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Abstract— Situational awareness based on the data collected by 

the vehicle perception sensors (i.e. LiDAR, RADAR, camera and 

ultrasonic sensors) is key for achieving assisted and automated 

driving functions in a safe and reliable way. However, the data 

rates generated by the sensor suite are difficult to support over 

traditional wired data communication networks on the vehicle, 

hence there is an interest in techniques that reduce the amount of 

sensor data to be transmitted without losing key information or 

introducing unacceptable delays. These techniques must be 

analysed in combination with the consumer of the data, which will 

most likely be a machine learning algorithm based on deep neural 

networks (DNNs). In this paper we demonstrate that by 

compression tuning the DNNs (i.e. transfer learning by re-training 

with compressed data) the DNN average precision and recall can 

significantly improve when uncompressed and compressed data 

are transmitted. This improvement is achieved independently 

from the compression standard used for compression-training (i.e. 

AVC and HEVC), and also when training and transmitted data 

use the same compression standard or different compression 

standards. Furthermore, the performance of the DNNs is stable 

when transmitting data with increasing lossy compression rate, up 

to a compression ratio of approximately 160:1; above this value 

the performance starts to degrade. This work paves the way for 

the use of compressed sensor data in automated driving in 

combination with the optimisation of compression-tuned DNNs. 

 
Index Terms— Compression, Perception Sensor, Camera, Deep 

Neural Network, Transfer learning, Intelligent Vehicles, ADAS 

II. INTRODUCTION 

S passenger and commercial vehicles are swiftly 

transitioning to offer more assisted and automated driving 

functions, the role of perception is becoming increasingly 

significant. Perception in advanced driving assistance systems 

(ADASs) and automated vehicles (AVs) is the ability of the 

vehicle to ‘understand’ and localise itself and the other road 

stakeholders in the surrounding environment, and it is key for 

planning and navigation. In SAE J3016 this task is defined as 

‘monitoring the environment’ and from L3 the vehicle is fully 

responsible for it [1]. In order to accomplish this task, multiple 

environmental perception sensors are deployed such as 

cameras, LiDAR, RADAR and ultrasonic sensors. Cameras are 

considered fundamental to achieve some ADAS and AV 

functions (e.g. object detection, classification, sign recognition, 

lane centring, etc.) and can leverage mature computer vision 
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and machine learning algorithms to process their data [2-3]. 

Data are collected by automotive cameras in the form of a 

video stream, and then transmitted to one or more processing 

units for consumption via the wired data communication 

networks available on the vehicle. However, in achieving this 

data transmission, several challenges need to be confronted. 

First of all, cameras produce a considerable amount of data per 

second, e.g. a high-dynamic-range, HDR, 8 Mpixel 30 frames 

per second camera generates around 3.84 Gb/s (considering a 

pixel depth of at least 16 bits) of Bayer data. If we consider 

multiple cameras to achieve a 360o coverage of the vehicle 

surrounding, and also that the sensor suite would include 

multiple LiDARs and RADARs, the amount of generated 

sensor data can be in excess of 40Gb/s, and therefore not 

supportable by current automotive wired communication 

networks [4–6]. Due to the placement of sensors around the 

vehicle and wire harnessing, some captured sensor data will 

have to be transmitted over wired networks with lengths in 

excess of 5 meters to reach a processing node. Only dedicated 

automotive networks fulfil the transmission requirements in 

terms of safety, latency, etc., but as mentioned above they 

cannot support the expected data rates of perception sensors’ 

suites made up of up to 40 sensors [4]. Currently, camera video 

data used for ADAS functions (e.g. lane centring, sign 

recognition, park assist, etc.) are transmitted uncompressed by 

using dedicated copper based cables and connectors which are 

expensive and heavy [7]. Therefore, the need for considering 

and evaluating data reduction and compression techniques 

arises in automotive; however a careful analysis of potential 

loss of key information, artefacts, bit error propagation, 

combined with any delays introduced by the coding-decoding 

process, is needed [8-9]. 

Research is focusing on video compression for AV and 

ADAS applications, as many requirements need to be satisfied 

in order to ensure the safety of the passengers in the vehicle and 

of the nearby road stakeholders. Amongst these requirements, 

it is worth mentioning real-time data processing and low 

latency, that are key ones for any decision-making process 

deployed in the vehicle processing units [10-11]. Another 

requirement of compression on the sensor chip is to develop 

compression techniques able to comply with the restricted on-

sensor resources. The final requirement is that the use of 

compression must not degrade the performance of the consumer 

of the video stream. Lossy video compression may produce 
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differences between the input and decoded streams. These are 

