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A B S T R A C T

This paper addresses the torque and pitch control problems of wind turbines. The main contribution of
this work is the development of an innovative reinforcement learning (RL)-based control method targeting
wind turbine applications. Our RL-based control framework synergistically combines the advantages of deep
neural networks (DNNs) and model predictive control (MPC) technologies. The proposed control strategy
is data-driven, adapting to real-time changes in system dynamics and enhancing control performance and
robustness. Additionally, the incorporation of an MPC structure within our design improves learning efficiency
and reduces the high computational complexity typically found in deep RL algorithms. Specifically, a DNN is
designed to approximate the wind turbine dynamics based on a continuously updated dataset composed of
state and action measurements taken at specified sampling intervals. The real-time control policy is generated
by integrating the online trained DNN into an MPC architecture. The proposed method iteratively updates the
DNN and control policy in real-time to optimize performance. As a primary result of this work, the proposed
method demonstrates superior robustness and control performance compared to commonly-employed MPC and
other baseline wind turbine controllers in the presence of uncertainties and unexpected actuator faults. This
effectiveness is showcased through simulations with a high-fidelity wind turbine simulator.
1. Introduction

The worldwide wind energy capacity has been growing drastically
in recent years [1,2]. The control system is the core of wind turbine
operations. In general wind turbine control tasks, there are typically
four working regions based on the ranges of inflow wind speeds: two
shutdown regions and two operating regions [3]. No power generation
process is involved in the two shutdown regions, i.e., Region I: below
cut-in wind speed and Region IV: above cut-out wind speed. In Region II
(above cut-in speed and below rated speed), torque control is utilized to
extract as much power as possible. In Region III (above-rated speed and
below cut-out speed), pitch control is employed to maintain the power
generation at the rated level. Therefore, regions II & III are essential
in the maximum power point tracking (MPPT) control tasks of wind
turbines.

In practical applications, proportional–integral–derivative (PID)
controllers are widely adopted in wind turbine control tasks. For
example, Ref. [4] achieved MPPT for wind energy conversion systems
via a PID controller. A hybrid PID-fuzzy pitch controller was presented
in Ref. [5] for wind turbines to optimize energy extraction. PID con-
trollers are easy to implement given their simple structures, but their

✩ This work has received funding from the UK Engineering and Physical Sciences Research Council (grant number: EP/T021713/1).
∗ Corresponding author.
E-mail addresses: jingjie.xie@warwick.ac.uk (J. Xie), hongyang.dong@warwick.ac.uk (H. Dong), xiaowei.zhao@warwick.ac.uk (X. Zhao).

control performances are limited [6]. Other advanced methods such as
adaptive fuzzy control [7], sliding-model control [8], H-∞ control [9]
were investigated to improve wind turbine control performance. These
methods have the potential to achieve better performance than the
conventional PID controllers. But they rely on analytical wind turbine
models. They are sensitive to unmodeled dynamics and lack robustness
to real-time model changes (such as the changes induced by faults).
Another challenge for these wind turbine control methods is the limited
constraints handling abilities w.r.t state & input constraints, such as the
generator speed and torque restrictions.

As a cutting-edge optimal control method, the model predictive con-
trol (MPC) technique has drawn wide attention and has been applied
to wind turbine control [10,11]. The fundamental advantages of MPC
strategies are their ability to handle constraints and achieve optimal
control under multiple objectives [12–14]. For example, Ref. [15]
proposed a linearized MPC algorithm to achieve multi-objective wind
turbine control. A further study using this method was presented in
Ref. [16]. An economic nonlinear MPC scheme for wind turbine control
was designed in Ref. [17] to improve the control performance of
traditional nonlinear MPC. Other examples of MPC methods for wind
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Table 1
Summary of existing studies about RL-based wind turbine control.

Ref. Method Property Goals Simulator Advantages

[21] Q-learning Model-free Torque control WECS Online learning.
Adaptability to changes.
Low memory requirements.

[22] Q-learning Model-free Torque control WECS Working in real-time.
with varying wind speed
Small computational time.

[23] Artificial neural network
and Q-learning

Model-free Torque control WEC Improved learning efficiency.
Online learning can be triggered.

[24] ADP Model-based Pitch control WT Dynamics Enhanced performance.
Reduced fluctuations.

[25] RL-enhanced PID Model-free Pitch control WT model Enhanced learning convergence.
Reduced power oscillations.

[26] Actor-Critic RL Model-free Torque & pitch control OpenFAST Whole system optimization.
Improved power efficiency.

[27] RL-based adaptive
controller using
Monte-Carlo method

Model-free Torque & pitch control FAST Multi-objective:
maximizing power and
minimizing unwanted forces.

[28] Markov chain Monte
Carlo-based RL

Model-free Torque & pitch control WECS Addressing uncertainties.
Improving energy efficiency.
turbines to operate in regions II & III include Refs. [18,19]. However,
analytical wind turbine models are an inevitable prerequisite to imple-
menting these model-based MPC controllers, rendering them sensitive
to modeling errors and unmodeled dynamics. In addition, faults in real-
time operations may significantly degrade the performance of MPC
methods.

Reinforcement learning (RL) is a promising new technique that
has the ability to overcome the above-mentioned challenges in wind
turbine control. It aims to learn an optimal policy by maximizing a
long-time reward through interactions between the agent and environ-
ment [20]. Attempts have been made to apply RL on wind turbine
control [21–28]. In Ref. [21], an RL-based algorithm was proposed
for variable-speed wind energy conversion systems, achieving higher
efficiency than conventional MPPT methods. Ref. [22] introduced a
Q-Learning-enhanced MPPT method, while Ref. [23] developed an
adaptive-network-based RL approach for wind turbines. To particularly
enhance the performance of pitch control, Ref. [24] proposed an adap-
tive dynamic programming (ADP) method while Ref. [25] developed
an RL-enhanced PID controller. Furthermore, Ref. [26] introduced an
actor-critic RL wind turbine control method to globally optimize the
entire system performance. Additionally, RL-based adaptive controllers
utilizing the Monte Carlo (MC) method [27] and a Markov chain-
based MC method [28] had also been developed for both wind turbine
torque and pitch control. Based on these advances, Table 1 summarizes
the recent RL-based wind turbine control methods. This table empha-
sizes the properties, differences, and advantages of various methods
to offer a clearer overview of existing RL-based wind turbine control
technologies.

Mainstream RL methods usually can be categorized into two typical
structures, as shown in Fig. 1 (in which the plants are illustrated
by wind turbines). The first structure (Fig. 1(a)) does not estimate
the system model. Instead, it directly evaluates the long-term reward
function and the optimal control policy based on the estimated reward
function. In contrast, the other structure (Fig. 1(b)) employs additional
deep neural network (DNN) modules to capture the key system in-
formation, which forms a surrogate model for the system. Then the
reward function and control policy are learnt with the help of the
surrogate model. Based on whether a surrogate model is employed
or not, the former is commonly referred to as model-free RL while
the latter is usually called ‘‘model-based’’ RL [29,30]. But it should
be emphasized that both model-free and ‘‘model-based’’ RL are data-
driven and independent of analytical system models. Here the term
‘‘model-based’’ is just to indicate that data-driven surrogate models
via DNN are employed. To the authors’ best knowledge, all existing
RL methods for wind turbine control are model-free RL. On the one
2

hand, they inherit the advantages of RL, such as strong robustness
Fig. 1. Two structures of RL methods applied to wind turbine control. (a) Model-free
RL. (b) ‘‘Model-based’’ RL.

to environments, modeling errors, and uncertainties, showing superior
performance to conventional wind turbine control methods. On the
other hand, they suffer from the limitations of model-free RL, including
the requirement of a huge amount of data in training (which can lead
to incredible computational loads), relatively low learning efficiency,
and high sample complexity [31]. These issues can potentially degrade
their applicability in practical wind turbine operations.

