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Abstract

Enriching some underlying continuous-time Markov process with regenerations
from a fixed regeneration distribution µ at a particular regeneration rate κ results
in a Markov process that has a target distribution π as its invariant distribution.
Firstly, we introduce a method for adapting the regeneration distribution, which
allows a significantly smaller regeneration rate to be used, which makes simulation
feasible for a wider range of target distributions. The regeneration distribution is
adapted on-the-fly, by adding point masses to it. Secondly, we show that a class
of non-π-invariant jump processes, which are defined on an augmented state-
space and have a jump chain transition kernel corresponding to a deterministic,
invertible mapping, may be enriched with regenerations so that the resulting
process is π-invariant. Since the underlying jump process does not need to be
π-invariant, its dynamics may be chosen to use gradient information to guide the
process to areas of high probability mass, which makes the sampler a promising
algorithm for multi-modal target distributions.

xii



Chapter 1

Introduction

In Bayesian statistics, the unknown parameters of a statistical model are regarded
as random variables. The statistician specifies a prior distribution for these vari-
ables according to their pre-existing beliefs, then updates their beliefs by using
Bayes’ rule to derive a posterior distribution that takes into account observa-
tions. The expectation of functions of the model’s parameters, with respect to
the posterior distribution, provides useful information. The process of fitting the
model to the data and learning about the posterior distribution is called Bayesian
inference, see for example page 1 of Gelman et al. (2013).

Statistical models have become more complicated, involving more parameters,
more intricate structures and more data. To do inference on these models, a num-
ber of algorithms have been developed, which are grouped together as techniques
for Bayesian computation and includes Monte Carlo methods (see for example
Robert and Casella (2004)), the subject of this thesis.

For π the posterior distribution of interest (referred to as the target distri-
bution) and f some function, the Monte Carlo method (Metropolis and Ulam,
1949) approximates Eπ[f(X)] as n−1

∑
i f(Xi) for samples X1, X2, . . . , Xn from π.

The method is asymptotically exact, in the sense that as n tends to infinity, the
approximation becomes exact – a property that is not shared by all techniques
for Bayesian computation (Minka, 2001; Blei et al., 2017).

When samples from π can’t be generated directly, one of the mostly widely
used methods is Markov chain Monte Carlo (MCMC), in particular the Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). MCMC generates
dependent samples by simulating a Markov chain with invariant distribution π.
The fundamental building-block of a Markov chain is a Markov transition kernel,
which specifies how the chain moves from one state to the next. Multiple tran-
sition kernels can be combined, which allows kernels with different properties to
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be used, such as the next state tending to be in a small vicinity of the current
state (a local move) or for the next state to be independent of the current state
and anywhere in the state space (a global move). However, in the framework
of discrete-time MCMC, each transition kernel must be π-invariant. There is
no way for transition kernels which individually are not π-invariant to somehow
compensate for each other so that the resulting Markov chain is π-invariant. The
Metropolis-Hastings algorithm uses a reversible Markov transition kernel, mean-
ing the detailed balance condition is satisfied, which ensures π-invariance. There
is evidence that non-reversible Markov chains are superior (Neal, 2004; Suwa and
Todo, 2010; Turitsyn et al., 2011; Chen and Hwang, 2013) and hence interest
in designing non-reversible MCMC methods. Another potential way to improve
MCMC methods is to use regeneration, times at which the Markov chain effec-
tively starts again, see for example Chapter 6 of (Asmussen, 2003). Unfortunately,
for the current methodology for regenerative MCMC (Mykland et al., 1995; Gilks
et al., 1998; Brockwell and Kadane, 2005), which is based on Nummelin’s split-
ting technique (Nummelin, 1978), regenerations tend to recede exponentially as
the dimension increases.

Wang et al. (2021) designed a class of Markov process that is suitable for
Monte Carlo, combines different dynamics that individually are not π-invariant
but together compensate for each other so that the process is π-invariant, is non-
reversible and regenerative. The class is called the Restore process and is defined
by enriching some underlying continuous-time Markov process with regenerations
from a regeneration distribution µ at rate κ, called the regeneration rate. Given
the underlying process and regeneration distribution, the regeneration rate may
be chosen so that the invariant distribution of the enriched process is π. Hence
the Restore process may be used for Monte Carlo, in which context it is referred
to as the Restore sampler.

Wang et al. (2021) made an excellent contribution in specifying a flexible
framework for enriching a Markov process with regeneration so that the resulting
process is π-invariant. However, an issue with the Restore sampler is that when
µ is a poor approximation of π, the rate κ can become extremely large. This
results in the sampler being inefficient, since the process frequently regenerates
into areas with very low probability mass. Secondly, when the underlying process
is a jump process, the expression for the regeneration rate involves an integral
with respect to π, which can’t always be evaluated. When the underlying jump
process is already π-invariant, it’s possible to evaluate the regeneration rate, but
then regeneration is in no way compensating for the dynamics of the underlying
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process.

There are two main contributions in this thesis. Firstly, it is shown how µ

may be adapted so that a regeneration rate which is as small as possible may be
used throughout simulation of the process. The distribution µ is not adapted so
that it converges to π, but to a closely related distribution called the minimal
regeneration distribution. Multiple examples are used to investigate the perfor-
mance of the corresponding algorithm, referred to as Adaptive Restore (McKimm
et al., 2022). We find that Adaptive Restore is most suitable for unimodal distri-
butions, since the nature of the adaptive mechanism results in slow convergence
of the process when the target is multimodal.

Secondly, we show how a non-π-invariant jump process may be enriched with
regenerations so that the resulting jump process is π-invariant. Such a process
is called a Jump Process Adjusted with Regenerations (Jumpar) because regen-
eration adjusts the invariant distribution of the jump process so that it is π. A
jump process has a holding rate, which determines how long the process tends to
remain in each state for, as well as a Markov transition kernel, which describes
how the state of the jump process changes at jump times. Two choices for the
holding rate are suggested, one being constant and the other depending on µ

and π. Three choices for the Markov transition kernel are considered, which
relate to random-direction, Hamiltonian and conformal Hamiltonian dynamics.
The random-direction dynamics are considered to help to visualise the proposed
method. Hamiltonian dynamics are experimented with, because they are apt at
finding a next state that is far from the current state, yet has similar probability
density; this property helps to explain the effectiveness of Hamiltonian Monte
Carlo (Duane et al., 1987; Neal et al., 2011). Lastly conformal Hamiltonian dy-
namics are considered, since these use gradient information to guide the sampler
towards areas of high probability mass, which may improve sampling efficiency.
A Jumpar with conformal Hamiltonian dynamics may be particularly well suited
to sampling multimodal distributions, because the dynamics use gradient infor-
mation to guide the process towards the modes.

The thesis is structured as follows. Chapter 2 introduces basic Monte Carlo
methods and gives more detail on the issues with current techniques. The Restore
process is a continuous-time Markov process; Chapter 3 presents some basic prop-
erties of continuous-time Markov processes and describes some specific processes
including jump processes, Poisson processes (see for example Kingman (1992))
and Brownian motion (see for instance Mörters and Peres (2010)), as well as sim-
ulation methods (Devroye (1986) is a good resource). The Restore process Wang
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et al. (2021) is covered in Chapter 4, which also makes a minor novel contribu-
tion by showing that a Restore process may be used to estimate the normalising
constant of an unnormalised target distribution. The main contributions of the
thesis are made in Chapters 5 and 6 on Adaptive Restore (McKimm et al., 2022)
and Jumpar respectively. Chapter 7 concludes.
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Chapter 2

Monte Carlo and Related Methods

Monte Carlo methods, see for example Robert and Casella (2004), are used to
compute high dimensional integrals exactly, see Section 1.1 of Liu (2008) for in-
stance. Let X be a random variable on a state space X with density π. Many
problems in Bayesian statistics involve computing the expectation of some func-
tion f of random variable X. This expectation may be expressed as an integral:

Eπ[f(X)] =

∫
X
f(x)π(x)dx. (2.1)

We will sometimes use notation:

π[f ] := Eπ[f(X)].

When an analytic solution is not available, numerical methods can instead be
used to compute the expectation. Quadrature methods (see Chapter 4 of Press
et al. (2007) for example) approximate the integral as a sum of the integrand
evaluated at a number of points. For example, when X = [0, 1], the Riemann
approximation of (2.1) is∫ 1

0

f(x)π(x)dx ≈
n∑
i=1

f(xi)π(xi)

for xi = i/n; i = 1, . . . , n. The Riemann approximation has an error rate of
O(1/n): there exists a constant M such that the error is less than M/n. How-
ever, in d dimensions O(nd) points are required to achieve an O(1/n) error rate,
thus deterministic numerical integration doesn’t scale well to problems in high
dimension.

The Monte Carlo method (Metropolis and Ulam, 1949) is to simulate n sam-
ples X0, . . . , Xn−1 from π then approximate π[f ] as:

π̂n[f ] :=
1

n

n−1∑
i=0

f(Xi). (2.2)
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When the samples are independent, the Strong Law of Large Numbers guarantees
that the approximation becomes exact as n → ∞ (see Section 3.2 of Robert
and Casella (2004) for example). The Central Limit Theorem states that, when
σ2 := Varπ[f(X)] <∞,

√
n
(
π̂n[f ]− Eπ[f(X)]

)
→ N (0, σ2) (2.3)

in distribution. The estimator is unbiased and has standard deviation σ/
√
n.

Thus the rate of convergence of the estimator is O(1/
√
n), which is independent

of dimension, making Monte Carlo more suitable to high-dimensional integration
than deterministic methods. A caveat is that σ2 can be very large for high-
dimensional problems.

The question of how to compute integral (2.1) then becomes how to sample
from π, the target distribution. This chapter will cover some foundational sam-
pling methods relevant to the novel contributions in later chapters. As a starting
point, we assume we are able to simulate uniformly on [0, 1]. Section 2.1 details
methods for obtaining independent and identically distributed samples from π via
direct sampling. Importance Sampling, which generates independent weighted
samples, is covered in Section 2.2. A method for generating a sequence of depen-
dent samples, Markov chain Monte Carlo (MCMC), is introduced in Section 2.3.
Estimating normalising constants is useful for Bayesian model comparison and
is presented in Section 2.4. Finally, Section 2.5 covers some methods related to
Monte Carlo methods that are particularly pertinent to this thesis.

2.1 Direct Sampling

When π is relatively simple, it is possible to generate samples from it directly.
That is, there is no need to use weighted samples, as in Importance sampling
(Section 2.2), or to generate a Markov chain, as in MCMC (Section 2.3).

2.1.1 Inversion Sampling

The most fundamental method for sampling one-dimensional distributions is to
use the probability integral transform. Suppose X ∼ π has cumulative distribu-
tion function Π. If U ∼ U [0, 1], then random variable Π−1(U) ∼ π.

2.1.2 Sampling via Transformations

When X may be expressed in terms of some base random variables, then X may
be simulated by first sampling the base random variables then making a trans-
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formation. This technique is crucial for simulation. For example, the Box-Muller
transformation (Box and Muller, 1958) may be used to obtain two independent
standard normal random variables using two independent uniform random vari-
ables. For X ∼ N (m,σ2), transformation X = m+ σZ may be used to generate
X, were Z ∼ N (0, 1). For X ∼ N (m,Σ) a multivariate Gaussian random vari-
able, transformation X = m+LZ may be used, for Z a vector of standard normal
random variables and L the Cholesky decomposition of Σ (a left triangular matrix
satisfying LLT = Σ).

Transformations aren’t just used for sampling relatively straightforward dis-
tributions. Recent work on Normalizing Flows (Dinh et al., 2017; Papamakarios
et al., 2021) has looked at using a sequence of invertible and differentiable trans-
formations to define very expressive probability distributions. One application of
Normalizing Flows is to construct a proposal distribution for use in Importance
Sampling (Müller et al., 2019; Prangle and Viscardi, 2019) or the Independence
Sampler (Gabrié et al., 2022), see Sections 2.2 and 2.3.2.

Sampling directly from a distribution π is not always possible. However, it is
often useful to transform π before using a method such as MCMC (introduced
in Section 2.3) to sample the transformed distribution. Section 2.5.2 will explain
how to make a pre-transformation of a target distribution.

2.1.3 Rejection Sampling

When sampling via inversion or transformation isn’t possible, rejection sampling
(von Neumann, 1951) can usually be used instead. The algorithm is simple; den-
sity π need only be evaluated pointwise up to a multiplicative constant. A pro-
posal distribution q is used to generate a state x which is accepted with probability
π(x)/Mq(x) else rejected. ConstantM is chosen so that π(x)/Mq(x) ≤ 1∀x ∈ X .
Algorithm 1 describes how to obtain n samples from π using rejection sampling.
The instruction “Record X” should be interpreted as recording the sample X in
some container, such as a vector, so that the i-th sample is recorded in position
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i in the container.
Algorithm 1: Rejection Sampling
i← 0.
while i < n do

X ∼ q, U ∼ U(0, 1)

if U < π(X)/Mq(X) then
Record X
i← i+ 1

end

end

Rejection sampling tends to be impractical for high-dimensional problems
because it is difficult to find a good proposal distribution. If q is not a good
approximation of π then many proposed states will be rejected and thus a lot
of computation wasted, before a sample is obtained. Adaptive Rejection Sam-
pling (Gilks, 1992; Gilks and Wild, 1992) may be used to find a better proposal
distribution.

2.2 Importance Sampling

One of the first uses of Importance Sampling (IS) was in statistical physics for es-
timating the probability of rare events (Kahn, 1950). Rare event simulation using
standard Monte Carlo is inefficient, because estimates are based on a very small
number of effective samples, for example see Section 1.1 of Rubino and Tuffin
(2009). IS can be used as a method for variance reduction, for example in com-
puting quantiles of the loss distribution (Value-at-Risk) of a portfolio of financial
assets (Glasserman et al., 2000). IS may also be used in Bayesian inference.

For q some distribution, equation (2.1) may be rewritten as:∫
X
f(x)π(x)dx =

∫
X
f(x)

π(x)

q(x)
q(x)dx =

∫
X
f(x)w(x)q(x)dx,

where w(x) := π(x)/q(x) is called the weight of state x. Thus for X0, . . . , Xn−1 ∼
q, assuming π is a normalized density we are able to approximate the expectation
of interest as:

Eπ[f(X)] ≈ 1

n

n−1∑
i=0

f(Xi)w(Xi). (2.4)

The right hand side of (2.4) has finite variance when

Eq
[
f 2(X)

π2(X)

q2(X)

]
= Eπ

[
f 2(X)

π(X)

q(X)

]
=

∫
X
f 2(X)

π2(X)

q(X)
dx <∞.
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So that samples may be used with arbitrary f , the importance distribution q

should have heavier tails than π. Algorithm 2 describes how to draw n importance
samples.
Algorithm 2: Importance Sampling

for i in 0 to n− 1 do
X ∼ q

W ← π(X)/q(X)

Record X,W
end

2.2.1 Auto-normalized Importance Sampling

When π is unnormalized the auto-normalized Importance Sampling estimate must
be used instead, see for example Chapter 8 of Chopin and Papaspiliopoulos (2020).
Suppose

π(x) =
π̃(x)

Z
.

The relevant identity becomes:∫
X
f(x)π(x)dx =

∫
X f(x)π(x)

q(x)
q(x)dx∫

X
π(x)
q(x)

q(x)dx
=

∫
X f(x) π̃(x)

Zq(x)
q(x)dx∫

X
π̃(x)
Zq(x)

q(x)dx
=

∫
X f(x) π̃(x)

q(x)
q(x)dx∫

X
π̃(x)
q(x)

q(x)dx
.

Writing w̃(x) := π̃(x)/q(x), the auto-normalized Importance Sampling estimator
of Eπ[f(X)] is: ∑n−1

i=0 f(Xi)w̃(Xi)∑n−1
i=0 w̃(Xi)

.

This estimator converges almost surely to Eπ[f(X)] (see Theorem 9.2 for instance
of Owen (2013)). The estimator is the ratio of two unbiased estimators, but is
biased itself.

2.2.2 Adaptive Importance Sampling

For a given function f , the proposal distribution q that is optimal in the sense of
minimizing the Mean Square Error (MSE) of the Importance Sampling estimator
is

q(x) =
|f(x)|π(x)∫

X |f(x′)|π(x′)dx′
. (2.5)

However, since this optimal proposal distribution depends on π itself, when π is
the posterior distribution of a complicated model, it often won’t be possible to
sample from q. Furthermore, when there are multiple functions f1, f2, . . . , fn of
interest, rather than designing an optimal proposal for computing the expectation
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of each function, it may be more efficient to have a single proposal to generate
a single set of weighted samples, then reuse these weighted samples to compute
each expectation.

Instead of basing q on (2.5), it is recommended to choose q to be as close
as possible to π, since using π as the proposal distribution would minimize the
variance of the importance weights (Doucet et al., 2009, Section 3.2). Recent
work has considered approximating π using a Neural Network (Müller et al.,
2019). Adaptive Importance Sampling methods (Bugallo et al., 2017; Martino
et al., 2017), iteratively modify the proposal distribution using samples obtained
from previous iterations, so that the quality of samples improves. For example,
successive proposal distributions may be defined as mixture approximations of
the target distribution, using kernel density estimation techniques (West, 1993).
Population Monte Carlo (Cappé et al., 2004) represents the main framework for
adaptive strategies: N proposal distributions q0, q1, . . . , qN−1 are used to generate
samples and are adapted at each iteration. One of q0, q1, . . . , qN−1 could have
heavy tails (Hesterberg, 1995), so that the variance of the estimator is finite.

2.3 Markov Chain Monte Carlo

Rejection and Importance Sampling do not scale well to high-dimensional prob-
lems because it becomes more and more difficult to find a proposal distribution
that is close to π. For these high-dimensional problems it is better to use Markov
Chain Monte Carlo (MCMC). This method simulates a Markov chain with lim-
iting distribution π.

The basic building block of MCMC is a transition kernel (see Definition 6.2
for example of Robert and Casella (2004)), a function P on X × X such that

1. P (x, ·) is a probability measure ∀x ∈ X ,

2. P (·, B) is a measurable function for all sets B ⊂ X .

For a set B ⊂ X , let π(B) :=
∫
B
π(x)dx. A distribution π is invariant for P if

(see for example Definition 6.35 of Robert and Casella (2004)):

π(B) =

∫
X
π(x)P (x,B)dx,∀B ⊂ X .

When the chain is ϕ-irreducible and aperiodic (for definitions, see pages 82
and 114 of Meyn et al. (2009)), the limiting distribution of the chain is the same
as the stationary distribution. For π almost all x ∈ X , as stated in Section 2 of
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Roberts and Tweedie (1996b):

||P n(x, ·)− π||TV → 0,

where the total variation norm of a signed measure ν is ||ν||TV := 2 supB |ν(B)|.
A burn-in period is required, during which the chain approximately converges to
π. Assessing the convergence of MCMC samplers is challenging (Gelman et al.,
1992). The computational scientist must usually inspect traceplots of the chain
to check that the state-space has been fully explored.

Since the samples are no longer independent, the Strong Law of Large Num-
bers may no longer be used to justify that π̂n[f ] converges to π[f ]. Instead, the
Ergodic Theorem is used (see for example Theorem 6.63 of Robert and Casella
(2004)). This states that if {Xi}i≥0 is a Markov chain with invariant distribution
π, then the following are equivalent:

1. if Eπ[|f(X)|] <∞ then limn→∞ π̂n[f ] = Eπ[f(X)],

2. {Xi}i≥0 is Harris recurrent.

Informally, a Markov chain is Harris recurrent if for an arbitrary set B, the prob-
ability of there being an infinite number of returns to B is 1 (see for example
Section 6.1 of Robert and Casella (2004), or the formal definition given by Defi-
nition 6.32).

The two most widely used MCMC methods are the Gibbs sampler (Geman
and Geman, 1984; Tanner and Wong, 1987; Gelfand and Smith, 1990) and the
Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970); both
simulate a Markov chain with stationary distribution π by repeatedly applying
π-invariant transition kernels.

Several transition kernels may be used. Suppose P1, P2, . . . , Pn are all π-
invariant transition kernels. A cycle kernel applies these kernels one after the
other:

P = P1P2 · · ·Pn.

A mixture kernel applies the kernels in a random order:

P =
1

n
(P1 + P2 + · · ·+ Pn).

Importantly, each transition kernel in the cycle or mixture must be π-invariant.
This point is worth emphasizing; by contrast the Restore process (introduced in
Chapter 4) combines different dynamics, which by themselves are not π-invariant,
in such a way that the the dynamics compensate for each other so that together
they are π-invariant.
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The advantage of using several kernels is that it allows the strengths of differ-
ent kernels to be used together. For example, a kernel that makes large changes
to the state of the Markov chain could be used in combination with a kernel that
makes small changes. The rest of this section introduces the Gibbs sampler and
the Metropolis-Hastings algorithm then regenerative and non-reversible MCMC.

2.3.1 The Gibbs Sampler

The Gibbs sampler generates the next state in the Markov chain by simulating
each component ofX from its conditional distribution. LetX = (X1, X2, . . . , Xd)

T

be a multivariate random variable. For x−j = x1, . . . , xj−1, xj+1, . . . , xd, let
πXj |X−j(xj|x−j) be the probability density function of Xj given X1 = x1, . . . ,
Xj−1 = xj−1, Xj+1 = xj+1, . . . Xd = xd. Suppose it is possible to simulate
from each conditional distribution πXj |X−j , for j = 1, . . . , d. The Gibbs sampler
updates each component in turn from its conditional distribution, as shown in
Algorithm 3.

Algorithm 3: The Gibbs Sampler
x = (x1, x2, . . . , xd)

for i in 0 to n− 1 do

for j in 1 to d do
xj ∼ πXj |X−j(xj|x−j)

end

Record x
end

The Gibbs sampler is frequently used in applied Bayesian statistics, in part
because of robust implementations in software such as BUGS (Gilks et al., 1994;
Lunn et al., 2009) and JAGS (Plummer, 2003). Though it is viable for a large
number of modeling problems, not all models admit conditional distributions that
may be easily sampled.

In addition, the Gibbs sampler can be slow to converge, especially when com-
ponents of the target distribution are strongly correlated. Take as example the
distribution with the following density, which features in Park and Lee (2022):

π(x) ∝ exp

{
−1

2
[x2

1x
2
3 + 2x2

1 + x2
2 + 2x2

3 − 2x1x2 + 2x1x3 − 2x2x3 − 8x1 − 8x3]

}
.

(2.6)
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All conditional distributions are Gaussian:

πX1|X2,X3 ≡ N
(
x2 − x3 + 4

x2
3 + 2

,
1

x2
3 + 2

)
,

πX2|X1,X3 ≡ N (x1 + x3, 1) ,

πX3|X1,X2 ≡ N
(
x2 − x1 + 4

x2
1 + 2

,
1

x2
1 + 2

)
.

Figure 2.1 shows, for a Markov chain generated using Gibbs sampling, the auto-
correlation of each component and density estimates of the 2-dimensional marginal
distributions. Consecutive samples are highly correlated in dimensions 1 and 3,
whilst the correlation is far smaller in dimension 2. The 2-dimensional marginals
help to explain this behaviour. The correlation between X1 and X3 is approxi-
mately -0.84, which is relatively strong and results in the Gibbs sampler moving
less efficiently over π.

2.3.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm offers a more general recipe for simulating a
π-invariant Markov chain. It does this by designing a reversible Markov chain
{Xi}i≥0, one for which the distribution of Xi+1 conditioned on Xi+1 = x is the
same as the distribution ofXi+1 conditioned onXi = x (see for example Definition
6.44 of Robert and Casella (2004)). This is achieved by using a transition kernel
P that satisfies the detailed balance condition (see Definition 6.45 of Robert and
Casella (2004)) for π a probability density function:

π(dx)P (x, dy) = π(dy)P (y, dx),∀x, y ∈ X . (2.7)

From the detailed balance condition, it follows that {Xi}i≥0 is π-invariant and
reversible (see for example Theorem 6.46 of Robert and Casella (2004)).

Starting at state x, the Metropolis-Hastings algorithm generates a new state
by simulating a proposal state x′ from a proposal distribution q(x, x′). With
probability

α(x, x′) =
π(x′)q(x′, x)

π(x)q(x, x′)
, (2.8)

state x′ is accepted so that the new state is x′. Otherwise, x′ is rejected and there
is no change in state – the new state is x. Algorithm 4 provides a summary of how
to generate a chain of length n started from state x0. The instruction “Record X”
should be interpreted as adding the sample X to the back of some container that
represents the Markov chain. For example, in the C++ programming language, a
Standard Template Library vector may be used to store the states of the Markov
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Figure 2.1: Autocorrelation functions (ACFs) of the marginals of a Markov
chain generated using Gibbs sampling and density estimates of the 2-dimensional
marginals for π given by (2.6).
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chain and the member function “push_back” may be used to record new states
after the current last element of the vector. With states recorded in this way,
index i of the container will contain the i-th element of the Markov chain.
Algorithm 4: The Metropolis-Hastings Algorithm
X ← x0

for i in 0 to n− 1 do
X ′ ∼ q(X,X ′)

U ∼ U(0, 1)

if U < α(X,X ′) then
X ← X ′

end

Record X
end

The proposal distribution is a key part of the algorithm. Two popular families
of proposals are now reviewed, which define subcategories of the Metropolis-
Hastings algorithm: the Independence Sampler and the RandomWalk Metropolis
(RWM) algorithm. A third Metropolis-Hastings algorithm, Hamiltonian Monte
Carlo, is covered in Chapter 6 since it is most relevant to the methods developed
in that chapter. It is worth noting that the Gibbs sampler is in fact a special
case of the Metropolis-Hastings algorithm, in which the acceptance probability
is 1 for all moves (see Section 3.4 of Andrieu et al. (2003) for example). In
addition, there are plenty of other choices of families of proposal distribution, such
as that corresponding to the Metropolis-Adjusted Langevin Algorithm (MALA)
(Roberts and Tweedie, 1996a; Roberts and Rosenthal, 1998), though the RWM
and Independence samplers are most relevant to this thesis.

The Independence Sampler

The Independence Sampler uses a proposal distribution that does not depend on
the current state of the chain (Tierney, 1994, Section 2.3.3.). That is, q(x, x′) =

q(x′),∀x ∈ X . In high-dimensional spaces the sampler suffers from the same
drawback as Rejection Sampling and Importance Sampling in that it becomes
increasingly difficult to find a good proposal distribution. As a result, the Inde-
pendence Sampler can get “stuck” in a particular state for a long time. Figure 2.2
attempts to illustrate this by showing traceplots for the Independence Sampler
in dimensions d = 3, 9, 27, 81. The proposal is q ≡ t4(0, Id) and the target is
π ≡ N (0.11d, 0.5Id+ 0.51d×d). As the dimension increases, the number of unique
states visited by the Markov chain, which has length 104, is 5205, 2391, 1091, 665.

When q is a good approximation of π, the Independence Sampler is very
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Figure 2.2: Traceplots of Markov chains generated using the Independence Sam-
pler for dimensions d = 3, 9, 27, 81. In each dimension, the proposal is t4(0, I); the
target is Gaussian with mean 0.1 and standard deviation 1 for each component
and pairwise correlations are 0.5.
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effective. Furthermore, it is amenable to regenerative simulation, see Section
2.3.3, and can be used with other kernels to combine moves on local and global
scales.

The Random Walk Metropolis Algorithm

The Random-Walk Metropolis (RWM) algorithm uses a Gaussian proposal dis-
tribution centred at the current state. Since the proposal is symmetric, equation
(2.8) simplifies to α(x, x′) = π(x′)/π(x).

The efficiency of the RWM algorithm heavily depends on the proposal distri-
bution and the choice of covariance matrix in particular. To tune the proposal
distribution, one must first define a criterion to optimize. One could attempt to
directly optimize the asymptotic variance of π̂n[f ], defined as (see for example
equation 3 of Neal (2004)):

lim
n→∞

nVar[π̂n[f ]].

Optimizing the asymptotic variance is typically infeasible because the expression
for it is highly non-trivial.

Instead, one could maximise the expected squared jumped distance (ESJD),
equivalent to minimizing the first-order autocorrelation of the Markov chain, see
for example Pasarica and Gelman (2010). The ESJD is the expected squared eu-
clidean distance between consecutive states in the Markov chain. However, both
these metrics are specific to the function f (ESJD takes f(x) = x), and opti-
mal parameters for f may not generalising to some other function g. Moreover,
Markov chains with small asymptotic variance can be slow to converge (Besag
and Green, 1993, Section 2).

By contrast, the expected acceptance probability is easy to estimate, doesn’t
depend on f and is supported by theory in particular cases (Roberts et al., 1997).
When the target density is a spherical Gaussian, the optimal acceptance rate for
the RWM algorithm is approximately 0.44 when d = 1 and 0.234 as d → ∞
(Gelman et al., 1996; Roberts et al., 1997). The scale of the proposal distribution
can therefore be tuned so that this optimal acceptance rate is reached. When
the target distribution is non-Gaussian, these optimal acceptance rates do not
necessarily hold. For example, a Gamma-Gamma hierarchical model may have
an asymptotically optimal acceptance rate of 0.16 (Bédard, 2006, Section 4.4.3).

