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Abstract: Forest cover mapping is of paramount importance for environmental monitoring, biodi-
versity assessment, and forest resource management. In the realm of forest cover mapping, signifi-
cant advancements have been made by leveraging fully supervised semantic segmentation models.
However, the process of acquiring a substantial quantity of pixel-level labelled data is prone to
time-consuming and labour-intensive procedures. To address this issue, this paper proposes a novel
semi-supervised-learning-based semantic segmentation framework that leverages limited labelled
and numerous unlabelled data, integrating multi-level perturbations and model ensembles. Our
framework incorporates a multi-level perturbation module that integrates input-level, feature-level,
and model-level perturbations. This module aids in effectively emphasising salient features from
remote sensing (RS) images during different training stages and facilitates the stability of model
learning, thereby effectively preventing overfitting. We also propose an ensemble-voting-based label
generation strategy that enhances the reliability of model-generated labels, achieving smooth label
predictions for challenging boundary regions. Additionally, we designed an adaptive loss function
that dynamically adjusts the focus on poorly learned categories and dynamically adapts the attention
towards labels generated during both the student and teacher stages. The proposed framework was
comprehensively evaluated using two satellite RS datasets, showcasing its competitive performance
in semi-supervised forest-cover-mapping scenarios. Notably, the method outperforms the fully super-
vised approach by 1–3% across diverse partitions, as quantified by metrics including mIoU, accuracy,
and mPrecision. Furthermore, it exhibits superiority over other state-of-the-art semi-supervised meth-
ods. These results indicate the practical significance of our solution in various domains, including
environmental monitoring, forest management, and conservation decision-making processes.

Keywords: semi-supervision; forest cover mapping; semi-supervised semantic segmentation; self-training

1. Introduction

Forests play a vital role in the land ecosystem of the Earth. They are indispensable
for conserving biodiversity, protecting watersheds, capturing carbon, mitigating climate
change effects [1,2], maintaining ecological balance, regulating rainfall patterns, and en-
suring the stability of large-scale climate systems [3,4]. As a result, the timely and precise
monitoring and mapping of forest cover has emerged as a vital aspect of sustainable forest
management and the monitoring of ecosystem transformations [5].

Traditionally, the monitoring and mapping of forest cover has primarily relied on field
research and photo-interpretation techniques. However, these methods are limited by the
extensive manpower required. With the advancements in remote sensing (RS) technology,
the acquisition of large-scale, high-resolution forest imagery data has become possible
without the need for physical contact and without causing harm to the forest environment.
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Taking advantage of RS imagery, numerous studies have proposed various methods for
forest cover mapping, including decision trees [6], regression trees [7], maximum likelihood
classifiers [8], random forest classification algorithms [9,10], support vector machines,
spatio-temporal Markov random-field super-resolution mapping [11], and multi-scale
spectral–spatial–temporal super-resolution mapping [12].

Recently, due to the growing prevalence of deep Convolutional Neural Networks
(CNNs) [13] and semantic segmentation [14–16], there has been a notable shift in the re-
search community towards utilising these techniques for forest cover mapping with RS
imagery. CNNs have emerged as powerful tools for analysing two-dimensional images, em-
ploying their multi-layered convolution operations to effectively capture low-level spatial
patterns (such as edges, textures, and shapes) and extract high-level semantic information.
Meanwhile, semantic segmentation techniques enable the precise identification and extrac-
tion of different objects/regions in an image by classifying each image pixel into a specific
semantic category, achieving pixel-level image segmentation. In the context of forest cover
mapping, several existing methods have demonstrated the effectiveness of using semantic
segmentation techniques. Bragagnolo et al. [17] proposed to integrate an attention block
into the basic UNet network to segment the forest area using satellite imagery from South
America. Flood et al. [18] also proposed a UNet-based network and achieved promising
results in mapping the presence or absence of trees and shrubs in Queensland, Australia.
Isaienkov et al. [19] directly employed the baseline U-Net model combined with Sentinel-2
satellite data to detect changes in Ukrainian forests. However, all these methods rely
on fully supervised learning for semantic segmentation, which necessitates a substantial
amount of labelled pixel data, resulting in a significant labelling expense. Semi-supervised
learning [20–22] has emerged as a promising approach to address the aforementioned
challenges. It involves training models using a combination of limited labelled data and
a substantial amount of unlabelled data, which reduces the need for manual annotations
while still improving the performance of the model. Several research studies [23,24] have
explored the application of semi-supervised learning in semantic segmentation for land-
cover-mapping tasks in RS. While these studies have assessed the segmentation of forests
to some extent, their focus has predominantly been on forests situated in urban or semi-
natural areas, limiting their performance in densely forested natural areas. Moreover, there
are unique challenges associated with utilising satellite RS imagery specifically for forest
cover mapping:

Challenge 1: As illustrated in Figure 1a, satellite remote sensing (RS) forest images
often face problems such as variations in scene illumination and atmospheric interference
during the image acquisition process. These factors can lead to colour deviations and
distortions, resulting in poor colour fidelity and low contrast. Therefore, it becomes
essential to employ image enhancement techniques to improve visualisation and reveal
more details. This enhancement facilitates the ability of CNNs to effectively capture
spatial patterns.

Challenge 2: Due to the high density of natural forest cover and the similar reflectance
characteristics between forest targets and other non-forest targets, e.g., grass and the
shadow of vegetation, the boundaries between forest and non-forest areas often become
unclear. As a result, it becomes challenging to accurately distinguish and delineate the
details and edges of the regions of interest, as depicted in Figure 2a.

Challenge 3: For unknown forest distributions, there are two scenarios: imbalanced (as
illustrated in Figure 2) or balanced datasets. Current methods face challenges in effectively
handling datasets with different distributions, resulting in poor model generalisation.
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(a) (b)
Figure 1. Visualisation of images after application of different processing methods: (a) original image;
and (b) image enhanced using contrast enhancement.

(a)

(b)

Figure 2. Visualisation of balanced and imbalanced samples (where black represents non-forest, and
white represents forest): (a) balanced sample and (b) imbalanced sample.