referred to as artefacts and become more noticeable as the 

compression ratio increases. Other problems (not addressed 

here) are the effect of bit errors which may occur as the 

compressed data is transmitted across the communication data 

network. In an uncompressed scheme, the effect of such errors 

will be highly localised, but in a compressed scheme the effect 

of a single error might propagate, resulting in several frames 

with corruption over a large area, or even total loss of the 

picture stream for several frames. Error correction techniques 

such as Forward Error Correction or Automatic Retransmission 

can, if properly designed, reduce the probability of such an 

event to an acceptable level. Furthermore, measures can be 

taken to improve the design of video compression standards to 

make them intrinsically more resilient to errors, limiting error 

propagation [12]. In this paper, we focus on considering the 

effects of artefacts when machine learning algorithms are the 

users of the data. Currently, there is a trend in automotive to use 

machine learning (ML) techniques and deep neural networks 

(DNNs) for implementing some key data processing functions 

(e.g. object detection, tracking, prediction, classification, etc.), 

and we expect them to flourish in the near future [13-14]. 

A. Contributions 

This work investigates the use of compression techniques to 

transmit automotive video camera data via traditional wired 

communication networks from the sensor to one of the vehicle 

processing units, as shown in Fig.1 a). Different ratios of video 

compression are implemented using well-established and 

mature compression techniques (i.e. AVC, HEVC, Sec. II. A). 

To support compressed data transmission and their 

consumption by DNN based perception, DNN training with 

lossy and lossless compressed data (from now on ‘compressed’ 

and ‘uncompressed’ data) is investigated and analysed. 

This paper’s main contributions are as follow: 

1. it proposes a robust methodology to evaluate the effects of 

automotive sensor data compression on the perception step 

(i.e. object detection); 

2. it demonstrates that high levels of lossy compression (up to 

~130:1) can be applied to transmit real-time automotive video 

camera data to the processing unit(s) without degrading the 

performance of DNN-based vehicle detection; 

3. it establishes that re-training Faster R-CNN with lossy 

compressed data is beneficial to the DNN performance, when 

evaluating compressed and uncompressed video camera data; 

4. it shows that the benefits are independent from the 

compression standard used and also if different compression 

standards and compression rates are used for the training data 

and transmitted data over the wired vehicle networks; 

5. it proposes a process to optimise the compression ratio of 

data used in training when the compression ratio of the 

transmitted data is known.  

The presented results demonstrate that training with 

compressed data enhances DNN performance, in terms of 

Average Precision, AP, and Recall, R, of up to 15% and 20% 

respectively compared to baseline (i.e. training with 

uncompressed data). Moreover, results show an increase of up 

to 3% for both AP and R when transmitting uncompressed data 

and training with lossy data. 

III. BACKGROUND 

It is important to understand if data loss and artifacts 

generated by compression can degrade the performance of the 

machine learning (ML) algorithms used for perception in 

automotive. This section reviews some background knowledge 

needed to understand the relationship between video 

compression and ML. 

A. Video Compression 

Video compression has been studied and optimised over 

many years to reduce the bandwidth and storage requirements 

to keep up with the ever-increasing image quality and resolution 

that consumers are looking for. The main aim of this 

optimisation process has been to achieve video streams wherein 

the artefacts are not too detrimental to the human visual system 

perception when viewed at the intended range and speed. Most 

compression schemes use the following basic steps. Firstly, the 

image is divided into blocks, which may be as small as a pixel, 

or considerably larger, e.g. 16x16 or 32x32. Each block may be 

predicted in one of a number of different ways. Intra-frame 

prediction predicts blocks from previously encoded parts of the 

same frame. Inter-frame prediction predicts blocks from 

previously encoded parts of other frames (which may in fact be 

future frames in the presentation order, leading to increased 

latency in the encoding). In this way, the spatio-temporal 

redundant nature of video is exploited. A block may also be 

encoded with no prediction. In most cases the prediction will 

not be perfect, there will be some residual, i.e. a difference 

between the block we wish to encode and the chosen prediction 

block. This residual may be transformed. If the transform is 

reversible, the coding up to this point will produce a perfect 

reconstruction of the input stream when decoded. Lossy 

compression may result from a transform which is not quite 

reversible, and bigger losses are introduced by the quantisation 

of the transformed residuals. This quantisation is controlled by 

the quantisation parameter (QP) and this is the origin of 

compression artefacts. QP is the parameter by which the output 

quality of the encoder is controlled. Having chosen a method of 

prediction and optionally quantised the residual, the resulting 

bit stream is entropy coded to further reduce the bitrate by 

coding more common symbols with shorter words (strings of 

bits) than longer ones. Widely used video compression 

standards are Advanced Video Coding (AVC) and High 

Efficiency Video Coding (HEVC) [15]. HEVC provides more 

flexibility with respect to the compression techniques used in 

AVC, e.g. there are more macroblock sizes available [16-17]. 

However, the increase in complexity for HEVC results in a 

higher computational cost, not only in terms of implementing 

the tools themselves, but also in the algorithms for selecting 

which tool to use for every block. 

