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Power Regulation and Load Mitigation of Floating
Wind Turbines via Reinforcement Learning

Jingjie Xie, Hongyang Dong, and Xiaowei Zhao

Abstract—Floating offshore wind turbines (FOWTs) are often
subjected to heavy structural loads due to challenging operating
conditions, which can negatively impact power generation and
lead to structural fatigue. This paper proposes a novel reinforce-
ment learning (RL)-based control scheme to address this issue.
It combines individual pitch control (IPC) and collective pitch
control (CPC) to balance two key objectives: load reduction and
power regulation. Specifically, a novel incremental model-based
dual heuristic programming (IDHP) strategy is developed as the
IPC solution to reduce structural loads. It integrates the online-
learned FOWT dynamics into the dual heuristic programming
process, making the entire control scheme data-driven and
free from dependence on analytical models. Furthermore, the
proposed method differs from existing IDHP methods in that
only partial system dynamics need to be learned, resulting in
a simplified design structure and improved training efficiency.
Tests using a high-fidelity FOWT simulator demonstrate the
effectiveness of the proposed method.

Note to Practitioners—This work achieves power regulation
and load reduction simultaneously for FOWTs to guarantee the
reliability of wind turbine operations. Such a task is still an
open problem because existing FOWT controllers commonly rely
on accurate turbine models and lack adaptability to potential
uncertainties and errors in practical situations. A new data-
driven, model-free control strategy based on the RL technique
is developed to address these issues. Our method has the ability
to capture potential changes in system dynamics by updating
a so-called incremental model via online measurements. Unlike
current advances in this direction that need to approximate the
whole system dynamics, the proposed control algorithm only
needs to update partial system information for the incremental
model. This naturally simplifies the design structure and en-
hances learning effectiveness while providing adaptability and
robustness against uncertainties and errors. The proposed control
strategy can also be extended and implemented in other systems,
such as autonomous systems and other renewable energy systems.

Index Terms—Intelligent control, wind turbine control, rein-
forcement learning, wind energy.

I. INTRODUCTION

THE development of floating offshore wind turbines
(FOWTs) has been growing dramatically in recent years.

Compared with conventional wind turbines, FOWTs have
many merits, e.g. extended installation area (to the sea with
water depth up to 900m) and the ability to harvest high-
quality wind power resources. However, FOWTs commonly
suffer from heavy structural loads since they are affected
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by the stochastic wind-wave environment [1], especially far
offshore. That can lead to severe platform & tower motions
and negatively influence the power capture efficiency and
system stability [2]. Therefore, mitigating structural loads
while regulating power generation is crucial for FOWTs to
improve power quality, avoid structure damage, and prolong
service life.

Pitch control is a commonly-employed and easy-to-
implement method to maintain rated power and alleviate
fatigue loads in the above-rated region [3]. Specifically, it
regulates the blade pitch angles to change rotor thrust, serving
as a restoring moment to stabilize the turbine tower and
platform [4]. In many studies, pitch control can be subdivided
into collective pitch control (CPC) and individual pitch control
(IPC). In CPC, all blades are adjusted collectively by the same
pitch angle command to maintain the output power at a desired
rated value [5]. In contrast, they are controlled independently
further by individual pitch signals in IPC to mitigate structural
loads potentially [6].

A lot of pitch controllers have been designed for FOWTs.
For example, classical proportional-integral-derivative (PID)
controllers have been widely adopted [7], [8], [9]. PID-based
pitch controllers have simple structures and are easy to build,
but their load mitigation ability and robustness are limited.
Advanced FOWT control approaches have been proposed to
overcome the limitations of PID-based methods. For example,
a low-authority linear-quadratic (LQ)-based IPC controller
combined with an integral action-based CPC was designed
in Ref. [1]. Ref. [10] proposed a radial basis function-based
sliding mode controller to suppress the floating foundation
motion and reduce power oscillation, and a further study in
Ref. [11] developed a variable-gain high-order sliding mode
pitch control strategy. Ref. [3] designed another pitch control
method based on the sliding mode technique, in which an
adaptive second-order sliding surface was considered. In Ref.
[12], the blade pitch control of FOWTs was solved by an
H∞ method to achieve two competing objectives, i.e., power
regulation and load mitigation. Notably, these elegant results
are model-based and rely on accurate FOWT models. In
addition, they have difficulties dealing with strict state and
input constraints.

Model predictive control (MPC) has received extensive
attention in recent years due to its ability to handle multi-
objective optimal control problems under various constraints
[13], [14], [15]. Several MPC-based methods have been suc-
cessfully applied to wind turbine pitch control problems [13],
[16], [17], [18]. Specifically, in Ref. [13], a nonlinear MPC-
based IPC was investigated for FOWT to alleviate blade
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loads. Ref. [16] also employed MPC to stabilize power output
and reduce dynamic loads & platform motion for FOWT.
A constrained subspace predictive repetitive control (SPRC)
approach was introduced in Ref. [17] for similar tasks. In
Ref. [18], MPC was studied based on a Takagi-Sugeno fuzzy
model to maintain the rated power. Although these MPC-based
FOWT controllers have shown promising performance, they
still highly rely on accurate system models for future state
prediction. Those methods are sensitive to modelling errors
and unmodeled dynamics. Due to the strong non-linearity and
high complexity of FOWT, the accuracy of analytical models
is hard to guarantee during the entire lifespan of FOWT,
especially considering the harsh wind-wave environment [19].

