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On power values of pyramidal numbers, II

Andrej Dujella, Kálmán Győry, Philippe Michaud-Jacobs,

and Ákos Pintér

Dedicated to the memory of Professor Andrzej Schinzel

Abstract

For m ≥ 3, we define the mth order pyramidal number by

Pyrm(x) =
1

6
x(x+ 1)((m− 2)x+ 5−m).

In a previous paper, written by the first-, second-, and fourth-named
authors, all solutions to the equation Pyrm(x) = y2 are found in pos-
itive integers x and y, for 6 ≤ m ≤ 100. In this paper, we consider
the question of higher powers, and find all solutions to the equation
Pyrm(x) = yn in positive integers x, y, and n, with n ≥ 3, and
5 ≤ m ≤ 50. We reduce the problem to a study of systems of bi-
nomial Thue equations, and use a combination of local arguments, the
modular method via Frey curves, and bounds arising from linear forms
in logarithms to solve the problem.

1 Introduction

For m ≥ 3, we define the mth order pyramidal number by

Pyrm(x) =
1

6
x(x+ 1)((m− 2)x+ 5−m).

Pyramidal numbers are a special type of figurate number with many inter-
esting properties and a rich history. The properties of figurate numbers,
and in particular their relationship with perfect powers, have received much
attention in the literature, see [8, 12, 16] for example, and the references
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therein.
This paper is the second in a series of two papers. In the first paper

[8], written by the first-, second-, and fourth-named authors in 2012, the
question of when Pyrm(x) is a square is considered, and all solutions are
found with 3 ≤ m ≤ 100 and m 6= 5 (the cases m = 3 and m = 4 are
classical, and there are infinitely many solutions in the case m = 5). In this
paper, we consider the case of higher powers and obtain the following result.

Theorem 1. All the solutions of the equation

Pyrm(x) =
1

6
x(x+ 1)((m− 2)x+ 5−m) = yn (1)

in positive integers m,x, y, n with y > 1, 3 ≤ m ≤ 50 and n ≥ 3 are

(m,x, y, n) =(5, 57121, 3107, 4), (7, 2, 2, 3), (15, 2, 2, 4), (17, 8, 6, 4),

(26, 2, 3, 3), (31, 2, 2, 5) and (50, 15, 30, 3).

When m = 3 or m = 4, these are known results (see [9] and [4]), and so
we will consider the cases 5 ≤ m ≤ 50. We note that there are no apparent
obstructions to extending Theorem 1 to larger values of m, say m ≤ 100 for
example, although we do not pursue this here as it would lead to needing to
consider many further cases and would most likely not require new ideas.

The techniques we use to prove Theorem 1 when n is odd will be of a
very different flavour to those used in [8], where the main ideas are centred
around the study of integral points on elliptic curves. Starting from equation
(1) we will form various systems of binomial Thue equations. We will then
use a combination of local arguments and the modular method via Frey
curves, along with bounds arising from linear forms in logarithms to prove
Theorem 1.

We now outline the rest of the paper. In Section 2, we use the results
of [8] to find all solutions to equation (1) in the case n = 4. We also treat
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the case m = 5. For the remainder of the paper, we will consider the case
n an odd prime and 6 ≤ m ≤ 50. In Section 3, we reduce the problem to
the study of finitely many systems of binomial Thue equations, and obtain
a bound on n using results on linear forms in logarithms. In Section 4, we
solve the majority of these Thue equations using local arguments, and finally
we use the modular method in various guises in Section 5 to deal with the
remaining cases.

The Magma [5] code used to support the computations in this paper can
be found at:

https://github.com/michaud-jacobs/pyramidal-2

The third-named author would like to thank Samir Siksek and Damiano
Testa for many useful discussions.

2 The case n = 4 and the case m = 5

In this section we will treat certain cases that are not amenable to the
methods of the later parts of the paper.

Lemma 2.1. Let (m,x, y) be a solution to equation (1) with n = 4, x > 0,
y > 1, and 6 ≤ m ≤ 50. Then

(m,x, y) = (15, 2, 2) or (17, 8, 6).