This paper designs a novel ‘‘model-based’’ RL-based wind turbine
control method subject to uncertainties, unmodeled nonlinear dynam-
ics, and state & input constraints to address the challenges mentioned
above in existing wind turbine control approaches. The proposed
method has a hybrid mechanism that combines the advantages of deep
neural networks (DNN) and MPC technologies. Specifically, we design
a DNN structure to function as an information processor and learn
the key information of the wind turbine control system. Its training
is carried out by a real-time updated dataset consisting of state &

action measurements in specified sampling intervals. Based on the
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DNN structure, an MPC architecture is employed to learn the optimal
control policy with respect to user-defined performance metrics. It is
noteworthy that the DNN and the optimal control policy are updated
by turns online, adapting to the real-time changes of system dynamics
and enhancing the control performance & robustness. The FAST (Fa-
tigue, Aerodynamics, Structures, and Turbulence) simulator designed
by NREL (National Renewable Energy Laboratory) is utilized to validate
the effectiveness of our control method. The main contributions of this
paper, in comparison with relevant studies, are in order:

(1) Compared with conventional wind turbine control approaches,
the proposed RL method is data-driven. It is able to learn optimal
control policies without relying on analytical wind turbine models. The
system information is captured and updated in real-time via DNN. This
feature enables our method to have strong data mining ability and
adaptability.

(2) Existing RL-based wind turbine control methods are commonly
based on model-free RL. Most of those methods are based on the
famous deep deterministic policy gradient (DDPG) [32] algorithm and
its derivatives. Those designs can effectively handle complex tasks and
have a simplified structure compared to ‘‘model-free’’ RL. However,
they commonly suffer from high computational complexity and low
learning efficiency. Moreover, because they do not embed surrogate
models into the learning algorithm, their adaptability and robustness
to real-time model & environment changes (such as sudden actuator
faults) are still limited. A novel wind turbine control approach based
on ‘‘model-based’’ RL is developed in this paper to address these
limitations. To the best of the authors’ knowledge, this is for the first
time such technology has been applied to wind turbine control tasks.
As we mentioned before, our method does not require the analytical
dynamics of turbines. Here the term ‘‘model-based’’ indicates that we
utilize real-time data to construct and update a DNN-based surrogate
model. It renders the learning process for the reward function and
optimal control policy more stable and effective.

(3) The proposed DNN structure, serves as an information processor,
is updated by a real-time dataset consisting of current state & action
measurements. This structure allows our algorithm to learn the key
information of the wind turbine control system, especially capture the
potential online changes of wind turbine models under the unexpected
fault occurs. Such a design is beneficial in recovering the control
performance when unknown uncertainties and/or unanticipated faults
happen online, eventually improving the reliability and applicability of
the whole wind turbine control system.

The rest of this paper is organized as follows. Section 2 presents the
preliminaries and problem formulation of wind turbine control to lay
a foundation for the developed strategy. Then, the proposed RL-based
wind turbine control method is introduced in Section 3. Numerical sim-
ulations and case studies under different controllers considering faults
and uncertainties are illustrated in Section 4. Finally, a conclusion is
drawn in Section 5.

2. Preliminaries and problem formulation

The preliminaries related to wind turbine dynamics and the for-
mulation of wind turbine control problems are introduced in this
section.

2.1. Preliminaries

The commonly used nonlinear wind turbine dynamics for torque
control and pitch control can be expressed as

̇ = 𝑓 (𝑥, 𝑢) (1)

where 𝑥 =
[

𝜃 𝑤𝑟 𝑤𝑔 𝑇𝑔 𝛽
]𝑇 denotes the integrated wind

turbine state, 𝜃 is the torsion angle, 𝑤𝑟 is the rotor speed, 𝑤𝑔 is the
generator speed, 𝑇𝑔 is the generator torque, 𝛽 is the pitch angle. In
addition, 𝑢 =

[ ]𝑇 denotes the control input, 𝑇 and
3

𝑇𝑔,𝑟𝑒𝑓 𝛽𝑟𝑒𝑓 𝑔,𝑟𝑒𝑓 m
𝛽𝑟𝑒𝑓 are the generator torque and pitch angle control signals. Consid-
ering the wind turbine rotor, drive train, and generator dynamics, the
specific form of Eq. (1) can be formulated as [33,34]
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(2)

here 𝐽𝑟 is the rotor’s moment of inertia, 𝑁𝑔 is the gear ratio, 𝐽𝑔
s the generator’s moment of inertia, 𝐾𝑠 is the spring constant, 𝐷𝑠
s the torsion damping coefficient, 𝑇𝑟 is the rotor torque, satisfying
𝑟 = 1

2𝜌𝜋𝑅
2𝑣3𝑤𝐶𝑝(𝜆, 𝛽)∕𝑤𝑟, where 𝜌 is the air density, 𝑅 is the wind

urbine radius, 𝑣𝑤 is the wind speed, 𝐶𝑝 is the power coefficient, which
is a nonlinear function of tip speed ratio 𝜆 and the pitch angle 𝛽. 𝜏𝑔 and
𝜏𝛽 are time constants.

The mechanical power production 𝑃 captured by a wind turbine
follows

𝑃 = 𝜂𝑤𝑔𝑇𝑔 (3)

where 𝜂 is the power transfer efficiency.
In conventional model-based methods, the wind turbine model in

Eqs. (1)–(3) is directly utilized to design controllers. However, as
mentioned in the introduction, those designs are sensitive to modeling
errors and lack robustness to real-time dynamics changes. In this work,
we aim to develop a data-driven RL strategy that does not require the
analytical model in (1)–(3), mitigating the limitations of conventional
approaches.

