R}
and

π(t, r) := (Pα(0))t · Pα(r), t ≥ 0, r ∈ {1, . . . , R}.
Now, πn and π are probabilities on N0×{1, . . . R} and, using the assumptions that β = 1 (so g∞(R) =

1) and mn/tn → α/R together with the definitions of P̂mn,tn and Pα, it is readily seen that πn(t, r)→
π(t, r) for every (t, r). It then follows from Scheffé’s theorem that, for all r ∈ {1, . . . , R}, we have

P̂mn,tn(r) =

∞∑
t=0

πn(t, r)
n→∞−−−−→

∞∑
t=0

π(t, r) = Pα(r).

�

Lemma 16. Let (mn), (tn) be increasing sequences of natural numbers with mn/tn
n→∞−−−−→ 0. Then,

P̂mn,tn(r)
n→∞−−−−→P0(r) for all r ∈ {1, . . . , R}.

Proof. We first claim that for any ε > 0 there exists δε > 0 such that

0 ≤ p < δε, r ∈ {0, . . . , R}, u ∈ {2, . . . , R} =⇒ B(r, p, u) ≤ ε

R
·B(r, p, 1).

This is easily checked by first treating the cases r = 0 and r = 1 first (for both these cases the statement
is trivial), and, for r ≥ 2, using the facts that B(r, p, 1) ∼ rp as p→ 0 for r ≥ 1, and B(r, p, u) = o(p)
as p→ 0 for u ≥ 2.

Now, fix ε > 0 and fix n0 such that mn
Rtn

< δε for all n ≥ n0. Then, for all n ≥ n0, u ∈ {2, . . . , R}
and t ≥ tn we have

P̂mn,t(u) =

R∑
r=0

gt+1(r) ·B
(
r,
mn

Rtn
, u

)
≤ ε

R

R∑
r=0

gt+1(r) ·B
(
r,
mn

Rt
, 1
)

=
ε

R
· P̂mn,t(1).

This readily gives, for all n ≥ n0 and t ≥ tn,

R∑
u=2

P̂mn,t(u) ≤ ε · P̂mn,t(1).

Using the definition of P̂mn,tn , we then obtain

R∑
u=2

P̂mn,tn(u) ≤ ε · P̂mn,tn(1).

Combined with
∑R
u=1 P̂mn,tn(u) = 1, this gives 1 ≥ P̂mn,tn(1) ≥ 1

1+ε , completing the proof. �

Corollary 3. We have that, almost surely, for each r ∈ {1, . . . , R},

P(∆D
(i)
k = r | G(i)

k )
k→∞−−−−→

P0(r) if β < 1;

Pζ(i)b/R(r) if β = 1.
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Proof. Recall (35) and note that

d
(i)
t

t

t→∞−−−→

{
0 if β < 1;

ζ(i)b if β = 1,
so

D
(i)
k

σ
(i)
k

=
d

(i)

σ
(i)
k

σ
(i)
k

k→∞−−−−→

{
0 if β < 1;

ζ(i)b if β = 1.

Hence, the desired convergence follows from Lemma 15 and Lemma 16. �

Proof of Lemma 13. The desired result follows from Corollary 3 and a simple application of the
Azuma-Hoeffding inequality to the martingale

k∑
`=1

(
1{∆D(i)

` = r} − P(∆D
(i)
` = r | G(i)

` )
)
, k ∈ N;

we omit the details. �

4. Persistent leadership

We note that, if we had P(ξ(i) = ξ(j)) = 0 whenever i 6= j, we would already have persistent
leadership. Indeed, as we will see in the proof of Theorem 3, the exponential decay of the tails of the
normalized cardinality given by Lemma 5 implies that, almost surely, only a finite number of blocks
can “compete” for the leadership. If, ξ(i) 6= ξ(j) for i 6= j, then the cardinalities of the respective blocks
at large time t must be at distance of order tβ from one another. If we knew that the distributions
of {ξ(i)}i≥1 had no atoms, the result would then follow. As we do not have this result, we must resort
to other methods to prove Theorem 3.