Proof. Let (m,x, y) be such a solution to equation (1). Then (m,x, y2) is a
solution to equation (1) with n = 2, and so we can apply the results of [8,
pp. 218–219] to obtain all solutions for 6 ≤ m ≤ 50. The two solutions we
find are those stated in the lemma.

Lemma 2.2. Let m = 5. Let (x, y, n) be a solution to equation (1) with
x > 0, y > 1, and n ≥ 3. Then

(x, y, n) = (57121, 3107, 4).

Proof. Suppose (x, y, n) is such a solution to equation (1). We have

x2(x+ 1) = 2yn. (2)

Suppose first that n = 4. Then 2 ord2(x) + ord2(x + 1) = 1 + 4 ord2(y), so
x is odd and x+ 1 is even. We have

x2
(
x+ 1

2

)
= y4,
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and gcd(x2, (x+ 1)/2) = 1. It follows that x2 = y41 and x+ 1 = 2y42 for some
coprime integers y1 and y2 with y = y1y2. Then x = y21, since x is positive,
so

y21 + 1 = 2y42. (3)

This equation is known as Ljunggren’s equation, since Ljunggren proved that
the only positive integer solutions to this equation are given by (y1, y2) =
(1, 1) and (y1, y2) = (239, 13) (see [14] for the original proof, which is some-
what involved, or [18] for an example of a simpler proof). Since y > 1, we
obtain the solution (x, y) = (y21, y1y2) = (57121, 3107) to equation (1).

Suppose instead that n is odd. In this case x may be odd or even. If x
is odd, then arguing similarly to above, there exist coprime integers y1 and
y2 satisfying

yn1 + 1 = 2yn.

This equation has no solutions with y1y2 > 1 and n ≥ 3 by [7, Main Theo-
rem]. If x is even, then we find that there exist coprime integers y1 and y2
satisfying

x2 = 2yn1 and x+ 1 = yn2 .

From x2 = 2yn1 , we see that ord2(y) = k ≥ 1, with k odd, and we may write
y1 = 2kz21 for some positive integer z1 coprime to y2. Then

x = 2
kn+1

2 zn1 ,

and so
2

kn+1
2 zn1 − yn2 = 1.

By [3, Theorem 1.2], this equation has no solutions in positive coprime
integers. This completes the case m = 5.

3 Systems of binomial Thue equations

Thanks to Lemmas 2.1 and 2.2, we may suppose that n ≥ 3 is odd and that
6 ≤ m ≤ 50. Moreover, we will assume that n = p is an odd prime. We
write equation (1) as

x(x+ 1)(amx− bm) = cmy
p, (4)

where

(am, bm, cm) =


(
m−2
3 , m−5

3 , 2
)

if m ≡ 2 (mod 3),

(m− 2,m− 5, 6) if m 6≡ 2 (mod 3).

We introduce the notation

d1 = gcd(x, amx− bm) and d2 = gcd(x+ 1, amx− bm).
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By writing amx− bm = am(x+ 1)− (am + bm), it is straightforward to see
that

gcd(x, x+ 1) = 1, d1 | bm, and d2 | am + bm.

Even though d1 and d2 are unknown, we know a finite list of possibilities for
each one; namely the divisors of bm and am + bm respectively. We also note
that gcd(am, bm) = 1, since m 6= 3.

We may now divide both sides of equation (4) by cm and the appropriate
pth powers of d1 and d2 to obtain(

x

A

)(
x+ 1

B

)(
amx− bm

C

)
= Y p. (5)

Here, Y | y is a positive integer, A,B, and C are positive integers satisfying

A | cm(bm)p, B | cm(am + bm)p, C | cm(bm)p(am + bm)p,

and the three factors on the left-hand side of equation (5) are integral and
pairwise coprime. Moreover, we may assume that A, B, and C are pth
power free. Later in this section we will provide, for each m, the precise
list of possibilities for the triple (A,B,C). We emphasise that the triple
(A,B,C) depends on m, and will usually also depend on p. It follows that
there exist positive pairwise coprime integers y1, y2, and y3 satisfying

x = Ayp1 , x+ 1 = Byp2 , amx− bm = Cyp3 .

This leads us to consider the following system of binomial Thue equations

B yp2 −Ay
p
1 = 1

amAy
p
1 − C y

p
3 = bm.