2.2. Problem formulation

The wind turbine control problems considered in this paper include
power generation maximization (or maximum power point tracking) in
Region II and power maintenance in Region III. In Region II, we aim to
extract as much power as possible by adjusting the generator torque.
This task can be considered as an optimal control problem with respect
to a long-term objective function as in the following equation. (Note
that the control schemes in this work are designed in the discrete-time
domain for real-time implementation.)

min
𝑢

𝐽𝑇𝑔 (𝑡) =
∞
∑

𝑡
[(𝑇𝑔 − 𝑇 ∗

𝑔 )
𝑇𝑄𝑇 (𝑇𝑔 − 𝑇 ∗

𝑔 )

+(𝑤𝑔 −𝑤∗
𝑔)

𝑇𝑄𝑤𝑔
(𝑤𝑔 −𝑤∗

𝑔) + 𝛥𝑢𝑇𝑡 𝑅𝛥𝑢𝑡]
(4)

subject to

𝑤𝑟 ≤ 1.1𝑤𝑟𝑎𝑡𝑒𝑑
𝑟 (5)

𝑤𝑔 ≤ 1.1𝑤𝑟𝑎𝑡𝑒𝑑
𝑔 (6)

𝑇 𝑚𝑖𝑛
𝑔 ≤ 𝑇𝑔,𝑟𝑒𝑓 ≤ 𝑇 𝑚𝑎𝑥

𝑔 (7)

𝛽𝑚𝑖𝑛 ≤ 𝛽𝑟𝑒𝑓 ≤ 𝛽𝑚𝑎𝑥 (8)

𝛥𝑇 𝑚𝑖𝑛
𝑔 ≤ 𝛥𝑇𝑔,𝑟𝑒𝑓 ≤ 𝛥𝑇 𝑚𝑎𝑥

𝑔 (9)

𝛥𝛽𝑚𝑖𝑛 ≤ 𝛥𝛽𝑟𝑒𝑓 ≤ 𝛥𝛽𝑚𝑎𝑥 (10)

where 𝑇 ∗
𝑔 and 𝑤∗

𝑔 are the generator torque and generator speed ref-
erences, 𝛥𝑢𝑡 = 𝑢𝑡 − 𝑢𝑡−1 denote the change of control input, 𝑄𝑇 , 𝑄𝑤𝑔
and 𝑅 are weight matrices. When the generator speed 𝑤𝑔 and torque
𝑇𝑔 are controlled to track the reference values, the mechanical power
𝑃 = 𝜂𝑤𝑔𝑇𝑔 can be maintained at the optimal value to achieve the
aximum power tracking. Eqs. (5) and (6) represent the constraints
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Fig. 2. The block diagram of the wind turbine control system. (a) Torque control. (b) Pitch control.
on system states, 𝑤𝑟𝑎𝑡𝑒𝑑
𝑟 and 𝑤𝑟𝑎𝑡𝑒𝑑

𝑔 denote the rated rotor speed and
generator speed, respectively. They are restricted to certain ranges,
ensuring the safety of the wind turbine. In addition, the limits of control
inputs are presented in Eqs. (7) and (8). 𝑇 𝑚𝑖𝑛

𝑔 , 𝑇 𝑚𝑎𝑥
𝑔 , 𝛽𝑚𝑖𝑛, and 𝛽𝑚𝑎𝑥 are

the lower & upper bounds of the generator torque and pitch angle,
respectively. Note that 𝑇 𝑚𝑎𝑥

𝑔 is usually set to be 10% above the rated
torque value (𝑇 𝑚𝑎𝑥

𝑔 = 1.1𝑇 𝑟𝑎𝑡𝑒𝑑
𝑔 ) to prevent overloading. In addition,

the constraints on actuators’ changing rates are shown in Eqs. (9) and
(10). Specifically, 𝛥𝑇 𝑚𝑖𝑛

𝑔 , 𝛥𝑇 𝑚𝑎𝑥
𝑔 , 𝛥𝛽𝑚𝑖𝑛, and 𝛥𝛽𝑚𝑎𝑥 are the lower & upper

bounds of the changing rates of torque and pitch angle, respectively.
For the pitch control task in Region III, the objective is to keep the

output power and generator speed at their rated values. The perfor-
mance metric is defined as

min
𝑢

𝐽𝛽 (𝑡) =
∞
∑

𝑡
[
(

𝑤𝑔 −𝑤𝑟𝑎𝑡𝑒𝑑
𝑔

)𝑇
𝑄′

𝑤𝑔

(

𝑤𝑔 −𝑤𝑟𝑎𝑡𝑒𝑑
𝑔

)

+
(

𝛽 − 𝛽∗
)𝑇 𝑄𝛽

(

𝛽 − 𝛽∗
)

+ 𝛥𝑢𝑇𝑡 𝑅𝛥𝑢𝑡]

(11)

where 𝑤𝑟𝑎𝑡𝑒𝑑
𝑔 is the rated values of generator speed, 𝛽∗ is the pitch

angle reference, 𝑄′
𝑤𝑔

and 𝑄𝛽 are weight matrices. The block diagrams
of torque and pitch control systems are demonstrated in Figs. 2(a)
and 2(b), respectively. The reference signals 𝑇 ∗

𝑔 , 𝑤∗
𝑔 , 𝑤𝑟𝑎𝑡𝑒𝑑

𝑔 , and 𝛽∗ are
derived according to the wind speed by the lookup table scheme [35].

3. Model-based reinforcement learning method for wind turbine
control

The proposed reinforcement learning (RL) technique for wind tur-
bine control is introduced in detail in this section.

3.1. Model-based reinforcement learning method

The RL built upon the Markov decision process [21] aims to learn
an optimal policy by optimizing designed long-time reward for an agent
through interactions with the environment. Specifically, at current time
𝑡, whose state is denoted by 𝑠𝑡 ∈ 𝑆. It takes the action 𝑎𝑡 ∈ 𝐴,
and then receives the reward 𝑟𝑡 ∈ 𝑅. Here 𝑆, 𝐴, and 𝑅 denote the
state, action, and reward spaces, respectively. Based on the transition
function 𝑓 ∶ 𝑆 × 𝐴 → 𝑆, the next state 𝑠𝑡+1 ∈ 𝑆 at time 𝑡 + 1 is given
by 𝑠𝑡+1 = 𝑓

(

𝑠𝑡, 𝑎𝑡
)

. The goal of this RL agent is to learn an effective
policy 𝜋(𝑠) ∶ 𝑆 → 𝐴 that optimizes the long-time reward, formulated
as ∑∞

𝑡=𝑡′ 𝛾
𝑡−𝑡′ 𝑟𝑡

(

𝑠𝑡, 𝑎𝑡
)

, where 𝛾 ∈ (0, 1] is a discount factor, and 𝑟𝑡
(

𝑠𝑡, 𝑎𝑡
)

is the reward at 𝑠𝑡 after taking 𝑎𝑡 [36,37].
Particularly, the mainstream RL methods commonly employ a critic

structure to evaluate the long-term objective function and an actor
structure to learn the optimal control policy given the result from the
critic — which can be a quite complex process and require a large
data set for training. Distinct from the mainstream actor-critic structure,
4

we utilize a deep neural network (DNN) structure as an information
processor to estimate the system dynamics, which is updated in real-
time to enhance the control robustness. Built upon this DNN, we fit our
actor to an MPC framework to learn the optimal control policy. Such
a design is much more flexible for online applications and renders our
RL-based wind turbine controller quickly adapt to unexpected model
changes, such as the ones induced by sudden actuator faults. The details
of this RL technique are given in the following.

