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Abstract

This article presents an equivalence notion of finite order stochastic processes. Local dependence mea-

sures are defined in terms of ratios of joint and marginal probability densities. The dependence measures

are classified topologically using level sets. The corresponding bifurcation theory is illustrated with

some simple examples.

1 Introduction

Bifurcation theory has been an extremely successful tool to investigate the qualitative (or structural) prop-

erties of deterministic nonlinear systems. But in many practical situations, deterministic models fit the

available data only imperfectly, and stochastic models are proposed to describe the behaviour of a given

system; the stochastic components can model genuinely random events, but they can also be introduced for

quantities of which not enough is known to describe them otherwise.

Motivated by the success of deterministic bifurcation theory, there have been several attempts to

develop bifurcation theory for stochastic processes; however, to find a natural replacement of the notion of

‘topological equivalence’ has been the main problem. For at the base of any bifurcation theory, there is a

notion of ‘form’ or ‘shape’, formalised as an equivalence relation between systems: two systems are said to

be of the same form if they are in the same equivalence class. A meaningful bifurcation theory can only be

developed if there are equivalence classes with non-empty interior; note that this presupposes a topology on

the space of systems. Elements in the interior of an equivalence class are ‘structurally stable’: if a system

parameter is changed slowly, the system will remain in the equivalence class and the form of the system

does not change. All other elements, associated to changes of form, are called ‘bifurcating’.

In this article, we quickly review the previously proposed notions of phenomenological and dy-

namical bifurcation of stochastic processes. We introduce a new equivalence relation, based on the depen-

dence structure of the process. This notion is related, and in some cases equal, to the better known copula

density of dependent stochastic variables. We show that our equivalence relation has ‘many’ structurally

stable elements and that it avoids some limitations of older notions. Finally, we illustrate it by giving several

applications.
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1.1 Phenomenological bifurcations

Without always stating it explicitly, in this article we shall always assume that the stochastic processes

considered are ergodic, and that they have therefore unique invariant probability distributions; we shall

moreover assume that these invariant distributions are absolutely continuous with respect to a measure of

the Lebesgue class, and that the corresponding probability density is a smooth differentiable function.

The natural first attempt to attain at a classification of stochastic processes is to apply the Morse

classification of real valued functions to invariant probability densities p of processes [3, 15]. The corre-

sponding equivalence relation is that of smooth coordinate transformations of domain and range of p, the

stable elements being Morse functions with all critical values distinct from each other. For the purposes of

this article, we shall call the equivalence relation P-equivalence, in analogy with the associated bifurcation

notion, which has been called phenomenological bifurcation or P-bifurcation (see Arnold [2], p. 471-473).

The main problem of this approach, acknowledged in [15], is that the equivalence classes are not

invariant under diffeomorphisms of the underlying space. For instance, let {Xt} and {Yt} be two processes
on Rm with invariant densities pX and pY , and let ϕ be an invertible transformation of Rm. If the processes

are related by Yt = ϕ(Xt), then the invariant densities are related as

pX(x) = pY (ϕ(x)) |detDϕ(x)|;

we see that, in the language of physicists, the function value of the invariant density ‘depends on the coor-

dinates’. It is clear that equivalence classes are preserved if only volume-preserving diffeomorphisms are

admitted as coordinate changes, for which |detDϕ(x)| = 1 for all x. Note that these comprise the class of

Riemannian isometries proposed in [15].

The restriction of admissible transformations to volume-preserving diffeomorphisms of the do-

main of the invariant density p is necessary. For if all diffeomorphisms were admissible, then all processes

on the real line would be equivalent, since there is always a coordinate transformation such that the invariant

density of the transformed process is the uniform density on the unit interval. In the words of Zeeman [15]:

‘However, this [i.e. admitting all diffeomorphisms] would be exactly thewrong thing to do, because it would

render the tool [i.e. P-equivalence] useless by making everything equivalent (...)’ (the comments in square

bracket are our interpolations).

Underlying this difficulty is the fact that the probability density p(x), unlike the measure p(x)dx, is
not an invariant geometrical object. By consequence, P–equivalence is an inconvenient notion for practical

applications: for instance, recording data on linear or logarithmic scale might point to different conclusions.

1.2 Dynamical bifurcations

A second bifurcation notion for stochastic processes has been introduced by Arnold and his co-workers

(see [2] for an extensive exposition). We shall try to sketch its main ideas briefly using the simple first-order

process {Xt} on R satisfying

Xt+1 = g(Xt)+ εt , (1)

where the {εt} is a sequence of independent and identically distributed random variables. This process

can be considered as a deterministic dynamical system on an infinite dimensional phase space !×R as

follows. The elements of ! are the possible realisations ω = (ε0,ε1, · · ·) of the process {εt}. Introducing
the projection π(ω) = ε0 and the shift σ(ω) = (ε1,ε2, · · ·), we have for instance that εt = π ◦σ t(ω). Define
now the map " on !×R by

"(ω,x) = (ϕ1(ω),ϕ2(ω,x)) = (σ(ω),g(x)+π(ω)) .
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Note that this is a deterministic system; the stochastics are ‘hidden’ in the fact that the initial conditionω ∈!
is unknown. The realisations Xt of the process (1) are the values of the second component of "

t(ω,x).
Note that " is a skew system: the shift dynamics ϕ1 in the space ! are driving the dynamics ϕ2

in R. For ", a random fixed point is defined as a map ξ :!→ R, which satisfies the invariance condition

ϕ2(ω,ξ (ω)) = ξ (ϕ1(ω))

for all (or almost all) ω . Stability is now be defined in the usual way: a random fixed point ξ is stable if
all nearby orbits converge to ξ . A random, or, following the terminology in [2], dynamical bifurcation or
D-bifurcation of the process occurs for instance if a random fixed point loses stability.

At this point, a drawback of the notion of dynamical bifurcation becomes apparent: to determine

stability of a random fixed point, two orbits of" with identical noise realisations have to be compared. This

seems to make it rather difficult to apply the notion of D-bifurcation to practical problems (see however [4]

and related literature). We therefore leave aside this theory, and try rather to improve on the notion of

P-equivalence.

1.3 Local dependency structure

By considering stochastic analogues of concepts used in catastrophe theory, Hartelman et al. [12] arrived at a

classification for stochastic differential equations of diffusion type on the real line that is invariant under in-

vertible transformations. At the basis of this classification are level crossing statistics and derived quantities,

which are invariant under monotonous transformations of the underlasying space. Although level crossing

statistics can also be used for discrete time systems, the corresponding classification would be rather re-

strictive. The reason is that discrete time dynamical systems are ‘essentially richer’ than discretely sampled

continuous time diffusions, because finite time transition densities induced by diffusions only represent a

subclass of transition densities for discrete time dynamical systems.

Instead of level crossing statistics, we base our proposed equivalence relation on another function

that can be associated to stochastic processes of finite order. For the purposes of this introduction, we

explain the main ideas in the case of a first order process {Xt} on the real line; general definitions will be
given below. Assume therefore that the process {Xt} is generated by

Xt+1 = g(Xt)+ εt , (2)

where {εt} is a sequence of independent, identically distributed (IID) innovations. Recall that equation (2)
imply a transformation law for probability densities. Assume that Xt is distributed with marginal probability

density pt , that is P(a≤ Xt < b) =
∫ b
a p

t(x)dx, and that εt has density ϕ . Then the probability density pt+1
of Xt+1 is given by

pt+1(xt+1) =
∫

τ(xt+1|xt)pt(xt)dxt ,

where τ(x|y) = ϕ(x−g(y)) is the transition probability density of the process.
Consider in particular the strictly stationary process {Xt} where X1, and hence every Xt , is dis-

tributed according to the invariant probability density p1 = p. Denote the invariant joint probability density

of (Xt ,Xt+1) by pt,t+1; this joint density does not depend on t and it is therefore equal to p1,2. Moreover,
the measure p1,2(x1,x2)dx1 dx2 is absolutely continuous with respect to p(x1)p(x2)dx1 dx2. By the Radon-
Nikodym theorem, the following Jacobian exists:

f (x1,x2)
def=

p1,2(x1,x2)dx1 dx2
p(x1)p(x2)dx1 dx2

=
p1,2(x1,x2)
p(x1)p(x2)

=
τ(x2|x1)
p(x2)

;
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The function f is called the dependency ratio of the process. Note that f is identically 1 if Xt and Xt+1
are independent; the difference | f (x1,x2)− 1| can therefore be seen as a measure of the local dependency
structure of the process. Moreover, f contains all essential information regarding the dependence structure

of the process: for if coordinates are chosen such that p(x) = 1 for x∈ [0,1] and 0 otherwise, then f (x1,x2) =
p1,2(x1,x2) = τ(x2|x1) determines the entire process. By construction, dependency ratios are invariant —
as geometrical objects — under any invertible transformation the underlying space of the process under

consideration. Our notion of equivalent processes will be based on these ratios; invariance of the equivalence

classes under nonlinear invertible transformations is then obtained automatically.