In this study, we have undertaken a pioneering endeavour to integrate semi-supervised
learning techniques into forest cover mapping using satellite RS imagery. We propose a
novel semi-supervised semantic segmentation network called Semi-FCMNet, designed
to effectively tackle the associated challenges in this task. To tackle challenge 1, which
encompasses image distortion issues in RS images, we employ the concept of multi-level
perturbations. Perturbations are designed at different stages, namely, at the input level,
feature level, and model level. At the input level, perturbations utilising mixed augmen-
tation techniques are employed to enhance the representation of forest features within
the image. The feature-level and model-level perturbations facilitate model learning and
capture valuable information during training. Importantly, these perturbations effectively
counteract the overfitting of the model to noise. For challenge 2, we combine the auxiliary
teacher module with the Test-Time Augmentation (TTA) approach to integrate the gener-
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ated pseudo-labels through voting and multi-scale fusion, enhancing the reliability and
clarity of edge information. To address challenge 3, we introduce an adaptive loss function
that automatically focuses on under-learned classes and adjusts the attention towards labels
generated by both the student and teacher models. This approach enables our model to
achieve excellent performance on both balanced and imbalanced datasets. The adaptive
loss function effectively addresses the issue of insufficient learning in certain classes and
improves the capability of the model to handle diverse data distributions. Furthermore, we
adopt a progressive learning approach and design a data augmentation strategy from easy
to difficult, employing different intensity levels of data augmentation for models at different
stages. The code is publicly available at https://github.com/baizegugugu/Semi-FCMNet

The primary contributions of this paper are summarised as follows:

1. We have designed the multi-level perturbation (MP) module, including input-, feature-
and model-level perturbations at different module stages. The proposed approach
incorporates perturbations at the input stage to enhance forest representation features
by using mixed augmentation. Additionally, the auxiliary teacher module introduces
perturbations at both the feature and model levels, allowing the model to concentrate
on feature disparities and proficiently learn forest characteristics while effectively
mitigating the overfitting problem to noise.

2. By integrating auxiliary teachers with the student model, the basic self-training
method was enhanced. To generate more stable and reliable pseudo-labels during
the pseudo-labelling phase, we introduced a novel ensemble voting (EV) module,
smoothing the decision-making process for challenging boundary regions. This
module leverages a combination of multiple models and adopts a strategy based on
TTA and multi-model voting.

3. We have developed a simple yet effective adaptive loss (AL) that enables the model
to adapt to both balanced and imbalanced data distributions while also increasing
its focus on labels generated by the teacher. By incorporating AL into the training
process, our model demonstrates robust performance across different data scenarios.

This paper is organised as follows. Section 2 reviews semi-supervised semantic
segmentation, and Section 3 provides a detailed description of the proposed framework.
Section 4.1 presents detailed information on the data distribution of the two datasets we
used (Atlantic Forest and Amazon Forest), while Sections 4.2 and 4.3 introduce the relevant
parameters set in our experiments and the metrics used to verify the experimental results,
respectively. Section 4.4 compares and analyses our methods with the SOTA methods
on the two datasets, while Section 4.5 presents the ablation experimental results for our
method to validate its effectiveness. Finally, Section 5 outlines the limitations of our method,
future research directions, and application prospects.

2. Related Work
2.1. Semi-Supervised Semantic Segmentation

Consistency regularisation and pseudo-labelling are two main categories of methods
in the field of semi-supervised semantic segmentation [21,22].

Consistency regularisation methods aim to improve model performance by promoting
consistency among diverse predictions for the same image. This is achieved by introducing
perturbations to either the input images or the models themselves. For instance, the CCT
approach [25] utilises an auxiliary decoder structure that incorporates multiple robust
perturbations at both the feature level and decoder output stage. These perturbations are
strategically employed to enforce consistency in the model predictions, ensuring that the
predictions remain consistent even in the presence of perturbations. Furthermore, Liu
et al. proposed PS-MT [26], which introduces innovative extensions to improve upon
the mean-teacher (MT) model. These extensions include the introduction of an auxiliary
teacher and the replacement of the MT’s mean square error (MSE) loss with a more stringent
confidence-weighted cross-entropy (Conf-CE) loss. These enhancements greatly enhance
the accuracy and consistency of the predictions in the MT model. Building upon these

https://github.com/baizegugugu/Semi-FCMNet
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advancements, Abulikemu Abuduweili et al. [27] proposed a novel method that leverages
adaptive consistency regularisation to effectively combine pre-trained models and unla-
belled data, improving model performance. However, consistency regularisation typically
relies on perturbation techniques that impose certain requirements on dataset quality and
distribution, as well as numerous challenging hyperparameters to fine-tune.

Contrary to the consistency regularisation methods, pseudo-labelling techniques,
exemplified by self-training [28], leverage predictions from unlabelled data to generate
pseudo-labels, which are then incorporated into the training process, effectively expanding
the training set and enriching the model with more information. In this context, Yi Zhu et
al. [29] proposed a self-training framework for semantic segmentation that utilises pseudo-
labels from unlabelled data, addressing data imbalance through centroid sampling and
focusing on optimising computational efficiency. However, pseudo-labelling methods offer
more stable training but have limitations in achieving substantial improvements in model
performance, leading to under-utilisation of the potential of unlabelled data.

In the task of forest cover mapping using RS imagery, we propose an integrated
framework that combines self-training and consistency regularisation methods. This
approach effectively enhances the performance of the model by effectively utilising the
abundant unlabelled data available in the context of forest RS.

2.2. Semi-Supervised Semantic Segmentation in RS

Several studies have investigated the application of semi-supervised learning in RS.
Lucas et al. [23] proposed Sourcerer, a deep-learning-based technique for semi-supervised
domain adaptation in land cover mapping from satellite image time-series data. Sourcerer
surpasses existing methods by effectively leveraging labelled data from a source domain
and adapting the model to the target domain using a novel regulariser, even with limited
labelled target data. Chen et al. [30] introduced SemiRoadExNet, a novel semi-supervised
road extraction network based on a Generative Adversarial Network (GAN). The network
efficiently utilises both labelled and unlabelled data by generating road segmentation
results and entropy maps. Zou et al. [31] introduced a novel pseudo-labelling approach for
semantic segmentation, improving the training process using unlabelled or weakly labelled
data. Through the intelligent combination of diverse sources and robust data augmentation,
the proposed strategy demonstrates effective consistency training, showing its effectiveness
for data of low or high density. On the other hand, Zhang et al. [32] proposed a semi-
supervised deep learning framework for the semantic segmentation of high-resolution RS
images. The framework utilises transformation consistency regularisation to make the most
of limited labelled samples and abundant unlabelled data. However, the application of
semi-supervised semantic segmentation methods in forest cover mapping has not been
explored. In this paper, we aim to address the challenges of forest cover mapping in
high-density RS imagery and investigate the application of semi-supervised semantic
segmentation methods in this context.