When the target distribution is Gaussian and has covariance matrix Σ, the
optimal covariance matrix of the proposal distribution for the RWM algorithm
is (2.382/d)Σ (Gelman et al., 1996). This result helps to explain the challenge in
sampling high-dimensional distributions. As the dimension of the target increases,
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Figure 2.3: Trace plots and autocorrelation functions for the first marginal of two
Markov chains with isotropic Gaussian invariant distributions π1 and π2 where
π1 has dimension d = 2 and π2 has dimension d = 100.

to maintain an acceptance rate that is close to optimal, the scale of the proposal
must decrease at rate 1/d. This results in the Markov chain making smaller
moves, so consecutive states have larger correlation. Figure 2.3 demonstrates
this with an empirical example. Two Markov chains are generated with isotropic
Gaussian invariant distributions π1 and π2 with dimensions d = 2 and d = 100.
Each Markov chain is generated using the RWM algorithm, with the proposal
distribution having the optimal covariance matrix. The samples in the Markov
chain with invariant distribution π2 are far more strongly correlated and the chain
takes longer to explore the state space.

When MCMC is tuned automatically and during simulation of the Markov
chain (as opposed to during a burn-in period, after which tuning parameters are
fixed), it is called Adaptive MCMC. There are many strategies (Roberts and
Rosenthal, 2009), but adaption must be done carefully, so that the invariant
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distribution of the Markov chain is still π (Andrieu and Moulines, 2006, Exam-
ple of Section 1). Adaption may be done by making Robbins-Monro updates
(Robbins and Monro, 1951; Atchadé and Rosenthal, 2005; Andrieu and Robert,
2001). These change the scale of the proposal distribution, based on estimates
of the expected acceptance probability (Andrieu and Thoms, 2008, Section 4.2).
Alternatively, Haario et al. (2001) proposes a method for adapting the entire co-
variance matrix of the proposal. This method assumes that the support of the
target distribution is compact, which is necessary to prove that

lim
n→∞

1

n

n−1∑
i=0

f(Xi) = π[f ],

for {Xi}i≥0 the generated Markov chain. However, the authors remark that in
their tests, the method works for (unrestricted) Gaussian distributions and that
they expect that their method works for non-compactly supported target dis-
tributions with densities satisfying a certain tail condition. When a Metropolis-
Hastings algorithm is used in this thesis, its parameters are tuned during a burn-in
period, then fixed whilst output is recorded.

Chapter 5 looks at adapting the Restore algorithm, introduced in Chapter
4. Restore algorithms do not have an accept/reject step in the same way that
Metropolis-Hastings algorithms do. Instead of tuning scalar parameters, Adaptive
Restore adjusts the regeneration distribution used by the algorithm.

Slow convergence

We end this section by commenting on a major issue for the Metropolis-Hastings
algorithm: slow convergence. Through examples, it has been demonstrated that
the Gibbs Sampler converges slowly when π has strong correlations, the Inde-
pendence Sampler makes fewer and fewer moves as the proposal distribution and
target become less close to each other and the RWM algorithm makes smaller
moves as the dimension of π increases. A motivation for combining moves on a
local and global scale is to benefit from both frequent and large moves. However,
a cycle or mixture kernel inherits the properties of its constituent kernels: as the
dimension increases, moves on a local scale become smaller and those on a global
scale are made less frequently. A motivation for Restore (introduced in Chapter
4) is to overcome this: dynamics are combined in such a way that local moves do
not become smaller and global moves to do not become less frequent.

As a further remark, the Metropolis-Hastings algorithm can be even slower to
convergence when π is multimodal. The RWM algorithm struggles to cross regions
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of low probability density between modes and it is difficult to design a good
independent proposal. Technqiues to improve mixing including tempering (Geyer,
1991; Marinari and Parisi, 1992; Neal, 1996b; Kou et al., 2006) and mode-hopping
moves (Tjelmeland and Hegstad, 2001; Andricioaei et al., 2001; Sminchisescu and
Welling, 2011; Ahn et al., 2013). Restore is well suited to sampling multi-modal
distributions, since its regenerative structure provides opportunities for jumping
between modes.

2.3.3 Regeneration in Markov Chain Monte Carlo

A Markov chain {Xi}i≥0 is regenerative if there exists a sequence of random times
T0 < T1 < · · · such that for every Ti, the future of the process is independent of
the past and identically distributed. See Chapter 6 of Asmussen (2003) for an
introduction to regenerative processes. In effect, the process restarts itself at each
Ti, called regeneration times. Suppose that the chain begins with a regeneration,
so that T0 = 0.

Tours are the sets of states between regeneration times. For i = 1, 2, . . . the i-
th tour is {XTi−1

, XTi−1+1, . . . , XTi−1}. The length of the ith tour is τi := Ti−Ti−1

for i = 1, 2, . . . . For a test function f let

Hi :=

Ti−1∑
j=Ti−1

f(Xj); i = 1, 2, . . . .

Pairs (τi, Hi) are independent and identically distributed, which makes the tours
suitable for estimating π[f ]. If E[| Hi |] < ∞ and E[τi] < ∞ then by the Strong
Law of Large Numbers (see Section 2 of Mykland et al. (1995) for example):

π̂Tn [f ] =

∑n
i=1Hi∑n
i=1 τi

=
1

Tn

Tn−1∑
i=0

f(Xi)→ π[f ].

One can attain an estimate for the variance of the estimator itself (Brockwell
and Kadane, 2005). Let the average tour length be:

τ̄ :=
1

n

n∑
i=1

τi.

Then in distribution (see for example equation 10 of Hobert et al. (2002)):
√
n(π̂Tn [f ]− π[f ])→ N (0, σ2). (2.9)

A consistent estimator for σ2 is (see for example equation 11 of Hobert et al.
(2002)):

σ̂2
n =

1
n

∑n
i=1 (Hi − π̂Tn [f ]τi)

2

τ̄ 2
. (2.10)
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Two further benefits of regeneration in MCMC is that tours may be simulated
in parallel and there is no need to discard a burn-in period (assuming the chain
starts with a regeneration and is simulated for a fixed number of tours). The
latter property follows from the fact that tours are independent and identically
distributed.

Nummelin’s splitting technique (Nummelin, 1978) is a method for determining
when regenerations have happened in a Markov chain. The method has been used
for MCMC (Mykland et al., 1995; Gilks et al., 1998; Brockwell and Kadane, 2005).
The Independence Sampler (defined in Section 2.3.2) is easy to split and the
proposal distribution q may be adapted at regeneration times without disturbing
the limiting distribution of the chain. However, regenerations tend to recede
exponentially as the dimension increases.

2.3.4 Non-reversible Markov Chain Monte Carlo

For the Markov chain to be π-invariant, it is sufficient but not necessary for the
transition kernel to satisfy 2.7, the detailed balance condition. The condition
is very useful because if one can construct a Markov transition kernel P that
satisfies it, then the Markov chain generated with P will be π-invariant. However,
requiring that P satisfies detailed balance is restrictive: there are π-invariant
kernels that do not satisfy detailed balance. Furthermore, there is both empirical
(Suwa and Todo, 2010; Turitsyn et al., 2011) and theoretical (Neal, 2004; Chen
and Hwang, 2013) evidence that non-reversible Markov chains are better in terms
of asymptotic variance and speed of convergence.

2.4 Estimating Normalizing Constants

Estimating normalizing constants, or more precisely, ratios of normalizing con-
stants, is useful in Bayesian inference for model comparison (Gelman and Meng,
1998). Normalizing constants tend to be very difficult to estimate. Suppose
π(x) = π̃(x)/Z, where Z is unknown. Estimating Z is difficult because it is a
scalar quantity but depends on a measure defined on a d dimensional space: typ-
ically Z =

∫
Rd π̃(x)dx. Section 4.5 notes that the Restore process may be used to

estimate normalizing constants. In subsections 2.4.1 and 2.4.2 we briefly present
two methods for estimating normalizing constants, Sequential Monte Carlo and
Thermodynamic Integration, without going into much detail. We have already
seen one method for estimating normalizing constants: Importance sampling (Sec-
tion 2.2). There are other techniques, such as Bridge Sampling (Meng and Wong,
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1996) or Nested Sampling (Skilling, 2006), which are not covered.

2.4.1 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods were first developed for Bayesian filtering
problems and dynamics models, see the review of Cappé et al. (2007) and Chapter
1 of Doucet et al. (2001). Here, data y1, y2, . . . , yn are observed sequentially
and the aim is to infer the posterior distribution π(x1, . . . , xn|y1, . . . , yn), where
x1, . . . , xn are hidden states. In the context of such state-space models, SMC
methods are also referred to as Particle Filters. Gordon et al. (1993) made
a key contribution through the proposal of the Bootstrap Filter algorithm, in
which particles are propagated forward according to the transition density of the
model for the dynamics of the hidden state, assigned a weight proportional to
the likelihood of the corresponding observation, then resampled from the discrete
distribution proportional to the weights.

SMC may also be applied to non-dynamic models (Chopin, 2002; Del Moral
et al., 2006). It is possible to use SMC to compute the marginal likelihood for use
in Bayesian model selection (Zhou et al., 2016). A potential advantage of SMC
is that it is well suited to parallel computing (Lee et al., 2010).

2.4.2 Thermodynamic Integration

Suppose π1(x) = π̃1(x)/Z1 is a distribution known up to some normalization
constant. Thermodynamic Integration (Ogata, 1989; Neal, 1993, Section 6.2) may
be used to estimate Z1 =

∫
X π̃1(x)dx. Let π0(x) = π̃0(x)/Z0 be a distribution with

known normalizing constant Z0 =
∫
X π̃0(x)dx. If π̃0 and π̃1 have the same support,

it is possible to find a path linking them, parameterized by some scalar θ ∈
[0, 1]. For instance, the geometric path is π̃θ(x) = π̃1−θ

0 (x)π̃θ1(x). The normalized
intermediate distribution is πθ(x) = π̃θ(x)/Zθ. We have

d

dθ
logZθ =

d
dθ
Zθ

Zθ
=

1

Zθ

d

dθ

∫
π̃θ(x)dx.

Assuming it’s valid to interchange integration and differentiation and using

d

dθ
log π̃θ(x) =

d
dθ
π̃θ(x)

π̃θ(x)
⇔ π̃θ(x)

d

dθ
log π̃θ(x) =

d

dθ
π̃θ(x),

we get

d

dθ
logZθ =

∫
1

Zθ

d

dθ
π̃θ(x)dx =

∫
π̃θ(x)

Zθ

d

dθ
log π̃θ(x)dx = Eπθ(x)

[
d

dθ
log π̃θ(x)

]
.
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Writing Uθ(x) = d
dθ

log π̃θ(x) and integrating from 0 to 1 gives

log
Z1

Z0

=

∫ 1

0

Eπθ(x) [Uθ(x)] dθ.

Therefore, we are able to estimate Z1 by using MCMC to estimate Eπθ(x)[Uθ(x)]

for θ = 0, 1
n
, 2
n
, . . . , n−1

n
; we can then use quadrature to approximate the right-

hand side integral. Though it’s possible to use n independent Markov chains
to estimate each expectation, it’s possible to avoid having to discard n burn-in
periods by starting chain i + 1 from the last state of chain i. In fact for small
enough increments in θ, it’s even possible to estimate each expectation with just
one sample, as in the slow growth method (Bash et al., 1987).

2.5 Related Methods

The following are not Monte Carlo methods, but are highly relevant for Bayesian
computation. The Laplace Approximation of subsection 2.5.1 may be used to
approximate a distribution π with a Gaussian. The Laplace Approximation may
be used to transform a posterior distribution, as in subsection 2.5.2, so that the
transformed distribution is roughly centred at zero and has covariance matrix
close to the identity. Methods presented in this thesis rely on the gradient and
Laplacian of the log-density of the posterior – subsection 2.5.3 comments on how
to compute derivatives. To make a Laplace Approximation one must find the
mode of the posterior; subsection 2.5.4 covers the optimization method used to
do this.

2.5.1 The Laplace Approximation

The Laplace Approximation provides an analytic approximation of an integral
(Tierney and Kadane, 1986). The Laplace approximation has been used in
Bayesian experimental design to reduce intractable double-loop integrals to an ap-
proximation that can be computed using single-loop numerical integration (Long
et al., 2013). Moreover, in the same setting, the Laplace approximation has been
used as a suitable proposal distribution for Importance Sampling (Beck et al.,
2018). Results exist on the convergence of the Laplace approximation to the pos-
terior distribution as the size of the data increases (Schillings et al., 2020). In
future chapters we will use the Laplace Approximation to approximate a distri-
bution with a Gaussian distribution.

Define U(x) := − log π(x) as the energy of π. Suppose that π is a univariate
distribution. Making a Taylor series expansion of U(x) at its minimum x0 and
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using the fact that U ′(x0) = 0 gives:

π(x) ≈ exp

{
−U(x0)− 1

2
U ′′(x0)(x− x0)2

}
.

Ignoring the constant term exp{−U(x0)}, it can be seen that this approximation
of π is Normally distributed with mean x0 and variance 1/U ′′(x0). Thus the
closer π is to a Normal distribution, the better the Laplace approximation is. In
particular, this can make the Laplace approximation very accurate when approx-
imating a posterior distribution dependent on a large quantity of data. By the
Bernstein-von Mises theorem, for models satisfying certain regularity conditions,
the posterior converges to a Gaussian distribution (Vaart, 1998, Section 10.2).
Note that one of the regularity conditions is that it is possible to separate the
true value of X from the complements of balls centered at the true value of X.
Thus the theorem does not apply to all posterior distributions; for example it
doesn’t apply to multi-modal distributions.

When π is a multidimensional distribution, let x0 be the mode and HU(x0)

the Hessian of U at x0. Then the Laplace approximation is N (x0, HU(x0)−1).

2.5.2 Transformations of Distributions

Applying a transformation to a posterior distribution before drawing samples can
improve the efficiency of many methods for Bayesian inference (Hills and Smith,
1992; Rue et al., 2009). In particular, it helps to transform the target so that its
covariance structure is closer to the identity, since the scale of each dimension is
then roughly the same and hence a sampler can explore any dimension as easily
as any other.

Suppose X is a d-dimensional random variable. Typically a linear transfor-
mation is used before sampling, so that inference is done on Y := MX, for M a
(d × d) matrix. By the change-of-variables formula and the fact that the deter-
minant of the inverse of an invertible matrix is the inverse of the determinant, it
follows that:

πY (y) = πX(x)

∣∣∣∣∂x∂y
∣∣∣∣ = πX(M−1y)

∣∣∣∣∂(M−1y)

∂y

∣∣∣∣ = πX(M−1y)|M−1|

= πX(M−1y)|M |−1.

For many methods in Bayesian computation, the probability density function
of the target distribution only needs to be known up to a normalizing constant,
in which case it isn’t necessary to take into account |M |−1. Samples Y1, Y2, . . .
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from πY may be transformed back to samples from πX using Xi = M−1Yi for
i = 1, 2, . . . .

To compute the gradient of the logarithm of the density of a transformed
distribution, necessary for methods in this thesis, one simply uses the chain rule:

∇y log πY (y) = ∇y log πX(x),

=

(
∂x

∂y

)T
∇x log πX(x),

= (M−1)T∇x log πX(x).

To see this, it may help to differentiate with respect to a single component yj.
Methods in this thesis also require computing the Laplacian of the target

density. Using the product and chain rule for differentiation one may compute
that

∆ log πY (y) =
d∑
j=1

(
M−1

)T
·,j Hlog πX (x)

(
M−1

)
·,j (2.11)

for (M−1)·,j column j of matrixM−1 andHlog πX (x) the Hessian matrix of log πX(x)

at x. See Appendix A for a derivation of this formula. Equivalently, for Tr the
trace of a matrix,

∆ log πY (y) = Tr
{(
M−1

)T
Hlog πX (x)

(
M−1

)}
.

A typical choice forM−1 is the matrix-equivalent of the square root of Σ, for Σ

some estimate of the covariance structure of X. That is, suppose the eigendecom-
position of Σ is Σ = V ΛV T , for V the matrix of (normalized) eigenvectors and Λ a
diagonal matrix of corresponding eigenvalues. LetM−1 = V Λ1/2 for Λ1/2 a diago-
nal matrix containing the square roots of the eigenvalues. Then (M−1)TM−1 = Σ.
Hence, if X was a zero-mean Gaussian with non-identity covariance matrix Σ,
then Y = MX would be a Gaussian random variable with identity covariance
matrix. The matrix Σ is usually based on the Laplace approximation of πX .

2.5.3 Computing Derivatives

Methods in this thesis use first and second derivatives of log-density functions.
Analytically calculating these quantities is difficult and time-consuming. Auto-
matic Differentiation (AD) is a method, now widely used particularly by the
Machine Learning community, for computing derivatives (Baydin et al., 2018).
AD relies on the fact that any function may be represented as the composition of
a number of simpler functions. Computing derivatives amounts to the repeated
use of the chain rule of calculus, applied to these simpler functions. AD has been
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used successfully in a number of software packages, including Stan (Carpenter
et al., 2015).

2.5.4 Optimization

To make a Laplace Approximation, one must find the mode of the target dis-
tribution. Typically this is done using an optimization method. The “optim”
function in R uses the Nelder-Mead method (Nelder and Mead, 1965) by default.
This method uses neither an analytic expression nor a numerical approximation
of the gradient of the function being optimized. The Nelder-Mead algorithm can
convergence to a point that is not in fact a stationary point. Whatever method
is used for optimization, it is worth checking the gradient at the point found is
indeed approximately zero.

In some of our experiments, we found the BFGS method (Broydon, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), available via R’s “optim” function,
succeeded where the Nelder-Mead method failed. The BFGS method is a Quasi-
Newton method: it uses the exact gradient and an approximation of the Hessian
to find the optimum.
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Chapter 3

Simulation of Continuous-time

Markov processes

The novel Monte Carlo methods presented in this thesis rely on continuous-time
Markov processes (Asmussen, 2003; Mörters and Peres, 2010; Norris, 1997; Øk-
sendal, 2003). The Restore process, which is fundamental to this thesis and
introduced fully in Chapter 4, is a continuous-time Markov process. Chapters 5
and 6 detail continuous-time Monte Carlo methods based on novel classes of Re-
store processes. This chapter will cover some results on continuous-time Markov
processes, which will be useful in constructing and analysing the specific processes
to follow.

There is increasing interest in the use of continuous-time Markov processes for
Monte Carlo. Piecewise Deterministic Markov Processes (PDMPs) (Davis, 1984)
have received a considerable amount of attention. These include the Bouncy
Particle Sampler (Bouchard-Côté et al., 2018) and the Zig-Zag process (Bierkens
et al., 2019a,b) as well as contributions such as the use of non-constant speed
functions (Vasdekis and Roberts, 2021), numerical approximation of switching
times (Cotter et al., 2020), use in tandem with MCMC updates of blocks of
components (Sachs et al., 2021), the Boomerang Sampler (Bierkens et al., 2020),
learning the covariance matrix of the target distribution (Bertazzi and Bierkens,
2021) and alterations designed for high dimensional sparse models (Bierkens et al.,
2021).

An entirely different Monte Carlo method, the ScaLE algorithm (Pollock et al.,
2020) relies on the concept of a quasi-stationary distribution (Collet et al., 2013).
Under certain conditions, the quasi-limiting distribution of a killed diffusion can
be made to be some target distribution (Wang et al., 2019). The ScaLE algorithm
is a Monte Carlo method based on simulating a Markov process in such a way
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that its quasi-stationary distribution is some target distribution.

Divide and conquer methods (Scott et al., 2016; Neiswanger et al., 2014; Wang
and Dunson, 2014; Dai et al., 2019) and subsampling are major strategies for
inference on Big Data, since these methods can reduce computational cost. When
using subsampling, instead of needing to compute a function of the entire data,
like in the Metropolis-Hastings algorithm (see Section 2.3.2), it is only necessary
to compute a function of a subset of the data. PDMPs and the Markov process
on which the ScaLE algorithm is based both allow subsampling. It would be
useful to be able to use subsampling within simulation of a Restore process, but
it is unclear how this could be done.

Section 3.1 introduces a few concepts related to continuous-time Markov pro-
cesses including their filtration, the Markov property, the Chapman-Kolmogorov
equations, generators and adjoint generators. Next, Section 3.2 covers Jump Pro-
cesses, Poisson processes and the Exponential distribution. Jump Processes are a
class of Markov process that may be enriched or adjusted with regenerations, see
Section 4.2 and Chapter 6. Poisson processes (see for example Kingman (1992))
and their simulation (see for example Devroye (1986)) are fundamental to the
methodology of this thesis, so are covered in Section 3.2.3. Brownian Motion,
covered in Section 3.3, serves as the underlying process of a Restore process in
Section 4.3 and an Adaptive Restore process in Chapter 5.

3.1 Markov Processes in Continuous-time

A stochastic process is a collection or random variables {Xt}t≥0, indexed by time
t ∈ [0,∞), see Definition 1.8 of Liggett (2010) for example.

A transition function (see Definition 1.2 of Revuz and Yor (2013) for example)
is a family of transition kernels {P t}t≥0 such that for any B ∈ X :

P t+s(x,B) =

∫
P s(x, dy)P t(y,B).

The above equation is called the Chapman-Kolmogorov equation. The family
{P t}t≥0 forms a probability semi-group, defined next.

Let X be locally compact and write C(X ) for the space of continuous real-
valued functions vanishing at infinity. A probability semi-group, see Definition
3.4 of Liggett (2010), is a family of continuous linear operators {P t, t ≥ 0} on
C(X ) satisfying

1. P 0f = f, ∀f ∈ C(X ).
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2. limt↓0 P
tf = f, ∀f ∈ C(X ).

3. P t+sf = P tP sf, ∀f ∈ C(X ).

4. P tf ≥ 0 for every nonnegative f ∈ C(X ).

5. There exists a sequence of function fn ∈ C(X ) so that supn ||fn|| <∞ and
P tfn converges to 1 pointwise for each t ≥ 0.

A Markov process {Xt}t≥0 (see for instance Definition 1.1 of Rogers and
Williams (2000)) is a stochastic process, adapted to a filtration {Ft}t≥0, such
that for any bounded measurable function f , x ∈ X and s ≥ 0, t ≥ 0, Px almost
surely:

Ex[f(Xs+t)|Fs] = (P tf)(Xs).

The generator L of a continuous-time Markov process is an operator, which
operates on a subspaceD(L) of functions in X , called the domain of the generator.
The intuition is that when acting on some function f , the generator gives the rate
of expected change in value of the function of the process. We use Definition 4.5
of Eberle (2023) for the generator and the domain:

D(L) =

{
f ∈ X : lim

ε↓0

P εf − f
ε

exists
}

;

Lf = lim
ε↓0

P εf − f
ε

for f ∈ D(L).

A probability distribution π is invariant for {P t}t≥0 if and only if there exists
a dense subset A ⊆ D(L) such that∫

X
Lf(x)π(x)dx = 0, ∀f ∈ A (3.1)

and in this case, the above equation holds for all functions f ∈ D(L) (see Theorem
4.18 of Eberle (2023)).

For finding the stationary distribution, (3.1) is not particularly useful because
all f ∈ D(L) must be considered. The adjoint of the generator may be used to
check that a distribution π is stationary for a process {Xt}t≥0. The adjoint of an
operator L is an operator L† such that, for all f ∈ D(L):∫

X
Lf(x)g(x)dx =

∫
X
f(x)L†g(x)dx.

Equation (3.1) may be written as∫
X
f(x)L†π(x)dx = 0.
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Since this holds for all f ∈ D(L), it follows that L†π(x) = 0, ∀x ∈ X . Thus the
stationary distribution may be found by first finding the adjoint of the generator.

3.2 Jump Processes, Poisson processes and the

Exponential distribution

This section presents two related classes of continuous-time Markov process:
Jump Proccesses and Poisson processes. Both rely on Exponential random vari-
ables, hence the three are covered together in this section.

3.2.1 Properties of the Exponential Distribution

The holding times of a jump process (see subsection 3.2.2) and the arrival times
of events of a Poisson process (see subsection 3.2.3) are exponentially distributed.
Some basic properties of the exponential distribution are recapped here. First,
recall that τ (λ) ∼ Exp(λ) has distribution function P[τ (λ) < t] = 1 − e−λt. The
Exponential distribution is fundamental to continuous-time Markov processes
because of the Memoryless property below.

Theorem 1 (The Memoryless property). A continuous random variable τ has
an exponential distribution if and only if P(τ > s+ t|τ > s) = P(τ > t),∀s, t ≥ 0.

The next property is useful for simulating a Jump process or Poisson process
that has two or more components. The property is presented for two independent
exponential random variables, but may be extended by induction to countably
many exponential random variables.

Theorem 2 (Minimum of Exponential Random Variables). Let τ (λ1) ∼ Exp(λ1)

and τ (λ2) ∼ Exp(λ2) be independent random variables and λ := λ1 + λ2 < ∞.
Then τ (λ) := min{τ (λ1), τ (λ2)} is attained at a unique random value K ∈ {1, 2}.
Furthermore, τ (λ) and K are independent with τ (λ) ∼ Exp(λ) and P[K = k] =

λk/λ for k = 1, 2 (Norris, 1997, Theorem 2.3.3.).

3.2.2 Jump Processes

A jump process makes discrete movements (jumps) at random times. The time
spent in each state is positive and therefore sample paths are piecewise constant
(Asmussen, 2003, II. Markov Jump Processes; 1. Basic Structure.). A jump
process may be defined by a Markov transition kernel P , which determines how
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Figure 3.1: Sample path of a jump process {Xt}t≥0 with λ = 1 and random walk
Markov transition kernel.

jumps are made, and a holding rate λ : X → R+, which affects the random times
for which the jump process occupies states.

More specifically, suppose the process jumps at times T (λ)
0 = 0 < T

(λ)
1 <

T
(λ)
2 < · · · and visits states X̃0, X̃1, . . . , X̃n−1. The holding times are τ (λ)

i =

T
(λ)
i+1 − T

(λ)
i . The joint distribution of {X̃i, τ

(λ)
i }n−1

i=0 factorises in the following
way. States {X̃i}n−1

i=0 form a Markov chain (called the jump chain) with Markov
transition kernel P . There exists λ : X → R+ such that given {X̃i}n−1

i=0 , random
variables {τ (λ)

i }n−1
i=0 are independent with τ (λ)

i ∼ Exp(λ(X̃i)).

The factorisation of the jump chain and holding times makes simulation of
a jump process straightforward. Algorithm 5 shows how to simulate a Jump
process starting with state x0, with Markov transition kernel P and holding rate
λ : X → R+, so that the jump chain has length n. The algorithm records the
jump chain and holding times.

Algorithm 5: Jump Process Simulation
X ← x0, i← 0

while i < n do
τ (λ) ∼ Exp(λ(X))

Record X, τ (λ)

i← i+ 1

X ← P (X, ·)
end

Figure 3.1 shows a sample path of a very simple jump process. Here, X0 = 0

and λ = 1. Markov transition kernel P is such that P[X̃i+1 = X̃i + 1] = 0.5 and
P[X̃i+1 = X̃i − 1] = 0.5.
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(a) λ(t) = 50
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(b) λ(t) = (t− 10)2

Figure 3.2: Illustrations of homogeneous and inhomogeneous Poisson processes.
Bars show the simulated number of events occurring in each interval of unit
length. Dotted lines shows the rate.

3.2.3 Poisson Processes

This thesis uses Poisson processes representing events in time, defined on R+.
Poisson processes have an elegant definition on Rd (Kingman, 1992), though this
is not particularly relevant to the thesis.

A Poisson process on R+ with rate λ(t) satisfying λ(t) ≥ 0,∀t ≥ 0, is de-
fined by the following property (Devroye, 1986, Chapter 6, Section 1.3.). Let
N1, N2, . . . , Nn be the number of events occurring on the disjoint intervals (l1, r1),
(l2, r2), . . . , (ln, rn). Then N1, N2, . . . , Nn are independent and for i = 1, . . . , n,
random variable Ni has a Poisson distribution with rate

∫ ri
li
λ(t)dt. Thus when

the rate is constant (λ(t) ≡ λ,∀t ≥ 0), we have Ni ∼ Poisson(λ · (ri− li)). Figure
3.2 illustrates this definition of a Poisson process by showing the simulated num-
ber of events on each of the unit intervals from 0 to 20 for two Poisson processes
with rates λ(t) = 50 and λ(t) = (t− 10)2.

A homogeneous Poisson process on R+ with a constant rate λ> 0 may equiv-
alently be defined as a process {Nt}t≥0 with N0 = 0, holding times τ (λ)

0 , τ
(λ)
1 , . . .

satisfying τ
(λ)
i ∼ Exp(λ) and jump chain Ni = i for i = 0, 1, . . . . Figure 3.3

illustrates this definition of a Poisson Process when λ = 1.

When the rate is an inhomogeneous function of time, a Poisson process may
be defined in terms of exponentially distributed holding times as follows. For
ξ ∼ Exp(1), holding time τ (λ)

0 satisfies:

τ
(λ)
0 = inf

{
t ≥ 0 :

∫ t

0

λ(u)du ≥ ξ

}
.
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Figure 3.3: A Poisson Process with rate λ = 1.

Note that under this definition one can show that, as desired:

P
[
τ

(λ)
0 < s

]
= 1− exp

{
−
∫ s

0

λ(s)ds

}
.

The following theorem concerns the superposition of Poisson processes, see
for example Section 2.4 of Norris (1997). It is stated in terms of two Poisson
processes but may naturally be extended to more than two, by induction.

Theorem 3 (The Superposition Theorem). If {Nt}t≥0 and {Mt}t≥0 are inde-
pendent Poisson processes of rates λ1(t) and λ2(t) respectively. Then process
{Nt +Mt}t≥0 is a Poisson process of rate (λ1 + λ2)(t) := λ1(t) + λ2(t).

