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Abstract
Many	infectious	pathogens	are	shared	through	social	interactions,	and	examining	host	
connectivity	 has	 offered	 valuable	 insights	 for	 understanding	 patterns	 of	 pathogen	
transmission	across	wildlife	species.	African	buffalo	are	social	ungulates	and	impor-
tant	reservoirs	of	directly-	transmitted	pathogens	that	impact	numerous	wildlife	and	
livestock	species.	Here,	we	analyzed	African	buffalo	social	networks	to	quantify	vari-
ation	in	close	contacts,	examined	drivers	of	contact	heterogeneity,	and	investigated	
how	 the	observed	contact	patterns	affect	pathogen	 invasion	 likelihoods	 for	 a	wild	
social	ungulate.	We	collected	continuous	association	data	using	proximity	collars	and	
sampled	host	traits	approximately	every	2 months	during	a	15-	month	study	period	in	
Kruger	National	Park,	South	Africa.	Although	the	observed	herd	was	well	connected,	
with	most	individuals	contacting	each	other	during	each	bimonthly	interval,	our	analy-
ses	revealed	striking	heterogeneity	in	close-	contact	associations	among	herd	mem-
bers.	Network	analysis	showed	that	individual	connectivity	was	stable	over	time	and	
that	 individual	age,	sex,	reproductive	status,	and	pairwise	genetic	relatedness	were	
important	predictors	of	buffalo	connectivity.	Calves	were	the	most	connected	mem-
bers	of	the	herd,	and	adult	males	were	the	least	connected.	These	findings	highlight	
the	role	susceptible	calves	may	play	in	the	transmission	of	pathogens	within	the	herd.	
We	also	demonstrate	that,	at	time	scales	relevant	to	infectious	pathogens	found	in	
nature,	the	observed	level	of	connectivity	affects	pathogen	invasion	likelihoods	for	a	
wide	range	of	infectious	periods	and	transmissibilities.	Ultimately,	our	study	identifies	
key	predictors	of	social	connectivity	in	a	social	ungulate	and	illustrates	how	contact	
heterogeneity,	 even	within	 a	 highly	 connected	 herd,	 can	 shape	 pathogen	 invasion	
likelihoods.
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1  |  INTRODUC TION

The development of social structure and how individuals interact 
within	populations	 is	a	 foundational	 topic	 in	animal	behavior,	with	
important	 implications	 for	 the	 transfer	 of	 information	 (McComb	
et al., 2001),	 genes	 (Altmann	 et	 al.,	 1996),	 and	 pathogens	 (Altizer	
et al., 2003). In particular, there is mounting evidence that a popula-
tion's social structure can impact the invasion likelihood of a patho-
gen,	 the	 speed	at	which	 it	 spreads,	 and	 the	number	of	 individuals	
it	infects	(Keeling,	1999; Newman, 2002; Romano et al., 2020;	Sah	
et al., 2018).	Network	analysis	has	become	a	powerful	tool	for	exam-
ining	linkages	between	wildlife	social	connectivity	and	disease,	espe-
cially	for	primates,	rodents,	and	reptiles	(Godfrey,	2013; Rushmore 
et al., 2017;	 Sah	 et	 al.,	2021;	White	 et	 al.,	2017).	 Social	 networks	
have	been	described	 for	 a	 handful	 of	 herd-	living	 species,	 offering	
valuable	 insights	 into	 social	 structure	 at	 the	 population	 level	 for	
ungulates	(African	buffalo:	Cross	et	al.,	2004;	Onagers	and	Grevy's	
zebra:	 Sundaresan	 et	 al.,	 2007;	 reticulated	 giraffe:	 VanderWaal,	
Wang,	et	al.,	2014;	alpine	ibex:	Brambilla	et	al.,	2022). These studies 
typically	consider	individuals	to	be	associating	if	they	are	in	the	same	
group,	which	 assumes	 that	 groups	 are	well-	mixed.	However,	 rela-
tively	little	is	known	about	the	close-	contact	patterns	of	herd-	living	
(rarely	solitary)	ungulate	species	and	the	resulting	consequences	for	
pathogen invasion.

Among	social	species,	 individuals	typically	exhibit	considerable	
variation	in	contact	rates,	as	demonstrated	by	social	networks	(dol-
phins: Lusseau, 2003;	deer	mice:	Clay	et	al.,	2009;	spider	monkeys:	
Rimbach	et	 al.,	 2015;	 red	deer:	Albery	et	 al.,	2021).	Many	wildlife	
species	 have	 complex	 social	 structures	 in	 which	 relatedness	 and	
life	history	traits	(e.g.,	age,	sex,	or	reproductive	status)	play	an	im-
portant	role	in	determining	how	frequently	individuals	interact	with	
conspecifics.	For	example,	in	bighorn	sheep,	contact	rates	between	
lambs	and	reproductive	ewes	are	orders	of	magnitude	higher	than	
contact	 rates	among	other	group	members	 (Manlove	et	al.,	2017). 
Examining	 how	 individual	 traits	 affect	 contact	 heterogeneity	 can	
identify	groups	of	 individuals	 that	play	 important	 roles	 in	contact-	
driven	 processes,	 such	 as	 pathogen	 transmission.	 Superspreaders	
are a common feature of infectious disease epidemics, where a small 
portion	of	well-	connected	individuals	are	responsible	for	a	majority	
of	transmission	events	(Lloyd-	Smith	et	al.,	2005).	Such	heterogene-
ities	in	individual	transmission	potentials	can	profoundly	affect	the	
course	 of	 an	 outbreak	 and	 strategies	 for	 disease	 control,	 under-
scoring the need to elucidate drivers of transmission heterogene-
ities	 (Lloyd-	Smith	et	 al.,	2005;	Salathé	et	 al.,	2010;	VanderWaal	&	
Ezenwa,	2016).

Given	 their	 large	 and	 typically	 well-	connected	 populations,	
herd-	living	 ungulates	 frequently	 serve	 as	 reservoirs	 for	 infectious	
diseases	 that	 circulate	 among	wildlife	 species	 and	 at	 the	wildlife-	
livestock interface (Barroso et al., 2021;	Coetzer	et	al.,	1994).	Afri-
can	buffalo	(Syncerus caffer)	are	considered	the	primary	maintenance	
hosts	for	foot-	and-	mouth	disease	virus	(FMDV:	Bastos	et	al.,	2000; 
Jolles et al., 2021; Vosloo et al., 2002) and a maintenance host for 
Mycobacterium bovis	 (causative	agent	of	bovine	tuberculosis:	Jolles	

et al., 2005; Renwick et al., 2007)	in	African	ecosystems.	Buffalo	are	
often implicated in transmission events that affect wildlife species 
and cattle farms, with profound effects on wildlife management and 
local human livelihoods (Bastos et al., 2000;	Michel	&	Bengis,	2012; 
Omondi et al., 2020; Vosloo et al., 2002).	Understanding	how	life	his-
tory	traits	correspond	to	buffalo	connectivity	could	help	clarify	how	
individual	buffalo	contribute	to	population-	level	disease	outbreaks.