3.1.1. System dynamics approximation
A DNN structure is employed in the designed RL method to approx-

imate system dynamics. A DNN typically consists of input, hidden, and
output layers, which are connected by neurons and weights. We denote
the approximated system dynamics as 𝑓𝜃

(

𝑠𝑡, 𝑎𝑡
)

. For the training at a
time step 𝑡, the state 𝑠𝑡 and the action 𝑎𝑡 are the inputs of DNN, while
the next state 𝑠𝑡+1 is taken as the output. We denote the measurement
data set as 𝐷 with a size of 𝑁𝐷. Therefore, 𝐷 should contain a state
set

(

𝑠0, 𝑠1,… , 𝑠𝑁𝐷−1

)

, an action set
(

𝑎0, 𝑎1,… , 𝑎𝑁𝑛−1

)

, and a successor

state set
(

𝑠1, 𝑠2,… , 𝑠𝑁𝐷

)

. Note that if the difference between a state
𝑠𝑡 and its successor 𝑠𝑡+1 is near zero, the change between 𝑠𝑡 and 𝑠𝑡+1
(denoted as 𝛥𝑠𝑡) can be employed to be the output of 𝑓𝜃

(

𝑠𝑡, 𝑎𝑡
)

. In this
case, one has 𝛥𝑠𝑡 = 𝑠𝑡+1 − 𝑠𝑡 = 𝑓𝜃

(

𝑠𝑡, 𝑎𝑡
)

.
In addition, pre-processing is carried out for the data set 𝐷. Specif-

ically, the 𝑧-score method is employed for normalization purposes.
Moreover, to improve the learning robustness, noises obeying zero-
mean Gaussian distribution are added to the data set. It is noteworthy
that the data in 𝐷 is updated in real-time to capture the potential
online changes of system dynamics. Based on 𝐷, DNN is trained via
a supervised learning manner, aiming to minimize the following loss
function

𝜉(𝜃) =
𝑁𝐷
∑

𝑡=0

1
2
‖

‖

‖

𝑠𝑡+1 − 𝑓𝜃
(

𝑠𝑡, 𝑎𝑡
)

‖

‖

‖

2
(12)

If the changes of states are used as outputs, then the loss function is

𝜉(𝜃) =
𝑁𝐷
∑

𝑡=0

1
2
‖

‖

‖

(

𝑠𝑡+1 − 𝑠𝑡
)

− 𝑓𝜃
(

𝑠𝑡, 𝑎𝑡
)

‖

‖

‖

2
(13)

Remark 1. It should be emphasized again that though our method can
be categorized as a ‘‘model-based’’ RL approach, it does not require any
information from the analytical wind turbine model. Instead, it employs
the DNN structure to build a surrogate model and updates it online with
real-time measurements.

3.1.2. Control policy optimization
With 𝑓𝜃

(

𝑠𝑡, 𝑎𝑡
)

, we can recursively predict the future states based on
the candidate actions and choose the optimal control policy 𝜋

(

𝑠 → 𝑎
)

𝑡 𝑡
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𝑠

Fig. 3. The framework of the proposed RL-based wind turbine control technique.
with the highest reward. The MPC structure is embedded into our
proposed RL control method to solve the optimal closed-loop control
problem described in Eqs. (4)–(11). Compared to other controllers,
the MPC method possesses the fundamental advantages of realizing
multi-objective optimal control and handling the state and control
constraints [38]. Specifically, in each receding-horizon (we use 𝑇𝑠 to
enote the prediction horizon), the DNN-approximated system dynam-
cs are employed to predict the future states. Then, we aim to find an
ptimal control solution 𝒂∗ =

(

𝑎𝑡′ , 𝑎𝑡′+1,… , 𝑎𝑡′+𝑇𝑠−1
)

, such that

𝒂∗ = arg max
𝑎

𝑡′+𝑇𝑠−1
∑

𝑡=𝑡′
𝛾 𝑡−𝑡

′
𝑟𝑡
(

𝑠̂𝑡, 𝑎𝑡
)

(14)

̂𝑡′ = 𝑠𝑡′ , 𝑠̂𝑡+1 = 𝑓𝜃
(

𝑠̂𝑡, 𝑎𝑡
)

(15)

subject to the constraints in Eqs. (5)–(10).
The optimal sequence of actions is solved by this MPC scheme, and

the first action in the sequence is applied to the system for the next state
generation. After executing that on a specified sampling interval 𝑇𝑖𝑛𝑡,
the generated on-policy data

(

𝑠𝑡,… , 𝑠𝑇int , 𝑎
∗
𝑡 ,… , 𝑎∗𝑇int , 𝑠𝑡+1,… , 𝑠𝑇int+1

)

is
added into the data set 𝐷. Here 𝐷 has a first-in–first-out structure,
allowing most recent data to replace the oldest stored data. Meanwhile,
the approximation of system dynamics (i.e. 𝑓 ) is updated based on
the updated data set 𝐷. The whole process described above is carried
out recursively until the control task is accomplished. Note that the
prediction horizon 𝑇𝑠 in each interval should satisfy 𝑇𝑠 ≤ 𝑇int.

3.2. RL-based wind turbine control

The optimal control policy should be acquired by optimizing the
long-term reward, which is paramount for achieving satisfactory con-
trol performance. For the proposed RL-based wind turbine control
method, the specific forms of rewards are defined in the objective
function in (4) for Region II and in (11) for Region III.

Based on all these designs, we summarize the structure of our RL-
based wind turbine control scheme in Fig. 3. It can be seen that the
proposed control scheme has a DNN-based surrogate model that is
updated according to the real-time measured data. This design is of
significance to the complicated wind turbine systems since it is difficult
to obtain the accurate turbine models, especially under uncertainties
and faults. Then, the detailed implementation steps of our proposed
RL-based wind turbine control method is summarized in Algorithm 1,
where 𝑖𝑚𝑎𝑥 is the total simulation step.

Note that some uncertainties and unpredictable faults are inevitable
in practical applications, and those issues can potentially degrade con-
trol performance. One merit of our ‘‘model-based’’ RL structure is the
strong robustness and adaptability to uncertainties and unpredictable
faults. We take the generator actuator fault as an example, which can
be caused by a fault in converter electronics or an offset in generator
torque estimation [39]. Such a fault would cause the wind turbine
model changes, resulting in the degradation of the control performance
5

and large tracking errors.
ALGORITHM 1 RL-based Wind Turbine Control Algorithm
𝟏 ∶ Collect initial data, including (𝑠0, 𝑠1,… , 𝑠𝑁𝐷

− 1),
(𝑎0, 𝑎1..., 𝑎𝑁𝐷

− 1), and (𝑠1, 𝑠2,… , 𝑠𝑁𝐷
).