Several other local dependence measures have recently been described in the statistical literature

(see e.g. [7], [8], and [10]). The dependence measures in this literature are various localised versions of the

Pearson correlation coefficient, and as such are motivated entirely differently than our dependency ratio. In

particular they do not share the invariance property with our dependency ratio.

The definition of our equivalence relation is a bit involved. We therefore postpone this definition

to section 3. First, in section 2, we give the definition of dependency ratio for more general processes, and

we show how this quantity is connected with other quantities like copula density, mutual information and

entropy of a stochastic process. In section 3, the definition of our equivalence relation is given, together with

topological properties of the associated equivalence classes. Applications are given in section 4.

2 Dependency ratios, copulas and information theory

Our attention will be restricted to stationary discrete time processes of finite order that are generated by

equations like

Xt = g(Xt−n, · · · ,Xt−1,εt).

Here the variables Xt take values in some n–dimensional orientable manifold M, and the εt are identically
and independently distributed random variables. In most cases M will be equal to Rn. We wish however

to bring out the dependency of the process on the variables chosen; in order to achieve this, a coordinate–

independent formulation is chosen. Considering the problem on a manifold will come at little extra cost.

2.1 Basic definitions

Recall that any stochastic process {Xt} is given by the joint probabilities

Pt1,··· ,t!(A1× · · ·×A!) = P{Xt1 ∈ A1, · · · ,Xt! ∈ A!},

which are defined for all !–tuples (t1, · · · , t!) ∈ Z!. A stochastic process is called strictly stationary if its

finite dimensional joint probabilities are time invariant

Pt1,··· ,t! = Pt1+h,··· ,t!+h,

for all (t1, · · · , t!,h). Two stochastic variables X and Y are said to be equivalent in distribution, written

as X ∼ Y , if P(X ∈ A) = P(Y ∈ A) for every P-measurable set A. A strictly stationary process {Xt} is
said to be of order n if, for all k > n, the conditional distribution of Xt given Xt−k, . . . ,Xt−1 is a function of
(Xt−n, . . . ,Xt−1) only:

Xt |Xt−k, . . . ,Xt−1 ∼ Xt |Xt−n, . . . ,Xt−1. (3)

A measure on a manifoldM is of Lebesgue class, if at every point of the manifold it is absolutely continuous

with respect to the Lebesgue measure in some (and hence any) coordinate chart. If M is orientable, there is
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a volume form on M: a differentiable n-form that is everywhere non-zero. It is clear that any volume form

is of Lebesgue class. We assume thatM is orientable, and we fix a volume form on M, denoting it by dx. It

will be assumed that the processes we are dealing with have all joint probabilities Pt1,··· ,t! of Lebesgue class,
with twice differentiable probability densities pt1,··· ,t! .

The transition probability density τ of a process of order n is given by

τ(xn+1|x1, · · · ,xn) =
p1,··· ,n+1(x1, · · · ,xn+1)
p1,··· ,n(x1, · · · ,xn)

. (4)

Note that from the order property, it follows that for k ≥ n

τ(xt |xt−k, · · · ,xt−1) = τ(xt |xt−n, · · · ,xt−1).

Given any initial probability density of X1, · · · ,Xn, we can determine all joint probabilities by first determin-
ing

p1,··· ,n+1(x1, · · · ,xn+1) = τ(xn+1|x1, · · · ,xn)p1,··· ,n(x1, · · · ,xn),
p1,··· ,n+2(x1, · · · ,xn+2) = τ(xn+2|x2, · · · ,xn+1)τ(xn+1|x1, · · · ,xn)p1,··· ,n(x1, · · · ,xn),

...

and then integrating out unwanted variables. In particular, the distribution of X2, · · · ,Xn+1 is obtained by

p2,··· ,n+1(x2, · · · ,xn+1) =
∫

τ(xn+1|x1, · · · ,xn)p1,··· ,n(x1, · · · ,xn)dx1.

The central notion of dependency ratio of a stochastic process is given in terms of joint probability densities.

Definition. The n’th order dependency ratio f of a strictly stationary stochastic process {Xt} is given by

f (x1, · · · ,xn+1) =
p1,··· ,n+1(x1, · · · ,xn+1)

p1,...,n(x1, · · · ,xn)p1(xn+1)
=

τ(xn+1|x1, · · · ,xn)
p(xn+1)

.

Note that f is the Jacobian of the measure p1,··· ,n+1(x1, · · · ,xn+1)dx1 · · · dxn+1 with respect to the mea-
sure p1,...,n(x1, · · · ,xn)dx1 · · · dxn · p1(xn+1)dxn+1. In particular, f is chart-independent.
Proposition 1. If for two processes of order n the dependency ratios of order n are equal, then for every m≥
n, the dependency ratios of order m are equal as well.

Proof.

We consider two processes {Xt} and {Yt} of order n. It suffices to show that order-m equality of the depen-
dency ratio for any m≥ n implies, and is implied by, order-n equality. For m≥ n, we may write

p1,...,m+1(x1, . . . ,xm+1) = p1,...,m(x1, . . . ,xm)τ(xm+1 | x1, . . . ,xm)
= p1,...,m(x1, . . . ,xm)τ(xm+1 | xm−n+1, . . . ,xm).

The dependency ratio of {Xt}, for m≥ n, can be written as a function of n+1 variables only:

p1,...,m+1(x1, . . . ,xm+1)
p1,...,m(x1, . . . ,xm)p(xm+1)

=
τ(xm+1 | xm−n+1, . . . ,xm)

p(xm+1)
=

p1,...,n+1(xm−n+1, . . . ,xm+1)
p1,...,n(xm−n+1, . . . ,xm)p(xm+1)

,

which is nothing but the dependency ratio of order n in terms of the last n+ 1 variables of the vector
(x1, . . . ,xm+1). The dependency ratio of {Yt} can be reduced similarly. Clearly, order-m equality for m ≥ n

implies, and is implied by, order-n equality.
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2.2 Relation with copulas

For a strictly stationary real-valued time series {Xt} with continuous joint cumulative distribution functions
(CDF) Ft1,...,t!(xt1 , · · · ,xt!) and marginal CDF F(x), the copula associated with a delay vector (Xt−n+1, . . . ,Xt)
is the quantity

Cn(u1, . . . ,un) = F1,...,n+1(F−1(u1), . . . ,F−1(un)),

where u j ∈ [0,1] for j = 1, · · · ,n+1. The correspondeing copula density function is

cn(u1, . . . ,un) =
∂ n+1Cn(u1, . . .un)

∂u1 · · ·∂un
=
p1,...,n+1(F−1(u1), . . . ,F−1(un))
p(F−1(u1)) · · · p(F−1(un))

,

or

cn (F(x1), . . . ,F(xn)) =
p1,...,n(x1, . . . ,xn)
p(x1) · · · p(xn)

.

In the case of a real valued first order time series, our definitions imply that the dependency ratio f (x1,xn+1)
is equal to the copula density function c2 evaluated in the ‘standard’ coordinates (u1,u2) = (F(x1),F(x2)),
which are equivariant under monotonously increasing transformations of X .