African	 buffalo	 are	 social	 ungulates	 that	 live	 in	 large	 herds	
(N = 30–	1500).	 Buffalo	 demonstrate	 nonrandom	 association	 pat-
terns (Cross et al., 2005;	Sinclair,	1977; Turner et al., 2005), which 
may	translate	into	predictable	differences	in	individual	connectivity	
and	 infection	 risk.	 Specifically,	 buffalo	 have	 a	 fission-	fusion	 social	
structure,	whereby	individuals	form	separate	groups	that	rejoin	and	
mix	over	time	(Cross	et	al.,	2005; Prins, 1996), with adult dispersal 
occurring	in	both	males	and	females	(Spaan	et	al.,	2019).	The	basic	
family	 unit	 consists	 of	 a	mother	 and	 her	 one	 or	 two	most	 recent	
calves	 (Sinclair,	1977).	Calves	are	born	 in	 the	wet	season	 (Novem-
ber	to	April)	after	an	11-	month	gestation	period	(Fairall,	1968;	Ryan	
et al., 2006).	They	lose	maternally	derived	immunity	to	some	patho-
gens	around	4–	6 months	of	age	(Jolles	et	al.,	2021),	but	remain	as-
sociated	with	 their	mothers	 for	1.5–	2 years,	often	 remaining	close	
even	 after	 the	 next	 calf	 is	 born	 (Prins,	 1996).	 Juveniles	 gradually	
spend	more	time	away	from	their	mothers	within	the	herd,	and	by	
4 years	of	age,	males	start	to	 leave	the	breeding	herd	for	bachelor	
groups	during	dry	seasons	(Turner	et	al.,	2005).	As	they	age,	some	
adult	males	stop	returning	to	the	breeding	herd	and	remain	in	small	
mature	 male	 bachelor	 groups	 (Prins,	 1996;	 Sinclair,	 1977).	 While	
broad-	scale	social	patterns	are	well	documented	in	this	species,	little	
is	known	about	associations	at	a	finer	scale.

Here,	 we	 analyzed	 temporally	 dynamic	 African	 buffalo	 social	
networks to gain insight into close association patterns among herd 
members,	with	a	focus	on	 identifying	drivers	of	contact	heteroge-
neity	and	pathogen	invasion.	Epidemiological	models	for	gregarious	
ungulate	 herds	 have	 historically	 been	 limited	 by	 the	 assumption	
that	herds	are	well	mixed	with	respect	to	pathogen	transmission.	By	
combining	detailed	data	on	buffalo	association	patterns,	life	history	
traits,	and	genetics	with	models	of	disease	spread,	we	were	able	to	
test this assumption and investigate how individual characteristics 
scale	up	to	affect	group-	level	processes,	with	valuable	 insights	for	
identifying	 key	 traits	 of	 potential	 superspreaders.	 First,	we	exam-
ined	 how	 genetic	 relatedness,	 age,	 sex,	 reproductive	 status,	 and	
measures	of	animal	quality	affect	connectivity.	Given	that	mothers	
and	young	calves	remain	as	family	units	for	up	to	2 years	in	breeding	
herds,	we	expected	genetic	relatedness,	age,	and	sex	to	be	the	most	
important	 predictors	 of	 buffalo	 association	 patterns,	 with	 males	
becoming	 less	connected	as	 they	 reach	puberty	and	 join	bachelor	
herds.	Next,	we	examined	how	the	observed	social	network	could	
affect	a	pathogen's	potential	ability	to	invade	and	spread	within	the	
herd, given a range of pathogen infectious periods and transmissi-
bilities.	This	work	provides	 insights	 into	how	data	on	contact	pat-
terns	and	life	histories	can	reveal	hidden	heterogeneities	capable	of	
shaping	pathogen	invasion	likelihoods,	even	in	seemingly	well-	mixed	
populations.
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2  |  MATERIAL S AND METHODS

2.1  |  Study site and population

Kruger	 National	 Park	 (KNP)	 spans	 nearly	 19,485km2	 (22.5°–	25.5°	
S,	 31.0°–	31.57°	E)	 and	hosts	 a	 diversity	 of	wildlife,	 including	wild	
African	buffalo.	Our	study	population	included	a	wild	buffalo	herd,	
which	was	captured	 in	Northern	KNP	during	 the	early	2000s	and	
relocated	 to	 a	 900-	hectare	 enclosure	 in	 the	 center	 of	 the	 park,	
near	 Satara	 camp	 (Figure S1).	 The	 buffalo	 sample	 size	 varied	 dur-
ing	 our	 study	 (N = 60–	70)	 due	 to	 births	 and	 deaths.	 On	 average,	
25.60 ± 0.10%	of	the	herd	were	calves,	22.95 ± 0.09%	were	juveniles	
and	51.45 ± 0.19%	were	adults.	Buffalo	were	free	to	graze	and	breed	
in	the	enclosure,	and	during	extreme	droughts,	they	had	access	to	
supplemental	grass	hay.	Water	was	available	to	buffalo	at	a	natural	
pan and a manmade water point (Figure S1).	 This	 “nearly	 natural”	
enclosure	included	numerous	other	species	typical	of	the	ecosystem	
(e.g.,	giraffe,	zebra,	warthogs,	and	small	predators)	while	excluding	
megaherbivores	 (e.g.,	 rhinos,	 elephants)	 and	 large	 predators	 (e.g.,	
lions, leopards).

2.2  |  Buffalo captures and sedation procedures

Data	 collection	 spanned	 six	 observation	 periods	 (OPs)	 that	 oc-
curred	 from	March	 2014	 to	May	 2015	 (Table S1).	We	 captured	
buffalo	 to	 collect	 biological	 data	 and	download	 association	data	
from	proximity-	logging	collars	at	the	end	of	each	OP.	Captures	oc-
curred	 five	 times	 per	 year,	 at	 two	 to	 three-	month	 intervals.	We	
performed	 three	 active	 captures,	 in	 which	 buffalo	 were	 darted	
from	a	helicopter,	and	four	passive	captures	during	the	dry	season	
in	which	researchers	filled	man-	made	water	troughs	that	attracted	
buffalo	 into	a	fenced	area	with	a	remote-	controlled	gate	closure	
(Figure S1).	 At	 each	 capture,	 we	 darted	 small	 groups	 of	 buffalo	
using	 chemical	 immobilization	 procedures	 described	 by	 Couch	
et al. (2017).

2.3  |  Data collection: biological data and samples

At	captures,	we	visually	sexed	sedated	buffalo	and	determined	indi-
vidual	age	by	incisor	wear	and	tooth	emergence	(Jolles,	2007).	We	
assigned	 each	 buffalo	 a	 body	 condition	 score	 (BCS)	 on	 a	 scale	 of	
1–	5,	 determined	 by	 palpation	 (following	 Ezenwa	 et	 al.,	 2009).	We	
evaluated	average	horn	width,	proposed	as	a	proxy	for	overall	animal	
quality	 (Ezenwa	&	Jolles,	2008),	by	measuring	 the	widest	point	of	
each	buffalo's	horns.	We	also	measured	average	boss	size	(i.e.,	the	
fused	base	of	the	horns)	and	average	testicle	circumference	at	the	
widest	point	 for	male	 juveniles	and	adults.	We	determined	female	
lactation	status	(0/1)	by	manually	milking	all	teats	(Beechler,	2013), 
and	we	assessed	pregnancy	status	 (0/1)	by	 rectal	palpation	of	 the	
uterus.	 African	 buffalo	 gestational	 periods	 last	 approximately	
11 months	(Sinclair,	1977).

Throughout	the	study	period,	we	also	collected	ear	tissue	sam-
ples	 (2–	4 cm),	 which	 we	 used	 to	 determine	 genetic	 relatedness	
among individuals (Tavalire et al., 2018; details in Data S1).