3. Method
3.1. Problem Definition

Semi-supervised semantic segmentation is a method of semantic segmentation that
uses labelled and unlabelled data. Compared to traditional fully supervised semantic seg-
mentation methods, it does not require a large amount of labelled data to train the model,
making computation more economical and efficient. The main idea of semi-supervised
semantic segmentation is to enhance the generalisation ability of the model by utilising un-
labelled data. Specifically, semi-supervised semantic segmentation seeks to generalise from
a combined dataset consisting of pixel-wise labelled images Dl = {(xi, yi)}M

i=1 unlabelled
images Du = {ui}N

i=1, where, typically, N >> M. In the majority of studies, the overall
optimisation objective is formulated as

L = Ls + λLu, (1)
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where λ serves as a tradeoff between labelled and unlabelled data. The parameter λ can
either be a fixed value or be scheduled during training. The unsupervised loss Lu is a crucial
aspect that distinguishes various semi-supervised methods, whereas the supervised loss
Ls typically refers to the cross-entropy loss between predictions and manually annotated
masks.

3.2. Auxiliary Mean Teachers and Student Models

Although many more advanced models and methods have emerged, classical methods
such as self-training and mean teachers can also perform well with improvements. To
further improve the performance of the model based on the self-training method, we
incorporate an improved mean-teacher mechanism. Figure 3 shows the architecture of
our model. The model uses the classical encoder–decoder model, using ResNet-101 as the
encoder for better pixel information extraction and restoration and using DeeplabV3+ as
the decoder. All auxiliary teachers and students share the same structure, and both of the
two auxiliary teachers receive exponential moving average (EMA) transfers of parameters
from different epochs of the student, as shown in Figure 4, i.e.,

θk = γ · θk + (1− γ) · θs, (2)

where k ∈ ta1, ta2, γ ∈ (0, 1). For the training of teacher models, we update the parameters
of only one of the two teachers at each training epoch.

Figure 3. Overview of the proposed network pipeline.

Figure 4. Overview of the proposed auxiliary teacher module.
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3.3. Training Strategy: Self-Training (ST)

Currently, the perturbation method based on consistency regularisation is widely
considered the most effective approach to semi-supervised learning. This method involves
perturbing the image during data augmentation and improving the performance of the
model by constraining the similarity between its final predicted outputs. These perturba-
tions mostly focus on perturbing the image representation, such as adding noise, random
dropout, cutout, and CutMix. However, the unprocessed RGB colour features of the forest
satellite RS dataset are not obvious, and the data distribution is imbalanced. Random
perturbations at the image level make it difficult for the classes with few samples to be
fully learned, while the classes with many samples are constrained by the loss function,
making it difficult for the model to fully learn from those samples, resulting in poor model
performance. At the same time, the perturbation method based on consistency regulari-
sation requires manually adjusting the weights of unsupervised loss and supervised loss,
and it is difficult to adjust the proportion for different weights, leading to a further decline
in model performance.

Therefore, in order to fully utilise the information in the dataset and reduce the settings
of hyperparameters, we primarily adopt a method based on self-training, as shown in
Figure 5. Firstly, we train the teacher model tl on the labelled dataset Dl , and then tl

is used to assign pseudo-labels to the remaining unlabelled samples in Du. Finally, the
pseudo-labels are used as the labels for the unlabelled images, and the student model
s is trained on the entire dataset Da. During the training process, auxiliary teachers are
introduced to more stably evaluate and predict unlabelled images.

Labeled Set Student
Model

Ground Truth

Train

Auxiliary
Model

Auxiliary
Model

E
M
A

E
M
A

Predict

Unlabeled Set Pseudo-Labels

Pseudo-Labels Generation

Pseudo-Labels

Unlabeled Set Train Student
Model

Auxiliary
Model

Auxiliary
Model

E
M
A

E
M
A

Unlabeled Dataset
with Pseudo-labels

Strategy : Self-Training (ST)
Adaptive Loss Function

Figure 5. Overview of the proposed training strategy.

The pseudocode of our ST framework is shown in Algorithm 1.
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Algorithm 1 ST with perturbation

Require: Labelled training set Dl = {(xi, yi)}M
i=1,

Unlabelled training set Du = {ui}N
i=1,

Strong/VAT/weak augmentations As/AV/Aw,
Teacher/student model tl , ta1, ta2/s

Ensure: Student model s
1: for minibatch {(xi, yi)}M

i=1 ⊂ Dl do
2: for k ∈ {1, ..., M} do
3: xk, yk ← AV(Aw(xk, yk))
4: ŷk = tl(xk)
5: Update tl to minimise Lce and L f ocal of {(ŷk, yk)}M

k=1
6: Update ta1, ta2 with EMA of s
7: end for
8: end for
9: D̂u =Label(Du)

10: for minibatch {(xi, yi)}B
i=1 ⊂ (Dl ∪ D̂u) do

11: for k ∈ {1, ..., B} do
12: xk, yk ← AV(As(Aw(xk, yk)))
13: ŷk = s(xk)
14: ˆyk2 = 0.5(ta1(xk) + ta2(xk))
15: Update s to minimise Lce and L f ocal of {(ŷk, yk)}B

k=1
16: Update s to minimise Lce and L f ocal of {( ˆyk2, ŷk)}B

k=1
17: Update ta1, ta2 with EMA of s
18: end for
19: end for
20: return s

In this training strategy, strong augmentation refers to data transformations that
alter the colour, contrast, and other properties of the image, such as colorJitter, random
greyscale, blur, etc. On the other hand, weak augmentation pertains to transformations
like resizing, cropping, and horizontal flipping that do not modify the main features of
the original image. It is important to note that we employ weak augmentation during
the supervised phase, whereas in the unsupervised phase, we adopt a combination of
strong and weak augmentations. Both of these types of augmentation fall under input-level
image perturbation and, together with subsequent transformations like VAT (feature-level
perturbation), constitute multi-level perturbation.

3.4. Multi-Level Perturbation (MP)

In the process of model learning, the most basic self-training method will overfit the
errors during iteration and reduce the performance of the student model. To better capture
the intrinsic information of forest images and mitigate the risk of overfitting incorrect labels,
we propose a multi-level perturbation strategy including input-level image perturbation,
feature-level perturbation, and model-level perturbation.

