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Network analysis is a well-known and powerful tool in molecular biology.
More recently, it has been introduced in developmental biology. Tissues
can be readily translated into spatial networks such that cells are represented
by nodes and intercellular connections by edges. This discretization of cellu-
lar organization enables mathematical approaches rooted in network science
to be applied towards the understanding of tissue structure and function.
Here, we describe how such tissue abstractions can enable the principles
that underpin tissue formation and function to be uncovered. We provide
an introduction into biologically relevant network measures, then present
an overview of different areas of developmental biology where these
approaches have been applied. We then summarize the general develop-
mental rules underpinning tissue topology generation. Finally, we discuss
how generative models can help to link the developmental rule back to
the tissue topologies. Our collection of results points at general mechanisms
as to how local developmental rules can give rise to observed topological
properties in multicellular systems.
1. Introduction
Developmental biology has historically been limited to being a principally
qualitative discipline, where patterns were observed and compared, but
rarely quantified [1]. Applying quantitative approaches is increasingly proving
to be powerful to characterize patterns and morphology in tissues [2,3]. The
developmental rules underpinning pattern formation in tissues in general are
well-known [4,5]. However, the links between specific processes and the result-
ing patterns are only beginning to be understood due to the non-intuitive
nature of how genes lead to emergent phenotypes [6]. In this context,
mathematical and modelling approaches are of value.

Network approaches have been used extensively to study molecular inter-
actions within cells. A large number of measures enables the analysis of these
networks to understand system function [7]. Many of these same methods
and analyses can also be applied to additional scales of biological complexity,
including the study of cell interactions in tissues [8,9]. A perspective of multi-
cellular systems as interacting collectives of cells can be traced back to the
work of Ramon y Cajal and his examination of mammalian nervous systems
(figure 1a) [13]. The creation of these original ‘wiring diagrams’ of nervous
connectivity by looking through a microscope and drawing led to a step
change in our conception as to how collections of cells come together to
generate emergent tissue function [14].

The abstraction of cells into nodes and their physical associations as the
edges led to the formal description of tissues as network graphs which could
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Figure 1. Examples of network analysis applied to developmental systems. (a) Cajal diagram describing neuronal connectivity (Museo Cajal, Madrid, Spain).
(b) Caenorhabditis elegans network describing the connectivity between neurons, from [10] (CC-BY). (c) A confocal image of the Drosophila epithelium and an illustration
as to how it can be segmented (original work). (d ) Three-dimensional confocal image stack of a plant hypocotyl and its abstraction into a network describing cell
connectivity, adapted from [11]. (e) Osteocyte network in bone and image analysis quantifying its connectivity within the bone tissue, adapted from [12].
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be topologically analysed. The systematic mapping of the
Caenorhabditis elegans nervous system, and its subsequent
analysis using network science, enabled the prediction of the
function of individual neurons within this complex tissue
system [14] (figure 1b). These studies were instrumental in
characterizing the organization of cells in tissues, and in show-
ing that structure–function relationships scale to cellular
architecture in nervous systems [15]. The abstraction of neur-
onal organization into networks provides a means to
approach these questions in discrete terms using network
science, providing a quantitative path towards understanding
system function following mathematical principles [16]. In this
way, the manner by which cell organization shapes and con-
strains organ function can be addressed. An understanding
of cell topology may therefore provide insight into emergent
tissue function.

While the original transformations of tissues into networks
of cells have come from studies involving nervous systems,
more recently, these same approaches are being applied to a
diverse set of non-neuronal developmental systems, including
plant tissue [11], fly wing epithelia [8], human bone [17], or
snowflake yeast [18], examples of which are shown in
(figure 1c–e). In this review, we start by first introducing bio-
logically relevant network measures and analysis methods in
order to set the basis for understanding the subsequent sec-
tions. We then highlight a few examples from different areas
of developmental biology where these approaches have been
applied. Finally, we summarize the general developmental
rules underpinning tissue topology generation and discuss
how generative models can help to link the developmental
rule back to the tissue topologies.
2. Tissues as networks of cells
Networks representing the connectivity of cells can be
viewed in several ways. Structural networks describe the phys-
ical associations between cells [19]. This is akin to a road map
which captures all the possible routes cars can travel upon. In
tissue terms, this describes the potential communication
between cells. Functional networks describe the observed com-
munication and information flow between cells in tissues,
akin to where traffic is observed in a road network [20]. Func-
tional networks are constrained by physical networks, and
are dynamic in the sense that intercellular communication
can be modulated across development. In this review, net-
works of cells refer to structural networks. The following
section describes how structural networks of cells can be
extracted from data and quantified and introduces the rel-
evant terminology. Despite being rather technical, this
forms the basis for the applications and modelling
approaches discussed in the subsequent parts.

