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Abstract

Evidence that asset returns are more highly correlated during volatile markets and during
market downturns (see Longin and Solnik, 2001, and Ang and Chen, 2002) has lead some
researchers to propose alternative models of dependence. In this paper we develop two simple
goodness-of-fit tests for such models. We use these tests to determine whether the multivariate
Normal or the Student’s ¢ copula models are compatible with U.S. equity return and exchange
rate data. Both tests are robust to specifications of marginal distributions, and are based on
the multivariate probability integral transform and kernel density estimation. The first test is
consistent but requires the estimation of a multivariate density function and is recommended for
testing the dependence structure between a small number of assets. The second test may not be
consistent against all alternatives but it requires kernel estimation of only a univariate density
function, and hence is useful for testing the dependence structure between a large number of
assets. We justify our tests for both observable multivariate strictly stationary time series and
for standardized innovations of GARCH models. A simulation study demonstrates the efficacy
of both tests. When applied to equity return data and exchange rate return data, we find strong
evidence against the normal copula, but only mixed evidence against the more flexible Student’s
t copula.
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1 Introduction

The dependence between returns on risky assets can have a profound impact on portfolio and risk
management decisions. The dependence structure between the assets, in addition to the expected
return and risk of the individual assets, will affect the distribution of portfolio returns and thus the
utility that investors derive from a particular investment decision. Economic theory sheds little light
on the dependence structures to expect between financial assets, and so finding a good specification
is essentially an empirical problem. The most widely used dependence model is that of multivariate
normality, making linear correlation a sufficient statistic for the dependence structure. However
evidence that equity returns have a dependence structure that is not consistent with multivariate
normality, or even multivariate ellipticity more generally, has recently been presented by Longin
and Solnik (2001) and Ang and Chen (2002). Equity returns appear to be more correlated during
downturns than during upturns. Evidence of asymmetric dependence between exchange rates was
reported by Patton (2002a).

The evidence reported in these papers has prompted research on flexible models of dependence
between risky assets. One such line of research employs copulas to model the possibly nonlinear
contemporaneous dependence structure of multivariate financial time series. Numerous applications
of copula models have appeared in recent work, on multivariate option pricing; portfolio and market
Value-at-Risk calculations; default and credit risk correlations; contagion; tail-dependence; and
time-varying contemporaneous conditional dependence between different assets, for example. See
Frees and Valdez (1998), Embrechts et al. (2002) and Bouyé et al. (2000) for reviews of copula
methods in finance and insurance.! The main reason for the increasing popularity and success of
copulas in modeling multivariate financial time series is its flexibility in separately modeling the
marginal behavior of each individual series and the dependence structure between individual series.
The theoretical foundation is provided by Sklar’s (1959) theorem; any multivariate distribution
with continuous marginals can be uniquely decomposed into a copula function and its univariate
marginals, where a copula function is simply a multivariate distribution function with uniform
marginals. One important property of copulas and copula-based measures of dependence is their
invariance to any increasing transformation of the original individual time series. As a result the
copula approach can flexibly model nonlinear and asymmetric dependence among multiple time
series often found in financial series without the influence of the marginal distribution of each
individual series.

In most of the existing work on modeling the dependence structure of multivariate financial time

' A non-exhaustive list of references include Hull and White (1998), Rosenberg (2003), Costinot, et al. (2000),
Li (2000), Frey and McNeil (2001), Schonbucher and Schubert (2001), Cherubini and Luciano (2001, 2002), Duan
(2002), Hu (2002), Junker and May (2002), Mashal and Zeevi (2002), Patton (2002a, b, 2004), Rockinger and Jondeau
(2002), Dias and Embrechts (2003), Embrechts, et al. (2003) and Breymann, et al. (2003).



series via the copula approach, parametric copulas are used to model the contemporaneous depen-
dence structure between univariate time series® or between innovations of univariate parametric
time series models. Commonly used parametric copulas include the normal (or Gaussian) copula,
the Student’s t copula, Frank copula, Clayton copula and Gumbel copula® As these parametric
copulas lead to models that may have completely different dependence properties, it is important
in any empirical application to check whether the chosen parametric copula correctly specifies the
dependence structure of the multivariate time series regardless of the marginal distributions of
individual series.

Recently some authors have applied classical statistical tests such as the x? and the Anderson-
Darling tests of a parametric copula specification to financial data. For example, Breymann, et
al. (2003) test various parametric specifications of the copula of multivariate high-frequency data,
while Junker and May (2002) apply these tests to testing parametric specifications of the copula
of a set of risk factors that determine a portfolio. In both papers, the marginal distributions of
the univariate time series are unspecified, and should be treated as infinite-dimensional unknown
nuisance parameters. As a result, the existing critical values for the classical Anderson-Darling and
the x? tests are no longer valid. Thus the conclusions these authors draw about the fit of particular
copula models are subject to doubts about the size of their tests. This problem is also noted
by Klugman and Parsa (1999) and Malevergne and Sornette (2003). In their test for the normal
copula for asset returns, Malevergne and Sornette (2003) have recommended the use of bootstrap
to compute empirical critical values of the Anderson-Darling test. However, in implementing their
bootstrap procedure these authors ignore the serial dependence known to be present in asset returns
(volatility clustering, for example). Thus their conclusions are also subject to doubts about the
size of their tests.

In this paper, we propose two simple and asymptotically valid tests of the goodness-of-fit of
any parametric copula model of the contemporaneous dependence structure between multiple time
series. Both tests are based on the multivariate probability integral transform and the kernel
smoothing approach, and are asymptotically normally distributed under the null hypothesis. Hence

4 The first one is a consistent test that

they are distribution-free and are also easy to compute.
requires the kernel estimation of a multivariate density function and is recommended for testing
the dependence structure between a small number of financial time series; the second one may not
be consistent against all alternatives, but it only requires kernel estimation of a univariate density

function, and hence is very useful for testing the dependence structure between a large number of

2There are also a few papers using the copula approach to modeling (nonlinear) temporal dependence of individual
time series, see Chen and Fan (2002), Gagliardini and Gourieroux (2002), and the references therein.

3Due to the well-known “curse of dimensionality” problem, fully nonparametric copula modeling, although the-
oretically feasible (see e.g. Fermanian and Scaillet, 2002), is practically difficult to implement when the number of
series being modeled is greater than three.

“Matlab code for each test is available on the web, see http://fmg.lse.ac.uk /~patton/code.html.



time series. We justify the proposed tests for both observable multivariate strictly stationary time
series and for standardized innovations of GARCH models. Simulation results demonstrate that
both tests are conservative for realistic sample sizes and data generating processes. Nevertheless,
both tests perform well in terms of power.

We apply our proposed tests to determining whether the dependence structure of up to 30 major
U.S. equities and up to 20 major exchange rates can be adequately described using the normal (or
Gaussian) copula. Recently, the normal copula has been applied to model multivariate financial se-
ries as a way to relax the multivariate normal distribution assumption yet still retain computational
simplicity. For example, Hull and White (1998) applied the normal copula in portfolio value-at-risk
calculation, and Duan (2002) employed the normal copula in option pricing. Due to its wide prac-
tical use in finance, a researcher should not abandon a normal copula model without reasonable
evidence against it. Our findings are as follows: for U.S. equity returns and for their standardized
GARCH residuals, it is difficult to reject normal copula hypothesis in bivariate analyses; however,
as the collection of assets gets larger (moving from 2 to 5, 10 and 30 assets) the normal copula
provides a poorer and poorer fit. For exchange rates and for their standardized GARCH residuals,
we can reject normal copula hypothesis even in bivariate analyses, and more strongly reject it for
larger collections of assets.

Since the normal copula implies no tail dependence nor ‘asymmetric correlation” among different
financial assets, it is not too surprising that we find evidence against normal copula in multivariate
equity returns and exchange rates. Breymann et al. (2003) and Mashal and Zeevi (2002) have
recommended the more flexible Student’s t-copula model. Our tests of the Student’s t-copula
hypothesis confirm that it is a reasonable model of the dependence structure between equity returns,
however our results suggest that it is not an adequate model for exchange rates, though it does
provide a better fit than the normal copula. Our findings indicate that non-normalities in the
dependence structure of equity returns and exchange rates, such as tail dependence, should be
incorporated into multivariate modelling of these series.

The rest of this paper is organized as follows. Section 2 briefly reviews some facts on copulas.
In Section 3, we introduce the two test statistics and establish their null limiting distributions for
observable multivariate strictly stationary time series. Section 4 extends both tests to residuals
of a multivariate time series model in which each individual time series is modeled by a GARCH
model and their contemporaneous dependence is characterized by a parametric copula. In Section
5 the results of a Monte Carlo study of the finite sample size and power of the tests are reported.
Section 6 presents analyses of the tenability of the normal copula and Student’s t copula as models
for the dependence structure of collections of daily U.S. equity returns, ranging from 2 assets to
all 30 stocks in the Dow Jones Industrial Average. Section 7 presents an equivalent analysis for 20

major exchange rates. Section 8 briefly concludes. Regularity conditions and a sketch of proofs are



collected in the Appendix.