3.4.1. Input-Level Image Perturbation

Given the limited prominence of colour features and the difficulty in learning image
features, we opted for a mixed-image augmentation as input-level perturbation for fully
supervised and unsupervised learning, which allows the model to prioritise the overall
image rather than focusing solely on partial regions. Specifically (as shown in Figure 3),
in the fully supervised stage, we applied weak augmentations, including resize, crop,
and horizontal flip transformations, to the input images. In the unsupervised stage, we
employed strong augmentations, including colorJitter, random greyscale, and blur, as well
as random cutout and contrast/colour-filtering techniques, on the input images.
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3.4.2. Feature-Level Perturbation VAT

Feature perturbation involves the creation of adversarial perturbations that pose a chal-
lenge by intentionally disrupting the cluster or low-density assumption. This is achieved
by transforming the image features, computed from the model encoder, towards the classi-
fication boundaries within the feature space. One effective approach to generating such
adversarial feature noise is through virtual adversarial training (VAT), which optimises a
perturbation vector to maximise the divergence between correct and adversarial classifica-
tions. However, current methods estimate the adversarial noise by using the same single
network where the consistency loss is applied. Thus, we suggest estimating the adversarial
noise using the more accurate teachers and then applying this estimated noise to the feature
of the student model, which we call VAT feature perturbation. In particular, we used the
VAT feature enhancement method in both the fully supervised and semi-supervised stages
and achieved significant improvements. VAT is used in the student model output, i.e.,

ps(x) = decoders(encoders(x) + radv), (3)

where ps is the prediction result of the student model for each pixel, and encoders and
decoders are, respectively, the encoder and decoder of the student model. The adversarial
feature perturbation radv ∈ Z is estimated from the response of the ensemble of teacher
models using

max d(0.5 · (decodera1(zs) + decodera2(zs)), 0.5 · (decodera1(zs + radv) + decodera2(zs + radv))),

subject to ||radv||2 ≤ ξ,
(4)

where zs = s(x), and d(.) is the sum of the pixel-wise Kullback–Leibler (KL) divergence
between the original and perturbed pixel predictions. Figure 6 illustrates feature-level
perturbation.

Fe
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Figure 6. Visualisation results of feature maps before and after feature-level perturbation: feature
maps (extracted features of the image after input perturbation by the encoder) and VAT disturbance
(image with injected VAT perturbation after feature extraction).

3.4.3. Model-Level Perturbation

To enhance the perturbations of the self-training method, we introduced model-level
perturbations through auxiliary teachers. In the unsupervised stage, we utilised the teacher
model, which received parameters from the student model with EMA, to predict the input
images. Based on the assumption of consistency regularisation, multiple models trained
at different stages should have similar predictions for the same image. By measuring the
differences between the labels generated by teachers and the student model using a loss
function, we provided feedback to the student model and updated its parameters, thus
improving the generalisation performance of the model.
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It is worth noting that, based on the idea of gradually strengthening model learning,
we used weak data augmentation methods and feature-level VAT perturbation instead of
directly incorporating strong data augmentation methods into the supervised learning. We
found from experiments that training the model from weak to strong effectively improved
the performance of the supervised learning as well. Using strong data augmentation
throughout all epochs may lead to a decrease in the performance of the model. However,
if strong data augmentation is selectively applied in the latter half of the epochs, there is
potential for improvement in the performance. Since VAT perturbation searches for pixels
with more noise in the current features, it is related to the performance and is considered a
weak-to-strong data augmentation method. Meanwhile, based on the idea of progressive
learning, we gradually shifted the focus of the loss function towards the labels generated by
the teacher model by dynamically adjusting its attention. This adjustment allowed the loss
function to increasingly prioritise the labels provided by the teacher model as the training
progressed, leading to more reasonable model learning.

3.5. Ensemble Voting: Pseudo-Label Generation Strategy (EV)

In a model based on the self-training paradigm, the assignment of pseudo-labels to
unlabelled data using a trained teacher model plays a crucial role. However, past self-
training methods have faced limitations when manually setting confidence thresholds
and filtering the softmax probability results from the model. Although this approach has
contributed to some improvement in the confidence of the model, it suffers from issues such
as the inefficient utilisation of all pixels, heavy reliance on artificially set hyperparameters,
and the presence of fuzzy segmentation boundaries.

To address these challenges and enhance the model predictions, we integrated TTA
technology. TTA leverages multiple scales of images, and we uniformly resized them using
bilinear interpolation to ensure consistent dimensions for predictions. In our experiments,
we explored different scaling factors, including 0.5, 0.75, 1.0, 1.5, and 2.0, and weighted the
predictions obtained at each scale. Furthermore, we horizontally flipped the images at each
scale to augment the ability of the model to recognise objects in the image. By aggregating
the predictions from all scales and applying softmax, we obtained the final prediction.

Additionally, we introduce auxiliary teachers to further support the decision-making
process of the model. Following the ensemble learning vote concept, we utilise TTA
technology to predict labels using the student model. Subsequently, we combine the TTA-
augmented predicted labels from the auxiliary teachers and the student model, assigning
appropriate weights to achieve more reliable and smoother labelling results.

Overall, our labelling method, outlined in Algorithm 2, effectively leverages TTA to
enhance the model predictions and achieve improved performance in forest cover mapping.
The incorporation of TTA for both auxiliary teachers and the student model contributes to
better decision making and yields superior segmentation results.

Algorithm 2 Labelling

Require: Unlabelled training set Du = {ui}N
i=1,

Test-Time Augmentation At,
Teacher/Auxiliary teacher model tl/ta1, ta2

Ensure: pseudo-label D̂u

1: for minibatch {(xi)}B
i=1 ⊂ Du do

2: for k ∈ {1, ..., B} do
3: yk1 = At(tl(xk))
4: yk2 = At(ta1(xk))
5: yk3 = At(ta2(xk))
6: yk = 0.5(0.5(yk2 + yk3) + yk1)
7: D̂u ← yk
8: end for
9: end for

10: return D̂u
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3.6. Adaptive Loss (AL)

To address the issue of dataset imbalance, we trained the model using a combination
of cross-entropy loss and focal loss. Cross-entropy is given by

Lce(y, ŷ) = −
C

∑
c=1

yc log(ŷc), (5)

where y is a one-hot vector with length C, representing the true class; yc is the cth element
in the vector y; ŷ is the predicted probability distribution vector of the model; and ŷc
represents the probability that the model predicts the cth class. Focal loss is given by

L f ocal(y, ŷ) = −
C

∑
c=1

yc(1− ŷc)
γ log(ŷc), (6)

where y is a one-hot vector with length C, representing the true class; yc is the cth element
in the vector y; ŷ is the predicted probability distribution vector of the model; ŷc represents
the probability that the model predicts the cth class; and γ is a hyperparameter called the
focusing parameter, which is used to adjust the degree of attention that the loss function
pays to the predicted probability of different classes. When γ > 0, focal loss pays more
attention to the mispredicted samples, thus reducing the problem of class imbalance.

It is worth noting that focal loss was originally designed to solve the problem of
extremely imbalanced positive and negative samples, as well as samples that are difficult
to classify. Given that the focal loss adjusts the ratio of positive and negative sample
loss adaptively based on the difficulty of the dataset, we did not remove focal loss when
conducting experiments on balanced datasets. At the same time, to minimise problems
caused by the manual setting of hyperparameters, we introduced an automatic coefficient,

Lu =
totaliter− iter

totaliter
(Lce(ŷk, yk) + L f ocal(ŷk, yk)) +

iter
totaliter

(Lce( ˆyk2, ŷk) + L f ocal( ˆyk2, ŷk)), (7)

where ˆyk2 represents the output of the auxiliary teachers, ŷk represents the pseudo-labels
generated by the previous stage model, and yk represents the predicted results of the
student model. As training progresses, the reliability of the pseudo-labels generated during
the initial training phase decreases, and the predictions from the auxiliary teachers become
more accurate. Therefore, the loss for the original labelled data gradually decreases as the
training progresses, while the loss for the predictions between the auxiliary teachers and the
student model gradually increases. At the same time, the loss between the predicted results
of the model and the pseudo-labels generated by the previous stage of the model and
the auxiliary teachers can also be seen as a consistency regularisation method. Currently,
we have only tried linear transformations and have not explored whether there are better
adaptive adjustment coefficients.