The architecture of structural networks is generally
obtained by imaging and subsequent analysis. The modality
of imaging is not restricted to a specific microscopy technique
anddepends on the type of network to be analysed. Serial trans-
mission electron microscopy has been used to map the first
complete connectome in C. elegans. Other approaches such as
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Figure 2. Illustrations of biologically relevant network measures. (a) Node degree is the number of edges (direct neighbours) connected to a node (cell). (b) The
topological shortest path between two nodes (cells) is the minimum number of nodes (cells) between one node (cell) and another. (c) The clustering coefficient of a
node (cell) is the fraction of possible edges between its direct neighbours that actually exist. (d ) The betweenness centrality of a node (cell) is the fraction of all
shortest paths in the network (tissue) that run through that node (cell).
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whole mount three-dimensional microscopy have also proved
useful towards the construction of tissue connectomes [21].

The images are further processed by cellular segmenta-
tion and network generation [12,22]. In structural cell
networks, nodes represent cells and edges represent the
connections between cells. In the most simple case, an edge
between two vertices is included in a network if two cells
are physically connected. This can be established from cell
boundary information in the images. In the absence of a
cell boundary marker, nuclei may be imaged and edges estab-
lished if the distance between two cells is smaller than a given
threshold [21]. This threshold represents a typical distance of
communication that can be assumed in the respective tissue.
A number of open-source tools exist that implement the
generation of cell graphs from tissue images [23,24].

The inclusion of multiple fluorescent reporters in tissue
images can provide additional dimensions of data to
extracted networks. Nodes can be weighted using geometric
features, such as cell size [25], or according to different mol-
ecular states such as the expression of genes, proteins [26]
or biosensors (examples provided below). Edges can also be
weighted by geometric features such as intercellular interface
size, or molecular determinants such as the abundance of
transporters or observed molecular fluxes between cells.

Graph theory provides a plethora of measures to analyse
network topologies [27]. In the context of tissues, many of
these can provide biologically relevant information. The sim-
plest such measure is the number of neighbours a cell has
(figure 2a) [28]. This is termed the degree, and provides a
local measure of how potentially influential a cell is within
its immediate context [29]. Higher-order properties of tissues
may also be examined. A commonly used approach to under-
stand the significance of a node within a transportation
network, such as a multicellular tissue, is to examine the
path length a cell lies upon. Following a shortest path rep-
resents an optimized mode of travel (figure 2b). Network
measures have been developed which identify nodes that
lie upon shortest paths. Such nodes represent cells which
are topologically positioned for optimized transport and
communication. They also mediate the movement of infor-
mation across networks, providing an important function in
controlling tissue-wide communication.

If prior knowledge of the complete network is known,
betweenness centrality can be used to find nodes which lie
upon shortest paths (figure 2d) [28]. In the absence of complete
knowledge of network topology, as is the case in biological tis-
sues, random walk centrality can be used to identify nodes on
shortest paths through the use of random walkers and the fre-
quency they pass through nodes on their way from one cell to
the next. A variation on this, termed navigation centrality, makes
use of local network knowledge while following a gradient, for
example a morphogen in the case of a tissue, to identify
near-optimal shortest paths through tissues [30].

The higher-order efficiency of transport across multicellu-
lar networks can also be examined using the local and global
efficiency measures [31]. Local efficiency examines the impact
the random failure of nodes has on increasing the number of
shortest paths between pairs of nodes within the vicinity of
the failure. The resilience of the network to random errors
can be measured with respect to the increased costs of trans-
portation locally. Global efficiency examines the efficiency of
routing of information across the whole network. This is calcu-
lated by considering the shortest paths between all pairs of
nodes, and addresses how easy information can move across
a given network. A trade-off between communication efficien-
cies at each local and global scales is therefore present, and
provides a biologically relevant means to explore spatially
constrained transport networks such as multicellular organs.