As we alluded to above, to prove the leadership result what we now need is to show that the
distance between the cardinalities of specific blocks goes to infinity. With that in mind, our main goal
this section will be to prove the following result:

Proposition 5. For any two distinct indices i and j, we have

lim
t→∞

|d(i)
t − d

(j)
t |

t→∞−−−→∞ almost surely.

For now, let us properly show how the above proposition allows us to prove our persistent leadership
theorem.

Proof of Theorem 3. Define the events

A(i) :=

{
∃t :

d
(i)
t

φt
>

1√
φi

}
, i ∈ N.

We have

P(A(i)) =
∑
n≥i

P(i)
n (A(i)) · P(τ (i) = n) ≤

∑
n≥i

exp

{
−c1 ·

φn√
φi

}
· P(τ (i) = n) ≤ exp

{
−c1

√
φi

}
,

where the first inequality follows from Lemma 5. Recalling that φt ∼ btβ , we then have
∑
i P(A(i)) <

∞, so by the Borel-Cantelli lemma,

P(A(i) occurs infinitely often) = 0.

This implies that

∃i∗ :
d

(j)
t

φt
≤ 1√

φj
for all j ≥ i∗ and t ∈ N.

Together with the facts that

1√
φj

j→∞−−−→ 0 and lim
t→∞

d
(1)
t

φt
= ζ1 > 0,
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we then obtain that almost surely, there exists a (random) index i∗∗ such that

max

{
d

(j)
t

φt
: j ≤ i∗∗

}
= max

{
d

(j)
t

φt
: j ∈ N

}
for all t large enough,

so

max
{
d

(j)
t : j ≤ i∗∗

}
= max

{
d

(j)
t : j ∈ N

}
for all t large enough.

Next, Proposition 5 implies that for all pairs of distinct j, j′ ≤ i∗∗ we have

|d(j)
t − d

(j′)
t |

t→∞−−−→∞ almost surely.

This implies that there exists j∗ ≤ i∗∗ such that

d
(j∗)
t > max{d(j)

t : j ≤ i∗∗, j 6= j∗} for all t large enough.

This concludes the proof. �

4.1. Increments involving a pair of indices. For the rest of this section, we fix two indices i < j.
In this subsection, we give some definitions and results that will be needed in proving Proposition 5.
Similarly to what was done in Section 3.3, we will consider the process only at the times t at which

either d
(i)
t or d

(j)
t increases from its previous value. The idea is that, in order to study the distance

between cardinalities of blocks i and j, it is only necessary to look at the process at these times.

Definition 6. We define σ
(i,j)
0 := τ (j) > τ (i) and, for each k ∈ N0,

σ
(i,j)
k+1 := inf

{
t > σ

(i,j)
k : d

(i)
t + d

(j)
t > d

(i)

σ
(i,j)
k

+ d
(j)

σ
(i,j)
k

}
.

We also let

G(i,j)
k := F

σ
(i,j)
k

, D
(i,j),i
k := d

(i)

σ
(i,j)
k

, D
(i,j),j
k := d

(j)

σ
(i,j)
k

and

D
(i,j)
k := D

(i,j),i
k +D

(i,j),j
k , Zk := |D(i,j),i

k −D(i,j),j
k |.

We write ∆D
(i,j)
k := D

(i,j)
k+1 −D

(i,j)
k . Recalling the definition of P̂m,t in Definition 5, as in (35) we

have

P(∆D
(i,j)
k = r | G(i,j)

k ) = P̂
D

(i,j)
k ,σ

(i,j)
k

(r), r ∈ {1, . . . , R}.

Our goal is to study Z
(i,j)
k . To do so, we will first need to understand the process D

(i,j)
k , which will

control the total amount by which the cardinality of blocks i and j may increase at time σk. Arguing
in the same way as in Corollary 3, we obtain:

Lemma 17. We have that, almost surely, for each r ∈ {1, . . . , R},

P(∆D
(i,j)
k = r | G(i,j)

k )
k→∞−−−−→

P0(r) if β < 1;

P(ζ(i)+ζ(j))b/R(r) if β = 1.