4. Data and Experiments
4.1. Data Description

In evaluating the performance of forest cover mapping, we utilised two datasets
sourced from the SentinelHub satellite image database. The details regarding the number
of images and the distribution between forest and non-forest categories are presented in
Table 1. Both datasets consist of four-band data, with one originating from the Amazon
Rainforest and the other from the Atlantic Forest (Mata Atlantica) [33]. The geographical
distribution of these biomes can be observed in Figure 7, accompanied by sample images
highlighting the dataset concentration in two distinct regions.
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Table 1. Number of images within each dataset, as well as the forest (F) and non-forest (NF) class
balance within each dataset.

Dataset
Number of Images (F-NF Class Balance)

Training Testing Validation

RGB 3-band Amazon Forest 250 (50.0–50.0%) 20 (49.8–50.2%) 100 (47.8–52.2%)
RGB 3-band Atlantic Forest 250 (33.3–66.7%) 20 (31.5–68.5%) 100 (33.8–66.2%)

Figure 7. Map of biomes in Amazon Rainforest and Atlantic Forest.

To streamline the training process, we adopted an approach similar to a related
work [34] by training solely on the RGB channels extracted from the four-band dataset.
Notably, the model demonstrated favourable performance. Each image in the datasets has
dimensions of (512, 512, 3), while each forest cover mapping mask is represented by (512,
512, 1).

These datasets provide insights into two real-world scenarios: one involving an
imbalanced class distribution and complex images (Atlantic Forest), posing a challenging
learning task, and the other involving a balanced class distribution and relatively simple
images (Amazon Forest).

4.2. Experimental Settings

To ensure a fair comparison with most existing works, we maintained consistent
hyperparameters between the supervised pre-training of the teacher models and the semi-
supervised re-training of the student model. Specifically, we set the batch size to 8 during
training with a V100-SXM2-32GB GPU. For optimisation, we used the SGD optimiser with
an initial base learning rate of 0.001 for the backbones. The learning rate of the randomly
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initialised segmentation head was 10 times larger than that of the backbones. Additionally,
we adopted poly scheduling to decay the learning rate during the training process, i.e.,

lr = baselr · (1− iter
totaliter

)0.9.

The model was trained for 80 epochs using weak data augmentations, which includes
the random flipping and resizing of training images between 0.5 and 2.0. For strong data
augmentations on unlabelled images, we used colorJitter with the same intensity as in [? ],
greyscale, blur (same as in [35]), and cutout with random values filled. The cutout regions
were ignored in loss computation. During the pseudo-labelling phase, all unlabelled
images underwent TTA, which involved five scales and horizontal flipping. The testing
images were evaluated at their original resolution, and no post-processing techniques were
employed. It is worth noting that to enable a fair comparison with most existing works,
we have not incorporated any advanced optimisation strategies, such as OHEM in [36],
auxiliary supervision in [36,37], or SyncBN, into our method.

4.3. Evaluation Metrics

To evaluate the performance of our proposed method in forest cover mapping, we
measured several evaluation metrics, including IoU, mean IoU (mIoU), mean precision,
mean recall, mean F1-score, and accuracy for both forest and non-forest classes, i.e.,

IoU =
TP

TP + FP + FN
(8)

mIoU =
1
c

c

∑
i=1

TPi
TPi + FPi + FNi

(9)

mean precision =
1
c

c

∑
i=1

TPi
TPi + FPi

(10)

mean recall =
1
c

c

∑
i=1

TPi
TPi + FNi

(11)

mean F1 =
1
c

c

∑
i=1

2TPi
2TPi + FPi + FNi

(12)

accuracy =
TP + TN

TP + TN + FP + FN
, (13)

where c represents the number of shared classes between the benchmark datasets (c = 2).
Figure 8 shows the class distribution of the two datasets used.

The evaluation metrics were computed using the confusion matrix generated by our
semi-supervised segmentation framework, which contains the pixel numbers of true posi-
tives (TP), false positives (FP), true negatives (TN), and false negatives (FN). Specifically,
mIoU and IoU measure the similarity between predicted and ground-truth forest/non-
forest areas, while accuracy measures the overall percentage of correctly classified pixels.
The mean precision, mean recall, and mean F1-score consider both precision and recall,
which are suitable for multi-class and pixel-level classification tasks. Our results demon-
strate the superior performance of our proposed method in accurately mapping forest
cover, as evidenced by the higher values of these evaluation metrics.
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(a) (b)
Figure 8. Class distribution of the datasets: (a) class distribution of the Atlantic dataset and (b) class
distribution of the Amazon Forest dataset.

4.4. Results and Analysis

Based on the aforementioned forest RS datasets, we compared our proposed method
with several SOTA semi-supervised semantic segmentation frameworks, including the
feature-perturbation-based CCT [25], the multi-perturbation-based PS-MT [26], and base-
line ST with TTA. We also included the supervised DeeplabV3+ [38] model using ResNet-
101 [39] trained only with labelled data as a baseline. All semi-supervised methods were
implemented with identical experimental conditions and settings to ensure fairness. The
results demonstrate the effectiveness and superiority of our proposed method in accu-
rately mapping forest cover. Additionally, our method has huge potential for practical
applications in forest monitoring and management.

4.4.1. Comparison Results on the Atlantic Forest Dataset

Tables 2 and 3 show comparative results with other SOTA methods on the validation
and test sets of the Atlantic dataset. As introduced in Section 2, the CCT method based
on image surface perturbation cannot effectively learn the information of satellite RS
data, resulting in poor performance with inadequate fitting during the training process.
Similarly, other semi-supervised models (e.g., PS-MT) also suffer from this problem and the
instability caused by numerous hyperparameters, performing far worse than our proposed
method on multiple metrics after our adjustment. Methods based on self-training and data
augmentation using colour transformations exhibit stronger performance, and our method,
which is an improvement on self-training, outperforms them. Meanwhile, compared with
fully supervised methods, our approach also shows significant superiority.