Although the n+ 1-dimensional copula c(u1, . . . ,un+1) characterises the dependence structure
within n+1 consecutive values (Xt−n, . . .Xt), it does not take into account the ordering of the observations
in time. In time series analysis one is often interested in the question of how Xt depends on (Xt−n, . . . ,Xt−1).
It is then more natural to take into account the ordering of the observations in time and to focus on the condi-

tional distribution of Xt given past values of Xt . In this way, we are led to the definition of dependency ratio

given above. This allows, in principle, to distinguish between time reversals in processes of order higher

than one. For orders larger than one the dependency ratio can be expressed as:

f (x1, . . . ,xn+1) =
cn+1(F(x1), . . . ,F(xn+1))
cn(F(x1), . . . ,F(xn))

.

2.3 Relation with information theory

Information theoretic dependence measures can often be expressed in terms of copulas. Well-known ex-

amples are mutual information and the redundancy, which both are special instances of Kullback-Leibler

divergences (relative entropies).

The Kullback-Leibler divergence between two probability distributions with probability densities

p(x) and q(x) is defined as

D(p,q) =
∫
p(x) ln

(
p(x)
q(x)

)
dx

Themutual information I(X1;X2) between two random variables X1 and X2, is a dependence measure defined as

the Kullback-Leibler divergence between their joint probability density function p1,2(x1,x2) and the product
of their marginals p(x1)p(x2) (we consider the case with identical marginals, appropriate for stationary
time series). Since p1,2(x1,x2) denotes the joint probability density function of (X1,X2), the integral over
p(x) = p(x1,x2) can be concisely expressed as an expectation, that is,

I(X1;X2) =
∫ ∫

p1,2(x1,x2) ln
(
p1,2(x1,x2)
p(x1)p(x2)

)
dx1 dx2 = E

[
ln

(
p1,2(X1,X2)
p(X1)p(X2)

)]
,
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which is non-negative and equals zero if and only if X1 and X2 are independent. This can be seen as follows:

the expected value of the random variable Z = p(X1)p(X2)/p1,2(X1,X2) is

E[Z] =
∫ ∫

p1,2(x1,x2)
p(x1)p(x2)
p1,2(x1,x2)

dx1 dx2 = 1.

By convexity of the function ln(z−1) =− ln(z), Jensen’s inequality gives

I(X1;X2) = E[ln(Z−1)]≥− ln(E[Z]) = 0,

and equality holds if and only if Z = 1 almost surely.

The generalisation of the mutual information to the multivariate case is known as the redundancy:

R(X1;...;Xn+1) = E

[
ln

(
p1,...,n+1(X1, · · · ,Xn+1)
p(X1) · . . . · p(Xn+1)

)]
,

which is zero if and only if (X1, . . . ,Xn+1) are jointly independent, and positive otherwise. In analogy with
the above discussion on copulas, a generalisation which is more suitable within a time series context is the

entropy, given by

H(Xn+1;X1,...,Xn) = E

[
ln

(
p1,...,n+1(X1, · · · ,Xn+1)
p1,...,n(X1, . . .Xn)p(Xn+1)

)]
= E [ln f (x1, . . . ,xn+1)] .

3 Equivalence notions

In this section we introduce and motivate our notion of equivalence of stochastic processes and we give

some of its fundamental properties.

3.1 Structural stability and bifurcations

We recall briefly the fundamentals of bifurcation theory. The two main ingredients of any such theory are a

topological space X and an equivalence relation between elements of X . An element f of X is structurally

stable if there is a neighbourhood N( f ) such that all elements g in that neighbourhood are equivalent to f ;
that is g∼ f for all g∈N( f ). Intuitively speaking, a structurally stable element f can be ‘perturbed’ slightly
without being pushed out of its equivalence class. Such an element is sometimes called ‘persistent’. Clearly,

the equivalence class of any structurally stable element is an open set. A structurally stable equivalence

class can be thought of as defining a set of elements of the same ‘shape’ or ‘form’ (see [14]): form remains

‘stable’ if perturbed slightly.

All elements of X that are not structurally stable are called bifurcating. This notion is usually

familiar from the context of parametrised families: if λ is some q-dimensional parameter, and λ *→ fλ a
family of elements of X , then λ = λ0 is a bifurcating parameter value of the family if fλ0 is not structurally
stable; it might be said that at bifurcating parameter values the ‘form’ of fλ changes. Since the set of
structurally stable elements is open, the set of bifurcating elements, and therefore also the set of bifurcating

parameter values in a parametrised family, is closed.

An equivalence relation will give rise to a useful bifurcation theory on X only if there at all exist

structurally stable elements. The optimal situation is attained if the set of structurally stable elements, while

not consisting of a single equivalence class, is ‘topologically big’, since then we will be able to associate

to ‘most’ elements a form. In a topological space, a set is ‘big’ if it is open and dense, or if it is at least a

countable intersection of open and dense sets (a so-called ‘generic’ or ‘second category’ set, see [11]).

7



3.2 Strong equivalence

A natural requirement to impose on an equivalence relation of stochastic processes on a manifold M is that

processes which only differ by a diffeomorphism of M, that is, which are the ‘same’ up to a coordinate

change, fall in the same equivalence class. Let for instance {Xt}, {Yt} denote two first order processes on
M. We will certainly want to call two processes equivalent if there is a diffeomorphism ϕ : M→ M such

that the variables (Yt ,Yt−1) and (ϕ(Xt),ϕ(Xt−1)) are identically distributed. If this is the case, we call {Xt}
and {Yt} strongly equivalent. Let fX(x1,x2) and fY (x1,x2) denote the dependency ratios of {Xt} and {Yt}
respectively; if the processes are strongly equivalent, it follows from the invariance of the dependency ratios

under diffeomorphisms that

fX(x1,x2) = fY (ϕ(x1),ϕ(x2)) for all (x1,x2) ∈M×M. (5)

If we would take strong equivalence as our equivalence relation, in general we would obtain an

uncountable infinity of equivalence classes, and no class would be a neighbourhood to any of its points, that

is, no process would be structurally stable. To see this in a simple example, assume that fX and fY are two

dependency ratios defined on the square (−1,1)× (−1,1)⊂ R2, and that they are given as

fX(x1,x2) =
2−µ
3

+ x21+ µx22, fY (x1,x2) =
2−ν
3

+ x21+νx22.

Taking the invariant density in both cases to be p(x) = 1
2
I[−1,1](x), where IA(x) denotes the indicator func-

tion, we have specified two stochastic processes. The point (0,0) is the only non-degenerate critical point
for both fX and fY ; therefore, if fX and fY are strongly equivalent, we should have that "(x1,x2) =
(ϕ(x1),ϕ(x2)) satisfies "(0,0) = (0,0). But there is no real-valued smooth diffeomorphism ϕ such that (5)
holds simultaneously with ϕ(0) = 0, for the values of fX and fY at (0,0) are different if µ ,= ν . We see that
every value of µ defines a different equivalence class.

3.3 Topology of dependency ratios

In section 2 we have defined the dependency ratio f of an n’th order process {Xt} by

f (x1, · · · ,xn+1) =
p1,··· ,n+1(x1, · · · ,xn+1)

p1,··· ,n(x1, · · · ,xn)p(xn+1)
;

this quantity is invariant under coordinate transformations, and it is therefore a characteristic of the stochastic

process.

As the space of dependency ratios is infinite dimensional, this characteristic itself is too fine-

grained to be useful to classify such processes. In the previous section we have seen that one way of

extracting ‘coarser’ information from a dependency ratio f is to determine the expected value of some

monotone transformation of f . But defining equivalence of two ratios by equality of such expected values

would not lead to structurally stable elements, for a very small perturbation of the process might already

change the expected value.

Using however topological information of the dependency ratios turns out to give characteristics

that are sufficiently coarse. To give a very simple example: we clearly want to call two functions defined on

the same domain to be of different shape if they have a different number of nondegenerate critical points.

The number of such points is a numerical characteristic of the ‘shape’ of a function, and it in fact defines

an equivalence class. Moreover, if we choose a suitable topology on the set of functions, we find that the

equivalence classes are open sets, and that its members are structurally stable. We can specify different
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equivalence relations by taking into account more detailed information; for instance, we can classify the

critical points according to their topological type.