3. Examples in different organisms
In the following section, we highlight a number of examples
from the literature where spatial cell networks were
measured and quantified in diverse biological systems ran-
ging from fly wing epithelia and plant tissue to mouse
embryos, cancer cells as well as neurons and human bone.
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Figure 3. Examples of the application of network approaches towards understanding tissue organization and function. (a) Local cell division orientation in the
Drosophila epithelium follows rules based on the constraint of degree across the tissue. (b) Orientation of cell division planes in the Arabidopsis shoot apical mer-
istem conforms to local geometric (shortest wall), local topological (minimum degree) and global topological (minimum random walk) rules, adapted from [34].
(c) Three-dimensional segmentation of the cells of the Arabidopsis hypocotyl with two epidermal cell types (trichoblast and atrichoblast) given distinct colours,
adapted from [11]. (d ) Degree distribution of each hypocotyl epidermal cell type, adapted from [11]. (e) Betweenness centrality distribution of each hypocotyl
epidermal cell type, adapted from [11]. ( f ) Confocal image of the hypocotyl showing preferential movement of fluorescein through atrichoblast cells, adapted
from [11]. (g) Network analyses of the inner cell mass in mouse embryos reveals local patterns in early and mid blastocysts, adapted from [25]. (h) Hodgkin
lymphoma cells exhibit preferences for the shape of their neighbouring cells, from [26]. (i) The osteocyte network in highly organized fibrolamellar bone
shows a more tree-like topology (top) and aligned paths in maps of betweenness centrality (bottom) compared with disordered woven bone, adapted from [17].
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3.1. Topology of Drosophila epithelia
The development of the Drosophila wing disc epithelia has
been examined using network-based approaches. Local topo-
logical examination of structural cell networks found their
local neighbourhood (degree) to be focused on six adjacent
cells [8,32]. This observation quantified a previously
unknown topological property of the epithelial tissue that
shows an overall consistency across different tissues from
different animals as well as the plant epidermis [8,32,33].
To conserve the establishment of six neighbours, cell division
planes are biased according to neighbouring cell connectivity
(figure 3a). In this way, local division rules lead to complex
emergent tissue properties. To decipher morphogenetic mech-
anisms, it is, however, interesting to investigate differences
between epithelia from different regions or developmental
stages of Drosophila and to compare those with epithelia from
other species. In this regard, refined analyses with more com-
plex network measurements have been very valuable [35–37].
The implementation of a feature vector that contains the cell
area, node degree, the clustering coefficient and the average
degree of neighbours has allowed comparingDrosophila prepu-
pal wing and notum as well as larval wing epithelium [35].
Application of discriminant analysis has indicated differences
between the two wing tissues and the two prepupal tissues.
Comparing Drosophila and chick epithelia, a very pronounced
separation occurred. Interestingly, for the interspecies
comparisons, the geometric feature cell area was much less
informative than the three network measures. The feature
vector approach has later been extended to include 40 features
of three types: geometric features related to the size and
shape of a cell, network characteristics of the cells such as
node degree and network characteristics of the images such
as clustering coefficient and betweenness centrality [36]. Princi-
pal component analysis of the extended feature vectors resulted
in a clear separation between third instarDrosophilawings discs
and early prepupawing discs, a result that was not clear from a
mere analysis of the distributions of the number of neighbours
in these tissues.
3.2. Cellular organization and morphogenesis in plants
A similar study to that done on the Drosophila wing disc was
undertaken in the apical stem cell niche of plants called the
shoot apical meristem (SAM). Here, the higher-order proper-
ties of the cell network (cells as nodes and edges their
physical associations) were examined, looking at both the
local property of degree and higher-order property of path
length. This was possible based on the complete capture of
the system in three dimensions, in contrast to local sampling.

The organization of cells in the SAM was found to be
optimized for maximal path length [34]. In other words, no
topological shortcuts are present in the tissue and it takes an
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equally long number of maximal steps in each direction to tra-
verse the tissue. In instanceswhere cells lay upon shorter paths
across the tissue, these same cells had a greater propensity to
divide. Furthermore, the plane of division in these low-path-
length cells was oriented such that the two daughter cells
each lay upon maximal path lengths (figure 3b). It was there-
fore possible to use the higher-order property of path length
to both predict which cell will divide next, and predict the
orientation of the division plane that is followed.

The absence of a topological bias in the SAM was hypoth-
esized to play a functional role in the positioning of new
organ primordia which emerge in its flanks. The hormone
auxin is dynamically transported to different positions across
the SAM following the golden angle [38]. The topological uni-
formity of the SAM allows for this dynamic process to unfold
equally in all directions, enabling robust organ positioning.
The use of a mutant with altered cell shapes and tissue path
length showed a decrease in the robustness of organ position-
ing, suggesting a correlation between tissue topology and
higher-order processes in the SAM.