These facts motivate us to develop a data-driven, model-
free control strategy for FOWTs, rendering strong robustness
and adaptability against unmodelled dynamics and uncertain-
ties. This method also should balance the requirements of
power generation regulation and structural load mitigation
simultaneously. To this end, a novel reinforcement learning
(RL)-based wind turbine pitch controller is proposed in this
paper. Reinforcement learning is a disruptive technology for
the operations of offshore renewable energy systems, including
offshore wind farms and turbines [20]. It aims to find the
control policy to optimize long-term rewards/costs via mining
the data obtained through interactions with the environment
[21]. It is noteworthy that several studies [22], [23] have
applied RL methods to wind turbine pitch control problems,
showing effectiveness in power regulation. However, these
essential results ignore the load mitigation requirement - as
we mentioned before, load mitigation is crucial for FOWTs.
It is still a blank area to develop RL-based control algorithms
for FOWTs that can not only reduce power fluctuation but
also alleviate loads, and we fill this research gap in this paper.
Specifically, an incremental wind turbine model-based dual
heuristic programming (IDHP) algorithm is designed as the
IPC to cooperate with a PI-based CPC. Such a framework
allows the whole control system to achieve reliable power
regulation performance and mitigate loads at the same time
by regulating blade pitch angles. The proposed method does
not rely on any pre-determined analytical models. It is able to
capture critical system information via real-time measurements
(by building a so-called incremental model online). In addi-
tion, a critic-actor structure is employed to approximate the
long-term cost function and find the optimal control policy.
The effectiveness of our method is validated by the FAST
(Fatigue, Aerodynamics, Structures, and Turbulence) simulator
developed by the US National Renewable Energy Laboratory
(NREL) [24]. We further summarize the contributions of our
paper from the following two aspects.

1. To our best knowledge, this is the first attempt to address
the power regulation and load mitigation simultaneously for
FOWTs via the RL technique. The proposed strategy is data-
driven and model-free, which can solve optimal FOWT control
problems without relying on accurate analytical models. Un-
like existing RL-based wind turbine control task that considers
only the power regulation issue, this paper aims to achieve two
competing objectives, i.e. (1) reducing power fluctuations and
(2) mitigating loads & motions on the tower and platform.

Blades

Tower

Platform

Flapwise of blades

Tower fore-aft

Platform pitch

Blade edge-wise

Tower side-to-side

Platform roll

(a) (b)

Fig. 1. The structure of FOWT with potential load-induced motions. (a) Out-
of-plane direction. (b) In-plane direction.

2. The proposed method differs from current IDHP methods
in that only partial system dynamics need to be learnt online.
This novelty avoids the complex approximation and learning
process for the whole system dynamics, leading to enhanced
training efficiency and a simplified design structure.

The remainder of this paper is laid out as follows. The
FOWT pitch control task is introduced in Section II. Our RL-
based pitch controller considering power regulation and load
mitigation is designed in Section III. Then, simulation results
under different scenarios based on the FAST simulator are
shown in Section IV. Some conclusions are given in Section
V to finish this paper.

II. PROBLEM FORMULATION

In this section, the FOWT pitch control problem is formu-
lated, and the structure of FOWT, followed by the control
objectives, is introduced in detail.

A. Floating Turbine System

The structure of a typical FOWT is depicted in Fig. 1. It
also illustrates the potential motions in the out-of-plane (along-
wind) and in-plane (cross-wind) directions. The motion in the
out-of-plane direction is subjected to the major aerodynamic
loads [1]. Therefore, this paper focuses on suppressing turbine
motions/loads in the out-of-plane direction via pitch control.

Without loss of generation, we consider a 5-MW FOWT
developed by NREL to design and evaluate our RL-based
FOWT control method. As shown in Ref. [25], such a FOWT
has 22 degrees of freedom (DoFs). In this work, the DoFs
related to the out-of-plane motion are chosen for designing
the pitch control strategy, including the first flap-wise bending
mode for three blades, the first fore-aft tower bending mode,
and the platform pitch. Accordingly, the structural dynamics
of a FOWT with these DoFs for the IPC can be described as

ṡ = f(s) +G(s)a (1)

where s = [sP sTFA sFB1 sFB2 sFB3 ewg ]
T de-

notes the state vector, sP , sTFA, sFB1, sFB2, and sFB3

represent the platform pitch, tower fore-aft, and flap-wise of
blade 1, blade 2, and blade 3, respectively, ewg is the error
between the generator speed and the reference. In addition,
a = [β1 β2 β3]

T is the control input for IPC, and here β1,
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β2, β3 represent the individual pitch angles for three blades.
Moreover, f(s) and G(s) denote the state and input function
of the FOWT pitch control system. Different with mainstream
wind turbine control methods, our design does not require the
specific definitions of f(s) and G(s). In other words, the RL-
based FOWT controller proposed in the following section is
model-free.

B. Control Objectives

This paper focuses on wind turbine pitch control in the
above-rated region to achieve power regulation and load
mitigation. It has been reported by many researchers that the
reduction of structural loads can cause the deterioration of the
power quality [1], [3]. Moreover, improving the power quality
usually has a negative impact on the platform motions. Such
a contradictory situation brings the challenge of developing
control algorithms that are not only capable of improving
power production but also able to reduce loads & motions
simultaneously. This challenge is addressed in our study by
designing an RL-based pitch controller that includes both CPC
and IPC. On the one hand, CPC regulates the power output
by maintaining the generator speed at its rated levels. On the
other hand, IPC solves an optimal control problem to reduce
loads & motions exerted on the blade, tower, and platform in
the out-of-plane direction. We define a continuous-time cost
function for IPC:

Q(s(t), a(t)) =

∞∑
l=t

γl−tr(t) (2)

where l = t, t + 1, ...,∞, γ ∈ (0, 1) is a discount factor,
r is called the one-step reward function, which is defined
in a quadratic form of tracking errors. The one-step reward
function r(t) at time t is defined as

r(t) = (s(t)−s∗(t))TQw(s(t)−s∗(t))+a(t)TRwa(t) (3)

where s∗(t) is desired state, Qw and Rw are weight matrices.
As mentioned in the introduction, we develop an IDHP-

based method in the next section to solve the above optimal
control problem. Furthermore, integrating it with a collective
pitch control strategy allows the whole control system to
balance load mitigation and power regulation requirements.