Further to AVC and HEVC, there are newer standards (some 

of them listed below) released or under development aiming to 

satisfy the variety of requirements associated with novel 

applications for video compression techniques, including 

automotive applications. 

1) Versatile Video Coding (VVC) 

This standard, finalised in 2020, is aimed towards a variety 

of applications such as higher resolutions, High Dynamic 
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Range (HDR), etc., and it is expected to make broadcasting 

and streaming of 4K videos competitive on the market [18]. 

However, the encoding and decoding complexity is 

significantly higher than HEVC. 

2) VESA Display Stream Compression (DSC) 

Developed by the Video Electronics Standards Association 

(VESA), this scheme aims to provide a visually lossless 

compression for use in portable, embedded systems with a 

display [10]. DSC has the target of decreasing battery 

consumption, and the display frame buffer size. It has a 

maximum compression ratio of approximately 3:1. 

3) VESA Display Compression-M (VDC-M)  

This standard has been created for embedded mobile 

applications. It has a compression ratio of up to 5:1 but at 

higher complexity than DSC.  

Currently, automotive applications use DSC or VCD-M 

standards to transmit sensor data to displays and also due to the 

reluctance to work with lossy data. Moreover, recently JPEG-

XS has been proposed to support automotive sensor 

compression requirements. A review of lossless and lossy video 

codec for use in ADASs and AVs is presented in [19] and is 

outside the aim of this paper. 

B. Machine Learning (ML) 

Due to the recent dramatic improvement and availability of 

computational platforms, there has been an increase of deep 

neural network implementations and applications. In 

automotive systems, there is a significant trend in using Deep 

Neural Networks (DNNs) to implement functions like object 

detection and identification, tracking, localisation, planning, 

free space detection, etc., and these are trained using deep 

learning (DL) methods [13-14]. DNNs can offer a certain 

degree of flexibility in achieving their functions in spite of the 

variations of the cases (inputs) presented to them, and therefore 

the automotive research is focusing on the safe application of 

DL methods in ADASs and AVs [20]. However, DNNs can 

increase the computational costs, causing unacceptable latency, 

they may not be fully accurate, and their explicability is still 

debatable [21].  

An established application of DL methods in combination 

with camera data is object detection and classification. This task 

mainly corresponds to drawing bounding boxes around the 

objects in the frame and attributing them to a class (category) 

with a specified confidence level. This task consists of 

identifying the position and dimension of objects within the 

scene, and assigning them a class with a certain probability. 

Many object detection DNNs have been proposed, with a trade-

off between their speed, accuracy, and network size [22]. DL 

object detectors can be broadly categorised in two classes, as 

described below [23]. 

1) Single-Staged Network 

Single-staged networks use an end-to-end process that 

includes the region proposal (object bounding box 

prediction) and identification in the same step. This 

approach generates a fixed number of bounding boxes for 

each frame. The generated bounding boxes are filtered out 

to produce as an output only one bounding box for each real 

object in the scene; this selected bounding box should have 

the correct size and position for a specific ground truth 

object. Examples of single-staged networks are: single short 

detectors (SSD), YOLO networks, etc. 

2) Two-Stage Network 

In two-staged networks, the first stage extracts the object 

regions. These regions are passed to the second stage to 

classify the objects and refine the region itself. Examples of 

this type of network are: region proposal CNN (R-CNN), 

spatial pyramid pooling (SPP) Network, Faster R-CNN, 

Featurised image pyramids networks, etc.  

Generally, two-staged networks can have higher accuracy 

than single-stage networks but slower performance, even 

though Faster R-CNN are considered networks with 

 
Fig. 1.  Flow diagrams schematically representing: a) example of the camera data flow in a vehicle, b) the methodology in our experiment. The magenta lines 

represent the flow of data necessary for training/evaluation of the DNN. Within a vehicle, the transmitted data are the live videos captured by a camera that need 

to be transmitted from the sensor to one (or more) processing unit(s) using the vehicle communication data networks. 
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performance closer to real-time detection [22]. 

A key aspect of any DNN is how it has been trained; training 

strategies can be divided in three categories [13, 24]. 

3) Supervised Training 

In supervised training, the network uses labelled and 

classified data as inputs for the learning. The learning 

process is based on measuring the network prediction 

accuracy using the labelled data and iteratively improving 

this accuracy during the training process.  

4) Unsupervised Training 

In unsupervised training the network uses unlabelled data 

and does not have any additional information as input for 

training. During training, the network seeks to identify its 

own patterns and output classifications. 

5) Reinforcement Training 

In reinforcement training, similarly to unsupervised 

strategies, there is no need for labelled data. The network 

trains by trial and error to maximise the received “rewards”, 

based on a “reward function” (defined by the network user). 

Based on this process, an optimal or nearly-optimal policy 

will be developed by the network. 