The connectivity of the cells in the epidermis of the plant
hypocotyl, the embryonic stem tissue linking the above and
below parts of the plant, was also examined using network
science [11]. Two cell types are present in the hypocotyl epi-
dermis, consisting of hair-producing cells (trichoblasts) and
non-hair-producing cells (atrichoblasts) (figure 3c). While
the genes which generate this pattern of alternating cell
files have been well characterized, the functional significance
of this configuration remains poorly understood.

Network analysis found the hair-forming trichoblast cells
to have more neighbours (figure 3d ) [11]. However, the non-
hair-producing cells were found to lie upon more shorter
paths (figure 3e). The capacity of each cell type to transport
small fluorescent molecules was performed to explore the
functional significance of this topological asymmetry. Non-
hair cells transported more rapidly, as predicted based on
lying upon shorter paths (figure 3f ). This suggested the un-
covering of a structure–function relationship in this tissue
whereby hair cells are specialized for solute uptake, and
their adjacent non-hair cells specialize in longitudinal solute
transport based on their topological positioning within the
multicellular system.
3.3. Cell differentiation patterns in the mouse embryo
One of the central questions of developmental biology is how
different cell types can arise from a single cell during embry-
onic development. Network analyses of preimplantation
mouse embryos combined the quantification of the tissue
structure with analyses of the distribution of protein
expression levels and cell fates to investigate the mechanisms
underlying this cell differentiation process. The focus is on
the blastocyst stage which occurs approximately from day
3.25 to day 4.5 of embryonic development [39]. At this stage,
the embryo consists of the inner cell mass (ICM) which is sur-
rounded by the trophectoderm that consists of placental
precursor cells. The cells undergo a round of cell differentiation
and give rise to the epiblast and primitive endoderm cells, the
embryonic and yolk sac precursor cells, respectively [40].

In the network that represents the blastocyst, nodes rep-
resent cells and edges their physical contact [25,41]. The
network and hence tissue structure was analysed by extract-
ing the node degree. An ICM cell has approximately
30% more neighbours than cells from the surrounding troph-
ectoderm (TE) [41]. Furthermore, the two cell types are
clearly separated such that ICM cells have a majority of
ICM neighbours and TE cells have mainly TE neighbours.

To analyse the cell differentiation patterns, the network
was extended by integrating protein expression levels as
node properties. The transcription factors NANOG and
GATA6 are early markers for epiblast and primitive endo-
derm fate in the inner cell mass [42]. The extended network
was used to determine correlations between a given cell
and its neighbourhood in terms of protein expression. In an
early stage of the mouse blastocyst, a local pattern arises in
the inner cell mass that evolves into a global spatial segre-
gation of epiblast and primitive endoderm [25]. The local
pattern is characterized by a correlation of number of neigh-
bours and NANOG expression of a cell as well as correlation
between GATA6 expression between neighbouring cells in
primitive endoderm precursors (figure 3g). These results
suggest that the three-dimensional cell neighbourhood
plays a role in epiblast and primitive endoderm specification.

For the comparison of in vitro models with the in vivo
situation, network analysis provides a quantitative approach
that exceeds mere visual inspection. In this context, the
neighbourhood distributions of ICM organoids, as a three-
dimensional in vitro model of the mouse ICM have been
analysed [43]. ICM organoids do not contain TE cells and
have 100 times as many cells as mouse ICMs. Nonetheless,
the results show a good agreement between the in vitro and
the in vivo system. This hints at an independence of the
local cell fate patterns on the global tissue geometry and
the number of cells.
3.4. Cancer tissue
Cancer is a developmental disease. Loss of cellular coherence
leads to tissue dysfunction and hence loss of organism fit-
ness. For studying cancerous tissue, network analysis
provides a quantitative description of cancer cell clusters.
Histological stainings allow visualizing the tumour cell distri-
bution (figure 3f ). For classical Hodgkin lymphoma, the
tumour cells do not form a coherent structure but are sparsely
distributed within the lymph node. Only 1–2% of the tissue is
covered with tumour cells [26]. The images are transformed
into tumour cell graphs, where nodes represent cells and
edges indicate potential interactions via motile molecules
[44]. Comparing the shape profiles of the node degree distri-
bution in the network with the expected probability
distributions shows that tumour cells cluster in the lymph
node. Furthermore, adding shape information as node prop-
erties to the network reveals differential preferences for
neighbourhoods of differently shaped cells (figure 3f ) [26].
Interestingly, both the spatial distribution of the tumour
cells and the neighbourhood distributions of particular cell
shapes vary between subtypes of Hodgkin lymphoma.