III. RL-BASED CONTROLLER FOR FOWTS

This section investigates an RL-based pitch control design
framework for the FOWT power regulation and loads mitiga-
tion. A novel incremental FOWT pitch control dynamic model-
based dual heuristic programming (IDHP) method is designed
as IPC to alleviate the loads. Meanwhile, a proportional-
integration (PI)-based controller is integrated with IPC as CPC
to maintain the power output. The structure of our control
system is shown in Fig. 2. The pitch angle control signal
β ∈ R3×1 follow

β = βc + a (4)

where βc ∈ R1×1 is the collective pitch control signal
obtained from the CPC scheme, and a = [β1, β2, β3]

T ∈ R3×1

denotes the individual pitch control signal derived from the
IDHP-based IPC strategy.

Generator speed

Desired 
generator speed

+−

++

++

++

IDHP-based
individual pitch control

PI-based
collective pitch control

Speed 
sensor

Individual pitch control loop

Collective pitch control loop

Platform pitch, tower fore-aft, blade flap-wise

β1

β2

β3

βc βc βc

Fig. 2. The structure of the proposed RL-based control method for FOWT.

A. PI-Based CPC

For CPC, the PI method is applied to achieve the power
regulation. It aims to maintain the power output to the rated
value by minimizing the generator speed error ewg , which is
defined as

ewg
(t) = wg(t)− wrated

g (t) (5)

where wg(t) and wrated
g (t) are the generator speed and its

rated value at time t, respectively. The PI-based collective pitch
control law can be described as

βc(t) = KP · ewg (t) +KI ·
∫
ewg (τ)dτ (6)

where KP and KI denote proportional and integral gains,
respectively.

B. IDHP-Based IPC

In addition to the PI-based CPC scheme, the IDHP-based
IPC method is designed to mitigate loads and load-induced
motions for FOWTs. Our design is built upon the approximate
dynamic programming (ADP) theory.

The ADP technique, introduced by Werbos [26], [27], [28],
has proven to be an effective reinforcement learning (RL)
tool for addressing optimal control problems [29]. Distinct
from other RL approaches such as deep Q-network (DQN)
algorithms, which often exhibit slow convergence and ex-
cessive randomness during training [30], ADP methods can
ensure rapid convergence under specific conditions [31] and
maintain system stability throughout the iterative process [32].
Furthermore, when compared to the DDPG algorithm—a
widely utilized RL method with a complex structure and sub-
stantial computational demands—ADP offers a comparatively
simpler structure [33]. This reduced complexity effectively
alleviates computational burdens, making ADP well-suited for
wind turbine control challenges. Consequently, we develop a
novel ADP-based solution for wind turbine control, aimed at
addressing power regulation and load reduction requirements.

One of the most widely used ADP schemes is heuristic
dynamic programming (HDP), which utilizes a critic network
and an actor network to directly approximate the long-term
reward function and control policy, respectively [34]. Another
type of ADP is dual heuristic programming (DHP), which
employs the critic network to approximate the derivatives of
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the long-term reward function with respect to critic inputs [35].
It has been reported that estimating derivatives as in DHP is
beneficial in reducing potential errors induced by the back-
propagation process as in HDP [29]. Therefore, we chose DHP
as the underlying design benchmark to develop our RL-based
individual pitch controller.

Model Network

Reward

Critic Network

Actor Network

+−

Updating rules

Updating rules

Real state

Action

Estimated State 

Optimal state

Fig. 3. The framework of a conventional DHP method for FOWT control.

The framework of a conventional DHP control scheme
for a FOWT is illustrated in Fig. 3. Therein, the whole
system dynamics is approximated either online or offline by an
artificial neural network. On the one hand, an offline trained
model can be inaccurate given uncertainties and modelling
errors induced by long-time working conditions and complex
environments. On the other hand, highly computational burden
is inevitably required for online approximation of the entire
system dynamics.

To address these problems, we combine the incremental
model concept [35], [36], [37] with DHP. Such a design allows
us to learn the key system information online but only needs
to update the task-related part of system dynamics, bringing
strong adaptability and robustness against uncertainties and
modelling errors while keeping a moderate level of computa-
tional complexity. We elaborate our design as follows.

1) Incremental FOWT Model Learning:
The incremental model approximates nonlinear dynamics

by taking the first-order Taylor series expansion around the
latest system operation condition [35], [36]. It transforms the
unknown control system into a new version that includes the
incremental state and input with only partial model dynamics.
The FOWT dynamics given in Eq. (1) under the stochastic
wind, wave, and disturbances can be described as

ṡ = f(s(t)) + ∆f(s(t))δW

+ (G(s(t)) + ∆G(s(t))δW)a(t) + d(t)
(7)

where s(t) ∈ Rn is the system state at time t, a(t) ∈ Rm is
the control input, f(s(t)) and G(s(t)) are unknown functions.
∆f(s) and ∆G(s) represent model variations induced by
stochastic wind and/or wave, and δW is a binary constant (to
be either 0 or 1) that is employed to represent the effects of
wind and/or wave. If δW = 0, it means the nominal case. In
contrast, when δW = 1, it denotes that the strong wind and/or
wave occur, and accordingly the FOWT model deviates from
its nominal case.

Then, according to the Taylor series expansion, the system
can be approximated around the operating point [s(t0),a(t0)]
as follows [36]

ṡ(t) = ṡ (t0) + Ḡ [s (t0) , δW (t0)]∆a(t)

+
∂[H(s(t), δW(t))]

∂s(t)

∣∣∣∣
s(t0),a(t0)

·∆s(t)

+
∂[H(s(t), δW(t))]

∂δW(t)

∣∣∣∣
s(t0),a(t0)

·∆δW(t)

+ ∆d(t) +O
(
∆s2(t)

)
(8)

where t0 is the latest sampling time, H(s(t), δW(t)) =
f̄(s(t), δW(t))+Ḡ(s(t), δW(t))a(t). f̄(s(t), δW(t)) = f(s)+
∆f(s)δW and Ḡ(s(t), δW(t)) = G(s) + ∆G(s)δW denote
real models under uncertainties. ∆a(t) = a(t) − a(t0),
∆s(t) = s(t) − s(t0), ∆δW(t) = δW(t) − δW(t0), and
∆d(t) = d(t)−d(t0) are increments of control inputs, system
states, uncertain dynamics trigger, and disturbances, respec-
tively. Moreover, O

(
∆s2(t)

