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Accelerating Stereo Image Simulation for
Automotive Applications using Neural Stereo Super

Resolution
Hamed Haghighi, Mehrdad Dianati, Valentina Donzella, Kurt Debattista

Abstract—Camera image simulation is integral to the virtual
validation of autonomous vehicles and robots that use visual
perception to understand their environment. It also has appli-
cations in creating image datasets for training learning-based
vision models. As camera image simulation takes into account
a wide variety of external and internal parameters, achieving a
high-fidelity simulation is a computationally expensive process.
Recently, several neural network-based techniques have been pro-
posed to reduce the computational complexity of image rendering,
a critical element of the camera simulation pipeline. However, the
existing methods are tailored for monocular camera images and
are not optimised for stereo images, which are widely used in
autonomous driving applications. To address this, we propose
a technique based on Stereo Super Resolution (SSR) to speed
up the simulation of stereo images. The proposed method first
simulates stereo images at a lower resolution, then super-resolves
them to their original resolution using our introduced SSR model,
ETSSR. We evaluated the performance of our technique using
the CARLA driving simulator and created our own synthetic
dataset for training ETSSR. The evaluations indicate that our
approach can speed up stereo image simulation by a factor of
up to 2.57 over various resolutions. Moreover, it shows that our
ETSSR achieves on-par or superior performance compared to
the state-of-the-art models, using significantly fewer parameters
and FLOPs. We have made our source code and dataset available
at https://github.com/hamedhaghighi/ETSSR.

I. INTRODUCTION

CAMERAS are widely used in Autonomous Vehicles (AVs)
and other robotic applications to aid the perception of the

operational environment. Camera image simulation refers to
the process of producing synthetic images based on simulated
scene descriptions [1]. It is commonly used in virtual system
validation [2] and has recently gained popularity as a method
for creating/augmenting data for training learning-based vision
models [3]. Many real-world applications, including AVs, use
stereo cameras to provide depth information for 3D vision.
As a result, simulation-based development and validation of
such systems require fast and accurate stereo image simulation
techniques such as the one proposed in this paper.

Camera image simulation is inherently a complex process
due to the large number of parameters that need to be
taken into account. Consequently, it demands a high level of
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Fig. 1. Using Stereo Super Resolution (SSR) to accelerate stereo image
simulation. First, a Low Resolution (LR) stereo camera model CLR produces
LR stereo images ILR

L , ILR
R and the respective auxiliary buffers BL, BR

based on the description of the scene L. Second, our proposed SSR model,
ETSSR, produces High Resolution (HR) stereo images ĨHR

L , ĨHR
R feeding

in ILR
L , ILR

R and BL, BR. The accelerated HR camera model C̃HR is built
by integrating the CLR and the SSR model.

computational resources. While this problem may be tolerated
in some applications, it poses a significant challenge in the
simulation-based validation of safety-critical technologies such
as AVs. This stems from the fact that billions of miles of virtual
driving are often needed to prove safety and reliability of
such systems [4]. Hence, the development of faster-than-real-
time simulation setups becomes crucial for system developers.
In light of this necessity, our study aims to accelerate the
simulation of stereo images that are widely utilised in AVs
and related technologies.

There are two generic approaches to camera image simula-
tion in the literature: physics-based and data-driven techniques
[2]. Physics-based simulation techniques are computationally
complex as they rely on detailed calculations of complicated
physical phenomena. To avoid the complexity of such models,
a wide range of data-driven methods have been proposed
in recent years. In the context of AVs and robotics, data-
driven methods often leverage generative adversarial networks
(GANs) [5] to enhance the realism of simulated images.
Although these methods demonstrate promising results for
offline applications, their adequacy for real-time and faster-
than-real-time simulation remains a major technical challenge.
In the gaming application, data-driven techniques use neu-
ral image enhancement models to reduce the computational
costs of image rendering [6]. Although these techniques have

https://github.com/hamedhaghighi/ETSSR
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enabled real-time image rendering at high resolution, the
deployed neural networks are not specifically optimised for
stereo images in terms of computational complexity and image
quality.

This paper proposes a technique based on Stereo Super
Resolution (SSR) to accelerate the simulation of stereo images.
As depicted in Figure 1, our approach initially models stereo
camera images in Lower Resolution (LR) and then uses our
proposed SSR model, ETSSR, to reconstruct them to their
original (High) Resolution (HR). Our ETSSR is inspired by the
success of Swin Transformer [7] models in the field of image
restoration [8]. Specifically, these models have proven to offer
superior PSNR/FLOPs or PSNR/parameters trade-offs when
compared to other state-of-the-art models. Swin Transformer
models have been employed for single-view feature extraction
in image restoration tasks. However, we have taken this notion
further by introducing Disparity-aware Swin Cross Attention
Module (DSCAM) for stereo image scenarios. Utilising simu-
lation buffers such as disparity maps, our DSCAM can extract
cross-view features more efficiently and globally than the
ubiquitous Parallax Attention Module (PAM) [9] used in the
existing SSR models.