2.4  |  Data collection: behavioral association data

In	 February	 2014,	 we	 fitted	 the	 majority	 of	 buffalo	 aged	 over	
6 months	with	 Sirtrack	 proximity-	logging	 collars	 (Sirtrack	 Tracking	
Solutions,	Havelock	North,	New	Zealand),	which	 record	 the	 iden-
tity	of	 collars	 in	 close	proximity	 in	 addition	 to	 the	date,	 time,	 and	
duration of each encounter. Percentage coverage across the herd 
is provided in Table S1 of Data S1. Calves <6 months	 in	 age	were	
not	 collared	 for	 ethical	 considerations,	 as	 their	 growth	 rate	 ex-
ceeded	 collar	 re-	fitting	 schedules.	We	 programmed	 collars	with	 a	
UHF	range	coefficient	of	20	and	a	separation	time	of	240 s,	which	
in	 a	 laboratory	 setting	 initiated	 an	 association	 when	 collars	 were	
within	1.22 m ± 0.46 m	 (mean ± SD),	and	terminated	the	association	
when	collars	exceeded	a	distance	of	1.70 m ± 0.67 m	for	more	than	
240 s.	We	deemed	this	a	reasonable	representation	of	transmission	
distances	 for	 pathogens	 spread	 via	 close	 contact	 (e.g.,	 respiratory	
viruses	and	bacteria;	Olsen	et	al.,	2003;	Wells,	1934).	While	proxim-
ity	collars	allowed	for	near-	complete	data	collection	without	obser-
vation	bias,	we	note	that	close	contacts	were	inferred	from	data	on	
physical	proximity	(Farine,	2015;	Farine	&	Whitehead,	2015) rather 
than	directly-	observed	interactions.

2.5  |  Estimating association indices and 
social networks

We	 analyzed	 association	 data	 for	 69	 buffalo	 (males = 22,	 fe-
males = 47),	 including	 18	 calves	 (<1.5 years).	We	 created	 a	 matrix	
of	pairwise	association	 indices	 for	each	of	 the	six	observation	pe-
riods	(OPs).	The	number	of	buffalo	varied	across	OPs	due	to	births,	
deaths, and collar malfunctions. Overall, matrices included an aver-
age	of	39.33	buffalo	(±SD:	14.11)	and	ranged	from	17	to	53	buffalo	
(Table S1).

When	cleaning	association	data,	we	excluded	capture	days	and	a	
2-	day	buffer	after	each	intervention,	and	we	removed	1 s	encounters	
shown to skew results (Drewe et al., 2012).	To	reduce	asymmetries	
in	 association	matrices,	we	 excluded	 encounters	 logged	 after	 one	
individual	in	a	pair	had	a	full	proximity	logger	memory.	For	each	pair	
of individuals i and j,	we	calculated	an	association	 index	 (AI)	 for	 a	
given OP as follows:

in which Cij refers to the summed duration (h) of association logged 
between	individuals	i and j	during	the	observation	period,	and	Nij re-
fers	to	the	total	hours	during	the	observation	period	in	which	 i and j 
were not in contact. Thus Tij, in which Tij = Cij+Nij, refers to the total 
hours	during	the	observation	period	in	which	individuals	i and j could 

AIij =
Cij

Cij + Nij
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associate	with	each	other	(i.e.,	both	had	collars	with	available	memory	
to	record	data).	Because	data	were	collected	continuously	by	proximity	
collars	with	little	to	no	observation	bias	or	missing	groups	within	the	
herd (Davis et al., 2018),	we	used	the	simple	ratio	index	of	proportion	
of	 time	a	dyad	spent	 in	close	proximity	 (Farine	&	Whitehead,	2015) 
with	the	resultant	index	being	a	value	between	0	and	1	that	indicates	
the	proportion	of	time	a	dyad	spent	in	close	proximity.	These	indices	
were	used	to	create	adjacency	matrices.

When	 recording	 association	 data,	 ideally	 both	 collars	 in	 a	 pair	
would record identical information; however, previous studies 
demonstrate	that	collars	vary	in	their	abilities	to	transfer	information	
(Boyland	et	al.,	2013; Drewe et al., 2012).	We	reduced	 inter-	collar	
variation	 biases,	 specifically	 conflation	 of	 individual	 ID	 and	 error/
strength	of	proximity	collar,	using	a	method	similar	to	that	proposed	
by	Boyland	et	al.	(2013).	In	brief,	we	assessed	variation	in	reciprocal	
AIs	in	a	given	matrix	to	evaluate	each	collar's	relative	performance	
and	to	develop	a	measure	of	collar	bias.	We	then	corrected	matrix	
AIs	by	scaling	each	collar's	data	according	to	its	average	bias	across	
collars,	 resulting	 in	 a	 nearly	 identical	 pre-		 and	post-	correction	 av-
erage	AI	for	the	matrix.	Further	details	about	collar	corrections	are	
provided in Data S1.	Finally,	we	used	matrices	to	develop	associa-
tion	networks	corresponding	to	the	six	OPs.	In	each	network,	nodes	
represented	buffalo	with	available	data	for	a	given	OP,	and	network	
edges	were	weighted	according	to	the	AI	calculated	for	each	dyad.

2.6  |  Statistical analysis: pairwise 
association models

To	examine	the	effect	of	biological	traits	on	association	patterns,	we	
fit	pairwise	AI	data	to	a	Bayesian	logistic	mixed-	effect	model	using	
a	multimembership	Markov	chain	Monte	Carlo	(MCMC)	framework	
with the MCMCglmm package in R (Hadfield, 2010; Hart et al., 2022; 
R Core Development Team, 2010).	This	multimembership	modeling	
framework included a node dependence term and accounted for the 
undirected nature of association measures (Hart et al., 2022).	We	
examined	the	relationship	between	pairwise	AIs	(represented	in	the	
model	as	a	proportion	of	time	spent	together	for	a	given	observa-
tion	period)	and	the	following	pairwise	predictor	variables:	age/sex	
(pairwise	 combinations	 of:	 adult	 female,	 adult	 male,	 juvenile,	 and	
calf),	number	of	pregnant	buffalo	in	pair	(0,	1,	2),	number	of	lactating	
buffalo	in	pair	(0,	1,	2),	difference	in	BCS,	and	genetic	relatedness.	
Histograms	of	continuous	data	 for	pairwise	difference	 in	BCS	and	
genetic relatedness each showed three peaks, prompting the con-
version	of	these	data	into	categorical	variables.

For	 all	 statistical	 analyses:	 buffalo	 were	 grouped	 as	 calves	
(<1.5 years),	 juveniles	 (≥1.5	and	≤4 years),	or	adults	 (>4 years);	BCS	
was	averaged	across	measurements	collected	at	the	capture	before	
and after each OP; a female's reproductive status was determined 
at	 the	capture	prior	 to	a	given	OP.	Categories	describing	pairwise	
difference	in	BCS	included:	low	(<0.5),	medium	(0.5–	1),	and	high	(>1). 
Similarly,	 categories	 described	 genetic	 relatedness	 as	 low	 (<0.12: 
cousins	 and	unrelated	pairs),	medium	 (0.12–	0.36:	 half-	siblings	 and	

aunt-	niece	 level	 relationships),	 or	 high	 (>0.36:	 full	 siblings	 and	
parent-	offspring	pairs;	additional	details	in	Data	S1).

Horn width increases as an animal grows; therefore, for the pair-
wise association models we performed a linear regression of log(av-
erage	age)	on	average	horn	width	for	buffalo	captured	at	least	three	
times,	with	different	slopes	for	males	and	females.	We	used	the	re-
sulting regression residuals, proposed as an indicator of individual 
quality	 (Ezenwa	&	 Jolles,	2008),	 in	 subsequent	 analyses.	We	used	
a	similar	approach	to	calculate	residuals	 for	average	testicular	size	
and	average	boss	size	for	male	juveniles	and	adults	captured	at	least	
three	times.	We	expected	that	males	with	larger	testicles	and	boss	
sizes	may	have	increased	mating	access	and	contact	rates.