)
denotes higher-order residual

terms. Note that if the sampling time is sufficiently short, the
higher-order term and ∆s(t) could be omitted [36], and the
above system can be further simplified as

∆ṡ(t) ≈ Ḡ [s (t0) , δW (t0)]∆a(t)

+
∂[H(s(t), δW(t))]

∂δW(t)

∣∣∣∣
s(t0),a(t0)

·∆δW(t) + ∆d(t)

(9)
Eq. (9) is called an incremental model, and its discrete

version satisfies

sk+1 ≈ sk + Ḡk ·∆ak +
∂Hk

∂δWk

·∆δWk
+∆dk (10)

where k denotes the k-th discrete step, Gk = G(sk, δk) is
the input matrix at the k-th step, Hk = H(sk, δWk

), ∆ak =
ak−ak−1 and ∆δWk

= δWk
−δWk−1

represent the increments
of control input and uncertain dynamics trigger from the step
k − 1 to the step k, respectively.

Note that the time-varying input matrix Gk should be
approximated by online estimation strategies to reflect the real
dynamics. We denote its approximation as Ĝk, then the future
states can be propagated as

ŝk+1 = ŝk + Ĝk ·∆ak + hk ·∆δWk
+∆dk (11)

where ŝ denotes the estimated state, Ĝk = Ĝ(sk) +
∆Ĝ(sk)δW , and hk = ∂Hk

∂δWk
. We call Eq. (11) an incremental

model.
Remark 1: The incremental model results in a smaller

perturbation being suppressed before and after an undesirable
condition compared to the conventional model, which would
be beneficial for improving the system’s adaptability under
uncertain conditions.

The theoretical analysis supporting this remark is presented
below. Specifically, the approximation of ŝk+1 in DHP is
based on the equation below (we refer to it as the conventional
learning model for comparison with the incremental model).

ŝk+1 = f̂(sk) + ∆f̂(sk)δW

+
(
Ĝ(s(t)) + ∆Ĝ(s(t))δW

)
ak + dk

(12)
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Then we consider the following cases: (1) δW = 0; (2) the
transient condition with δW changes from 0 to 1 (denoted as
δW = 0 → 1); (3) δW = 1. Based on these cases, Eq. (12)
can be expressed as

ŝk+1 =



f̂(sk) + Ĝ (sk)ak + dk, if δW = 0

f̂(sk) + ∆f̂(sk)ψ + Ĝ (sk)ak

+∆Ĝ (sk)ψak + dk, if δW = 0 → 1

f̂(sk) + ∆f̂(sk) + Ĝ (sk)ak

+∆Ĝ (sk)ak + dk, if δW = 1
(13)

where ψ is a positive unknown parameter within (0,1).
Different from the conventional model approximation in

(13), the learning in the incremental framework has the fol-
lowing representation:

ŝk+1 =


ŝk + Ĝ (sk)∆ak +∆dk, if δW = 0

ŝk + Ĝ (sk)∆ak +∆Ĝ (sk)∆ak

+hk ·∆δWk
+∆dk, if δW = 0 → 1

ŝk + Ĝ (sk)∆ak +∆Ĝ (sk)∆ak

+∆dk, if δW = 1
(14)

By comparing (13) with (14), it can be seen that: (1) For
δW = 0, the differences of perturbation between the two meth-
ods are dk and ∆dk. There are usually periods of time where
dk > ∆dk and ak > ∆ak, meaning that the perturbation in
the incremental model is reduced and its magnitude is smaller
than that in the conventional model. (2) At the instant when
δW = 0 → 1, the transient perturbation in both models are
similar. (3) For δW = 1, the term ∆Ĝ(sk)ak+dk in Eq. (13)
and ∆Ĝ(sk)∆ak + ∆dk in Eq. (14) can be regarded as the
perturbation in each case. In a small step, there usually exist
periods of time where dk > ∆dk and ak > ∆ak. Again, this
means that the perturbation in the incremental model is smaller
than that in the conventional model. To conclude, except for
the instant δW = 0 → 1, the incremental model leads to
smaller perturbation than the conventional model.

It is noted that another key distinction between the incre-
mental and conventional models is whether the whole system
(both f̄ and Ḡ) is used for dynamics learning in real time.
As can be seen, the incremental mode does not require the
information of f̄ and only needs to approximate partial system
information (Ĝk). That renders a simple structure and reduces
learning complexity.

2) Learning Strategy:
Based on the incremental model learnt from (11) and (14),

we are ready to develop our IDHP. We employ a critic-
actor structure in the design. Particularly, the critic network
is to approximate the derivatives of the state-value function
with respect to the system states, and the actor network is
to generate the optimal pitch control policy for the FOWT.
The critic-actor network weights are updated through gradient
descent schemes in a back-propagation manner. The specific
learning strategy is composed of the critic network update
law, the actor network update law, the input matrix learning
process for the incremental model, and the target critic network
integration, which are introduced in detail in the following.

(a) Critic Network
The critic network approximates the derivative of a so-called

state-value function Q(sk) with respect to the system state
vector, which can be expressed as

λ(sk) =
∂Q(sk)

∂sk
(14)

In this equation, λ(sk) is the output of the critic network, and
Q(sk) is a cumulative summation of future costs accounting
from the current state sk:

Q(sk) =

∞∑
i=k

γi−kri (15)

and here i = k, k + 1, ...,∞, ri is the one-step cost function
at the i-th step in a discrete form, which is defined as

rk = (sk − s∗k)
TQw(sk − s∗k) + aT

kRwak (16)

where s∗k is the desired state at the k-th step.
The weights of the critic network are updated by minimizing

the following mean squared error loss function

Ec
k =

1

2
eck

Teck (17)

Here the error eck is a partial derivative of Temporal Difference
(TD) error with respect to the state:

eck =
∂[Q̂(sk−1)− rk−1 − γQ̂(sk)]

∂(sk−1)

= λ̂(sk−1)−
∂rk−1

∂sk−1
− γ · λ̂(sk) ·

∂sk
∂sk−1

(18)

where Q̂(sk−1) − rk−1 − γQ̂(sk) is called the TD error,
and Q̂(·) and λ̂(·) represent the estimations of the state-value
function and critic output, respectively.