Next, it will be useful to note that, almost surely, for every k and r,

(36) P(∆D
(i,j),i
k = r | G(i,j)

k ) =

R∑
u=0

P(∆D
(i,j)
k = u | G(i,j)

k ) ·B

(
u,
D

(i,j),i
k

D
(i,j)
k

, r

)
.

The next two lemmas provide lower bounds for the conditional drift of Z
(i,j)
k .

Lemma 18. For any k, we almost surely have

(37) E[∆Z
(i,j)
k | G(i,j)

k ] ≥
Z

(i,j)
k

D
(i,j)
k

· E[∆D
(i,j)
k | G(i,j)

k ]
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Proof. On the event {D(i,j),i
k ≥ D(i,j),j

k }, we have Z
(i,j)
k = D

(i,j),i
k −D(i,j),j

k , so

Z
(i,j)
k+1 = |D(i,j),i

k + ∆D
(i,j)i
k −D(i,j),j

k −∆D
(i,j),j
k | ≥ Z(i,j)

k + ∆D
(i,j),i
k −∆D

(i,j),j
k

and this gives

(38) E[∆Z
(i,j)
k | G(i,j)

k ] ≥ E[∆D
(i,j),i
k | G(i,j)

k ]− E[∆D
(i,j),j
k | G(i,j)

k ].

Now, using (36) we have

E[∆D
(i,j),i
k | G(i,j)

k ] =
D

(i,j),i
k

D
(i,j)
k

· E[∆D
(i,j)
k | G(i,j)

k ]

and similarly for j; using this in (38) we obtain the desired inequality on the event {D(i,j),i
k ≥ D(i,j),j

k }.
Arguing in the same way, we also obtain it in the complementary event {D(i,j),j

k > D
(i,j),i
k }. �

Lemma 19. For any k, we almost surely have

(39) E[∆Z
(i,j)
k | G(i,j)

k ] ≥ 0

and

(40) P(∆Z
(i,j)
k = 0 | G(i,j)

k ) <
1

2
.

Proof. The first inequality is an immediate consequence of (37). The second inequality follows from

noting that ∆Z
(i,j)
k = 0 if and only if ∆D

(i,j),i
k = ∆D

(i,j),j
k = 1

2 ·∆D
(i,j)
k , and then using (36) and the

elementary observation that B(n, p, n/2) < 1/2 for any n and p. �

The next result is the main tool in the application of the Lyapunov function method for the

process Z
(i,j)
k . It gives a lower bound for the conditional increment of Z

(i,j)
k in terms of Z

(i,j)
k itself.

Proposition 6. Almost surely, there exists K0 ∈ N such that

E[∆Z
(i,j)
k | G(i,j)

k ] ≥ 3

4
·
Z

(i,j)
k

k
for all k ≥ K0.

Proof. Let

N (i,j) :=

{
1 if β < 1;∑R
r=1 r ·P(ζ(i)+ζ(j))b/R(r) if β = 1.

By Lemma 17, we have

E[∆D
(i,j)
k | G(i,j)

k ]
k→∞−−−−→ N (i,j).

Using this and a simple application of the Azuma-Hoeffding inequality, we also obtain

D
(i,j)
k

k

k→∞−−−−→ N (i,j).

The desired result now follows from combining the two above convergences with (37). �

4.2. Transience of difference process. We are now equipped to take the concluding steps in
proving Proposition 5. The first step in this direction is the following result, which shows that the

limit superior of Z
(i,j)
k grows faster than the square root of k.

Proposition 7. We almost surely have

lim sup
k→∞

Z
(i,j)
k√
k

=∞.

Proof. This is an immediate consequence of Lemma 2 in [12]. The assumptions required by that

lemma are readily checked using the fact that |∆Z(i,j)
k | ≤ R and the two inequalities in Lemma 19 (in

the notation of [12], take the constant a = 1). �
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We can then bootstrap the above result and finish this section.

Proof of Proposition 5. It suffices to prove that limk→∞ Z
(i,j)
k = ∞ almost surely. To make the

notation a bit cleaner, in this proof we will omit the superscript (i, j), writing Zk and Gk instead

of Z
(i,j)
k and G(i,j)

k .
For each k̄ ∈ N, define the event

E(k̄) :=

{
E[∆Zk | Gk] >

3

4
· Zk
k

for all k ≥ k̄
}
.