For the analysis of breast tissue, the graph structure has
been chosen to represent the lobular structure of the tissue
[45]. Therefore, hierarchical graphs have been implemented
[46]. In this case, a vertex does not represent a cell but a
small cluster of cells. Edges are introduced based on the
distance between two vertices. Apart from the spatial distri-
bution of the cells, the features of the surrounding
extracellular matrix (ECM) are important for tissue mainten-
ance and cancer progression. ECM-aware cell graphs have
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been used to classify bone tissue into healthy, fractured and
cancerous [45]. In these graphs, every vertex has a position
and a colour representing the location of a cell and the com-
position of the surrounding extracellular matrix. Edges are
included between two vertices that are close enough and
that have the same colour.

In all cases, the network measures provide objective par-
ameters for the structure of the tissue. Even though the
relevance of these measures for automated tissue classification
has been reduced by the emergence of convolutional neural net-
works in digital pathology, they are still of immense value for
improving our understanding of the underlying biology.

3.5. Networks of cell processes in brain and bone
In animal, plant and human tissues, cells are densely packed.
In this case, tissue topology can be described by defining cells
as nodes that are connected to their direct neighbour cells via
edges. By contrast, neurons in the brain have long processes
that branch out and connect to distant cells via synapses.
As a result, the number of neighbours to which a neuron
can connect is not limited by cell packing.

In many tissues, the space between cells is filled with
extracellular matrix. This intercellular space can also contain
cell processes and cell–cell connections. For example, the
mineralized bone matrix of most vertebrates contains a
dense network of cells. It can be compared to brain tissue
in terms of size and complexity [47]. The osteocytes that
make up this network are differentiated bone cells that get
encased in the mineral matrix and maintain contact with
other bone cells and with blood vessels through a network
of fine canals. This lacuno-canalicular network (LCN) forms
during bone growth or regeneration and remains in place
after mineralization, sometimes for decades [48]. Identifying
cells with nodes, as in the examples above, does not capture
the complexity of the canalicular network. Instead, all
branching points of cell processes can be defined as nodes,
and the canaliculi connecting them as edges [12].

Topological comparison of the resulting network in
different types of bone tissue shows that the LCN in lamellar
bone, which grows more slowly but in a more controlled
manner compared with woven bone, is less densely con-
nected, but more optimized for efficient transport. Nodes of
high betweenness centrality are aligned along paths that con-
nect different lamellae (figure 3h). Cumulative distributions
of edge degree and link length are exponential, indicative
of spatially constrained networks, and do not differ between
bone types, suggesting conserved local biological growth
rules. Differences in local connectivity, however, show that
woven bone is more disordered, while the ratio of shortest
path length to clustering coefficient of the LCN scales with
network size in the same way as in other small-world biologi-
cal networks [17]. Furthermore, the subcellular topology of
the osteocyte LCN is highly relevant for the mechanosensory
function of bone tissue, as it defines how fluid flows through
the network of cavities [49].
4. Developmental rules underpinning the
creation of cellular topology

In the following section, we aim to integrate the results from
network analyses of diverse biological tissues by discussing
the common generative principles that give rise to the differ-
ent observed cellular topologies. In general, cell topology in
tissues is generated through a combination of (i) the
manner by which cells divide, (ii) changes to their shape rela-
tive to one another following division or due to mechanical
forces and spatial constraints, and (iii) cellular movement
and rearrangement within tissues (figure 4a). We consider
each of these features separately below.

4.1. Cell division rules
Simple rules describing the symmetric division of cells in
plant and animal tissue have been described [50]. A sym-
metric division takes place when the resulting sizes of the
daughter cells are equal. The ‘default’ rules in both cases
state that the cells will divide through the middle of the cell
using the shortest possible division plane. In each Drosophila
wing disc (Hoffmeister’s rule), and in plant tissues (Errerea’s
rule), this default cell division rule was identified, whereby
the shortest wall division plane passes through the centre
and results in two equally sized progeny cells.

This division rule was expanded to consider the topologi-
cal state of neighbours in the study mentioned above
examining the number of neighbours in the Drosophila wing
disc [8], representing a local topological cell division rule. A
study examining the higher-order organization of cells in
the plant SAM further extended a cell division rule leading
to an emergent global topological property of maximized
path length, i.e. no shortcuts through the tissue [34]. This
arose by mechanical feedbacks between cells, impacting cell
shape and setting up a shortest wall division plane (Errera’s
rule), which conforms to the global maximized path-length
property. Such feedback between cell shape and a maximized
global path length provides a link between local division
rules and global emergent properties of a system.