Figure 9 graphically shows the performance of mIoU for different models. Specifically,
on the validation set, except for a slightly lower forest segmentation IoU compared to
the ST method at the 1/16 split, our model outperforms the other SOTA methods in all
metrics. Similarly, on the test set, our method surpasses the majority of the SOTA methods
in most metrics. For the important metric mIoU in forest cover segmentation, our model
demonstrates superior performance across different splits, as well as on the validation and
test sets. This indicates that our model is capable of effectively learning information from
satellite RS images and exhibits strong robustness.

We present partial visual comparison results of all the methods in Figure 10. On the
Atlantic Forest dataset, due to the data imbalance and the difficulty of image learning, it
can be observed that our proposed method produces smoother boundaries and highlights
more details compared to the fully supervised methods. Moreover, our method yields
predictions that are closer to the ground truth compared to other semi-supervised methods.
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Table 2. Comparison results with other SOTA methods on Atlantic Forest validation dataset using
evaluation metrics (%). (*Denotes that we have made appropriate modifications to the model,
alleviating the issue of unsuccessful training.)

Validation

Labelled Data Metric SupOnly CCT PS-MT * ST (TTA) Semi-FCMNet

1/16(16)

mIoU 69.86 35.50 62.09 70.35 72.93
IoU(NF) 76.34 54.22 73.01 72.85 79.85
IoU(F) 63.37 16.79 51.18 67.84 65.99

Accuracy 76.30 58.09 78.96 80.79 81.48
Mean precision 81.32 49.99 76.63 83.54 83.58

Mean recall 83.86 49.99 75.59 83.33 84.92
Mean F1-score 82.08 49.53 76.05 82.57 84.15

1/8(32)

mIoU 71.16 35.50 63.30 72.31 73.74
IoU(NF) 78.85 54.22 77.13 79.96 80.67
IoU(F) 63.46 16.79 49.47 64.65 66.79

Accuracy 81.54 58.09 81.32 81.10 82.67
Mean precision 82.58 49.99 82.75 83.54 84.23

Mean recall 83.28 49.99 74.65 83.86 85.27
Mean F1-score 82.91 49.53 76.64 83.69 84.69

1/4(63)

mIoU 70.20 35.50 67.95 72.77 74.07
IoU(NF) 77.75 54.22 80.19 80.21 81.21
IoU(F) 62.64 16.79 55.70 65.31 66.91

Accuracy 79.77 58.09 82.14 83.06 83.96
Mean precision 81.73 49.99 83.59 83.78 84.66

Mean recall 82.95 49.99 77.98 84.28 85.16
Mean F1-score 82.25 49.53 80.27 84.30 84.90

1/2(125)

mIoU 70.87 35.50 45.09 73.35 73.95
IoU(NF) 77.50 54.22 70.41 79.33 80.51
IoU(F) 64.23 16.79 19.77 67.36 67.38

Accuracy 77.90 58.09 72.42 78.95 81.65
Mean precision 82.00 49.99 81.63 83.65 84.19

Mean recall 84.24 49.99 59.62 84.32 85.80
Mean F1-score 82.77 49.53 57.82 84.48 84.85
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Figure 9. Performance of mIoU metric for different models on the Atlantic Forest dataset: (a) per-
formance on the validation set of the Atlantic Forest and (b) performance on the test set of the
Atlantic Forest.
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Table 3. Comparison results with other SOTA methods on Atlantic Forest test dataset using evaluation
metrics (%). (*Denotes that we have made appropriate modifications to the model, alleviating the
issue of unsuccessful training.)

Test

Labelled Data Metric SupOnly CCT PS-MT * ST (TTA) Semi-FCMNet

1/16(16)

mIoU 69.36 35.98 61.17 70.02 71.65
IoU(NF) 77.37 55.77 73.77 78.97 80.60
IoU(F) 61.33 16.18 48.58 61.06 62.70

Accuracy 76.32 59.25 78.98 79.89 82.38
Mean precision 80.67 49.99 75.72 81.49 82.94

Mean recall 83.49 49.99 74.68 82.72 83.41
Mean F1-score 81.64 49.73 75.14 82.04 83.16

1/8(32)

mIoU 69.95 35.98 56.67 70.17 73.61
IoU(NF) 79.73 55.77 76.21 79.19 82.45
IoU(F) 60.15 16.18 37.13 61.14 64.76

Accuracy 82.47 59.25 79.14 80.32 85.40
Mean precision 82.09 49.99 82.81 81.66 84.79

Mean recall 81.76 49.99 68.32 82.70 84.22
Mean F1-score 81.92 49.73 70.32 82.13 84.49

1/4(63)

mIoU 70.20 35.98 62.16 71.87 74.51
IoU(NF) 79.81 55.77 78.60 80.83 83.26
IoU(F) 61.01 16.18 45.73 62.90 65.76

Accuracy 81.93 59.25 81.87 82.81 86.75
Mean precision 82.18 49.99 84.61 83.16 85.67

Mean recall 82.38 49.99 72.85 83.47 84.61
Mean F1-score 82.28 49.73 75.38 83.31 85.10

1/2(125)

mIoU 72.78 35.98 44.31 75.23 75.62
IoU(NF) 81.22 55.77 72.15 83.02 83.24
IoU(F) 64.33 16.18 16.47 67.43 68.00

Accuracy 82.43 59.25 73.60 84.12 84.11
Mean precision 83.54 49.99 84.96 85.20 85.39

Mean recall 84.46 49.99 58.17 86.13 86.49
Mean F1-score 83.96 49.73 56.04 85.63 85.90

Input Image

Ground Truth

(a) (b) (c) (d) (e)

1/2

1/4

1/8

1/16

Figure 10. Visualisation of model predictions on different partitions on the Atlantic Forest dataset: (a)
supervised; (b) CCT; (c) PS-MT; (d) ST; and (e) Semi-FCMNet.
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4.4.2. Comparison Results on the Amazon Forest Dataset

Tables 4 and 5 present the comparison results on the Amazon Forest validation and
test sets using our evaluation metrics of accuracy, mRecall, mPrecision, mF1, and mIoU.
The tables show that on the datasets with class balance and lower image difficulty, the
supervised Deeplabv3+ achieves better segmentation accuracy than the results obtained
on the Atlantic Forest dataset. Similarly, the performance of PS-MT gradually improves,
but due to the existence of manually adjusted semi-supervised loss ratio coefficients, the
overall performance remains unstable. Additionally, the CCT method fails to learn image
information due to the challenges presented by satellite RS datasets. Consistent with
our expectations, the self-training method still exhibits strong stability and significantly
improves performance across all evaluation metrics compared to fully supervised methods.
However, as the amount of labelled data increases, the performance of the model decreases.
Furthermore, the performance of the supervised method varies due to varying image
difficulties, with its performance at the 1/8 partition being inferior to that achieved at the
1/16 partition. In contrast, our proposed Semi-FCMNet, which enhances the perturbation
of the model, leads to performance improvements. Moreover, our method also outperforms
the supervised method and other SOTA methods on the test set, indicating its strong
generalisation ability.