We	examined	model	fit	for	the	pairwise	association	model	with	
the	following	random	effects:	buffalo	identity,	pair	identity,	and	ob-
servation period.

2.7  |  Statistical analysis: network centrality models

To	evaluate	the	effect	of	host	traits	on	individual	connectivity,	we	
calculated	centrality	metrics	for	buffalo	 in	each	network	using	the	
igraph and sna	 packages	 in	 R	 (Csardi	 &	Nepusz,	2006;	McFarland	
et al., 2010).	Specifically,	we	calculated	the	following	weighted	met-
rics: strength (summed edge weights connected to a given node), 
flowbetweenness (proportion of times a node lies along the short-
est	path	between	pairs	in	the	network),	and	eigenvector (a function 
of	the	connectedness	of	a	nodes'	associates;	Freeman	et	al.,	1991; 
Newman, 2010).	While	strength	considers	a	node's	immediate	neigh-
bors,	 flowbetweenness	 and	 eigenvector	 centrality	 also	 account	
for	 indirect	 connections.	We	 chose	 these	metrics	 based	 on	 stud-
ies	 that	 have	 shown	 that	 individuals	with	 high	 flow-	betweenness,	
strength,	and/or	eigenvector	centralities	are	more	likely	to	contract	
and transmit pathogens (Corner et al., 2003;	 Gómez	 et	 al.,	2013; 
Salathé	et	al.,	2010).	To	assess	variation	 in	diversity	of	associates,	
we	also	calculated	a	filtered	degree	centrality	metric.	Degree	typi-
cally	sums	the	number	of	edges	for	a	given	node.	However,	because	
all	 six	 networks	 were	 fully	 connected	 (i.e.,	 all	 buffalo	 associated	
with	each	other),	we	filtered	out	edges	below	each	network's	me-
dian	 association,	 effectively	 removing	 the	weakest	 50%	of	 edges.	
Without	a	filter,	all	buffalo	 in	the	fully	connected	networks	would	
have	the	same	degree	centrality	for	a	given	observation	period.	We	
summed the remaining edges for a given node to calculate filtered 
degree centrality (hereafter referred to as degree).	 Notably,	 degree 
is	 the	only	metric	with	a	filtered	approach.	Previous	epidemiologi-
cal	studies	have	shown	that	strength	outperforms	other	centrality	
metrics	(e.g.,	degree,	betweenness,	and	eigenvector	centrality)	when	
predicting	an	 individual's	 infection	 risk	 (Christley	et	 al.,	 2005) and 
predicting	outbreak	 size	based	on	an	 index	case's	 centrality	 (Sala-
thé	et	al.,	2010).	Additionally,	multiple	testing	of	several	correlated	
metrics	can	 lead	to	an	 increased	false	discovery	rate	 (type	 I	error;	
Benjamini	&	Hochberg,	1995).	Given	that	strength	was	strongly	cor-
related with eigenvector (rs = .86,	n = 241,	p < .001)	and	flowbetween-
ness (rs = .79,	n = 241,	p < .001),	but	only	moderately	correlated	with	
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    |  5 of 14RUSHMORE et al.

degree (rs = .54,	n = 241,	p < .001),	our	models	focused	on	testing	how	
life	history	traits	affect	individual	strength and degree.

We	fit	individual	centrality	data	to	node-	level	permutation-	based	
regressions in R (30,000 permutations/test; following Rushmore 
et al., 2013).	Using	a	separate	model	for	each	centrality	metric	(i.e.,	
strength and degree),	we	first	examined	a	set	of	global	models	that	
included	all	buffalo	across	all	observation	periods	and	tested	signifi-
cant	relationships	between	individual	centrality	and	the	following	bi-
ological	traits:	sex	(M/F),	age	(continuous),	average	BCS	(continuous),	
lactation	status	(1/0),	pregnancy	status	(1/0),	and	an	age:sex	inter-
action.	Horn	width	data	were	only	available	for	adults	and	juveniles;	
thus,	we	established	a	second	set	of	models	that	only	included	data	
for	adult	and	juvenile	buffalo	and	examined	relationships	between	
individual	 centrality	 and	 sex,	 age,	 average	BCS,	 horn	width	 resid-
uals	 (continuous),	 and	 age:sex.	 Lastly,	 testicular	 size	 and	 boss	 size	
were	only	available	for	adult	and	juvenile	males;	thus,	we	used	a	final	
model	set	to	assess	relationships	between	individual	centrality	and	
age,	 average	BCS,	 testes	 size	 residuals	 (continuous),	 and	boss	 size	
residuals (continuous). Each model incorporated a categorical pa-
rameter	for	the	observation	period	to	control	for	repeated	measures	
and	temporal	effects.	We	applied	a	Bonferroni	correction	to	model	
outputs	to	account	for	multiple	testing	of	two	centrality	metrics	and	
considered relationships of p < .025	(i.e.,	p < .05/2)	to	be	significant.

2.8  |  Examining variation in individual R0 and 
pathogen invasibility of the herd

We	examined	how	the	observed	connectivity	patterns	might	affect	
a	 pathogen's	 invasibility—	ability	 to	 invade	 and	 spread	 within	 the	
herd—	for	a	 range	of	pathogen	 infectious	periods	and	 transmission	
efficiencies.	Here	we	make	a	simplifying	assumption	that	there	is	a	
minimum time in close contact needed to achieve transmission. The 
mean and variance of individual R0 values (i.e., where individual R0 
refers	to	the	number	of	expected	secondary	infections	arising	from	
a	given	individual)	define	a	pathogen's	ability	to	invade	and	spread	
within	a	population	(Lloyd-	Smith	et	al.,	2005). Thus, we used an it-
erative approach to calculate individual R0	 values	 for	 each	buffalo	
across	a	range	of	infectious	periods	(range:	1–	7 days)	and	transmis-
sion	 efficiencies	 (defined	 as	 the	minimum	 amount	 of	 time	 a	 dyad	
needs to spend in close contact for pathogen transmission to occur; 
range:	30–	600 min).	Specifically,	for	a	given	buffalo	and	observation	
period	(OP)	we	randomly	selected	a	timeframe	of	association	data	
corresponding	to	a	given	infectious	period	(e.g.,	2 days).	Then	for	a	
given	transmission	efficiency,	we	determined	the	buffalo's	individual 
R0	 as	 its	 number	 of	 transmission-	relevant	 contacts	 (i.e.,	 the	 num-
ber	of	contacts	exceeding	the	minimum	duration	for	transmission).	
We	iterated	this	process	50	times	per	parameter	combination	(buf-
falo × OP × infectious	period × transmission	efficiency),	and	averaged	
outcomes across iterations and OPs to determine a mean individual 
R0 (hereafter referred to as v)	for	each	buffalo	at	each	pathogen	in-
fectious	period	and	transmission	efficiency.	Our	selection	of	infec-
tious	periods	and	transmission	efficiencies	were	based	on	available	

estimates	of	disease	parameters	relevant	to	our	study	system	(de-
tails in Data S1).