In any case, we need a function topology on the set of dependency ratios; we choose the C2-

topology, which is the ‘coarsest’ topology for which the number of nondegenerate critical points defines

open equivalence classes. Recall that in theC2 topology an ε-neighbourhood Nε( f ) of a function f :M→R
defined on a compact manifold M consists of all functions g such that, with respect to a fixed Riemannian

metric and the induced norm | · |x on the tangent spaces TxM we have

| f (x)−g(x)|x, |Df (x)−Dg(x)|x, |D2 f (x)−D2g(x)|x < ε.

IfM is a noncompact manifold, the constants ε > 0 are replaced by positive functions ε(x) > 0 onM in the

above definition; in this context the topology obtained is called the ‘strong’C2-topology (see e.g. [6]).

As argued above, specifying an equivalence notion on the space of dependency ratios of stochastic

processes induces a notion of stochastic bifurcation. In the following we shall sometimes use the words

‘process’ and ‘dependency ratio’ indiscriminately; in particular, a ‘structurally stable process’ will denote

a stochastic process whose dependency ratio is a structurally stable element under the equivalence relation

under consideration. A first rough formulation of our definition would be the following: we propose to

call two dependency ratios of stochastic processes equivalent, if every non-degenerate critical point of a

certain type of the first dependency ratio can be mapped to a critical point of the same type of the second

dependency ratio by a transformation ofM×M induced by a diffeomorphism ofM. In the next section, we

shall make this more precise.

3.4 Ratio equivalence on compact manifolds

Let M be an m-dimensional orientable compact manifold and Mn+1 the (n+1)-fold Cartesian product M×
· · ·×M; denote by π! :Mn+1→M the projection on the !’th component

π!(x1, · · · ,xn+1) = x!.

An n’th order dependency ratio is a real valued function defined onMn+1.

Recall the following definitions (see e.g. [5], subsections 10.2 and 10.4, p. 79 and p. 86 respec-

tively). If f : U → R is a twice continuously differentiable function defined on an open set U ⊂ Rn, a

point x ∈U is a critical point of f if the derivative of f vanishes at x: Df (x) = 0. The value f (x) of f at
a critical point x is called the critical value of f at x. A critical point x is non-degenerate if the Hessian

matrix H f (x) corresponding to the second derivative D2 f (x) of f at x is invertible. The number of negative
eigenvalues of this matrix is called the (Morse) index of the critical point. Clearly, the notions of critical

point, critical value, index and non-degeneracy carry over to functions defined on manifolds.

Our definition is based on the critical points of a given dependency ratio; this makes it necessary

to restrict attention to twice differentiable ratios only, and to consider the C2 function topology introduced

above on the space of these ratios. For in anyC0-neighbourhood of a given function, there are other functions

to be found with a different number of critical points; and the same is true for any C1-neighbourhood of a

function that has itself at least one critical point.

Definition. If M is a manifold, a twice differentiable dependency ratio f :Mn+1→ (0,#) is called regular
if all its critical points are non-degenerate, if no two critical values are equal and if no two critical points

have the same image under any projection π!, for ! ∈ {1, · · · ,n+1}.
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Since the manifolds M and Mn+1 are compact, a regular dependency ratio has only finitely many critical

points {ξ1, · · · ,ξk}; we assume that these are ordered such that the corresponding critical values vi = f (ξi)
are in ascending order, that is, vi < v j if i < j. We associate to the critical point ξi its index ti (see sub-
section 3.2). Note that 0 ≤ ti ≤ m(n+1). In this way we obtain the index sequence t( f ) = (t1, · · · , tk) of a
regular dependency ratio f .

Definition. Two order n processes defined on a compact manifold M, with dependency ratios f ,g :Mn+1→
(0,#), are called ratio equivalent, if either both f and g are non-regular, or if f and g are both regular and

1. their index sequences are equal;

2. there is a diffeomorphism ϕ : M→ M, homotopic to the identity mapping on M, such that the map

" :Mn+1→Mn+1 defined as

"(x1, · · · ,xn+1) =
(

ϕ(x1), · · · ,ϕ(xn+1)
)

(6)

maps the i’th critical point of f to the i’th critical point of g.

It follows from the first point that the number of critical points of f and g is equal as well.

The following two propositions tell us that this definition has good properties: we can characterise

all structurally stable processes, and these form an open and dense set in the space of all stochastic processes.

Proposition 2. On a compact manifold M, a dependency ratio is structurally stable under ratio equivalence

if and only if it is regular.

Proposition 3. On a compact manifold M, the set of regular dependency ratios is everywhere dense.

The proofs of these propositions can be found in appendix A.

3.5 Ratio equivalence for non-compact manifolds

Though the results for compact manifolds are already useful in themselves, in practice most stochastic

processes are defined on the non-compact manifold Rm. The direct generalisation of the notion of ratio

equivalence is given in the following definition.

Definition. Two processes on a manifold M are weakly ratio equivalent, if they are ratio equivalent on

each compact set that is the closure of a bounded submanifold of Mn+1.

As the following example shows, this notion is unfortunately too weak for our purposes.

Example. Consider two first order processes {Xt} and {Yt} on the interval (−1,1) with invariant densi-
ties p(x) = 1

2
I[−1,1](x) and dependency ratios

fX(x1,x2) = 1− 1
2
x1x2+

1

4
x31, and fY (x1,x2) = 1+

1

2
x1x2−

1

4
x31.

Both ratios have a unique critical point of index 1 at the origin, and hence they are ratio equivalent on

compact sets. But if we consider the values of fX and fY along the curve γ(t) = (t, t) as t ↓ −1, we note
that fX ◦ γ(t) approaches the infimum of fX on (−1,1)× (−1,1), while fY ◦ γ(t) approaches the supremum
of fY on the same space. That means in particular that if Xt is close to −1, the probability is very low that
Xt+1 is close to−1 as well, whereas if Yt is close to−1, the probability is rather high that Yt+1 is close to−1
as well. Weak ratio equivalence is not sufficiently fine to distinguish between these processes.
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For our second generalisation, we restrict ourselves to processes defined on a subclass of manifolds which

we call manifolds of ‘constant type’; these are defined as follows.

Let M be an orientable m-dimensional manifold. If there exists a family {Mt} of bounded open
submanifolds-with-boundary ofM depending on a real parameter t > T , for whichMt ⊂Mt ′ if t < t ′,

⋃
t Mt =

M and for which ∂Mt is a smooth boundary for every t > T , then we call {Mt} an exhaustion ofM. Moreover,
we say that an exhaustion is of constant type if there is a constant T > 0 such that ∂Mt and ∂Mt ′ are

diffeomorphic for all t, t ′ > T . A manifoldM that admits an exhaustion of constant type will itself be called

to be of constant type. For instance, the plane is a manifold of constant type with exhaustion R2t = {x ∈R2 :
‖x‖2 < t}, whereas the plane with all points with integer coordinates removed is not a manifold of constant
type.

A convenient way to define an exhaustion of M is to take a differentiable real valued function J

on M such that for a fixed point x0 ∈M and a metric d on M we have that J(x) → # as d(x0,x)→ #, and

set Mt = {x ∈M : J(x) < t}. If all values of J larger than T are regular, then it follows from Morse theory
that ∂Mt is diffeomorphic to ∂Mt ′ for t, t ′ > T , and consequently that {Mt} is an exhaustion ofM of constant

type.

Consider the set

(Mt)n+1 =Mt ×Mt × · · ·×Mt ⊂Mn+1.

This set can be decomposed into 2n+1 component manifolds {C j
t }Nj=1; each component is a Cartesian prod-

ucts of k factors ∂Mt and n+ 1− k factors Mt , for k = 0, · · · ,n+ 1. We order these components such that
a product of more factors Mt precedes a component with less, and for components with equal numbers of

factors Mt , the component with more factors Mt in the first ! positions precedes a component with less,
with ! taking the values 1,2, · · · ,n+1 consecutively. That is,

∂Mt ×Mt ×Mt precedes Mt ×∂Mt ×∂Mt ,

and

∂Mt ×Mt ×∂Mt precedes ∂Mt ×∂Mt ×Mt .