According to the incremental model shown in Eq. (11), the
term ∂sk

∂sk−1
can be approximated as

∂sk
∂sk−1

= Ĝk−1∆ak−1 (19)

Substituting this result back into Eq. (18), one has

eck = λ̂(sk−1)−
∂rk−1

∂sk−1
− γ · λ̂(sk) · Ĝk−1∆ak−1 (20)

Then, the weights of critic network wc can be updated by
the gradient-descent method

wc
k+1 = wc

k − ηc ·
∂Ec

k

∂wc
k

(21)

where ηc > 0 is the learning rate for the critic network, and

∂Ec
k

∂wc
k

=
∂Ec

k

∂λ̂(sk−1)
· ∂λ̂(sk−1)

∂wc
k

= eck · ∂λ̂(sk−1)

∂wc
k

(22)

(b) Actor Network
The actor network aims to approximate the optimal control

policy a∗
k by minimizing the state-value function Q(sk),

following that

a∗
k = argmin

ak

Q(sk) = argmin
ak

[rk + γQ(sk+1)] (23)
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Accordingly, the loss function for updating the actor net-
work is given as

Ea
k = Q(sk) = rk + γQ(sk+1) (24)

Then, the weights of the actor network are updated by the
gradient-descent method, which can be described as

wa
k+1 = wa

k − ηa ·
∂Ea

k

∂wa
k

(25)

where ηa > 0 is the learning rate for the actor network. Based
on Eqs. (24) and (14), we have

∂Ea
k

∂wa
k

=
∂Ea

k

∂ak
· ∂ak

∂wa
k

= [
∂rk
∂ak

+ γ · λ(sk+1) ·
∂sk+1

∂ak
] · ∂ak

∂wa
k

(26)

where the term λ(sk+1) can be approximated by the estimation
of the critic output λ̂(ŝk+1) under the estimated state ŝk+1

from the incremental model in Eq. (11). Therefore, Eq. (26)
can be rewritten as

∂Ea
k

∂wa
k

= [
∂rk
∂ak

+ γ · λ̂(ŝk+1) ·
∂ŝk+1

∂ak
] · ∂ak

∂wa
k

(27)

Notably, similar to the critic network, the incremental model
is utilized to approximate the term ∂ŝk+1

∂ak
in the above updating

law for actor-network weights. Specifically,

∂ŝk+1

∂ak
≈ Ĝk (28)

Thus, one has
∂Ea

k

∂wa
k

= [
∂rk
∂ak

+ γ · λ̂(ŝk+1) · Ĝk] ·
∂ak

∂wa
k

(29)

(c) Input Matrix Estimation
As mentioned previously, the input matrix should be learnt

and updated online for the incremental model such that the
real wind turbine dynamics under uncertain conditions can
be reflected to the control scheme on time. In this work, the
recursive least square (RLS) estimation process is employed
to update Ĝk. The updating law satisfies

ĜT
k = ĜT

k−1+
Pk−1 ∆ak

τ +∆aT
k Pk−1 ∆ak

(∆sTk+1−∆ŝTk+1) (30)

Pk =
1

τ

(
Pk−1 −

Pk−1 ∆ak∆aT
k Pk−1

τ +∆aT
k Pk−1 ∆ak

)
(31)

where ∆sk+1 = sk+1 − sk, ∆ŝk+1 = ŝk+1 − ŝk, τ ∈ [0, 1]
is the forgetting factor, and Pk ∈ R(m×m is the estimation
covariance matrix.

(d) Target Critic Network
It has been reported that the TD error-based control policy

evaluation might diverge and the learning instability is in-
evitable due to the nonlinearity of Q̂(sk) [38]. To alleviate this
potential problem, a target critic network λ

′
(sk) is integrated

into the learning process. It is updated slower than the critic
network λ(sk). The weights of the target critic network are
updated by a soft replacement strategy [39], defined as

wT
k+1 = σwc

k+1 + (1− σ)wT
k (32)

Reward

Critic network

Actor network

sk
* rk

Incremental
Model

ak

Ĝk−1

RLS
sk+1

ak

Target critic network

Soft replacement

ŝk+1

sk

Ĝk−1
sk

1
ˆ( )ksl -

'ˆ ( )ksl

1

1

k

k

r
s

-

-

¶
¶

1
ˆ ˆ( )ksl +

k

k

r
a
¶
¶

sk−1

sk

sk

Eq. (23)

Ĝk−1Δak−1

Eq. (30)

∂Ek
a

∂wk
a

∂Ek
c

∂wk
c

Fig. 4. The architecture of IDHP-based FOWT control strategy.

where wT denote the weights of the target critic network,
σ ∈ (0, 1] is a user-defined scalar factor. This updating strategy
illustrates that the weights of the target network are slowly
tracking that of the critic network, guaranteeing the training
stability and reliability [38], [40]. Accordingly, with the target
critic network, the error eck in Eq. (18) for updating the weights
of the critic network can be rewritten as

eck = λ̂(sk−1)−
∂rk−1

∂sk−1
− γ · λ̂

′
(sk) ·

∂sk
∂sk−1

(33)

where λ̂
′
(sk) is the estimation of the target critic output.

Based on all these designs, the whole architecture of our
IDHP-based pitch controller for FOWT is depicted in Fig.
4. Compared with the conventional DHP method, as shown
in Fig. 3, our method only needs to learn partial system
information (the input matrix in the incremental model) instead
of updating the whole system dynamics. In addition, we
employ the target critic to enhance our control scheme’s
learning stability and reliability. Moreover, our control method
collects real-time data to reflect the influence of real dynamics,
disturbances, and stochastic wind-wave environments, provid-
ing strong robustness and adaptability to the load reduction
tasks of FOWTs.