2 A Brief Review of Copulas

Suppose we observe a multivariate time series {Y; = (Y1¢,...,Ys)}}-; from a multivariate strictly
stationary ergodic process whose invariant distribution is the same as the probability distribution of
the multivariate random variable Y = (Y7,...,Yy). We assume that (Y7,...,Yy) has a continuous
joint distribution H (y1,...,yq) over nglyj C R4, and continuous marginal distributions F;(y;)
for j =1,...,d. By Sklar’s (1959) theorem, there exists a unique copula function C(uy,...,uq) =
H(Fy Y (w),. .., F; (uq)) associated with the joint distribution H(y1,...,ya), where 0 < u; <
1for j =1,...,d Let Uy = Fj(Y:) and U; = Fj(Y;) for j = 1,...,d. Then by definition
the multivariate time series {U; = (Uyy,...,Ug)}y-; is again a strictly stationary process whose
invariant distribution is the same as the probability distribution of U = (Uy,...,Uy), which is
simply the copula function C(u1,...,uq) with 0 <wu; <1forj=1,...,d.

Throughout the paper, we shall consider two popular copula models: the multivariate normal
copula and the multivariate Student’s t-copula:

The normal copula: the d— dimensional normal (or Gaussian) copula is derived from the
d— dimensional Gaussian distribution. Let ® denote the scalar standard normal distribution, and
Py, ¢ the d—dimensional normal distribution with correlation matrix 3. Then the d—dimensional

normal copula with correlation matrix 3 is
C(wX) = 5 4(® ' (w1), ..., @ (ug)),

whose copula density is

c(wX) = mexp{— 5

The Student’s t-copula: the d— dimensional (standardized) Student’s t-copula is derived

1 (@ (ur), ooy @ N (ug)) (S — Ig) (@ (w1), oo, @ (ug)) } |

from the d— dimensional standardized Student’s t-distribution.® Let T}, be the scalar standardized
Student’s t distribution with v > 2 degrees of freedom, and 7%, , be the d—dimensional standardized
Student’s t distribution with v > 2 degrees of freedom and a correlation matrix . Then the

d—dimensional (standardized) Student’s t-copula with correlation matrix ¥ is

C(wX,v) = TEW(Tl,_l(ul), ...,Ty_l(ud)),

SFor interpretability we work with the standardized Student’s t copula and distribution here, rather than the non-
standardized Student’s t copula and distribution. The difference is that we constrain v > 2, and define the matrix %
to be the correlation matrix. In the non-standardized case the matrix ¥ is a ‘scale’ matrix and the covariance matrix,
if it exists (i.e., if v > 2) is equal to v/ (v — 2). We will refer to the standardized Student’s t copula as simply the
Student’s t copula for the remainder of the paper.



where T, }(uq) is the inverse of the scalar standardized Student’s t distribution function 7,,. The

(standardized) Student’s t copula density is:

clu; 2., v = F(VTd)[F(%) -1 </ 1 VJgrd d V<2F].
N TN (1+5=) 11 (1+:55) "
where x = (21,..,zq), =T, (u).

Just as the univariate Student’s ¢ distribution generalizes the normal distribution to allow for
fat tails, the Student’s ¢ copula generalizes the normal copula to allow for joint fat tails, i.e., an
increased probability of joint extreme events.

Tail dependence: The “tail dependence” is a key dependence measure to consider when
comparing the normal and Student’s ¢ copulas, see Joe (1997). This is a measure of dependence
between random variables in the extreme upper and lower joint tails. For example withd = 2, if we
assume that Y1; ~ F; and Y2 ~ Fy with a bivariate copula function C, and define U1y = Fy (Y1)

and Uy = Fy (Yat), then the coefficients of upper and lower tail dependence are defined as:

f = lim Pr[Uy < Uy < q] = lim Cla,q) (2.1)
q—0+ q—0 q
1-2¢+C
U = hnla Pr Uit > q|Ua > ¢] = hm q1+ q(q’Q) (2.2)
q— -

Informally, the coefficients of upper (lower) tail dependence measure the probability of an extremely
large positive (negative) return on one asset given that the other asset has yielded an extremely
large positive (negative) return. If the two assets have a bivariate normal copula, then both upper
and lower tail dependence coefficients are zero, i.e., the bivariate normal copula generates zero tail
dependence.® The Student’s ¢ copula, on the other hand, generates positive tail dependence even
if the correlation coefficient is zero. The Student’s ¢ copula is symmetric and so the upper and
lower tail dependence coefficients for this copula are equal. The tail dependence coeflicients for the

bivariate Student’s ¢ copula with degrees of freedom v > 2 and correlation coefficient p are:
L U T /o~ 1
g g vl ( Y 1+ p) (2:3)

see Embrechts et al. (2002). The tail dependence coefficients of a bivariate t—copula for a few

different choices of p and v are given in Table 1.
[ INSERT TABLE 1 ABOUT HERE ]

While the above table is useful for distinguishing between the bivariate normal and t copulas,

it does not give us an idea of how “different” the normal and t copulas are as a function of the

SHowever, this does not mean that the bivariate normal copula (with correlation coefficient p) goes to the in-
dependent copula ujuz unless p = 0. More generally, tail independence (i.e., L =0,7Y = 0) is not equivalent to
independence in the tail (i.e., imy, o {H (y1,y2)/[F1(y1)F2(y2)]} = 1), see e.g. Malevergne and Sornette (2003).



dimension of the copula. In our empirical investigation in Section 6 we find different results as
the dimension of the copula under analysis is increased. In Table 2 we use the Kullback-Leibler
Information Criterion (KLIC) to measure the distance between the normal and t copulas, as a
function of the dimension and the degrees of freedom parameter, for correlation of 0.5. This table
confirms that for any given dimension, as the degrees of freedom parameter increases the KLIC
distance gets smaller. It also indicates that for any given degrees of freedom, as the dimension of
the copula increases the KLIC distance gets larger, and the impact of the dimension is substantial.
For example, the distance between the bivariate normal and t4 copulas is about one-half of the
distance between the 30 dimensional normal and 59 copulas’. For univariate densities most people
substitute the normal density for a Student’s ¢t density with degrees of freedom greater than 30;

Table 2 shows that such a substitution may not be appropriate for higher dimension cases.

[ INSERT TABLE 2 ABOUT HERE |

3 Two Tests of a Parametric Copula for Time Series Data

Let {Co(uq,...,ug;a) : a« € A} be a class of parametric copulas for Y = (Y3,...,Yy). We are
interested in testing the null hypothesis:

Hy: Pr(C(Ui,...,Uy) = Co(Us,...,Uz;ap)) =1 for some ap € A
against the alternative hypothesis:

Hy: Pr(C(Uy,...,Uy) =Cy(Uy,...,Uz;a)) < 1 for all a« € A.

Let Coj(u1,...,u;; ap) denote the joint distribution function of Uy, ..., U; under Hy. It is given

by
C()j('u,l, <oy U ao) = C()(Ul, <oy Ug, 1, ceey 1; Ozo). (31)
In addition, let Co;(Uj; ag|Us,...,U;j—1) denote the conditional distribution function of U; given

(Uj=1,...,U1) under Hy. It can be derived via

j—1 .
83 C’oj(ul,...,uj7ag)
8’LL1 e 8uj,1

-1 .
" Coj-1(u1,...,uj_1;00)
8’&1 et 8’&]‘71

Coj(Uj;()é0|U1,. . .,’LLjfl) = / . (32)
Define the following probability integral transform?®

Zl = Ul, Zj = Coj(Uj;a0|U1,...,Uj,1) for ] = 2,...,d.

7A similar conclusion is drawn if the Lo distance metric is used instead.

8This probability integral transform was first introduced by Rosenblatt (1952), and has been used recently to
evaluate density forecasts in Diebold, et al. (1998), to test parametric conditional distributions of dynamic regression
models in Bai (2003) and Corradi and Swanson (2001), and to test goodness of fit of conditional distributions of
diffusion models in Thompson (2002) and Hong and Li (2002).



As the copula function is a multivariate distribution function, it follows from Rosenblatt (1952)
that Hy holds if and only if the probability integral transformed random variables Z1, ..., Z, are
independent and identically distributed as a Uniform|0, 1] random variable. Hence, Hy is equivalent

to
H(/): P(g(Zl,,Zd):l):l,

where g(z1, ..., 24) is the joint density function of Z1, ..., Z;. Two tests for Hy will be constrcuted
based on Hj.

3.1 A consistent test

To test H(, we need to first estimate the joint density function g(z1,...,24). For each t = 1,...,n,

we denote
th = Ult, th = Coj(th; a0|U1t, ey Uj—l,t) fOl" j = 2, . ,d.

Then {Z; = (Z1, - .., Zat) }}-, becomes an infeasible time series sample of Z = (Z1, ..., Zy), which

can be used to construct an infeasible kernel estimator g(z1, ..., zq) of g(z1,...,24):
1 n
— d
g(zl, ooy Zd) = W Z [szlKh(ij th)] s
t=1
and one could then test Hy or H{ based on

1 1
I, :/ / [G(z1,...,24) — 1]2d21...dzd,
0 0
where h = h,, is a bandwidth goes to zero, and K} (z,y) is a univariate boundary kernel defined as

K/ [ oy k@)du, i 2 € [0,h),
Kn(z,y) =< &k , if 2 € [h,1— h), (3.3)
k() [ p(wydu,  if @ e (1—h,1],

—~
8
> >
SIS
N~—

in which k() is a symmetric univariate second order kernel function supported on [—1, 1]. The above
boundary kernel is used in Hong and Li (2002). Miiller (1991) provides general optimal boundary
kernels for pointwise kernel estimation, while Fan and Rilstone (2001) employ the general boundary

kernels in testing the parametric specification of a hazard function.