In the important special case thatM is one-dimensional, the component (∂Mt)n+1 consists of a finite number
of points. By definition, we consider these point as non-degenerate critical points, associating the index 0 to

them by default.

In the following three definitions, M is a manifold of constant type with exhaustion {Mt} and
corresponding ordered decomposition {C j

t } of (Mt)n+1; by | · |x we denote a norm induced from a fixed

Riemannian metric as in subsection 3.3. Moreover, the restriction of f to C
j
t is denoted by f

j
t with the

index j always ranging from 1 to 2n+1.

Definition. A dependency ratio f on Mn+1 is well-behaved at infinity if there are constants ct ,T > 0 such
that for every t > T

1. for every j there is a compact set K
j
t ⊂ C

j
t such that |Df

j
t (x)|x > ct if x ∈ C j

t \K
j
t , unless C

j
t is 0-

dimensional, and

2. f
j
t is weakly ratio equivalent to f

j

t ′ for all t, t
′ > T .

Definition. A dependency ratio f on Mn+1 is well-behaved if f is well-behaved at infinity and f
j
t is

regular on C
j
t for every j and every t > T .

11



Definition. If M is a manifold of constant type, two well-behaved dependency ratios f and g are called

ratio equivalent, if there is a value of t such that f
j
t and g

j
t are weakly ratio equivalent for every j.

Note that if f and g are weakly ratio equivalent on each component C
j
t for a single value t > T , they are in

fact equivalent for all such values, since f
j
t ∼ f

j

t ′ for all t, t
′ > T .

Example. With this definition, we can distinguish between the two ratios fX and fY introduced at the end

of the previous subsection. Set at = t/(t+ 1), and consider the exhaustion It = (−at ,at) of (−1,1). Note
that ∂ (It × It) can be decomposed into

C1t = (−at ,at)×{−at ,at}, C2t = {−at ,at}× (−at ,at), C3t = {−at ,at}×{−at ,at}.

Restricted to C1t and C
2
t , neither fX nor fY have any critical points. The set C

3
t consists of four isolated

critical points, which are critical by definition. The maximum of fX restricted to C
3
t is assumed in the

points (at ,−at), whereas fY takes its minimum there. Since the only diffeomorphism of C3t homotopic to
the identity is the identity itself, corresponding critical points of fX and fY cannot be mapped onto each

other.

The following propositions describe the topological properties of ratio equivalence. The results are weaker

than in the compact case, as was to be expected; we obtain that well-behaved processes are stable elements

of ratio equivalence. However, restricted to the space of processes that are well-behaved at infinity, the

well-behaved processes form again an open and dense set.

The next proposition is a corollary to propositions 2 and 3.

Proposition 4. On a manifold M of constant type, a well-behaved dependency ratio is stable with respect

to the strong topology under ratio equivalence.

The proof of this proposition is given in appendix A.

4 Examples

4.1 Stochastic dynamics on the circle

As an illustration of a stochastic process on a compact manifold, we consider the stochastic dynamical

system on the unit circle M = S1 defined by

Xt+1 = Xt +asin(Xt)+0.25sin2(Xt)+0.25+ εt+1 mod 2π, (7)

with {εt} IID and N(0,σ2) distributed. The state variable is taken modulo 2π; we represent states by points
on the interval [−π,π). For the above system we fix σ at the value 0.7 and consider qualitative changes in
the stochastic dynamics as a varies. The term 0.25(sin2(xt−1)+1) is added to break the x *→ −x symmetry
of the dynamics. In the symmetric case some particular additional properties arise which will be discussed

in the next subsection.

Figure 1 shows a contour plot for the dependency ratio f for values of a decreasing from −0.85
to −0.95. For a = −0.85, the contour plot shows two extrema, a maximum and a minimum, together with
two saddle points. These are the minimal number of critical points of each type that can be attained for a

non-degenerate function f on the torus M2 = S1×S1. As the bifurcation parameter a decreases, the system
shows a stochastic bifurcation at which f develops a new local extremum, together with a new saddle point.

12
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Figure 1: Level sets for the map Xt = Xt−1+asin(Xt−1)+0.25sin2(xt−1)+0.25+ εt for decreasing values
of a (top panels). The lower panels show the invariant probability density of Xt .

4.2 Antisymmetric dynamics

In applications dynamical systems are often symmetric. Though we leave the theoretical development of

our equivalence relation for symmetric systems for later work, we want to make some remarks about this

situation. We restrict to processes that are the sum of an antisymmetric deterministic part and a unimodal

symmetric noise term (e.g. Gaussian). Surprisingly, it turns out that for these systems the ‘ratio bifurcation’

coincides with a P-bifurcation.

Consider the process

Xt+1 = g(Xt)+ εt ,

where g(x) is a smooth odd function, that is, for which g(−s) =−g(s). The εt are independent and identi-
cally distributed according to a symmetric unimodal distribution. It can be readily checked that the deter-

ministic dynamics is equivariant under the transformation x *→ −x. Because this transformation affects both
Xt−1 and Xt , the effect on the joint variable (Xt−1,Xt) is a point reflection in the origin.

For the conditional density of Xt given Xt−1 = x, one may write

pXt+1|Xt (x2|x1) = τ(x2|x1) =
p1,2(x1,x2)
p(x1)

=
1

σ
h

(
x2−g(x1)

σ

)

where h(·) is the probability density function of εt ; we have that h(s) = h(−s) and that h has a unique local
maximum at s = 0. The map g(·) as well as the probability density function h(·) are assumed to be twice
continuously differentiable.

Moreover we assume that the process has an invariant density p(x), which is unique and twice
continuously differentiable. These conditions on p(x) can easily be met by imposing some additional re-
quirements on g and h. For instance, a sufficient condition is that for each x0, the support of

1
σ h

(
x1−g(x0)

σ

)
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isM (strong mixing). If the invariant density is unique, it is necessarily an even function, since otherwise its

mirror image p(−x) would be a different invariant density.
Our aim is to examine the properties of the dependency ratio

f (x1,x2) =
p1,2(x1,x2)
p(x1)p(x2)

=
1

σ p(x2)
h

(
x2−g(x1)

σ

)

near the origin. We see that

f (−x1,−x2) =
1

σ p(−x2)
h

(
−x2−g(−x1)

σ

)
=

1

σ p(x2)
h

(
−x2−g(x1)

σ

)
= f (x1,x2).

It follows that the partial derivatives
∂ f
∂x1 and

∂ f
∂x2 vanish at the point (x1,x2) = (0,0), so that the origin is

always critical. The index of this critical point is determined by the Hessian matrix H f (0,0). If g is odd
and h is even and unimodal, we have

p′(0) = 0, g′′(0) = 0, h′(0) = 0, and h′′(0) < 0.

After some algebra one finds that the Hessian evaluated at the origin reduces to

H f (0,0) =
h′′(0)

σ3p(0)




g′(0)2 −g′(0)

−g′(0) 1−σ2 h(0)p
′′(0)

h′′(0)p(0)



 .

Since h′′(0) is negative, the Hessian matrix has a negative determinant if and only if the second derivative
of the invariant density p(x) satisfies

p′′(0) < 0,

in which case the origin is a saddle-point. If however p′′(0) > 0, the determinant is positive, while the trace

of the matrix is negative, and the dependency ratio f (x1,x2) has a local maximum at the origin.
Apparently, the critical point at the origin changes from a saddle point to a local maximum if p′′(0)

becomes positive. Because this is exactly the condition for which the local maximum of p(x) at the origin
changes to a local minimum with a pair of maxima bifurcating off, it follows that for antisymmetric maps

with symmetric unimodal noise, the ‘ratio bifurcation’ coincides with a phenomenological bifurcation.