Training DNNs from the base up can require a large amount 

of data and time. Transfer learning uses previously trained 

layers as a backbone and tunes the network by re-training it with 

a new dataset. This process can entail maintaining the same 

output classes or also defining new classes [25]. 

Once the DNNs are trained, they can be deployed to 

implement their own task (e.g. detection and classification) on 

data which the networks have not seen before. Common 

performance metrics for DNN performance are AP and R [26], 

see Sec. IV. D. Some recent publications have also focused on 

establishing new criteria to evaluate image quality in the 

context of machine learning applications; for example, Spatial 

Recall Index (SRI) aims to understand which pixels have a 

higher impact on the performance of used DNNs [27]. 

IV. RELATED WORK 

With the increasing number of sensors constituting the sensor 

suite of ADAS and automated functions, and the amount of 

their generated data, recent studies have been focusing on 

techniques to reduce the sensor data size without introducing 

unreasonable losses/artefacts.  

One of the possible ways to reduce the amount of camera data 

to be transmitted over the wired data networks is to convert the 

HDR frames (in automotive a range in excess of 140dB is 

required to cope with luminosity variations) into Low Dynamic 

Range (LDR) using tone mapping and backward compatible 

approaches. Mantiuk et al. introduced a technique to encode a 

HDR stream into LDR and residual streams combined to 

reconstruct the original HDR frames. The proposed technique 

is compatible with MPEG decoders [28]. Debattista has 

proposed to use genetic programming to produce tone mapped 

LDR frames optimised for compression using JPEG with 

different quality levels. Presented results have improved 

performance with respect to previous works [29-30]. Recently, 

Dabrowski’s group has been investigating tone-mapping 

specifically for ADAS. For example, they have been looking 

into tone-mapping specifically for night vision and rejection of 

light reflections. Presented results show improved performance 

in terms of road signs readability and image quality with respect 

to traditional tone mapping techniques, while offering higher 

throughput [31]. In a follow up work, the group also analysed 

tone mapping for a specific automotive colour filter array used 

in the camera sensor, red-clear-clear-clear, demonstrating the 

possibility to achieve competitive compression ratios and real-

time performance [32]. 

However, more radical solutions to the video compression 

issue are under investigation in automotive. For example, end-

to-end DNN techniques can be used, as shown in [33]. In this 

work, the authors have investigated the use of generative 

adversarial networks (GAN) to implement compression coding 

and decoding and compared the results with JPEG2000. The 

GAN output gives better results in terms of image segmentation 

compared to segmentation implemented on JPEG2000 

compressed images, but the data compressed with JPEG2000 

have a better PSNR. Interestingly, also Chamain et al. have 

investigated end-to-end compression techniques and discuss 

specifically different ways of optimising the pipeline coding-

decoding-DNN based perception (e.g. object detection) [34]. 

Another area of research is compressive imaging combined 

with decoding and DNN detection, proposed in [35]. The paper 

presents a very interesting perspective on the topic, discussing 

how much pre-processing of images is needed, but also the 

actual need of implementing decoding, which the Authors 

remove, achieving comparable performance with respect to 

reconstructed videos.  

In this context, our previous work has investigated 

compression tuning of DNN based object detection and the use 

Motion JPEG compressed datasets. The work shown an 

improvement of AP and R when the DNNs are trained with 

compressed data [2]. However, M-JPEG does not consider 

temporal redundancy between frames, and better compression 

standards can be considered for automotive. The authors have 

also investigated compression based on regions of interest [36]. 

In this previous work, the region not of interest, such as the sky 

and buildings, are compressed to a higher degree compared to 

region of interest. The result of the two level compression was 

evaluated with a segmentation perception task. 

V. METHODOLOGY 

This work expands on [2] and evaluates the effect on object 

detection via compression tuned Faster R-CNN (i.e. a two-stage 

detector, see Sec. II. B); video compression has been 

implemented using AVC and HEVC. The results have been 

further validated using an off the shelf one-stage detector, i.e. a 

YOLOv5 network, Sec. VI.D, similarly to what shown in [37]. 

Additionally, in this work, the use of images compressed using 

different compression standards for the training and transmitted 

datasets was investigated for the first time. The complete 

experimental process is shown in Fig.1b). The KITTI Moseg 

dataset was chosen for this study, hereafter referred to as the 

‘original dataset’ [38]. The series of datasets used for testing 

and training the selected DNN are generated by compressing 

the original dataset into videos with different Quantisation 

Parameter, QP. We then implemented transfer learning on the 
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selected Faster R-CNN network with the differently 

compressed training datasets, generating 14 compression-tuned 

networks. These networks correspond to the DNNs that can be 

deployed in processing units of the vehicles and used to 

implement object detection real-time, Fig.1a). The transmitted 

sensor data were again simulated by using one of the 

compressed datasets, and the DNNs were used to infer across 

all these different datasets.  

A. KITTI MoSeg Dataset 

There are many datasets available for developing automated 

vehicle capabilities, collected by various research groups [39]. 