𝟐 ∶ Pre-process initial data and add to the dataset 
𝟑 ∶ 𝐟𝐨𝐫 𝑖 = 0 𝐭𝐨 𝑖𝑚𝑎𝑥 𝐝𝐨
𝟒 ∶ Train the wind turbine dynamics 𝑓𝜃(𝑠𝑡, 𝑎𝑡) with the dataset


𝟓 ∶ 𝐟𝐨𝐫 𝑡 = 𝑖𝑇𝑖𝑛𝑡 𝐭𝐨 𝑖𝑇𝑖𝑛𝑡 + 𝑇𝑖𝑛𝑡 𝐝𝐨
𝟔 ∶ Execute control policy learning based on the trained

model 𝑓𝜃(𝑠𝑡, 𝑎𝑡)
𝟕 ∶ Optimize the objective function shown in Eq. (4) for

torque control or in Eq. (11) for pitch control.
As a result, obtain a sequence of control actions
(torque/pitch command), denoted by (𝑎∗𝑡 , 𝑎

∗
𝑡+1..., 𝑎

∗
𝑡+𝑇𝑠−1

)
𝟖 ∶ Apply the first control action 𝑎∗𝑡 to the system and get

𝑠𝑡+1
𝟗 ∶ Store (𝑠𝑡, 𝑎∗𝑡 , 𝑠𝑡+1) into 𝐷 (which has a first-in first-out

structure)
𝟏𝟎 ∶ end for
𝟏𝟏 ∶ 𝑖 = 𝑖 + 1
𝟏𝟐 ∶ end for

Promisingly, with the help of the proposed DNN-based surrogate model
structure, the developed RL method can better deal with these un-
certainties and unpredictable faults without any prior knowledge of
the uncertainties or faults. Specifically, when the fault occurs, the
current measured data that reflect the key information of wind turbine
models will be stored into the dataset 𝐷, which has a first-in–first-out
structure, and replace the oldest stored data. According to the new
data, the real-time updated DNN-based surrogate model contains the
potential changes of wind turbine models in the existence of faults.
This design renders the proposed RL method has strong robustness that
can alleviate the undesirable effects on power production caused by
potential uncertainties and faults.

Remark 2. Our RL-based wind turbine control method takes advan-
tage of both DNN and MPC technologies. On the one hand, distinct
from conventional MPC methods, we update the approximated system
dynamics online. Such a design allows our controller to mitigate the
mismatch between the learned dynamics and the true environment. The
online updated system dynamics approximator also enables our method
to have enhanced learning & data mining efficiency and to adapt to
the real-time changes of system dynamics. On the other hand, different
from the mainstream model-free deep RL methods such as DDPG, we
utilize an MPC structure to replace the actor-critic DNN modules. This
mechanism allows our method to have a reduced overall computational

complexity.
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Table 2
Parameters of the 5 MW wind turbine.

Variable Description Value

𝑅 Rotor radius 63 m
𝐽𝑟 Rotor moment of inertia 3.8768 × 107 kg ⋅m2

𝐽𝑔 Generator moment of inertia 534, 116 kg ⋅m2

𝐾𝑠 Drive train spring constant 8.67637 × 108 N ⋅m∕rad
𝐷𝑠 Torsion damping coefficient of drive train 6.215 × 106 N ⋅m∕(rad∕s)
𝑁𝑔 Gear ratio 97
𝜂 Power transferring efficiency 94.4%
𝜏𝑔 Generator time constant 0.01
𝜏𝛽 Pitch actuator time constant 0.01

Table 3
State and input constraints on the 5 mw wind turbine.

Variable Description Value

𝑤𝑟𝑎𝑡𝑒𝑑
𝑟 Rated rotor speed 1.2671 rad∕s

𝑤𝑟𝑎𝑡𝑒𝑑
𝑔 Rated generator speed 122.9096 rad∕s

𝑇 𝑟𝑎𝑡𝑒𝑑
𝑔 Rated generator torque 43,093,55 N ⋅m

𝑇 𝑚𝑎𝑥
𝑔 /𝑇 𝑚𝑖𝑛

𝑔 Maximum/Minimum generator torque 47,403 N ⋅m, 200 N ⋅m,
𝛽𝑚𝑎𝑥/𝛽𝑚𝑖𝑛 Maximum/Minimum pitch angle 90◦/0◦
𝛥𝑇 𝑚𝑎𝑥

𝑔 /𝛥𝑇 𝑚𝑖𝑛
𝑔 Maximum/Minimum generator torque rate 1500 N ⋅m∕s/1500 N ⋅m∕s

𝛥𝛽𝑚𝑎𝑥/𝛥𝛽𝑚𝑖𝑛 Maximum/Minimum pitch angle rate 8 deg∕s/−8 deg∕s

4. Numerical simulations

In this section, simulations with the FAST (Fatigue, Aerodynamics,
Structures, and Turbulence) simulator [40] are conducted to verify our
method’s effectiveness. FAST is a comprehensive aeroelastic simula-
tor developed by NREL (National Renewable Energy Laboratory). We
consider the NREL 5 MW variable-speed variable-pitch wind turbine
dynamics in FAST. Its parameters are listed in Table 2 and its state &
input constraints are presented in Table 3. Different wind profiles with
a wind speed of [9 19] m/s are used in the validations, generated by
the NREL software TurbSim [41].

4.1. Simulations under different controllers

For performance comparison, not only the proposed RL method but
also the baseline control and the vanilla MPC strategy are employed
in this subsection to carry out numerical simulations. (1) Baseline
control: For the torque control, the reference generator torque com-
mand is obtained from the 𝑘𝑤2

𝑟 law [42], which is proportional to the
quare of the filtered rotor speed [43]. For the pitch control, The gain-
cheduled proportional–integral (PI) controller is commonly utilized
o minimize the rotor speed or generator speed error between their
easured and rated values [42]. (2) Model predictive control (MPC):
he wind turbine dynamics are utilized to predict the future states in
finite prediction horizon. Based on these future states, the optimal

ontrol sequence is solved by optimizing the objective under various
onstraints.

The simulation time for a single run is 200 s, the predictive horizon
𝑠 is 10 s, and the time interval 𝑇𝑖𝑛𝑡 is 20 s. Note that the proposed RL
ethod will be denoted as ‘RL’ thereafter.

emark 3. It should be emphasized that the MPC strategy employed in
ur case studies directly utilizes the FAST model to carry out control.
t does not suffer from any modeling errors or uncertainties under
ormal working conditions, rendering it a benchmark and an excellent
pproach to compare with our RL method.

For the torque control task in Region II, a wind profile with the
ean speed of 9 m/s is employed, as shown in Fig. 4. The power re-

ponses under all the three methods are depicted in Fig. 5, in which the
ashed blue line denotes the desired reference power trajectory. From
ig. 5, it can be observed that the power outputs under our RL-based
6

ethod and the MPC method can precisely follow the desired optimal
Fig. 4. Wind speed profile with the mean of 9 m/s.

Fig. 5. Simulation results of power production in Region II under the RL technique,
MPC method, and the baseline controller.

power trajectory, showing superior performance compared with the
baseline control scheme. In addition, the variations of generator torques
under three different controllers are presented in Fig. 6. One can see
that our RL method and the MPC method lead to good generator torque
tracking performance, while the baseline controller fails to accurately
track the optimal generator torque.

As for the pitch control in Region III, a wind profile with the mean
speed of 19 m/s is employed, as shown in Fig. 7. Fig. 8 illustrates sim-
ulation results of power production under different pitch controllers.
Compared with the baseline controller, the amplitude of power fluctu-
ations with the designed RL method and the MPC method is remarkably
reduced and thus the power quality is improved. Furthermore, the
generator speeds in Region III using the baseline, MPC, and our RL
methods are displayed in Fig. 9. One can see that all the controllers can
achieve the desired objectives, maintaining the generator speed around
the rated value. However, the generator speed under the baseline
controller experiences larger oscillation around the rated generator
speed. In comparison, considerable fluctuation reduction is achieved
by the RL and MPC. Besides, the pitch angle’s histories are given in
Fig. 10. One can see that under RL and MPC, the pitch angle is closer to
the reference value compared with the traditional baseline controller,
which exhibits some apparent deviations. In summary, compared to
the conventional baseline controller, the RL and MPC controllers are
capable of improving the power quality and leading to superior tracking

performance.
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Fig. 6. The variation of generator torque in Region II with the RL technique, MPC
method and baseline controller.