(6)

For each fixed value of m, we aim to solve this system of equations for each
possible triple (A,B,C). We start by providing a bound for p using results
on linear forms in logarithms.

Proposition 3.1. Let (x, y,m, p) be a solution to equation (4) with y > 1.
Then

p < 10676 · log
(
c2m · bm · (am + bm)

)
.

Proof. We aim to obtain a binomial Thue equation with coefficients inde-
pendent of p. We divide both sides of equation (4) by cm · dp1 · d

p
2. to obtain(

x

e1 · dr11

)(
x+ 1

e2 · dr22

)(
amx− bm

D

)
=

(
y

d1d2

)p
,

where r1, r2 ∈ {1, p − 1}, e1, e2 | cm, D is some integer, Y | y, and the
three factors on the left-hand side are integral and pairwise coprime. Now,
if ri = p− 1 then we rewrite 1/drii as di/d

p
i . It follows that

x =
u1
v1
zp1 and x+ 1 =

u2
v2
zp2 ,

5



for some positive integers ui, vi, and zi. Moreover, we observe that

u1v1 | cmbm and u2v2 | cm(am + bm).

We then obtain the binomial Thue equation

u2v1z
p
2 − u1v2z

p
1 = v1v2, (7)

with max{u2v1, u1v2, v1v2} ≤ c2m ·bm ·(am+bm). The proposition now follows
by applying [17, Theorem 2], a result due to Mignotte obtained using linear
forms in logarithms, where we have used λ ≥ log(2) in this result, so that
7400/λ < 10676.

To give some indication of the magnitude of this bound, when m = 6 the
bound we obtain is 55440, and when m = 50 the bound is 80372. We note
that for each triple (A,B,C) we could provide a distinct bound on p using
the system (6), and this bound will usually be smaller than the one obtained
in Proposition 3.1, but for simplicity we use a single bound for each value
of m.

We will now list the possibilities for the triple (A,B,C) for each value
of m. In general, we write

bm = 2t · pr11 · q
s1
1 am + bm = pr22 · q

s2
2 ,

where pi and qi are odd primes that do not divide cm, and t, ri, si are non-
negative integers. We split into six cases dependent on t = ord2(bm).

Case 1: ord2(bm) = 0

Here,

m ∈ {6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46,

48, 50}.

We have

• bm = pr11 · q
s1
1 for some r1 ∈ {0, 1, 2}, s1 ∈ {0, 1}, and p1, q1 - cm are

prime;

• am + bm = pr22 · q
s2
2 for some r2 ∈ {1, 2, 3}, s2 ∈ {0, 1}, and p2, q2 - cm

are prime.

Then

A = 2α1 · 3β1 · pγ11 · q
δ1
1 ,

B = 2α2 · 3β2 · pγ22 · q
δ2
2 ,

C = 3β3 · pp−γ11 · qp−δ11 · pp−γ22 · qp−δ22 ,
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where

(α1, α2) ∈ {(0, 1), (1, 0)},

(β1, β2, β3) ∈

{
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} if cm = 6,

{(0, 0, 0)} if cm = 2,

γi ∈ {0, ri, p− ri},
δi ∈ {0, si, p− si}.

We note that if, say, γ1 = 0, then we use the convention of removing the
perfect pth power pp1 from C. We do this (in each case) to avoid introducing
too many variables.

Proof of Case 1. As discussed earlier in this section, the basic idea is to
divide both sides of (4) by pth powers of d1 and d2 in order to obtain three
pairwise coprime factors. We will work one prime at a time.

We start by dividing both sides of equation (4) by 2. If x is even then
A will be exactly divisible by 2 and both B and C will be odd. Otherwise,
both x + 1 and amx − bm are even. In this case we choose to divide x + 1
by 2 so that B is even and A and C are odd.

Next, if cm = 6, we divide both sides by 3, and precisely one of x, x+ 1,
and amx− bm will be divisible by 3, so precisely one of A, B, and C will be
exactly divisible by 3.

We now consider the prime p2 and split into three cases depending on
the value of r2. The other primes (p1, q1, and q2) are dealt with in the same
manner.