Simulation

A homogeneous Poisson process may be simulated using the exponential spacings
method (Devroye, 1986, Algorithm proceeding Theorem 1.2. of Chapter 6). That
is, use the fact that τ (λ)

i ∼ Exp(λ) for i = 0, 1, . . . to successively simulate holding
times. Figure 3.4 aims to illustrate the exponential spacings method when λ = 1.
Here, 15 holding times are simulated and used to compute the first 15 arrival times
of an event from the Poisson process. The i-th Exponential random variable and
i-th arrival time are plotted with the same unique symbol for i = 0, 1, . . . , 14.

When the rate is inhomogeneous, one can no longer use independent and iden-
tically distributed exponential random variables to construct the Poisson process.
If it is possible to compute and invert the integrated rate function, then analo-
gous to the inversion sampling method of subsection 2.1.1, this can be used to
simulate the inhomogeneous Poisson process. However, one can’t always compute
and invert the integrated rate function.
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Figure 3.4: The Exponential Spacing Method for holding rate λ = 1. Exponential
random variable i and arrival time i are plotted with the same unique symbol.
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Figure 3.5: Simulation of a Poisson process with rate λ(t) = 1 + sin(t) using
Poisson thinning with dominating rate λ̄ = 2. Crosses with y-co-ordinate zero
mark the arrival times of events. Black circular dots show the simulated uniform
random variables that resulted in events from the dominating process being ac-
cepted. Similarly, blue squares show the simulated uniform random variables for
rejected events from the dominating process.

Instead, assuming the rate is bounded above by some constant λ̄, one can
instead use Poisson Thinning (Lewis and Shedler, 1979). Simulate {Nt}t≥0 a
Poisson process with constant rate λ̄. Then construct {Mt}t≥0 from {Nt}t≥0 by
including each event in {Mt}t≥0 with probability λ(t)/λ̄. Figure 3.5 illustrates
Poisson thinning for λ(t) = 1 + sin(t) and λ̄ = 2. The arrival times of the
Poisson process are shown by crosses with y-coordinate zero. Black circles and
blue squares show the uniform random variables that determine whether events
from the dominating Poisson process are accepted or rejected.

Suppose, as in Theorem 3, that a Poison process {Nt}t≥0 has rate function
λ = λ1+λ2, where λ1 is the rate of a Poisson process {N (1)

t }t≥0 and λ2 is the rate of
a Poisson process {N (2)

t }t≥0. Then the first arrival time of an event from {Nt}t≥0

may be simulated by taking the minimum of the first arrival times of events
from processes {N (1)

t }t≥0 and {N (2)
t }t≥0 (Devroye, 1986, Chapter 6, Section 1.3,

The composition method). This Composition method, which relies on Theorem
2, is crucial to simulating the Restore processes in this thesis, since they involve
more than one Poisson process. Figure 3.6 visualises the composition method
for two Poisson processes {N (1)

t }t≥0 and {N (2)
t }t≥0 with rates λ1 = 1 and λ2 = 2

respectively. Black lines ending with a square show the time to the next arrival
of an event from {N (1)

t }t≥0. Red lines ending with a round dot show the time to
the next arrival of an event from {N (2)

t }t≥0. Poisson process {Nt}t≥0 with rate
λ = λ1 + λ2 is simulated as the composition of these Poisson processes.
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Figure 3.6: The Composition method: simulation of a Poisson process with rate
λ = 3 as the composition of Poisson processes with rates λ1 = 1 (holding times
shown by black lines ending with squares) and λ2 = 2 (holding times shown by
red lines ending with circles).

3.3 Brownian Motion

Brownian Motion is a stochastic process of great interest in the field of probability.
It is defined as follows (Mörters and Peres, 2010, Definition 1.1):

Definition 3.3.1 (Brownian Motion). A stochastic process {Bt : t ≥ 0} is called
a Brownian motion starting at x ∈ R if

1. B0 = x;

2. (Independent increments) ∀t1, t2, . . . , tn with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, it
holds that Btn −Btn−1 , Btn−1 −Btn−2 , . . . , Bt2 −Bt1 are independent random
variables;

3. (Normally distributed increments) ∀t ≥ 0 and h > 0, increment Bt+h − Bt

has distribution N (0, h);

4. (Continuous) Almost surely, the function t 7→ Bt is continuous.

Brownian Motion exists (Mörters and Peres, 2010, Theorem 1.3). That is,
though non-trivial, it is possible to show that there are no contradictions in the
conditions imposed by the definition of Brownian Motion.

Since in any finite time-interval, a path of Brownian Motion takes an infinite
number of values, it is impossible to simulate and/or store the whole path on a
computer. However, due to its independent and normally distributed increments,
it’s very easy to simulate a finite dimensional distribution of Brownian Motion.
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Figure 3.7: Sample paths of Brownian Motion

Starting at time t0, with Bt0 known, for t1 > t0 we have that Bt1 ∼ N (Bt0 , t1−t0).
Figure 3.7 shows 5 samples path of (finite-dimensional skeletons of) Brownian
Motion.
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Chapter 4

Regeneration-enriched Monte Carlo

methods

As detailed in Chapter 2, there are several weaknesses of standard MCMC meth-
ods that one could hope to improve. Firstly, though combinations of transition
kernels may be used, each transition kernel in the cycle or mixture must be π-
invariant. When used to generate a Markov chain, there is no known way for non-
π-invariant transition kernels to somehow compensate for each other, so that the
chain is π-invariant. A transition kernel P is usually constructed to be π-invariant
by ensuring that it is reversible, i.e. satisfies the detailed balance condition, given
by equation (2.7). However, there is evidence that non-reversible Markov chains
are superior (Neal, 2004; Suwa and Todo, 2010; Turitsyn et al., 2011; Chen and
Hwang, 2013). Regeneration in Markov chains is desirable (see subsection 2.3.3),
as well as using moves that operate both on a local and global scale. Unfor-
tunately though, methods for regenerative MCMC (Mykland et al., 1995; Gilks
et al., 1998; Brockwell and Kadane, 2005), which are based on Nummelin’s split-
ting technique Nummelin (1978), don’t scale well to high-dimensional problems.
For example, when using a split Independence Sampler to simulate regeneration
times, it becomes more difficult to find an independent proposal distribution that
is a close fit to the target distribution. For instance, Ahn et al. (2013) found in
their experiments that their method, which relies on a split Independence Sam-
pler, was effective only up to 50-dimensional target distributions.

This section introduces the Restore process (Wang et al., 2021), a continuous-
time Markov process satisfying the properties listed above, which may be used
for Monte Carlo. The Restore process is able to combine dynamics, which by
themselves are not π-invariant, in such a way that the dynamics compensate for
each other and together are π-invariant. The Restore process is non-reversible,
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regenerative and makes moves on both local and global scales.

Restore processes are a class of continuous-time Markov processes {Xt}t≥0,
defined by enriching an existing Markov process {Yt}t≥0 with regenerations from
some distribution µ at rate κ. The process thus consists of local and global dy-
namics. The local dynamics determine how the process changes between regen-
erations. The underlying process {Yt}t≥0 might be a jump process or a diffusion.
Global dynamics dictate when and how the process regenerates. Global moves
occur at the arrival times of a state-dependent Poisson process with rate κ(x)

referred to as the regeneration rate. At these times the process is reinitialised
from some regeneration distribution µ. Unlike Nummelin’s splitting technique
(Nummelin, 1978), which retrospectively simulates whether regeneration has oc-
curred after a move by the Markov chain, the Restore process is fundamentally
built around regeneration.

This chapter reviews previous work on the Restore process. First, Section
4.1 provides the formal definition of the process. Next, Section 4.2 gives the
regeneration rate and algorithm for enriching a jump process with regenerations
so that the resulting process in π-invariant. Brownian Motion may be used within
the Restore framework — this case is covered in Section 4.3. The concept of the
minimal regeneration distribution is central to this thesis and is introduced in
Section 4.4.

4.1 The Restore Process and Sampler

The Restore process is defined as follows. Let {Yt}t≥0 be a jump process or
diffusion. The regeneration rate κ must be a locally bounded measurable map
from the state space to the non-negative half-line. Define the tour length as

τ = inf

{
t ≥ 0 :

∫ t

0

κ(Ys)ds ≥ ξ

}
, (4.1)

for ξ ∼ Exp(1) independent of {Yt}t≥0 and inf ∅ =∞. Let µ be some distribution
and

(
{Yt}(i)

t≥0, τi
)∞
i=1

be i.i.d realisations of ({Yt}t≥0, τ) with Y0 ∼ µ. The regen-
eration times are T0 = 0 and Tj =

∑j
i=1 τi for j = 1, 2, . . . . Then the Restore

process {Xt}t≥0 is given by:

Xt =
∞∑
i=1

1[Ti−1,Ti)(t)Y
(i)
t−Ti−1

.
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4.1.1 Invariance and Convergence

For LY the generator of {Yt}t≥0, the generator of {Xt}t≥0 is (Wang et al., 2021,
equation 1):

LXf(x) = LY f(x) + κ(x)

∫
[f(y)− f(x)]µ(y)dy. (4.2)

To use the Restore process for Monte Carlo integration one chooses κ so that
{Xt}t≥0 is π-invariant. Recall that L†Y is the adjoint of LY , as defined in Section
3.1. The choice of κ that results in {Xt}t≥0 being π-invariant is (Wang et al.,
2021, equation 5)

κ(x) =
L†Y π(x)

π(x)
+ C

µ(x)

π(x)
, (4.3)

for C > 0 a constant such that κ(x) ≥ 0,∀x ∈ X . Finding an appropriate
measure Cµ such that κ is non-negative everywhere is non-trivial and motivates
the work in Chapter 5.

As noted by (Wang et al., 2021), proving π-invariance of the Restore process
in a general setting by analysing its generator is very difficult; the generator
approach runs into highly technical difficulties. Instead, separately considering
the specific cases where {Yt}t≥0 is a jump process or diffusion, one can show that
{Xt}t≥0 is π-invariant without using the generator approach.

Equation (4.3) may be written as:

κ(x) = κ̃(x) + C
µ(x)

π(x)
. (4.4)

The form of κ̃, the partial regeneration rate, depends on whether {Yt}t≥0 is a jump
process or diffusion. We call C the regeneration constant and Cµ the regeneration
measure. Sometimes κ is referred to as the full regeneration rate.

Given π-invariance of {Xt}t≥0, due to the regenerative structure of the process,
we have (Wang et al., 2021, Theorem 6)

Eπ[f ] =
EX0∼µ[

∫ τ1
0
f(Xs)dx]

EX0∼µ[τ1]

and almost sure convergence of the ergodic averages: as t→∞,

1

t

∫ t

0

f(Xs)ds→ Eπ[f ]. (4.5)

The process can thus be used for Monte Carlo and the resulting method is called
the Restore Sampler. The next subsection gives a Central Limit Theorem for
estimators of expectations based on Restore processes.
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4.1.2 Central Limit Theorem

A Central Limit Theorem for the Restore process holds, for a function f : X → R,
under the following assumptions (Wang et al., 2021, Assumption 23): the rate
κ : X → R+ is locally bounded, the process {Xt}t≥0 is irreducible, Eµ[τ 2] < ∞
and f satisfies

Eµ

[(∫ τ

0

f(Xs)ds

)2
]
<∞.

For i = 1, 2, . . . , define:

Hi :=

∫ Ti

Ti−1

f(Xs)ds. (4.6)

The Central Limit Theorem for Restore processes (Wang et al., 2021, Theorem
24) states that

√
n

(∫ Tn
0
f(Xs)ds

Tn
−Eπ[f ]

)
→ N (0, σ2

f ),

where convergence is in distribution and

σ2
f :=

EX0∼µ
[
(H1 − τ1Eπ[f ])2]

(EX0∼µ[τ1])2 . (4.7)

Evidently the estimator’s variance depends on the expected tour length. This
motivates the need to make a good choice of µ, which doesn’t result in tours
being too short.

Recall from subsection 2.3.3 that for a regenerative Markov chain consisting of
n tours,

√
n(π̂Tn [f ]− π[f ])→ N (0, σ2) in distribution and a consistent estimator

for σ2 is:

σ̂2
n =

1
n

∑n
i=1 (Hi − π̂Tn [f ]τi)

2

τ̄ 2
.

The same equation is a consistent estimator for σ2
f in (4.7), except that the

relevant inputs to the equation are computed from a sample path of a continuous-
time Markov process. Namely, Hi is given by (4.6); τi are the tour lengths for
i = 1, 2, . . . , n; τ̄ is the average tour length and

π̂Tn [f ] =

∫ Tn
0
f(Xs)ds

Tn
.

4.2 Jump Process Enriched with Regenerations

Recall from subsection 3.2.2 that a jump process has a discrete-time transition
kernel P and some holding rate λ : X → R+. Transition kernel P determines how
the process moves at jump times whilst λ dictates the length of time spent in each
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state. Let P have integral kernel p(x, y) on X × X , so that for a measure ν we
have νP (dx) =

∫
X ν(dy)p(y, x)dx. The jump process enriched with regenerations

at rate
κ(x) =

∫
X λ(y)π(y)p(y, x)dy − λ(x)π(x)

π(x)
+ C

µ(x)

π(x)
, (4.8)

for C > 0 a constant such that κ(x) ≥ 0,∀x ∈ X , is π-invariant (Wang et al.,
2021, Section 3.2) and called a Restore jump process. Wang et al. (2021) prove
that the Restore jump process is π-invariant by showing that πQµ

t f = π[f ] for
any continuous bounded function f and for all t ≥ 0, where {Qµ

t : t ≥ 0} is
the continuous-time semigroup of {Xt}t≥0. The proof deliberately avoids the
generator method for proving π-invariance of the process, since such an approach
here runs into technical difficulties.

This regeneration rate may be expressed in the form of equation (4.4), with
the partial regeneration rate defined as:

κ̃(x) =

∫
X λ(y)π(y)p(y, x)dy − λ(x)π(x)

π(x)
.

See Section 3.2 of Wang et al. (2021) on how to extend this construction to
underlying jump processes with transition kernels that do not have an integral
kernel, such as the kernel of the Metropolis-Hastings algorithm.

The normalization constant for π does not need to be known. If π(x) = π̃(x)/Z

and Z is unknown, then the regeneration rate becomes, for C̃ = CZ:

κ(x) =

∫
X λ(y)π̃(y)p(y, x)dy − λ(x)π̃(x)

π̃(x)
+ C̃

µ(x)

π̃(x)
.

We say that the normalizing constant is absorbed into the regeneration constant.
The holding and regeneration rates must satisfy (Wang et al., 2021, Assump-

tion 19)
∫
λ(x)π(x)dx <∞ and

∫
(λ(x) +κ(x))2π(x)dx <∞. The first condition

is necessary for the process to be non-explosive. The latter condition is used to
justify an exchange of integration and differentiation in the proof of π-invariance
of the jump process. When used for Monte Carlo, such a process is called a Jump
Process Restore Sampler (JPRS).

Since {Xt}t≥0 is piecewise constant, evaluating the left-hand side of (4.5) is
easy. Let X̃i denote the i-th element of the jump chain and τ

(λ+κ)
i the corre-

sponding holding time. Note that X̃i is different to Xt as the first quantity is
indexed by its position in the jump chain and the second by time. The quantities
are related in that

Xt =

X̃0 ∀ t ∈ [0, τ
(λ+κ)
0 ),

X̃i ∀ t ∈
[∑i−1

j=0 τ
(λ+κ)
j ,

∑i
j=0 τ

(λ+κ)
j

)
for i > 0.

42



Say the length of the jump chain is m and that
∑m−1

i=0 τ
(λ+κ)
i = T . Then the

left-hand side of equation (4.5) can be rewritten as a weighted sum:

1

T

∫ T

0

f(Xt)dt =
1

T

m−1∑
i=0

τ
(λ+κ)
i f(X̃i).

Pseudocode for simulating n tours of {Xt}t≥0 is given by Algorithm 6. Here,
index i counts the number of tours simulated. The composition method of sub-
section 3.2.3 is used to simulate the holding times of the enriched process, for
which the holding rate is the sum of the holding rate λ of the underlying pro-
cess and the regeneration rate κ. Whenever the process moves to a new state,
two exponential random variables are simulated, which are the arrival times of
events from rate λ and κ Poisson processes. The sampler makes a local or global
move according to whichever event arrives first. The algorithm outputs are the
jump chain and holding times of the jump process, as well as the tour number
corresponding to each segment of the jump process. The regenerative structure
of the process can provide an estimate of the variance of the estimator itself, as
explained in subsection 4.1.2, which is why it is useful to record the tour numbers
as output.
Algorithm 6: The Jump Process Restore Sampler
X̃ ∼ µ, i← 0

while i < n do
τ (λ) ∼ Exp(λ(X̃))

τ (κ) ∼ Exp(κ(X̃))

τ (λ+κ) ← τ (λ) ∧ τ (κ)

Record X̃, τ (λ+κ), i

if τ (λ) < τ (κ) then
X̃ ∼ P (X̃, ·)

else
X̃ ∼ µ

i← i+ 1

end

end

A special case of the regeneration rate for the JPRS is when P is already
a π-invariant Markov transition kernel, such as that of a Metropolis-Hastings
sampler (see subsection 2.3.2) with invariant distribution π. Taking λ ≡ 1, the
regeneration rate then reduces to:

κ(x) = C
µ(x)

π(x)
. (4.9)
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Figure 4.1 shows an example of a Restore jump process with invariant distri-
bution a mixture of Gaussians:

π(x) =
1

2
N (x;m1,Σ1) +

1

2
N (x;m2,Σ2),

for m1 = (−2,−2),m2 = (2, 2),

Σ1 =

(
1 −0.5

−0.5 1

)
and Σ2 =

(
1 0.5

0.5 1

)
.

The process used a π-invariant Random Walk Metropolis Markov transition ker-
nel, with variance of the proposal distribution equal to 0.252. The regeneration
constant was set as C = 0.01. The regeneration distribution was µ ≡ N (0, 3I2).
The first 8 tours of the process are shown, each in a different colour, in Figure
4.1. The dynamics of the process are such that local moves are small and tend
to result in exploration of one of the distribution’s modes. At regeneration in-
stances, the process tends to do one of the following: (i) jump to the other mode;
(ii) make a large jump to another location in the same mode; (iii) jump to a state
far from either mode, in which case it tends to quickly regenerate again.

Chapter 6 makes a contribution to existing methodology by showing how a
non-π-invariant jump process may be adjusted with regenerations, so that the
resulting jump process is π-invariant.

4.3 Regeneration-enriched Brownian Motion

Recall that U(x) = − log π(x) is the energy corresponding to a target distribution
π. Let µ be some distribution and rate κ be given by

κ(x) =
1

2

(
||∇U(x)||2 −∆U(x)

)
+ C

µ(x)

π(x)
, (4.10)

where C is a constant so that κ(x) ≥ 0, ∀x ∈ X . Then a Brownian motion
enriched with regenerations from µ at rate κ has invariant distribution π (Wang
et al., 2021, Section 3.1) and is called a Brownian Motion Restore process. The
normalizing constant of π doesn’t need to be known, since it may be absorbed
into the constant C, as in Section 4.2. The partial regeneration rate is

κ̃(x) :=
1

2

(
||∇U(x)||2 −∆U(x)

)
.

Note that equation (4.10) for the full regeneration rate may be expressed in terms
of the partial regeneration rate using equation (4.4).

44



0 50 100 150

−
4

−
3

−
2

−
1

0
1

2
3

t

X
1
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Figure 4.1: Eight tours of a jump process enriched with regenerations. In (a) and
(b), each tour is given a different colour. Here, π is a mixture of two Gaussian
distributions, µ ≡ N (0, 3I) and C = 0.01. The underlying jump process moves
according to a Random Walk Metropolis Markov transition kernel with variance
of the symmetric proposal distribution 0.252.
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4.3.1 Poisson Thinning of Regeneration Times

Poisson thinning (see subsection 3.2.3) is used to simulate regeneration events.
This is because the regeneration rate itself is a stochastic process given by t 7→
κt := κ(Xt) and hence no closed form for the right hand side of (4.1) is available.
Suppose κ(x) < K, ∀x ∈ X . That is,

K := sup
x∈X

κ(x) <∞.

Then κt < K,∀t ≥ 0 and K may be used as the dominating rate in Poisson
thinning.

4.3.2 Truncating the Regeneration Rate

For many target distributions κ will not be bounded. Then, to use a global
dominating rate, κ must be truncated at some level. Alternatively, when κ is
bounded but the bound is very large, then for simulation purposes truncation
may be desirable. When a truncated regeneration rate is used, we will denote the
truncation level as K. In other words, this notation signals the use of rate

κ(x) =

(
κ̃(x) + C

µ(x)

π(x)

)
∧ K

This truncation introduces error, so that the Monte Carlo approximation is no
longer exact, however the error is negligible in practice as long as K is large
enough. Indeed, it is in theory possible to quantify the size of this error (Wang
et al., 2021, Theorem 30) and show that as K goes to infinity, the error tends to
zero (Wang et al., 2021, Proposition 32). Bounding the error using Theorem 30
of Wang et al. (2021) may be difficult in challenging problems involving complex
posterior distributions.

There are computational considerations for the choice of K. As K increases,
although the error introduced by the truncation decreases, the computational cost
of simulating the process increases. This is because the rate κ is evaluated more
often, which involves evaluating π,∇U and ∆U . A major contribution of this
thesis, developed in Chapter 5, is a method for adaptive simulation of a Restore
process, which greatly decreases how large K needs to be. Subsection 5.3.1 in
particular presents guidance on choosing the truncation level.

Figure 4.2a shows a sample path of a Brownian Motion Restore process and
Figure 4.2b shows the corresponding regeneration rate along the sample path. In
Figure 4.2b, the black line shows κ(Xt). The t-coordinates of the green and red
dots are potential regeneration times; the vertical co-ordinate shows sample values
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of random variables U ∼ U(0,K). For a potential regeneration event occurring
at time t, when U > κ(Xt), regeneration does not happen and the dot is shown
in green. When U < κ(Xt), regeneration does happen and the dot is shown in
red.

Subsection 5.3.1 explains how to choose K for a d-dimensional isotropic Gaus-
sian distribution. This class of target distribution can guide the selection of K for
more challenging posterior distributions, as long as the distributions of interest
are sufficiently close to Gaussian.

4.3.3 Output

The left-hand side of equation (4.5) can’t be evaluated exactly when the underly-
ing process is a Brownian motion. Instead, the output of the sampler is the state
of the process either at fixed, evenly-spaced intervals or at the arrival times of an
exogenous, homogeneous Poisson process with rate Λ.

When output times are fixed, let {t1, t2, . . . } be an evenly spaced mesh of
times, with ti = i∆ for i = 1, 2, . . . and ∆ > 0 some constant. When output times
are random, let {t1, t2, . . . } be the events of a homogeneous Poisson process with
rate Λ > 0. In either case, the output of the process is {Xt1 , Xt2 , . . . }. Suppose
there are n output states, then we estimate expectations using the unbiased
approximation:

π[f ] ≈ 1

n

n∑
i=1

f(Xti).

4.3.4 Simulation

Algorithmically, there is little difference between using fixed and random output
times. We use a homogeneous Poisson process to record output events, since this
method is marginally simpler. The composition method of subsection 3.2.3 may
be used to simulate the Poisson processes with rates K and Λ. That is, generate
the arrival times τ (K) and τ (Λ) of events from the two processes. If τ (Λ) arrives be-
fore τ (K), simulate the Restore process forward in time by τ (Λ) and record output.
Else, simulate the Restore process forward in time by τ (K) then use Poisson Thin-
ning (see subsection 3.2.3) to determine whether regeneration happens. When
using a fixed mesh of times, the composition method no longer applies, so one
must keep track of the times of the next output and potential regeneration events.
Algorithm 7 summarises how to simulate n tours of a Brownian Motion Restore
process whilst recording output at the rate of an exogenous homogeneous Poisson
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(a) Sample path of a Brownian Motion Restore process. Green dots are the

first state of each tour. Red crosses are the last state of each tour.
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(b) The stochastic process in black gives the value of the regeneration rate for

the sample path above of a Brownian Motion Restore process. The horizontal

dotted lines shows K = 4. The time of simulation and value of the random

variables used for Poisson thinning, Ui ∼ U(0,K) with i = 0, 1, . . . , are shown

by the dots. For U simulated at time t, regeneration does not happen and the

dot is green if U > κ(Xt), else regeneration happens and the dot is red.

Figure 4.2: Sample path of a Brownian Motion Restore process and an illustration
of Poisson thinning of regeneration times for π ≡ N (0, 1), µ ≡ N (0, 1/2),K = 4.
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process.
Algorithm 7: The Brownian Motion Restore Sampler
X ∼ µ, t← 0, i← 0

while i < n do
τ (K) ∼ Exp(K), τ (Λ) ∼ Exp(Λ)

if τ (Λ) < τ (K) then
t← t+ τ (Λ), X ∼ N (X, τ (Λ)). Record X, t, i

else
t← t+ τ (K), X ∼ N (X, τ (K)), u ∼ U [0, 1]

if u < κ(X)/K then
X ∼ µ, i← i+ 1

end

end

end

Figure 4.3 shows plots of π, κ̃, κ, µ for π ≡ N (0, 1), µ ≡ N (0, 4) and C = 1,
as well as a sample path consisting of 5 tours simulated using K = 100. In this
example, µ has heavier tails than π, so κ becomes becomes very large away from
the origin. This results in a large variance in the tour lengths τ1, τ2, τ3, τ4, τ5, as
can be seen in the plot of the sample path.

Figure 4.4 shows a sample path of a two-dimensional Brownian Motion Restore
process when µ ≡ N (0, I), π ≡ N (0,Σ) and K = 100, where.

Σ =

(
1.2 0.4

0.4 0.8

)
. (4.11)

Each tour has a different colour. The gray ellipses are the contours of π.

4.4 Minimal Regeneration Distribution

The minimal regeneration measure C+µ+ (Wang et al., 2021, Section 5.1) is the
regeneration measure for which the full regeneration rate is as small as possible.
The minimal regeneration measure satisfies:

κ̃(x) + C+µ
+(x)

π(x)
= κ̃(x) ∨ 0,∀x ∈ X . (4.12)

Note that Wang et al. (2021) use notation C∗ and µ∗ instead of C+ and µ+.
We call C+ the minimal regeneration constant and µ+ the minimal regeneration
distribution. Rate κ+ : X → R+ defined as

κ+(x) := κ̃(x) + C+µ
+(x)

π(x)
,
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(e) Five tours of a restore process simulated with rate truncated at K = 100.

Each tour’s first output state is shown with a green dot and its last output

state shown with a red cross.

Figure 4.3: Target and regeneration distributions, partial and full regeneration
rates and a sample path of regeneration-enriched Brownian Motion.
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Figure 4.4: A sample path of a two-dimensional Brownian Motion Restore process
with µ ≡ N (0, I) and K = 100. Contours of π ≡ N (0,Σ), for Σ given by equation
(4.11), are shown in gray. Each of the 9 tours are plotted in a different colour.

is called the minimal regeneration rate, since for all C and µ, we have

κ+(x) ≤ κ̃(x) + C
µ(x)

π(x)
,∀x ∈ X .

Rearranging (4.12) gives the pointwise expression for µ+ as:

µ+(x) =
1

C+
[0 ∨ −κ̃(x)]π(x). (4.13)

The Restore process under µ+, κ+, C+ is referred to asMinimal Restore. Note that
C+ is the normalization constant of the unnormalized measure [0 ∨ −κ̃(x)]π(x).
Since κ̃ is locally bounded, when the support of the function [0∨−κ̃] is compact,
this measure is normalizable. For all of the examples considered in Chapter 5,
the support of [0∨−κ̃] is compact. Indeed, this is a weak condition, which holds
when π satisfies a suitable sub-exponential tail condition (Wang et al., 2019).

Figure 4.5 shows κ+, µ+ and a sample path of {Xt}t≥0 for π ≡ N (0, 1). The
energy and its derivatives are U(x) = x2/2 + const,∇U(x) = x and ∆U(x) = 1,
so κ̃(x) = (x2− 1)/2. The density of the minimal regeneration distribution µ+ is
then:

µ+(x) =


√
e

2
(1− x2) exp{−x2/2}, if x ∈ (−1, 1);

0, otherwise.
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(c) Sample path consisting of 5 tours. Each tour’s first output state is shown

with a green dot and its last output state shown with a red cross. Tours always

begin inside and end outside the interval (−1, 1).

Figure 4.5: The minimal regeneration rate and distribution for a Brownian Motion
Restore process with π ≡ N (0, 1), as well as a sample path of 5 tours.

Thus tours of the process always start in interval [-1,1] and end outside [-1,1].

More generally, an isotropic Gaussian in d dimensions has ||∇U(x)||2 = xTx

and ∆U(x) = d. Hence the partial regeneration rate is

κ̃(x) =
1

2
(xTx− d),

so µ+ has support on {x : xTx < d}, which is a hyper-sphere with radius
√
d.

Recall that when the dominating rate is denoted K, it signals that the regen-
eration rate is truncated at K. An advantage of using κ+ is that this dominating
rate may be a lot lower. When κ+ is truncated, let K+ denote the truncation
level. That is, when the dominating rate is denoted K+, this signals that the rate
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used is in fact

κ(x) = κ+(x) ∧ K+.