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations are conducted to
validate the performance and advantages of the proposed
method with the FAST simulator. The FOWT simulator we
employed is the NERL-5MW-Barge type, with the rated
power being 5MW and the floating platform being the barge
category. This turbine is a three-bladed upwind turbine, with
the hub height being 63 m, the tower height being 87.6m
and the rotor diameter being 126 m. The discount factor γ,
forgetting factor τ , and scalar factor σ are set as γ = 0.9,
τ = 0.9, σ = 0.1, respectively. The weight matrices Qw

and Rw are set as Qw = diag[10−2, 104, 105, 102, 102, 102]
and Rw = diag[10−2, 10−2, 10−2]. The rated generator speed
is selected as wrated

g (t) = 122.9rad/s [41]. The wind profile
generated by the NREL software TurbSim [42] is employed for
verification. The PI control gains are chosen as KP = 0.015
and KI = 0.005. The total simulation time is set as 600s.
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Fig. 5. Simulation results under different controllers. (a) Wind speed profile.
(b) Generator speeds. (c) Blade pitch angles. (d) Power outputs.

A. Simulation Results Under Different Controllers

In this subsection, five controllers are carried out for com-
parison. They are

1) PI: The PI-based CPC, which serves as the baseline con-
troller for the FOWT simulator employed in simulations.

2) IDHP: The IDHP-based CPC, in which (1) only CPC is
employed to achieve the control task without combining
with IPC and (2) IDHP employs the incremental model.

3) IPC: A MPC-based IPC, in which only the IPC is
employed to achieve the control task.

4) DHP-PI: This control algorithm integrates the DHP-based
IPC with the PI-based CPC, in which DHP employs the
conventional model.

5) IDHP-PI: The proposed method integrates the IDHP-
based IPC with the PI-based CPC, in which IDHP em-
ploys the incremental model.

As described in Introduction, the pitch control of wind
turbines can be achieved by CPC, IPC, or by combining CPC
with IPC. Note that the “IDHP” method means only the IDHP-
based CPC is employed to achieve the control task, while the
“IDHP-PI” method denotes the algorithm combined the IDHP-
based CPC and the PI-based IPC.

The generator speed, pitch angle, and power output under
these controllers are presented in Fig. 5. The wind profile in
simulations is shown in Fig. 5(a), with a mean speed of 18m/s.
It can be observed from Fig. 5(b) that all the controllers can
ensure the generator speed track the rated value consistently.
The smallest deviations are achieved by the proposed IDHP-
PI controller, while the IDHP-based CPC creates larger errors.
Fig. 5(c) indicates that the IDHP-PI strategy performs better
since it leads to the smoothest pitch angles than other con-
trollers. In contrast, remarkable vibrations exist in the blade
pitch angles under the IDHP-based CPC controller, which is
undesirable in practice. As shown in Fig. 5(d), better power
outputs are produced by IDHP-PI, IPC, and DHP-PI compared
to the PI controller.

In addition, a quantitative analysis of these simulation
results is presented. Specifically, the mean square error (MSE)
[43] is employed for the characterization of the power regu-
lation performance, which is defined as the averaged squared
errors:

MSE =
1

M

M∑
i=1

(yi − y∗i )
2 (34)

where yi denotes the measured data, y∗i is the reference data,
and M is the total number of data. In this work, y∗i is the rated
power value – 5MW, yi is the power generated by different
controllers. Note that the smaller the MSE value, the smaller
the power fluctuation, and the stronger the power regulation
ability of the corresponding controller.

The comparison of MSE values of power production under
different controllers is provided in Table I. It can be seen
that the IDHP-PI method proposed in this paper leads to the
smallest MSE among all the controllers, followed by IPC,
DHP-PI, and IDHP, while the PI controller results in the largest
MSE.

TABLE I
MSE VALUES OF THE POWER PRODUCTION UNDER DIFFERENT

CONTROLLERS.

Methods PI IDHP IPC DHP-PI IDHP-PI
MSE (∗1011) 2.18 1.95 1.04 1.17 0.94

Fig. 6 displays the structural responses of the FOWT. It
can be observed that the magnitudes of structural responses
in the out-of-plane direction (including the blade out-of-plane
deflection, tower fore-aft displacement, and platform pitch
displacement) under the proposed IDHP-PI method are signif-
icantly reduced compared to the PI and IDHP methods. These
results illustrate that the proposed method can successfully
achieve the objective formulated in Section. II-B to mitigate
loads. As for the structural responses in the in-plane direction,
the IDHP-PI, DHP-PI, and IPC controllers are comparable
and perform better than the PI and IDHP controller in several
periods. In addition, the bending moments for the FOWT are
depicted in Fig. 7. The blade out-of-plane bending moment,
tower fore-aft bending moment, and platform fore-aft bending
moment are reduced with IDHP-PI, showing superiority over
IDHP and PI controllers in the out-of-plane direction.

Fig. 6. Structural responses of the FOWT under different controllers. (a)
Blade out-of-plane deflection. (b) Blade in-plane deflection. (c) Tower fore-
aft displacement. (d) Tower side-to-side displacement. (e) Platform pitch
displacement. (f) Platform roll displacements.

To make the simulation results shown in Figs. 6 and 7 more
noticeable, we carry out quantitative analysis further to clearly
explain the difference between these different controllers.
Specifically, the fatigue damage equivalent load (DEL) [44]
is employed for the characterization of the bending moments.
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Fig. 7. Bending moments of the FOWT under different controllers. (a) Blade
out-of-plane. (b) Blade in-plane. (c) Tower fore-aft. (d) Tower side-to-side.
(e) Platform fore-aft. (f) Platform side-to-side.

The DEL Deq is defined as the fatigue load variation corre-
sponding to a number of equivalent load cycles neq that create
the same damage level at the amplitude moment in one load
cycle Di with respect to the number of cycles ni. The DEL
is solved by the rain-flow counting technique, which has the
following form [45].

Deq = (

∑
niD

meq

i

neq
)

1
meq (35)

where meq is the Wöhler exponent. In this paper, we select
meq = 10 for blades, meq = 5 for tower, and meq = 3 for
platform [44], [45].