(i) Case r2 = 1. If p2 - d2, then our three factors will be pairwise coprime
at p2 (i.e. p2 does not divide more than one of the three factors)
and there is nothing more to do, so we assume that p2 | d2. Since
p2 ‖ am + bm, we have that p2 ‖ d2.
We then divide both sides of equation (4) by pp2. If p2 ‖ x, then

pp−1
2 | amx− bm, so B will have a factor of p2 and C will have a factor

of pp−1
2 . Otherwise, p2 ‖ amx − bm, so C will have a factor of p2 and

B will have a factor of pp−1
2 .

(ii) Case r2 = 2. If p2 - d2 then the three factors are pairwise coprime at
p2. If p22 ‖ d2, then after dividing by pp2, one of B and C will have a

factor of p22, and the other will have a factor of pp−2
2 .

Next, if p2 ‖ d2, then one of x + 1 and amx − bm will be divisible by
pp−1
2 , and in particular by p22. If p22 | x + 1, then since p22 | am + bm,

we obtain p22 | amx − bm, contradicting p2 ‖ d2. We obtain a similar
contradiction in the case p22 | amx − bm and therefore conclude that
ordp2(d2) 6= 1.
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(iii) Case r2 = 3. If p2 - d2 then we argue as in the first two cases. Arguing
as in Case (ii), we see that ordp2(d2) 6= 1 or 2. Suppose p32 ‖ d2. We
then divide both sides of equation (4) by pp2. One of B and C will have

a factor of p32 and the other a factor of pp−3
2 .

We repeat this process with the primes p1, q1, and q2, until the factors are
pairwise coprime. This gives the possibilities listed for the triple (A,B,C).

Case 2: ord2(bm) = 1

Here,
m ∈ {7, 11, 15, 19, 23, 27, 31, 35, 39, 47}.

We have

• bm = 2 · pr11 for some r1 ∈ {0, 1}, and p1 - cm is prime;

• am + bm = p2 · qs22 , for some s2 ∈ {0, 1}, and p2, q2 - cm are prime.

Then

A = 2α1 · 3β1 · pγ11 ,
B = 2α2 · 3β2 · pγ22 · q

δ2
2 ,

C = 2α3 · 3β3 · pp−γ11 · pp−γ22 · qp−δ22 ,

where

(α1, α2, α3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

(β1, β2, β3) ∈

{
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} if cm = 6,

{(0, 0, 0)} if cm = 2,

γ1 ∈ {0, r1, p− r1},
γ2 ∈ {0, 1, p− 1},
δ2 ∈ {0, s2, p− s2}.

Proof of Case 2. For primes away from 2, we argue in exactly the same way
as in Case 1. We only need to consider what happens at the prime 2. If x
is odd, then amx − bm is also odd, and we simply divide equation (4) by 2
so that B is exactly divisible by 2. Since am + bm is odd, there is nothing
more to do.

Now we suppose x is even. Since ord2 bm = 1, we must have 2 ‖ d1. We
divide both sides of equation (4) by 2p+1. Either 2 ‖ x and 2p | amx − bm,
or 2p | x and 2 ‖ amx− bm. Since we may absorb any pth powers, we have
(α1, α3) = (0, 1) or (1, 0).
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Case 3: ord2(bm) = 2

Here,
m ∈ {9, 17, 25, 33, 41, 49}.

We have

• bm = 4 · pr11 for some r1 ∈ {0, 1}, and p1 - cm is prime;

• am + bm = pr22 · q
s2
2 , for some r2 ∈ {1, 2}, s2 ∈ {0, 1}, and p2, q2 - cm

are prime.

Then

A = 2α1 · 3β1 · pγ11 ,
B = 2α2 · 3β2 · pγ22 · q

δ2
2 ,

C = 2α3 · 3β3 · pp−γ11 · pp−δ22 · qp−δ22 ,

where

(α1, α2, α3) ∈ {(0, 1, 0), (2, 0, p− 1), (p− 1, 0, 2)},

(β1, β2, β3) ∈

{
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} if cm = 6,

{(0, 0, 0)} if cm = 2,

γ1 ∈ {0, r1, p− r1},
γ2 ∈ {0, r2, p− r2},
δ2 ∈ {0, s2, p− s2}.