We carried out several experiments in the CARLA [10]
simulation framework to assess the performance of our pro-
posed technique. We also created a dataset of synthetic stereo
images at different resolutions to train and evaluate super-
resolution models. Our results imply that incorporating cross-
view information in ETSSR can lead to improved performance
compared to using two independent single-view models. Ad-
ditionally, we show that our ETSSR model is considerably
more computationally efficient than the state-of-the-art super-
resolution models, while achieving comparable or superior
performance in terms of image quality. The contributions of
this paper can be summarised as follows:

• The introduction of a technique for accelerating stereo
image simulation for autonomous driving applications:
The proposed method permits stereo images to be simu-
lated up to 2.57 times faster in CARLA, while preserving
the output quality.

• The design of a novel transformer-based SSR architec-
ture, ETSSR, achieving comparable or superior perfor-
mance to state-of-the-art models, while also being more
efficient and lightweight.

• Provision of a public dataset of synthetic images for
super-resolution tasks: The dataset was created using
CARLA, covering a diverse set of driving scenes.

The rest of this paper is structured as follows. Section II
reviews relevant works on camera image simulation for AVs,
image super-resolution, and neural image reconstruction tech-
niques. Section III describes the proposed speed up technique,
as well as the different components of our ETSSR network.
Section IV elaborates on the experimental settings, speed up
analysis, ablation study, and comparison to the state-of-the-art
methods. Finally, concluding remarks and the potential future
work are given in Section V.

II. RELATED WORK

In this section, we review the related work in each relevant
field and explain how our method differs from those already
existing. We present studies concerning camera image simu-
lation for AVs in Section II-A, image super-resolution models
in Section II-B, and neural image reconstruction for image
rendering in Section II-C.

A. Camera Image Simulation for Autonomous Driving

Camera image simulation involves modelling external el-
ements relating to the simulated environment, e.g. light re-
flection, as well as internal factors relating to the sensor
specifications, such as camera lenses. The degree to which
each factor is precisely modelled determines the fidelity of
the image simulation. This is implicitly specified by the
simulation objective in autonomous driving applications. For
instance, low-latency simulation frameworks [10]–[12] were
developed at the cost of fidelity for real-time testing scenarios,
e.g. hardware-in-the-loop-testing. In contrast, high-fidelity ap-
proaches [13]–[15] were used to produce synthetic datasets for
offline applications. In this case, exclusive simulation pipelines
were designed using physics-based simulation techniques, and
toolboxes [16].

Recently, data-driven simulation techniques have demon-
strated success in synthesising realistic images for driving
applications [5]. In this regard, a wide range of schemes
has been utilised in the literature for incorporating generative
models [17] into the image simulation pipeline. This includes
modelling different parts of the pipeline, such as the image
sensor [18], optical system [19], and weather disturbances
[20]–[22], or the entire pipeline [23]. The main objective of
the works in this area is to provide photo-realistic images for
offline training of machine learning-based perception models.
Our proposed method is also data-driven as we leverage a
machine learning model for camera image simulation. How-
ever, in contrast to the existing methods, we investigate the
effectiveness of our approach for real-time or faster-than-
real-time settings by measuring our method’s computational
complexity and runtime performance.

B. Image Super Resolution

Image Super-Resolution is the technique of recovering High
Resolution (HR) single or multiple image(s) from the corre-
sponding single or multiple Low Resolution (LR) image(s).
In the following, we review recent methods in the literature
for single and stereo image super-resolution tasks, focusing on
Deep Learning (DL)-based methods as they constitute state-
of-the-art.

1) Single Image Super Resolution: Single Image Super
Resolution (SISR) is a category of image super-resolution
whereby the input is restricted to a single image. Regarding the
first use of DL models in image super-resolution, Dong et al.
[24] designed a shallow Convolutional Neural Network (CNN)
to learn a mapping between LR and HR images. Following
that, Kim et al. [25] proposed a very deep CNN (VDSR)
inspired by VGG-Net [26] to enhance super-resolution. Along
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Fig. 2. An overview of our ETSSR’s architecture. Our ETSSR inputs LR images of the left and right views (ILR
L , ILR

R ∈ RH×W×3) as well as their
respective auxiliary buffers (BL, BR ∈ RH×W×4), and outputs the super-resolved images (ĨHR

L , ĨHR
R ∈ RsH×sW×3).

with the advancement of DL-based architectures in image
recognition, SISR models became more deep and complex.
In this regard, residual learning was used by Lim et al.
[27], residual dense blocks and attention mechanism including
channel and spatial attention was leveraged by Zhang et al.
[28], [29]. In the most recent work, Liang et al. [8] proposed
a fully transformer-based model which outperforms previous
CNN-based models.