These datasets are generally captured through an array of 

perception sensors mounted on a vehicle driving in the real 

world in a variety of environments and scenarios. These 

datasets can contain time synchronised sensor data as well as a 

variety of additional data such as object labels, information 

from the ego-vehicle, environmental conditions, etc. 

The KITTI MoSeg dataset is a subset of the KITTI dataset 

with extended annotations [40-41]. This subset of the database 

contains 6 training videos and 2 testing videos of 1449 time 

correlated frames with moving and static vehicle labels 

captured at 10 frames per second [40-41]. 

We chose to detect vehicles (static and dynamic), since the 

vehicle class is of foremost importance for ADASs and AVs, as 

other vehicles are more commonly encountered by the ego 

vehicle in different environments and scenarios, posing a higher 

threat of accidents. During 2020 in the UK, there were 91,199 

accidents recorded on the road with 72% of these incidents 

involving another vehicle [42]. 

B. Compression of the Dataset 

The QP used to compress the datasets using AVC and HEVC 

can be varied from a minimum of 0 up to a maximum of 51, 

where a QP of 0 represents lossless compression, QP of 17 is 

considered visually lossless (based on the human visual 

system), QP of 23 is the default in AVC. Every increase in 6 for 

the QP roughly results in the compressed file size being smaller 

by a factor of 2. In this work, the datasets compressed into 

videos using constant QPs of 0, 17, 23, 29, 35, 41 and 51 in both 

AVC and HEVC were created from the original KITTI Moseg 

dataset (so a total of 14 datasets were generated). This 

conversion from frames to compressed video was achieved 

through ffmpeg, using the libx264 and libx265 codecs for AVC 

and HEVC compression respectively, with varying QP through 

the dedicated flag. Then, each frame in the compressed videos 

was saved as a lossless image. The compressed video sizes at 

each QP and compression standard are shown in Table I.  

C. Neural Network Compression Training 

The network used for object detection is a Faster R-CNN 

with a Residual Network, ResNet-101, as the backbone. 

ResNet-101 offers a good trade-off between almost real-time 

operation and accuracy, has a size of 167 MB, 44.6M 

parameters, and 101 layer-depth with 3-layer residual blocks 

[43]. In 3-layer residual blocks, a shortcut is employed where 

the output of a layer is passed through and affects the output of 

the third layer after the original layer [43]. As mentioned above, 

a partial comparison of the achieved results has been carried out 

with YOLOv5 network, representative of a widely used one 

stage detector [44]. The experiments were carried out on an i9-

10885H CPU with an Nvidia Quadro RTX 5000 with Max-Q 

design and 16GB GDDR6 VRAM using Matlab and pytorch 

platforms for Faster-RCNN and YOLOv5 respectively. 

Each one of the 14 datasets described in par. III. B was split 

with an 8:2 ratio to form the training and validation sets 

respectively for the DNNs. The Faster R-CNN hyperparameters 

were optimised based on the original MoSeg dataset. A series 

of 14 networks were then re-trained (without changing the 

hyperparameters) using each of the generated training datasets. 

Of these 14 networks, two were trained with uncompressed data 

(QPT=0 for AVC and HEVC compression, where QPT is the QP 

used for the DNN training dataset) and 12 with lossy 

compressed data, Fig.1b) magenta lines; thereafter they will be 

referred to as uncompressed tuned networks and compression 

tuned networks respectively. Each trained network was used to 

evaluate every one of the 14 datasets compressed in both AVC 

and HEVC with the selected QPI. We will call the datasets for 

testing the transmitted data, as they represent the data that will 

be transmitted on the vehicle communication networks, black 

arrows in Fig.1a-b).  

D. Neural Network Evaluation 

Precision is a measure of the number of achieved accurate 

predictions (True Positive predictions, TP) compared to all the 

predictions that the network outputs, (1). 

                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1) 

On the other hand, Recall measures the number of accurate 

predictions compared to the total number of objects in the 

ground truth data, as shown (2). Some of the ground truth 

labelled objects cannot be detected by the network and are 

therefore considered False Negative objects. 

               𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2) 

A bounding box determined by the DNN is a True Positive if 

its Intersection over Union (IoU) with a bounding box in the 

ground truth is larger than the defined threshold (in this work 

the threshold is 0.5). The IoU is the area of overlap between the 

detected and ground truth bounding boxes divided by the total 

area covered by the two bounding boxes. If the detected object 

bounding box IoU is below the threshold, we have a False 

Positive. Finally, the False Negative value is the number of 

ground truth bounding boxes which do not have an associated 

TABLE I 
TOTAL SIZE OF THE COMPRESSED DATASET WHEN VARYING QP 

QP 

Total Compressed Dataset File 

Size (Bytes) 

Compression Ratio (based on 

the raw dataset size of 

2,024,616,250 Bytes) 

AVC HEVC AVC HEVC 

0 780,118,312 879,129,975 1:3 1:2 

17 146,862,722 206,085,465 1:14 1:10 

23 64,705,207 101,412,155 1:31 1:20 
29 28,299,339 43,227,152 1:72 1:47 

35 12,616,765 15,586,079 1:160 1:130 

41 5,740,979 5,152,473 1:353 1:393 
51 2,015,010 1,585,235 1:1005 1:1277 
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DNN detected bounding box with IoU above the threshold. 