Note that Proposition 6 implies that P(E(k̄))
k̄→∞−−−−→ 1. Hence, the proof will be complete if we show

that, for any k̄ and any ε > 0, we have

(41) P
(
E(k̄) ∩ {Zk →∞}c

)
< ε.

Fix k̄ and ε; let us prove (41). We closely follow the proof of Theorem 1 from [12]. Since (1+x)−2 =
1− 2x+ 3x2 + o(x2) for x small, we can choose η > 0 such that

(42) (1 + x)−2 ≤ 1− 2x+ 4x2 for all x ∈ [−η, η].

Next, define

τ := inf

{
k ≥ k̄ ∨ R

2

η2
:
k

Z2
k

≤ ε

16R2

}
.

This is a stopping time with respect to (Gk)k≥0, and by Proposition 7, it is almost surely finite. We
then let

W` :=
τ + `

(Zτ+`)2
, ` ≥ 0,

with W` =∞ in case Zτ+` = 0. By the definition of τ , we have W0 ≤ ε/(16R2).
Next, define

L′ := inf

{
` ≥ 0 : W` ≥

1

16R2

}
,

L′′ := inf

{
` ≥ 0 : E [∆Zτ+` | Gτ+`] ≤

3

4
· Zτ+`

τ + `

}
,

and let L := L′∧L′′. These are stopping times with respect to the filtration (Gτ+`)`≥0. We now claim
that

(43) (W`∧L)`≥0 is a supermartingale with respect to (Gτ+`)`≥0.

To prove this, we need to check that, for any `,

(44) 1{L > `} · E [∆W` | Gτ+`] ≤ 0.

To this end, we first write

∆W` =
τ + `+ 1

(Zτ+`+1)2
− τ + `

(Zτ+`)2
=

τ + `

(Zτ+`)2
·

(1 +
1

τ + `

)
·

(
1

1 + ∆Zτ+`
Zτ+`

)2

− 1

 .(45)

Now, we have |∆Zτ+`| ≤ R and on the event {L > `} we have, by the definition of L′,

W` =
τ + `

(Zτ+`)2
<

1

16R2
< 1, so Zτ+` > (τ + `)1/2 >

R

η
,

where in the last inequality we have used that τ > R2

η2 . This shows that on the event {L > `} we

have ∆Zτ+`
Zτ+`

≤ η, so, using (42),(
1

1 + ∆Zτ+`
Zτ+`

)2

≤1− 2 · ∆Zτ+`

Zτ+`
+ 4 ·

(
∆Zτ+`

Zτ+`

)2

≤ 1− 2 · ∆Zτ+`

Zτ+`
+

4R2

(Zτ+`)2
.
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Plugging this into (45), we obtain that the left-hand side of (44) is bounded from above by

(46) 1{L > `} · τ + `

(Zτ+`)2
·
[(

1 +
1

τ + `

)
·
(

1− 2 · E[∆Zτ+` | Gτ+`]

Zτ+`
+

4R2

(Zτ+`)2

)
− 1

]
.

Now, on {L > `} we have E[∆Zτ+` | Gτ+`] >
3
4 ·

Zτ+`
τ+` (by the definition of L′′) and

W` =
τ + `

(Zτ+`)2
<

1

16R2
, so

4R2

(Zτ+`)2
<

1

4(τ + `)

(by the definition of L′). This shows that the expression inside the square brackets in (46) is bounded
from above by(

1 +
1

τ + `

)
·
(

1− 3

2(τ + `)
+

1

4(τ + `)

)
− 1 =

(
1 +

1

τ + `

)
·
(

1− 5

4(τ + `)

)
− 1 < 0.

This concludes the proof of (43).
Since it is a non-negative supermartingale, (W`∧L) converges almost surely to a non-negative ran-

dom variable W∞. We have E[W∞] ≤ E[W0] < ε
16R2 , so W∞ is almost surely finite. Moreover, we

have

ε

16R2
≥ E[W0] ≥ E[WL] ≥ E[WL · 1{L′ <∞, L′ < L′′}] ≥ 1

16R2
· P(L′ <∞, L′ < L′′),

so

(47) P(L′ <∞, L′ < L′′) < ε.