Fig. 7. Wind speed profile with the mean of 19 m/s.

It should be emphasized again that the MPC controller serves as a
benchmark in this case study. It directly employs the model embedded
in FAST to carry out control without being influenced by modeling
errors and uncertainties under normal working conditions. Therefore,
the results of MPC can be regarded as optimal in this case study.
Here our RL controller leads to similar performance as MPC, showing
that our controller can successfully approximate the optimal one. It is
noteworthy that, distinct from MPC, our RL method is data-driven and
can quickly adapt to system dynamics changes with the proposed DNN
structure. To show that, the control performance of RL and MPC under
faulty conditions will be tested in the following subsection.

4.2. Simulation results under torque actuator faults

To further evaluate the performance of the RL method, the scenario
considering the generator actuator fault with torque offset is conducted.
The generator actuator fault caused by a fault in converter electronics
or an offset in generator torque estimation can significantly degrade the
control performance. The performance of RL and MPC are re-evaluated
under the torque offset fault in Region II. The generator torque with
4000 Nm and 7000 Nm offset faults from 60 s to 120 s is considered.
The actuator faults will lead to unexpected changes in the generator
power outputs. This is shown in Fig. 11. From Fig. 11(b), it can be seen
that large power tracking errors are induced during the faulty period.
Notably, it seems that the positive offset of the torque actuator leads
7

to increased power, but this is not desired. Specifically, it can cause
Fig. 8. Simulation results of power production in Region III under the RL technique,
MPC method and baseline controller.

Fig. 9. The variation of generator speed in Region III with the RL technique, MPC
method and baseline controller.

Fig. 10. The variation of pitch angle in Region III with the RL technique, MPC method
and baseline controller.
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Fig. 11. Simulation results of power production by the RL without fault-tolerant
scheme. (a) Simulation results during time 0–200 s. (b) The local enlarged figure during
time 60 s–120 s.

Fig. 12. Simulation results of power response under different controllers considering
the torque actuator offset fault with +4000 Nm during time 60 s–120 s.

ignificant power quality problems, aggravate fatigue loads, and even
ead to further torque actuator failure [43].

Fig. 12 depicts the power response of different controllers consid-
ring the torque actuator offset fault with +4000 Nm. As expected, the
enerator power produced by the proposed control method stays close
o the reference power even under the faulty condition, which indicates
hat the effects caused by the torque actuator fault are compensated. In
ontrast, the power generation produced by the MPC controller cannot
ccurately follow the power reference. In addition, Fig. 13 shows the
ower responses of different controllers considering a faulty condition
ith the offset to be +7000 Nm. It can be observed that the proposed
ethod still performs better in restoring the generator power to the

ptimal reference compared with the MPC controller. Although there
xists slight power tracking accuracy deterioration during the initial
ault period, our method can gradually achieve performance recovery
nd eventually meet the desired power output. These results show
hat our RL-based wind turbine controller has the strong fault-tolerant
bility and online learning ability in comparison with the MPC method.

Additional simulation cases with the torque actuator offsets to be
3000 Nm, +4000 Nm, +5000 Nm, +6000 Nm, and +7000 Nm are also
8

Fig. 13. Simulation results of power response under different controllers considering
the torque actuator offset fault with +7000 Nm during time 60 s–120 s.

Fig. 14. Quantitative comparison results of MSE under the RL and MPC methods.

conducted. Specifically, the mean square error (MSE) in each case is
compared, which is defined as

MSE = 1
𝑀

𝑀
∑

𝑘=1

(

𝑦𝑖 − 𝑦𝑖
)2 (16)

here 𝑦𝑖 denotes the data and 𝑀 is the total number of data.
The corresponding results are summarized in Table 4 and Fig. 14,

which shows the MSE values under RL and MPC. It can be observed
that the MSE value of RL in each case is smaller than that of MPC,
indicating better tracking performance under our RL controller in the
presence of faults.

4.3. Simulation results under parameter uncertainties

Parameter uncertainties are considered in this subsection to fur-
ther validate the adaptability and robustness of the proposed method.
Specifically, the stiffness uncertainty, damping coefficient uncertainty,
and moment of inertia uncertainty are considered. By varying the
uncertain parameters from 10% to 30%, simulation results under the
proposed method are shown in Fig. 15. It can be seen that the power
outputs are rarely influenced when the perturbation level is 10%, and
perform with acceptable deviations around the reference power when
the perturbation level is 20% and 30%.

Remark 4. Extensive simulation results indicate that our RL method
is effective for wind turbine control tasks. In normal cases, the control
results of RL are highly close to the optimal solution (i.e. the one from
MPC). In faulty conditions, our RL method has much better perfor-

mance than MPC. Compared with MPC, the wind turbine dynamics are
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Table 4
Quantitative comparison of generator power output under different torque actuator offset.

Case Reference +3000 Nm +4000 Nm +5000 Nm +6000 Nm +7000 Nm

Proposed MPC Proposed MPC Proposed MPC Proposed MPC Proposed MPC

MSE 2,381,032 2,378,897 2,463,107 2,372,811 2,490,466 2,362,519 2,517,824 2,342,070 2,545,183 2,193,692 2,572,541
Fig. 15. Simulation results of generator power under the proposed methods in the
presence of uncertainties.

Fig. 16. Wind speed profile.

learnt and updated online in our RL method. In addition, unlike the
conventional RL approaches, our RL algorithm has lower computational
complexity and higher online learning efficiency.

4.4. Simulation results under real wind speed data

The aforementioned simulations were conducted using wind speed
data generated by the NREL software TurbSim [41]. To provide a more
comprehensive analysis, we also employ real wind speed data, obtained
from the Xinglong Mountain wind farm in China, to further investigate
the effectiveness of our proposed method in real-world conditions.

Specifically, the wind speed profile with a 1 s interval is shown
in Fig. 16, encompassing inflow wind speeds both below and above
the rated wind speeds. Simulation results for power production us-
ing the baseline, MPC, and the proposed method are presented in
9

Fig. 17. Power production under different methods with the real wind speed.

Fig. 17, demonstrating the effectiveness of our controller when applied
to real-world data. Furthermore, these comparative results highlight the
superior performance of our proposed method and the MPC strategy
compared to the baseline controller.

In summary, all simulation results demonstrate the effectiveness
and robustness of the proposed method. The outcomes under different
controllers reveal the improvement in power quality and superior
tracking performance of our method. The results under torque ac-
tuator faults indicate that the proposed approach exhibits stronger
robustness than both the MPC and baseline methods, verifying the
advantages of the designed DNN that learns wind turbine models in
real-time. Furthermore, the results under parameter uncertainties show
that the proposed method is adept at handling uncertainties with im-
pressive adaptability. Finally, simulations with real-world wind speed
data further corroborate the effectiveness of the designed method.