In populations with homogenous contact patterns, pathogens 
tend to invade if the mean v > 1	(i.e.,	R0 > 1;	Anderson	&	May,	1991); 
however,	invasion	likelihood	is	highly	dependent	on	variation	in	indi-
vidual infectiousness around a population's mean v (i.e., R0), and this 
variation	can	be	heavily	influenced	by	contact	heterogeneity	(Lloyd-	
Smith	et	al.,	2005). Thus, for each pathogen infectious period and 
transmission	 efficiency,	 we	 calculated	 the	 proportion	 of	 the	 herd	
with v > 1	to	visualize	how	the	observed	association	patterns	affect	
pathogen	invasibility	at	the	herd	level.

3  |  RESULTS

3.1  |  Close- contact heterogeneity

After	removing	capture	and	buffer	periods,	our	dataset	included	an	
average	of	5046 h	(roughly	210 days;	SD:	2077 h)	of	proximity	collar	
data	per	buffalo	during	a	15-	month	study	period.	The	buffalo	herd	
was	well-	connected,	with	 a	 single	 component	 (entirely	 connected	
network)	for	each	two-	month	observation	period	(OP).	In	fact,	most	
buffalo	 associated	 with	 >75%	 of	 herd-	mates	 for	 at	 least	 30 min	
within	a	5-	day	period	(averaged	across	daily	intervals	selected	ran-
domly	from	each	OP;	Figure 1a).	However,	buffalo	showed	striking	
heterogeneity	in	their	level	of	connectivity	(Figures 1 and 2), includ-
ing	the	rate	with	which	they	acquired	connections	within	the	herd	
(Figure 1a).	Across	OPs,	randomly	selected	dyads	spent	an	average	
of	2.74%	of	their	time	associating	within	a	~1 m	distance,	with	con-
siderable	 diversity	 across	 buffalo	 pairs	 (range:	 <0.01%–	82.02%).	
Buffalo	demonstrated	general	temporal	consistency	in	network	cen-
trality	such	that	buffalo	with	high	or	low	centrality	at	the	beginning	
of	 the	study	period	 tended	 to	maintain	 their	 relative	 level	of	con-
nectedness	throughout	the	study	duration	(Figure 1b).

3.2  |  Drivers of close- contact heterogeneity

Network-	based	models	revealed	that	key	buffalo	traits	were	signifi-
cantly	associated	with	connectivity.	Overall,	the	best	predictors	of	
connectedness were pairwise relatedness, individual age, individual 
sex,	and	female	reproductive	status	(Figures 2 and 3). Relatedness 
played	the	biggest	role	 in	determining	the	 likelihood	of	buffalo	 in-
teracting (Table 1, Figure 2).	Dyads	with	a	high	level	of	relatedness	
(i.e.,	 full	 siblings,	 parent-	offspring	 pairs)	 or	 medium	 level	 of	 relat-
edness	 (i.e.,	 half-	siblings,	 aunt-	niece	 pairs)	were	 significantly	more	
likely	 to	 associate	 than	dyads	with	 a	 low	 level	 of	 relatedness	 (i.e.,	
cousin pairs, unrelated pairs; Table 1, Figure 2).	In	fact,	highly	related	
buffalo	were	over	14	times	more	likely	to	associate	than	those	with	
a low level of relatedness (Table 1).	Mother-	offspring	pairs	associ-
ated	substantially	more	than	other	pairs	(Figure 2),	with	mother-	calf	
pairs	 being	within	~1 m	 of	 each	 other	 53.7%	of	 the	 time	 on	 aver-
age,	whereas	unrelated	pairs	only	associated	an	average	of	1.7%	of	
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6 of 14  |     RUSHMORE et al.

the	time.	Despite	a	small	number	of	full	sibling	pairs	in	our	dataset,	
we	found	that	calves	and	juveniles	associated	more	with	full	siblings	
(mean:	13.8%	of	the	time,	N = 4	pairs)	than	with	cousins/half-	siblings	
(mean:	2.8%,	N = 37	pairs)	or	unrelated	buffalo	(mean:	1.7%,	N = 255	
pairs; Figure 2, Figure S2).	Observed	 father-	offspring	pairs	associ-
ated	less	than	1%	of	the	time;	however,	this	calculation	is	based	on	a	

small	sample	size	of	14	offspring	who	all	shared	the	same	father;	no	
other	fathers	existed	in	the	study	herd.

After	 relatedness,	 buffalo	 age	 and	 sex	 had	 the	 greatest	 im-
pact	 on	 herd	 connectivity.	Our	 network	 centrality	model	 showed	
that	 an	 age-	sex	 interaction	 significantly	 affected	 buffalo	 strength	
and	 degree	 centrality	 (Table 2).	 Connectivity	 decreased	with	 age,	

F I G U R E  1 Buffalo	showed	considerable	heterogeneity	in	close-	contact	patterns,	and	individual	buffalo	centrality	was	consistent	over	
time.	(a)	The	average	cumulative	proportion	of	the	herd	each	buffalo	“contacted”	within	1 m	(i.e.,	individual	degree/total	collared	buffalo)	
over	randomly-	selected	14-	day	periods	is	shown	for	three	minimum	contact	durations	(red:	30 min,	orange:	180 min,	blue:	540 min).	Each	
thin	line	represents	a	single	buffalo,	with	a	thick	line	showing	the	herd	average	for	each	minimum	contact	duration.	(b)	Each	colored	line	
indicates	the	strength	centrality	for	a	single	buffalo	at	each	of	the	observation	periods	(OPs)	the	buffalo	was	observed.	Lines	are	colored	
according	to	each	buffalo's	average	(mean)	strength	centrality	across	OPs	(red:	highest	average	strength,	blue:	lowest	average	strength).	
The	black	line	shows	the	mean	herd	strength	centrality	at	each	OP.	Corresponding	modularity	(degree	of	subdivision)	showed	relatively	less	
variation	during	the	study	period	(see	Figure S3).	Apparent	decreases	in	strength	centrality	in	Observation	Period	4	(December	2014)	are	
likely	due	to	unrelated	collar	failures	which	resulted	in	only	17	individuals	being	sampled	during	this	observation	period	(Table S1).
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    |  7 of 14RUSHMORE et al.

F I G U R E  2 Relatedness,	age,	and	sex	predict	connectedness	among	buffalo.	Hive	plots	show	connections	between	(a)	highly	related	
buffalo	pairs	(i.e.,	mom-	offspring	and	full-	sibling)	and	(b)	all	other	buffalo	pairs.	Buffalo	are	represented	as	circular	nodes	along	three	
age-	based	axes	(A,	adult;	C,	calf;	J,	juvenile).	Node	colors	indicate	sex	(red:	female,	blue:	male),	with	larger	nodes	having	a	higher	strength	
(averaged	across	observation	periods).	Weak	connections	below	the	median	association	index	(across	all	pairs)	are	not	visualized.	Individuals	
with	data	spanning	two	age	classes	(e.g.,	juveniles	who	become	adults	during	the	study	period)	are	represented	as	two	nodes,	one	for	each	
age	class	with	node	size	and	edge	weights	corresponding	to	associations	observed	for	the	individual	at	each	age	status.	(c)	Bar	plots	show	
mean association indices (+SE)	across	relatedness	categories	(after	averaging	association	indices	for	each	pair	across	observation	periods).	
Categories	shown	include:	mother-	offspring	pairs	(N = 30),	full	sibling	pairs	(N = 4),	cousin	pairs	(N = 58),	and	unrelated	pairs	(N = 1438).	*Pairs	
in	the	category	“cousin”	include	cousins	and	half-	siblings	(sharing	one	parent).