2) Stereo Super Resolution: Stereo Super Resolution (SSR)
is another type of image super-resolution which takes ad-
vantage of inter-view information provided by stereo images.
In terms of pioneering DL-based models, Jeon et al. [30]
developed a two-stage CNN, namely StereoSR, that exploits
parallax prior as cross-view information. To overcome large
variations in disparity maps, Wang et al. [9] proposed Parallax
Attention Module (PAM) for finding correspondence between
views in an unsupervised manner. Ying et al. [31] suggested a
stereo attention module to exploit inter-view information at
various points of pre-trained SISR models. To address the
occlusion issue in SSR, Wang et al. [32] designed a Bi-
directional PAM (bi-PAM) to use inter-view symmetric cues.
Several i-lateral losses have also been incorporated into the
model to enforce stereo consistency and robustness to illumi-
nation changes. Dai et al. [33] proposed a unified framework,
SSRDEFNet, to simultaneously perform SSR and disparity
estimation. The structure of SSRDEFNet is recursive, with
the disparity estimator assisting SSR and vice versa. Lately,
Chu et al. [34] developed NAFSSR, which is inspired by
NAFNET [35] architecture for single-view feature extraction
and expanded by a set of cross attention modules for the multi-
view scenarios.

Compared to DL-based SSR models, our ETSSR model
stands out due to some key distinctions. First, our ETSSR is a
novel transformer-based SSR network that uses swin attention

[7] as the backbone. This helps the network aggregate intra
/inter-view features more computationally efficient than the
state-of-the-art models. Second, our ETSSR exploits auxiliary
simulation buffers to further boost its performance.

C. Neural Image Enhancement for Image Rendering

Image rendering, also known as scene rendering, is the most
computationally intensive element of camera image simula-
tion. There is a growing body of research that use neural
networks to reduce the costs of image rendering, particularly
for gaming application. The proposed techniques in this area
can be separated into two categories: (1) denoising sparsely
ray-traced images and (2) super-sampling as an anti-aliasing
approach.

Regarding the first category, neural networks are used to
denoise monte-carlo renderings with low samples per pixel.
For instance, Kalantari et al. [36] used multi-layer perceptron
in addition to fixed filters as a denoising model. Following that,
CNNs were used in the work by Bako et al. [37] to predict
the filters needed for noise removal. The method improved
earlier results due to the implicit learning of complex filters
by the CNN model. In a similar study, Chaitanya et al. [38]
proposed a U-Net-based [39] network to predict the de-noised
input directly. Recurrent connections were also added to this
model to increase temporal stability. Other contributions in
this line include the works accomplished by Vogels et al.
[40] and Hasselgren et al. [41], which further enhanced the
reconstruction quality by predicting filter kernels at different
scales.

In the second category, neural super-sampling is used to
avoid under-sampling artefacts primarily jagged edges in the
spatial domain and flickering in the temporal domain. Deep-
learning Super-Sampling (DLSS) [42] was the first method to
employ neural networks for up-sampling rendered images in
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Fig. 3. Details of our ETSSR’s components. (a) Swin Self Attention Block (SSAB). (b) Disparity-aware Swin Cross Attention Module (DSCAM). (c) Local
Self Attention (LSA). (d) Disparity-aware Local Cross Attention (DLCA). (e) Attention mechanism. The layers LN and MLP stand for Layern-Norm and
Multi-Layer Perceptron, respectively.

real-time. In the subsequent work, Xiao et al. [43] devised
a U-Net-based network that uses temporal information based
on motion vectors to increase output quality and stability of
super-sampling.

Our work is inline with the above methods since we use
neural networks to reconstruct high quality synthetic images
from low quality ones. However, it differs from the existing
methods as ETSSR is optimised for stereo images and outper-
forms SISR models (see Section IV-E); also, it focuses on the
spatial domain for super-resolution.

III. PROPOSED METHOD

In this section, we elaborate on our proposed technique. We
first provide the rationales for using SSR to accelerate stereo
image simulation in Section III-A. We then describe the overall
architecture of our ETSSR in Section III-B and its two major
components in Section, III-C, and III-D, respectively.

