<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>Abbreviated breast MRI: the importance of performing homogeneous prospective studies to precisely measure its diagnostic accuracy - author response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Abbreviated breast MRI: the importance of performing homogeneous prospective studies to precisely measure its diagnostic accuracy - author response</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Invited Reply to Letter</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Lyn I Jones, BSc MBBS FRCS FRCR PGCert(MedEd)
North Bristol NHS Trust
Bristol, UNITED KINGDOM |
| Corresponding Author Secondary Information: | |
| Corresponding Author's Institution: | North Bristol NHS Trust |
| Corresponding Author's Secondary Institution: | |
| First Author: | Lyn I Jones, BSc MBBS FRCS FRCR PGCert(MedEd) |
| First Author Secondary Information: | |
| Order of Authors: | Lyn I Jones, BSc MBBS FRCS FRCR PGCert(MedEd)
Sian Taylor-Phillips, MPhys PhD
Rebecca Geach, BSc MBBCh FRCR
Sam A Harding, DHealthPsych PhD
Andrea Marshall, BSc MSc PhD
Sadie McKeown-Keegan, BSc MSc
Dunn A Janet, BSc MSc PhD |
| Order of Authors Secondary Information: | |
Abbreviated breast MRI: the importance of performing homogeneous prospective studies
to precisely measure its diagnostic accuracy – author response

Authors: Lyn I Jonesa, BSc MBBS FRCS FRCR PGCert(Medical Education); Sian Taylor-Phillipsb, MPhys PhD; Rebecca Geacha, BSc MBBCr FRCR; Sam A Hardinga, DHealthPsych PhD; Andrea Marshallb, BSc MSc PhD; Sadie McKeown-Keegana BSc, MSc and Janet A Dunnb, BSc MSc PhD

Contributing Institutions:

a. North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol BS10 5NB, UK (Rebecca.Geach@nbt.nhs.uk; sharding.jb@gmail.com; Sadie.McKeownKeegan@nbt.nhs.uk; Lyn@Coppock.uk.com)

b. Warwick Clinical Trials Unit, University of Warwick, Coventry CV4 7AL, UK (andrea.marshall@warwick.ac.uk; s.taylor-phillips@warwick.ac.uk; j.a.dunn@warwick.ac.uk)

Corresponding author: Dr Lyn I Jones, Consultant Radiologist, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB email: Lyn@Coppock.uk.com telephone: +44 7799623719

Funding and declarations of interest:

Sian Taylor-Phillips is supported by an NIHR Career Development Fellowship (CDF – 2016-09-018). The views expressed in this manuscript are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.
The authors declare no other conflict of interest.
Author contributions

1 guarantor of integrity of the entire study N/A
2 study concepts and design N/A
3 literature research: Lyn Jones
4 clinical studies N/A
5 experimental studies / data analysis N/A
6 statistical analysis N/A
7 manuscript preparation: Lyn Jones and Sian Taylor-Phillips
8 manuscript editing: Lyn Jones, Sian Taylor-Phillips, Rebecca Geach, Sam A Harding, Andrea Marshall, Sadie McKeown-Keegan and Janet A Dunn
Abbreviated breast MRI: the importance of performing homogeneous prospective studies to precisely measure its diagnostic accuracy – author response

We wish to thank Pulido et al. (1) for their pertinent and insightful comments about our systematic review and meta-analysis of abbreviated breast MRI (abMRI) (2), and about the systematic review and meta-analysis by Baxter et al. (3) that was published in the same issue of Clinical Radiology earlier this year.

Pulido et al. (1) highlighted the striking difference in the conclusions of the quality review of the evidence made in the two meta-analyses. Our own study, Geach et al. (2) concluded that only a very low level of confidence could be placed in the evidence synthesised from the studies, while Baxter et al. (3) concluded that there was a low risk of bias amongst the studies they evaluated. We note that of the consecutive screening studies included in the meta-analyses, and assessed for evidence quality, only 3 studies overlapped between the two reviews (were included in both reviews’ quality assessments) (4–6).

For two of these 3 overlapping studies (4, 6), both Baxter et al. and our own review found a high risk of bias around the studies’ index tests (due to readers interpreting the full protocol MRI (fpMRI) directly after the abMRI). In the third study that was common to both reviews (5) timing of the fpMRI and abMRI reading was not a concern, but Baxter et al. instead noted concerns about the applicability of the reference standard, because the amount of follow up was not specified and so...
they classified the study as “unclear risk of bias”. In our review, this lack of specification of the reference test contributed to our lowering our confidence in study design from high to moderate. Therefore, the judgements made by the two reviews about risk of bias for the 3 overlapping studies were quite similar.

In addition, however, our own review also noted that in all 3 overlapping studies, and indeed in all 5 of the studies we assessed for the meta-analysis, only the positive fpMRI scans received a biopsy, whereas the positive abMRI scans did not. This we described in our review as the reference standard differing by index test. This factor was not mentioned by Baxter et al. but for our own review contributed to a lowering of our confidence in the quality of the evidence. We also lowered our confidence in evidence quality by considering all the studies together, noting wide confidence intervals, particularly around sensitivity and also heterogeneity between studies of both study populations and MRI protocols. Interestingly, Baxter et al. commented that for the consecutive screening studies there were insufficient numbers of studies to assess heterogeneity statistically.

The differences between the conclusions of the two reviews therefore in part arise from only 3 studies overlapping between the two reviews and in part from a different methodology being used: Baxter et al. used QUADAS-2(7) while we used GRADE(8).

We agree with Pulido et al.(1) that the heterogeneity, both of MRI protocol studied and of study populations, between published studies of abMRI is an important cause for reduced levels of confidence in the resultant evidence.
We also agree with Pulido et al. (1) that abMRI has great potential to provide cost effective screening through early detection of breast cancer, in particular earlier detection of the most clinically significant, aggressive cancers, currently detected larger and later than other less aggressive cancers by mammographic screening (9). The potential for abMRI to be cost effective hinges on its high sensitivity for small, aggressive breast cancers combined with faster (than full protocol MRI) acquisition and reporting throughput (2–4,10,11).

Current uncertainties around feasibility, effectiveness and cost effectiveness will need to be addressed before the risk/benefit balance of introducing abMRI into clinical screening practice can be fully understood and recommendations to policy makers made with confidence. These unknowns are likely to be both protocol and population specific and will influence how the cost effectiveness of abMRI compares with that of current screening modalities: full protocol MRI (high risk population) and digital mammography (moderate and population-risk populations). Current uncertainties include issues around: recall rates, biopsy rates, MRI biopsy rates, scanner and workforce capacity and workforce interpretation-training.

Finally, we agree with Pulido et al. (1) that high quality research is required to answer these uncertainties and to determine both the optimal abMRI protocol and the population(s) most likely to benefit from screening with abMRI.

References

https://doi.org/10.1259/bjr.20190663.

Declaration of interests

☐ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☒ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

| Sian Taylor-Phillips reports a relationship with National Institute for Health Research that includes: funding grants. Lyn Jones reports a relationship with National Institute for Health Research that includes: funding grants. |