Proof of Case 3. We will only consider what happens at the prime 2 in the
case x even. The other primes and the case when x is odd can be dealt with
as in the proofs of cases 1 and 2.

We first claim that 22 ‖ d1. If not, then we must have 2 ‖ d1, and then
either 22 | x or 22 | (amx− bm). Since 22 | bm, we will have that 22 | x and
22 | amx− bm, a contradiction, proving the claim.

We now divide both sides of equation (4) by 2p+1. One of x and amx−bm
will be exactly divisible by 22 and the other will be divisible by 2p−1, and
so (α1, α3) = (2, p− 1) or (p− 1, 2).

Case 4: ord2(bm) = 3

Here,
m ∈ {13, 29, 45}.

We have

• bm = 8 · pr11 for some r1 ∈ {0, 1}, and p1 - cm is prime;

• am + bm = p2, and p2 - cm is prime.
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Then

A = 2α1 · 3β1 · pγ11 ,
B = 2α2 · 3β2 · pγ22 ,
C = 2α3 · 3β3 · pp−γ11 · pp−γ22 ,

where

(α1, α2, α3) ∈ {(0, 1, 0), (3, 0, p− 2), (p− 2, 0, 3)},

(β1, β2, β3) ∈

{
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} if cm = 6,

{(0, 0, 0)} if cm = 2,

γ1 ∈ {0, r1, p− r1},
γ2 ∈ {0, 1, p− 1}.

When p = 3, we must also consider the cases (α1, α2, α3) = (2, 0, 2), with βi
and γi varying as above.

Proof of Case 4. As in Case 3, we will only consider x even and the prime
2. If 2 ‖ d1 then we obtain a contradiction as in Case 3. Suppose 22 ‖ d1.
Then if 23 | x or amx− bm we obtain a contradiction as before, so we must
have 22 ‖ x, amx− bm. The valuation at 2 of the left-hand side of equation
(4) is thus 4, and it is p ord2(y) + 1 for the right-hand side of equation (4).
This forces p = 3 and (α1, α3) = (2, 2).

Finally, if 23 ‖ gcd(x, amx − bm) then we divide by 2p+1 and one of A
and C will have a factor of 23, and the other a factor of 2p−2.

Case 5: ord2(bm) = 4

Here,
m = 21.

We have

• bm = 16 and cm = 6;

• am + bm = p2 · q2, and p2, q2 - cm are prime.

Then

A = 2α1 · 3β1 ,
B = 2α2 · 3β2 · pγ22 · q

δ2
2 ,

C = 2α3 · 3β3 · pp−γ22 · qp−δ22 ,
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where

(α1, α2, α3) ∈ {(0, 1, 0), (4, 0, p− 3), (p− 3, 0, 4)},
(β1, β2, β3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

γ2, δ2 ∈ {0, 1, p− 1}.

When p = 3 or p = 5 we must also consider the cases

(α1, α2, α3) =
(
(p+ 1)/2, 0, (p+ 1)/2

)
,

with βi, γ2, and δ2 varying as above.

Proof of Case 5. We are in a very similar set-up to Case 4. If 22 ‖ d1 then
we must have p = 3 and (α1, α3) = (2, 2). If 23 ‖ d1, then by comparing
valuations at 2 on each side of equation (4), we have 6 = p ord2(y)+1, which
forces p = 5 and (α1, α3) = (3, 3). Next, if 24 ‖ d1, then we divide through
by 2p+1 and argue as in previous cases.

Case 6: ord2(bm) = 5

Here,
m = 37.

We have

• bm = 32 and cm = 6;

• am + bm = p2, and p2 - cm is prime.

Then

A = 2α1 · 3β1 ,
B = 2α2 · 3β2 · pγ22 ,
C = 2α3 · 3β3 · pp−γ22 ,

where

(α1, α2, α3) ∈

{
{(0, 1, 0), (5, 0, p− 4), (p− 4, 0, 5)} if p > 3,

{(0, 1, 0), (2, 0, 2)} if p = 3,

(β1, β2, β3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
γ2 ∈ {0, 1, p− 1}.