A. Speeding up Stereo Image Simulation

One of the factors that adds to the complexity of camera
image simulation is the resolution of the image sensor. Our
acceleration technique uses this insight to speed up the simula-
tion by applying super-resolution techniques. Specifically, for
stereo image simulation, we leverage inter-view information to
effectively super-resolve stereo images. As shown in Figure
1, our approach is comprised of two stages. In the first
stage, LR stereo camera model CLR maps the description of
scene L to LR stereo images ILR

L , ILR
R ∈ RH×W×3 (with

H ×W image resolution) and the respective auxiliary buffers
BL, BR ∈ RH×W×4 as:

ILR
L , ILR

R , BL, BR = CLR(L). (1)

The description of scene L includes all the information re-
quired for producing an image, including object properties,
light sources, and weather conditions. The auxiliary buffers
BL, BR consist of disparity maps DL, DR ∈ RH×W×1 and

semantic segmentation layouts SL, SR ∈ RH×W×3, which can
be obtained from intermediary buffers during the simulation.
In the second stage, our SSR model, ETSSR, reconstructs HR
images ĨHR

L , ĨHR
R ∈ RsH×sW×3 (s is the up-scaling factor)

feeding in ILR
L , ILR

R and BL, BR as:

ĨHR
L , ĨHR

R = ETSSR(ILR
L , ILR

R , BL, BR). (2)

Sequentially, the two steps approximate the HR stereo camera
C̃HR which maps L into the reconstructed HR stereo images
ĨHR
L , ĨHR

R as:

ĨHR
L , ĨHR

R = C̃HR(L). (3)

Assuming that the sum of the ETSSR’s runtime and simulation
time of CLR is less than the simulation time of the original
CHR, the proposed technique can speed up the simulation as
we will explore in Section IV-B.

B. Network Architecture

As shown in Figure 2, our ETSSR network’s architecture
contains four stages: processing auxiliary buffers, feature ex-
traction, cross-view fusion, and reconstruction. All the stages
except cross-view fusion share the same operation and weights
for both views. The details of each stage are presented in the
following sections.

1) Processing Auxiliary Buffers: Auxiliary buffers BL, BR

consist of disparity and semantic segmentation maps. The
former provides the distance between corresponding pixels
in two views, and the latter contains the pixel-level object
classes. We feed this additional information into our ETSSR
to further improve the performance. To process the auxiliary
buffers, firstly, buffer features FB ∈ RH×W×64 are extracted
using two 3× 3 convolutions as :

FB = Conv(Conv(B)). (4)

Secondly, FB is added to the upper layers of the model as we
shall see in the rest of this section.
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Fig. 4. Comparison between cross attention context in PAM and our DSCAM. (a) A query pixel in an image view attends to a local window in the opposite
view. (b) Cross attention context in PAM that corresponds to the parallax line of the query pixel in the opposite view. (c) Cross-attention context in DSCAM
which corresponds to the patch enclosing the query pixel in the opposite view.

2) Feature Extraction: Feature extraction inputs ILR and
provides informative features FFE ∈ RH×W×64 for sub-
sequent components. Feature extraction consists of a 3 × 3
convolution at the beginning and a series of Swin Self-
Attention Blocks (SSABs) with residual learning (more details
in Section III-C). Considering K SSAB layers for feature
extraction, the process can be formulated as:

F 0 = Conv(ILR)

F i = SSABi(F
i−1) i = 1, 2, 3, ..., k

FFE = F 0 + FB + Conv(FK).

(5)

3) Cross-View Fusion: In cross-view fusion, the FFE from
two views are fused by the proposed Disparity-aware Swin
Cross Attention Module (DSCAM). The DSCAM, firstly,
registers the images using disparity maps DL, DR and then
performs local Swin cross attention (more details in Section
III-D). Considering FFE

L , FFE
R and DL, DR as inputs,

DSCAM outputs FCV F
L , FCV F

R ∈ RH×W×64 as:

FCV F
L , FCV F

R = DSCAM(FFE
L , FFE

R , DL, DR). (6)

our ETSSR contains two subsequent layers of DSCAM to
leverage a larger attention context.

4) Reconstruction: Following the feature fusion,
FCV F
L , FCV F

R are further processed to reconstruct the
HR images. In the first step of reconstruction, features go
through a channel attention layer, followed by a convolution
layer. Afterwards, the resulting features are fed to a series
of SSABs similar to the feature extraction stage. Finally, a
pixel-shuffle layer followed by a convolution layer produces
the super-resolved image ĨHR. Taking the left view as an
example and considering K SSAB layers, the reconstruction
process can be formulated as:

FRec0
L = Conv(CA(Concat(FCV F

L , FFE)))

FReci
L = SSABi(F

Reci−1

L )

FRec
L = FRec0

L + FRecK
L + FB

L

ĨHR
L = Conv(PixelShuffle(FRec

L )),

(7)

where Concat() and CA() functions are concatenation and
channel attention functions respectively.