Next, note that

(48) {L′′ <∞} ⊆ E(k̄)c,

by the definition of L′′ and of E(k̄). Finally, note that on {L = ∞}, we have W`∧L = W` = τ+`
(Zτ+`)2

;

the fact that this converges to a finite limit on {L =∞} then implies that

(49) Zk →∞ on {L =∞}.
Putting (47), (48) and (49) together now gives the desired inequality (41). �

5. Convergence and central limit theorem for the maximum

We can now finish the first part of our results regarding the maximum cardinality. Intuitively, the
main idea is that, for large time t, the maximum cardinality is the cardinality of a given block, so
that Theorem 1 applies.

Proof of Theorem 4, convergence. With Theorem 3 at hand, it is quite easy to prove that

(50) lim
t→∞
a.s.

1

tβ
·max

i
d

(i)
t = lim

t→∞
a.s.

1

tβ
· d(I)
t = ξ(I) = sup

i
ξ(i) ∈ (0,∞).

Indeed, for two distinct indices i, j, on the event {ξ(i) > ξ(j)} we have d
(i)
t −d

(j)
t →∞ (since d

(i)
t /tβ →

ξ(i) and d
(j)
t /tβ → ξ(j)). Hence, the fact that d

(I)
t −maxi6=I d

(i)
t →∞ gives (50).

To prove the convergence in Lp for all p ∈ [1,∞), let

Mt := max
i≥1

d
(i)
t

φt
, t ≥ 1 and M∞ := lim

t→∞
a.s.

Mt = sup
i
ζ(i).

Using the facts, given in Lemma 4 and Proposition 1, that {d(i)
t /φt}t≥1 is a submartingale with

d
(i)
t /φt

t→∞−−−→ ζ(i) almost surely (for any i), we obtain the bound, for any p ∈ N, with p > 1/β:

E[(Mt)
p] ≤

∑
i≥1

E[(d
(i)
t /φt)

p] ≤
∑
i≥1

E[(ζ(i))p]
(16)
< ∞.(51)
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Again using the fact that {d(i)
t /φ(t)}t≥1 is a submartingale, it is easy to check that {Mt}t≥1 is also

a submartingale. The above bound tell us that it is bounded in Lp for every p ∈ N (hence also for
every p ∈ [1,∞)). It then follows that Mt →M∞ in Lp, for p ∈ [1,∞). �

Before proving the remaining part of Theorem 4, we give a definition and state and prove two
lemmas. The definition concerns the index of a block with maximum cardinality at time n. The
lemmas show respectively that a CLT is valid for this block that had maximum cardinality at time n,
and that the law of the fluctuations of the maximum cardinality at time n converges weakly, as n goes
to infinity, to the law µ∗ defined in Theorem 4.

Definition 7. For each n ∈ N, let

In := min{i : d(i)
n = max

j
d(j)
n }.

Recall the definition of the random variable I that appears in Theorem 3. The statement of that
theorem implies that

(52) P(In 6= I)
n→∞−−−−→ 0.

Lemma 20. We have that

(53) tβ/2 ·

(
d

(In)
t

tβ
− ξ(In)

)
t→∞−−−→
(d)

µ∗n,

where µ∗n is the distribution of W · Z∗n, where W,Z∗n are independent, W is a standard Gaussian and

(Z∗n)2 (d)
=

{
ξ(In) if β < 1;

ξ(In) ·
(

1− ξ(In)

R

)
if β = 1.

Proof. Define, for each i, n ∈ N,

P̃(i)
n (·) := P(· | In = i),

and Ẽ(i)
n be the associated expectation operator. Recall that

d
(i)
t

φt
→ ζ(i) almost surely, so this conver-

gence also holds P̃(i)
n -almost surely. Moreover, repeating the proof of Proposition 3 shows that

φt ·
∑
s≥t

Ẽ(i)
n [(∆X(i)

s )2]
t→∞−−−→

Ẽ(i)
n [ζ(i)] if β < 1;

Ẽ(i)
n

[
ζ(i) ·

(
1− ζ(i)b

R

)]
if β = 1.