Of course the time series {Z; = (Zit, ..., Zq)}—; is not observable since Fj,j =1,...,d and ag
are unknown, hence g(z1, ..., z4) and I,, cannot be computed. Fortunately we can compute pseudo
observations on Z = (Z1,...,Z,) as follows:

Zi = Fi(Yie),  Zje = Coj(Fj(Yie); &1 F1(Yae), -, Ej-1(Yj-1,)), (3.4)



where j = 2,...,d,t = 1,...,n, & is a y/n-consistent estimator of ag under the null hypothesis,

and F}(y) is the rescaled empirical distribution function of Fj(y):

. 1 &
Fi(yi) = 7 > 1Y <)
t=1

As in Fan (1994) and Hong and Li (2002), we can now base our test on

n/ / (21, .., 2q) — 12z .. . dzg, (3.5)

where (21, ..., zq) is the kernel estimator of g(z1,. .., z4) constructed from the pseudo observations
{Z:= (Zy, ..., Zdt)}?zl as follows:

. 1 < ;
91z == > [H?ZlKh(zj, th)] . (3.6)
t=1

The asymptotic null distribution of rf; will be derived in two steps: In the first step, we estab-
lish the asymptotic null distribution of I,,; in the second step, we show that the asymptotic null
distribution of fn is the same as that of I,,.

To establish the asymptotic null distribution of I,,, we follow Fan and Ullah (1999). In the fol-
lowing we assume that the observed multivariate time series {Y; = (Y1, ..., Yar) }7; is strictly sta-
tionary and absolutely regular (or beta-mixing), see the appendix for the definition of an absolutely
regular process. One advantage of this assumption is that the probability integral transformed time
series {Z; = (Z1t, ..., Zat) }7—, will also be stationary and absolutely regular, with the same decay
rate as that of {Y; = (Y1,...,Ys)}i—,. This will allow us to test the correct specification of the
contemporaneous dependence structure among Y1, ..., Yy (for arbitrarily fixed ¢), while leaving
the temporal persistence structure of {Y; = (Yi,..., Ya)} 1o, to be totally unspecified as long as

it is stationary and absolutely regular.

THEOREM 3.1 Under (C1)-(C3) and (A1)-(A2) stated in the Appendiz, Tpqy = (nh¥2I, —
¢in)/oq — N(0,1) in distribution under Hy, where

1 1 z
Cin = hd/2[(h1—2)/ k2(w)dw+2/0 /1 k2 (y)dydz)?
o2 = 9o / / Ve(v)du]du} .

where k. (y) = k(y)/ |7, k(u)du

Remark: Although in Theorem 3.1 we assume that the same bandwidth h is used in all directions,

one can easily extend the result to the case where a different bandwidth is used in each different



direction:

d 1/2¢ *
nlli by 1y — gy,

0d

i = 1 12 [0 =2) [ wdore [ [ as) |

Note that the asymptotic distribution of fn under the null hypothesis has the same variance as
that of the bias-corrected test in Fan (1994), but a different center term caused by the use of the

boundary kernel. The derivation of the center term is relegated to the Appendix.

%
nd

Theorem 3.1 suggests the following simple, distribution-free test for the correct specification of
a parametric copula {Cy(u1,...,uq;a) : a € A}: reject Hy at a given significance level 5% (say), if
Tha > 259, Where z5y, is the upper 5% quantile of the standard normal distribution. Following Fan
(1994) or Fan and Ullah (1999), one can show that this test is consistent against Hj.

One may also obtain a x? test from Theorem 3.1 by noting that Tzd — X[zl} in distribution
under Hy. Compared with the normal test based on Tq, the x? test based on Tﬁd loses some
power. However our simulation results reveal better size performance of the x? test ng and hence
we recommend it in practical applications.

Recently, we received a working paper by Fermanian (2003), who proposed to consistently test
a parametric copula specification by nonparametric kernel estimation of the joint copula density of
the original multivariate series. We note that Fermanian’s test is closely related to the consistent
test of the specification of a parametric density function in Fan (1994), while our first test is similar
in spirit to the test in Hong and Li (2002) developed for testing the correct specification of univariate
diffusion models. Hong and Li (2002) report Monte Carlo evidence that the consistent test based on
the kernel density estimation of the probability integral transformed random variables has better
size properties than the test based on the kernel density estimation of the original random variables,
and we suspect that a similar conclusion may apply to the two consistent tests of parametric copula
specifications: our test 7,4 and that in Fermanian (2003). In any case, for large dimensional
multivariate time series models, neither our test based on 7,4 nor Fermanian’s test will perform

well. This motivates the second test in our paper.

3.2 An Alternative Test of a High-Dimensional Copula Model

It is well known that when the dimension d is large, the kernel estimator may suffer from the
“curse of dimensionality”, which may affect the accuracy of the test proposed in the previous
section. To circumvent this problem, we note that if Hy holds, then the scalar random variable
W = Z?Zl[@*l(Zj)P follows a X[zd] distribution, where ®~! denotes the inverse of the standard
normal distribution function. Breymann, et al. (2003) apply the Anderson-Darling test to testing

the distribution of W or Hy for multivariate high-frequency data. However, as W is not observed,



they use pseudo observations {Wt}le defined below in implementing the Anderson-Darling test.
It is known that parameter estimation will affect the critical values of the Anderson-Darling test in
a complicated, non-trivial way. The conclusions may be erroneous if such effect is not taken into
account.”

In this section, we propose an alternative kernel-based test for HJ: W ~ X[Zd]- Let FX[zd] (w)
denote the distribution function of the X[2d] distribution. Noting that under H{, Fx[zd] (W) follows
the uniform distribution on the interval [0, 1], we develop a test by comparing a kernel estimate of
gw (+) with the uniform density, where gy (+) is the density function of FX[zd] (W). In particular, the

kernel estimate of gy (w) is defined as

w(w) = = " K(w, By (W) (37)
t=1
where
~ d A
We=) [07(Z)” (3.8)
j=1

The alternative test is based on
1
Jn = / [gw (w) — 1]%dw. (3.9)
0

THEOREM 3.2 Under similar conditions to those in Theorem 3.1, Ty, = (nhl/an —cCin) /01 —
N(0,1) in distribution, where

1 1 z
cin = AY2[(h1—2) /1 k2(w)dw+2/0 /1 k2 (y)dydz]
o? = 2/1 [/1 k(u + v)k(v)dv)*du.

-1J-1

Compared with the previous test, the test 7,7 only requires kernel density estimation in one
dimension regardless of how large the true dimension of the multivariate series d is. However, it
may have no power against certain deviations from the null model. In Section 5 we find no problems
with the power of this test (indeed our results are very encouraging) using a simulation of a realistic

DGP.

9Distribution-free versions of this test have been developed in the context of testing parametric regression models
via the martingale transformation approach of Khmaladze (1981), see e.g. Bai (2003) and Stute, et al. (1998) among
others. However this approach can not be easily modified to test the parametric copula, as the marginal distribution
functions are infinite-dimensional nuisance parameters in semiparametric copula models.
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4 Testing a Parametric Copula for Residuals of Parametric Dy-
namic Models

In a number of empirical applications of copulas in modeling multivariate financial time series,
univariate GARCH models are used first to model the individual time series and parametric copulas
are then used to model the dependence structure of residuals from the univariate GARCH models.
This class of multivariate time series models has proved to be successful in capturing the stylized
facts of multivariate financial time series such as clusters of extreme values. The model takes the

following form:

Yii = Xj0j+ ojeeje,
2 2 2
Oj = Kj+ 53‘0]',1571 + 95 (Y1 — X;,tfléj) ) (4.1)
where for each j = 1,...,d, {€j}{=; is i.i.d. with zero mean and unit variance and for each t,

(€1ty ..., €qt) has copula C(e,...,€e). The parameters of the GARCH models are assumed to
satisfy

lij>0, ﬁjZO, ’}/jZO, andﬁj—i—'ngl, j=1,...,d.

This model and variants of it have been used in Patton (2002a), Rockinger and Jondeau (2002),
and Junker and May (2002), to name only a few. Junker and May (2002) apply the above model
with several parametric copulas to describe a set of risk factors that determine a portfolio. They
use the x? test to check the validity of different parametric copulas including the Gaussian copula
and the Students’ ¢ copula. However, like the Anderson-Darling test, the correct critical values of
the x? test for this model remain to be worked out.

In this section, we extend the tests proposed in the previous two sections to testing the correct
specification of the parametric copulas for the residuals (€14, ..., €g).

The assumptions we adopt on the univariate GARCH models are the same as those in Bai

(2002): For each j =1,...,d, we assume the following conditions hold.