4.2.1 On the circle

We illustrate this by figure 2 which shows the level sets of the dependency ratio, as well as the invariant

density, for the map

Xt+1 = a
(
0.5sin(Xt)+0.25sin(2Xt)

)
+ εt+1,

where again M is the unit circle S1 and where εt ∼ N(0,σ2t+1) with σ2t+1 = 0.6− 0.12cos(Xt). The noise
variance is made state dependent to avoid the critical point at (π,0) to bifurcate simultaneously with the
bifurcation at the origin. As noted above, the local minimum in p(x) at x= 0 occurs exactly when f (x1,x2)
develops a local maximum at the origin. This is related to the fact that the denominator of the dependency

ration contains a product of marginals which simultaneously develop a local minimum.
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Figure 2: Level sets for the map Xt+1 = a
(
0.5sin(Xt)+ 0.25sin(2Xt)

)
+ εt+1 with εt+1 ∼ N(0,σ2t+1) and

σ2t+1 = 0.6−0.12cos(Xt) for increasing values of a (upper panels) and the corresponding marginal density
functions (lower panels). The levels are not uniformly spaced.

4.2.2 On the real line

When we derived the coincidence of a P-bifurcation and a copula bifurcation at the origin in the antisym-

metric case, apart from the global requirement of symmetry of the invariant density, only local arguments

were used. Therefore, provided that we confine ourselves to cases with symmetric invariant densities, the

result that a P-bifurcation coincides with a (local) ratio bifurcation, directly extends to stochastic dynamics

on the real line.

As an example we consider the stochastic process on R defined by

Xt+1 = tanh(aXt)+ εt+1. (8)

Figure 3 shows the level sets of the dependency ratio and the corresponding invariant probability density

function for this map with N(0,σ2) distributed noise, taking σ = 0.7.
Note that the bifurcation parameter value differs from that of the analogous deterministic system

(σ = 0): for the tanh map the stochastic analogue of the usual pitchfork bifurcation at a = 1 is shifted to a

larger value of a. Apparently the value of the bifurcation depends on the noise level. A natural question,

therefore, is whether for increasing noise levels the bifurcation parameter merely shifts, or whether the

bifurcation can disappear altogether.

Intuitively, if the map is bounded and has a small range relative to the noise level, the dynamics

is mainly governed by the noise and the deterministic part has little influence on the dynamics. In fact a

simple argument shows that if the noise is fixed at a sufficiently large level, and if the family of odd maps

{ga} is uniformly bounded, then there is no phenomenological bifurcation at x = 0, and therefore also no

ratio bifurcation at (x1,x2) = (0,0), for symmetric processes of the form

Xt+1 = ga(Xt)+ εt+1. (9)
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Figure 3: Level sets for the map Xt+1 = tanh(aXt)+ εt+1 with εt+1 ∼ N(0,0.52) for increasing values of a
(top panels) and corresponding marginal density function (lower panels).

The argument runs as follows. By stationarity the invariant density p should satisfy

p(x) =
∫
1

σ
h

(
x−ga(s)

σ

)
p(s)ds.

A necessary condition for p(x) to have a local minimum at x= 0 is that p′′(0) > 0, where

p′′(0) =
∫
1

σ
h′′

(
−ga(s)

σ

)
p(s)ds.

Since h(s) is a unimodal probability density function, its second derivative h′′(s) is negative in a neighbour-
hood of s = 0. It follows that, for ga uniformly bounded, for large σ the integral on the right hand side of

the last equation may remain negative as a varies.

4.3 Estimated dependency ratios from time series

In order to see whether dependency ratios can be used for classification of processes of which only a time

series is available, a common situation in empirical applications, we estimate dependency ratios from sim-

ulated time series. We generate relatively short series {Xt} from the stochastic models considered earlier

in this section; we estimate from these series bivariate invariant densities and use them to reconstruct the

dependency ratios. It is well known [1, 13] that fixed bandwidth nonparametric kernel density estimates

become rather poor in regions with only few observations. One way to avoid this would be to use a data

driven adaptive bandwidth which depends on the density locally, becoming larger as fewer observations are

present locally. Instead of using an adaptive bandwidth we suggest, for real valued time series, to transform

the data using the probability integral transform, that is, we construct

Ut = F̂X(Xt) =
rank of Xt among {Xs}Ns=1

N
.
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This amounts to transforming the invariant distribution to a uniform distribution on the unit interval, which

tends to stabilise the estimation of the dependency ratio as the marginals no longer need to be estimated.

In the case of first order ratios, the estimated empirical dependency ratio is equal to the empirical copula

density

f̂ (u1,u2) =
1

N−1

N−1

$
t=1

Kb(u1−Ui,u2−Ui+1).

Here Kb(u1,u2) is a bivariate probability kernel, which we take to be the commonly used Gaussian kernel:

Kb(u1,u2) =
1√
2πb

e−(u21+u
2
2)/(2b2).

To avoid ‘probability mass’ from disappearing out of the unit square by this smoothing procedure, we impose

periodic boundary conditions if M = S1 and reflecting boundary conditions if M = R.
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Figure 4: First 1000 values (top panels) of 4000 consecutive Xt-values generated by the map Xt+1 =
tanh(aXt) + εt+1 with εt+1 ∼ N(0,0.52). for a = 0.9 (left) and a = 1.7 (right). The lower panels show
the corresponding empirical level sets estimated with a Gaussian kernel (bandwidth b= 0.07).

Figure 4 shows level sets of the empirical dependency ratio obtained from time series of length

4000 from the symmetric hyperbolic tangent map given in equation (8) for different parameter values. The

dependency ratio is estimated by smoothing the empirical copula with a bivariate normal probability density

function (bandwidth b = 0.07). The empirical dependency ratio clearly reflects the fine structure of the
theoretical dependency ratio.

Figure 5 shows an attempt at performing a similar reconstruction for the asymmetric sine map

given by equation (7). In this case the topology of the reconstructed level sets does not correspond with that

obtained earlier; this is due to estimation error. Probably longer time series (along with smaller bandwidths

for the smoothers) are required for this case. We consider the optimal estimation and the related issue of

data requirements for estimating dependency ratios as an important area for future research.
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Figure 5: First 1000 values (top panels) of 4000 consecutive Xt-values generated by the map Xt+1 = Xt +
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The lower panels show the level sets of the corresponding empirical dependency ratio.
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A Proofs of the topological properties

In this appendix, the topological properties given in section 3 are proved.

A.1 Proofs of the propositions

We repeat the statements of propositions 2 and 3 for the convenience of the reader.

Proposition 2. On a compact manifold M, a dependency ratio is structurally stable under ratio equiva-

lence if and only if it is regular.

Proposition 3. On a compact manifold M, the set of regular dependency ratios is everywhere dense.

Proof.

These propositions are direct corollaries from the following two lemmas.

Lemma 1. If M is compact and if f :Mn+1→R is a regular dependency ratio, then there is a constant ε > 0
such that every g ∈ Nε( f ) is regular and equivalent to f .

Lemma 2. If M is compact, the set of regular dependency ratios is dense in the C2-topology.

From lemma 1 we infer that regular ratios are structurally stable. If however f is a structurally stable ratio,

there is a neighbourhood U = Nε( f ) such that every g ∈ U is equivalent to f . But as the regular ratios

are dense, according to lemma 2, there is a regular ratio in U which then equivalent to f . By definition of

equivalence, the ratio f itself has to be regular. The propositions follow.

For non-compact manifolds of constant type, the following result is essentially a corollary of the results for

compact manifolds.

Proposition 4. On a manifold M of constant type, a well-behaved dependency ratio is stable with respect

to the strong topology under ratio equivalence.
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Proof.

Let f be a well-behaved dependency ratio, and let {Mt} be an exhaustion ofM. Let moreover T > 0 and ct >
0 be such that for every t, t ′ > T we have that ∂Mt and ∂Mt ′ are diffeomorphic, for every component {C j

t }
of (Mt)n+1 the restriction f

j
t of f to C

j
t is weakly ratio equivalent to f

j

t ′ and there is a compact set K
j
t such

that |Df jt (x)|x > ct if x ∈C j
t \K

j
t .

For every t > T and every j, there is then a constant ε j
t > 0 such that for every g ∈ Nε jt

( f ) in the

C2-topology on (Mt)n+1, the restriction g
j
t of g to C

j
t is weakly ratio equivalent to f

j
t . Let εt = min j ε j

t ,

and ε(x) = max{εt |x ∈ (Mt)n+1}. It follows that Nε( f ) is an open neighbourhood of f in the strong C2-
topology, such that every g ∈ Nε( f ) is ratio equivalent to f .