4.4.1 Characteristics of the Minimal Regeneration Rate for

some Example Target Distributions

This subsection considers the characteristics of the shape of κ+ for several choices
of π. Later, we will relate the performance of the Adaptive Restore algorithm of
Chapter 5 to these characteristics. In addition, Adaptive Restore assumes that
µ+ has compact support. Whilst this is the case for many target distributions,
it is worth noting that µ+ is not always compact, as some of the examples below
show.

Heavy-tailed distribution can be difficult to sample from using MCMC meth-
ods. Recall that the multivariate t-distribution has density

π(x) ∝
[
1 +

1

ν
(x−m)TΣ−1(x−m)

]−(ν+d)/2

.

and is heavy-tailed. For a multivariate t-distribution, the set {x ∈ Rd : κ̃(x) < 0}
is compact and there exists a bounding rate K̃ such that κ̃(x) < K̃,∀x ∈ Rd. See
Appendix B.1 for the expression for κ̃(x). An interesting aspect of the geometry of
κ̃ is that, starting at the mean and moving outwards to the tails, the rate starts off
as negative, increases to a maximum then decays to zero. This geometry enables
tours of the process to spend a long time in the tails of π before regenerating.
Figure 4.6a shows contours of κ̃(x) for d = 2 and π ≡ t10(0, I). Figure 4.6b shows
contours of κ+ in red and µ+ in green. Figure 4.6c is a contour plot of κ when
µ ≡ N (0, I) and C is chosen so that the minimum of κ is approximately 0.01
(since this value is close to zero). Here, an appropriate bound for κ is K = 2.23,
so simulation of the process is efficient compared to other target distributions for
which the dominating rate used for Poisson thinning is a lot higher. Note that this
dominating rate bounds κ everywhere and that no truncation of κ is necessary.
Finally, 4.6d shows a sample path of a Brownian Motion Restore process with
π ≡ t10(0, I), µ ≡ N (0, I) and κ as in Figure 4.6c.

Figure 4.7 shows contour plots of π, κ+, κ (when µ ≡ N (0, I)) and µ+ when
π is a mixture of Gaussian distributions. See Appendix B.2 for derivations of
the gradient and Laplacian of the log-density. Here, the set {x ∈ Rd : κ̃(x) <

0} is formed of two disjoint regions. This observation will be important when
considering the performance of the Adaptive Restore method of Chapter 5 on
multi-modal distributions.
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(c) Contours of κ for µ ≡ N (0, I) and

C such that minx∈X κ(x) ≈ 0.01.
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(d) Sample path for µ ≡ N (0, I) and

C such that minx∈X κ(x) ≈ 0.01.

Figure 4.6: Contours of κ̃, κ+, µ+ and κ (when µ ≡ N (0, I)) for π ≡ t10(0, I), as
well as a sample path of a Brownian motion Restore process with tours plotted
using different colours. Starting from the mean of π and moving out towards the
tails, κ+ first increases to its maximum value, then decays towards zero.
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(d) Contours of µ+.

Figure 4.7: Contour plots of π, κ̃, κ and µ+ for a Gaussian mixture distribution.
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For target distributions that are known to be challenging to sample from
using MCMC, µ+ is supported on small sub-regions of X . We consider two such
examples: the Banana and Funnel distributions. For the Banana distribution, it
is difficult to tell from the expression for κ̃(x) whether the region {x : κ̃(x) < 0}
is compact. For the Funnel distribution, the set {x : κ̃(x) < 0} is not bounded.
The methodology developed in Chapter 5, on adaptive simulation of Restore
processes, makes the assumption that {x : κ̃(x) < 0} is compact. Although this
is a weak condition, which holds for π satisfying a sub-exponential tail condition
(Wang et al., 2019), we present these target distributions here to demonstrate
that {x : κ̃(x) < 0} is not always compact.

In addition, it is worth noting that Brownian Motion Restore processes work
best for sampling random variables for which the covariance matrix is close to
the identity matrix. In particular, the sampler does not perform well at sampling
distributions with thin ridges of probability mass. This is because the transition
density of Brownian motion over a finite time interval has a symmetric Gaus-
sian covariance matrix. When π has mass contained in a thin ridge, the rate κ
increases very fast away from that ridge. Consequently, a Brownian Motion Re-
store Sampler will regenerate very frequently, since the process is likely to make
a random walk away from the manifold of space containing high probability mass
under π.

First consider the Banana distribution. LetX1 ∼ N (0, σ2
1) andX2, X3, . . . , Xd ∼

N (0, σ2
2), with σ1, σ2 > 0. Define Y1, Y2, . . . , Yd as the transformed variables

Y1 = X1, Y2 = X2−bX2
1 +ab, Y3 = X3, . . . , Yd = Xd, for constants a, b > 0. The in-

verse transformations are thus X1 = Y1, X2 = Y2 +bY 2
1 −ab,X3 = Y3, . . . Xd = Yd.

It is easy to show that |dx/dy| = 1. Thus the transformed density is

π(y) =
1

(2π)d/2σ1σ
d−1
2

exp

{
−1

2

[
y2

1

σ2
1

+
(y2 + by2

1 − ab)2

σ2
2

+
y2

3

σ2
2

+ · · ·+ y2
d

σ2
2

]}
.

The expectation and variance of Y1, . . . , Yd may be computed analytically.
Clearly, E[Y1] = 0,Var[Y1] = σ2

1,E[Y3] = E[Y4] = · · · = E[Yd] = 0 and Var[Y3] =

Var[Y4] = · · · = Var[Yd] = σ2
2. For Y2 we have E[Y2] = E[X2−bX2

1 +ab] = b(a−σ2
1)

and Var[Y2] = σ2
2 + 2b2σ4

1.

For the Banana distribution in dimension d = 2 with hyperparameters a =

b = σ1 = σ2 = 1, contour plots of π and κ̃ are shown in Figure 4.8. See Appendix
B.3 for the gradient and Laplacian of the Banana distribution. Here, µ+ is defined
on a thin manifold of space. The full rate κ is shown for µ ≡ t3(0, I) and C chosen
so that minx∈X κ(x) ≈ 0.01. The regeneration rate is very large in most of the
space and hence the Brownian Motion Restore sampler is not very effective, since
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(c) Contours of κ, on a different scale,

for µ ≡ t3(0, I) and C chosen so that

minκ ≈ 0.01.

Figure 4.8: Contours of π, κ̃ and κ for the Banana distribution with d = 2

and a = b = σ1 = σ2 = 1. Since π has mass on a thin manifold of X , κ
increases quickly away from this manifold and hence the Restore process is likely
to regenerate very frequently.

the process regenerates very frequently and very little local exploration is done.
A sample path is not displayed, since the tours would essentially look like dots.

Finally, the Funnel distribution is a product of Gaussians, with the variance
of component i for i = 2, . . . , d depending on the first component:

π(x) = N (x1; 0, a2)
d∏
i=2

N (xi; 0, e2bx1).

Figure 4.9 shows contour plot of π and κ+ when a = 1 and b = 0.5. See Appendix
B.4 for the gradient and Laplacian of the log-density of this distribution, as well
as the corresponding partial regeneration rate. Interestingly, for this distribution,
the set {x : κ̃(x) < 0} is not bounded.
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Figure 4.9: Contour plots of π and κ̃ for the Funnel distribution with a = 1 and
b = 0.5.

4.5 Estimating Normalizing Constants

Section 2.4 briefly covered some existing methods for estimating normalising con-
stants. This section makes a novel contribution in showing that Restore processes
can be used to estimate normalising constants. Recall that τ , given by equation
(4.1), is the tour length. When µ and π are both normalized, it is known that
C = 1/Eµ[τ ] (Wang et al., 2021, proof of Theorem 16 on π-invariance of diffusion
Restore processes), where Eµ[τ ] denotes expectation with respect to a Restore
process with initial value distributed according to µ.

Suppose π(x) = π̃/Z and Z is unknown. Then Z is absorbed into C, in that

κ(x) = κ̃(x) + C̃
µ(x)

π̃(x)

and C̃ = CZ. Rearanging, C = C̃/Z so Z = C̃Eµ[τ ]. Suppose n tours take
simulation time T , then Z ≈ C̃T/n.
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Chapter 5

Adaptive Simulation of

Regeneration-Enriched Brownian

Motion

To simulate a Brownian Motion Restore process, a regeneration measure must be
chosen so that the corresponding regeneration rate is non-negative everywhere.
When µ differs greatly from π, tours of the process frequently start in areas where
π has low probability mass and for which the regeneration rate is very large, so
regeneration occurs very frequently. This is computationally wasteful, since π
and its derivatives must be evaluated in order to determine regeneration events.
This chapter considers adapting µ so that the minimal regeneration rate may be
used. We call the novel Markov process an Adaptive Restore process (McKimm
et al., 2022) and the original Restore process the Standard Restore process.

The chapter is structured as follows. Section 5.1 explains how, for µ fixed,
C may be increased so that κ becomes a valid rate. The section also motivates
the need to adapt µ as well as C, via an example. Next, Section 5.2 shows that,
if done naively, adaptive strategies may fix the issue of κ taking negative values,
but without ensuring κ doesn’t become extremely large. The main contribution
of this chapter is in Section 5.3, which details the Adaptive Restore algorithm. A
discussion concludes the chapter in Section 5.4.
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5.1 Regeneration distribution fixed and only its

constant adapted

One of the main motivations for adapting the regeneration measure is to guarantee
that κ(x) ≥ 0,∀x ∈ X . This section explains how, given a fixed regeneration
distribution µ, the regeneration constant C may be adapted upwards to obtain a
valid regeneration rate. For many target distributions, it will be possible to find
a valid regeneration rate simply by adapting C upwards. A sufficient condition is
that the support of µ+ is compact and contained by the support of µ. Essentially,
whenever a state with negative rate is found, increase C so that the rate evaluated
at that same state becomes positive. This idea is now formulated more precisely.

Let {X(µ,κ)
t }t≥0 denote a Brownian Motion Restore process with regeneration

distribution µ and regeneration rate κ. To express the regeneration constant and
distribution used, we’ll use notation:

κCµ(x) := κ̃(x) + C
µ(x)

π(x)
.

Suppose that the regeneration constant after i adaptions is Ci, with C0 the initial
constant. After i adaptions, a process {X(µ,κCiµ∨0)

t }t≥0 is generated, denoted
{X(i)

t }t≥0 for short. Denote κCiµ∨0 by κi for short; this rate is used to guarantee
non-negativity – the truncation becomes redundant once C is large enough. Let
ι be the first time that κi is evaluated at a state x and that κCiµ(x) < 0.

Potential regeneration times T (K)
0 , T

(K)
1 , . . . are the arrival times of a Poisson

process with rate K. These times are thinned, which involves evaluating κ at the
current state, to determine whether regeneration occurs. Now,

ι := inf
{
t : κi(Xt) < 0 and t ∈

{
T

(K)
0 , T

(K)
1 , . . .

}}
.

Using the convention that inf ∅ = ∞, a large enough C will result in ι = ∞.
When ι < ∞, the process must be restarted with a larger value of C. Suppose
that Xι = x. Then, for κ > 0 a small user-chosen constant, set

Ci+1 =
π(x)

µ(x)

[
κ− κ̃(x)

]
, (5.1)

discard {X(i)
t }t≥0 (and any output recorded) then begin simulating {X(i+1)

t }t≥0.
Since equation (5.1) can be arranged as:

κ = κ̃(x) + Ci+1
µ(x)

π(x)
,
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this guarantees κi+1(x) > 0. Larger values of κ are ‘safer’, in that they result in
larger values of Ci+1. The method is described by Algorithm 8, which is a simple
modification of Algorithm 7.
Algorithm 8: The Brownian Motion Restore Sampler with Adaption of
the Regeneration Constant
X ∼ µ, t← 0, i← 0

while i < n do
τ (K) ∼ Exp(K), τ (Λ) ∼ Exp(Λ)

if τ (Λ) < τ (K) then
t← t+ τ (Λ), X ∼ N (X, τ (Λ)). Record X, t, i

else
t← t+ τ (K), X ∼ N (X, τ (K)), u ∼ U [0, 1]

if κ(X) < 0 then
Discard output, X ∼ µ, t← 0, i← 0

C ← π(X)[κ− κ̃(X)]/µ(X)

else

if u < κ(X)/K then
X ∼ µ, i← i+ 1

end

end

end

end

We now provide a sketch of a proof for why the above procedure works. Let
C∗ be such that minx∈X κC∗µ(x) = 0 and let x∗ := arg minκC∗µ(x), so that
κC∗µ(x∗) = 0. Define the set A ⊂ X as

A := {x ∈ X : κC∗µ(x) < κ}.

Note that x∗ is in A. Suppose that the current value of the regeneration constant
is insufficiently large. That is, suppose that Ci < C∗, so that κCiµ(x∗) < 0.
Furthermore, suppose that the rate is not just negative at x∗, but also in a region
around x∗. More precisely, assume that that there exists a neighbourhood N of
x∗ such that ∀x ∈ N , κCiµ(x) < 0. There is some chance that the process {Xt}t≥0

will enter the non-singular set N ∩ A and remain in the set for a period of time
greater than zero. Therefore, eventually the rate κCiµ will be evaluated for a state
x̂ with x̂ ∈ N ∩ A. Suppose that κC∗µ(x̂) = κ̂. Since x̂ is in A, we have κ̂ < κ.
The adaptive procedure results in the next value of the regeneration constant,
Ci+1, satisfying κCi+1µ(x̂) = κ. Therefore κC∗µ(x̂) < κCi+1µ(x̂) and Ci+1 > C∗.

Note that if κ = 0, the adaptive procedure is no longer guaranteed to find
a sufficiently large regeneration constant. Suppose that the rate is evaluated at
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(a) µa = N2(0, I2), C = 7.86.
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(b) µb = N2(1, I2), C = 147.15.

Figure 5.1: Adapting the regeneration constant of Brownian Motion Restore.
Contours of Gaussian target distribution π and κCµ in black and red respectively,
for different choices of C and µ.

a state x̂ 6= x∗ at which κCiµ(x̂) < 0. Then the adaptive procedure with κ = 0

results in κCi+1µ(x̂) = 0. Since κC∗µ(x̂) > 0, it follows that Ci+1 < C∗, so the rate
κCi+1µ is not valid. If the rate is evaluated at x∗, then the adaptive procedure
results in Ci+1 = C∗, so that κCi+1µ is a valid rate. However, since x∗ is a point,
the rate will never be evaluated exactly at this state and so the adaptive procedure
will never find a non-negative rate.

5.1.1 When Adapting the Regeneration Constant only is

Insufficient

Here, two illustrations are presented of why the choice of regeneration distribution
is so important. First suppose that the target distribution has density π(x) =

exp{−xTΣ−1x/2}, with

Σ =

(
1.2 0.4

0.4 0.8

)
. (5.2)

Consider sampling π by simulating a Brownian Motion Restore process with two
choices of regeneration distribution, µa = N2(0, I2) and µb = N2(1, I2). Distribu-
tion µa naturally seems to be a better choice than µb, since it has the same mean
as π. Algorithm 8 results in C equal to 7.86 and 147.15 (2.d.p) respectively. Fig-
ure 5.1 shows contours of π in black, as well as those of κC=7.86,µa and κC=147.15,µb

in red.

The example demonstrates that a bad choice of µ, in this case µb, causes κ to
be very large in some regions. As a result, to ensure the set {x ∈ X : κ(x) > K}
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has small mass, it is necessary to set K to be very high. For this example, based
on plots of contours of κ, a conservative estimate for K (so that the introduction of
error is negligible) might be 50 and 400, corresponding to µa and µb respectively.
Since K is the main driver of computational cost, this means simulating a Restore
process using µb is roughly eight times as expensive as using µa.

Though simulation using a bounding rate of K = 400 will be very slow, it
is not too impractical. We now present a target posterior distribution which
results in extremely large values of the regeneration rate and is hence infeasible
to simulate.

Consider a Logistic Regression model (see Appendix B.5) of hospital patients,
where the task is to classify whether a patient is a Liver patient (someone being
treated for liver problems) or not. The model has 10 predictors, so including the
intercept term, the target posterior distribution has dimension d = 11. The size
of the data is n = 579. There was one binary predictor, which was scaled to have
range 1 and mean zero. The other predictors were scaled to have means zero
and standard deviations 0.5. A Gaussian product prior was used, with standard
deviation 20 for each variable.

The posterior distribution was transformed based on its Laplace approxima-
tion (see subsections 2.5.1 and 2.5.2). The aim of transforming π using its Laplace
approximation is for the transformed distribution to have roughly zero mean and
identity covariance matrix. Since this pre-transformation is used, it may seem
reasonable to use as regeneration distribution a Gaussian with zero-mean and
identity covariance matrix. If the Laplace approximation is fairly accurate, the
transformed target distribution will be close to this choice of regeneration distri-
bution. We will see that for this example the posterior is highly non-Gaussian,
the transformed posterior is thus highly non-Gaussian and hence the seemingly
reasonable choice of µ ≡ N (0, Id) results in extremely large values of κ.

First, to illustrate that the posterior distribution is non-Gaussian, we use
the Random Walk Metropolis (RWM) algorithm (see subsection 2.3.2), with a
large thinning period (thin = 100) to obtain samples from the target distribution
before it is transformed. We display 3 of the 11 marginals. For 9 out of the 11
dimensions, a plot of the kernel density estimate of the posterior marginal against
the Laplace approximation for that marginal shows very little difference between
the mean and mode. However, for dimensions 1 (shown in Figure 5.2a) and 5
(not shown in Figure 5.2), the mean and mode are visibly different. The most
remarkable marginal is the forth, shown in Figure 5.2b, which is highly skewed.
For many marginals, such as the 6th plotted in Figure 5.2c, though KDE plots
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Figure 5.2: Kernel density estimates of marginals 1, 4 and 6 of the posterior
distribution of a Logistic Regression Model of Liver Patients (pre-transformation)
in black. Marginals of the Laplace approximation in dashed green.

make it look like the mean and variance has been accurately approximated, close
inspection reveals a small skew.

Sampling the transformed posterior using the RWM algorithm, a thinning
interval of 90 is large enough that the autocorrelation of the chain is less than
0.1 for all variables. The marginals that are least Gaussian in shape, 2 and 5, are
plotted in Figure 5.3. The vertical lines are explained in full later, but show a
state xb for which C must be especially large to ensure κCµ(xb) ≥ 0.

For the samples {x1, . . . , xn} generated using the RWM algorithm, C such
that κ(xi) ≥ 0,∀i ∈ {1, . . . , n} was computed as

C = max
xi∈{x1,...,xn}

−κ̃(xi)π(xi)/µ(xi).

Estimates of the quantile function for κ̃ and κ (using this value of C) are shown
in Figure 5.4b.

Due to the high discrepancy between µ and π, the regeneration rate is ex-
tremely large in most of the state space. Let xb be the sample so that for the
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Figure 5.3: Kernel density estimates of marginals 2 and 5 of the transformed
posterior distribution of a Logistic Regression Model of Liver Patients in black.
Density of the standard normal regeneration distribution in dashed green. The
vertical lines show the relevant coordinate of xb, the state given by equation (5.3),
which forces C to be very large. At this state, κ̃ is negative, but the ratio µ/π is
very small, so C must be very large for κ to be non-negative.
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Figure 5.4: Estimates of the quantile functions of the partial and full regeneration
rates for a Logistic Regression Model of Liver Patients.
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value of C computed earlier, κ̃(xb) + Cµ(xb)/π(xb) = 0. That is,

xb := arg max
x∈{x1,...,xn}

{−κ̃(x)π(x)/µ(x)}. (5.3)

At xb, the geometry of π and µ are such that C must be very large in order to
ensure κ(xb) ≥ 0. For this example, xb is:

xb = (0.44, 4.65,−3.30,−3.10, 7.08, 1.38,−0.53, 0.77,−0.25, 0.41,−0.22)T .

The second and forth co-ordinate of xb are shown in relation to the marginals
of π and µ by vertical lines in Figure 5.3. These marginals help to illustrate
that µ(xb)/π(xb) is very small. Since κ̃(xb) is negative, C must be very large to
compensate for this tiny value. Although the ratio µ/π will be even smaller for
some states even further into the tails, the partial regeneration rate is negative
only in a compact region near the mode of π, hence outside of this region, there
is no need for the term Cµ/π to compensate for κ̃ being negative.

This example is particularly pathological for Brownian Motion Restore sam-
pling. To better understand which distributions are and are not suitable for
Brownian Motion Restore sampling, we considered the posterior distribution of a
Logistic Regression model of the following five data-sets, obtained from the UCI
Machine Learning Repository (Dua and Graff, 2017):
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Data n d Description

Diabetes 768 9
Response variable: presence or absence of diabetes
in a population of Pima Indians. Predictors: diag-
nostic measurements. (Smith et al., 1988).

Heart 270 14
Response: presence or absence of heart disease
in patients in a Cleveland hospital. Predictors:
health measurements. (Detrano et al., 1989).

Breast 683 10

Data obtained from the University of Wisconsin
Hospitals, Madison from Dr. William H. Wolberg.
Response: whether the breast mass is benign or
malignant. Predictors are features of an image of
breast mass. (Mangasarian and Wolberg, 1990).

German 1000 25

Response: whether an applicant was granted a
loan or not. Predictors: measurements relating to
credit score. Provided by Professor Dr. Hans Hof-
mann; categorical variables converted to numerical
attributed by Strathclyde University.

Liver 579 11

Response: whether a patient is being treated for
liver problems or not. Predictors: diagnostic mea-
surements. Data collected from the north east of
Andhra Pradesh, India (Ramana et al., 2012).

In the table below, Monte Carlo estimates of K+ s.t. P[κ+(X) > K+] ≈ 0.01

and K s.t. P[κ(X) > K] ≈ 0.01 are given for the different data sets.

Data K+ s.t. P[κ+(X) > K+] ≈ 0.01 K s.t. P[κ(X) > K] ≈ 0.01

Diabetes 6.37 12.34

Heart 7.58 78

Breast 9.75 2356

German 9.28 2.07× 105

Liver 12.08 5.8× 1015

The following table presents Monte Carlo estimates of E[κ(X)]. To provide fur-
ther evidence that xb is often found in the tails of µ, the last column gives values
of ||xb||2.
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Data E[κ(X)] ||xb||2

Diabetes 4 0.58

Heart 16 22.41

Breast 368 32.73

German 63707 56.54

Liver 8.6× 1014 95.58

Since xb resides in the tails of a Gaussian regeneration distribution µ, why
not use as regeneration distribution a heavier-tailed distribution, such as a multi-
variate t-distribution? One could do this, but at a price. As well as regenerating
more often into regions for which it is beneficial for µ to have more mass because
π has a heavy tail there, the process will also regenerate more often into tail
regions in which π has a light tail.

5.2 Naive Adaptive Restore

Subsection 5.1.1 shows that adapting C only and keeping µ fixed can be insuffi-
cient. This motivates the need for an algorithm that adapts µ – the question is
how? Section 5.3 covers Adaptive Restore, the central contribution of this chap-
ter. Before introducing Adaptive Restore fully, this section covers two “naive”
algorithms for adapting µ. The first method, Gaussian Mixture Brownian Mo-
tion Restore (GM-BMR) of subsection 5.2.1, adds lumps of mass to measure
Cµ in regions where negative regeneration rates are detected, thus ensuring that
the regeneration rate is eventually non-negative everywhere. The second method
(subsection 5.2.2) provides a technique for sampling µ+, which may then be ap-
proximated, possibly leading to more efficient sampling.

GM-BMR has been suggested by several colleagues in casual conversations.
We argue that the method is ineffective – it does not solve the issue of κ being
very large. Nonetheless, the technique is presented because it illustrates the
strength of Adaptive Restore: the use of κ+ throughout simulation. Likewise, the
method of subsection 5.2.2 does not guard against κ being very large, but helps
in understanding Adaptive Restore.

5.2.1 Gaussian Mixture Regeneration Distribution

A central aim for adapting Cµ is to ensure κCµ(x) ≥ 0,∀x ∈ X . One method is
to represent µ as a mixture of Gaussians. When x ∈ X such that κCµ(x) < 0

is identified, the idea is to add a lump of mass to Cµ in such a way that after
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adaption κCµ(x) > 0. A sequence of regeneration measures C0µ0, C1µ1, . . . is
used. Care is take to ensure mass in only ever added to the regeneration measure,
so that:

Ci+1µi+1(x) ≥ Ciµi(x),∀x ∈ X , i = 0, 1, . . . .

Whenever a state x ∈ X is found for which κCµ(x) < 0, a component is added to
µ with mean x and C adjusted so that the weight of all pre-existing components
remains the same. That is, for σ > 0 some constant, let µi be:

µi ≡
1

i+ 1

i∑
l=0

N (νl, σ
2Id).

Let {X(i)
t }t≥0 again denote the process simulated after i adaptions, which is now

{X(µi,κCiµi∨0)

t }t≥0. Suppose {X(i)
t }t≥0 is evaluated at time t ≥ 0, that X(i)

t = x∗

and κCiµi(x∗) < 0. Letting κ > 0 be some small constant (0.01 for example) and
νi+1 := x∗, define Ci+1 and µi+1 as:

µi+1 ≡
1

i+ 2

i+1∑
l=0

N (νl, σ
2Id),

Ci+1 =

{
i+ 2

i+ 1
Ci

}
∨ [κ− κ̃(x∗)]

π(x∗)

µi+1(x∗)
.

For all x ∈ X , the regeneration measure Ci+1µi+1 satisfies:

Ci+1µi+1(x) =

({
i+ 2

i+ 1
Ci

}
∨ [κ− κ̃(x∗)]

π(x∗)

µi+1(x∗)

)
1

i+ 2

i+1∑
l=0

N (νl, σ
2Id),

≥ i+ 2

i+ 1
Ci

1

i+ 2

i+1∑
l=0

N (x; νl, σ
2Id),

=
1

i+ 1
Ci

[
i∑
l=0

N (x; νl, σ
2Id) +N (x; νi+1, σ

2Id)

]
,

= Ci

[
µi(x) +

1

i+ 1
N (x; νi+1, σ

2Id)

]
,

> Ciµi(x).

Thus each adaption causes the regeneration rate to increase everywhere. Further-
more, the regeneration rate becomes positive at x∗ since:

κ̃(x∗) + Ci+1
µi+1(x∗)

π(x∗)
= κ̃(x∗) +

({
i+ 2

i+ 1
Ci

}
∨ [κ− κ̃(x∗)]

π(x∗)

µi+1(x∗)

)
µi+1(x∗)

π(x∗)
,

≥ κ̃(x∗) + [κ− κ̃(x∗)]
π(x∗)

µi+1(x∗)

µi+1(x∗)

π(x∗)
,

≥ κ.
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Algorithm 9 shows how to simulate n tours of the GM-BMR process.

Algorithm 9: The Gaussian Mixture Brownian Motion Restore Sampler
i← 0, j ← 0, µ← N (ν0, σ

2Id), X ∼ µ, t← 0, N ← {ν0}
while i < n do

τ (Λ) ∼ Exp(Λ), τ (K) ∼ Exp(K)

if τ (Λ) < τ (K) then
t← t+ τ (Λ), X ∼ N (X, τ (Λ)Id). Record X, t, i.

else
t← t+ τ (K), X ∼ N (X, τ (K)Id)

if κ(X) < 0 then
N ← N ∪ {X}
µ← (j + 2)−1

∑
ν∈N N (ν, σ2Id)

C ← (j + 2)C/(j + 1) ∨ [κ− κ̃(X)]π(X)/µ(X)

j ← j + 1. Discard output. X ∼ µ, t← 0, i← 0

else
u← U(0, 1)

if u < κ(X)/K then
X ← µ, i← i+ 1

end

end

end

end

As an example, we consider sampling from a two-dimensional distribution,
π = N (0, I), taking σ = 1, κ = 0.01, C0 = 0 and µ0 = N ((2, 2)T , I). For the
sample path simulated, it took three adaptions to achieve non-negativity of
the rate. For this simple example, it was possible to confirm that the adapted
regeneration rate was non-negative everywhere, by insepcting contour plots of
the final expression for κ. Figure 5.5 illustrates the sequence of regeneration
distributions used. The sequence of means in the Gaussian mixture was ν0 =

(2, 2)T , ν1 = (0.73, 0.93)T , ν2 = (0.40,−0.10)T , ν3 = (−1.01, 0.06)T (2.d.p). The
sequence of C’s was C0 = 0, C1,= 1.52, C2 = 10.10, C3 = 13.47 (2.d.p). Figure
5.5 shows how µ ‘moves’ towards the support of µ+.

Though the algorithm works well for this toy example, there are several issues.
Firstly, although a measure Cµ is eventually found such that κCµ(x) ≥ 0,∀x ∈ X ,
the method does not solve the issue of requiring K to be extremely large. Suppose
∃x1, x2 ∈ X such that κ(x1) < 0 and κ(x2) is extremely large. Adding mass
concentrated at x1 to Cµ will also add mass (albeit possibly a small amount) to
Cµ at x2, which will make κ(x2) even larger. Second, choosing a small value for
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Figure 5.5: Regeneration distribution a mixture of Gaussians with an increasing
number of components. π ≡ N (0, I). The boundary of the support of µ+,
x2

1 +x2
2 < 2, is shown by the dark green circle. Contours of µi, i = 0, 1, 2, 3 shown

in green.
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Figure 5.6: Regeneration rate adapted by adding components to the Gaussian
mixture regeneration distribution. Contours of κi for i = 0, 1, 2, 3 are shown in
red. π ≡ N (0, I).
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σ could lead to µ consisting of a very large number of components. In this case,
the computational cost of evaluating µ will become very expensive.