Average precision and recall are calculated accordingly to the 

PASCAL Visual Object Classes Challenge 2012 (VOC2012) 

Development Kit [45]. Namely, Precision is calculated for each  

frame and averaged for each detection class. Recalls are 

assumed to be initialised to zero, and then the number of true 

positive objects is cumulated until all the frames are analysed 

and the value of recall per class is calculated. 

AP and R were computed for every one of the 14 

compression-tuned DNN and for every one of the 14 

compressed datasets, each one of them characterised by the 

selected compression standard and QPI. We have computed 

these two values for the four possible combinations of standards 

used to compress the training and the transmitted dataset. We 

call homogeneous transmission when we use either AVC-AVC 

for compression of training and transmission datasets, or when 

we use HEVC-HEVC. However, it is also possible to assume 

that transmitted data can be compressed with a standard (e.g. 

AVC) different from the standard used for the DNN training 

dataset (e.g. HEVC). We have therefore evaluated 

heterogeneous transmission, where AVC-HEVC or HEVC-

AVC combinations have been used to compress the training and 

transmission datasets respectively. 

VI. RESULTS 

A. DNN object detection performance 

Fig. 2 a)-b) and c)-d) show respectively the evaluated DNN 

average precision and maximum recall plotted against QPI, 

namely plotted for increasing values of compression of the 

transmitted data. Each line colour represents a different QPT, 

i.e. the compression rate of the training dataset used for 

compression-tuning the Faster R-CNN. It is possible to observe 

that the trend of all the lines is similar, AP and R are stable or 

with small variations until a QPI equal to 29 or 35, and then they 

decrease significantly, up to around 30% decrease (only for QPT 

equal to 41 and 51 the decrease is smaller). Overall, re-training 

with QPT = 29 using AVC compressed data and inferencing on 

AVC compressed transmitted data yielded better average 

precision at most QPI tested. Furthermore, DNNs retrained with 

a QPT of 23 and 29, AVC compression, are mostly the best 

performing for QPI < 41.  

B. DNN’s performance when training with compressed data 

Fig. 3 a)-d) show, for the four combinations of homogeneous 

and heterogeneous transmission, the comparison of the DNNs 

re-trained with uncompressed dataset (blue lines, QPT=0) with 

compression-tuned DNNs (yellow and orange lines). AP (left 

axis) and optimised QPT (right axis) are plotted versus QPI. The 

blue lines are used as baseline, as it is what current implemented 

in vehicle object detectors, i.e. the DNN training is 

             

             
Fig. 2.  Graphs showing the calculated AP and R for all the 14 DNNs evaluating the 14 created datasets. a) and c) Average Precision and Maximum Recall for 

homogeneous transmission, b) and d) Average Precision and Maximum Recall for heterogeneous transmission. Each line colour represents a different QPT and 
different line styles represent the different combinations of compression standards used for training and transmitted datasets (respectively with quantization 

parameters QPT and QPI). Solid line represents using AVC -AVC compression for training and transmitted datasets; dash-dotted line represents using HEVC-

HEVC; dashed line represents HEVC – AVC; dotted line represents AVC – HEVC.  

a) 
b) 

a) b) 

c) d) 
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implemented using uncompressed data. The orange lines show 

the achievable AP if the training and transmitted datasets have 

the same quantisation parameter (QPT = QPI), and outperforms 

the baseline in most of the points. The yellow lines show, for 

each QPI, the maximum AP achieved as a function of the 

compression ratio of the dataset used for the re-training, and the 

purple lines (right axes) visualise the value of QPT used for the 

training data that yields to the maximum AP. The yellow line 

always outperforms the blue line across a) to d), demonstrating 

that re-training with compressed data provides the best 

performance at all the compression ratios of the transmitted 

data, even for transmitted uncompressed data (QPI =0). 

Fig. 4 compares the best achieved AP values versus 

increasing QPI, i.e. increasing compression ratio of transmitted 

data. The four combinations of homogeneous and 

heterogeneous compression are indicated by the line styles. 

Although using AVC for re-training and transmission (solid 

blue plot) performed the best, there were minor differences in 

performance and all the combinations exhibited a similar trend. 

All the combinations showed a stable performance between 0 

and 29 QPI. With an appropriate selection of QPT for DNN 

tuning, the performance improved even when lossy data were 

transmitted (QPI > 0). Additionally, at QPI of 29, 35 and 41, 

there is a performance gap between training with AVC and 

HEVC compressed data.  