In instances where cells are fixed in place with respect to
one another, symmetric divisions are incapable of generating
a pattern beyond ordered lattices. In order to create novel
patterns, asymmetric divisions must occur, whereby the
daughter cells are not of equal size. While the mechanisms
underpinning the regulation of unequal cell division remain
unknown, one factor proposed to play a role is that of mech-
anical force. A cell division rule has been proposed whereby
cells divide perpendicular to the axis upon which mechanical
force is applied to them. The mechanically responsive cell
division rule is able to override the shortest wall cell division
rule. Such oriented asymmetric divisions give rise to complex
plant structures, such as the modification of leaves into
pitcher plants [51].

4.2. Cell shape changes
Besides cell division, changes of cell shape due to growth,
mechanical forces or spatial constraints can change the top-
ology of a tissue. Mechanically guided cell growth can
couple local control mechanisms to global tissue structure
and topology [52]. The question if stress (force) or strain
(deformation) are the driving mechanism may depend on
whether a tissue is predominantly serially or parallelly con-
nected [53]. In the Arabidopsis shoot apical meristem, local
topology correlates with turgor pressure rather than cell
wall mechanical properties, suggesting an active role of
pressure for tissue topology and patterning since cell
growth in plants is physically controlled by turgor pressure



(a) cell division

apoptosis

constraints of space

movement

shape changes

branch
bifurcate/split

merge

terminate

mechanical forces

(b)

(c)

Figure 4. Illustration of developmental rules. (a) Rules that influence cell packing within a constraint tissue geometry. (b) Topological rearrangements due to cellular
movement and cell shape changes. (c) Emergence of neuronal or osteocyte topology by growth cones splitting, merging and terminating.
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[54]. Also in many different epithelial tissues the distribution
of node degree is related to the distribution of cell size [8]. A
combination of experimental as well as computational pertur-
bations of cortical contractility, line tension and resting area
(cell size) revealed that physical constraints resulting from
the reciprocal force balance between all cells determine the
resulting tissue topology.

Cells in epithelia usually adopt a hexagonal surface-area
minimizing shape. One exception is the irregular shape of
epidermal pavement cells of plant leaves that results from
their cell wall structure. The topology of the leaf epidermis
is distinct from that of epithelia [55] and violates the Lewis’
law that states that the number of neighbours is proportional
to cell size, indicating that rather than area-filling constraints,
other biophysical mechanisms play a role [56]. The observed
leaf cell topology can be explained by a topology-driven cell
division rule regulated by cell shape mechanics [55].

Geometric constraints can influence what shapes a cell
can adopt. The topology of epithelia is usually studied on
the apical surface of the tissue. In many cases, however, epi-
thelial tissues are not flat, but curved. The resulting geometric
constraints force cells to intercalate between the apical and
basal surface [57], leading to different degree distributions
on both sides of the tissue. Cells adopt complex ‘scutoid’
shapes with additional vertices between the apical and
basal side to balance forces and satisfy mechanical energy
minimization in the tissue. This shows that cell connectivity
is tightly linked to tissue geometry via mechanical forces,
and that tissue architecture can only be accurately captured
by taking the full three-dimensional architecture into account,
even in epithelia.
4.3. Cell movement and rearrangement
In densely packed tissues such as epithelia, topology is
ultimately limited by the number of direct neighbours. To
overcome this limitation, cells can form long protrusions
that grow outwards to connect to more distant cells far
beyond their direct neighbours. Examples include the axon
and dendrites of neurons, osteocyte protrusions in bone, or
nanotube-like processes in tendon cells [61]. The outgrowth
of protrusions and the formation of connections with other
cells determine the resulting topology, while the initial cell
packing becomes less relevant in this case. Mechanisms of
protrusion outgrowth are linked to cell migration and involve
cell adhesion and actin polymerization [58]. These processes
are guided by various environmental cues, including matrix
rigidity, anisotropy, growth factors and even electromagnetic
fields [52,53,59].