Putting these convergences together as in the proof of Theorem 2, we obtain that, under P̃(i)
n ,

tβ/2 ·

(
d

(i)
t

tβ
− ξ(i)

)
t→∞−−−→
(d)

µ̃(i)
n ,

where µ̃
(i)
n is the distribution of W · Z̃(i)

n , where W, Z̃(i)
n are independent, W is a standard Gaussian

and

(Z̃(i)
n )2 ∼

law of ξ(i) under P̃(i)
n if β < 1;

law of ξ(i) ·
(

1− ξ(i)

R

)
under P̃(i)

n if β = 1.

Now, as in the proof of Theorem 2, the proof is concluded by observing that µ∗n =
∑
i P(In =

i) · µ̃(i)
n . �

Recall the definition of the distribution µ∗ in Theorem 4, and the definition of µ∗n in Lemma 20.
The following result is an easy consequence of (52); the proof is omitted.

Lemma 21. As n→∞, µ∗n converges weakly to µ∗.

We can now finish the proof of the result.
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Proof of Theorem 4, central limit theorem. Let h : R → R be a continuous and bounded function.
Given ε > 0, using (52) and Lemma 21 choose n large enough that

P(In 6= I) <
ε

3‖h‖∞
and

∣∣∣∣∫ h dµ∗n −
∫
h dµ∗

∣∣∣∣ < ε

3
.

Next, using Lemma 20, choose t large enough that∣∣∣∣∣E
[
h

(
tβ/2 ·

(
d

(In)
t

tβ
− ξ(In)

))]
−
∫
h dµ∗n

∣∣∣∣∣ < ε

3
.

Finally note that∣∣∣∣∣E
[
h

(
tβ/2 ·

(
d

(In)
t

tβ
− ξ(In)

))]
− E

[
h

(
tβ/2 ·

(
d

(I)
t

tβ
− ξ(n)

))]∣∣∣∣∣ < ‖h‖∞ · P(In 6= I) <
ε

3
.

Putting things together, we conclude that

E

[
h

(
tβ/2 ·

(
d

(I)
t

tβ
− ξ(n)

))]
t→∞−−−→

∫
h dµ∗,

as required. �
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Appendix A. Appendix

A.1. Martingale concentration inequalities. For the sake of completeness, we state here two
useful concentration inequalities for martingales which are used throughout the paper.

Theorem 5 (Azuma-Hoeffding Inequality – [3]). Let (Mn,Fn)n≥1 be a martingale. Assume there
exists a sequence of negative real numbers (an)n≥1 such that |Mn+1 −Mn| ≤ an for each n. Then,

P (|Mn −M0| > λ) ≤ exp

{
− λ2∑n

i=1 a
2
i

}
for all λ > 0, n ∈ N.

Theorem 6 (Freedman’s Inequality – [8]). Let (Mn,Fn)n≥1 be a (super)martingale. Assume that M0 =
0 and there exists K > 0 such that |Mn+1 −Mn| ≤ K for all n. Write

Vn :=

n−1∑
k=1

E
[
(Mk+1 −Mk)2 | Fk

]
, n ∈ N.

Then,

P
(
∃n : Mn ≥ λ and Vn ≤ σ2

)
≤ exp

{
− λ2

2σ2 + 2Kλ/3

}
for all λ > 0.

A.2. Martingale central limit theorem. The CLT results present in this paper follow from an
application of the following CLT concerning the tails of converging martingales.

Theorem 7 (Martingale central limit theorem – [9], Corollary 3.5, page 79). Let (Sn)n∈N be a square-
integrable martingale with respect to a filtration (Fn)n∈N, satisfying

(54)

∞∑
n=1

E[(∆Sn)2] <∞.
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Let sn :=
(∑∞

m=n E[(∆Sm)2]
)1/2

. Assume that

(55)
1

sn
· sup
m≥n
|∆Sm|

n→∞−−−−→
prob.