VII. DISCUSSION 

As previously described, we have been focusing on 

compression tuning a Faster R-CNN by re-training with 

compressed video datasets using different compression 

standards (AVC and HEVC) and compression ratios 

(i.e. 0QPT51). The performance of these compression tuned 

DNNs (we have re-trained 14 DNNs) was evaluated when 

inferencing on compressed video camera data. The achieved 

results can ultimately inform the decision of transmitting 

compressed sensor data over traditional vehicle communication 

networks without impairment in the perception step (based on 

vehicle detection).  

A. DNN’s performance enhancement and optimisation when 

transmitting compressed data 

Fig. 2 demonstrates an improvement of the AP for both 

compressed and uncompressed transmitted data when using 

compression tuned DNNs. This beneficial effect is observable 

for all the compression ratios (including QPI=0), with an 

increase of the average precision up to around the 15% with 

respect to the performance of the DNN tuned with 

uncompressed data. Notably, for QPI=0, i.e. equivalent to 

current transmission via wired vehicle networks, performance 

             

             
Fig. 3. Average precision (left axis) and training dataset QPT (right axis) versus transmitted data QPI for the following compression combinations: (a) AVC for 

training and transmitting; (b) AVC for training and HEVC for transmitting; (c) HEVC for training and AVC for transmitting; (d) HEVC for training and 

transmitting. In each plot, the blue lines are the values achieved for QPT=0 (training with lossless data), the orange are for QPT= QPI (training with the same level 

of compression of the transmitted data), yellow are for the maximum achievable AP as a function of QPI, and the purple plots (right axis) show the related QPT 

for each point in the yellow plot. 

d) 
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increases by ~2% when using compression tuned DNNs.  

Fig. 3 shows that networks re-trained with uncompressed 

data do not yield the best performance with any of the 

transmitted datasets, from uncompressed to different degrees of 

compression. Compression of the dataset for DNN re-training 

provides higher AP and R, regardless of the compression rate 

and compression standard used for the transmitted data (even 

for uncompressed data), when the compression ratio of the re-

training dataset is optimised (i.e. QPT is optimised according to 

the purple lines in Fig. 3). If the compression ratio QPI of 

transmitted data is known, QPT optimisation is key to achieve 

the best DNN performance, as demonstrated by comparing the 

orange lines with the yellow ones in Fig 3. In fact, re-training 

and transmitting data using QPT=QPI provided the best results 

only for a few QPI values (orange and yellow lines 

intersecting/overlapping in figure). The importance of QPT 

optimisation is further demonstrated by the plots in Fig. 2. The 

red lines correspond to the uncompressed re-trained DNNs, and 

it is evident that re-training with compression ratios above a 

certain threshold (i.e. QPT > 35, yellow and black lines) is not 

beneficial anymore.  

Fig. 3, purple lines, shows that AVC re-trained DNN favours 

a slightly higher QPT for training compared to HEVC. Fig. 3 a) 

and b) indicate a QPT of 29 for AVC compression as the suitable 

value in most scenarios other than heavy compression of 

transmitted data (higher QPI). For HEVC compressed training, 

the optimal value can be a QPT of either 17 or 29, when 

transmitted data are not heavily compressed. 

B.  Homogeneous vs Heterogeneous compression tuning  

Another aspect highlighted by the presented results is that 

compression tuned DNN have enhanced performance for 

transmitted data compressed with the same standard (i.e. AVC-

AVC and HEVC-HEVC compression pairs for re-training and 

transmission), but also when transmitted data are compressed 

with another standard, as shown in Fig. 4. Furthermore, when 

QPT is between 29 and 41, there is an increased difference in 

performance between training AVC and HEVC, with AVC 

performing better. As QP increases, artefacts in the decoded 

videos are more prominent. The artefacts could be recognised 

as a feature of the detected class during training or evaluation 

causing false positives. Artefacts arising from lossy 

compression will differ between AVC and HEVC standards and 

may cause the difference in performance; Table II highlights 

some of the artefacts arising from compression.  

C. Colour space and qualitative analysis 

It is worth noting, when training with lossless compressed    

data and inferring with lossless data (QPT=QPI=0), the average 

precision is not the same for the four homogeneous and 

heterogeneous combinations (average precision ranges between 

56.05 to 56.19 and max recall ranges between 59.96 and 61.42). 