(G1) The €j; are i.i.d. with a cdf Fj(x), which is continuous and strictly increasing. In addition,

€j¢ is independent of X5 for s <t;
(G2) Eajzt < M; and Ee?t < M; for all ¢ and for some M; < oo;
(G3) n 1Y XX J; converges to a non-random and positive definite matrix;
(G4) There exists §; such that \/n(0; — 6;) = O,(1), where 6, = (0%, K5, Bjs )

An example of the estimator éj satisfying the assumption (G4) is the QMLE of the univariate
GARCH models, see Bollerslev and Wooldridge (1992), Robinson and Zaffaroni (2002) and the
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references therein for conditions under which the QMLE éj satisfies (G4). For each j = 1,...,d,
given an initial value 6]2»0 and the estimate éj, we compute the conditional variance via the following

recursion:

63 = Rj + 0651 + 3 (Vi1 — 01X 1),
Define the residuals

o =Y —0X0) /650, 5=1,....d.

Then we use {(€1,...,€q )}y, to construct the test T, as in Theorem 3.1 or the test 75, as in
Theorem 3.2.

THEOREM 4.1 Under conditions (G1)-(G4) and the same conditions as in Theorems 3.1 and
3.2 except the absolute reqularity condition, Theorems 3.1 and 3.2 hold for Ty, ; and Ty, respectively.

Theorem 4.1 implies that the use of QMLE of the parameters in the univariate GARCH models
does not affect the asymptotic null distribution of the tests. This is due to the \/n-consistency of
the QMLE.

5 A Simulation Study

To assess the finite sample performance of the tests proposed above we conducted a series of Monte
Carlo studies. We considered sample sizes (n) of 500, 2500 and 5000, covering the various sizes
likely to be encountered in empirical analyses of copulas of financial assets. Given the prevalence
of the assumption of normality in finance, we focus on the ability of the proposed tests to reject the
null hypothesis that the true copula is a normal copula. The data generating process (DGP) was
such that the individual variables were conditionally normal, and that the copula was some mixture
of the Normal copula and the Student’s ¢ copula with 4 degrees of freedom. We let the mixing
parameter, p, vary between zero and one. The DGP copula is Normal and the null hypothesis is
true when p = 0, while the DGP copula is the Student’s t4 copula when p = 1. The intermediate
values of p measure the power of the test to detect small deviations from the null. The DGP was

specified to be:

(U1t7 ceey Udt) ~ i1d (1 —p) . CNormal(p) +p- Ct4(p), t=1,2,...,n, (51)

where Cnormai(p) is the d—dimensional normal copula with correlation matrix having value p for
its off-diagonal elements, and Cy,(p) is the d—dimensional Student’s ¢4 copula with correlation
matrix having value p for its off-diagonal elements. The coefficient p is a measure of the correlation
between the assets. We considered three values of p to determine the power of the test for various
levels of dependence: p € {0.1,0.5,0.9}.
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We considered two cases for the marginal distributions: the case that the individual variables
were #id Normal(0, 1); and the case that the individual variables have an AR(1)-GARCH(1,1) DGP.
That is,

Yy = ' (Uy),i=1,2,...d (5.2)
or

Yii = 0.01+0.05Y;, 1 + e (5.3)

e = oy P (Uy) (5.4)

oy = 0.05+0.8507, | +0.1ef, |, i=1,2,...d (5.5)

where ®~! is the inverse of the scalar standard normal distribution function. In the first case there
is no need to estimate parameters associated with the marginal distributions. In the second case
the parameters of the AR(1)-GARCH(1,1) model are estimated via QMLE.

We considered five values of the mixing parameter p € {0,0.25,0.5,0.75, 1}, and three values of
the dimension of the assets d € {2,5,30}. For the larger values of d = 5,30, we only analyzed the
performance of Test 2; as mentioned in the previous section Test 1 may have difficulties for high
dimension problems. We used 500 Monte Carlo replications for each of the bivariate cases, and 100
replications for the higher dimension cases.

To test the null hypothesis of a normal copula, the Zi variables are computed as follows:

Let Vi = o1 (F (Vi) (5.6)
Vi = [Yig .o Yar) (5.7)
Zy = Fi(Yi) (5.8)
B Yie - ?[11 1), Z[_u 1,1:—1] 2[1:1'*1,1']

= =
\/1 [4,1:4—1] [1:i—1,1:i—1] " Ui[Lsi—1,]
where Y7, 3

- . -1
tioae = Wi, Vio] and similarly for Sy, and S7% = (2[“ i 1]) B>
is the estimate of the parameter of normal copula, which is simply the sample correlation matrix
of Y;. F, is the estimated distribution function of Y;:, consisting of parameters from the models
for the mean and variance (if applicable) and the empirical distribution function of the estimated

standardized residuals.

Throughout this simulation, and the empirical applications to follow, we employed the “quartic

kernel”:

ki (u) = 12 (1—2)® 1 {ul <1} (5.10)
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which yields the following quantities necessary in the construction of the test statistics'%:

/1/hk(u) du =

L A
16h  8h3 ' 16RD
L b-2) 5(1—z)° 3(1—x)°
16k 8h3 16h5

T
B
~~
>
N
—~
e
N~—
QU
S
I
Nt NI~ N

/ P =

-1

Lot 3865\ ¢
2{/ [/ k(u + 0)k(v)dv]2du}d = 2174 <4—9> dl =12, ..
1/

1 z
/ / E2(y)dydz = 0.9199
0 -1

The remaining input to the computation of the test statistics is the bandwidth, h. For Test 1
we allow the bandwidth to be different in each dimension, according to the rule-of-thumb h; =
V[Z’t]lﬂn*l/(d*‘”. For Test 2 we use a similar rule-of-thumb, h = V[W;]'/2n=1/5. In both cases
we use the two-sided test rather than the one-sided test, as it had better size properties in finite

samples.
[ INSERT TABLES 3 AND 4 ABOUT HERE ]

The second column of Table 3 shows that in all cases Test 1 has reasonable empirical size,
ranging from 0.000 to 0.056 when the nominal size is 0.05. The test is too conservative in all but
one case considered, but empirical size tends toward its nominal level as the sample size increases.
Turning to the results on power, Table 3 suggests that Test 1 has reasonable power against the (4)
copula for sample sizes 2500 and 5000 but may have difficulty detecting intermediate alternatives
for sample sizes less than 5000. The degree of correlation does not seem to much affect the power
of the test.

From Table 4 we also see that Test 2 has reasonable empirical size in this simulation: ranging
from 0.000 to 0.040. Again, in all cases the empirical size increases towards its nominal level as the
sample size increases. The power of Test 2 is comparable to that of Test 1 in this scenario. For the

largest sample size both tests have reasonable power to reject the Normal copula.
[ INSERT TABLES 5 AND 6 ABOUT HERE ]

In Tables 5 and 6 we present the corresponding results to those in Tables 3 and 4 when the
marginal distributions contain parameters that must be estimated before estimating the parameter
of the copula. The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with
normal innovations, as in equations (5.3) to (5.5). The empirical size of both Test 1 and Test

2 is satisfactory in this case, and the power of both tests appears to be largely unaffected by

10The final expression below was obtained using Mathematica.
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the introduction of the five parameters per marginal distribution that must be estimated. This
confirms the small-sample accuracy of the asymptotic theory in dealing with both parametric and

nonparametric estimation error.
[ INSERT TABLES 7 AND 8 ABOUT HERE ]

In Tables 7 and 8 we investigate the performance of Test 2 to detect deviations from the normal
copula when the dimension of the copula model is increased from 2 to 5. Tables 7 and 8 suggest
that deviations from normality of the form embodied by the Student’s t4 copula are well detected
by Test 2. The empirical size of this test both with and without parametric estimation error in
the marginal distributions is satisfactory, and the power of the test is much greater than in the
bivariate case discussed above. For all levels of correlation the power is good, and particularly so
for the two larger sample sizes. For sample sizes of 2500 and 5000 the smallest deviation from the
null considered (when the DGP is a 75:25 mixture of the normal and the ¢4 copula) is detected in

almost all cases.
[ INSERT TABLES 9 AND 10 ABOUT HERE ]

In Tables 9 and 10 we repeat the analysis for the copula model of dimension 30. This is very
large relative to the types of models previously presented in the literature, but not large relative
to the problems typically faced by portfolio managers and risk managers. We study this case to
determine whether we may apply Test 2 to the study of large collections of risky assets in the next
section. Tables 9 and 10 show that the size of the test is good for sample sizes of 2500 and 5000, but
is somewhat over-sized for the case that the sample size is 500. This is not too surprising; one would
not expect many people to estimate a 30-dimension density model with merely 500 observations at
their disposal. The power of the test is very good: it is equal to 1 for all the sample sizes and all the
correlation levels considered, both with and without parametric estimation error in the marginal

distributions.

6 Testing Copula Hypotheses for US Equity Returns

There is much accumulated evidence against the assumption of normal distribution for individual
stock returns, dating back as far as Mills (1927). Such evidence is of course also sufficient to reject
joint normality of stock returns. An interesting question, though, is whether the assumption of joint
normality would be reasonable if we could somehow deal with non-normality in the distribution of
individual returns. This is thus a question about the copula of these returns. Recently Malevergne
and Sornette (2003) presented evidence that the bivariate normal copula hypothesis cannot be
rejected for many pairs of equity returns. When moving to a larger collections of financial assets,

Mashal and Zeevi (2002) find that a multivariate normal copula is more easily rejected in favor
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of a multivariate Student’s ¢ copula. Both of these papers, however, conduct their respective
tests under the assumption that the observed asset returns are i.i.d. over time, which is not be a
good assumption for stock returns. In this section, we shall consider the goodness-of-fit tests of
the normal copula and of the t—copula hypotheses for US equity returns without assuming that
returns are i.i.d. over time.