0,

that

(56)
1

(sn)2
· E
[

sup
m≥n

(∆Sm)2

]
<∞,

and that

(57)
1

(sn)2
·
∞∑
m=n

(∆Sm)2 n→∞−−−−→
prob.

η2

for some random variable η2. Then, 1
sn
·
∑∞
m=n ∆Sm converges in distribution to the probability

distribution with characteristic function equal to t 7→ E
[
exp{−η2t2/2}

]
.

A.3. Proofs of results on series along sets with asymptotic density. We prove here the lemmas
about sums along sets with asymptotic density used to establish the CLT results present in this paper.

Proof of Lemma 12. The result will readily follow once we show that, for every integer K ≥ 2, we
have

(58) lim
N→∞

N
∑

n∈Λ∩[N,KN ]

1

n2
= α

(
1− 1

K

)
.

To that end, fix K and define, for each N ∈ N, the function

g(u) := bNuc−2, u ∈ [1,K]

and the measure

νΛ
N :=

∑
n∈Λ∩[N,KN ]

δ{n/N}

on Borel sets of [1,K]. Note that

(59)
∑

n∈Λ∩[N,KN ]

1

n2
=

∫
[1,K]

gN dνΛ
N .

It is also readily seen that

(60) N2 · gN (u)
N→∞−−−−→ 1

u2
uniformly on [1,K].

Using the fact that Λ has asymptotic density α, it is a routine exercise to show that

(61)
1

N
· νΛ
N ([1, u])

N→∞−−−−→ α(u− 1) uniformly on [1,K].

Now, writing h(u) := u−2 and letting ` denote the Lebesgue measure on [1,K], we bound∣∣∣∣∣∣N
∑

n∈Λ∩[N,KN ]

1

n2
− α

(
1− 1

K

)∣∣∣∣∣∣ (59)
=

∣∣∣∣∣
∫

[1,K]

(N2gN ) d

(
1

N
νΛ
N

)
−
∫

[1,K]

h d(α`)

∣∣∣∣∣
≤
∫

[1,K]

(N2 · gN ) d

∣∣∣∣ 1

N
νΛ
N − α`

∣∣∣∣+

∫
[1,K]

∣∣N2 · gN − h
∣∣ d(α`)

N→∞−−−−→ 0,

the convergence following from (60) and (61). This completes the proof of (58). �
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Proof of Lemma 14. Let m :=
∑
r rρr. It is easy to check that the assumptions imply that

(62) lim
k→∞

ak
k

= m.

Define, for r ∈ {1, . . . , R}, the sets

Λr := {k ∈ N : ∆ak = r}, Ξr := {ak : k ∈ Λr}.
We claim that, for each r, Ξr has asymptotic density ρr/m. To check this, fix ε > 0. Then, (62)
implies that, for N large enough,

Ξr ∩
{

1, . . . , ab(1−ε)N/mc
}
⊂ Ξr ∩ {1, . . . , N} ⊂ Ξr ∩

{
1, . . . , ad(1+ε)N/me

}
,

so ∣∣∣∣Λr ∩{1, . . . ,

⌊
(1− ε)N

m

⌋}∣∣∣∣ ≤ |Ξr ∩ {1, . . . , N}| ⊂ ∣∣∣∣Λr ∩{1, . . . ,

⌈
(1 + ε)N

m

⌉}∣∣∣∣
and then, again by (62),

(1− ε)ρr
m

< lim inf
N→∞

|Ξr ∩ {1, . . . , N}|
N

≤ lim sup
N→∞

|Ξr ∩ {1, . . . , N}|
N

≤ (1 + ε)
ρr
m
,

so, since ε is arbitrary, the claim is proved.
We now write

ak0
∑
k≥k0

(
∆ak
ak

)2

=

R∑
r=1

r2 · ak0
∑
k≥k0,
k∈Λr

1

(ak)2
=

R∑
r=1

r2 · ak0
∑
b≥ak0 ,
b∈Ξr

1

b2
k0→∞−−−−→

R∑
r=1

r2 · ρr
m
,

where the convergence follows from (62), the fact that Ξr has asymptotic density ρr/m and Lemma 12.
This completes the proof. �
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