As a result, the fatigue DELs corresponding to the bending
moments in Fig. 7 are shown in Fig. 8, which demonstrate
the differences between these methods. It can be seen that
the DELs values of the proposed IDHP-PI method are the
lowest for all the bending moments in both the out-of-plane
direction and in-plane direction, followed by the DHP-PI and
IPC methods. This demonstrates that the proposed IDHP-PI
method based on the incremental model can reduce fatigue
loads compared to the DHP-PI method based on the con-
ventional learning model. Although the DHP-PI has slightly
higher DELs values than the IPC method in the platform
side-to-side bending moment, it has lower DELs values in
all the other bending moments. The PI controller can reduce
the fatigue loads in the blade in-plane direction, tower side-
to-side bending moment, and platform side-to-side bending
moment, but it does not perform well in the tower fore-aft
bending moment and platform fore-aft bending moment. The
PI controller has a higher DELs value in the platform fore-
aft bending moment than the IDHP-based CPC method, but
the IDHP-based CPC method has the highest DELs values in
other bending moments.

The variations of the updated weights in the critic-actor
network are presented in Fig. 9. In which kc and wc represent
the weights of the critic network from the input layer to the
hidden layer and from the hidden layer to the output layer,
respectively, and ka and wa denote that of the actor net-
work, respectively. It is noted that these time-varying network
weights are generated to adapt to the real dynamics and meet

Fig. 8. Spider plot of the fatigue DELs of the FOWT bending moments.

the optimal control goals for both power regulation and load
mitigation.

Fig. 9. Simulation results of the weights in the critic-actor network. (a) kc.
(b) wc. (c) ka. (d) wa.

In summary, the proposed RL-based FOWT control method
has the capability to improve power quality and alleviate
structural loads simultaneously, showing superior performance
than other controllers.

B. Simulation Results Under Different Wind-Wave Conditions

To verify the robustness and adaptability of the proposed
FOWT controller further, we employ different wave directions,
wave heights, and extreme wind speeds in simulations. The
settings are listed in Table II. Case 1 is regarded as the
base case for comparison. Cases 2-4 refer to various wave
directions. The effect of different wave heights on the fatigue
loads is conducted in Cases 5-8. Furthermore, two extreme
wind speeds are considered in Cases 9-10 to validate the
performance of our method under extreme conditions.

The fatigue DELs under different controllers considering
different cases are provided in Fig. 10. It can be concluded
that:

(1) In comparison with the DHP-PI method, significant
reductions of fatigue DELs in the out-of-plane direction can be
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TABLE II
DIFFERENT WIND-WAVE CASES

Cases Wind speed Wave direction Wave height
1 18 m/s 60o 5 m

2 18 m/s 0o 5 m

3 18 m/s 30o 5 m

4 18 m/s 90o 5 m

5 18 m/s 60o 3 m

6 18 m/s 60o 4 m

7 18 m/s 60o 6 m

8 18 m/s 60o 7 m

9 22 m/s 60o 5 m

10 24 m/s 60o 5 m

Fig. 10. The fatigue DELs of the FOWT bending moments in different cases
under different controllers.

achieved by the proposed IDHP-PI controller in all the cases.
In addition, the DELs for the in-plane direction’s bending
moments also exhibit noticeable reductions in all cases under
the IDHP-PI method.

(2) In most cases, the proposed IDHP-PI performs best for
reducing the fatigue loads under different wind-wave cases.
Then, DHP-PI and IPC methods are comparable, followed by
the PI controller, while pure IDHP performs the worst.

(3) From Cases 1-4, it can be observed that when the
significant wave height is fixed, the fatigue DELs change
slightly under different wave directions.

(4) As for Cases 5-8 with fixed wave directions, there
exist notable growing trends of the DEL values under both
controllers as the significant wave height increases.

(5) The fatigue DELs under both controllers become larger
with the increase of wind speeds, as can be seen in Cases 9-10.
It is noteworthy that our RL-based method can still mitigate
DELs under extreme wind conditions compared with other
controllers.

Table III shows the MSE values for the power outputs
of various controllers under different wind-wave scenarios,
allowing for a quantitative comparison of power regulation
capabilities. It is evident that the smallest MSE values in each
case correspond to our proposed method, demonstrating its
ability to reduce loads and regulate power simultaneously, even

under varying wind-wave conditions. The DHP-PI strategy and
the IPC algorithm both show smaller MSE values for power
output compared to the IDHP-based CPC method and the PI
controller. The PI controller has the largest MSE values among
all the methods, revealing significant power fluctuations in
certain cases.

TABLE III
MSE VALUES OF THE POWER PRODUCTION UNDER DIFFERENT

CONTROLLERS CONSIDERING DIFFERENT WIND-WAVE CONDITIONS.
(∗1011)

Cases PI IDHP IPC DHP-PI IDHP-PI
1 2.86 1.92 1.12 1.32 0.86

2 2.17 1.87 1.25 1.19 0.92

3 1.86 1.79 1.23 1.24 0.95

4 2.64 1.92 1.21 1.19 0.87

5 2.69 2.01 1.15 1.32 .1.03

6 2.64 1.86 1.04 1.21 0.84

7 2.73 1.93 1.02 1.12 0.79

8 2.18 1.76 1.15 1.31 0.85

9 2.05 2.74 1.24 1.29 1.16

10 2.13 2.83 1.17 1.28 0.96

C. Simulation Results Under Loads In Out-of-Plane And In-
Plane Direction

As described in Section II-A, the motion in the out-of-plane
direction of the FOWT is subjected to the major loads [1],
thus, the above simulation results focus on suppressing turbine
motions/loads in the out-of-plane direction via pitch control.
In order to make a fair comparison, other loads in the in-
plane direction including the platform roll, tower side-to-side
bending moment, and edge-wise bending moments of blade 1,
blade 2, and blade 3 are also considered.

Accordingly, the DELs corresponding to the bending mo-
ments of fatigue loads in both out-of-plane and in-plane
directions are depicted in Fig. 11. Compared with the Fig.
8, we can conclude that all DELs values shown in Fig. 11
are smaller than the DELs values in Fig. 8, which only
considering the fatigue loads in the out-of-plane direction.
Another observation from Fig. 11 is that the proposed IDHP-PI
still has the smallest DELs values of fatigue loads among these
different controllers, followed by the DHP-PI, IPC algorithms,
and PI controller. While the IDHP-based CPC performs worst
in reducing most of the fatigue loads.