We extend and generalize the work of Malevergne and Sornette (2003) to consider larger col-
lections of assets (ranging from 2 to 30 assets) and to deal with the estimation error introduced
by first employing conditional mean and variance filters for the individual returns. Further, we
also test the goodness-of-fit of a normal copula with time-varying conditional correlations, and the
goodness-of-fit of a Student’s ¢ copula. Matlab code for testing each of these copula specifications
is publicly available, see footnote 4.

We use daily returns on the 30 stocks in the Dow Jones Industrial Average over the period
January 3, 1990 to December 31, 1999, yielding 2525 observations. We considered collections of
assets ranging in dimension from 2 to 30 assets, to investigate the impact of the dimension of the
multivariate model being considered on the plausibility of a normal copula and of a t—copula. For
each dimension size, d, we randomly selected 100 distinct collections of d assets from the 30 stocks.
Analyzing all possible collections of d assets was not feasible!! for most values of d. We randomly
selected the collections of assets, rather than study collections of particular assets, so as to present
results that may be taken as generally reflective of the plausibility of the normal copula (or of the
t—copula) hypothesis for daily returns on liquid stocks. The results reported in this section may or
may not be representative of those for infrequently traded stocks, or for emerging market stocks,

and we leave the analysis of these alternative assets for future work.

6.1 Testing the normal copula for US equity returns

We considered the normal copula hypothesis in three ‘forms’. The first is for the unconditional
distribution of asset returns. That is, we transform the returns by their empirical distribution
functions and test the normal copula hypothesis on these variables.

In the second case we recognize that daily equity returns exhibit serial correlation and volatility
clustering, and we employ a simple ARMA(1,1)-GARCH(1,1) filter to capture these. We then test
the normality of the unconditional copula of the standardized returns. We will refer to this mean
and variance filter simply as a GARCH filter below.

Finally, we consider the case that the conditional dependence between the returns may be time-
varying. Some authors, see Tse (2000) and Engle (2002) amongst others, have reported that the
conditional correlation between equity returns is not constant, and so analyzing the unconditional

copula of asset returns or standardized asset returns is of less interest than analyzing the conditional

HFor d = 15, for example, the total number of combinations is 3°Ci5 = 155,117, 520.

16



copula. To allow for possible time variation in the conditional copula of these assets we employ the
Dynamic Conditional Correlation (DCC) model of Engle (2002) and Engle and Sheppard (2001).
This model allows the conditional correlation matrix of a collection of assets to be time-varying,
and does so in a manner that easily extends to large collections of assets. This is important, as we
wish to consider collections of up to 30 assets. We use the DCC model to parameterize the time
variation in the correlation matrix of the normal copula. The conditional correlation matrix in a

DCC(1,1) Normal copula model is given by:

Y = Q7 'Q:Qr !, where (6.1)
Q = (1-r=B)E+rYi 1Y/ 1 +BQi (6.2)

Vi 0 0
0 NTYIREE 0

= | VP T (6.3)
0 0 e /Ty

Qi ¢ is the (4, i)th element of Q;, and ¥ is the sample correlation matrix of Y; = &1 <F (Yt)> Thus

allowing for dynamics of the form given by a DCC(1,1) model introduces two new parameters,

and [, that must be estimated.

Two points regarding our use of the DCC model should be made. The first is an acknowl-
edgment that a rejection of the time-varying normal copula may be due either to the assumption
of conditional normality of the copula, or to the particular specification for the dynamics of the
conditional copula we employed. That is, it may be normality or the DCC model or both that
generates a rejection. Flexible modeling of the correlation matrix of large collections of assets may
be done in a number of ways; see Bauwens, et al. (2003) for a comprehensive survey of multivariate
GARCH modeling.

A second, related, point that should be made is that a rejection of the conditional normal copula
with DCC does not constitute evidence against the DCC model for correlations. The rejection of a
conditional normal copula with DCC may suggest that correlations are not sufficient to characterize
dependence between financial assets, and thus that we should employ other more general measures
of dependence, but correlations themselves may be well modelled with the DCC model.

We firstly present the results of an analysis of the copula of randomly chosen pairs of assets
from the Dow Jones 30.'2 The correlation between the returns on these stocks ranged from 0.13
to 0.56, and averages 0.26 across the 435 pairs of assets. We performed both Test 1 and Test 2
on these pairs of assets, and present the results in Table 11. This table shows that the bivariate
normal copula is difficult to reject for these assets. In no case was the proportion of rejections

greater than the 5% nominal size. The Monte Carlo results corresponding to this case, presented

12WWe do not report the parameter estimates for the ARMA, GARCH, or DCC models estimated prior to running
the following tests as these are not of direct interest.
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in Tables 3 and 4, suggest that the power of Tests 1 and 2 to detect deviations from the bivariate
normal copula is reasonable only for “large” deviations, represented in the simulation as a copula
that is wholly non-normal rather than a mixture of a normal and a non-normal copula. Overall
these results indicate that for bivariate problems the normal copula may be an adequate description
of U.S. equity return dependence structures, or that the deviations from normality in the bivariate
case are not large. This finding is consistent with that of Malevergne and Sornette (2003).

In Table 12 we report the fraction of times that the normal copula was rejected for a collection
of size d of equities. All tests are conducted at the 5% level. We only conducted the second of the

two tests proposed in the previous section.

[ INSERT TABLES 11 AND 12 ABOUT HERE ]

Table 12 shows that as we increase the number of assets in the collection from 2 to 3 we see
the fraction of rejections increases dramatically. In the first column, representing a test of the
normality of the unconditional copula of these returns, the fraction of rejections goes from 0.03 to
0.59. In the second column, where we first employ a GARCH filter, the fraction goes from 0.01 to
0.17. In the final column, where we also allow for a time-varying conditional copula the fraction
goes from 0.02 to 0.12. Notice that allowing for time-varying conditional variance, and then for
time-varying conditional variance and a time-varying conditional copula, decreases the fraction of
rejections of normality. This suggests some of the rejections found in the first column may actually
be due to time variation in the conditional distribution of these returns rather than non-normality.

As the number of assets in the collection increases we see that in all three cases the fraction of
rejections increases, and that by the time this number reaches 10 the rejection frequency is 100%
for all three cases. This stands in contrast to what one might have expected a priori. It would
have been reasonable to expect that increasing the dimension of the copula being tested, without
increasing the length of the time series being used, would have lead to a decrease in the power of
the test to reject the null hypothesis, due to the increasing sparsity of data points in the support of
the joint density. However we find the opposite: increasing the dimension of the problem improves
the ability of the test to detect non-normality in our study. The simulation study results presented
in Table 8 suggest that this is not due to a size distortion. Instead, Table 8 reported that the power
of the test to detect weak non-normality (represented in the simulation study as a copula DGP
that is mostly normal and only partially Student’s t4 copula) increased with the dimension of the
copula under analysis, which is consistent with the results of our empirical study. This may be due
to the greater KLIC distance between the normal and Student’s ¢t copulas for higher dimensions,
see Table 2.

Mashal and Zeevi (2002) similarly find that the normal copula is more easily rejected for larger

collections of financial assets, though they considered testing the null of a normal copula against
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a Student’s ¢ copula and assumed the observable multiple series are i.i.d., whereas we allow for
a general alternative copula, for stationary multivariate serially dependent asset returns, and for
preliminary filtering of the asset returns using parametric dynamic models of the conditional mean
and variance.

The strong rejection of the conditional normal copula for collections of 5 or more U.S. equities
is an important one. Bivariate problems are often studied in academic research, and taken as
being representative of higher dimension multivariate problems. However, practitioners are often
concerned with larger collections of assets: portfolio managers generally have numerous assets
in their portfolios, and risk managers have numerous exposures. QOur results suggest that for
bivariate problems the normal copula hypothesis is plausible, but for problems of higher dimensions
the normal copula hypothesis is untenable. This suggests the need for more general methods of
measuring and modeling the dependence between risky assets, and implies that portfolio managers
and risk managers should be concerned about non-normality of the dependence structure between

equity returns.

6.2 Testing the t-copula for US equity returns

A natural generalization of the univariate normal distribution assumption for individual assets is
the Student’s ¢ distribution, which was first utilized in time series density modeling by Bollerslev
(1987). Given the strong rejection of the normal copula it again seems natural to look to the
Student’s ¢ copula to provide a first step towards flexible copula modeling. As we pointed out
in Section 2, the Student’s ¢ copula allows for joint extreme co-movements. However, it does not
allow for asymmetries in the copula. Such asymmetries in equity return dependence structures have
recently been reported in the finance literature, see Longin and Solnik (2001), Ang and Chen (2002)
and Patton (2004), and so the Student’s ¢ copula may also be too restrictive to provide a reasonable
fit to equity data.