5.2.2 Minimal Regeneration Distribution Approximation

It is necessary to find Cµ such that κCµ(x) ≥ 0,∀x ∈ X . Yet at the same time,
for ε > 0 small, we would like to ensure that P[κCµ(X) > K] < ε for K not too
large. Using the minimal regeneration constant, distribution and rate (C+, µ+ and
κ+) would achieve these aims. However, since µ+ is related to π, it is not easy to
sample. The key to Adaptive Restore, as will be described in Section 5.3, is a novel
method for simulating a Restore process under κ+, whilst concurrently sampling
distributions πt and µt that simultaneously converge to π, µ+. In building up to
this, we now consider how one might use an approximation of µ+.

Let {Xt}t≥0 be a Restore process with fixed regeneration measure Cµ and
regeneration rate κCµ. Suppose Cµ is such that κCµ is non-negative everywhere,
but is nonetheless expensive to simulate because µ is a poor choice, compensated
for by C being large, so that E[κCµ(X)] is very large. Let T (−)

1 , T
(−)
2 , . . . be the

arrival times of a Poisson process with rate

κ−(x) := [0 ∨ −κ̃(x)]. (5.4)

Suppose that the process is simulated for some time T . Then, although we do
not prove it, we conjecture that

Eµ+ [f(X)] ≈ 1

n

n∑
i=1

f(xi)

for 0 < T
(−)
1 < · · · < T

(−)
n < T and xi = X

T
(−)
i

for i = 1, . . . , n. Recall that
when the state of the process is recorded as output at the rate of a constant
Poisson process, the mean of a function of these states is Eπ[f(X)]. The intuition
behind the conjecture above is that when the rate of the output Poisson process
is instead κ−, the density of the invariant distribution in the expectation changes
to κ−(x)π(x) = µ+(x).

One could redefine µ based on these states, then redefine C so that the new
rate κCµ is again non-negative everywhere. For example, the simplest scheme
might redefine µ by fitting a Gaussian to the samples in set

{Xt : t = T
(−)
1 , T

(−)
2 , . . . , T (−)

n }.

The new rate may be a lot smaller on average, since µ is now an approximation
of µ+.

73



The algorithm described above has a serious issue. To obtain samples from
µ+, for the initial regeneration distribution µ, one must already have found a
constant C such that κCµ is a valid rate. As has been stressed, such a rate may
be impractically large. A great strength of the Adaptive Restore algorithm, pre-
sented next, is that it uses rate κ+ throughout, which makes simulation feasible.

5.3 Adaptive Restore

An Adaptive Restore process (McKimm et al., 2022) is defined by enriching some
underlying continuous-time Markov process with regenerations at rate κ+ from,
at time t, a distribution µt. Initially, the regeneration distribution is some fixed
distribution µ0. The regeneration distribution is updated by the addition of point
masses at certain times. Let πt be the stationary distribution of the Restore pro-
cess with fixed regeneration distribution µt. We have simultaneous convergence of
(µt, πt) to (µ+, π). Let N(t) be the number of events from a Poisson process with
rate κ−, as given by equation (5.4), that arrive before time t. When N(t) = 0

let µt ≡ µ0 for µ0 some fixed initial distribution. Let X
T

(−)
i

= xi for i = 1, 2, . . . .
Then for a > 0 some constant, for N(t) > 0 the density of µt is given by

µt(x) =
t

a+ t

1

N(t)

N(t)∑
i=1

δxi(x) +
a

a+ t
µ0(x). (5.5)

The rate κ− Poisson process is simulated using Poisson thinning, so it is assumed
that there exists a constant

K− := sup
x∈X

κ−(x),

such that K− > 0. The distribution µt is therefore a mixture of a fixed distri-
bution µ0 and a discrete measure N(t)−1

∑N(t)
i=1 δXxi (x). The constant a is called

the discrete measure dominance time, since it is the time at which regeneration
is more likely to be from the discrete measure of the mixture distribution.

Section 4 of McKimm et al. (2022) shows that the measure µt in (5.5) con-
verges weakly almost surely to µ+. The validity of the Adaptive Restore algorithm
follows, since the invariant distribution of a Restore process with fixed regener-
ation distribution µ+ and regeneration rate κ+ is π. Proving that µt converges
weakly almost surely to µ+ is highly non-trivial; the proof builds on previous work
by Benaim et al. (2018) and Wang et al. (2020). This thesis does not cover the
theory of Adaptive Restore because the focus of this thesis is on methodological
and computational aspects of Restore algorithms.
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A key assumption is that µ+ has compact support. There are distributions,
such as the Funnel or Banana distributions, shown in subsection 4.4.1, for which
µ+ does not have compact support. However, we have found that µ+ has compact
support for most practical examples, such as those presented in subsection 5.3.3.

Algorithm 10 describes the method. Three Poisson processes, one homogenous
and two inhomogeneous, are simulated in parallel. Here, E denotes the set of
point masses that make up the discrete component of µt. The process is generated
for a fixed number of tours, though another condition such as the number of
samples or simulation time could equally be used.
Algorithm 10: The Adaptive Brownian Motion Restore Sampler
t← 0, E ← ∅, i← 0, X ∼ µ0.

while i < n do
τ (+) ∼ Exp(K+), τ (Λ) ∼ Exp(Λ), τ (−) ∼ Exp(K−).
if τ (+) < τ (Λ) and τ (+) < τ (−) then

X ∼ N (X, τ (+)), t← t+ τ (+), u ∼ U [0, 1].
if u < κ+(X)/K+ then

if |E| = 0 then
X ∼ µ0.

else
X ∼ U(E) with probability t/(a+ t), else X ∼ µ0.

end

i← i+ 1.
end

else if τ (Λ) < τ (+) and τ (Λ) < τ (−) then
X ∼ N (X, τ (Λ)), t← t+ τ (Λ). Record X, t, i.

else
X ∼ N (X, τ (−)), t← t+ τ (−), u ∼ U [0, 1].
if u < κ−(X)/K− then E ← E ∪ {X}.

end

end

Figure 5.7 illustrates the method with a simple example: π ≡ N (0, 1), µ0 ≡
N (0, 1/3) and a = 1000. Plots of µt and πt for t ∈ {2000, 105, 4× 106} show the
distributions converge. Note, a kernel density estimate of πt is shown, whilst the
plot of µt is a mixture of µ0 and a kernel density estimate of the discrete measure.

5.3.1 Algorithm Inputs

Though Adaptive Restore simplifies and improves Restore simulation by allowing
the use of κ+, there are a number of tuning parameters. In this section, we
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(a) µ+ and µt for t = 2× 103.
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(b) π and πt for t = 2× 103.
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(c) µ+ and µt for t = 105.
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(d) π and πt for t = 105.
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(e) µ+ and µt for t = 4× 106.
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(f) π and πt for t = 4× 106.

Figure 5.7: Adaptive Restore for π ≡ N (0, 1), µ0 ≡ N (0, 1/3) and a = 1000. In
figures (a), (c) and (e), the solid green line shows µ+ and the dashed green line
shows µt, where a density estimate of the discrete component is used. In Figures
(b), (d) and (f) the black line shows π and the dashed blue line shows a density
estimate of π.
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provide guidance on selecting these tuning parameters.

Regeneration Rate Truncation Level

Recall from subsection 5.3.1 that for many target distributions, the regeneration
rate is not bounded. Even when the ratio µ/π is bounded, the partial regener-
ation rate corresponding to many target distributions is unbounded. It is then
necessary to truncate the regeneration rate, so that Poisson thinning may be
used to simulation regeneration events, even when the minimal regeneration rate
is used. The truncation level should be as small as possible, in order to control
the computational expense of simulating the process, whilst being large enough
that the error introduced is negligible. It seems natural to set K+ so that

P[κ+(X) > K+] < ε,

for ε > 0 a small constant, such as ε = 0.01, 0.001, 0.0001. This is equivalent to
ensuring that κ+ is only truncated in a region with small mass under π, thus only
a small error is introduced.

Note that rate κ+ tends to be highest in areas where density π is lowest: in
the tails of π. Simulating {Xt}t≥0 under κ+ ∧K+ instead of κ+ means the rate is
lower in the tails of π and hence {Xt}t≥0 spends more time in the tails.

When π is an isotropic Gaussian, it is possible to compute this K+ since,

P[κ+(X) < K+] = P[0.5(xTx− d) < K+],

= P

[
d∑
i=1

x2
i < 2K+ + d

]
,

= P[Q < 2K+ + d],

for Q ∼ χ2
d. In other words, the quantile function of a chi-squared variable with

d degrees of freedom can be used to choose K+. Figure 5.8 shows plots of K+

satisfying P[κ+(X) > K+] = ε for ε = 0.01, 0.001, 0.0001. Since K+ dominates the
computational cost of the algorithm, the plot gives an insight into the algorithm’s
complexity. For example, when d = 100, choosing K+ = 30 would be prudent, in
which case κ+ is evaluated on average 30 times per unit of simulation time.

The choice of ε should balance computational cost with accuracy. Smaller ε
necessitate large K+ which in turn increases computational cost. However, larger
ε (smaller K+) induces larger error.

As an illustration, we used Brownian Motion Restore to sample a bivari-
ate Gaussian distribution. To avoid any burn-in issues encountered with Adap-
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Figure 5.8: Guidance on choosing K+ so that P[κ+(X) > K+] = ε for π a d-
dimensional isotropic Gaussian distribution. Lines for ε = 0.01, 0.001, 0.0001 are
respectively solid, dashed and dotted.

tive Restore, we used rejection sampling to obtain samples from µ+. We com-
pared estimates of E[XTX] for K+ ∈ {3.61, 5.91, 8.21}, which correspond to
ε = 0.01, 0.001, 0.0001. For each truncation level, 100 processes were generated,
each consisting of 4 × 105 tours. Samples were recorded at rate 1, resulting in
just over a million samples per process. Since XTX ∼ χ2

2, we have E[XTX] = 2.
Estimates of E[XTX] for K+ corresponding to a given ε are shown in Figure 5.9.
Note that the functional is a difficult one to estimate, one reason being that it
compresses a vector to a scalar and another reason being that taking the square
of components of the vector amplifies inaccuracies. In this example, ε = 0.0001

results in negligle bias (46 estimates were less than 2), ε = 0.001 in small but
noticable bias (14 estimates were less than 2) and ε = 0.01 in significant bias (0
estimates were less than 2; the smallest estimate was 2.02644). Note that the
length of tours was on average smallest for ε = 0.0001 and largest for ε = 0.01,
owing to the truncation of κ. Thus for a fixed number of tours and output rate,
more samples are produced for larger ε.

An appropriate value of K+ won’t be known in advance. An approach one
could take is to monitor the quantile function of κ+(X), then increase K+ if it is
smaller than a proportion 1−ε of these. This method is summarized by Algorithm
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Figure 5.9: Bias introduced by truncating the regeneration rate. Boxplot of
100 estimates of E[XTX] for a bivariate Gaussian distribution, computed us-
ing Brownian Motion Restore with K+ such that P[κ+(X) > K+] = ε; ε ∈
{0.01, 0.001, 0.0001}, so that K+ ∈ {3.61, 5.91, 8.21}.

11. Here, χ is the set of output states.
Algorithm 11: Monotonically Increasing Adaption of the truncation of
the Regeneration Rate
χ← ∅, j ← b(1− ε)nc
while |χ| < n do

Simulate {Xt}t≥0 until n samples are recorded in χ
Relabel xi ∈ χ; i = 1, . . . , n; so that κ+(x1) < κ+(x2) < · · · < κ+(xn)

if K+ < κ+(xj) then
K+ ← κ+(xj)

χ← ∅
end

end

An issue with this method is that if the initial value of K+ is too low, then
the invariant distribution of the process will have heavier tails than the target
distribution, so the estimate of the quantile function of κ+(X) will result in K+

being overestimated. For example, consider π as an unnormalized bivariate zero-
mean Gaussian distribution with covariance matrix Σ given by equation (4.11).
Then for n = 104 and ε = 0.01, initial values K+ ∈ {4, 8, 12} result in final
estimates of K+ ∈ {21.07, 12.59, 12}. This suggests that it may help to relax the
restriction that adaption of K+ be monotonically increasing. Instead, allow K+

to be adapted upwards or downwards and monitor K+ for convergence.

Algorithm 12 summarises the method. Now, the process is simulated until n
output states are produced, then κ+ is adapted. This procedure is repeated m
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times. Alternatively, the procedure could be repeated until the change in κ+ is
less than ∆, for ∆ > 0 some small constant.

Algorithm 12: Adaption of the truncation of the Regeneration Rate
χ← ∅, j ← b(1− ε)nc
for i in 1 to m do

Simulate {Xt}t≥0 until n samples are recorded in χ
Relabel xi ∈ χ; i = 1, . . . , n; so that κ+(x1) < κ+(x2) < · · · < κ+(xn)

K+ ← κ+(xj)

χ← ∅
end

Simulate {Xt}t≥0 until n samples are recorded in χ

We continue with the same example, allowing m = 5 adaptions of K+ either
up or down. Equilibrium is reached at about K+ ≈ 11.

Output Rate

The rate Λ at which the state of the process is stored as output should be adapted
so that, on average, each tour of the process produces at least one output state.
Recall Eµ[τ ] is the expected tour length under regeneration distribution µ. If
Λ < Eµ[τ ]−1 then on average, each tour produces less than one output state. This
results in tours, which on convergence of µt to µ+ are independent and identically
distributed, effectively being wasted. If Λ is much greater than Eµ[τ ]−1, then
output states will be highly correlated. A sensible choice might be Λ = aEµ[τ ]−1,
with say 1 < a < 10. Suppose that in a burn-in period of length b, during which
no output is recorded, m tours are simulated. Then Λ may be set as am/b.

Regeneration Rate Truncation Level and Output Rate

When suitable values for both K+ and Λ are unknown in advance, they should
be tuned in tandem, since each parameter affects the other. When K+ increases,
Eµ[τ ] decreases, which affects the tuning of Λ. Conversely, Λ affects the tuning
procedure for K+, which relies on the quantile function of κ(X), estimated from
samples x1, . . . , xn recorded at rate Λ. During the burn-in period, we suggest
iterating between updating κ+ given fixed Λ then updating Λ given fixed κ+.

Discrete Measure Dominance Time

We investigate the effect of a, the discrete measure dominance time, on conver-
gence of the process when d ∈ {2, 5}, π ≡ N (0, Id) and µ0 ≡ N (1, Id). We do not
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Figure 5.10: Convergence of an Adaptive Restore process for different values of
a, the discrete measure dominance time, when d = 2 and d = 5, for π ≡ N (0, Id)

and µ0 ≡ N (1, Id).

aim to find the empirically optimal value of a for this example, since it’s likely that
such a value would be specific to this problem; instead we aim to get a sense of
the order of magnitude of a good choice of a. For each a ∈ {10, 1000, 104}, Figure
5.10 shows rolling estimates of E[XTX] for 20 independent processes. For this toy
example and for the values of a considered, it appears a = 10 is best. However,
it remains unclear how to choose optimal a for arbitrary target distributions.

When µ0 is not centred at µ+, having a large means that µt takes longer to
converge in distribution to µ+. By contrast, small a allows for quicker adaption.
Figure 5.11 attempts to illustrate this via an example. The figures show sample
paths of two processes, each with π ≡ N (0, 1) and µ0 ≡ N (2, 1). Output states
immediately proceeding regeneration times are shown by green dots, while output
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Figure 5.11: Sample paths of Adaptive Restore processes with π ≡ N (0, 1), µ0 ≡
N (2, 1) and different values of a, the discrete measure dominance time. Green
dots and red crosses show respectively output states immediately after and before
regeneration times.

states immediately preceeding regeneration times are shown with red crosses.
The top figure has a = 10, while the bottom figure has a = 104. For a = 10,
regenerations quickly begin to occur closer to zero. By contrast, for a = 104,
regenerations continue to be centred at two, which hinders convergence.

However, a larger value of a encourages more regenerations from µ0, which
makes it more likely for {Xt}t≥0 to explore regions it hasn’t previously visited.
This may be beneficial for some target distributions.

Estimating the Infimum of the Partial Regeneration Rate

The dominating rateK− is not initially known. For the examples presented in this
thesis, a suitable upper bound on κ− was computed by evaluating this rate at the
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states of a Markov chain with invariant distribution π, generated using the RWM
algorithm. Here we consider how a suitable upper bound on κ− could be com-
puted, without resorting to using an extensive pre-run of a Metropolis-Hastings
algorithm. A sensible strategy may be to simulate a sequence of Adaptive Re-
store processes, with process i using a value K−i as an estimate of a bound on
κ− and K−0 < K−1 < · · · . During the simulation of process i, if a state x is
identified at which κ−(x) > K−i , then process i is terminated and process i + 1

begun with K−i+1 = κ−(x) + κ for κ > 0 a small constant such as κ = 0.01. The
first estimate of a bound, K−0 , may be approximated using gradient descent on
κ̃. Alternatively, K−0 may be based on the value of K− when π is an isotropic
Gaussian distribution, which is d/2 for d the dimension.

To describe the adaptive mechanism more thoroughly, let {X(i)
t }t≥0 be an

Adaptive Restore process, simulated with K−i serving as an approximate upper
bound on κ−. In addition, let T (K−i )

0 , T
(K−i )
1 , . . . be the arrival times of the rate

K−i Poisson process. At these times, κ− is evaluated. Let

ι(i) := inf
{
t : κ−(X

(i)
t ) > K−i and t ∈ {T (K−i )

0 , T
(K−i )
1 , . . . }

}
.

Suppose that ι(i) < ∞ and that Xι(i) = x. Then define K−i+1 = κ−(x) + κ and
simulate process {X(i+1)

t }t≥0. The rate κ− will eventually be evaluated at a state
close enough to the point at which κ− has its maximum value to trigger K−i+1 to
satisfy K−i+1 > K−.

Burn-in and Convergence

A nice aspect of Standard Restore is that there is no burn-in period. Since tours
are independent and identically distributed, with invariant distribution π, there
is no reason to discard a portion of the process. Unfortunately this quality is lost
when using Adaptive Restore, since a burn-in period is needed during which µt
and πt converge approximately to µ+ and π.

Empirical studies show that convergence can be slow. For example, let X ∼
π ≡ N (0, I5) and µ0 ≡ N (5−1/2, I5). Then XTX ∼ χ2

5 so E[XTX] = 5. The
rolling average for the estimate of E[XTX] is shown in Figure 5.12, for an Adaptive
Restore process simulated for a total time of 8× 106, with a = 1000. Wall-clock
time for the simulation was 7 minutes. The process appears to have approximately
converged at around t = 3× 106. The regeneration rate was truncated at K+ =

15.44, which is such that P[κ+(X) > K+] = 10−6. Note that choosingK+ = 12.93,
which is such that P[κ+(X) > K+] = 10−5, resulted in obvious bias; this again
shows the importance of choosing a sufficiently high truncation level.
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Figure 5.12: Rolling estimate of E[XTX] for d = 5, X ∼ π ≡ N (0, Id) and
µ0 ≡ N (d−1/2, Id), computed via the simulation of an Adaptive Restore process.

5.3.2 Initializing from a Point Mass

An interesting special case is when the initial regeneration distribution is a point
mass. Setting a = 0 and µ0(x) = δx0(x), defining T (−)

0 = 0 and X
T

(−)
0

= x0 gives
a simpler expression for µt:

µt(x) =
1

N(t) + 1

N(t)∑
i=0

δxi(x).

Though it is possible to choose µ0 to be a point mass, it is not recommended.
Since µt starts as µ0 but is adapted to become µ+, it seems natural that µ0 should
be a good approximation of µ+. A point approximation of µ+ is unlikely to be a
good approximation.

Figure 5.13 demonstrates this special case, when π ≡ N (0,Σ), with Σ given
by (5.2). Contours of κ+ are shown in red. The point masses forming µt, when
N(t) + 1 = 1, 10, 100, 1000, are shown by green dots. Since µ+ has support on
region {x ∈ X : κ̃(x) < 0}, the green dots are all within the ellipse defined by
κ̃(x) = 0.

5.3.3 Examples

The examples presented show that Adaptive Restore can significantly decrease
the truncation level used for simulation of the algorithm. This is especially the
case when π has skewed tails.
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Figure 5.13: Adaptive Restore with initial point-mass regeneration distribution
and Gaussian target distribution. Contours of κ+ in red. Point masses making
up µt are green dots.
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Transformed Beta Distribution

Consider X ′ ∼ Beta(2, 2), so that πX′(x′) ∝ x′(1 − x′) for x′ ∈ [0, 1]. Let X be
defined by the logit transformation of X ′, that is X = log

(
X′

1−X′
)
, so that X has

support on the real line. The inverse of this transformation is X ′ = eX

eX+1
. The

Jacobian is dx′

dx
= ex

(ex+1)2
. Thus X has density:

π(x) ∝ ex

ex + 1

(
1− ex

ex + 1

)
ex

(ex + 1)2
∝ e2x

(ex + 1)4
.

We call the corresponding probability distribution the transformed beta distribu-
tion. Its energy and the derivatives of the energy are given by:

U(x) = 4 log(ex + 1)− 2x+ const,

∇U(x) =
2(ex − 1)

ex + 1
,

∆U(x) =
4ex

(ex + 1)2
.

The partial regeneration rate is

κ̃(x) =
4e2x − 12ex + 4

2(ex + 1)2
.

Note that minx∈R κ̃(x) = −0.5. Since κ̃(x) < 2,∀x ∈ R, this distribution is a
useful test case, since an Adaptive Restore process may be efficiently simulated
without any truncation of the regeneration rate. In addition, the first and second
moments, 0 and (π2 − 6)/3, may be computed analytically.

Taking µ0 ≡ N (0.5, 1) we simulated 200 Adaptive Restore processes each with
a burn-in period of 5×106 followed by a period of length 106 during which output
was recorded at rate 10. We deliberately chose µ0 to be centred away from the
mean of π, in order to test that the process still converges. The discrete measure
dominance time was 1000. 106 estimates of the first moment were greater than
the exact first moment. 98 estimates of the second moment were greater than
the exact second moment. This indicates the processes have (approximately)
converged to the correct invariant distribution.

Logistic Regression Model of Breast Cancer

We used Adaptive Restore to simulate from the (transformed) posterior of a
Logistic Regression model of breast cancer (d = 10). We used a Gaussian product
prior with variance σ2 = 400. Following Gelman et al. (2008), we scaled the
data so that response variables were defined on {−1, 1}, non-binary predictors

86



2 4 6 8 10
−

0.
6

−
0.

2
0.

2
Marginal

M
ea

n 
E

st
im

at
e

Figure 5.14: Estimates of the mean of each marginal of the (transformed) poste-
rior distribution of a Logistic Regression model of Breast Cancer. Circles show a
RWM estimate, crosses an Adaptive Restore estimate.

had mean 0 and standard deviation 0.5, while binary predictors had mean 0
and range 1. The posterior distribution was transformed based on its Laplace
approximation.

We simulated an Adaptive Restore process with µ0 ≡ N (0, Id) and parameters
K− = 5.2,K+ = 19.64,Λ = 10.0, a = 1000, b = 6 × 106, T = 106. We chose a
long burn-in time because other experiments have shown that this is necessary
for convergence of (µt, πt). To check the estimate, we generated 106 samples using
the RWM algorithm, first tuning the scale of the symmetric proposal distribution
and using a thinning interval of 50 so that the samples had small autocorrelation.
Figure 5.14 plots the estimate of the mean of each marginal for the RWM estimate
(circles) and the Adaptive Restore estimate (crosses). The Euclidean distance
between these estimates was 0.014 (2.s.f).

Although it is possible to use Adaptive Restore to correctly compute the first
moment of this target distribution, the example also demonstrates that the pro-
cess is expensive to simulate, both in terms of time and memory. It took 5 hours
and 20 minutes to simulate the Adaptive Restore process, whereas it took only 26
minutes to generate the RWM Markov chain. Furthermore, the Adaptive Restore
process requires a lot of memory, since all the states in the discrete component
of the measure µt must be recorded. The sample path presented for this exam-
ple was simulated on a laptop, which had enough memory for the process to be
successfully simulated. Ideally, marginal credible regions for the estimates would
be displayed, created by simulating multiple independent Adaptive Restore pro-
cesses. Unfortunately, we were unable to simulate these multiple processes. Doing
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so on a laptop would have taken too long (serially simulating 100 independent
processes would have taken roughly a month). We attempted to use a compute
server to simulate the processes in parallel, but found that the programs crashed
because they used too much memory. The high memory requirement of the algo-
rithm is thus a serious problem. In the discussion of this chapter (section 5.4), we
give an idea for a strategy for reducing the memory requirement of the algorithm,
which we call Adaptive Restore with short-term memory.

Hierarchical Model of Pump Failure

Consider the following hierarchical model of pump failure (Carlin and Gelfand,
1991):

Ri ∼ Poisson(X ′iti); i = 1, 2, . . . , 10;

X ′i ∼ Gamma(c1, X
′
11); i = 1, 2 . . . , 10;

X ′11 ∼ InverseGamma(c2, c3);

with constants c1 = 1.802, c2 = 2.01, c3 = 1.01. Observation Ri (i = 1, 2, . . . , 10)

is the number of recorded failures of pump i, which is observed for a period of
time ti (i = 1, 2, . . . , 10). The failure rate of pump i is X ′i (i = 1, . . . , 10). Before
sampling, we transformed the posterior to be defined on Rd by making a change-
of-variables, defining Xi = logX ′i (i = 1, . . . , 10). We then transformed the
posterior again, based on its Laplace approximation, as described in subsections
2.5.1 and 2.5.2.

The posterior exhibits heavy and skewed tails. Under Standard Restore
with an isotropic Gaussian regeneration distribution, this results in Eπ[κ(X)] ≈
1.9 × 107, which is far too large for simulation to be practical. By contrast,
Eπ[κ+(X)] ≈ 1. We are able to accurately compute the first moment of the
posterior in less than an hour of simulation time, by setting b = 5 × 106 and
T = 5× 106.

Log-Gaussian Cox Point Process Model

The Log-Gaussian Cox Point Process model has been used to test HMC samplers
(Hirt et al., 2021; Girolami and Calderhead, 2011). A [0, 1]2 area is divided into
a n × n grid. The number of points Yi,j in cell i, j is conditionally independent
of the number of points in other cells given the cell’s latent intensity Λi,j and has
Poisson distribution with rate n2Λi,j. Here, Λi,j = exp{Xi,j} and X = {Xi,j} is
a latent field. Let x and y be vectors representing X and Y . Assume X is a
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Gaussian process with mean vector zero and covariance function

Σ(i,j),(i′,j′) = exp{−δ(i, i′; j, j′)/n},

where δ(i, i′; j, j′) = ((i− i′)2 + (j − j′)2)1/2. We have:

log π(x|y) =
∑
i,j

yi,jxi,j − n2 exp{xi,j} −
1

2
xTΣ−1x+ const.

Writing exp{x} for the vector with (exp{x})i,j = exp{xi,j}, we have

∇x log π(x|y) = y −m exp{x} − Σ−1x,

Hlog π(x) = diag(−m exp{x})− Σ−1,

∆x log π(x|y) = −m
∑
i,j

exp{xi,j} − trace(Σ−1).

We present results for simulated data on a 5 by 5 grid, so d = 25. After a pre-
transformation based on the Laplace approximation (see subsections 2.5.1 and
2.5.2), the posterior distribution of this model is close to an Isotropic Gaussian
distribution. For Standard Restore, setting µ ≡ N (0, I) results in P[κ(X) <

181] ≈ 0.9999 and E[κ(X)] ≈ 19.5. Thus K = 181 would be appropriate.
For Adaptive Restore we have P[κ+ < 18.5] ≈ 0.9999 and E[κ+(X)] ≈ 1.4.

Thus Adaptive Restore reduces both the necessary truncation level and average
regeneration rate by a factor of 10. However, simulation runs indicate that con-
vergence of the Adaptive process for this d = 25 posterior is slow. We used a
long burn-in time of b = 5 × 106 and a long simulation time of T = 5 × 106 to
allow the process to converge. Though µt does not need to adapt to account for
skew so much, it still needs to change significantly so that it is centred correctly
— this is harder in higher dimensions.

Multivariate t-distribution

Recall that a d-dimensional multivariate t-distribution with meanm, scale matrix
Σ and ν degrees of freedom has density:

π(x) ∝
[
1 +

1

ν
(x−m)TΣ−1(x−m)

]−(ν+d)/2

.

We consider sampling from a bivariate t-distribution with ν = 10, zero mean
and identity scale matrix. We then have κ+(x) < 1.55, ∀x ∈ Rd (this bound is
not tight), so can take K+ = 1.55 (no need to truncate κ). In general, Restore
processes are particularly well suited to simulating from t-distributions, since the
regeneration rate is naturally bounded. For this example, we can take K− = 1.2.
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Figure 5.15: Contours of κ̃, κ+ and µ+ for π a bivariate t-distribution with ν = 10.

The process is quickly able to recover the true variance of each marginal of the
target distribution, which is ν/(ν − 2). Figure 5.15 shows contours of κ̃, κ+ and
µ+. A notable feature is that, moving outwards from the origin, κ+ rises to its
maximum value then asymptotically tends to zero.

Mixture of Gaussian distributions

We explore the use of an Adaptive Restore process for simulating from the Gaus-
sian mixture distribution

π(x) = w1N (x;m1,Σ1) + w2N (x;m2,Σ2),

for w1 = 0.4, w2 = 0.6,m1 = (1.05, 1.05),m2 = (−1.05,−1.05),

Σ1 =

(
1 −0.1

−0.1 1

)
and Σ2 =

(
1 0.1

0.1 1

)
.