Table 4. Comparison results with other SOTA methods on the Amazon Forest validation dataset
using evaluation metrics (%).

Validation

Labelled Data Metric SupOnly CCT PS-MT ST (TTA) Semi-FCMNet

1/16(16)

mIoU 88.07 30.79 54.31 87.61 91.70
IoU(NF) 87.63 41.24 43.66 87.05 91.69
IoU(F) 88.51 20.34 64.96 88.16 91.69

Accuracy 94.11 48.91 72.44 93.00 96.73
Mean precision 93.64 50.00 80.48 93.41 95.79

Mean recall 93.67 50.00 71.27 93.37 95.85
Mean F1-score 93.65 46.10 69.76 93.39 95.81

1/8(32)

mIoU 87.96 30.79 77.10 89.14 92.02
IoU(NF) 87.48 41.24 74.18 88.70 91.76
IoU(F) 88.43 20.34 80.03 89.57 92.28

Accuracy 93.78 48.91 87.31 94.40 96.78
Mean precision 93.58 50.00 89.11 94.25 95.82

Mean recall 93.60 50.00 86.84 94.26 95.88
Mean F1-score 93.59 46.10 87.04 94.25 95.84

1/4(63)

mIoU 90.32 30.79 80.46 89.95 92.48
IoU(NF) 90.04 41.24 79.81 89.63 92.19
IoU(F) 90.59 20.34 81.11 90.26 92.77

Accuracy 96.21 48.91 89.18 95.71 96.45
Mean precision 94.89 50.00 89.15 94.68 96.08

Mean recall 94.96 50.00 89.19 94.75 96.10
Mean F1-score 94.91 46.10 89.17 94.70 96.09

1/2(125)

mIoU 90.81 30.79 83.42 90.69 91.71
IoU(NF) 90.66 41.24 83.32 90.55 91.49
IoU(F) 90.96 20.34 83.52 90.82 91.93

Accuracy 97.76 48.91 90.96 97.89 97.28
Mean precision 95.21 50.00 91.06 95.15 95.66

Mean recall 95.29 50.00 91.10 95.23 95.74
Mean F1-score 95.18 46.10 90.96 95.11 95.67
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Table 5. Comparison results with other SOTA methods on the Amazon Forest test dataset using
evaluation metrics (%).

Test

Labelled Data Metric SupOnly CCT PS-MT ST (TTA) Semi-FCMNet

1/16(16)

mIoU 89.44 31.38 55.25 89.84 92.64
IoU(NF) 89.53 42.72 46.04 89.85 92.65
IoU(F) 89.33 20.04 64.46 89.82 92.62

Accuracy 95.75 49.91 72.73 95.17 96.76
Mean precision 94.45 50.00 81.00 94.64 96.18

Mean recall 94.42 50.00 72.62 94.64 96.18
Mean F1-score 94.42 46.62 70.71 94.64 96.18

1/8(32)

mIoU 82.09 31.38 74.71 90.81 92.80
IoU(NF) 81.45 42.72 72.01 90.84 92.84
IoU(F) 82.71 20.04 77.42 90.76 92.79

Accuracy 87.14 49.91 85.72 96.03 96.95
Mean precision 90.37 50.00 87.86 95.19 96.28

Mean recall 90.16 50.00 85.66 95.18 96.27
Mean F1-score 90.16 46.62 85.49 95.18 96.27

1/4(63)

mIoU 91.00 31.38 83.15 91.42 93.02
IoU(NF) 91.09 42.72 83.63 91.49 93.00
IoU(F) 90.90 20.04 82.66 91.34 93.02

Accuracy 96.73 49.91 90.81 96.79 96.62
Mean precision 95.32 50.00 91.00 95.54 96.38

Mean recall 95.29 50.00 90.82 95.52 96.38
Mean F1-score 95.28 46.62 90.79 95.51 96.38

1/2(125)

mIoU 90.94 31.38 83.04 91.06 92.12
IoU(NF) 91.08 42.72 83.86 91.25 92.18
IoU(F) 90.79 20.04 82.23 90.86 92.05

Accuracy 97.23 49.91 90.76 97.60 97.15
Mean precision 95.32 50.00 91.27 95.44 95.92

Mean recall 95.26 50.00 90.78 95.33 95.90
Mean F1-score 95.25 46.62 90.73 95.32 95.89

Figure 11 graphically shows the performance of mIoU for different models.
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Figure 11. Performance of mIoU metric for different models on the Amazon Forest dataset: (a) perfor-
mance on the validation set of the Amazon Forest and (b) performance on the test set of the Amazon
Forest.

We also present partial visual comparison results of all methods on the Amazon Forest
dataset in Figure 12. Due to the lower sample complexity of this dataset, most methods
achieve good prediction results. However, it is worth noting that our proposed method
generates accurate predictions at different partition ratios, as shown in the figure.
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(b) (c) (d) (e)

1/2

1/4

1/8

1/16

Input Image

Ground Truth

(a)

Figure 12. Visualisation of model predictions under different partitions on the Amazon Forest dataset:
(a) supervised; (b) CCT; (c) PS-MT; (d) ST; and (e) Semi-FCMNet.

4.5. Ablation Experiments

Ablation studies were conducted to validate the effectiveness of each key component of
our proposed method. Our method mainly consists of the following four core components:
hybrid perturbations (including input image representation level (MP), feature level, and
model level); AL; and a pseudo-label generation strategy based on TTA and multi-model
voting (PGS). We present specific metric data in Tables 6 and 7, along with the visualisation
results of the ablation experiments in Figures 13 and 14.

Base: When employing the basic self-training method on the imbalanced Atlantic
Forest dataset with high sample learning difficulty, the performance of the model at the
1/16 partition is slightly inferior to that of the fully supervised method. However, in
other partitions, the semi-supervised method showcases its superiority by exhibiting better
performance on the validation and test sets compared to the fully supervised method. This
outcome fully demonstrates the advantages of the semi-supervised approach. However,
on the Amazon Forest dataset with lower sample learning difficulty, the basic self-training
method is prone to overfitting to the noise and cannot exceed the performance of the fully
supervised method.

MP: After adding the MP method, the various indicators of the model are further
improved, which proves that adding perturbations to the self-training paradigm, i.e.,
integrating the consistency regularisation method with the self-training method, effectively
improves model performance.

EV: When the pseudo-label generation strategy based on TTA and multi-model voting
(EV) is added, the scores of the model on important indicators, e.g., mIoU and mF1-
score, are improved in various partitions of datasets with different data distributions.
It can be seen that the method of generating pseudo-labels has a significant impact on
the performance of the self-training paradigm, and our pseudo-label generation method
effectively improves the performance of the model.