C. Swin Self Attention Block

Swin Self Attention Block (SSAB) is the main building
block of our ETSSR. SSAB is based on the Swin Trans-

former [7] architecture, which has recently demonstrated re-
markable PSNR/parameters and PSNR/FLOPs trade-offs in
image restoration tasks [8]. To achieve this, Swin Transformer-
based models calculate self-attention on small image windows,
making the process more efficient, and periodically shift the
windows to prevent the loss of global context, i.e., a drop in
performance. For simplicity, shifting and splitting operations
are typically omitted from illustrations, but they are placed at
the beginning of each SSAB layer. As shown in Figure 3-(a),
the SSAB consists of Layer-Norm (LN), Local Self Attention
(LSA, details are shown in Figure 3-(c)), and Multi-Layer
Perceptron (MLP). Considering Xin ∈ RL×64 (L = Wc×Wc,
where Wc is the patch size) as a patch of an input image, SSAB
outputs Xout ∈ RL×64 following the below equations:

Xmid = LN(LSA(Xin)) +Xin

Xout = MLP (LN(Xmid)) +Xmid.
(8)

To perform LSA, first, query, value, and key matrices
Q,K, V ∈ RL×64 are computed as:

Q, K, V = XinWQ, XinWK , XinWV . (9)

Where WQ,WK ,WV ∈ R64×64 are the weights of fully-
connected network. Then, the attention function (shown in
Figure 3-(e)) is calculated as:

Attention(Q,K, V ) = softmax(QKT /
√
64)V. (10)

D. Disparity-aware Swin Cross Attention Module

We propose Disparity-aware Swin Cross Attention Module
(DSCAM) to mitigate the issue of large computation in the
ubiquitous Parallax Attention Module (PAM) [9]. As shown
in Figure 4-(b), in PAM, each pixel of an image view attends
to its parallax line, equivalent to an image row of length
W in the counter-part view. In applications where cameras
have a wide horizontal field of view, e.g. autonomous driving,
PAM demands a huge and unnecessary calculation for cross
attention. On the other hand, the DSCAM performs Swin cross
attention on corresponding image patches with size wc, where
w2

c < W (Figure 4-(c)). We also feed in disparity maps to align
the patches in left and right views so that the relevant context
is available for cross attention. As shown in Figure 3-(b), the
architecture of DSCAM is similar to SSAB with Disparity-
aware Local Cross Attention (DLCA, details are shown in
Figure 3-(d)) replacing LSA. In DLCA, firstly, image features
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TABLE I
SPEED UP ANALYSIS OF OUR ETSSR’S VARIANTS FOR DIFFERENT IMAGE RESOLUTIONS. THE AVERAGE SIMULATION TIME OF THE CARLA’S STEREO

CAMERA IN THE ORIGINAL RESOLUTION IS REFERRED TO AS tHR , WHILE THAT OF THE CORRESPONDING LR STEREO CAMERA PLUS OUR ETSSR’S
RUNTIME IS REFERRED TO AS tLR + tSR (EQUIVALENT TO THE TIME PROPOSED BY OUR APPROACH). THE PSNR/SSIM COLUMN SHOWS THE AVERAGE

OUTPUT QUALITY OF THE SUPER-RESOLVED IMAGES, WHICH IS INDICATED SEPARATELY FOR THE LEFT AND RIGHT VIEW.

Image Resolution tHR (ms) Model Variants tLR + tSR (ms) Speed Up PSNR / SSIM (left) PSNR / SSIM (right)

1280× 720 131
ETSSR S 58 2.26 33.03 / 0.8999 33.04 / 0.9002
ETSSR B 62 2.11 33.12 / 0.9017 33.14 / 0.9021
ETSSR L 65 2.02 33.18 / 0.9023 33.20 / 0.9021

1920× 1080 173
ETSSR S 68 2.54 34.93 / 0.9245 34.94 / 0.9247
ETSSR B 75 2.31 34.96 / 0.9247 34.98 / 0.9250
ETSSR L 82 2.11 34.96 / 0.9251 34.99 / 0.9253

2560× 1440 231
ETSSR S 90 2.57 38.20 / 0.9569 38.22 / 0.9566
ETSSR B 103 2.24 38.45 / 0.9581 38.46 / 0.9579
ETSSR L 117 1.97 38.54 / 0.9592 38.56 / 0.9588

TABLE II
ABLATION STUDY OF OUR ETSSR. WE INCREMENTALLY ADD OUR PROPOSED MODULES TO THE BASELINE MODEL TO OBSERVE THE EFFECT ON THE

EFFICIENCY AND OUTPUT QUALITY. THE BEST RESULT IS BOLDED.