A.2 Proofs of the lemmas

It remains to demonstrate the lemmas. For this, we first need the following technical result. In the statement

of the lemma, a ball of radius r around 0 is denoted by Br, that is, Br = {x ∈ Rk |‖x‖< r}; also we have

‖ f −g‖C2(U) = max
0≤ j≤2

max
x∈U

|Dj f (x)−Djg(x)|.

Lemma 3. Let U ⊂ Rk be a bounded open set, and let f :U → R be a C2 function with D f (0) = 0 and

H f (0) non-degenerate. Then there exist constants δ0,η0 > 0 such that Bδ0 ⊂U and that for every 0< δ ≤ δ0
and 0< η ≤ η0 there is an ε > 0, such that every function g satisfying ‖ f −g‖C2(U) < ε has a unique non-
degenerate critical point ȳ ∈ Bδ with |g(ȳ)− f (0)| < η , with g having the same index at ȳ as f at 0.

Proof.

For a matrix A, let ‖A‖=max‖x‖=1 ‖Ax‖ denote the matrix norm of A. Since H f (0) is non-degenerate, there
is a constant c> 0 such that ‖H f (0)−1‖= c. Moreover, by continuity there is then a δ1 > 0, such that

‖H f−1(x)‖< 2c for all x ∈ Bδ1 .

Introduce ψ = g− f and ht = f + t(g− f ) = f + tψ . Then h0 = f and h1 = g. We shall solve the equation

Dht(x) = 0 (10)

for t ∈ [0,1], using the implicit function theorem. Note that

Hht(x) = H f (x)+ tHψ(x) = H f (x)
(
I+ tH f (x)−1Hψ(x)

)
,

and consequently that

‖Hht(x)−1‖ ≤
‖H f (x)−1‖

1− t‖H f (x)−1‖‖Hψ(x)‖ .

Taking |t|≤ 1, x ∈ Bδ1 and ‖ψ‖C2 < (4c)−1, we obtain

‖Hht(x)−1‖ ≤ 4c.

In particular, we can apply the implicit function theorem to solve x= x(t) from (10), first around t = 0, and

then around every value of t for which x(t) ∈ Bδ1 . Note that since Hht is non-degenerate everywhere, the
index of the critical point cannot change.
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Furthermore

Dht(x) = Df (0)+Df (x)−Df (0)+ tDψ(x) =
∫ 1

0
H f (sx)xds+ tDψ(x)

= H f (0)x+
∫ 1

0

(
H f (sx)−H f (0)

)
xds+ tDψ(x).

By the continuity of H f , there exists 0 < δ2 < δ1 such that ‖H f (x)−H f (0)‖ < 1/(2c) for all x ∈ Bδ2 .
Recalling the estimate ‖Ax‖ ≥ ‖A−1‖−1‖x‖, it follows for 0< δ < δ2 that if |t|≤ 1, ‖x‖= δ and ‖ψ‖C2 <
δ/(2c), then

‖Dht(x)‖ ≥ ‖H f (0)−1‖−1‖x‖−
∫ 1

0
‖H f (sx)−H f (0)‖‖x‖ds− t‖Dψ(x)‖

>
δ
c
− δ
2c
− δ
2c

> 0.

We have obtained the a priori statement that x(t) ,∈ ∂Bδ for all values t ∈ [0,1] for which x(t) is defined.
Therefore x(t) can be continued to t = 1, yielding ȳ= x(1).

To show that x(t) is the unique solution of (10) in Bδ , take y ∈ Bδ such that y ,= x(t), and compute
(putting ys = x(t)+ s(y− x(t))):

Dht(y) = Dht(y)−Dht(x(t)) =
∫ 1

0
Hht(ys)(y− x(t))ds

= H f (0)(y− x(t))+
∫ 1

0

(
H f (ys)−H f (0)

)
(y− x(t))ds+ t

∫ 1

0
Hψ(ys)(y− x(t))ds.

It follows, as in the previous paragraph, that ‖Dht(y)‖> 0 for all t. But then y cannot be a critical point.

Finally, if v(t) = ht(x(t)) denotes the critical value of ht , we see by differentiating that

dv

dt
=

∂ht
∂ t

(x(t))+Dht(x(t))
dx

dt
= ψ(x(t));

consequently

g(ȳ)− f (0) = v(1)− v(0) =
∫ 1

0
ψ(x(t))dt,

and |g(ȳ)− f (0)|≤maxBδ |ψ(x)|.
Putting δ0 = δ2, η0 = 1 and ε =min{ 1

4c
, δ
2c

,η} yields the statement of the lemma.

Lemma 1. If M is compact and if f :Mn+1→R is a regular dependency ratio, then there is a constant ε > 0
such that every g ∈ Nε( f ) is regular and equivalent to f .

Proof.

Let x = (x1, · · · ,xn+1) and y = (y1, · · · ,yn+1) denote points in Mn+1. Note that then π!(x) = x! etc. For a

metric d on M, define

dn+1(x,y) = max
1≤!≤n+1

d
(
π!(x),π!(y)

)
.

Then dn+1 is a metric on Mn+1.
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Let x1, · · · , xk be the critical points of f , ordered such that vi = f (xi) < f (x j) = v j if i < j.

Put v0 = 0; then v0 < v1. Introduce

ζ = min
0≤i< j≤k

|vi− v j|, σ = min
0≤!≤n

min
1≤i< j≤k

d(π!(xi),π!(x j));

then ζ is the smallest absolute difference of two critical values, and σ is the smallest distance of two

projections of critical points on M.

For every i, choose a neighbourhood Wi of xi and a coordinate chart xi : Wi → Rm(n+1), such

that xi(xi) = 0, and set fi = f ◦ x−1i . By assumption Dfi(0) vanishes and H fi(0) is nondegenerate. For
every i, take 0< δi < σ such that Bδi ⊂ xi(Wi) and such that 0 is the only critical point of fi in Bδi .

By the lemma, we can find εi > 0, such that every function gi defined on xi(Wi)with ‖ fi−gi‖C2 < εi
has a unique nondegenerate critical point yi in Bδi , with | fi(0)−gi(yi)| < ζ/2 and with yi having the same
index ti as 0.

Introduce the open setsUi = x−1i (Bδi)⊂Mn+1, and letC=Mn+1\
⋃
iUi; note thatC is compact, and

that d f ,= 0 onC. Therefore, there is ζ0 > 0, such that if g∈Nζ0( f ), then dg ,= 0 onC as well. Moreover, for
every i there is ζi such that g ∈ Nζi( f ), then in the chart xi we have that ‖ fi−gi‖C2 < εi. Set ε =min0≤i≤k ζi.

Finally, we have to provide a diffeomorphism ϕ :M→M, homotopic to the identity, such that

"(x) =
(
ϕ ◦π1(x)), · · · ,ϕ ◦πn+1(x)

)

maps yi = x−1i (yi) to xi.
Note that by the choice of δi, no two projections of the setsUi on M intersect:

π!1(Ui1)∩π!2(Ui2) = /0, for all 1≤ i1 < i2 ≤ k, 1≤ !1 < !2 ≤ n+1.

Fix i and !, and consider on π!(Ui) a differentiable curve γ(t), defined for 0≤ t ≤ 1, such that γ(0) = π!(xi)
and γ(1) = π!(yi). Construct a vector field Xi! on M such that γ̇(t) = Xi!(γ(t)) for 0 ≤ t ≤ 1 and Xi! = 0

on M\π!(Ui).
Let X = $i,!Xi,!. The time-1 map ϕ = eX has the required properties.

Lemma 2. If M is compact, the set of regular dependency ratios is dense in the C2-topology.

Proof.

Recall that the joint densities of an n-th order stochastic process propagate via the Perron-Frobenius operator

(see e.g. [9]), giving the equation

pt−n+1,··· ,t(xt−n+1, · · · ,xt) =
∫

M
τ(xt |xt−n, · · · ,xt−1)pt−n,··· ,t−1(xt−n, · · · ,xt−1)dxt−n.