AL: After adding the adaptive loss, the model dynamically adjusts its focus on the loss.
At the beginning of the training, the model pays more attention to the predicted results of
the teacher model in the previous round. However, due to the limited performance of the
teacher in the previous round, the current student model cannot be effectively improved
in the later stage of training. The introduction of the adaptive loss makes the model focus
more on the difference between its multiple prediction results in the later stage and improve
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its own performance through consistency regularisation. The improvement in various
indicators reflects the correctness of our method.

(a) (b) (d)(c) (e) (f)

1/16

1/8

1/4

1/2

Figure 13. Visualisation of ablation experiment results on the Atlantic Forest dataset: (a) input image;
(b) ground truth; (c) Base; (d) EV; (e) EV + MP; and (f) all.
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1/16
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(a) (b) (c) (d) (e) (f)

Figure 14. Visualisation of ablation experiment results on the Amazon Forest dataset: (a) input image;
(b) ground truth; (c) Base; (d) EV; (e) EV + MP; and (f) all.
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Table 6. Quantitative evaluation of method contributions on Atlantic Forest dataset. (Xdenotes the
incorporation of this module.)

Ratio
Method Validation Test

Base MP EV AL mIoU Accuracy mPrecision mRecall mF1-Score mIoU Accuracy mPrecision mRecall mF1-Score

1/16

X 68.87 77.70 80.68 82.37 81.33 69.59 78.28 80.97 82.90 81.76
X X 70.35 80.79 83.54 83.33 82.57 70.02 79.89 81.49 82.72 82.04
X X X 72.34 80.61 83.12 84.68 83.76 71.15 80.61 82.38 83.35 82.83
X X X X 72.93 81.48 83.58 84.92 84.15 71.65 82.38 82.94 83.41 83.16

1/8

X 72.02 83.50 83.49 83.48 83.49 70.14 81.12 81.82 82.39 82.09
X X 72.31 81.10 83.54 83.86 83.69 70.17 80.32 81.66 82.70 82.13
X X X 72.81 81.79 83.56 84.72 84.07 72.91 84.07 84.04 84.01 84.02
X X X X 73.74 82.67 84.23 85.27 84.69 73.61 85.40 84.79 84.22 84.49

1/4

X 70.33 81.91 82.21 82.41 82.31 69.86 82.39 82.02 81.70 81.86
X X 72.77 83.06 83.78 84.28 89.02 71.87 82.81 83.16 83.47 83.31
X X X 73.60 82.22 84.08 85.30 84.61 73.85 84.84 84.73 84.62 84.67
X X X X 74.07 83.96 84.66 85.16 84.90 74.51 86.75 85.67 84.61 85.10

1/2

X 71.87 77.61 82.67 85.32 83.48 74.17 81.73 84.15 86.04 84.95
X X 73.52 80.20 83.80 85.91 84.58 75.33 84.18 85.27 86.20 85.70
X X X 73.35 78.95 83.65 86.22 84.48 75.23 84.12 85.20 86.13 85.63
X X X X 73.95 81.66 84.20 85.80 84.85 75.62 84.11 85.39 86.49 85.90

Table 7. Quantitative evaluation of method contributions on Amazon Forest dataset. (Xdenotes the
incorporation of this module.)

Ratio
Method Validation Test

Base MP EV AL mIoU Accuracy mPrecision mRecall mF1-Score mIoU Accuracy mPrecision mRecall mF1-Score

1/16

X 87.04 92.77 93.08 93.05 93.06 89.29 95.22 94.35 94.34 94.34
X X 87.61 93.00 93.41 93.37 93.39 89.84 95.17 94.64 94.64 94.64
X X X 91.60 95.99 95.60 95.63 95.61 92.27 96.46 95.98 95.98 95.98
X X X X 91.70 96.73 95.79 95.85 95.81 92.64 96.76 96.18 96.18 96.18

1/8

X 88.73 94.86 94.00 94.06 94.02 90.09 96.06 94.81 94.79 94.78
X X 89.14 94.40 94.25 94.26 94.25 90.81 96.03 95.19 95.18 95.18
X X X 91.90 95.94 95.77 95.78 95.77 92.60 96.27 96.15 96.15 96.15
X X X X 92.02 96.78 95.82 95.88 95.84 92.82 96.95 96.28 96.27 96.27

1/4

X 88.69 95.03 93.98 94.04 94.00 88.61 94.84 93.97 93.96 93.96
X X 89.95 95.71 94.68 94.75 94.70 91.42 96.79 95.54 95.52 95.51
X X X 92.14 96.09 95.90 95.91 95.91 92.85 96.58 96.29 96.29 96.29
X X X X 92.48 96.45 96.08 96.10 96.09 93.02 96.62 96.38 96.38 96.38

1/2

X 89.96 97.88 94.78 94.84 94.71 90.20 98.04 95.03 94.86 94.84
X X 90.69 97.89 95.15 95.23 95.11 91.06 97.97 95.44 95.33 95.32
X X X 91.52 97.62 95.56 95.65 95.57 91.97 97.56 95.87 95.82 95.81
X X X X 91.71 97.28 95.66 95.74 95.67 92.12 97.15 95.92 95.90 95.89

5. Conclusions

In this study, we propose the integration of the self-training paradigm with the mean-
teacher paradigm based on multiple perturbations and EV. We apply consistency regulari-
sation and self-training pseudo-labelling techniques in the forest-cover-mapping scenario.
By introducing auxiliary teachers and establishing more detailed pseudo-label generation
strategies, as well as enhancing the perturbations in our model, we demonstrate excellent
segmentation results. Our method demonstrates robust performance on datasets exhibit-
ing both class imbalance and class balance. This is accomplished through the dynamic
adjustment of the loss function and straightforward hyperparameter settings. Furthermore,
extensive ablation experiments conducted on the validation and test sets confirm the effec-
tiveness and robustness of our proposed method. Finally, considering the performance of
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our method across various metrics and other objectives in RS-image-processing tasks, we
have identified potential avenues for further research and development.

Although our proposed method has achieved promising results, we believe that there
are several directions for further research in the future:

• In the pseudo-label generation strategy based on TTA and EV, we used averaging to
generate pseudo-labels with higher confidence using multi-model votes. In the future,
adaptive weighting generation methods will be explored.

• The adaptive loss is set for linear adjustment, and thus, the non-linear setting will be
investigated.

• In view of model limitations, the easy accessibility of RGB remote sensing images,
and equipment cost, this study only explored the RGB channel combination. In
future work, more effective channel fusion methods can be investigated, or alternative
approaches, like using the NIR band instead of the blue band, can be explored for
forest cover mapping.
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