When p = 3, p = 5, or p = 7 we must also consider the cases

(α1, α2, α3) =
(
(p+ 1)/2, 0, (p+ 1)/2

)
,

with βi and γ2 varying as above.
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Proof of Case 6. This is almost identical to the argument given in Case
5, apart when 25 ‖ d1 and p = 3. In this case, dividing by 2p+1 = 24

is not enough to make the factors coprime. Instead, we divide through by
22p+1 = 27. One of A and C will have a factor of 25, and the other a factor of
22. After removing the perfect cube 23 from 25, we have (α1, α3) = (2, 2).

4 The Local Method

We consider the system (6) of Thue equations for a fixed value of m and
triple (A,B,C). We will start by considering this system mod `, for many
auxilliary primes ` to try and obtain a contradiction; since if the system
of equations has no local solution then it will certainly not have a global
solution. When the system of equations does not have a (global) solution,
we found this method to be extremely effective (as we see below). The
strategy we present here is used with a single binomial Thue equation in
[10, p. 492].

Fix a prime p > 2. We search for a prime ` such that ` = 2kp + 1 for
some k ≥ 1 (i.e. ` ≡ 1 (mod p)), such that ` - ABC, and for which the
system of equations has no solution mod `. If we can find such an `, then
we have obtained a contradiction. The reason for choosing ` of this form is
that we have, for each i ∈ {1, 2, 3}, either ` | yi, or

(ypi )
2k = y`−1

i ≡ 1 (mod `).

In particular, ypi ∈ µ2k(F`) ∪ {0}, where µ2k(F`) = {α ∈ F` : α2k = 1}. We
therefore only have 2k+ 1 possibilities for ypi (mod `), and moreover the set
µ2k(F`) can be computed extremely quickly using a primitive root modulo
`. Indeed, if g is a primitive root modulo `, then

µ2k(F`) = {(gp)r : 0 ≤ r ≤ 2k − 1}.

For each triple (A,B,C), we searched for a prime ` by testing with
1 ≤ k ≤ 150. For p > 5, with p less than the prime bound for m obtained in
Proposition 3.1, apart from the cases where we have a global solution, and
a single case when p = 7, we succeeded in obtaining a contradiction.

When p = 3 or p = 5, the method sometimes fails even when there is
no global solution. In these cases, as p is small we can simply solve the
two Thue equations using Magma and verify whether we have a solution
(y1, y2, y3) with y1, y2 > 0 (since x > 0). As mentioned above, the local
method also fails for p = 7 in a single case. This is for the case m = 21
and (A,B) = (24 · 3, 1). Here we also simply solve the corresponding Thue
equations directly to conclude there are no non-zero solutions.

For certain triples, the local method will fail for all values of p as we
have a global solution for all p. There are three cases when this happens.
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(I) A = 1, B = 2, and am − C = bm . Here we have a global solution
(y1, y2, y3) = (1, 1, 1) for all p, which comes from the solution x =
y = 1 to our original equation. However, in this case, our first Thue
equation is

2yp2 − y
p
1 = 1.

Applying a well-known result of Darmon and Merel [7, Main Theo-
rem], we see that y1 = y2 = 1 for all p, so x = 1.

(II) A = 1 and C = am + bm. This admits the solution (y1, y2, y3) =
(−1, 0,−1).

(III) B = 1 and C = bm. This admits the solution (y1, y2, y3) = (0, 1,−1).

In cases (II) and (III) we must use a different strategy. We use Theorem
5.1 (stated below) together with the modular method.

5 The Modular Method

It remains to deal with cases (II) and (III), outlined in Section 4, for each
6 ≤ m ≤ 50. In each case, we have A = 1 or B = 1, and this leads to an
equation of the form

zp1 −Dz
p
2 = 1 (8)

for integers z1 and z2, where D = A if B = 1, and D = B if A = 1. The
following result of Bartolomé and Mihăilescu will be very helpful.

Theorem 5.1 ([1, Theorem 1.3]). Let D > 1 and and let p be an odd prime
satisfying

gcd(Rad(ϕ(D), p) = 1.

Suppose z1 and z2 are integers satisfying equation (8) with |z2| > 1. Then
either (z1, z2, D, p) = (18, 7, 17, 3) or p > 163 · 1012.