5. Conclusion

In this paper, we proposed a data-driven algorithm for wind turbine
torque and pitch control, developed through a synergistic integra-
tion of deep neural network (DNN), reinforcement learning (RL) and
model predictive control (MPC) technologies. Our design captures and
updates wind turbine dynamics online using a special DNN struc-
ture, while an MPC strategy, assisted by the surrogate DNN-based
dynamics, generates the optimal control policy. The proposed method
exhibits strong adaptability and robustness, effectively handling un-
certainties and unexpected faults and leading to superior performance
than commonly-employed MPC and other baseline methods. It is able
to deal with wind control problems in both operating regions II & III
under state and input constraints. High-fidelity simulations using the
FAST (Fatigue, Aerodynamics, Structures, and Turbulence) simulator
verified the effectiveness and advantages of the proposed method.
Particularly, the results under parameter uncertainties and unexpected
faults illustrated our method’s impressive adaptability and robustness.
The effectiveness of our method was also proven under real-world wind
speed data. Future research will explore the integration of LIDAR data
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and wind turbine control using machine learning algorithms, aiming to
further enhance power generation efficiency and effectively respond to
sudden events, such as gusts.

CRediT authorship contribution statement

Jingjie Xie: Conceptualization, Data curation, Formal analysis, In-
vestigation, Methodology, Software, Validation, Visualization, Writing
– original draft. Hongyang Dong: Conceptualization, Methodology, In-
vestigation, Software, Formal analysis, Data curation, Writing – review
& editing. Xiaowei Zhao: Conceptualization, Investigation, Formal
analysis, Funding acquisition, Resources, Supervision, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] A.M. Update, Global Wind Report, Global Wind Energy Council, 2017.
[2] X. Wang, D.W. Gao, J. Wang, W. Yan, W. Gao, E. Muljadi, V. Gevorgian,

Implementations and evaluations of wind turbine inertial controls with FAST
and digital real-time simulations, IEEE Trans. Energy Convers. 33 (4) (2018)
1805–1814.

[3] A.D. Wright, L. Fingersh, Advanced Control Design for Wind Turbines; Part
I: Control Design, Implementation, and Initial Tests, Tech. Rep., National
Renewable Energy Lab. (NREL), Golden, CO (United States), 2008.

[4] H.T. Do, T.D. Dang, H.V.A. Truong, K.K. Ahn, Maximum power point tracking
and output power control on pressure coupling wind energy conversion system,
IEEE Trans. Ind. Electron. 65 (2) (2017) 1316–1324.

[5] O.F. Alarcón, B.I. Velásquez, A.R. Hunter, L.B. Pavez, R. Moncada, Hybrid
PID-fuzzy pitch control for wind turbines, in: 2017 CHILEAN Conference on Elec-
trical, Electronics Engineering, Information and Communication Technologies,
CHILECON, IEEE, 2017, pp. 1–6.

[6] R. Kandiban, R. Arulmozhiyal, Speed control of BLDC motor using adaptive fuzzy
PID controller, Procedia Eng. 38 (2012) 306–313.

[7] M.A. Soliman, H.M. Hasanien, H.Z. Azazi, E.E. El-Kholy, S.A. Mahmoud, An
adaptive fuzzy logic control strategy for performance enhancement of a grid-
connected PMSG-based wind turbine, IEEE Trans. Ind. Inform. 15 (6) (2018)
3163–3173.

[8] C.A. Evangelista, A. Pisano, P. Puleston, E. Usai, Receding horizon adaptive
second-order sliding mode control for doubly-fed induction generator based wind
turbine, IEEE Trans. Control Syst. Technol. 25 (1) (2016) 73–84.

[9] X. Yin, X. Tong, X. Zhao, A. Karcanias, Maximum power generation control of a
hybrid wind turbine transmission system based on H∞ loop-shaping approach,
IEEE Trans. Sustain. Energy 11 (2) (2019) 561–570.

[10] T.G. Hovgaard, S. Boyd, J.B. Jørgensen, Model predictive control for wind power
gradients, Wind Energy 18 (6) (2015) 991–1006.

[11] B.M. Gavgani, A. Farnam, J.D. De Kooning, G. Crevecoeur, Efficiency enhance-
ments of wind energy conversion systems using soft switching multiple model
predictive control, IEEE Trans. Energy Convers. 37 (2) (2021) 1187–1199.

[12] H.-S. Yan, Z.-Y. Duan, Tube-based model predictive control using multidimen-
sional Taylor network for nonlinear time-delay systems, IEEE Trans. Automat.
Control 66 (5) (2020) 2099–2114.

[13] S. Zhan, J. Na, G. Li, B. Wang, Adaptive model predictive control of wave energy
converters, IEEE Trans. Sustain. Energy 11 (1) (2018) 229–238.

[14] J. Liu, G. Li, H.K. Fathy, An extended differential flatness approach for the
health-conscious nonlinear model predictive control of lithium-ion batteries, IEEE
Trans. Control Syst. Technol. 25 (5) (2016) 1882–1889.

[15] A. Jain, G. Schildbach, L. Fagiano, M. Morari, On the design and tuning of linear
model predictive control for wind turbines, Renew. Energy 80 (2015) 664–673.

[16] A. Koerber, R. King, Combined feedback–feedforward control of wind turbines
using state-constrained model predictive control, IEEE Trans. Control Syst.
Technol. 21 (4) (2013) 1117–1128.

[17] S. Gros, A. Schild, Real-time economic nonlinear model predictive control for
wind turbine control, Internat. J. Control 90 (12) (2017) 2799–2812.

[18] M.D. Spencer, K.A. Stol, C.P. Unsworth, J.E. Cater, S.E. Norris, Model predictive
control of a wind turbine using short-term wind field predictions, Wind Energy
16 (3) (2013) 417–434.

[19] M. Soliman, O.P. Malik, D.T. Westwick, Multiple model predictive control for
wind turbines with doubly fed induction generators, IEEE Trans. Sustain. Energy
2 (3) (2011) 215–225.
10
[20] Z.-Y. Duan, H.-S. Yan, Adaptive dynamic programming based on multi-
dimensional Taylor network for time-delay nonlinear system with uncertainties,
in: 2020 2nd World Symposium on Artificial Intelligence, WSAI, IEEE, 2020, pp.
44–49.

[21] C. Wei, Z. Zhang, W. Qiao, L. Qu, Reinforcement-learning-based intelligent
maximum power point tracking control for wind energy conversion systems, IEEE
Trans. Ind. Electron. 62 (10) (2015) 6360–6370.

[22] A. Kushwaha, M. Gopal, B. Singh, Q-learning based maximum power extraction
for wind energy conversion system with variable wind speed, IEEE Trans. Energy
Convers. 35 (3) (2020) 1160–1170.

[23] C. Wei, Z. Zhang, W. Qiao, L. Qu, An adaptive network-based reinforcement
learning method for MPPT control of PMSG wind energy conversion systems,
IEEE Trans. Power Electron. 31 (11) (2016) 7837–7848.