F I G U R E  3 Age	and	sex	significantly	
affected	buffalo	centrality.	Scatterplots	
visualize	the	age-	sex	interaction	for	
strength	centrality.	Points	show	centrality	
data	for	females	(red)	and	males	(blue),	
and model predictions are shown as lines 
for	females	(red)	and	males	(blue).
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8 of 14  |     RUSHMORE et al.

but	this	effect	was	much	stronger	for	males	than	for	females,	who	
maintained	 a	 relatively	 consistent	 centrality	 over	 their	 lifetimes	
(Table 2, Figure 3).	Males	 started	 to	experience	a	 lower	centrality	
than	females	around	age	4–	5 years	(Figure 3). In general, calves had 
the	highest	 centrality,	 and	dyads	with	 a	 calf	 had	 among	 the	high-
est	 association	 rates.	For	example,	AF-	C	and	C-	C	pairs	were	each	

approximately	30%	more	likely	to	associate	than	J-	J	pairs	(baseline;	
Table 1; see Table 1	caption	for	abbreviations).	Dyads	that	included	
an	adult	male	and	a	young	buffalo	(i.e.,	AM-	C,	AM-	J	pairs)	tended	to	
have lower association indices than corresponding pairs without an 
adult	male	(e.g.,	AF-	C,	C-	C,	J-	J	pairs;	Table 1).

Female	 reproductive	 status	 had	 a	 marginal	 impact	 on	 buffalo	
connectivity.	Most	notably,	pairs	with	at	least	one	pregnant	female	
were	significantly	more	likely	to	associate	than	pairs	without	a	preg-
nant female (Table 1). Pregnant females also tended to have a higher 
degree	centrality,	although	this	test	was	not	significant	after	a	Bon-
ferroni correction (p = .036,	Table 2).	While	lactation	status	did	not	
significantly	 affect	 the	 likelihood	 of	 buffalo	 associating	 (Table 1), 
lactating	buffalo	tended	to	have	higher	strength	centrality	(not	sig-
nificant after a Bonferroni correction, p = .041;	Table 2).	We	did	not	
observe	an	effect	of	testicular	size,	BCS,	horn	width,	or	boss	size	on	
connectivity	(Tables S3 and S4).

3.3  |  Individual R0 (v) and pathogen 
invasibility of the herd

Our calculations of v and the proportion of the herd with v > 1	indi-
cate	that	close-	contact	heterogeneities	drive	invasion	likelihoods	in	
our	study	herd	for	pathogens	with	a	range	of	infectious	periods	and	
transmission efficiencies (Figure 4a).	 In	particular,	upwards	of	75%	

Factor
Posterior 
mean CI p- value OR

Intercept −4.280 (−4.78,	−3.70) <.001

Group (AM: C) −0.198 (−0.37,	−0.03) .028 0.82

Group (AM: J) −0.220 (−0.36,	−0.09) <.001 0.8

Group	(AM:	AM) 0.073 (−0.18,	0.31) .561 1.08

Group (AF: C) 0.295 (0.00,	0.57) .042 1.34

Group	(AF:	J) 0.007 (−0.24,	0.28) .977 1.01

Group	(AF:	AM) 0.012 (−0.27,	0.30) .953 1.01

Group	(AF:	AF) 0.279 (−0.20,	0.79) .266 1.32

Group	(J:	C) −0.009 (−0.13,	0.11) .876 0.99

Group (C: C) 0.261 (0.06,	0.49) .018 1.3

Lactation: 1 0.021 (−0.04,	0.08) .501 1.02

Lactation: 2 0.131 (−0.02,	0.25) .066 1.14

Pregnant: 1 0.122 (0.06,	0.19) <.001 1.13

Pregnant: 2 0.170 (0.03, 0.32) .022 1.19

Relatedness: med 0.190 (0.14,	0.25) <.001 1.21

Relatedness: high 2.668 (2.56,	2.78) <.001 14.41

Diff	in	BCS:	med 0.019 (−0.02,	0.06) .346 1.02

Diff	in	BCS:	high 0.016 (−0.08,	0.12) .741 1.02

Note:	The	posterior	mean,	95%	credible	interval,	p-	value	based	on	MCMC	sampling,	and	odds	
ratios	(OR)	are	shown	for	fixed	effects.	Random	effects	include	buffalo	identity	and	observation	
period;	pair	identity	was	not	included	in	the	final	model	due	to	improved	model	fit	after	removal.	J,	
J	is	the	baseline	age-	sex	category.	Bolded	values	indicate	significant	relationships	P <	.05.
Abbreviations:	AF,	adult	female;	AM,	adult	male;	BCS,	body	condition	score;	C,	Calf;	J,	Juvenile.

TA B L E  1 Effect	of	biological	host	traits	
on	pairwise	buffalo	associations.

TA B L E  2 Effect	of	host	traits	on	individual	centrality	during	six	
observation	periods	(N = 235).

Factor

Strength centrality Degree centrality

β p- value β p- value

Intercept 1.01 .438 30.54 .095

Sex	(M) 0.23 .006 6.33 .005

Age −0.01 .149 −0.13 .273

Average	BCS −0.06 .230 −2.21 .140

Pregnant (1) 0.11 .113 4.32 .036

Lactating (1) 0.15 .041 2.15 .179

Sex	(M):	Age −0.06 <.001 −1.08 .004

Note:	Italicized	values	indicate	significant	relationships	(p < .050).	
Bolded values indicate significant relationships after Bonferroni 
correction (p < .025).	See	Data	S1	for	observation	period	estimates	and	
p-	values	(Table S2).
Abbreviations:	BCS,	body	condition	score;	M,	male;	1,	“yes”	for	1/0	
binomial	indicators.
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of the herd had v > 1	 (indicated	by	dark	red:	Figure 4a) when mini-
mal	to	moderate	contact	was	required	for	transmission,	depending	
on the infectious period. Pathogens with short infectious periods 
(<2 days)	 and	 very	 long	 contact	 requirements	 for	 transmission	 re-
sulted in a few individuals having v > 1	(indicated	by	white/pale	yel-
low: Figure 4a). The remaining portions of Figure 4a	 (indicated	by	
yellow/light	orange)	show	pathogen	infectious	periods	and	contact	
durations for which ~25%–	75%	of	the	herd	had	v > 1.	Further	inves-
tigation	into	a	subset	of	parameter	combinations	revealed	that	age	
and	sex	were	often	predictive	of	v, such that on average, calves had 
v > 1	and	adult	males	had	v < 1:	Figure 4c,d when there was consider-
able	heterogeneity	 in	associations	 (e.g.,	yellow	regions:	Figure 4a); 
however,	 at	parameter	combinations	with	more	homogenous	con-
nectivity	patterns,	age,	and	sex	had	little	effect	on	v,	and	all	age-	sex	
combinations	had	a	mean	v > 1	(Figure 4b).