In theory lossless compression should yield the same image 

even if different compression algorithms are used. Upon closer 

inspection of the two lossless datasets (QP=0, AVC and HEVC 

 
Fig. 4. Average precision against QPI of the evaluation dataset. Each line 

represents the maximum average precision achieved based of a different 

combination of the standard used to compress the training, its QPT, and 
evaluation dataset. T stands for the standard used for compressing the training 

dataset and I stands for the standard used for transmitted data 

  

b) a) 

TABLE II 
COMPARISON OF ARTEFACTS RESULTING FROM COMPRESSION, IMAGES HAVE BEEN STRETCHED FROM THEIR ORIGINAL SIZE 

Artefact (Identified errors) Original Compressed at 41 QP AVC Compressed at 41 QP HEVC 

Loss of edge definition (deformation 
of rear bicycle wheel, blurring of 

bicycle) 

   

Attenuation of high frequencies 
(coat pattern and ground) 

Block artefacts (face of person) 

   

Posterisation and loss of edge 

definition (vehicle blurring and 
blending into van) 
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compression) compared to the original dataset, there are minor 

differences in many pixels. In the image shown by Fig. 5 a), 

QP=0 AVC compression, the 18.4% of the RGB pixels differed 

by a value of one with respect to the original dataset. Similarly, 

the 9.8% of the QP=0 HEVC compressed pixels differed by 1 

from the original data. There were also around 0.1 % of pixels 

differed by 2 in both compression standards and a minor 

amount in HEVC which differed by 3. These minor differences 

are the result of the colour space conversion. In AVC and 

HEVC, the RGB data is converted into YCbCr colour space 

during compression, and the reversed back during 

decompression [19]. This conversion will involve rounding, 

resulting in the produced AVC and HEVC lossless images 

being slightly different between each other and with respect to 

the original frames. The DNN AP and R for QPT=QPI=0 show 

that minor changes to pixel values can have an effect on the 

performance of the object detection algorithm, in our case up to 

~ 2% difference between the HEVC and AVC trained DNNs. 

Finally, to further understand the cause of false positives and 

negatives identified by the DNNs, we visually inspected some 

of the frames. We plotted the frames of the transmitted datasets, 

e.g. Fig. 5, overlaying the ground truth bounding boxes (green 

rectangles) and the bounding boxes identified by the DNN 

(yellow rectangles). In the selected frame, there are 6 vehicles 

identified by the neural network in Fig. 5a, and 3 vehicles in Fig 

5b. In both these images the DNN generated bounding boxes 

are all correctly identified vehicles. However, the detections not 

overlapping with the ground truth are recognised incorrectly as 

false positive objects. Although they all are true positives, the 

lack of accurate ground truth is detrimental to the evaluation of 

the DNN performance. When reviewing the KITTI dataset, this 

kind of mismatched ground truth was present in a significant 

number of evaluated images. There were also mislabels in 

which vehicles fully obstructed by another object were still 

labelled in the ground truth, as further discussed in [46].  

D. Comparison with one-stage detectors 

To validate our results, a reduced set of the experiments have 

been carried out with a one-stage detector, i.e. YOLOv5. The 

network has been compression-tuned with uncompressed and 

compressed data (i.e. QPT=0, 29, respectively). In terms of 

testing sets, QPI=0, 29, 35, 41 have been evaluated. The AP 

results show similar trends to that of the ones identified in our 

original experiments. The QPT=29 trained YOLOv5 yields 

similar performance than the2 QPT=0 trained YOLOv5 when 

evaluating uncompressed data. Moreover, when evaluating 

compressed data, the QPT=29 trained YOLOv5 outperforms the 

YOLOv5 trained with uncompressed data (up to ~3%). These 

results demonstrate that different DNNs will have different 

behaviours when consuming compress data, and a part of the  

future work in the design of the AAD sense-perceive-control 

pipeline will be to select and optimise the DNN architecture 

best suited to consume compressed data. 

VIII. CONCLUSION 

This work investigated the effect of lossy compression on the 

transmission via traditional communication data networks of 

video camera data for ADAS and AV applications. Currently, 

automotive manufacturers prefer to obtain uncompressed data 

from camera sensors, which puts a significant burden on the 

vehicle communication networks. Assuming that these data will 

be consumed by neural networks, we have analysed how to 

optimise the DNN compression tuning based on the 

compression level of transmitted data. We have shown that 

lossy compression of transmitted data with AVC or HEVC, 

with a QP29, does not significantly affect the performance of 

Faster R-CNN. Moreover, the DNNs re-trained and optimised 

with a compressed dataset always outperform the DNNs trained 

with uncompressed datasets (QP=0), with an improvement of 

up to the 15% and 20% for average precision and recall 

respectively. This improvement is noticeable also when 

transmitting uncompressed data, potentially because 

compression-tuning the DNNs makes them more robust to real 

world variations in the dataset. This work paves the way to the 

use of compressed videos in combination with neural networks 

in assisted and automated driving functions. 

Future work will entail a further inspection of the minor 

changes in pixels and their effect on the DNN performance, as 

well as expanding the study to include a larger number of object 

classes. Additionally, the use of optimised light-weight and 

low-latency lossy coding techniques needs to be investigated, 

in combination with the optimisation of the selected DNN for 

the selected compression method.  
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