Figure 5.16 shows contour plots of the density of π and κ+. In particular, figure
5.16b shows that the region for which κ+ is zero, which corresponds to the support
of µ+, consists of two separate non-connected areas. For Standard Restore and
Adaptive Restore, we set µ and µ0 respectively to N (0, 3I).

Standard Restore was able to sample from this distribution well, even though
we had to set K = 1000 so that the truncation wouldn’t overly affect κ. Setting
Λ = 10, a simulation time of T = 104 generated samples which produced an
estimate of the mean that had Root Mean Square Error (RMSE) 0.00358 (3.s.f).
Simulation took 3.5 minutes.

By comparison, Adaptive Restore allows the truncation level to be much re-
duced, to K+ = 20. We set a = 104 to allow both modes to be explored before

90



x1

x2

−4 −2 0 2 4

−
4

−
2

0
2

4

(a) Contours of π.

x1

x2

−4 −2 0 2 4

−
4

−
2

0
2

4

(b) Contours of κ+.

Figure 5.16: Contours of π and κ+ for π a mixture of bivariate Gaussian distri-
butions. Note that there are two disjoint compact regions on which κ+ is zero.

the discrete measure became dominant. A burn-in time of b = 9× 105 and simu-
lation time of T = 105 took 6 minutes. Setting Λ = 1, so that in expectation the
number of samples produced equals that for Standard Restore, the RMSE was
0.0555 (3.s.f). In this experiment b+T = 106, which is 100 times greater than the
simulation time used for generating a Standard Restore process, yet the RMSE
is worse. For this multi-modal example, the Adaptive Restore process converges
slowly due to its urn-like behaviour. Though the process converges asymptoti-
cally, in the short-run the process tends to visit areas it has visited before, which
makes convergence slow.

5.4 Discussion

This chapter has introduced the Adaptive Restore process (McKimm et al., 2022),
which adapts the regeneration distribution on the fly. Like Standard Restore,
Adaptive Restore benefits from global moves. For target distributions that are
hard to approximate with a parametric distribution, Adaptive Restore is more
suitable than Standard Restore, because its use of the minimal regeneration rate
makes simulation computationally feasible. In comparison to simpler algorithms
such as Random Walk Metropolis, the process can still be slow to simulate and
convergence appears to be slow when the target is multimodal. However, the
algorithm shows promise in sampling distributions with skewed tails, for which
Standard Restore can be computationally intractable.

Global dynamics allow the Adaptive Restore process to make large moves
across the space, a property shared by Standard Restore. This feature is desirable
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for MCMC samplers (since it results in a Markov chain with smaller autocorre-
lation) and has motivated the development of algorithms such as Hamiltonian
Monte Carlo (HMC) (Duane et al., 1987; Neal et al., 2011) or its extension, the
No-U-Turns Sampler (NUTS) (Hoffman and Gelman, 2014). Crucially, as the
dimension d of π increases, µ+ remains close to π. This means that, unlike other
methods making use of global regenerative moves via the independence sampler
and Nummelin splitting (Nummelin, 1978; Mykland et al., 1995), global moves
are more likely to be to areas of the space where π has significant mass.

Experiments on a number of target distributions have indicated that the Re-
store process is particularly effective at simulating from heavy-tailed distribu-
tions, a class of distributions that other samplers can struggle with (Mengersen
and Tweedie, 1996; Roberts and Tweedie, 1996a,b). A heuristic explanation for
this behaviour is that regeneration is a useful mechanism for allowing the sampler
to escape the tails of the distribution and move back to the centre of the space.

A large benefit of Adaptive Restore over Standard Restore is its use of the
minimal regeneration rate. We have shown via an example that even for a sensible
choice of fixed µ, the corresponding rate κ can be extremely large in parts of
the space. While frequent regeneration is not in itself a bad thing, frequent
regeneration into regions of low probability mass is computationally wasteful.
Using κ+ results in π and its derivatives being evaluated far less.

Some properties of Standard Restore that are unfortunately not inherited by
Adaptive Restore are independent and identically distributed tours, an absence
of burn-in period and the ability to estimate normalizing constants. Moreover,
convergence appears to be slow for multi-modal distributions. Since tours begin
with distribution µt and this distributed changes over time, tours are no longer
independent and identically distributed. A burn-in period is required, during
which µt converges to µ+ and πt, the stationary distribution of the process at
time t, converges to π. For Standard Restore, C̃, the regeneration constant with
the normalizing constant Z absorbed, is defined explicitly and hence can be used
to recover Z. On the other hand, for Adaptive Restore this constant is defined
implicitly and thus can’t be used to recover Z.

Despite these downsides, Adaptive Restore represents a significant improve-
ment on Standard Restore by making simulation tractable for a wider range of
target distributions. We have shown that simulation of mid-dimensional target
distributions is practical with Adaptive Restore. There is plenty of scope for
further research – we briefly lay out some directions.
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Figure 5.17: For t = 2, 4, 8, the filled rectangle indicates [t/2, t]. For the short-
term memory version of Adaptive Restore, the events of a Poisson process with
rate κ−(Xt), which arrive within this interval, contribute to distribution µt.

5.4.1 Short-term memory

An Adaptive Restore process with short-term memory might converge faster.
This would use a modified version of the regeneration distribution at time t. Let

Et := {Xt : t = T
(−)
i for i ∈ 1, . . . , N(t) and t/2 < T

(−)
i < t}.

If |Et| = 0 then let µt ≡ µ0, else

µt(x) =
t

a+ t

1

|Et|
∑
y∈Et

δy(x) +
a

a+ t
µ0(x).

Figure 5.17 serves to illustrate how interval [t/2, t] grows with time, yet also leaves
interval [0, t/2] forgotten. Point masses added to the regeneration distribution at
an early stage may be far less accurate in approximating µ+ than those added at
a later stage, thus removing these point masses from the regeneration distribution
may improve convergence.

A computer program for simulating an Adaptive Restore process uses a lot
of memory. In this chapter, we saw that this becomes a problem when the total
simulation time is large. An Adaptive Restore process with short-term memory
would reduce the memory requirements of a computer program implementing the
algorithm. Another interesting option to explore for reducing the algorithm’s
memory requirement would be to thin the samples making up the discrete com-
ponent of µt. It would be interesting to see whether an Optimal Thinning method
could be used, such as the method proposed by Riabiz et al. (2020), which selects
a subset of samples with empirical distribution close to optimal in approximating
the sampled distribution.
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Figure 5.18: An illustration of using local bounds on the regeneration rate. In
red, κ+ for π ≡ N (0, 1). In black, the piece-wise constant dominating rate given
by equation (5.6).

5.4.2 Local bounds on the regeneration rate

Instead of having a single global bound on the regeneration rate, one could par-
tition the state-space into subsets, each with its own local bound. For exam-
ple, when π is the standard normal distribution, κ+(x) = (x2 − 1)/2 ∨ 0 and
an appropriate global truncation level is K+ = 4. One could define K+ as a
piecewise-constant function such as:

K+(x) =


0, |x| ≤ 1;

1.5, 1 < |x| ≤ 2;

4, |x| ≥ 2.

(5.6)

Figure 5.18 plots this dominating rate against κ+. The advantage would be that
κ+ is evaluated less frequently. For this example, κ+ wouldn’t be evaluated as
long as Xt remains on the interval [−1, 1].

To simulate a Brownian Motion Restore process with piecewise-constant dom-
inating rate would require using conditioned Brownian Motion. That is, one
would need to simulate the length of time that the process stays in an inter-
val corresponding to a particular value of the dominating rate. Doing so would
not significantly increase the computational cost of the method, but would be a
programming challenge.
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Chapter 6

Using Regeneration to Correct the

Invariant Distribution of a Jump

Process

Recall from Section 4.2 that a Restore jump process is defined by enriching some
underlying jump process {Yt}t≥0, with holding rate λ and Markov transition ker-
nel P , with regenerations from distribution µ at a rate κ. When the regeneration
rate is given by (4.8), that is

κ(x) =

∫
λ(y)π(y)p(y, x)dy − λ(x)π(x)

π(x)
+ C

µ(x)

π(x)
,

with C > 0 such that κ(x) ≥ 0,∀x ∈ X , then the enriched process{Xt}t≥0 is
π-invariant.

For an arbitrary choice of Markov transition kernel, it may not be possible
to evaluate the integral term in the numerator of (4.8) analytically. Indeed,
the fundamental motivation for using Monte Carlo is to evaluate integrals with
respect to π. Wang et al. (2021) point out that taking λ ≡ 1 and P to be a
π-invariant Markov transition kernel, the regeneration rate reduces to (4.9):

κ(x) = C
µ(x)

π(x)
.

Thus Wang et al. (2021) provide an algorithmically simple way to enrich a π-
invariant jump process with regenerations. The enriched process enjoys the ben-
efits of regenerative simulation, such as parallel simulation and absence of burn-in,
see subsection 2.3.3. However, two of the original motivations for Restore, as set
out in the introduction of Chapter 4, were to design algorithms that (i) combine
dynamics that by themselves are not π-invariant, in such a way that they com-
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pensate for each other and (ii) break free of the requirement on Markov transition
kernels to be reversible, which acts as a constraint.

This chapter shows that a class of jump processes which are not already
π-invariant may be enriched with regenerations so that the resulting Restore
processes are π-invariant. An instance of the class is called a Jump Process
Adjusted with Regenerations (Jumpar). The word “adjusted” is used to signify
that the invariant distribution of the process is altered so that it corresponds to
a given target distribution. Thus, the meaning of “adjusted” in this context is
the same as that of the same word in “Metropolis Adjusted Langevin Algorithm”
(Roberts and Tweedie, 1996a). By contrast, enriching with regenerations an
underlying jump process that is already π-invariant does not change the invariant
distribution.

The chapter is laid out as follows. Section 6.1 sets out the main framework for
enriching non-π-invariant jump processes so that the enriched jump process is π-
invariant. Two options for the holding rate are examined in Section 6.2: constant
and non-constant. Three choices of the dynamics used in the underlying process
are then inspected in Sections 6.3, 6.4 and 6.5: Random Direction, Hamiltonian
and Conformal Hamiltonian. Section 6.6 concludes the chapter with a discussion.

6.1 Class of Jump Process Adjusted with Regen-

erations

Let V be an auxiliary variable defined on V having distribution πV (v) with known
normalizing constant. The augmented variable θ := (X, V ) takes values ϑ :=

(x, v) on phase space Θ := X ×V . A state ϑ = (x, v) in the augmented space may
be thought of as a particle with position x and a velocity v. Hence the variable
V is referred to as the velocity. The augmented variable has a distribution with
density:

πθ(ϑ) := πX×V (x, v) := πX(x)× πV (v).

The augmented regeneration distribution has density:

µθ(ϑ) := µX×V (x, v).

The central theorem of this chapter is as follows.

Theorem 4. Let {Ξt}t≥0 be a jump process on Θ with holding rate λ(ϑ) and
jump chain transition kernel P corresponding to a bijective transformation A(ϑ),
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so that ∀ϑ ∈ Θ and for all sets B ⊂ Θ

P (ϑ,B) =

1, if A(ϑ) ∈ B,

0, else.
(6.1)

Suppose A−1 is the inverse of A and has Jacobian JA−1. Let {θt}t≥0 be the jump
process resulting from enriching {Ξt}t≥0 with regenerations from distribution µθ

at rate κ. Then πθ is the invariant distribution of {θt}t≥0 for

κ(ϑ) =
λ(A−1(ϑ))πθ(A

−1(ϑ))|JA−1(ϑ)| − λ(ϑ)πθ(ϑ) + Cµθ(ϑ)

πθ(ϑ)
, (6.2)

where the density Cµθ(ϑ) is large enough to guarantee that κ(ϑ) ≥ 0,∀ϑ ∈ Θ and
it is assumed that π[(λ+ κ)2] <∞.

The jump process {θ}t≥0 constructed in Theorem 4 is called a Jump Process
Adjusted with Regenerations (Jumpar). Augmenting the state space and using
a jump chain transition kernel corresponding to a bijective transformation is
the mechanism for getting around the potentially difficult task of evaluating the
integral in the numerator of (4.8).

Note that the normalizing constant for πθ(ϑ) doesn’t need to be known, since
it can be absorbed into the constant C. To see this write (6.2) in terms of π̃θ(ϑ)/Z

and multiply through by Z. Then writing C̃ = CZ we get

κ(ϑ) =
λ(A−1(ϑ))π̃θ(A

−1(ϑ))− λ(ϑ)π̃θ(ϑ) + C̃µθ(ϑ)

π̃θ(ϑ)
. (6.3)

We now prove Theorem 4. Wang et al. (2021) noted that trying to prove
π-invariance of a Restore process via analysis of its generator results in highly
technical difficulties. Instead, they give proofs of invariance which avoid using
the generator approach. The following proof is based on that of Theorem 22 of
(Wang et al., 2021) and thus likewise avoids complications arising from analysing
the generator.

Proof. We drop subscripts θ. The transition kernel of the jump chain of {θ}t≥0

is:
P µ(ϑ, dϑ′) =

λ(ϑ)

λ(ϑ) + κ(ϑ)
P (ϑ, dϑ′) +

κ(ϑ)

λ(ϑ) + κ(ϑ)
µ(dϑ′). (6.4)

The overall holding rate is:

λ̄(ϑ) = λ(ϑ) + κ(ϑ).

Let {Qµ
t : t ≥ 0} be the continuous-time semigroup for the Restore process θ.

We want to show πQµ
t f = π[f ] for any continuous bounded function f , for each
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t ≥ 0. It suffices to show the time derivative of the mapping t → πQµ
t f is 0 at

t = 0. In the proof of Theorem 22, Wang et al. (2021) show that

d

dt
Qtf(ϑ) = −λ̄(ϑ) exp

{
− λ̄(ϑ)t

}
f(ϑ) + λ̄(ϑ)P µ[Qtf ](ϑ)

−
∫ t

0

λ̄(ϑ)2 exp
{
− λ̄(ϑ)(t− s)P µ[Qsf ](ϑ)

}
ds.

Since it is assumed that π
[
λ̄2
]
<∞, we have:

d

dt
πQtf

∣∣∣∣
t=0

=
d

dt

∫
π(ϑ)Qtf(ϑ)dϑ

∣∣∣∣
t=0

,

=

∫
π(ϑ)

d

dt
Qtf(ϑ)

∣∣∣∣
t=0

dϑ,

=

∫
π(ϑ)λ̄(ϑ)[P µf(ϑ)− f(ϑ)]dϑ.

Using (6.2), we can show that (6.4) may be written:

P µ(ϑ, dϑ′) =
[
λ(ϑ)π(ϑ)P (ϑ, dϑ′) (6.5)

+
[
λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)| − λ(ϑ)π(ϑ) + Cµ(ϑ)

]
µ(dϑ′)

]
·
[
λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)|+ Cµ(ϑ)

]−1

.

Thus

P µf(ϑ) =
[
λ(ϑ)π(ϑ)f(A(ϑ))

+
[
λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)| − λ(ϑ)π(ϑ) + Cµ(ϑ)]

·
∫
f(ϑ′)µ(ϑ′)dϑ′

]
·
[
λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)|+ Cµ(ϑ)

]−1

.

We have
π(ϑ)λ̄(ϑ) = λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)|+ Cµ(ϑ).

Thus

π(ϑ)λ̄(ϑ)P µf(ϑ) = λ(ϑ)π(ϑ)f(A(ϑ))

+
[
λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)| − λ(ϑ)π(ϑ) + Cµ(ϑ)

]
·
∫
f(ϑ′)µ(ϑ′)dϑ′.

and

π(ϑ)λ̄(ϑ)f(ϑ) = λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)|f(ϑ) + Cµ(ϑ)f(ϑ).
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Now,

d

dt
πQtf

∣∣∣∣
t=0

=

∫
λ(ϑ)π(ϑ)f(A(ϑ))dϑ

+

∫ [
λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)| − λ(ϑ)π(ϑ)

]
dϑ

·
∫
f(ϑ′)µ(ϑ′)dϑ′

+

∫
Cµ(ϑ)dϑ

∫
f(ϑ′)µ(ϑ′)dϑ′

−
∫
λ(A−1(ϑ))π(A−1(ϑ))|JA−1(ϑ)|f(ϑ)dϑ

−
∫
Cµ(ϑ)f(ϑ)dϑ.

The terms on the first and fifth lines cancel. To see this, use a change of variables.
Similarly, the integral on the second line is zero. The fourth and sixth lines cancel,
because the first integral on the third line is equal to C. This completes the proof,
since we have shown that

d

dt
πQtf

∣∣∣∣
t=0

= 0.

6.1.1 Velocity Refreshment

The framework developed above may be extended by introducing the option to
refresh the velocity before each local move by resampling the velocity from the
V -marginal of λπθ. For example, if λ ≡ 1 so that λπθ ≡ πθ ≡ πXπV , this would
amount to resampling V from πV . Alternatively, if λ ≡ µθ/πθ and µθ ≡ µXµV

then λπθ ≡ µθ ≡ µXµV and refreshing the velocity consists of resampling V from
µV .

Refreshing the velocity does not change the regeneration rate. We do not
prove this, but present an informal derivation for why this is the case. Equation
(4.8) gives the expression for the regeneration rate under which a Restore jump
process on X is π-invariant. Rewritten in terms of ϑ, the augmented variable, for
Restore jump processes on Θ, this expression is

κ(ϑ) =
λπP (ϑ)− λπ(ϑ)

π(ϑ)
+ C

µ(ϑ)

π(ϑ)
.

Write the Markov transition kernel of the underlying jump process as P = P1P2,
where P1 is invariant for the V -marginal of λπθ (and corresponds to refreshing
the velocity) and P2 corresponds to a bijective transformation A(ϑ), so may be
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expressed by (6.1). It then follows that

κ(ϑ) =
λπP1P2(ϑ)− λπ(ϑ)

π(ϑ)
+ C

µ(ϑ)

π(ϑ)
,

=
λπP2(ϑ)− λπ(ϑ)

π(ϑ)
+ C

µ(ϑ)

π(ϑ)
,

so κ is given by equation (6.2) of Theorem 4.

6.1.2 Simulation

Algorithm 13 describes how to simulate n tours of a Jumpar. Here, i counts
the number of tours; τ (λ) and τ (κ) denote the times to the next local and global
moves respectively, conditioned on the jump process remaining in its current state;
REFRESH is a user-specified boolean variable indicating whether to resample the
velocity before making a local move.

Algorithm 13: The Jump Process Adjusted with Regenerations Sam-
pler
i← 0, (X, V ) ∼ µθ

while i < n do
τ (λ) ∼ Exp(λ(X, V ))

τ (κ) ∼ Exp(κ(X, V ))

τ (λ+κ) ← τ (λ) ∧ τ (κ)

Record X, V, τ (λ+κ)

if τ (λ) < τ (κ) then
If REFRESH: V ∼ [λπθ]V (the V -marginal of λπθ)
(X, V )← A(X, V )

else
X, V ← µθ

i← i+ 1

end

end

Algorithm 13 is pseudo-code and has been written with simplicity in mind
– an efficient implementation would save certain values in memory before each
local move, in order to reduce computation. In particular, suppose the process
has state ϑi. The next state visited is ϑi+1 = A(ϑi), which has regeneration rate:

κ(ϑi+1) =
λ(ϑi)πθ(ϑi)|JA−1(ϑi+1)| − λ(ϑi+1)πθ(ϑi+1) + Cµθ(ϑi+1)

πθ(ϑi+1)
.
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By saving the value zi := λ(ϑi)πθ(ϑi) before making a local move, it is possible
to decrease the computational cost of the algorithm, since

κ(ϑi+1) =
zi|JA−1(ϑi+1)| − λ(ϑi+1)πθ(ϑi+1) + Cµθ(ϑi+1)

πθ(ϑi+1)
.

Thus we only need to compute A−1 once, at the beginning of each tour.

6.2 Choice of Holding Rate

To be valid, the regeneration rate must be non-negative everywhere. With this
criteria in mind, two choices of holding rate are used. Subsection 6.2.1 uses a
constant holding rate and a heuristic method for finding a suitably large regen-
eration constant. Alternatively, subsection 6.2.2 uses a weighted holding rate,
which guarantees that the regeneration rate is non-negative everywhere.

6.2.1 Constant Holding Rate

Suppose the holding rate is constant: λ(ϑ) ≡ λ0,∀ϑ ∈ Θ, λ0 > 0. Then the
regeneration rate may be written as

κ(ϑ) =
λ0

[
πθ(A

−1(ϑ))|JA−1(ϑ)| − πθ(ϑ)
]

+ Cµθ(ϑ)

πθ(ϑ)
.

When λ0 = 1:

κ(ϑ) =

[
πθ(A

−1(ϑ))|JA−1(ϑ)|
πθ(ϑ)

− 1 + C
µθ(ϑ)

πθ(ϑ)

]
.

Suppose πX(x) = π̃X(x)/Z and it is possible to evaluate π̃X(x) but Z is
unknown. The augmented target distribution is then πθ(ϑ) = πX(x)πV (v) =

π̃X(x)πV (v)/Z and we are able to evaluate π̃θ(ϑ) = π̃X(x)πV (v). The regeneration
rate is then

κ(ϑ) =

[
π̃θ(A

−1(ϑ))|JA−1(ϑ)|
π̃θ(ϑ)

− 1 + C̃
µθ(ϑ)

π̃θ(ϑ)

]
,

where C̃ = CZ. As explained in Section 4.5, we may estimate Z as C̃T/n, for T
the total simulation time and n the number of tours simulated.

Complexity

It’s assumed that the cost of evaluating µθ is negligible in comparison to that of
evaluating πθ, so can be ignored. Suppose ϑi for i = 0, 1, 2, . . . has position i

in the jump chain of a given tour. Then the computational cost associated with
ϑ0 is the cost of evaluating πθ at ϑ0, evaluating |JA−1(ϑ0)|, computing A−1(ϑ0)
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and evaluating πθ at A−1(ϑ0). For i = 1, 2, . . . the computational cost associated
with ϑi is the cost of computing A(ϑi−1) (in order for the process to move to ϑi),
evaluating |JA−1(ϑi)| and evaluating πθ at ϑi. Sections 6.3, 6.4 and 6.5 consider
transformations for which |JA−1(ϑ)| equals a particular constant for all ϑ ∈ Θ.
Thus in these special cases, evaluating |JA−1(ϑ)| has negligible cost and can be
ignored.

Constraints on the regeneration measure

Measure Cµθ must be chosen so that κ(ϑ) > 0,∀ϑ ∈ Θ. This is equivalent to the
condition:

πθ(A
−1(ϑ))|JA−1(ϑ)| − πθ(ϑ) + Cµθ(ϑ) ≥ 0,∀ϑ ∈ Θ. (6.6)

Since in general there are no constraints on A, the term πθ(A
−1(ϑ))|JA−1(ϑ)| may

be arbitrarily small so is of no help in lessening the constraints on measure Cµθ.
The best we can do is to find Cµθ such that

Cµθ(ϑ)− πθ(ϑ) ≥ 0,∀ϑ ∈ Θ.

This condition is equivalent to πθ(ϑ)/Cµθ(ϑ) ≤ 1, which is the condition that
applies to rejection sampling when using some proposal distribution µθ to simulate
from πθ.

Increasing the regeneration constant on-the-fly

Recall that κCµ is used to denote the full regeneration rate when the regeneration
measure is Cµ. Namely, ∀x ∈ X , κCµ(x) = κ̃(x) + Cµ(x)/π(x). When simulat-
ing the enriched process under measure Cµθ, upon finding a state ϑ such that
κCµ(ϑ) < 0, the method of Section 5.1 is used. That is, the process is restarted
(any existing output is discarded) using a regeneration constant C ′ > C such
that κC′µ(ϑ) = κ, for κ > 0 a small constant such as κ = 0.01. As long as µθ
has heavier tails than µ+

θ (the minimal regeneration distribution, see Section 4.4),
this method will eventually find a constant C such that κCµ(ϑ) ≥ 0,∀ϑ ∈ Θ. It
is possible to choose µθ ≡ µXµV and µV ≡ πV . Indeed, it may at first seem like
a good idea to set µV ≡ πV since then V regenerates from the target distribu-
tion. Condition πθ(ϑ)/Cµθ(ϑ) ≤ 1 simplifies to πX(x)/CµX(x) ≤ 1. However,
this can cause slow adaption of constant C. It may be that κ(ϑ) < 0 for values
of ϑ = (x, v) for which v is in the tails of πV . Since the tails of πV are reached
infrequently, adaption of C takes a long time. See subsection 6.4.4 for an example
of this.
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6.2.2 Weighted Holding Rate

Assuming π is normalised, setting C = 1 and defining

λ(ϑ) =
µθ(ϑ)

πθ(ϑ)
, (6.7)

equation (6.2) reduces to:

κ(ϑ) =
µθ(A

−1(ϑ))|JA−1(ϑ)|
πθ(ϑ)

. (6.8)

If we only have access to the unnormalised density π̃θ, setting

λ(ϑ) =
µθ(ϑ)

π̃θ(ϑ)

and C̃ = 1 (equivalent to implicitly setting C = 1/Z) gives:

κ(ϑ) =
µθ(A

−1(ϑ))|JA−1(ϑ)|
π̃θ(ϑ)

.

Using a weighted holding rate has the advantage of guaranteeing that the
regeneration rate is non-negative everywhere for any choice of regeneration dis-
tribution. That is, there are no restrictions on µθ.

When µθ ≡ µXµV and µV ≡ πV , these rates may be written as

λ(x, v) =
µX(x)

π̃X(x)
,

κ(x, v) =
µX([A−1(x, v)]x)µV ([A−1(x, v)]v)|JA−1(x, v)|

π̃X(x)πV (v)
.

Since C̃ = 1, the normalizing constant Z may be estimated as T/n (see Section
4.5).

When the holding rate is weighted, there is no minimal regeneration distri-
bution and hence no minimal regeneration rate. This is a consequence of the
underlying process itself relying on µ, as well as the enriched process regenerat-
ing from µ. To see this, first notice that the partial regeneration rate is

κ̃(ϑ) =
µθ(A

−1(ϑ))|JA−1(ϑ)| − µθ(ϑ)

πθ(ϑ)
.

Recall equation (4.13) for the density function of the minimal regeneration dis-
tribution. In terms of the random variable θ, this is:

µ+
θ (ϑ) =

1

C+
[0 ∨ −κ̃(ϑ)]πθ(ϑ).

The minimal regeneration measure would thus satisfy

C+µ+
θ (ϑ) =

[
µ+
θ (ϑ)− µ+

θ (A−1(ϑ))|JA−1(ϑ)| ∨ 0
]
,
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which may alternatively be written as

0 =
[
(1− C+)µ+

θ (ϑ)− µ+
θ (A−1(ϑ))|JA−1(ϑ)| ∨ −C+µ+

θ (ϑ)
]
.

Consider a state ϑ0 for which µ+
θ (ϑ0) > 0. Then since −C+µ+

θ (ϑ0) < 0 it must
hold that

0 = (1− C+)µ+
θ (ϑ0)− µ+

θ (A−1(ϑ0))|JA−1(ϑ0)|.

We now show that a distribution µ+
θ satisfying the above equation does not exist,

for the case where |JA−1(ϑ)| = J0 for all ϑ ∈ Θ, for J0 ≥ 1 some constant. This
case is considered, because the specific transformations considered in the next
sections all have constant Jacobian matrices greater than or equal to one. We do
not show that a distribution µ+

θ satisfying the above equation does not exists for
transformations A in general. Rearranging the equation, we find that

µ+
θ (ϑ0)

µ+
θ (A−1(ϑ0))

=
|JA−1(ϑ0)|

1− C+
.

This means that the constant C+ must satisfy C+ < 1, otherwise the ratio of
densities on the left-hand side would be negative. This constant must also satisfy
C+ > 0, by definition of the Restore process. The ratio µ+

θ (ϑ0)/µ+
θ (A−1(ϑ0)) is

therefore positive, so the density µ+
θ increases without bound (along the trajectory

defined by starting at ϑ0 and repeatedly applying the transformation A) so µ+
θ is

not a proper distribution.

Under a weighted holding rate, in comparison to a constant holding rate, the
variance of the holding times of the underlying process increases. In addition,
there can be a numerical issue if µ has heavier tails than π. When the process
is moving out into the tails of π, sometimes λ and κ have similar large values.
This results in inefficient computation, since sample paths will visit a sequence
of states for a very short amount of time each.

Complexity

Again assume that the cost of evaluating µθ is negligible in comparison to that
of evaluating πθ. The computational cost associated with ϑ0, the first state in
the jump chain of a given tour, is the cost of evaluating πθ(ϑ0), |JA−1(ϑ0)| and
computing A−1(ϑ0). For a subsequent state ϑi in the jump chain of the given
tour, i ∈ {1, 2, . . . }, the additional computational cost is that associated with
computing the transformation A(ϑi−1) in order to calculate ϑi, then the cost of
evaluating πθ(ϑi) and |JA−1(ϑi)|.
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6.2.3 Summary

This section has considered two choices for the holding rate, both motivated by
the requirement that κ is non-negative everywhere. A comparison of the two is
given in the table below.

Constant Holding Rate Weighted Holding Rate

λ(ϑ) λ0 µ(ϑ)/π(ϑ)

Computational cost as-
sociated with ϑ0, the
first state in the jump
chain of a given tour.