In order to implement the tests described above we must have an expression for computation
of the Z;; variables. We do this by making use of a property of multivariate Student’s ¢ random
variables, presented in Box, et al. (1994) for example. Let X be a d x 1 vector of random variables

that has the general non-standardized Student’s ¢t probability density:

h(x;p,S,v) = (2m)" %2 {det(S)} /2 (g>_d/2r <” ;r d> T (g)‘l

. (1 n (x—p) St (x— M)>(u+d)/2

)
14

where p is the mean vector, S is the scale matrix and v is the degrees of freedom. The covariance

matrix is equal to v/ (v — 2) times the scale matrix if v > 2. Let us partition x as [x},x5]’, with
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x1 being a dy x 1 vector and xs being a do x 1 vector, and d; + do = d. Similarly partition the

location vector, p =[p}, ph]’, and the scale matrix:

S11 Si2
S:
[ Sta S22 ]

Then the conditional density of Xg given X; = x; is f (x2|x1; 2, v) =

_ v+ (x1—py) St (x1— _
h <X2;M2 + 51250 (%1 — ), a If/li_ d111 1) (S22 — 15571 S12) v + d1> :

The Student’s t copula has two inputs to be estimated; the correlation matrix > and the degrees
of freedom parameter v. Unfortunately no closed-form expression exists for the MLE of these and
so numerical methods must be employed. Note that given some value for U we can estimate X
as the sample correlation matrix of [T}, Ywa)y oo Ty 1(ud)],, where T, 1 is the inverse standardised
Student’s ¢ cdf. Thus although there are d (d — 1) /2 + 1 parameters to be estimated in total, we

need only numerically search over a single parameter.

Let Yy = T (E(Yit);o,l,ﬁ> (6.4)
}N/;f = [i}ltv“')?dt], (65)
Zy = F(Yu) (6.6)

S Al
Zip = T <Y2tv S[llzi—l,l]S[l:ifl,l:ifl]y[lii_l]vt’
- N1
+ Y1051 Y1)
v+i—1
fori = 2,3,...,d.

(§22 - S;2§1—11§12) Ny - 1) (6.7)

where T'(-; i, s,v) is the non-standardized Student’s ¢ distribution with mean pu, scale matrix s and
degrees of freedom parameter v, and Tfl('; i, s,v) is the inverse of T'(-; u, s, v).

We tested the Student’s t copula hypothesis for both raw returns and GARCH filtered returns.
In Table 13 we present the results for Test 1 and Test 2 of a bivariate t—copula for the same 100
randomly selected pairs of stocks. We find that the Student’s ¢ copula is rarely rejected across the
100 pairs of assets considered. This is not surprising given that the bivariate normal copula was
also not often rejected for these pairs of assets, as the bivariate t—copula nests the bivariate normal

copula when v — oo.
[ INSERT TABLE 13 ABOUT HERE |

In Table 14 we present results on the plausibility of the Student’s ¢ copula for collections of
assets of different dimensions. We considered 5 cases of d = 2,5, 10, 20, 30. In stark contrast with
the results for the normal copula, we find no evidence against the Student’s t copula for equity

returns, in terms of both raw data and GARCH filtered residuals. For all 5 cases the rejection
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frequency across the 100 randomly selected collections of assets is approximately equal to, or less
than, the nominal size of the test (0.05), suggesting that the Student’s ¢ copula is a reasonable

specification.
[ INSERT TABLE 14 ABOUT HERE |

Using univariate GARCH models to remove the conditional variance dynamics increased the
degrees of freedom parameter (averaged across the 100 sets of asset returns) in all cases, reflecting
the fact that the conditional variances of asset returns are positively correlated. The tendency for
raw returns to exhibit more joint extreme movements seems to be partially driven by correlated
conditional variances, and partially by joint fat tails of the standardized residuals. Overall our
results suggest that the Student’s ¢ copula is a much better approximation to the true copula of
U.S. equity returns than the normal copula, but that the possibility of mis-specification still exists.

Bai (2003) reports a similar conclusion for his study of the univariate distribution of U.S. equity
returns. It is important to note, however, that the joint distribution of d equity returns will be
multivariate Student’s ¢ only if all marginal distributions and the copula have the same degrees of
freedom parameter. If any of these are different, then the joint distribution will have Student’s ¢

components but will not be multivariate Student’s .

7 Testing Copula Hypotheses for Exchange Rates

Exchange rate risk is an important source of risk for international investors, and the joint behavior
of exchange rates can have a substantial impact on the distribution of returns on an international
portfolio. In this section we analyze 20 exchange rates, all against the U.S. dollar, over period
1 January, 1989 to 30 June, 2003, yielding 3717 daily observations. In all cases we analyze the
log-difference of the exchange rate. The currencies considered are those from: Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Italy, The Netherlands, Portugal, Spain, Australia,
Canada, Denmark, Japan, Norway, Singapore, Sweden, Switzerland and the United Kingdom. The
first 11 of these countries joined the euro on January 1, 1999, thus the dependence structure of
these exchange rates will be different before and after this date. In the following we deal with this
by only using data up to December 31, 1997 when 2 or more countries now in the “eurozone” are
under analysis. We drop data from the year 1998 as the exchange rates were converging during that
year toward their pre-determined euro entry levels, and thus their behavior may not be considered

representative of “normal” exchange rate behavior.

7.1 Testing the normal copula for exchange rates

We perform similar analyses on these exchange rates to those conducted on equity returns in the

previous section. In the simplest case we ignore time variation in the conditional mean and variance
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of these exchange rates and analyze the plausibility of the normal copula for the unconditional
copula. In the second case we employ an ARMA(1,1)-GARCH(1,1) filter to account for time-
varying conditional means and variances and test the normal copula for the standardized exchange
rate returns. The final case allows for time-varying conditional means and variances, and a time-
varying conditional correlation matrix in the normal copula via the use of the DCC model described
in equations (6.1) to (6.3).

We again randomly select 100 collections of exchange rates, of various dimensions, ranging from
d =2 tod = 20. In Table 15 we present the results of Test 1 and Test 2 for bivariate normal

copula.
[ INSERT TABLE 15 ABOUT HERE |

In contrast to the results for equity returns, Table 15 shows that the bivariate normal copula
is rejected for many of the pairs of exchange rates considered in this study. Allowing for time
variation in the conditional means, variances and correlation reduces the frequency of rejections,
but even the most flexible filter considered still yields a rejection frequency between 41% and 47%.

In Table 16 we examine the impact of increasing the dimension of the group of exchange rates.
We find that for group dimension d = 5 and higher, the rejection frequency is 100%. Thus we have

very strong evidence against the normal copula hypothesis for exchange rates.

[ INSERT TABLE 16 ABOUT HERE |

7.2 Testing t-copula for exchange rates

In Tables 17 and 18 below we examine the goodness of fit of the Student’s ¢ copula for these
exchange rates. For equity returns there exists published evidence of asymmetries in the dependence
structure, but for exchange rates little comparable work has been done, see Patton (2002a) for one
study. These tables show that the Student’st copula provides a somewhat better fit to exchange rate
data than the normal copula. For the bivariate case the rejection frequency is less than 50% for the
raw exchange rate returns, and between 28% and 35% for the filtered exchange rate returns. As we
increase the number of exchange rates under analysis the rejection frequency for both raw returns
and filtered returns increases: for baskets with d = 15 exchange rates the rejection frequencies
are 99% and 62% respectively, and for the full 20-dimensional problem the Student’s ¢ copula is
rejected in both cases.

Overall these results suggest that the Student’s ¢ copula does not provide a reasonable fit to
multivariate exchange rate copulas, in contrast with our results for equity returns. We would expect
that more sophisticated modeling of the copula, allowing for time-varying conditional correlations
and degrees of freedom parameter for example, would reduce the proportion of rejections, though

we do not explore this possibility here.
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[ INSERT TABLES 17 AND 18 ABOUT HERE ]

8 Conclusion

Recent work on the dependence between financial assets has called into question the assumption of
normality for the joint distribution of asset returns. This has prompted research into more flexible
models of the dependence structure between financial assets. Unfortunately finance theory does
not provide much guidance on the types of dependence structures to expect, and so the assessment
of proposed models is essentially an empirical question. In this paper we provide two simple
goodness-of-fit tests for models of the dependence structure (copula) of multivariate financial time
series. Both tests are easy to compute and are distribution-free. We use these tests to determine
whether significant evidences against the normal copula and t—copula exist in U.S. equity returns
and exchange rates, considering collections of up to 30 assets simultaneously.

The first proposed test is a consistent test that requires the kernel estimation of a multivariate
density function and is recommended for low dimension problems only; the second test may not
be consistent against all alternatives, but only requires kernel estimation of a univariate density
function, and proved very useful when a large number of financial time series is considered. We
justify both tests for observable multivariate strictly stationary time series and for standardized
innovations of GARCH models. A simulation study demonstrates the efficacy of both tests for
realistic sample sizes and data generating processes.

In our study of U.S. equity returns and exchange rates we find substantial evidence against the
normal copula for both types of assets, particularly for large collections of assets. Mixed evidence
was found against the more flexible Student’s ¢ copula: it appears adequate for even large collections
of equity returns, but is still rejected for most exchange rate returns though it does provide a better
fit than the normal copula. Our study suggests that when moving from two to five or ten dimensions
one must account for the non-normality of the dependence structure of financial assets. Allowing
for univariate non-normality (via a flexible univariate density model, such as the Student’s ¢, the
GED, a skewed Student’s ¢ etc.) and then imposing normality on the copula will not provide an
acceptable fit to daily equity return or exchange rate data; a more flexible model of the dependence

structure is required.
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Appendix

Definition 8.1 Let {Y;} be a strictly stationary stochastic process and ML(Y) denote the sigma
field generated by (Ys, ..., Y¢) for s < t. The process {Y} is called absolutely regular (or f—mizing)

if

Br = Elsupac vy {IPAIM o (Y)) = P(A)[}] =0 as 7 oo.