The physical state of tissues has previously been proposed
to follow different states of fluidity, ranging from liquid to
solid [60]. In multicellular systems, where cells move with
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respect to one another, topological reconfigurations can occur
readily, and represent ‘liquid’ systems (figure 4b). In other
cases, such as in plant tissue, cells are fixed in position with
respect to one another, making their topologies fixed, and
represent a ‘solid’ system. Cell slippage has not been reported
in plants. The physical state of the cells in a tissue reflects the
mechanical properties of the biological system. Cell adhesion
is more flexible in fluid systems and more stringent in the
case of solid systems.
/journal/rsif
J.R.Soc.Interface

20:20230115
5. Generative models for tissue network
development

Understanding how iterations of the local developmental
rules outlined above give rise to observed topological proper-
ties in tissues is often not straightforward. Computational
models that generate tissue topology based on hypotheses
for the developmental rules have been pivotal in different
developmental systems. Depending on the scientific question,
models of different complexity are appropriate. In this section
and in table 1, we give an overview of the different modelling
approaches used to study the link between local rules and the
resulting global topology. We start with the least complex.

5.1. Markov models
A discrete Markov chain model describes the evolution of a
system as a series of states in which the probability of transi-
tioning to the next state only depends on the current state
[71]. In the case of tissue networks, the state of a tissue has
been described as a vector of frequencies of node degrees
[8,62] (table 1). Hence, an entry in the vector contains the fre-
quency of cells with a specific number of neighbours.
Proliferation rules specify the probability of an i-sided
mother cell to produce a j-sided daughter cell and thereby
determine the probability for the system of transitioning
from one state to the next. The spatial arrangement of the
cells in the tissue context or any mechanical interactions are
not considered. Such a model reproduces the empirically
derived distribution of node degrees in different epithelia
[8,62] (table 1). These results propose that cell proliferation
dynamics on their own are sufficient to cover the complex
topological situation in epithelia.

5.2. Agent-based models
Agent-based models represent complex systems by consider-
ing the individual constituents [72]. They comprise a
collection of autonomous agents that behave according to a
predefined set of rules. The rules can be discrete, such as
if-else statements, or continuous, based on differential
equations. In tissue networks, the individual nodes are the
agents and their behaviour depends on rules for the individ-
uals as well as interaction rules for nodes connected by edges.
A key distinction between agent-based models is how much
spatial detail is implemented. Two types that have been
applied to tissue networks in several contexts are the centroid
and the vertex model.

5.2.1. Centroid model
The agents are cells that are assumed to be discs in two
dimensions or spheres in three dimensions and are described
by their position in space and an interaction radius [73].
Hence, the set-up is a tissue network with nodes that have
the position as attributes and edges that occur if two cells
are closer than the sum of their interaction radii. The position
of a cell changes due to mechanical cell–cell interactions if
two cells are connected by an edge. Additionally, rules for
cell motion, cell division and apoptosis can be implemented.
In a more refined version, the edges that define cell–cell inter-
action are included based on a Delaunay triangulation [64].
Often, the centroid model is combined with a Voronoi tessel-
lation [34,72]. These allow polygonal approximations of the
shape of cells.

The application of a centroid model as a generative
model allows testing different parameters that affect tissue
topology individually. The effect of the orientation of the div-
ision plane, the duration of the cell cycle, the mechanical
properties of the cells as well as boundary conditions on
the node degree of a tissue have been analysed with a cen-
troid model [63]. Comparison with experimental data for
Drosophila epithelia allowed determining suitable parameter
value combinations.

A different approach for analysing the effect of a par-
ameter of interest is neglecting it in a model. Jackson et al.
generated multicellular assemblies based on three-dimen-
sional anisotropic Voronoi tessellation that resembled the
Arabidopsis SAM in terms of node degree and random walk
centrality but not with respect to the cell size distributions
[34]. Applying a set of division rules to this virtual tissue
showed a different behaviour to that observed in exper-
iments. Hence, the correct cell geometry is essential, which
has also been verified experimentally by mutant analyses.

Apart from the basic tissue topology, the distribution of
cell fates is also of major interest in developmental systems.
In a centroid model, cell fate markers can be added as prop-
erties to each cell. In this case, cell division rules determine
how a fate is passed from the mother cell to the daughter
cells. Testing different inheritance rules in a centroid model
and subsequent comparison with experimental data revealed
that symmetrically passing on the same fate from mother to
daughters best reproduces the cell fate patterns during
primitive endoderm differentiation in ICM organoids [64].

5.2.2. Vertex model
A vertex model allows to introduce more detailed geometric
features of the cell shape than the centroid model [32]. Each
cell is represented as a polygon. This corresponds to a
tissue network in which the nodes describe the polygon cor-
ners and the edges the polygon sides. Forces acting on a cell
encompass cell elasticity and adhesion. Those are described
by area elasticity, line tension at junctions between cells and
contractility of the cell perimeter. Cellular packing is deter-
mined by stationary and stable network configurations that
fulfil a force balance. Cell division is implemented as the
introduction of a new edge based on a division centre and
a division direction [74].