If the process has a unique invariant density p(x1, · · · ,xn), the process with the transition probability density

τ̃(xt |xt−n, · · · ,xt−1) = τ(xt |xt−n, · · · ,xt−1)+
q(xt−n,xt−n+1, · · · ,xt)
p(xt−n, · · · ,xt−1)

has the same invariant density p, if q is small enough, such that p̃ is indeed a probability density, and

if
∫
M qdxt−(n+1)+ j = 0 for every 1≤ j ≤ n+1.

For every point ξ ∈M, we can find a chart x= (x1, · · · ,xm) on M, such that x(ξ ) = 0. Take δ > 0

such that U = x−1(Bδ ) and V = x−1(B2δ ) are in the domain of x. Let ϕ,ψ : M→ R be smooth functions

such that ϕ = 1 onU , ϕ = 0 on M\V , and ψ = 0 onU ∪M\V and
∫
M ψ dx> 0.
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For 1≤ j ≤ m, let ! j :M→ R be defined by setting

! j(x) =

{
x jϕ +β jψ on V,

0 on M\V.

Moreover, set !0(x) = ϕ +β0ψ . The constants β j are chosen such that
∫
M ! j dx= 0 for all j.

For x ∈ Mn+1, let x = (x1, · · · ,xn+1) be a chart such that x(x) = 0. For 1 ≤ i ≤ n+ 1, 1 ≤ j ≤
m, and p : Mn+1 → R a function that is everywhere positive (this will be the invariant probability den-

sity pn+1(xn+1) later on), define

Lxk j(x) =
!k j(xk)
!k0(xk)

%n+1
i=1 !i0(xi)
p(x)

=
!10(x1) · . . . · !k j(xk) · . . .!n+1,0(xn+1)

p(x)
.

Writing xk = (x1k , · · · ,xmk ), we find that

∂Lxk j
∂x j

′

k′

(0) =






1

p(0)
if k′ = k, j′ = j,

0 otherwise.

It follows that for δ > 0 sufficiently small and x(y) ∈ Bδ × · · ·×Bδ , the differentials of the functions L
x
k j ◦ x

are linearly independent vectors in T ∗yMn+1.

Choose for every x ∈ Mn+1 such a value for δ , and set Ux = x−1(Bδ × · · ·×Bδ ). Since M is

compact, it is covered by a finite number of theUx, sayUx1 , · · · ,UxK . Set

qki j = pL
xk
i j .

Then qki j/p is a finite collection of functions on Mn+1 such that their differentials span T
∗
xMn+1 at every

point x ∈Mn+1. Moreover ∫

M
qki j π∗! dx! = 0

for all !.
Recall the remark made at the beginning of the proof; let the stochastic process defined by the tran-

sition probability τ(xn+1|x1, · · · ,xn) have invariant probability densities p1,··· ,k(x1, · · · ,xk) and dependency
ratio

f (x1, · · · ,xn+1) =
p1,··· ,n+1(x1, · · · ,xn+1)

p1,··· ,n(x1, · · · ,xn)pn+1(xn+1)
=

τ(xn+1|x1, · · · ,xn)
pn+1(xn+1)

.

Let moreover a= (aki j) be such that

τ(xn+1|x1, · · · ,xn)+$
i jk

aki j
qki j(x1, · · · ,xn+1)
p1,··· ,n(x1, · · · ,xn)

defines a parameterised joint probability density: this is always the case if the |aki j| are sufficiently small,
since the transition probability density is assumed to be positive everywhere on the compact manifoldMn+1.

Then the dependency ratio of the new process is given by

g(a,x) = f (x)+$
i jk

aki j
qki j(x)

pn+1(xn+1)
,
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where a= (aki j) ∈ A⊂ RKm(n+1), where A is an open neighbourhood of 0.

Recall the definition of transversality (see e.g. [5], definition 10.3.1, p. 83): if X and Y are smooth

manifolds, W a smooth submanifold of Y , the map f : X → Y smooth, and x ∈ X , then f intersects W

transversally at x, if either f (x) ,∈W or f (x) ∈W and Tf (x)Y = Tf (x)W + d f (x)
(
TxX

)
. More generally, we

say that f intersectsW transversally at A⊂ X , if f intersectsW transversally at x for every x ∈ A.
We have the theorem that if A, X and Y are smooth manifolds, W a smooth submanifold of Y

and f :A×X→Y a smooth map which intersectsW transversally, then the set of points a∈A for which fa =
f (a, .) : X → Y intersectsW transversally is everywhere dense in A (see [5], theorem 10.3.3, p. 85).

The derivative d f of a function f :M→ R on a manifold M defines a section s of the cotangent

bundle T ∗M; in a sufficiently small neighbourhoodU of a point inM, the restriction T ∗UM of the bundle toU

is isomorphic to U ×Rm, and the section takes the form s(x) = (x,Df (x)). The zero section M0 of T ∗M,
which is isomorphic to M, is locally of the formU×{0}.

The section s is transversal toM0 at a point x ∈M0, if either s(x) ,∈M0, or if

T(x,0)T
∗M = ds(x)TxM+T(x,0)M0 = (I,H f (x))Rm+Rm×{0}.

Note that this is equivalent to saying that s is transversal to M0 everywhere if and only if the function f has

only nondegenerate critical points. Such a function is called a regular function or a Morse function.

Consider now the function g : A×M → R and the associated map s : A×M → T ∗M given

by s(a,x) = (x, dxg(a,x)). Note that s is transversal toM0, since in local coordinates

ds(a,x)T(a,x)A×M+T(x,0)M0 =

(
0 I

d
qki j
pn+1

Hxg(a,x)

)
RKm(n+1)×Rm+Rm×{0},

and since by construction the d(qki j/p
n+1) span Rm everywhere onM. By the theorem mentioned above, the

set of a ∈ A for which ga = g(a, .) is a regular function which is everywhere dense in A.
For every ε > 0, we can choose a so small that g = ga is a regular function and g ∈ Nε( f ),

where Nε( f ) is a neighbourhood in the C# topology. It remains to show that by a second arbitrarily small
perturbation, we can achieve regularity of the dependency ratio.

Note that since g is a regular function, its critical points are isolated. Denote them by x1, · · · , xN .
Assume that the points x1 up to xk−1 have different critical values, and that they are such that π!(xi) ,= π!(x j)
if 1≤ i< j ≤ k−1.

We choose a neighbourhood U ⊂Mn+1 of xk such that U is contained in the domain of a chart x

for which x(xk) = 0, and such that xk is the only critical point of g in U . Let a ∈ Rm(n+1) be such that〈
a,Hg(0)−1a

〉
,= 0, where 〈x,y〉 denotes the inner product of the vectors x and y; the inverse of Hg(0) exists

since g is nondegenerate in 0; and the set of vectors a that do not satisfy the condition form a union of a

smooth manifold of codimension 1 with the point {0}.
Consider the function

ht(x) = h(t,x) = g(x)− t$
i j

ai jL
xk
i j .

The critical points of ht are determined by the equation

0= Dxht(x).

This equation can be solved using the implicit function theorem around x = 0 and t = 0 since Hg(0) is
invertible. For the solution x= x(t), we find

dx

dt
(0) =

1

p
Hg(0)−1a. (11)
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Note that by the assumption on a, this derivative is nonzero. We restrict the possible choice of a further by

requiring that

π!∗
dx

dt
(0) = π!∗

1

p
Hg(0)−1a ,= 0.

Moreover, if v(t) = ht(x(t)), then

dv

dt
(t) =−$

i j

ai jL
xk
i j +Dxht(x) =−$

i j

ai jL
xk
i j ,

and

d2v

dt2
(0) =−1

p

〈
a,Hg(0)−1a

〉
,= 0. (12)

Because of our choices, there are only finitely many values of t for which v(t) is equal to one of the critical
values g(x1), · · · , g(xk−1), or for which the projections π!(xk) and π!(xi) coincide for some 1 ≤ i < k

and 1≤ !≤ n+1. From equations (11) and (12) it follows that the set of values of t avoiding these special
values is everywhere dense in a neighbourhood of t = 0. This finishes the proof of the lemma.
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