We note that many financial time series models satisfy this absolutely regular condition, includ-
ing nonlinear ARCH (Masry and Tjgstheim, 1995), GARCH and stochastic volatility (Carrasco
and Chen, 2002), and nonlinear diffusion models (Chen et al., 1998). Properties and additional
examples of absolutely regular processes can be found in Doukhan (1994).

The first set of conditions is used to establish the asymptotic null distribution of I,,.

(C1) (i) {Yis,..., Y4} is an absolutely regular process with coefficient 5, = O(p™) for some 0 <
p < 1; (i) Let Z; = (Zit, ..., Zar). Let f& . 11ry 1.7 (-) denote the density function of
(Z1,Z14+,,...,Z145) for 1 <1 < 3. We assume that fz(-) is continuous and bounded. In
addition, the following Lipschitz type condition holds: |f]%1+7'171+’7'2,...71+’7'l (z1+u1,..., 2141+

Up41) — flz,1+n,1+Tz,...,1+n(Zl’ ooy z41)| < D(z1, .-, 2141)]|ul|, where D(-, ..., ) is integrable.

(C2) The kernel function k(-) : [-1,1] — R* is a symmetric, bounded, and twice continuously

differentiable probability density function such that f_ll u?k(u)du < oo;

(C3) h=0(n"°) for some 0 < ¢ < 1/d.

The second set of conditions is used to show that the asymptotic null distribution of fn is the

same as that of I,,.

Al) & € A is a parameter estimator such that v/n(& — a*) = O,(1), where o* is an interior
P

element of A and o* = ag under Hy;

(A2) Co(uq,...,uq;a) is twice differentiable.

Proof of Theorem 3.1: The proof consists of two parts. The first part establishes the
asymptotic null distribution of I,,: (nhd/ 2L, — can)/oq — N(0,1) in distribution, where cg,, and a?l
are defined in Theorem 3.1. In the second part of the proof, we analyze the difference between fn
and I,,.

Part I. The proof of this part is the same as that in Fan and Ullah (1999) except that the
kernel function in this paper is a boundary kernel. Taking this into account as in Fan and Rilstone

(2001) and Hong and Li (2002), one can easily establish the stated result. For space considerations,
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we only provide a detailed derivation of the center term cg,. It is well known that the center term
is given by the dominant term of ET,, = MISE(g). Ignoring higher order terms, one can show that
under Hy,

EI, = MIVAR(9)

1
h2d 1E/ K3( zj, Zjt)dzi]

2 2
1 h k(zj_th) 1—h 2 — T 1 k(zj_th)
= T4 E/ 2 h 7 dz,+/ 222t dzl+/ — ~ hr 7 N g
nh2d "= | 0 {fl k(u)du o ( h e 1—h f_(ll_zj)/h k(u)du d

—zj/h

s [ {1 ezt
g

F+8+T) (A.1)

= ol

We now establish the dominant terms of F', S, and T respectively. First,

b //{ z/hTy “}QdZdy
- /0[ — / yldz

h 1
= h _— k2 (y)dy|dz
/o I k(u)duP[/(z—l)/ W

/h
1 1 z
= K| — k2 (y)dyldz
/[fzk(U) ][/ ) (y)dy]
1
_ h2/ T k(lu [/_ k2(y)dyldz, (A.2)

we have used the symmetry of k(-) and the fact that for 0 < z < 1, it holds that z—h 1 <1-p1

—00 as n — oo. Similarly,

S = / / - h 2N dzdy
- /h [/ e h”)dy]dz
[Tn [T i
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1h
—/ /dey

= 1—2h)/ E*(y)dy, (A.3)

where we have used the fact that for h < z < (1 — h), it holds that 1 < z/h and (z — 1)/h < —1.
Finally,

)

T = //h{ = <u>du} o
— /1 h{ dy} f(l Z/h w)du]? dz
- h/llh {/(:/}I)/h kQ(y)dy} [f_(llz)/hlk(u)dupdz
_ hz/ol {/zl_sz(y)dy} mdz
= o [{ [ # o g -

where we have made a change of variables from z to (1 — 2z)/h to obtain the second last equation
and used the fact that for 0 < z < 1, it holds that hl—z>h1l-1-> oo, and the symmetry of
The center term is obtained from equations (A.1)-(A.4).

Part II. In this part, we will show that I, — I, = op((nh¥?)=1). The reason for this is that

the estimators involved in constructing th, .. Zdt are all n=1/2
terms, we get

consistent. Ignoring higher order

~ 1 & R
I,=1, +/[ ]d{W ZH;?#FIK;L(ZJ, Zi) Kno(z1, Zut) (Zi — Z1) Y2dz
0,1

1 <& N
+2 /[0 i — ZHJ 1 Kn(25, Zjt) — {W an‘i;él,jleh(Zjv Zit) Kn 2 (21, Zu)(Zu — Z) Y dz
t=1
(A5)

where z = (21, .. .,zd) and
-} x_;y/f (/) B(W)du,  if z €10,h),
Kh,?(xvy) = lk/(xhy) ifze [hal _h]7 (A6)
Ly (OO )y du, it x e (1— b, 1],
By expanding Zj; — Zy; in terms of Ej(Yj;) — Fj(Yj) and & — ag and then using the expressions
for Ej(Yj;) — Fj(Y;;) and the property of &, one can show by tedious calculations that the last two
terms on the right hand side of (A.5) are o,((nh%?)~1).
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Table 1: Tail dependence in the bivariate ¢ copula
p

v 0 0.2 0.5 0.8

4 0.0378 0.0637 0.1266 0.2448

6 0.0166 0.0338 0.0852 0.2035

10 0.0034 0.0102 0.0409 0.1463

oo 0 0 0 0

Note: This table presents the tail dependence implied by the Student’s ¢ copula for various levels of
correlation and various degrees of freedom values.

Table 2: KLIC between Normal and Student’s ¢ copula, p = 0.5
Degrees of freedom, v/

Dimension 4 6 10 20 30 50
1* 0.3853 0.2171 0.1161 0.0535 0.0347 0.0204
2 0.0221 0.0114 0.0033 0.0001 0.0007 0.0004
3 0.0598 0.0265 0.0113 0.0023 0.0013 0.0000
) 0.1654 0.0811 0.0340 0.0107 0.0063 0.0015
10 0.4834 0.2685 0.1112 0.0348 0.0177 0.0075
20 1.1703 0.6268 0.3007 0.1054 0.0522 0.0238
30 1.7929 0.9585 0.4561 0.1891 0.1061 0.0433

Note: This table presents the Kullback-Leibler Information Criterion (KLIC) between the Normal and
Student’s ¢t copulas. The KLIC between these two copulas is computed as:

Cnormal (u; E)

KLIC (Cnormal (p) “Ct <P7 V)) - /IOg ( Ct (u; >, 1/)

) Cnormal (u; E) du

where ¥ is a matrix with ones on diagonal and p for all off-diagonal elements. The integration is over [0, l]d,
where d is the dimension of the copulas being compared. We obtained the above estimates of the KLIC
by drawing n = 10,000 observations from the d—dimensional Normal copula with correlation matrix X,
denoted {u;};, and then computing:

n
KLIC - Cnormal (W3 2
KLIC (Cnormal (P) $Ct (pv V)) =n ' Zlog <Ct(u—(zzy))>
=1 (2] 9
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Table 3: Probability of rejecting the null using Test 1

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500  0.000 0.000 0.016 0.000 0.000

2500 0.024 0.032 0.000 0.096 0.536

5000 0.056 0.000 0.064 0.736 1.000
Correlation = 0.5

500  0.000 0.000 0.000 0.0000 0.000

2500 0.032 0.000 0.000 0.096 0.520

5000 0.032 0.000 0.040 0.704 0.992
Correlation =0.9

500  0.000 0.000 0.000 0.000 0.024

2500 0.000 0.008 0.016 0.256 0.776

5000 0.024 0.008 0.120 0.792  1.000

Note: This table presents the results of a Monte Carlo study of the size and power of Test 1.

The

null hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C =
(1 — p)Cnormal + pCy,, so the case that p = 0 corresponds to the case that the DGP satisfies the null
hypothesis. The marginal distributions were set to be iid N (0,1). The nominal size in all cases is 0.05.

The number of replications was 500. The dimension considered was 2.

Table 4: Probability of rejecting the null using Test 2

p

0

0.25 0.5 0.75

1

N

Correlation = 0.1

500
2500
5000

0.008
0.016
0.024

0.000 0.000 0.008
0.000 0.008 0.120
0.008 0.048 0.752

0.000
0.512
0.992

Correlation = 0.5

500
2500
5000

0.008
0.024
0.040

0.000 0.000 0.000
0.008 0.000 0.144
0.008 0.152 0.800

0.000
0.680
1.000

Correlation =0.9

500
2500
5000

0.000
0.016
0.024

0.000 0.000 0.000
0.008 0.008 0.336
0.024 0.192 0.872

0.048
0.816
1.000

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The

null hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C =
(1 — p)Cnormal + pCy,, so the case that p = 0 corresponds to the case that the DGP satisfies the null
hypothesis. The marginal distributions were set to be iid N (0,1). The nominal size in all cases is 0.05.