Such a vertex model has been used to study the packing
geometry, in particular the node degree, in the Drosophila
wing disc [32]. Interestingly, only a static tissue without pro-
liferation can maintain a perfect hexagonal packing.
Proliferation yields irregular cell shapes.

For plant epidermis, a diversity of cell division rules
were capable of giving rise to observed degree distributions.
When also considering geometrical properties, cell division
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rules which favoured equal-sized cells most closely approxi-
mated the observed data for node degree and internal
vertex angle [65].

5.2.3. Continuous models
For the study of dendritic cell connectivity, the cell–cell
connections are of particular interest, while the spatial
arrangement of the individual cells is less important. In
these cases, a continuous model can be applied, implemented
as the growth of a network by adding nodes and edges via
branching and merging of growth cones.

The simulation tool NETMORPH implements neurite
outgrowth and branching based on phenomenological rules
[66,68]. The neurites can elongate and bifurcate with given
probabilities. If two neurons are in close proximity, a synapse
can form. The model has been validated with respect to rat
cortical layer 2/3 pyramidal neurons. The simulation tool
CX3D further considers the appropriate mechanical prop-
erties of individual neurons [66,67]. This continuous growth
model is combined with diffusion of extracellular signalling
molecules in the surrounding space. The model has been
shown to generate cortical layers, different branching
patterns based on extracellular signalling molecules and
network formation in dissociated culture neurons.

Including spatial constraints into a continuous model
of network growth increases its range of possible appli-
cations. Three-dimensional growth and branching have
been described by a random walk that is biased by local
environmental conditions and constraints [70]. The local
environment is either simulated or can be extracted from
microscopy images that show e.g. extracellular matrix organ-
ization or the distribution of soluble cues such as growth
factors. Sensitivity analysis for the different modelling par-
ameters such as branching probability or angle show the
effect of the local growth parameters on the tissue topology.
Different to most studies, in addition to the node degree, a
number of further network measures such as clustering
coefficient, shortest path, edge density, betweenness and
centrality measures have been considered.

Focusing on the question of interest and the available
experimental data when choosing the appropriate modelling
approach is essential. Increasing model complexity always
comes with increasing computation time but can only offer
a knowledge gain if it is suitable for the respective question.
6. Discussion
The application of modelling approaches including the use of
generative models enables the identification of plausible mech-
anismswhich give rise to complexmulticellular assemblies [73].
Functional tissue organization emerges from cell–cell inter-
actions and external cues without centralized control [74].
This developmental process is an example for rule-based itera-
tive generation of patterns. The local rules in this case
correspond to how and when cells divide, migrate or
differentiate. This set of rules is encoded in the genome, but
the activation of specific genes or genetic programmes depends
on chemical or physical signals received by the cell, defined by
its connectivity to other cells in the local tissue environment.
Tissue topology and architecture, in turn, depends on prior
cell activity, creating a feedback loop in space and time. Recipro-
city and feedback loops are a necessary component of stable
control systems and enable robust control and homeostasis in
the presence of noise and external perturbation [75]. Identifying
these feedback loops is essential to understand how genotype
and phenotype are related, and a key question in developmen-
tal biology. Tissues are networks of cells, and identifying the
generative rules that determine their topology can help to
understand the control principles behind tissue development.

Here, we collected existing work from different areas of
biology where the mechanisms underlying tissue topology
have been quantified and related to generative mechanisms.
In the future, the link between generative rules (genetic pro-
grammes) and tissue topology independent of a specific
model system could be identified by systematically comparing
exemplary model systems. The cross-kingdom application of
network-based approaches towards understanding tissue
complexity may provide a means towards the identification
of unifying principles underpinning multicellular life and
evolutionary processes. Despite the biological diversity
and independent evolution of multicellularity, the possi-
bility that common physical principles underlie complex life
remains. These may be related to structure–function
relationships in cell organization [18], and their progressive
optimization through selective forces. Understanding such
principles may serve as guiding features in understanding
the basis of complex life and its engineering. In the future,
combinations of the modelling approaches described here
with machine learning could make it possible to infer the
rules and parameters of the generative models directly from
experimental data, e.g. via simulation-based inference or
automatic differentiation. This could make such models more
predictive by connecting them to experimental image data
and might even lead to applications in image-based diagnos-
tics by detecting pathological changes at the cellular level
based on macroscopic topological changes at the tissue level.
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