[24] P. Chen, D. Han, F. Tan, J. Wang, Reinforcement-based robust variable pitch
control of wind turbines, IEEE Access 8 (2020) 20493–20502.

[25] J.E. Sierra-Garcia, M. Santos, R. Pandit, Wind turbine pitch reinforcement
learning control improved by PID regulator and learning observer, Eng. Appl.
Artif. Intell. 111 (2022) 104769.

[26] B. Fernandez-Gauna, M. Graña, J.-L. Osa-Amilibia, X. Larrucea, Actor-critic
continuous state reinforcement learning for wind-turbine control robust
optimization, Inform. Sci. 591 (2022) 365–380.

[27] N. Tomin, V. Kurbatsky, H. Guliyev, Intelligent control of a wind turbine based
on reinforcement learning, in: 2019 16th Conference on Electrical Machines,
Drives and Power Systems, ELMA, IEEE, 2019, pp. 1–6.

[28] V.T. Aghaei, A. Ağababaoğlu, B. Bawo, P. Naseradinmousavi, S. Yıldırım, S.
Yeşilyurt, A. Onat, Energy optimization of wind turbines via a neural control
policy based on reinforcement learning Markov chain Monte Carlo algorithm,
Appl. Energy 341 (2023) 121108.

[29] Q. Huang, Model-based or model-free, a review of approaches in reinforcement
learning, in: 2020 International Conference on Computing and Data Science, CDS,
IEEE, 2020, pp. 219–221.

[30] W. Sun, N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, Model-based rl in
contextual decision processes: Pac bounds and exponential improvements over
model-free approaches, in: Conference on Learning Theory, PMLR, 2019, pp.
2898–2933.

[31] A. Nagabandi, G. Kahn, R.S. Fearing, S. Levine, Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning, in: 2018
IEEE International Conference on Robotics and Automation, ICRA, IEEE, 2018,
pp. 7559–7566.

[32] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, 2015, arXiv
preprint arXiv:1509.02971.

[33] Y. She, X. She, M.E. Baran, Universal tracking control of wind conversion system
for purpose of maximum power acquisition under hierarchical control structure,
IEEE Trans. Energy Convers. 26 (3) (2011) 766–775.

[34] Z. Lin, Z. Chen, Q. Wu, S. Yang, H. Meng, Coordinated pitch & torque control of
large-scale wind turbine based on Pareto efficiency analysis, Energy 147 (2018)
812–825.

[35] Y. Xia, K.H. Ahmed, B.W. Williams, Wind turbine power coefficient analysis of
a new maximum power point tracking technique, IEEE Trans. Ind. Electron. 60
(3) (2012) 1122–1132.

[36] H. Dong, X. Zhao, Composite experience replay-based deep reinforcement learn-
ing with application in wind farm control, IEEE Trans. Control Syst. Technol.
(2021).

[37] J. Xie, H. Dong, X. Zhao, A. Karcanias, Wind farm power generation control via
double-network-based deep reinforcement learning, IEEE Trans. Ind. Inform. 18
(4) (2021) 2321–2330.

[38] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Optimal tracking guidance for
aeroassisted spacecraft reconnaissance mission based on receding horizon control,
IEEE Trans. Aerosp. Electron. Syst. 54 (4) (2018) 1575–1588.

[39] P.F. Odgaard, J. Stoustrup, M. Kinnaert, Fault-tolerant control of wind turbines: A
benchmark model, IEEE Trans. Control Syst. Technol. 21 (4) (2013) 1168–1182.

[40] J.M. Jonkman, M.L. Buhl, et al., FAST User’s Guide, vol. 365, National Renewable
Energy Laboratory, Citeseer, Golden, CO, 2005, p. 366.

[41] B.J. Jonkman, M.L. Buhl, TurbSim User’s Guide, Tech. Rep., National Renewable
Energy Lab. (NREL), Golden, CO (United States), 2006.

[42] J. Jonkman, S. Butterfield, W. Musial, G. Scott, Definition of a 5 MW Reference
Wind Turbine for Offshore System Development, Tech. Rep., National Renewable
Energy Lab. (NREL), Golden, CO (United States), 2009.

[43] H. Badihi, Y. Zhang, H. Hong, Wind turbine fault diagnosis and fault-tolerant
torque load control against actuator faults, IEEE Trans. Control Syst. Technol.
23 (4) (2014) 1351–1372.

http://refhub.elsevier.com/S0960-1481(23)00790-5/sb1
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb2
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb2
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb2
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb2
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb2
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb2
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb2
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb3
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb3
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb3
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb3
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb3
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb4
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb4
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb4
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb4
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb4
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb5
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb5
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb5
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb5
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb5
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb5
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb5
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb6
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb6
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb6
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb7
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb7
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb7
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb7
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb7
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb7
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb7
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb8
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb8
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb8
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb8
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb8
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb9
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb9
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb9
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb9
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb9
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb10
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb10
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb10
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb11
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb11
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb11
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb11
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb11
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb12
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb12
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb12
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb12
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb12
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb13
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb13
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb13
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb14
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb14
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb14
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb14
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb14
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb15
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb15
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb15
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb16
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb16
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb16
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb16
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb16
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb17
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb17
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb17
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb18
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb18
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb18
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb18
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb18
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb19
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb19
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb19
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb19
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb19
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb20
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb20
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb20
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb20
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb20
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb20
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb20
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb21
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb21
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb21
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb21
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb21
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb22
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb22
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb22
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb22
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb22
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb23
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb23
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb23
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb23
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb23
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb24
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb24
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb24
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb25
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb25
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb25
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb25
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb25
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb26
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb26
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb26
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb26
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb26
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb27
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb27
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb27
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb27
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb27
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb28
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb28
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb28
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb28
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb28
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb28
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb28
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb29
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb29
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb29
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb29
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb29
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb30
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb30
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb30
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb30
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb30
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb30
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb30
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb31
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb31
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb31
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb31
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb31
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb31
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb31
http://arxiv.org/abs/1509.02971
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb33
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb33
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb33
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb33
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb33
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb34
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb34
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb34
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb34
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb34
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb35
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb35
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb35
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb35
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb35
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb36
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb36
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb36
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb36
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb36
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb37
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb37
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb37
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb37
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb37
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb38
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb38
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb38
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb38
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb38
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb39
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb39
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb39
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb40
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb40
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb40
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb41
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb41
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb41
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb42
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb42
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb42
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb42
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb42
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb43
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb43
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb43
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb43
http://refhub.elsevier.com/S0960-1481(23)00790-5/sb43

	Data-driven torque and pitch control of wind turbines via reinforcement learning
	Introduction
	Preliminaries and Problem Formulation
	Preliminaries
	Problem Formulation

	Model-Based Reinforcement Learning Method For Wind Turbine Control
	Model-Based Reinforcement Learning Method
	System Dynamics Approximation
	Control Policy Optimization

	RL-Based Wind Turbine Control

	Numerical Simulations
	Simulations under Different Controllers
	Simulation Results Under Torque Actuator Faults
	Simulation Results Under Parameter Uncertainties
	Simulation Results Under Real Wind Speed Data

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