The number of replications was 500. The dimension considered was 2.
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Table 5: Probability of rejecting the null using Test 1

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500  0.000 0.000 0.000 0.000 0.000

2500 0.004 0.004 0.008 0.064 0.568

5000 0.052 0.000 0.048 0.704 1.000
Correlation = 0.5

500  0.000 0.000 0.000 0.000 0.000

2500 0.024 0.016 0.000 0.084 0.480

5000 0.040 0.008 0.068 0.684 0.992
Correlation = 0.9

500  0.000 0.000 0.000 0.000 0.020

2500 0.000 0.004 0.016 0.228 0.728

5000 0.008 0.008 0.188 0.828 1.000

Note: This table presents the results of a Monte Carlo study of the size and power of Test 1. The null
hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C = (1 —
P)Chormal +PClt,, so the case that p = 0 corresponds to the case that the DGP satisfies the null hypothesis.
The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with Normal innovations. The
nominal size in all cases is 0.05. The number of replications was 500. The dimension considered was 2.

Table 6: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.004 0.012 0.004 0.004 0.004

2500 0.020 0.004 0.016 0.140 0.608

5000 0.032 0.020 0.092 0.716 0.996
Correlation = 0.5

500 0.016 0.004 0.000 0.000 0.008

2500 0.024 0.000 0.012 0.208 0.668

5000 0.024 0.020 0.092 0.772 1.000
Correlation = 0.9

500 0.000 0.008 0.008 0.008 0.080

2500 0.020 0.008 0.072 0.380 0.776

5000 0.032 0.012 0.288 0.836 1.000

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The null
hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C' = (1 —
P)Chormal +PClt,, so the case that p = 0 corresponds to the case that the DGP satisfies the null hypothesis.
The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with Normal innovations. The
nominal size in all cases is 0.05. The number of replications was 500. The dimension of the system considered
is 2.
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Table 7: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.00 0.06 0.45 1.00 1.00

2500 0.04 0.74 1.00 1.00 1.00

5000 0.02 1.00 1.00 1.00 1.00
Correlation = 0.5

500 0.00 0.08 0.58 0.98 1.00

2500 0.00 0.69 1.00 1.00 1.00

5000 0.08 0.99 1.00 1.00 1.00
Correlation = 0.9

500 0.04 0.18 0.68 0.99 1.00

2500 0.04 0.79 1.00 1.00 1.00

5000 0.00 1.00 1.00 1.00 1.00

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The
null hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C =
(1 — p)Cnormal + pCy,, so the case that p = 0 corresponds to the case that the DGP satisfies the null
hypothesis. The marginal distributions were set to be itd N (0,1). The nominal size in all cases is 0.05.
The number of replications was 100. The dimension of the system considered is 5.

Table 8: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.00 0.04 047 098 1.00

2500 0.06 0.81 1.00 1.00 1.00

5000 0.02 0.98 1.00 1.00 1.00
Correlation = 0.5

500 0.02 0.05 048 094 1.00

2500 0.00 0.76 1.00 1.00 1.00

5000 0.04 1.00 1.00 1.00 1.00
Correlation = 0.9

500 0.02 0.30 0.78 0.98 1.00

2500 0.02 0.84 1.00 1.00 1.00

5000 0.06 0.99 1.00 1.00 1.00

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The null
hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C' = (1 —
P)Chormal +PClt,, so the case that p = 0 corresponds to the case that the DGP satisfies the null hypothesis.
The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with Normal innovations. The
nominal size in all cases is 0.05. The number of replications was 100. The dimension of the system considered
is 5.
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Table 9: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.16 1.00 1.00 1.00 1.00

2500 0.07 1.00 1.00 1.00 1.00

5000 0.05 1.00 1.00 1.00 1.00
Correlation = 0.5

500 0.12 1.00 1.00 1.00 1.00

2500 0.03 1.00 1.00 1.00 1.00

5000 0.03 1.00 1.00 1.00 1.00
Correlation = 0.9

500 0.15 1.00 1.00 1.00 1.00

2500 0.06 1.00 1.00 1.00 1.00

5000 0.08 1.00 1.00 1.00 1.00

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The
null hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C =
(1 — p)Cnormal + pCy,, so the case that p = 0 corresponds to the case that the DGP satisfies the null
hypothesis. The marginal distributions were set to be itd N (0,1). The nominal size in all cases is 0.05.
The number of replications was 100. The dimension of the system considered is 30.

Table 10: Probability of rejecting the null using Test 2

p 0 0.25 0.5 0.75 1

N Correlation = 0.1

500 0.09 1.00 1.00 1.00 1.00

2500 0.00 1.00 1.00 1.00 1.00

5000 0.00 1.00 1.00 1.00 1.00
Correlation = 0.5

500 0.05 1.00 1.00 1.00 1.00

2500 0.02 1.00 1.00 1.00 1.00

5000 0.04 1.00 1.00 1.00 1.00
Correlation = 0.9

500 0.24 1.00 1.00 1.00 1.00

2500 0.07 1.00 1.00 1.00 1.00

5000 0.06 1.00 1.00 1.00 1.00

Note: This table presents the results of a Monte Carlo study of the size and power of Test 2. The null
hypothesis is that the copula is normal. The DGP is a mixture of a normal and a t4 copula: C' = (1 —
P)Chormal +PClt,, so the case that p = 0 corresponds to the case that the DGP satisfies the null hypothesis.
The marginal distributions are assumed to be AR(1)-GARCH(1,1) processes with Normal innovations. The
nominal size in all cases is 0.05. The number of replications was 100. The dimension of the system considered
is 30.
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Table 11: Proportion of times the bivariate Normal Copula can be rejected
Raw returns GARCH filter GARCH+DCC filter

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2
0.01 0.01 0.00 0.03 0.01 0.03

Note: This table presents the proportion of times the bivariate normal copula was rejected for a randomly
selected collection of 100 pairs of equities.

Table 12: Proportion of times the Normal Copula can be rejected
Number of assets Raw returns GARCH filter GARCH-+DCC filter

2 0.03 0.01 0.02

0.59 0.17 0.12
) 1.00 0.81 0.80
10 1.00 1.00 1.00
15 1.00 1.00 1.00
20 1.00 1.00 1.00
25 1.00 1.00 1.00
30 1.00 1.00 1.00

Note: This table presents the proportion of times the normal copula was rejected for a randomly selected
collection of 100 groups of equities, with the size of the group ranging from 2 to 30. For the group of size 30
there was only one to consider.

Table 13: Proportion of times the bivariate Student’s ¢t Copula can be rejected
Raw returns GARCH filter

Test 1 Test 2 Test 1 Test 2
0.00 0.06 0.01 0.04

Note: This table presents the proportion of times the bivariate Student’s ¢ copula was rejected for a
randomly selected collection of 100 pairs of equities.

Table 14: Proportion of times the Student’s ¢ Copula can be rejected
Number of assets Raw returns GARCH filter

2 0.06 0.04
) 0.00 0.00
10 0.01 0.00
20 0.02 0.01
30 0.00 0.00

Note: This table presents the proportion of times the Student’s ¢ copula was rejected for a randomly
selected collection of 100 groups of equities, with the size of the group ranging from 2 to 30. For the group
of size 30 there was only one to consider.
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Table 15: Proportion of times the bivariate Normal Copula can be rejected
Raw returns GARCH filter GARCH+DCC filter

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2
0.75 0.74 0.64 0.66 0.41 0.47

Note: This table presents the proportion of times the bivariate normal copula was rejected for a randomly
selected collection of 100 pairs of exchange rates.

Table 16: Proportion of times the Normal Copula can be rejected
Number of assets Raw returns GARCH filter GARCH+DCC filter

2 0.74 0.66 0.47
5 1.00 1.00 1.00
10 1.00 1.00 1.00
15 1.00 1.00 1.00
20 1.00 1.00 1.00

Note: This table presents the proportion of times the normal copula was rejected for a randomly selected
collection of 100 groups of exchange rates, with the size of the group ranging from 2 to 20. For the group of
size 20 there was only one to consider.

Table 17: Proportion of times the bivariate Student’s t Copula can be rejected
Raw returns GARCH filter

Test 1 Test 2 | Test 1 Test 2
0.44 0.46 0.28 0.35

Note: This table presents the proportion of times the bivariate Student’s ¢ copula was rejected for a
randomly selected collection of 100 pairs of exchange rates.

Table 18: Proportion of times the Student’s ¢ Copula can be rejected
Number of assets Raw returns GARCH filter

2 0.46 0.35
) 0.82 0.51
10 0.88 0.56
15 0.99 0.62
20 1.00 1.00

Note: This table presents the proportion of times the Student’s ¢ copula was rejected for a randomly
selected collection of 100 groups of exchange rates, with the size of the group ranging from 2 to 20. For the
group of size 20 there was only one to consider.
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