Evaluating πθ(ϑ0) and
|JA−1(ϑ0)|, computing
A−1(ϑ0) then evaluat-
ing πθ(A−1(ϑ0)).

Evaluating πθ(ϑ) and
computing A−1(ϑ0).

Computational cost as-
sociated with ϑi for i =

1, 2, . . .

Computing ϑi =

A(ϑi−1) then evalu-
ating |JA−1(ϑi)| and
πθ(ϑ).

Computing ϑi =

A(ϑi−1) then evalu-
ating |JA−1(ϑi)| and
πθ(ϑ).

Restriction on µθ.

Given by equation
(6.6), which in
practice reduces to
πθ(ϑ)/Cµθ(ϑ) ≤ 1.

None.

µ+
θ Exists. Does not exist.

Potential numerical is-
sues.

None found.

The jump process may
visit a sequence of
states for a very short
amount of time each.

It is not clear from this summary alone which holding rate should be preferred.
We now consider three choices of local dynamics: Random-Direction, Hamiltonian
and Conformal Hamiltonian. The experiments conducted for these choices of
transformation will lead us to conclude that a Jumpar with constant holding rate
in fact has the most potential to be an efficient sampler.

6.3 Random Direction Dynamics

Theorem 4 set out how to enrich a class of jump processes with regenerations so
that the resulting jump process is π-invariant. The class of jump process that
the theorem applies to have a jump chain transition kernel P corresponding to
a bijective transformation A. In this section we consider a particular choice of
transformation, denoted A1, which corresponds to the velocity of the process
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remaining fixed and the position moving according to the velocity. In Sections
6.4 and 6.5 we consider other transformations, denoted A2 and A3 respectively,
corresponding to Hamiltonian and Conformal Hamiltonian dynamics.

Consider enriching with regenerations a jump process {Ξt}t≥0 = {Yt,Wt}t≥0

with jump chain transition kernel corresponding to the mapping:

A1(x, v) = (x+ v, v). (6.9)

Such a process is clearly not π-invariant: for Ξ0 = (Y0,W0) = (y0, w0), Yt → ∞
as t→∞ whilst Wt = w0 ∀t. Mapping A1 has inverse A−1

1 (x, v) = (x− v, v) and
|JA−1(ϑ)| = 1,∀ϑ ∈ Θ. We are therefore able to define a jump process {θt}t≥0

by enriching {Ξt}t≥0 with regenerations so that {θt}t≥0 has invariant distribution
corresponding to a target distribution πθ. We call such a process a Random
Direction Jumpar (RD-Jumpar).

Complexity

The computational cost of the transformation and its inverse is negligible com-
pared to that of evaluating πθ and can be ignored. For a constant holding rate,
the cost of the first state in the jump chain of a tour is two evaluations of πθ.
Subsequent states cost one evaluation of πθ. For a weighted holding rate, the cost
of generating a jump chain of length n is n evaluations of πθ.

Special Case: Simplified Regeneration Rate

Suppose the regeneration distribution is chosen to be separable: µX,V (x, v) =

µX(x)µV (v). When a weighted holding rate is used and we choose µV ≡ πV , then
λ(x, v) = µX(x)/πX(x) and

κ(x, v) =
µX(x− v)

πX(x)
.

When the holding rate is non-constant, generating a component of the jump chain
requires evaluating the target density just once.

Figure 6.1 shows an example of when πX ≡ N (0, 0.81) and µX , µV , πV are
standard Normal distributions. The figures show contours of the holding rate,
regeneration rate and the probability that a move is regenerative, as well as
sample paths of processes with and without velocity refreshment.

Random-Direction dynamics are useful for demonstrating the combination of
local and global moves. However, for high-dimensional target distributions, these
dynamics will be ineffective, since it is likely that the process will move away
from the region where most of the mass of π is concentrated.
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(c) Path without velocity refreshments. Vertical lines show regeneration times.
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(d) Path with velocity refreshments. Vertical lines show regeneration times.

Figure 6.1: Plots associated with a Random-Direction Jump Process Adjusted
with Regenerations with weighted holding rate, πX ≡ N (0, 0.81) and µX ≡ µV ≡
πV ≡ N (0, 1).
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6.4 Hamiltonian Dynamics

It may be possible to improve on the performance of RD-Jumpar by using a more
sophisticated transformation. This section introduces the Hamiltonian Jump
Process Adjusted with Regenerations (H-Jumpar). This jump process is defined
by enriching an underlying jump process, which moves according to unadjusted
Hamiltonian dynamics, with regenerations so that the process is π-invariant. This
section first presents Hamiltonian dynamics, including Hamilton’s equations of
motion and their analytic integration. Next, it is shown how approximate Hamil-
tonian dynamics may be simulated by numerically integrating the equations of
motion using the Leapfrog method, which may be represented as a transformation.
Next Hamiltonian Monte Carlo is covered (Duane et al., 1987; Neal et al., 2011),
an algorithm that uses Hamiltonian dynamics. Finally, the Hamiltonian Jumpar
is introduced in full and experiments presented.

6.4.1 Hamilton’s Equations of Motion

Hamilton’s equations of motion describe how a particle moves so that its total
energy is conserved. Let the particle be ϑ = (x, v), with position x ∈ X , velocity
v ∈ V , potential energy U(x) and kinetic energy K(v). The Hamiltonian is the
total energy:

H(ϑ) = H(x, v) = U(x) +K(v).

The Hamiltonian is conserved when the particle moves according to Hamilton’s
equations of motion:

dx

dt
= ∇vH(x, v),

dv

dt
= −∇xH(x, v).

A particle moving with Hamiltonian dynamics in one-dimensional position space
may be visualised as a frictionless puck moving over a smooth, curved surface.
When the puck goes uphill it gains potential energy and loses kinetic energy
(hence it slows down) and vice versa when going downhill.

Given a particle’s position and velocity at time 0, their values at time I can
be found by jointly integrating the equations of motion:

x(I) =

∫ I

0

∇vH(x(s), v(s))ds+ x(0),

v(I) =

∫ I

0

−∇xH(x(s), v(s))ds+ v(0).
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Hamiltonian dynamics are used in Molecular Dynamics simulation (Alder and
Wainwright, 1959). Although it is sometimes possible to integrate Hamilton’s
equations analytically (Pakman and Paninski, 2014), in most cases it is necessary
to use a numerical integrator (Leimkuhler and Reich, 2004).

Numerical Integration of Hamilton’s Equations of Motion

A numerical integrator approximates the trajectory of a particle moving according
to Hamiltonian dynamics by iteratively computing its position and velocity at
a discrete mesh of times. The leapfrog method is most widely used because
it is computationally inexpensive whilst remaining adequately accurate in most
applications. The technique splits the integration time I into a sequence of L
equally spaced points, with spacing ε, so I = Lε. Integer L is called the number of
leapfrog steps and ε is called the leapfrog step-size. The leapfrog method alternates
between updates of v and x. Starting at s = 0, first the velocity is update with
a half-step and the position by a full step:

v
( ε

2

)
= v(0)− ε

2
∇xU (x(t)) , (6.10)

x(ε) = x(0) + ε∇vK
(
v
( ε

2

))
. (6.11)

Next, for s = ε, 2ε, . . . , (L− 1)ε, full-step updates of v and x are made:

v
(
s+

ε

2

)
= v

(
s− ε

2

)
− ε∇xU(x(s)), (6.12)

x(s+ ε) = x(s) + ε∇vK
(
v
(
s+

ε

2

))
. (6.13)

Finally, to complete the numerical integration, a half-step update of v is per-
formed

v(Lε) = v

((
L− 1

2

)
ε

)
− ε

2
∇xU(x(Lε)). (6.14)

The method gets its name from the way the updates of the velocity and position
“leap” over each other. Integrating Hamilton’s equations of motion this way, the
Hamiltonian is only conserved approximately.

Representation as a Transformation

The leapfrog method may be represented as an invertible transformation with unit
Jacobian. To see this, note that for two invertible and differentiable transforma-
tions Ai and Aj, their composition Aj ◦Ai is also invertible and differentiable, for
example see Section 2.1 of Papamakarios et al. (2021). In particular:

(Aj ◦ Ai)−1 = A−1
i ◦ A−1

j ,

|JAj◦Ai(θ)| = |JAj(θ)| · |JAi(θ)|.
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Each of equations (6.10)-(6.14) are invertible and have unit Jacobian, therefore
their composition has unit Jacobian. Recalling that A1 represents the transfor-
mation (6.9), let the leapfrog transformation be

A2 : Θ→ Θ.

6.4.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) uses Hamiltonian dynamics as a mechanism for
proposing moves in a Metropolis-Hastings algorithm (Duane et al., 1987; Neal,
1996a; Neal et al., 2011). HMC operates on an augmented space, simulating a
Markov chain with limiting distribution πΘ ≡ πXπV , with X the random variable
of interest and V an auxilliary velocity variable. An isotropic Gaussian is usually
chosen for πV .

HMC alternates between making a Gibbs update of the velocity by resampling
from πV , then making a Metropolis-Hastings update of θ = (X, V ). Hamiltonian
dynamics are used to propose a new state. Let F : Θ→ Θ be the transformation
that negates the velocity:

F (X, V ) = (X,−V ).

The proposal distribution q used for the Metropolis-Hastings step is equivalent to
applying F ◦ A2. To apply the transformation A2, the Hamiltonian is defined in
terms of the energies U and K corresponding to distributions πX and πV . Once
the leapfrog transformation has been made, the velocity is “flipped” using F so
that the proposal distribution is symmetrical: q(ϑ, ϑ′) = q(ϑ′, ϑ);∀ϑ, ϑ′ ∈ Θ. For
ϑ the current state and ϑ′ the proposed state, the acceptance probability given
by equation (2.8) then simplifies to

α(ϑ, ϑ′) =
πθ(ϑ

′)

πθ(ϑ)
.

If the flip transformation F is not applied, then the proposed state would be
A2(ϑ) and the acceptance probability would be, for all ϑ:

α(ϑ,A2(ϑ)) =
πΘ(A2(ϑ))q(A2(ϑ), ϑ)

πΘ(ϑ)q(ϑ,A2(ϑ))
=

πΘ(A2(ϑ))× 0

πΘ(ϑ)q(ϑ,A2(ϑ))
= 0.

If the Jacobian of the transformation were not unit, it would need to be accounted
for in the acceptance probability. HMC is described in full in Algorithm 14.
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Figure 6.2: Dots show the first 6 samples from πX ≡ N (0, 1) obtained with HMC
sampling. Dotted lines show the resampling of the velocity v at the start of
each trajectory from πV ≡ N (0, 4). Gray lines trace the L = 3 leapfrog steps
of size ε = 1 taken to propose each new state of the chain. The approximate
Hamiltonian dynamics result in roughly elliptical paths that remain in level sets
of the augmented distribution.

Algorithm 14: Hamiltonian Monte Carlo

for i in 0 to n− 1 do
V ∼ πV

(X∗, V ∗)← A2(X, V )

V ∗ ← −V ∗

α← 1 ∧ exp{H(X, V )−H(X∗, V ∗)}
U ∼ U(0, 1)

if U < α then
(X, V )← (X∗, V ∗)

end

Record X, V
end

Figure 6.2 illustrates the dynamics of a Markov chain generated using HMC
when πX ≡ N (0, 1), πV ≡ N (0, 4), ε = 1 and L = 3. Since the sampler approx-
imately conserves the Hamiltonian, the leapfrog steps approximately remain in
the same level sets of the joint distribution of (X, V ).
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Figure 6.3: A trajectory with stable Hamiltonian, consisting of 100 leapfrog up-
dates with U(x) = x2/2 and K(v) = v2/8 The Hamiltonian is not conserved
exactly but oscillates around its starting value.

Tuning parameters

The leapfrog method does not conserve the Hamiltonian exactly. However, when
ε is sufficiently small, the Hamiltonian will oscillate around its initial value, as
in Figure 6.3. If the Hamiltonian doesn’t deviate too far from its initial value,
proposal moves are likely to be accepted.

An analytic study of the scaling of HMC (Beskos et al., 2013) finds that,
in order for the acceptance probability not to decay as the dimension d goes
to infinity, ε must be O(d−1/4) and thus O(d1/4) steps are needed to traverse
the space. The study finds that the asymptotically optimal acceptance rate, to
three decimal places, is 0.651. This result agrees with empirical findings, that an
acceptance rate of 0.7 is roughly optimal (Chen et al., 2000).

Despite this result, tuning ε and L is still difficult. The step-size should be
large, though the accuracy of the approximation should be retained. Figure 6.4
illustrates an instance where the step-size is too large (ε = 2 in this case), which
results in a very bad approximation of Hamiltonian dynamics – instead of remain-
ing close to the level set corresponding to the initial value of the Hamiltonian,
the path spirals outwards and the Hamiltonian changes significantly.

Once a stable step-size has been found, an appropriate L may then be cho-
sen. A useful heuristic is that the number of leapfrog steps should be chosen so
that the Markov chain has small lag-1 autocorrelation. Strong correlations be-
tween consecutive states usually indicate that the particle has not moved far away
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Figure 6.4: Unstable Hamiltonian dynamics resulting from a stepsize ε = 2 which
is too large. Here, the target is a t-distribution with 3 degrees of freedom, aug-
mented with a standard normal distribution for the velocity variable. The tra-
jectory spirals outwards and the Hamiltonian increases.

enough from its start point. However, large autocorrelation may indicate that the
integration time is in fact too large and that a long Hamiltonian trajectory has
ended close to where it began. Negative autocorrelation may indicate periodic
behavior: the chain may be moving back and forth from one side of phase space
to the other.

Figure 6.5 illustrates how small changes in L can result in vastly different au-
tocorrelations in the chain. Tuning HMC only becomes more difficult in multiple
dimensions, where a good choice of ε and L can vary between dimensions.

Difficulties in tuning HMC inspired the development of the No-U-Turn Sam-
pler (NUTS) (Hoffman and Gelman, 2014) and its efficient implementation in the
STAN programming language (Carpenter et al., 2017). NUTS handles the tuning
problem by automating the choice of ε and adaptively setting L in order to avoid
the sampler turning back on itself, all whilst retaining reversibility.

Scaling and Efficiency

The typical set of a probability distribution is the region of state space containing
a significant amount of probability mass. The mode has high probability den-
sity, but in high dimensions has very small volume (a feature of high-dimensional
spaces). Thus, counter-intuitively, in high-dimensions the mode does not contain
a large amount of probability mass and is not in the typical set. By contrast,
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(e) A trajectory started at ϑ = (−2, 0), with the state after L = 1, 3, 6, 12 steps

shown in red, orange, green and blue respectively.

Figure 6.5: Autocorrelation plots for Markov chains simulated with HMC using
L = 1, 3, 6, 12 and a trajectory with approximate Hamiltonian dynamics.
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regions far from the mode may have a large volume, but have very small proba-
bility density, so also don’t contain significant probability mass. The typical set
lies between these extremes and tends to concentrate as the dimension increases.
Generally put, the performance of a MCMC algorithm depends on how well the
sampler explores the typical set. HMC performs well because proposed moves,
driven by Hamiltonian dynamics, tend to remain within the level sets of the aug-
mented target distribution. Thus the sampler will efficiently explore the typical
set Betancourt (2017).

6.4.3 Hamiltonian Jump Process Adjusted with Regenera-

tions

Let {Ξt}t≥0 = {Yt,Wt}t≥0 be a jump process with holding rate λ : Θ → Θ and
jump chain defined by a Markov transition kernel corresponding to the leapfrog
transformation A2 as defined in subsection 6.4.1. Then {Ξt}t≥0 may be enriched
with regenerations, as in Theorem 4 so that {θt}t≥0, the enriched process, has
invariant distribution πθ. Such a process is called a Hamiltonian Jump Process
Adjusted with Regenerations (H-Jumpar).

Complexity

For a tour beginning with state ϑ0, one must compute A−1(ϑ0). Recall that Hamil-
tonian dynamics are simulated by numerically integrating Hamilton’s equations
of motion over an auxiliary time parameter s. To compute A−1(ϑ0), we integrate
these equations backwards in time using L leapfrog steps of size ε. This requires
making L + 1 evaluations of ∇U at times s = 0,−ε, . . . ,−Lε. Thus ϑ0 has an
associated computational cost of L+ 1 evaluations of ∇U plus two evaluations of
U if λ is constant or one evaluation of U if λ is weighted.

For ϑi a subsequent state in the tour (i = 1, 2, . . . ) the associated cost is that
involved with computing A(ϑi−1) and in evaluating π(ϑi). The gradient ∇U will
already have been evaluated at ϑi−1, so only L additional evaluations of ∇U are
needed. Thus ϑi for i = 1, 2, . . . has an associated cost of L evaluations of ∇U
plus one evaluation of U (whether the rate is constant or weighted).

6.4.4 Illustration of Dynamics: Normal distribution

As an example of using Hamiltonian dynamics, we consider using a Hamiltonian
Jumpar to sample a normal distribution. Recall from subsection 6.2.1 that when
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λ(ϑ) ≡ 1, the regeneration measure is constrained, in that it must satisfy equation
(6.6):

πθ(A
−1(ϑ))|JA−1(ϑ)| − πθ(ϑ) + Cµθ(ϑ) ≥ 0,∀ϑ ∈ Θ.

In the general case, when A is any class of bijection, the term πθ(A
−1(ϑ))|JA−1(ϑ)|

may be arbitrarily small and thus the condition effectively reduces to

Cµθ(ϑ)− πθ(ϑ) ≥ 0,∀ϑ ∈ Θ.

Approximate Hamiltonian dynamics in particular are liable to “explode”, meaning
that the particle represented by the dynamics spirals out towards infinity. This
may happen when the target distribution has very steep gradients in parts of
the state space, or if the leapfrog step-size is too large. An example of unstable
approximate Hamiltonian dynamics are illustrated in Figure 6.4. Therefore when
A corresponds to approximate Hamiltonian dynamics, it is particularly true that
in practice the term πθ(A

−1(ϑ))|JA−1(ϑ)| in equation (6.6) does nothing to lessen
the constraint on µθ.

For this reason, for a constant holding rate we recommend setting µθ as a
t-distribution, since this distribution has heavy tails. In the example below, we
consider sampling from a standard normal target distribution when the regener-
ation distribution is a t-distribution.

By contrast, when the holding rate is weighted, there are no constraints on the
regeneration distribution. We then recommend setting the regeneration distribu-
tion to be an isotropic Gaussian distribution (assuming the target distribution has
undergone a pre-transformation so that it is roughly zero-centred with identity
covariance matrix). In our experiment, we therefore consider a Gaussian target
distribution, with variance close but not equal to 1.

Unit Holding Rate

First we demonstrate that setting µV ≡ πV and using the strategy of adapting
C of subsection 6.2.1, it is difficult to find C > 0 such that κ(ϑ) ≥ 0,∀ϑ ∈ Θ.
Let µX ≡ tν with ν = 10. Under regeneration constant Ci, we simulate {Ξt}t≥0

using ε = 0.5 and L = 1 until either 105 tours are completed or a state ϑ′ ∈ Θ

such that κCiµθ(ϑ′) < 0 is found. In the latter case, we discard all output and
restart simulation of the process using Ci+1 such that κCi+1µθ(ϑ

′) = κ = 0.01.
Starting with C0 = 0, the value of C that resulted in 105 tours of the process
being completed, without encountering a state with negative regeneration rate,
was C = 0.281 (3.s.f). However, this value of C is not in fact large enough.
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Figure 6.6: Contours of κ̃ and κ for πX ≡ πV ≡ µV ≡ N (0, 1) and µX ≡ tν with
ν = 10. The parameters used were ε = 0.5 and L = 1. The regeneration measure
does not result in κ being non-negative everywhere.

Figures 6.6a and 6.6b show contour plots of κ̃ and κ for this example. For the
value of C computed, κ is still negative in parts of the space.

When C is not large enough for the regeneration rate to be non-negative
everywhere, the invariant distribution of the process is biased. For example,
suppose we generate 200 estimates of the second moment of πX and that random
variable N is the number of estimates greater than the exact second moment,
which is 1. For an unbiased process, E[N ] = 0.5× 200 = 100 and P [N > 117] =

0.00657 (3.s.f). Using the procedure above, the experiment produced N = 118.
This is because in many trials, C was not large enough for the regeneration rate
to be non-negative everywhere. However, the bias introduced was small: the
average estimate of the second moment was 1.000931.

By contrast, taking µV ≡ tν with ν = 10, a constant C is found for which the
regeneration rate is valid. The process is more likely to make a local move when
κ(ϑ) < 1; in this example, this occurs near the centre of the space. Contours of
κCµθ are shown in 6.7a. The first 10 tours of a sample path are shown in Figures
6.7b and 6.7c. The first shows the weighted jump chain, with samples in the same
tour linked by gray lines. The second shows the x-marginal of the process, with
dashed vertical lines showing regeneration times.

Weighted Holding Rate

Figures 6.8 and 6.9 relate to an example where πX ≡ N (0, 0.81), µX ≡ µV ≡ πV ≡
N (0, 1) and a non-constant holding rate is used to guarantee non-negativity of
κ. Parameters ε = 0.8 and L = 1 were used in the Leapfrog method. Figure
6.8a shows the holding rate in blue and the regeneration rate in red. The holding
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(c) The x-marginal of the jump process. Vertical lines show regeneration times.

Figure 6.7: Hamiltonian Jump Process Adjusted with Regenerations with unit
holding rate, πX ≡ πV ≡ N (0, 1) and µX ≡ µV ≡ tν .
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Figure 6.8: Contours of the holding and regeneration rates for a Hamiltonian
Jumpar with weighted holding rate, as well as contours of the probability that a
move is regenerative. Here, πX ≡ N (0, 0.81) and µX ≡ µV ≡ πV ≡ N (0, 1).

and regeneration rates are similar because the Hamiltonian corresponding to πθ
is approximately conserved by the leapfrog integrator and µX is close to πX .
Figure 6.8b shows contours of the probability that a move is regenerative. The
closeness of the regeneration and holding rates means the probability that a move
is regenerative is close to half in most of the space where πθ has significant mass.

Figure 6.9 shows the dynamics of the process for the simple example. In Figure
6.9a, states belonging to the same tour are connected by gray lines and the area
of each circle is proportional to the length of the holding time for that state.
The figure illustrates how sometimes multiple local moves occur successively. On
the other hand, sometimes the process regenerates into a state, then regenerates
again before making a local move. Figure 6.9b shows the x-marginal of the jump
process.

6.4.5 Examples

A difficult aspect of HMC is tuning the leapfrog step-size and the number of
leapfrog steps. Indeed, a significant research effort has been dedicated to this
challenge. An interesting aspect of Hamiltonian Jumpar is that it allows for the
automatic and random selection of the number of steps. When L = 1 and there
are no velocity refreshments, at each state entered into by the jump process, either
a local move is made so that the process continues along the same Hamiltonian
trajectory (increasing the integration time), or the process regenerates and the
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Figure 6.9: Hamiltonian Jump Process Adjusted with Regenerations, with
weighted holding rate, πX ≡ N (0, 0.81), µX ≡ µV ≡ πV ≡ N (0, 1) and
ε = 0.8, L = 1.
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Hamiltonian trajectory comes to an end.

This section investigates the use of a Hamiltonian Jumpar for sampling from
the posterior distributions of models with various characteristics. First, a model
of Dugongs (sea cows) is considered, which has d = 3 and is close to Gaussian
in shape. Second, a bivariate Banana distribution (defined in subsection 4.4.1)
displaying strongly correlated variables is sampled. Lastly a bimodal distribution
is considered.

Dugong Model

We investigated the use of a Hamiltonian Jumpar for sampling from the posterior
distribution for a model of Dugongs (sea cows) (Gilks et al., 1998; Carlin and
Gelfand, 1991; Ratkowsky and Marcel Dekker, 1983). For this model, we will
denote the unknown parameters as α, β, γ; the predictors {xi}ni=1 and the response
{yi}ni=1. The model states that the length yi of Dugong i given its age xi has
likelihood:

yi ∼ N (α− βγxi , σ2).

The unknown parameters satisfy α > 0, β > 0, 0 < γ < 1 and are given a flat
prior. Parameter τ = σ−2 is given a gamma prior, with density proportional to
τa−1e−aτ for a = 0.001 and is integrated out analytically. The posterior is then:

π (α, β, γ|{xi}ni=1, {yi}ni=1) ∝

[
2a+

n∑
i=1

(yi − α + βγxi)2

]−a−n
2

.

We first make log and logit transformations so that the transformed posterior
is defined on R3. We then make another transformation based on the Laplace
approximation, as described in subsection 2.5.1. Figure 6.10 shows the marginals
of this distribution, generated using the RWM algorithm. The distribution has
heavy tails.

For eight different version of the Hamiltonian Jumpar algorithm, we generated
100 sample paths, each consisting of a jump chain of length 105. Before running
the Hamiltonian Jumpar algorithms, we tuned HMC for the same problem, find-
ing that ε = 0.86 and L = 2 were good parameters. This motivated using ε = 0.86

in the following versions of a Hamiltonian Jumpar:

• Unit holding rate, L = 1, no velocity refreshment (uL1)

• Unit holding rate, L = 1, velocity refreshment (uL1r)

• Unit holding rate, L = 2, no velocity refreshment (uL2)
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Figure 6.10: Kernel density estimates of the marginals of the transformed pos-
terior distribution of a model of Dugongs (sea cows), computed using samples
generated by the Random Walk Metropolis algorithm.

122



• Unit holding rate, L = 2, velocity refreshment (uL2r)

• Weighted holding rate, L = 1, no velocity refreshment (wL1)

• Weighted holding rate, L = 1, velocity refreshment (wL1r)

• Weighted holding rate, L = 2, no velocity refreshment (wL2)

• Weighted holding rate, L = 2, velocity refreshment (wL2r)

When using a weighted holding rate we set µV ≡ πV ≡ N (0, I3). When using a
unit holding rate we set πV ≡ N (0, I3) and µV ≡ t20(0, I3). In the latter case,
a very long pre-run was used to ensure C was large enough. The motivation
for not setting µV as equivalent to πV was, as explained in 6.4.4, to speed-up
the adaption of C. In all cases we used µX ≡ t4(0, I3). Boxplots of the results
are given in Figure 6.11. The right-most boxplot shows 100 estimates computed
using 105 weighted samples generated using Importance Sampling with proposal
distribution t4(0, I3). The estimators computed using Importance Sampling had
smallest MSE. A reason for this may be that π is very close to µX , so when µX
is used as the proposal for Importance Sampling, the Importance Sampler is able
to generate very high quality samples. Indeed, for simple models in low to mid
dimensional space, Importance Sampling is very effective Chopin and Ridgway
(2017).

Banana distribution

For the last example, a Hamiltonian-Jumpar performed worse than Importance
Sampling at estimating the mean of a component of a simple 3-dimensional pos-
terior. However, since Importance Sampling was particularly well suited to the
last example, this section explores whether Hamiltonian Jumpar offers advan-
tages when there is a larger discrepancy between the target and regeneration /
importance distribution.

Let πX be the Banana distribution, defined in Section 4.4.1, with dimension
d = 2 and parameters a = 100, b = 0.04, σ1 = 10 and σ2 = 1. The Laplace
approximation of this target distribution has mean m = (0, 4)T and covariance
matrix:

Σ =

(
100 0

0 1

)
.

No transformation of πX is made. Set πV ≡ N (0, I2) and µX ≡ t3(m,Σ). When
using a unit holding rate, set µV ≡ t20(0, I2) but when using a weighted holding
rate, set µV ≡ πV . Tuning HMC we find that ε = 0.85 and L = 16 are good
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Figure 6.11: Boxplots of estimates of the mean of the third variable in a model
of Dugongs. Each boxplot consists of 100 estimates. The first 8 boxplots contain
estimates computed using a Hamiltonian Jumpar. For these the labels have first
letter either “u” for unit holding rate or “w” for weighted holding rate. The second
and third characters are either “L1” for L = 1 leapfrog step or “L2” for L = 2

leapfrog steps. A fourth character “r” indicates that velocity refreshment was
used, else there was no velocity refreshement. The ninth boxplot, labelled imp,
shows the Importance Sampling estimates. The horizontal line shows a very good
approximation of the mean, computed using a long run of HMC.

choices of the tuning parameters. Thus ε is fixed as 0.85 for all simulations. The
versions of Hamiltonian Jumpar considered were the same as those for the Dugong
model, except with L ∈ {1, 16}: unit holding rate, L = 1, no velocity refreshment
(uL1); unit holding rate, L = 1, velocity refreshment (uL1r); unit holding rate,
L = 16, no velocity refreshment (uL16); unit holding rate, L = 16, velocity
refreshment (uL16r); weighted holding rate, L = 1, no velocity refreshment (wL1);
weighted holding rate, L = 1, velocity refreshment (wL1r); weighted holding rate,
L = 16, no velocity refreshment (wL16); weighted holding rate, L = 16, velocity
refreshment (wL16r). For each type of process, 100 sample paths are estimated
and used to compute an estimate of the mean of the second component, which
has exact value 0. Each sample path is a jump process with jump chain of length
4× 105. Importance Sampling is used to compute 100 estimates of the mean for
comparison, each estimate being auto-normalized and based on 4× 105 weighted
samples. Results are shown in Figure 6.12.