Models Params (M) FLOPs (T) PSNR/SSIM (left) PSNR/SSIM (right)
Baseline 0.90 0.607 38.16/0.9560 38.19/0.9558
Baseline + SCAM 0.58 0.514 38.14/0.9546 38.17/0.9544
Baseline + DSCAM (SCAM + Disparity) 0.58 0.514 38.39/0.9577 38.40/0.9573
ETSSR 0.62 0.533 38.44/0.9579 38.46/0.9576

from two views XL, XR get aligned using disparity maps
DL, DR as:

Xa
L = Index Select(XL, X

j
L +DL)

Xa
R = Index Select(XR, X

j
R −DR),

(11)

where Xj
L, X

j
R are grid maps containing the column index of

each pixel, and Index Select() selects the input indexes from
the specified array. Secondly, aligned features constitute keys
K and values V for cross attention as:

QL,KL, VL = XRWQ, X
a
RWK , Xa

RWV

QR,KR, VR = XLWQ, X
a
LWK , Xa

LWV

FR→L = Attention(QL,KR, VR)

FL→R = Attention(QR,KL, VL),

(12)

Where WQ,WK ,WV ∈ R64×64 are the weights of fully-
connected network.

E. Loss
The L1 norm between super-resolved image ĨHR and

ground-truth IHR is chosen as an objective function for
training our ETSSR:

Loss = |ĨHR
L − IHR

L |+ |ĨHR
R − IHR

R |. (13)

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our tech-
nique. In Section IV-A, we first describe our experimental
settings, including the provided dataset, training parameters,
evaluation metrics, and our ETSSR’s variants. We then discuss
the speed up achieved by our approach in Section IV-B. In
Section IV-C and IV-D, the effectiveness of the proposed
ETSSR’s modules and the cross-view fusion component is
analysed. Finally, we present a quantitative and qualitative
comparison to the state-of-the-art super-resolution models in
Section IV-E.

TABLE III
ANALYSIS OF CROSS-VIEW FUSION. WE TRAIN OUR ETSSR WITH FIVE
DIFFERENT STRATEGIES TO INVESTIGATE THE EFFECT OF CROSS-VIEW

FUSION AND ITS OPTIMAL SPOT. THE BEST RESULT IS BOLDED.
Models PSNR/SSIM (left) PSNR/SSIM (right)
ETSSR with No Fusion 37.93/0.9529 37.94/0.9527
ETSSR with Input Fusion 38.02/0.9544 38.04/0.9541
ETSSR with Late Fusion 38.17/0.9552 38.20/0.9550
ETSSR with Early Fusion 38.40/0.9573 38.41/0.9571
ETSSR 38.44/0.9579 38.46/0.9576

A. Experimental Settings

1) Dataset: In order to train our ETSSR, we need access
to a considerable number of synthetic stereo images and
simulation buffers captured at different resolutions. Although
there are off-the-shelf datasets of synthetic images, e.g. Virtual
Kitti [44], the images are only rendered at a single resolu-
tion. Moreover, there is a lack of information regarding the
simulation time required for simulating images at different
resolutions and rendering quality. Due to these limitations,
we built our own dataset, namely CARLA’s Multi-Resolution
Stereo Images (CMRSI), using the CARLA [10] driving
simulator. We modelled an RGB stereo camera with an image
resolution of 2560 × 1440 (following 16:9 aspect ratio of
standard automotive image sensors [45]) and a baseline of 0.5
metres. We placed the stereo camera model on a vehicle model
controlled by CARLA’s auto-pilot algorithm. The vehicle was
driven across all eight maps of CARLA to record a total of 800
frames, with approximately 100 frames per map. In addition
to RGB images, we captured the scene’s disparity map and
semantic segmentation layouts as auxiliary buffers. Notably,
all the data (including RGB images and auxiliary buffers)
were also recorded at a resolution of 640 × 360 in order to
produce LR frames. Throughout our evaluations, we maintain
the super-resolution up-scaling factor to be 4× 4.

2) Training: We split the CMRSI into training and test
sets following the 80:20 ratio. During the training phase, we
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TABLE IV
QUANTITATIVE COMPARISON TO THE STATE-OF-THE-ART METHODS. THE BEST RESULT IS IN RED, AND THE SECOND BEST RESULT IS IN BLUE.