To further illustrate the effectiveness and robustness of these
controllers, the DELs of the bending moments considering
fatigue loads in both out-of-plane and in-plane directions in
different wind-wave cases, introduced in Table II, are shown in
Fig. 12. It clearly indicates that the proposed IDHP-PI method
has the smallest DELs values in all cases, which demonstrates
that the proposed method can significantly reduce fatigue
loads. In addition, compared with the results under Fig. 10, it
can be observed that the DELs values in Fig. 12 are smaller in
all bending moments. It illustrates that when considering more
fatigue loads including the loads in both out-of-plane and in-
plane directions, our controllers still have the best performance
among all controllers.
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Fig. 11. Spider plot of the DELs of the FOWT bending moments considering
fatigue loads in both out-of-plane and in-plane directions.

Fig. 12. The DELs of the FOWT bending moments in different cases under
different methods considering fatigue loads in both out-of-plane and in-plane
directions.

D. Simulation Results Under All Essential Operational Re-
gions.

It is important to note that in our method, the training
set employed actually covers all the essential operational
ranges, including Regions II and III, and also the transient
Region between them [46], for running simulations on the
high-fidelity FAST simulator. The rated wind speed for the
utilized NREL-5MW FAST simulator is 12.1m/s [47]. As
a result, we chose a wind profile with a mean wind speed
of 12m/s for the simulation. The wind profile is displayed
in Fig. 13, which includes inflow wind speeds both below
and above the rated wind speeds for simulating under Region
II, transient Region, and Region III. Simulation results of the
rotor speed, generator power, and some structural responses
using the proposed IDHP-PI method are presented in Fig. 14.
These findings demonstrate that the proposed IDHP-PI-based
FOWT controller is suitable not only for Region II but also
for the transient Region and Region III.

E. Simulation Results Under Full Loads Set to Reduce Fatigue
and Extreme Loads

In this subsection, the full loads set is considered to inves-
tigate the impact of different controllers on both fatigue loads
and extreme loads.

(1) Fatigue loads analysis

Fig. 13. Wind profile for the simulation with all operation regions.

Fig. 14. Simulation results under the proposed IDHP-PI algorithm with the
mean wind speed of 12m/s.

For the fatigue loads analysis, a full set of loads is examined
under different controllers. Specifically, a ten-minute simula-
tion with varying wind speeds and turbulence is conducted
to test fatigue loads. The rain-flow counting technique is
employed to calculate the Damage Equivalent Loads (DEL)
[44] for characterizing fatigue loads. The Wöhler exponents
are chosen as meq = 10 for blades, meq = 5 for the tower,
and meq = 3 for the platform [44].

The ratio between the DELs of fatigue loads under different
controllers and the DELs of uncontrolled fatigue loads is
depicted in Fig. 15. Firstly, it can be observed that all the fa-
tigue loads are either reduced or maintained unchanged under
these methods. The proposed IDHP-PI controller can decrease
the tower fore-aft displacements and platform rotational roll
displacements by up to 11% and up to 7% for tower side-to-
side displacements and tower base side-to-side shear force. A
reduction of 5% to 6% for the tower side-to-side displacement
is observed under other controllers. The fatigue loads in the
platform pitch and yaw displacements, as well as the tower
base fore-aft, have experienced a noticeable decrease under
all these controllers.

(2) Extreme loads analysis
As the design of large wind turbine blades is increasingly

affected by extreme loads rather than fatigue loads [48], it
is crucial to investigate the impact of these controllers on
extreme loads. A 10-minute simulation with extreme 50-year
wind speed and turbulence has been conducted on the FOWT
during power production for the extreme-load analysis. The
extreme wind speed, defined by a power law with a shear
exponent of 0.2, is set at 25m/s for all the simulations. The
extreme turbulence, defined as the standard deviation of the
simulated wind time series, is also included. This extreme
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Fig. 15. The ratio between the DELs of fatigue loads under different controllers to the DELs of uncontrolled fatigue loads.

condition is generated by TurbSim [42].
The ratio between the maximum of the extreme loads

to the uncontrolled extreme loads is illustrated in Fig. 16.
The large differences can be observed in the tower side-to-
side displacements and platform yaw displacements. All these
methods can decrease the extreme loads in the tower side-
to-side displacement, which is reduced by 21 % under the
proposed IDHP-PI controller. While the DHP-PI, IPC, IDHP-
based CPC, and PI achieve a reduction of 19%, 16%, 15%,
and 13%, respectively. A prominent behavior is displayed in
the platform yaw displacements, which get reduced by 80% by
the IDHP-based CPC method. A reduction in platform pitch
displacements of 8 % – 11% is observed for all controllers.
Another bigger reduction is achieved in the bending moment
at the interface between the tower and the nacelle, namely
the tower top fore-aft bending moment, which is decreased by
approximately 7 % - 10%.

V. CONCLUSION

A data-driven, model-free control strategy was proposed for
floating offshore wind turbines (FOWTs) to achieve power
regulation and load mitigation via reinforcement learning. On
the one hand, to maintain power regulation, a PI controller
was employed as the collective pitch control. On the other
hand, to alleviate the structural loads, a novel IDHP control
algorithm was designed to perform as the individual pitch
control. Our design differs from existing IDHP methods in
that only the input matrix was required to be dynamically
updated to learn the optimal control policy. Theoretical anal-
ysis indicates that the incremental technique leads to smaller
residuals being suppressed in a higher sampling frequency than
approximating the entire model information. The proposed
method has solid adaptability against uncertainties, modeling
errors, and stochastic environmental conditions and can lead
to better performance than existing solutions in both power
regulation and load reduction. In the future, we will investigate
faster incremental model identification techniques to improve
computational efficiency further. We will also investigate novel
physics-informed reinforcement learning methods to achieve
better overall control performance for wind turbine control

problems by leveraging AI and physics information simulta-
neously.
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