Hamiltonian Jumpar sampling is again less effective than Importance Sam-
pling, which has the smallest MSE of the estimates produced. Here, the versions
of H-Jumpar with the smallest MSE had a weighted holding rate and L = 16

leapfrog steps. Since making such a transformation is very expensive, in a com-
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Figure 6.12: Boxplots of estimates of the mean of the second variable of a Banana
distribution. Each boxplot consists of 100 estimates. The first 8 boxplots contain
estimates computing using a Hamiltonian Jumpar. For these the labels have first
letter either “u” for unit holding rate or “w” for weighted holding rate. The second
character is “L” which is followed b a number, either 1 for L = 1 leapfrog steps
of 16 for L = 16 leapfrog steps. If there is a final character “r”, it indicates that
velocity refreshment was used, else there was no velocity refreshment. The ninth
boxplot, labelled imp, shows the Importance Sampling estimates. The horizontal
line shows the exact mean.
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Figure 6.13: Contours of the density of a mixture of bivariate Gaussian distribu-
tions. There is a large region of low probability density between the modes of the
distribution.

parison of H-Jumpar to Importance Sampling based on a fixed computational
budget instead of a fixed number of weighed samples, H-Jumpar would do even
worse.

Gaussian Mixture

Consider sampling from a mixture of two bivariate Gaussian distributions, with
density

π(x) = w1N (x;m1,Σ1) + w2N (x;m2,Σ2), (6.15)

where w1 = 0.33, w2 = 0.67,m1 = (3, 3)T ,m2 = (−3,−3)T ,

Σ1 =

(
1 −0.5

−0.5 1

)
, Σ2 =

(
1 0.5

0.5 1

)
.

As shown by the plot of the contours of the density in Figure 6.13, there is a
large region of low probability density between the modes. This region of low
probability density acts as a barrier, making it difficult for Metropolis-Hastings
samplers to cross from one mode to the other.

Figure 6.14 shows the traceplot of the first marginal of a Markov chain started
at (3, 3)T and generated using HMC so that the stationary distribuiton of the
chain is π. Parameters ε = 0.78 and L = 2 were selected by tuning HMC on
the unimodal distribution N (0,Σ2). After 106 iterations, though the chain has
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Figure 6.14: Trace plot of a Markov chain generated using HMC, with target
distribution a mixture of Gaussians. The x-axis shows the indices of the states
in the Markov chain.

moved between the modes, the estimate of the mean of the first component is
very misleading (MSE=0.89), because the chain has not yet accurately sampled
the modes in proportion to their weights.

In comparison, a Hamiltonian Jumpar allows better switching between modes,
which results in a far better estimate of the mean of the first component of
X. However, we find that Importance Sampling again outperforms Hamiltonian
Jumpar. Let πV ≡ N (0, I2) and µX ≡ N (0, 9I2), the latter also serving as the
importance distribution. For a unit holding rate, let µV ≡ t20(0, I2) and for a
weighted holding rate let µV ≡ πV ≡ N (0, I2). We generated 100 estimates of the
mean of the first component of X, each based on 105 weighted samples, for each of
8 versions of Hamiltonian Jumpar as well as Importance Sampling. The versions
of Hamiltonian Jumpar considered were the same as for the Dugong model: unit
holding rate, L = 1, no velocity refreshment (uL1); unit holding rate, L = 1,
velocity refreshment (uL1r); unit holding rate, L = 2, no velocity refreshment
(uL2); unit holding rate, L = 2, velocity refreshment (uL2r); weighted holding
rate, L = 1, no velocity refreshment (wL1); weighted holding rate, L = 1, velocity
refreshment (wL1r); weighted holding rate, L = 2, no velocity refreshment (wL2);
weighted holding rate, L = 2, velocity refreshment (wL2r). Figure 6.15 shows
boxplots of the estimators. The estimators generated using Importance Sampling
had the smallest MSE.

This section has looked at enriching a Jump process, which moves according
to unadjusted Hamiltonian dynamics, with regenerations so that the invariant
distribution of the enriched process is πθ. However, examples have shown the
process does not make for a particularly efficient algorithm for generating sam-
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Figure 6.15: Boxplots of estimates of the mean of the first component of a Gaus-
sian Mixture model. Each boxplot consists of 100 estimates. The first 8 boxplots
contain estimates computed using a Hamiltonian Jumpar. For these the labels
have first letter either “u” for unit holding rate or “w” for weighed holding rate.
The second character is “L” which is followed by a number, either 1 for L = 1

leapfrog steps or 2 for L = 2 leapfrog steps. If there is a final character “r”, it indi-
cates that velocity refreshment was used, else there was no velocity refreshment.
The ninth boxplot, labeled imp, shows the Importance Sampling estimates. The
horizontal line shows the exact mean.
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ples for Monte Carlo. The next section considers a modification to Hamiltonian
dynamics, which results in a promising sampling algorithm.

6.5 Conformal Hamiltonian Dynamics

This section introduces the Conformal Hamiltonian Jump Process Adjusted with
Regenerations (Conformal Hamiltonian Jumpar or CH-Jumpar). The transfor-
mation for this class of Jumpar corresponds to conformal Hamiltonian dynamics,
which introduce a friction term into Hamiltonian dynamics. Instead of the Hamil-
tonian being preserved, the particle represented by the dynamics gradually loses
energy and moves towards the minimizer of the potential energy as it does. Thus
the dynamics may be used for optimisation – under certain conditions, linear con-
vergence to the global minimizer of the potential energy is achieved (Maddison
et al., 2018).

To visualize conformal Hamiltonian dynamics, one might think of a skateboard
moving on a half-pipe under friction. The skateboard starts at the top of one side
of the half-pipe, accelerates as is moves down, then decelerates as it moves up
the other side until it reaches a point below where it first started, at which time
it is momentarily stationary again. The skateboard keeps moving from side to
side like this, gradually losing energy due to friction, until it is stationary at the
bottom of the half-pipe.

The motivation for using conformal Hamiltonian dynamics in a sampler is as
a means of finding areas of high probability mass automatically, using gradient
information alone. As briefly covered in subsection 2.3.2, when sampling from
a multi-modal distribution, the standard Metropolis-Hastings algorithm switches
between modes very infrequently because the areas of low probability density
between the modes act as barriers. MCMC algorithmns designed for multimodal
distributions generally encourage mode-jumping either through tempering strate-
gies (Geyer, 1991; Marinari and Parisi, 1992; Neal, 1996b; Kou et al., 2006) or by
identifying all the modes of π before the Markov chain is generated (see Pompe
et al. (2020) for example). Here, we experiment with using a CH-Jumpar to
sample a multimodal distribution π without already knowing the locations of the
modes. We are interested in whether a dispersed regeneration distribution may
be used, which is compensated for by the conformal Hamiltonian dynamics lead-
ing the sampler towards the regions of π with high probability mass. Conformal
Hamiltonian dynamics have been used in Importance Samplers (Rotskoff and
Vanden-Eijnden, 2019; Thin et al., 2021) as a way to sample more often from the
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modes of the distribution.
In this section we define the transformation used to approximate conformal

Hamiltonian dynamics, define the Conformal Hamiltonian Jumpar and show that
this process is effective in sampling a target distribution where most of the mass
is contained in small spikes of apriori unknown locations.

6.5.1 Conformal Hamiltonian Jump Process Adjusted with

Regenerations

Let πV ≡ N (0, I). The transformation corresponding to approximate conformal
Hamiltonian dynamics, with step-size ε > 0 and friction γ > 0 is A3 : Θ → Θ

given by

A3(ϑ) = A3(x, v) =
(
x+ ε[e−εγv − ε∇U(x)], e−εγv − ε∇U(x)

)T
.

The transformation is computed using steps v ← e−εγv − ε∇U(x) followed by
x← x+ εv. The inverse is:

A−1
3 (x, v) = (x− εv, eγε[v + ε∇U(x− εv)])T ,

which is computed using steps x← x− εv followed by v ← eγε[v + ε∇U(x)]. For
d the dimension of x-co-ordinate, |JA−1

3
| = eγεd.

Let {Ξt}t≥0 = {Yt,Wt}t≥0 be a jump process with holding rate λ : Θ→ Θ and
jump chain defined by a Markov transition kernel corresponding to the transfor-
mation A3 as defined above. Then {Ξt}t≥0 may be enriched with regenerations,
as in Theorem 4 so that {θt}t≥0, the enriched process, has invariant distribution
πθ. Such a process is called a Conformal Hamiltonian Jump Process Adjusted
with Regenerations.

Complexity

Suppose that a tour consists of states ϑ0, ϑ1, . . . , ϑn. When the process regenerates
into state ϑ0 = (x0, v0), whether the holding rate is constant or weighted, one
must compute πθ(ϑ0) and A−1

3 (ϑ0). The latter involves computing ∇U(x0− εv0),
which we count as equivalent in cost to evaluating πX . If the holding rate is
constant, πθ(A−1

3 (ϑ0)) must be evaluated, which is again equivalent in cost to
evaluating πX because the cost of evaluating πV may be ignored. Thus each time
a global move is made, there is a cost equivalent to two or three evaluations of
πX , depending on whether the holding rate is weighted or constant.

The cost associated with each state ϑi = (xi, vi) for i ∈ {1, . . . , n} is that
of making the transformation to get to ϑi and of evaluating πθ(ϑi). The former
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Figure 6.16: Contour plots of κ̃ and κ for a Conformal Hamiltonian Jump Process
Adjusted with Regenerations with λ ≡ 1, πX ≡ N (0, 1), µX ≡ tν(0, 1), ε = 0.5 and
γ = 0.2.

involves computing A3(ϑi−1), which requires computing ∇U(xi−1), equivalent in
cost to evaluating πX(xi−1). The latter is equivalent in cost to evaluating πX(xi).
Thus each local moves has an associated cost equivalent to two evaluation of πX .

6.5.2 Examples

Standard Normal Target

Let πX ≡ N (0, 1) and µX ≡ tν(0, 1), with ν = 3. For a unit holding rate and
ε = 0.5, plots of κ̃ and κ for γ = 0.2 and γ = 0.4 are given in Figures 6.16 and
6.17 respectively. Figure 6.18 shows the weighted samples generated by 50 tours
of the process. The area of each circle represents the weight of that sample. Tours
are connected by gray lines.

Gaussian Mixture Distribution

Consider a d-dimensional Gaussian mixture distribution

π(x) = w1N (x;m1,Σ1) + w2N (x;m2,Σ2),

with d = 4, w1 = 0.33, w2 = 0.67,m1 = 3 × 1d,m2 = −3 × 1d,Σ1 = Σ2 = 0.1Id.
Suppose that we have very little idea of where the modes of π are – therefore when
comparing Importance Sampling and Jumpar sampling, we take as proposal and
regeneration distribution µX ≡ N (0, 9Id). Though d = 4 is not particularly large
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Figure 6.17: Contour plots of κ̃ and κ for a Conformal Hamiltonian Jump Process
Adjusted with Regenerations with λ ≡ 1, πX ≡ N (0, 1), µX ≡ tν(0, 1), ε = 0.5 and
γ = 0.4.
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Figure 6.18: Fifty tours of a Conformal Hamiltonian Jump Process Adjusted
with Regenerations with λ ≡ 1, πX ≡ N (0, 1), µX ≡ tν(0, 1), ε = 0.5 and γ = 0.4.
Circles represented weighted samples, with area representing the weight. Tours
are connected by gray lines.
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Figure 6.19: Estimating the mean of a Gaussian Mixture Distribution: a com-
parison of Conformal Hamiltonian Jumpar sampling and Importance Sampling.
Boxplots of 100 estimates of the mean of the first component of a Gaussian
mixture distribution, each computed using 106 weighted samples. chj_std: Con-
formal Hamiltonian Jumpar with unit holding rate. imp: Importance Sampling.
Horizontal line shows the true value of the mean.

by the standards of modern Bayesian inference techniques, since we don’t know
apriori the locations of the small regions where the mass of π is concentrated, this
is still a difficult sampling problem. Another way to understand the difficulty
of this sampling problem is to consider the computational cost of performing
integration via quadrature; using a grid with mesh-size 0.1 on region [−6, 6]4

would require over 2× 108 evaluations of the integrand.

We computed 100 estimates of the mean of the first component of X by
generating 100 CH-Jumpars with unit holding rate and jump chain length 106.
Figure 6.19 shows a Boxplot comparing the estimated moments to those generated
using Importance Sampling. The horizontal line shows the true value of the mean.
Using the Jumpar lead to a 52% reduction in MSE. Estimates computed using a
weighted holding rate were worse than Importance Sampling estimates and are
not shown.

6.6 Discussion

This chapter has introduced a class of Jump processes defined by enriching a non-
π-invariant jump process with regenerations from µ at rate κ so that the resulting
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Figure 6.20: Contour plots of µ+ and κ+ for a Hamiltonian Jump Process Ad-
justed with Regenerations with λ ≡ 1 and πX ≡ πV ≡ N (0, 1).

process is π-invariant. Three choices of local dynamics have been proposed: Ran-
dom Direction, Hamiltonian and Conformal Hamiltonian. The holding rate may
either be constant or weighted. The former necessitates finding an appropriate re-
generation constant, such that the regeneration rate is non-negative everywhere.
The latter can result in inefficient computation: sample paths exhibit a sequence
of very short staying times, corresponding to a sequence of states for which both
the holding and regeneration rates are very large and near equal.

Combining the adaptive mechanism of Chapter 5 with the methodology pre-
sented in this chapter may improve performance. When the holding rate is con-
stant, this would allow the minimal regeneration distribution and rate, µ+ and
κ+, to be used. This would remove the need to find an appropriate value of C.
Figure 6.20 shows µ+ and κ+ for Hamiltonian dynamics and πX ≡ N (0, 1). Note
that when the holding rate is non-constant, there is no minimal regeneration dis-
tribution. This is a consequence of the underlying process relying on µ, as well
as the enriched process regenerating from µ.

The most promising dynamics are Conformal Hamiltonian. The friction term
introduced into Hamiltonian dynamics makes the process move towards areas of
high probability mass. This enables efficient sampling of posterior distributions
for which the mass is concentrated in small spikes with apriori unknown locations.
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Chapter 7

Conclusion

Statistical models are becoming more challenging. There is demand for Bayesian
computation methods that are able to deal with high-dimensional posterior dis-
tributions, displaying complicated inter-dependencies between covariates and re-
lying on large quantities of data. MCMC remains a highly useful tool and has the
key strength of producing asymptotically exact estimates of expectations. How-
ever, MCMC has limitations that make it not the most suitable tool for some
applications. In Chapter 2, four desiderata for MCMC methods were set out.
These were:

1. Compensation.
The process consists of different dynamics, which by themselves are non π-
invariant, but together compensate for each other, so that in tandem they
are π-invariant.

2. Local and Global dynamics.
The process consists of local dynamics (the next state of the process tends
to be in a small vicinity of the current state) and global dynamics (the next
state is independent of the current state and is anywhere in the state space).

3. Regeneration.
The process is regenerative: there exists a sequence of random times at
which the future of the process is independent of the past and identically
distributed. One can then simulate the process in parallel, without a burn-
in period and attain an estimate for the variance of the estimator itself from
a single sample path.

4. Non-reversible.
The process is non-reversible; it does not satisfy the detailed balance con-
dition.

135



Wang et al. (2021) proposed the Restore process, which satisfies all of the
above criteria. Although it was a fantastic contribution, the paper did not set
out how a non-π-invariant jump process may be enriched with regenerations so
that the resulting jump process is π-invariant, nor did it explore the use of Restore
for sampling mid-dimensional distributions.

Wang et al. (2021) motivated the two major contributions of this thesis, which
are as follows:

1. Adaptive Restore (Chapter 5) (McKimm et al., 2022): showing that a Brow-
nian motion may be enriched with regeneration from a distribution that is
adapted over time, so that the resulting process is π-invariant.

2. Jumpar (Chapter 6): defining a class of π-invariant jump process by en-
riching with regeneration an underlying non-π-invariant jump process on
an augmented state space, for which the jump chain is defined by a Markov
transition kernel corresponding to a deterministic, invertible mapping.

For both contributions, a number of experiments have been used to investigate
the properties of the proposed algorithms. In addition, Chapter 4 made a minor
contribution in Section 4.5 by showing that Restore processes may be used to
estimate normalising constants.

The main practical issue with Standard Restore is that the regeneration rate
can become extremely large when µ is not a good approximation of π. As the
dimension of the problem increases, it is inevitable that any fixed choice of µ will
not approximate π well and hence κ will become very large. In previous work on
simulating regenerative Markov chains (Mykland et al., 1995) using Nummelin’s
splitting technique (Nummelin, 1978), regenerations recede exponentially with
the dimension of π. By contrast, the pitfall of Standard Restore is that as the
dimension increases the process regenerates repeatedly, but mostly to areas of
very low probability mass, which wastes computation.

Adaptive Restore can drastically reduce the average regeneration rate and
thus make simulation feasible. As an example, for the hierarchical model of pump
failure of subsection 5.3.3, using Adaptive Restore instead of Standard Restore
reduces the regeneration rate by a factor 107. Regarding the four criteria for
MCMC simulation set out above, Adaptive Restore uses compensating dynamics,
local and global dynamics and is non-reversible. Adaptive Restore is not in fact
regenerative: the adaption of µt means that the cycles are no longer independently
distributed. As a consequence, a burn-in period is necessary for Adaptive Restore
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and simulating the process in parallel is less trivial. It is worth noting that if µt
were fixed at any time t ≥ 0, the process would again be regenerative.

There remains plenty of scope for further work. Chapter 5 concerns adaptively
enriched Brownian motion, but the adaptive framework could equally be applied
to diffusions. It would be interesting to see whether a drift coefficient could help
to improve the sampler. As covered in Section 5.4, using an Adaptive Restore
process with short-term memory, or using local bounds for the regeneration rate,
could likewise improve the sampler. An Adaptive Restore process with short-term
memory would make the process less expensive to simulate in terms of computer
memory, since for any fixed time interval fewer states would need to be stored.
Using local bounds for the regeneration rate could result in κ+ (and thus ∇U and
∆U) being evaluated less.

Previous work on Jump Processes Enriched with Regenerations (Wang et al.,
2021) showed how a π-invariant jump process could be enriched with regenera-
tions. Although such a process satisfies all of the four criteria listed above, the
process isn’t fully able to take advantage of non-reversible dynamics, because the
underlying jump process must be specified by a reversible Markov transition ker-
nel for the jump chain. A Jumpar also satisfies the four criteria above, but by
contrast takes as underlying process a non-π-invariant jump process. This allows
the process to fully break free of the requirement that the Markov transition ker-
nel be reversible. The benefits of this are best evidenced by the potential of the
Conformal Hamiltonian Jumpar, which uses a friction term to move towards areas
of high probability mass. Two other dynamics for the underlying jump process
were considered, but other transformations could also be used. Furthermore, it
may be worth investigating whether the adaptive mechanism of Chapter 5 could
be used for the jump processes of Chapter 6.

Instead of making minor adjustments to state-of-the-art methods with the
aim of making maginal improvements, this thesis has experimented with largely
unknown and untested methods. In doing so, the aim has been to take a com-
pletely different approach to Monte Carlo, by looking at the use of continuous-
time Markov processes. The methods presented are not yet ready for practical
use in sampling the most challenging target distributions, but progress has been
made in exploring how regeneration-enriched Markov processes may be used for
Monte Carlo.
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Appendix A

Derivations

Here we derive (2.11) of subsection 2.5.2. Recall that the vector of random
variables Y is defined via the transformation Y = MX, for M a (d × d) matrix
with inverse M−1. Row i and column j are denoted respectively as Mi,· and M·,j.
By the chain rule,

∂

∂yj
log πY (y) =

∂

∂yj
x · ∇x log πX(x).

By the product rule:
∂2

∂y2
j

log πY (y) =
∂2

∂y2
j

x · ∇x log πX(x) +
∂

∂yj
x · ∂

∂yj
∇x log πX(x).

Since X is a linear transformation of Y , ∂2

∂y2j
x is zero so the first term may be

ignored. The second term is

∂

∂yj
x · ∂

∂yj
∇x log πX(x) =

d∑
i=1

∂xi
∂yj

∂

∂yj

{
∂

∂xi
log πX(x)

}
,

=
d∑
i=1

∂xi
∂yj

[
∂2

∂x1∂xi
log πX(x)

∂x1

∂yj

+
∂2

∂x2∂xi
log πX(x)

∂x2

∂yj

+ · · ·

+
∂2

∂xd∂xi
log πX(x)

∂xd
∂yj

]
,

=
d∑
i=1

∂xi
∂yj

[Hlog πX (x)]i,·
∂

∂yj
x,

=

(
∂

∂yj
x

)T
Hlog πX (x)

∂

∂yj
x,

= (M−1)T·,jHlog πX (x)(M−1)·,j.

It then follows that ∆ log πY (y) =
∑d

j=1 (M−1)
T
·,j Hlog πX (x) (M−1)·,j.
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Appendix B

Distributions

B.1 Multivariate t-distribution

A multivariate t-distribution with ν degrees of freedom, mean m, scale matrix Σ

and dimension d has probability density function:

π(x) ∝
[
1 +

1

ν
(x−m)TΣ−1(x−m)

]−(ν+d)/2

.

Let Q = Σ−1 be the precision matrix. For c a constant (the logarithm of the
normalising constant) and writing z := (x−m)TQ(x−m), the energy, its gradient
and Laplacian are:

U(x) =
ν + d

2
log
{

1 +
z

ν

}
+ c,

∇U(x) =
ν + d

ν + z
Q(x−m),

∆U(x) =
ν + d

ν + z

{
tr(Q)− 2

(x−m)TQTQ(x−m)

ν + z

}
.

The partial rate for Brownian Motion Restore is then:

κ̃(x) =
1

2

(
ν + d

ν + z

){(
ν + d+ 2

ν + z

)
(x−m)TQTQ(x−m)− tr(Q)

}
.

B.2 Mixture of Gaussians

Let the target distribution be a mixture of n Gaussian distributions with weights
w1, . . . wn, means m1, . . . ,mn and covariance matrices Σ1, . . . ,Σn. Each compo-
nent of the mixture is denoted πi(x), so we have:

π(x) =
n∑
i=1

wiπi(x) =
n∑
i=1

wiN (x;mi,Σi). (B.1)
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We then have:

∇ log π(x) =
1

π(x)
∇π(x) =

∑n
i=1 wi∇πi(x)∑n
i=1wiπi(x)

=

∑n
i=1−wiπi(x)Σ−1

i (x− µi)∑n
i=1wiπi(x)

.

Let zi = −Σ−1
i (x − µi) = Σ−1

i (µi − x). Note that zi is computed not by matrix
multiplication but by solving the system of linear equations given by Σizi = µi−x.
Then

∇ log π(x) =

∑n
i=1 wiπi(x)zi∑n
i=1wiπi(x)

.

The Laplacian of the log-density may be computed using the following equations.
Here, the dot product of two vectors u and v is denoted u · v and column j of a
matrix A is denoted A·,j.

∂

∂xi
log π(x) =

1

π(x)

∂

∂xi
π(x),

∂2

∂x2
i

log π(x) =

(
∂2

∂x2i
π(x)

)
π(x)−

(
∂
∂xi
π(x)

)2

π(x)2
,

∂

∂xi
π(x) = −

n∑
j=1

wjπj(x)(Σ−1
j )·,i · (x− µj),

∂2

∂x2
i

π(x) =
n∑
j=1

wjπj(x)
{[

(Σ−1
j )·,i · (x− µj)

]2 − (Σ−1
j )ii

}
,

∆ log π(x) =
d∑
i=1

∂2

∂x2
i

log π(x),

=
1

π(x)2

d∑
i=1

(
∂2

∂x2
i

π(x)

)
π(x)−

(
∂

∂xi
π(x)

)2

B.3 Banana

Derivations related to the Banana distribution, defined in Section 4.4.1.

Var[Y2] = Var[X2 − bX2
1 + ab],

= Var[X2] + b2Var[X2
1 ],

= Var[X2] + b2
(
E[X4

1 ]− E[X2
1 ]2
)
,

= σ2
2 + b2(3σ4

1 − σ4
1),

= σ2
2 + 2b2σ4

1.

The log-density of the transformed target is

log π(y) = −1

2

[
y2

1

σ2
1

+
(y2 + by2

1 − ab)2

σ2
2

+
y2

3

σ2
2

+ · · ·+ y2
d

σ2
2

]
+ const,
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which has gradient:

∇ log π(y) = −



y1/σ
2
1 + 2by1(y2 + by2

1 − ab)/σ2
2

(y2 + by2
1 − ab)/σ2

2

y3/σ
2
2

...
yd/σ

2
2


.

Setting the gradient to zero, it can be seen that the mode is y = (0, ab, 0, . . . , 0).
The Hessian of the energy is:

HU(y) =
1

σ2
2



σ2
2/σ

2
1 + 6b2y2

1 + 2by2 − 2ab2 2by1 0 · · · 0

2by1 1 0 · · · 0

0 0 1
...

... . . .

0 0 0 1


.

At the mode, the Hessian matrix is:

HU(ymode) =


σ−2

1 0 · · · 0

0 σ−2
2 0

... . . .

0 0 σ−2
2

 .

Therefore its inverse is:

H−1
U (ymode) =


σ2

1 0 · · · 0

0 σ2
2 0

... . . .

0 0 σ2
2

 .

B.4 Funnel

The Funnel distribution is a product of Gaussians, with the variance of component
i for i = 2, . . . , d depending on the first component:

π(x) = N (x1; 0, a2)
d∏
i=2

N (xi; 0, e2bx1).

The energy, its first and second partial derivatives, gradient and Laplacian are
then:

U(x) =
x2

1

2a2
+

1

2

d∑
i=2

x2
i e
−2bx1 + const;
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∂U

∂x1

= x1a
−2 − be−2bx1

d∑
i=2

x2
i ;

∂U

∂xi
= xie

−2bx1 ; i = 2, . . . , d;

∂2U

∂x2
1

= a−2 + 2b2e−2bx1

d∑
i=2

x2
i ;

∂2U

∂x2
i

= e−2bx1 ; i = 2, . . . , d;

∇U(x) =

(
x1a

−2 − be−2bx1

d∑
i=2

x2
i , x2e

−2bx1 , . . . , xje
−2bx1 , . . . , xde

−2bx1

)T

;

∆U(x) = a−2 + e−2bx1

[
d− 1 + 2b2

d∑
i=2

x2
i

]
.

Therefore the partial regeneration rate for Brownian Motion Restore may be
written as:

κ̃(x) =
1

2

{(
x1a

−2 − be−2bx1

d∑
i=2

x2
i

)2

− a−2

+ e−2bx1

(
1− d+

[
e−2bx1 − 2b2

] d∑
i=2

x2
i

)}
.

Fixing x2 = x3 = · · · = xd = 0 the partial rate is:

κ̃(x1, 0, . . . , 0) =
1

2

{
x2

1a
−4 − a−2 + (1− d)e−2bx1

}
,

=
1− d

2
e−2bx1 +O(x2

1).

Since d > 1, clearly κ̃(x1, 0, . . . , 0)→ −∞ as x1 → −∞.

B.5 Logistic Regression Model

The standard notation for a Logistic Regression model is that the data, consisting
of predictor-response pairs, is denoted {(xi, yi)}ni=1 and the random variables of
interest (the regression coefficients) are β = (β1, β2, . . . , βd)

T . We formulate the
model here in terms of this standard notation, but in the main text the random
variables β = (β1, β2, . . . , βd)

T are denoted as X = (X1, X2, . . . , Xd)
T , for reasons

of consistency. The likelihood for the model is:

l({(xi, yi)}ni=1|β) =

[
n∏
i=1

1

1 + exp{−yiβTxi}

]
.
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Suppose a Gaussian prior with variance σ2 is used for each component of β. Then
the posterior distribution and its first and second derivatives are as follows. Here,
1 is the indicator function and c is a constant.

π(β|x, y) ∝

[
n∏
i=1

1

1 + exp{−yiβTxi}

][
d∏
j=1

exp

{
− βj

2σ2

}]
,

log π(β|x, y) = −
n∑
i=1

log
(
1 + exp{−yiβTxi}

)
− 1

2σ2

d∑
j=1

β2
j + c,

∂ log π(β|x, y)

∂βk
= −βk

σ2
+

n∑
i=1

yixi,k exp{−yiβTxi}
1 + exp{−yiβTxi}

,

∂2 log π(β|x, y)

∂βjβk
= −1{j = k}

σ2
−

n∑
i=1

y2
i xi,jxi,k exp{−yiβTxi}
[1 + exp{−yiβTxi}]2

.

Following Gelman et al. (2008) and Chopin and Ridgway (2017), the response
variables were defined on {−1, 1} and the predictors were standardized so that
non-binary predictors have mean 0 and standard deviation 0.5, while binary pre-
dictors have mean 0 and range 1.

157



Appendix C

Abbreviations

Abbreviation Terms

ACF Autocorrelation function

AD Automatic Differentiation

CH-Jumpar Conformal Hamiltonian Jump Process Adjusted with
Regenerations

ESJD Expected Squared Jump Distance

GM-BMR Gaussian Mixture Brownian Motion Restore

H-Jumpar Hamiltonian Jump Process Adjusted with Regenerations

HMC Hamiltonian Monte Carlo

IS Importance Sampling

JPRS Jump Process Restore Sampler

Jumpar Jump Process Adjusted with Regenerations

MALA Metropolis-Adjusted Langevin Algorithm

MCMC Markov Chain Monte Carlo

MSE Mean Square Error

NUTS No-U-Turns Sampler

PDMP Piecewise Deterministic Markov Process

RD-Jumpar Random-Direction Jump Process Adjusted with
Regenerations

RMSE Root Mean Square Error

RWM Random Walk Metropolis

SMC Sequential Monte Carlo
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