Models Params (M) FLOPs (T) PSNR/SSIM (left) PSNR/SSIM (right)
Bicubic - - 35.64/0.9343 35.65/0.9341
VDSR 0.67 4.917 37.48/0.9498 37.50/0.9493
RCAN 15.36 7.020 38.08/0.9542 38.09/0.9539
EDSR 38.90 18.282 38.10/0.9556 38.09/0.9553
RDN 22.04 10.168 38.31/0.9559 38.33/0.9556
StereoSR 1.15 8.461 36.19/0.9383 36.17/0.9381
SSRDEFNet 2.26 5.004 36.62/0.9544 36.62/0.9550
PASSRnet 1.42 1.745 37.89/0.9541 37.92/0.9543
iPASSR 1.43 1.102 38.11/0.9557 38.13/0.9549
NAFSSR 0.46 15.327 38.14/0.9555 38.16/0.9553
ETSSR S (Ours) 0.47 0.362 38.20/0.9569 38.22/0.9566
ETSSR B (Ours) 0.62 0.533 38.45/0.9581 38.46/0.9579
ETSSR L (Ours) 0.76 0.703 38.54/0.9592 38.56/0.9588

cropped LR images to 30×90 overlapping patches with stride
20, similar to the training settings of other super-resolution
networks. We train our model with a batch size of 32 for
80 epochs and use the Adam optimiser with a learning rate
of 2e−4 halving every 30 epochs. We implement our model
with Pytorch library and run the entire experiments on Nvidia
Quadro RTX 5000.

3) Evaluation metrics: PSNR and SSIM [46] are used to
assess the quality of super-resolved images. The former mea-
sures pixel-level error, while the latter focuses on structural
similarity. We calculate the metrics for the left and right
image views independently. The total number of parameters in
millions (M) and floating point operations (FLOPs) in trillions
are also used to measure the capacity and efficiency of the
super-resolution networks.

4) Model Variants: To study the trade-off between the
complexity and performance of our ETSSR, we designed
three model variants: ETSSR S (small), ETSSR B (base),
and ETSSR L (large). The difference between the variants
is in the number of SSABs used in the feature extraction
and reconstruction components of our ETSSR. For ETSSR S
,ETSSR B and ETSSR L, we consider two, four, and six
SSAB layers respectively. By increasing the number of SS-
ABs, more informative features are extracted, and the ability
of image reconstruction is raised. Unless specified, the ETTSR
model refers to the ETSSR B throughout the paper.

B. Speed up Analysis

In this section, we investigate the effectiveness of our
acceleration technique. As shown in Table I, we compare
the simulation time of stereo images in CARLA with the
time required by our approach for different image resolutions
and ETSSR variants. We further report the output quality of
images super-resolved by our ETSSR variants in terms of the
evaluation metrics. The time required for the stereo image
simulation in the original resolution is referred to as tHR,
while that of the LR stereo image ( 14 × 1

4 of the original
resolution) and the runtime of our ETSSR is referred to as tLR

and tSR respectively. It should be noted that the simulation
time of stereo images is averaged over scenarios of varying
complexity. Moreover, our ETSSR model is optimised with
PyTorch’s Tensor-RT library at 16-bit precision. As shown, our
method can speed up the camera image simulation by factors

Fig. 5. Arrangement of our ETSSR’s components in different fusion schemes.
PFE, CVF, SFE and US stand for primary feature extraction, cross-view
fusion, secondary feature extraction, and up-sampling. PFE is equivalent to
our ETSSR’s feature extraction component and the SFE refers to a series of
SSABs in our ETSSR’s reconstruction component.

between 1.97 and 2.57, depending on the ETSSR variant and
image resolution. The different variations of ETSSR allow
a trade-off between output quality and execution time. The
quantitative metrics also show that our ETSSR can reconstruct
HR images with high quality. This will be analysed further in
Section IV-E.

C. Ablation Study

To assess the impact of each proposed module in our
ETSSR, we progressively add the modules to a baseline
model and evaluate their performance. The baseline model
uses SSABs for feature extraction and reconstruction, similar
to our ETSSR. However, it does not take in auxiliary buffers
and uses PAM instead of DSCAM for cross-view fusion. Our
ablation study involves three stages: firstly, we replace PAM
in the baseline with a Cross Swin Attention Module (CSAM,
which is DSCAM without disparity) to analyse the impact of
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Fig. 6. Qualitative comparison to the state-of-the-art methods. The values below each image represent the image’s PSNR/SSIM averaged over the left and
right views.

cross Swin attention. Secondly, we examine the effectiveness
of disparity alignment by feeding the disparity maps into
CSAM (DSCAM). Thirdly, we input auxiliary buffers into the
model (which constructs our ETSSR model) to check whether
extra information is advantageous. As shown in Table II,
replacing PAM with CSAM reduces the parameters and FLOPs
by 36% and 15%, respectively, while PSNR/SSIM remains
relatively similar. This indicates the effectiveness of swin cross
attention in boosting the model’s efficiency. Using DSCAM in
the second stage raises the PSNR by 0.24 dB averaged over
two views, which shows the importance of disparity maps in
assisting cross attention. In the last stage, feeding auxiliary
buffers elevates the PSNR/SSIM at the expense of a slight
increase in the computation, which proves to be negligible in
practice.