Here, ϕ denotes Euler’s totient function, and Rad(ϕ(D)) denotes the
product of all primes dividing ϕ(D). We note that the theorem stated in [1]
goes on to give further constraints in the case p > 163 · 1012.

Since the prime bound obtained in Proposition 3.1 is (much) smaller than
163 · 1012 in each case, Theorem 5.1 reduces our problem to only needing
to consider finitely many small primes in each case; namely the odd prime
factors of ϕ(D).

When p = 3, 5, or 7 occurs as a factor of ϕ(D), we found it simplest to
directly solve the relevant Thue equations with Magma. For p ≥ 11, in the
cases when D has at most two prime factors and its largest prime factor is
< 30, we may apply [11, Theorem 1] to immediately rule out the existence
of solutions. In the case (m,D, p) = (49, 210 · 3 · 1110, 11) we directly solve
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the corresponding Thue equation with Magma (although this case could also
be dealt with using similar techniques to those we present below).

For each remaining case, ord2(D) = 1 and we will now employ some of
the local arguments of Section 4 in combination with the modular method.
We start by seeing how one may associate, following standard recipes (see
[13] for example), a Frey curve to equation (8). We rewrite equation (8) as

− 1−Dzp2 + zp1 = 0, (9)

and we assume that p ≥ 11 and ord2(D) = 1, since this will be our set-up.
The Frey curve we associate to this equation is

E : Y 2 = X(X + 1)(X −Dzp2).

The conductor, N , of E is then given by

N =

{
2 · Rad2(Dz1z2) if 2 | z2,
25 · Rad2(Dz1z2) if 2 - z2.

Here, Rad2(Dz1z2) denotes the product of all odd primes dividing Dz1z2.
We write ρE,p for the mod p Galois representation of E. Applying standard
level-lowering results, we obtain that

ρE,p ∼ ρf,p,

for f a newform at level Np, where

Np =

{
2 · Rad2(D) if 2 | z2,
25 · Rad2(D) if 2 - z2,

and p a prime above p in the coefficient field of f .
We are now in a position to complete the proof of Theorem 1.

Proof of Theorem 1. It remains to deal with the odd primes dividing ϕ(D)
in the remaining cases. Suppose we are in one of these cases, and let
(y1, y2, y3) be a non-zero solution to the system (6) of Thue equations. By
rewriting ypi as −(−yi)p if necessary, we obtain an equation of the same
form as (9). As described above, we attach a Frey curve E to this equation,
and level lower so that ρE,p ∼ ρf,p, for f a newform at level 2 · Rad2(D) or
25 · Rad2(D).

Now, if ` | y1y2 is a prime, then it must be a prime of multiplictive
reduction for E, and by comparing traces of Frobenius, we have

`+ 1 ≡ ±c`(f) (mod p),

where c`(f) denotes the `th Fourier coefficient of the newform f . It follows
that

p | Norm((`+ 1)2 − c`(f)2) (10)
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We now search for a prime ` - D with ` ≡ 1 (mod p), for which the
system of Thue equations (6) has a unique solution mod `, and for which
(10) does not hold. If the system has a unique solution mod `, then this
solution must be the reduction mod ` of the known global solution, for
which y1y2 = 0, so either y1 ≡ 0 (mod `) or y2 ≡ 0 (mod `). So ` | y1y2,
and we have therefore obtained a contradiction if (10) does not hold. For
each newform f in each case we were able to find such a prime `, apart from
the cases listed in Table 1.

For the remaining newforms in Table 1, we find that for any prime q - 2D
that we test,

p | Norm(q + 1− cq(f)). (11)

This suggests that the representation ρf,p is reducible, which would be a
contradiction. We proceed by applying [6, Proposition 2.2] to the newform
f . We obtain that p | #E(Fq) for any prime q - D, and so E must have a
rational subgroup of order p, a contradiction since p ≥ 11.

m p f

15 11 138.2.a.d

27 23 282.2.a.e

28 11 138.2.a.d

30 13 318.2.a.g

33 29 354.2.a.h

37 11 402.2.a.g

43 13 474.2.a.e

45 41 498.2.a.g

48 11 534.2.a.f

Table 1: Remaining newforms. We use the notation of the LMFDB [15].
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