4  |  DISCUSSION

Our	study	strengthens	challenges	to	the	assumption	within	epide-
miological	 models	 that	 gregarious	 ungulate	 herds	 are	 well-	mixed	
with	respect	to	pathogen	transmission.	While	our	network	analyses	

of	African	buffalo	indeed	revealed	a	well-	connected	herd,	we	found	
considerable	heterogeneity	 in	the	duration	of	close-	contact	 inter-
actions	among	buffalo.	Herd	connectivity	was	highly	dependent	on	
interval	length:	at	short	time	scales,	only	a	small	subset	of	individu-
als contacted one another, whereas at longer time scales, connec-
tivity	saturated	to	panmixia.	Individual	centrality	was	stable	across	
observation	periods	and	key	buffalo	traits	predicted	connectivity,	
indicating	that	different	classes	of	 individuals	 likely	play	contrast-
ing	 roles	 in	contact-	driven	processes,	 such	as	pathogen	 transmis-
sion.	For	example,	pathogens	with	short	infectious	periods	require	
highly	connected	individuals	for	invasion	to	occur.	Our	study	herd	
is	regularly	exposed	to	a	range	of	respiratory	pathogens	that	range	
in	dynamic	behavior	from	endemic	to	cyclical	to	sporadic	(Glidden	
et al., 2021).	By	visualizing	the	proportion	of	the	herd	with	v > 1	for	
a range of pathogen infectious periods and transmission efficien-
cies,	we	found	that	the	level	of	contact	heterogeneity	we	observed	
in	buffalo	would	be	sufficient	to	shape	the	likelihood	of	pathogen	
invasion,	 even	 within	 our	 well-	connected	 and	 highly	 gregarious	
study	herd.

We	identified	several	life	history	traits	that	significantly	affected	
individual	connectivity,	including	pairwise	relatedness,	individual	age	
and	sex,	and	female	reproductive	status.	Genetic	relatedness	was	the	

F I G U R E  4 Herd	association	patterns	shape	the	pathogen	invasibility	landscape	and	life	history	traits	drive	variation	in	mean	individual	
R0 (v)	for	pathogens	with	relatively	short	infectious	periods.	(a)	The	proportion	of	the	herd	with	v > 1	is	shown	for	a	range	of	pathogen	
infectious	periods	and	transmissibilities	(i.e.,	minimum	minutes	of	association	required	for	pathogen	transmission).	Bar	plots,	broken	down	
by	age	and	sex	(AF,	adult	female;	AM,	adult	male;	C,	calf;	J,	juvenile),	show	average	v	(mean ± SE)	for	pathogens	with	infectious	periods	and	
transmissibilities	that	are	(b)	long/low,	(c)	medium,	and	(d)	short/high.
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strongest	predictor	of	buffalo	association	rates,	with	mother-	offspring	
and	full-	sibling	dyads	being	significantly	more	likely	to	associate	than	
other	buffalo	pairs.	Kinship	and	kin	selection	are	important	drivers	of	
behavioral	associations	 in	the	animal	kingdom,	which	 is	particularly	
evident	among	primates	(Maestripieri,	2018;	Silk,	2002;	Städele	et	al.,	
2016)	and	birds	(Krakauer,	2005; Leedale et al., 2020). Less is known 
about	how	kinship	affects	social	patterns	of	large-	bodied	herd-	living	
animals.	Some	species	show	aggregation	among	close	relatives	(e.g.,	
elephants:	Chiyo	et	al.,	2011;	Wittemyer	et	al.,	2005), whereas others 
do	not	(e.g.,	elk:	Vander	Wal	et	al.,	2012).	For	species	that	associate	
closely	with	kin,	 relatedness	might	predict	pairwise	 infection	 likeli-
hoods,	 as	 demonstrated	 for	 bovine	 tuberculosis	 infections	 among	
closely	related	white-	tailed	deer	(Blanchong	et	al.,	2007)	and	African	
swine	fever	in	wild	boar	(Podgórski	et	al.,	2022).

Age	and	sex	also	significantly	affected	buffalo	connectivity.	Buf-
falo	became	 less	centrally	connected	with	age,	with	a	steeper	de-
cline	for	males	than	for	females.	Dyads	including	one	adult	male	had	
among the lowest association rates. These findings support previous 
observations	that	adult	male	buffalo	become	less	social	around	pu-
berty	 (4–	5 years)	 as	 they	 leave	 the	breeding	herd	 to	 join	 bachelor	
herds (Prins, 1996;	Sinclair,	1977; Turner et al., 2005).	Contrastingly,	
calves	 held	 relatively	 central	 positions	 in	 the	 social	 network,	 and	
dyads	including	at	least	one	calf	had	among	the	highest	association	
rates	 (other	 than	AM-	C	pairs).	 It	 is	possible	 that	early	exposure	to	
diverse	social	interactions	may	increase	social	competence	and	offer	
fitness	 benefits	 later	 in	 life,	 as	 has	been	 suggested	 for	 a	 range	of	
wildlife	species	 (McDonald,	2007;	Stanton	&	Mann,	2012; Thomp-
son, 2019;	Vander	Wal	et	al.,	2015).	However,	diverse	social	expo-
sures	may	come	at	a	cost	if	they	simultaneously	increase	pathogen	
exposures.

Reproductive	status	played	a	small	role	in	connectivity,	such	that	
pairs	with	one	or	two	pregnant	females	were	significantly	more	likely	
to	associate	than	pairs	without	a	pregnant	female.	While	not	signifi-
cant	after	Bonferroni	correction,	pregnant	and	lactating	buffalo	also	
tended	to	be	more	central	in	the	social	networks.	Female	reproduc-
tive	 status	has	been	 linked	 to	association	patterns	 in	 a	handful	of	
wild	and	domestic	ungulates.	For	example,	Swain	et	al.	(2015) found 
that	pregnant	and	maternal	 (post-	calving)	beef	cows	preferentially	
associated with individuals of the same status, with an immediate 
switch	 in	 preferred	 associates	 after	 calving.	 Networks	 of	 Grevy's	
zebra	 showed	 that	 females	 assorted	 according	 to	 their	 lactation	
status	(Sundaresan	et	al.,	2007),	with	similar	findings	in	dairy	cows	
(Boyland	 et	 al.,	 2016).	 Water	 and	 energetic	 needs	 typically	 vary	
with the reproductive stage and could drive association preferences 
(Boyland	 et	 al.,	 2016;	 Sundaresan	 et	 al.,	 2007).	 Relatively	 central	
positions	 in	 the	 social	 network	may	 increase	 pathogen	 exposures	
for	mothers	and	calves;	however,	these	costs	might	be	offset	if	as-
sortative	mixing	allows	mothers	more	time	to	graze	or	strengthens	
bonds	that	protect	the	young.	Lastly,	we	did	not	observe	an	effect	of	
testicular	size,	horn	width,	or	boss	size	on	buffalo	connectivity,	after	
controlling for age.

The	 observed	 herd	 connectivity	 patterns	 define	 the	 invasibil-
ity	 landscape	 for	 pathogens	 that	 vary	 in	 their	 infectious	 periods	