D. Analysis of Cross-View Fusion

In this section, we investigate the effect of cross-view fusion
as well as its optimal spot in our ETSSR’s architecture.
To analyse the effect of cross-view fusion, we replace the
DSCAM with two layers of SSABs in each view and train
the separated models independently (no fusion). To find the
optimal spot for cross-view fusion, we train the model with
four different fusion schemes: (1) concatenating the left and
right images at the input and training the separated models
independently (Input Fusion), (2) fusing the features before
the primary feature extraction component (Early Fusion),
(3) fusing the features after the primary feature extraction
component (ETSSR), and (4) fusing the features after the sec-
ondary feature extraction (Late Fusion). Figure 5 depicts the
arrangement of the components for different fusion schemes.
As shown in Table III, excluding the cross-view fusion causes
a 0.51 dB decrease in PSNR comparing to our ETSSR.
This highlights the significance of cross-view information and
SSR’s superiority over two separate SISR models. It is also
evident that the original ETSSR model outperforms the input,
late, and early fusion schemes. This implies that the ideal spot
to fuse information is within the middle of the network, where

Fig. 7. PSNR vs FLOPs for state-of-the-art super-resolution methods. The
size of each point is proportional to the number of parameters in the model.
PSNR is averaged over the left and right views.

intra-view features are rich enough and can also assist the
super-resolution in the counterpart view.

E. Comparison to State-Of-The-Arts

In this section, we compare our ETSSR to several state-
of-the-art SSR and SISR methods. We select StereoSR [30],
PSSRNet [9], iPASSR [32], SSRDEFNet [33], and NAFSSR
[34] (the most efficient version) from SSR models and VDSR
[25], EDSR [27], RCAN [29], and RDN [28] from SISR
networks. We train all the models from scratch on the CMRSI
training set and evaluate them on the test set.

1) Quantitative Comparison: We quantitatively compare
our ETSSR to the state-of-the-art super-resolution models in
Table IV. As shown, the ETSSR L achieves the maximum
SSIM/PSNR while using less than 4% of parameters and 8%
of the FLOPs of the closest method, RDN. Compared to
the efficient models in terms of FLOPs, the closest method
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is iPASSR which consumes more than three times as many
FLOPs of our ETSSR S while falling -0.09 dB short in PSNR.
Figure 7 depicts the scatter plot of PSNR against FLOPs for
all methods, making the difference between the methods more
apparent.

2) Qualitative Comparison: We qualitatively compare our
ETSSR to state-of-the-art methods by visualising the model’s
output in Figure 6. We chose the scenes from two distinct
CARLA maps and the frames where multiple objects are
visible in the camera’s field of view. As shown, our ETSSR
can reconstruct the image with a high degree of detail, while
other methods may suffer from blurriness or artefacts. Bear in
mind that our goal in this research is not to visually exceed
the state-of-the-art methods but rather to propose an efficient
SSR network that preserves the HR image quality. Readers can
view this video for supplementary results at full resolution in
other CARLA maps.

V. CONCLUSION AND FUTURE WORK

In this research, we proposed a technique based on SSR to
speed up the simulation of stereo images, which are commonly
used in autonomous driving applications. To efficiently super-
resolve synthetic stereo images, we designed ETSSR, a novel
SSR network. According to our experiments in CARLA, the
proposed technique can speed up the stereo image simulation
by a factor of up to 2.57 over different image resolutions.
Moreover, our ablation study showed that each of the pro-
posed ETSSR’s components contributed to the performance
improvement. We also highlighted the significance of cross-
view fusion on the model’s performance and realised that
the optimal spot for feature fusion lies in the middle of
the network. Our comparative study revealed that ETSSR is
more efficient and lightweight than the state-of-the-art super-
resolution models while also achieving comparable or superior
results in terms of image quality.

We identify three prospective research directions for future
work. Firstly, we propose that efficient incorporation of tem-
poral information (e.g. previous data frames) and utilisation
of spatio-temporal consistency losses could further improve
the output quality of ETSSR. In this case, the acceleration
technique can be reformulated as stereo video super-resolution
[47], however, with careful consideration of the model’s ef-
ficiency. Secondly, we anticipate that the ongoing research
on the Transformer model’s efficiency [48] may enable an
even greater acceleration of our approach. Thirdly, we suggest
investigating the feasibility of a similar technique for other
sensors used in AVs, such as Lidar or radar. For this, the super
resolution model needs to be customised to reconstruct the
data in the representation provided by the sensor. We believe
that this work lays the foundation for further research on the
efficiency of camera image simulation and the customisation
of modern rendering techniques for autonomous driving or
robotics applications.
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