and	 transmission	 efficiencies.	 Specifically,	 our	 estimates	of	v indi-
cated	that	index	case	centrality	and	herd	connectivity	would	drive	
the invasion potential for pathogens with short infectious periods 
(1–	4 days)	and	moderate	close-	contact	durations	required	for	trans-
mission.	Contrastingly,	 the	within-	herd	structure	would	have	mini-
mal impact on invasion likelihood for pathogens with long infectious 
periods	and	minimal	association	requirements,	as	the	majority	of	the	
herd had a v > 1.	Similarly,	briefly,	infectious	pathogens	with	lengthy	
contact	requirements	resulted	in	a	majority	of	buffalo	being	unsuit-
able	as	an	index	case	(with	v < 1).	Buffalo	and	cattle	diseases	range	
widely	in	their	transmission	efficiencies,	but	little	is	known	regarding	
how	much	time	in	close	contact	is	required	for	transmission	to	occur.	
Charleston et al.'s (2011)	study	of	direct	FMDV	transmission	events	
determined that positive cattle at peak shedding can infect suscep-
tible	 cattle	within	 2 h.	 They	 subsequently	 exposed	 naïve	 cattle	 to	
FMDV-	positive	cattle	in	8-	h	time	periods,	which	resulted	in	roughly	
a	quarter	of	 susceptible	cattle	becoming	 infected.	Thus,	while	 the	
average	 duration	 of	 transmission-	relevant	 contacts	 is	 not	 known,	
it	appears	that	FMDV	can	transmit	in	brief	time	periods	(<2 h),	but	
it	 could	 take	upwards	of	10 h	of	 close	 contact	 for	 transmission	 to	
occur.	While	 little	 is	known	about	 the	amount	of	contact	 required	
for transmission of most pathogens in ungulates, our results suggest 
herd	 connectivity	 could	 affect	 the	 invasion	 likelihood	 for	 FMDV	
and	several	respiratory	viruses	that	have	relatively	short	infectious	
periods	with	 viral	 shedding	often	peaking	 in	 the	 first	 couple	 days	
after	infection	(see	supplemental	text:	Charleston	et	al.,	2011;	Gris-
sett et al., 2015).	For	pathogens	with	short	 infectious	periods	and	
moderate	 close-	contact	 durations,	 our	 analyses	 revealed	 that	 age	
and	sex	of	the	 index	case	affected	 invasion	 likelihood,	with	calves	
being	the	most	 likely	to	have	v > 1	and	adult	males	being	the	 least	
likely	 to	have	v > 1.	 This	 finding	highlights	 the	 important	 role	 that	
susceptible	 calves	 may	 play	 in	 pathogen	 transmission	 within	 the	
herd.	Herd	structure	and	life-	history	traits	of	the	index	case	should	
matter	 less	 for	 the	 invasion	potential	of	pathogens	with	very	 long	
infectious periods, like Mycobacterium bovis, which provide ample 
time	for	the	network	to	fully	saturate.	We	note	that	our	emphasis	
here	 was	 on	 behavioral	 drivers	 of	 herd	 invasibility	 by	 pathogens.	
We	have	not	addressed	how	the	contact	network	structure	we	ob-
served	might	influence	other	disease	dynamic	outcomes,	such	as	the	
time	 to	 epidemic	peak,	 outbreak	 size,	 or	 persistence	 time	of	 rele-
vant	pathogens.	Future	work	could	address	these	questions	through	
the	development	of	an	agent-	based	model	or	network-	based	model	
using	a	SIR	framework.

While	 our	 study	 focused	 on	 behavioral	 drivers	 of	 v, it is im-
portant	 to	 point	 out	 that	 physiological	 heterogeneities	 can	 also	
affect v	(Manlove	et	al.,	2017).	Specifically,	individual	differences	
in	 immunity	 can	 affect	 pathogen	 shedding	 and	 recovery	 rates,	
ultimately	 impacting	 an	 individual's	 level	 and	 duration	 of	 infec-
tiousness	(VanderWaal	&	Ezenwa,	2016).	While	behavior	does	not	
explain	 the	 whole	 picture,	 studies	 comparing	 contact	 networks	
and	 individual	 infection	 status	 show	 that	 connectivity	 can	often	
serve	 as	 a	 reasonable	 proxy	 for	 estimating	 transmission	 poten-
tial	across	a	range	of	host-	pathogen	systems	(Corner	et	al.,	2003; 
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Godfrey	 et	 al.,	 2009; Raulo et al., 2021; Tung et al., 2015).	 For	
example,	a	study	of	wild	reticulated	giraffe	found	that	a	giraffe's	
position in the social network predicted its position in an Esch-
erichia coli	 transmission	network,	with	 social	hubs	also	acting	as	
transmission	hubs	(VanderWaal,	Atwill,	et	al.,	2014).	Additionally,	
epidemiological	 models	 have	 shown	 that	 outbreaks	 tend	 to	 be	
more	widespread	 if	 the	 index	 case	 is	well	 connected	whereas	 a	
pathogen	may	 fail	 to	 invade	 if	 the	 index	case	 is	more	peripheral	
(Lloyd-	Smith	 et	 al.,	 2005; Rushmore et al., 2014).	 In	 our	 study,	
buffalo	calves	emerged	as	the	most	widely	connected	animals	 in	
the	herd;	due	to	limited	prior	exposures,	they	are	also	among	the	
most	 susceptible	 animals	 (particularly	 after	 maternal	 immunity	
has	waned),	underscoring	the	central	role	calves	are	likely	to	play	
in	pathogen	transmission	within	buffalo	populations.	 Indeed,	the	
propensity	 for	 gregarious	 and	 highly	 susceptible	 young-	of-	the-	
year	to	spread	infections	in	herd-	living	ungulates	may	present	an	
efficient	mechanism	for	density-	dependent	population	regulation,	
as	high	recruitment	may	catalyze	increased	exposure	of	the	herd	
to	infectious	pathogens.	To	better	understand	the	synergistic	ef-
fects	 of	 host	 sociality	 and	physiology	on	pathogen	 invasion	 and	
transmission	dynamics,	our	upcoming	work	will	explore	relation-
ships	between	connectivity,	immunity,	and	infection	status	for	re-
spiratory	diseases	among	buffalo	in	this	herd.

A	 notable	 limitation	 of	 our	 study	 is	 its	 focus	 on	 directly-	
transmissible	pathogens.	Several	studies	have	shown	that	environ-
mental	transmission	(indirect	transmission)	can	also	play	a	key	role	
in	some	systems	(e.g.,	Beerens	et	al.,	2021;	Breban	et	al.,	2009). In 
these	systems,	invasibility	may	be	more	dependent	upon	pathogen	
viability	in	the	environment	and	host	habitat	use	than	host	contact	
rates.	Future	work	could	quantify	the	relative	effect	of	contact	het-
erogeneity	versus	space	use	on	the	invasibility	of	pathogens	that	use	
multiple	 routes	 of	 transmission.	 As	 an	 additional	 limitation,	 while	
our	study	herd	was	in	a	large	“nearly	natural”	enclosure	with	other	
species	 typical	 of	 the	 ecosystem,	 there	 remain	 differences	 with	
free-	ranging	 buffalo	 populations.	 In	 particular,	 predator	 exclusion,	
occasional	supplemental	feeding,	and	access	to	only	a	single	water	
source	in	the	dry	season	could	affect	social	dynamics	 in	our	study	
herd.

In	 conclusion,	 we	 found	 considerable	 close-	contact	 heteroge-
neity	 in	 an	 African	 buffalo	 herd,	 with	 particular	 life-	history	 traits	
predicting association patterns. These findings challenge the as-
sumption within epidemiological models that ungulate herds are 
well-	mixed	with	 respect	 to	 pathogen	 transmission.	Our	 study	 fur-
ther	 shows	 that	 heterogeneity	 among	 individuals	 drives	 invasion	
likelihood at time scales relevant to infectious pathogens, even 
within	 a	 highly-	connected	 and	 gregarious	 population.	 For	 a	 range	
of	pathogen	parameters,	well-	connected	age-	sex	classes	were	more	
likely	 to	 have	 v > 1,	 making	 index	 cases	 with	 key	 characteristics	
more	 likely	 to	 spark	 outbreaks.	Our	 data	 provide	 quantifiable	 dif-
ferences	 among	age-	sex	 classes	 that	 can	be	used	 to	parameterize	
network-	based	 infectious	 disease	models	 for	 evaluating	 pathogen	
transmission	and	control	in	this	epidemiologically	important	wildlife	
host	species.	Finally,	our	study	provides	a	framework	that	links	host	

connectivity	and	infectious	disease	biology	to	characterize	a	study	
population's	pathogen	invasion	landscape	and	identify	classes	of	su-
perspreading hosts.
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