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ABSTRACT

Kink oscillations of solar coronal loops are of intense interest due to their potential for diagnosing plasma parameters in the
corona. The accurate measurement of the kink oscillation damping time is crucial for precise seismological diagnostics, such
as the transverse density profile, and for the determination of the damping mechanism. Previous studies of large-amplitude
rapidly decaying kink oscillations have shown that both an exponential damping model and a generalized model (consisting of
Gaussian and exponential damping patterns) fit observed damping profiles sufficiently well. However, it has recently been shown
theoretically that the transition from the decaying regime to the decayless regime could be characterized by a superexponential
damping model. In this work, we reanalyse a sample of decaying kink oscillation events, and utilize the Markov chain Monte
Carlo Bayesian approach to compare the exponential, Gaussian—exponential, and superexponential damping models. It is found
that in 7 out of 10 analysed oscillations, the preferential damping model is the superexponential one. In two events, the preferential
damping is exponential, and in one it is Gaussian—exponential. This finding indicates the plausibility of the superexponential
damping model. The possibility of a non-exponential damping pattern needs to be taken into account in the analysis of a larger
number of events, especially in the estimation of the damping time and its associated empirical scalings with the oscillation

period and amplitude, and in seismological inversions.
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1 INTRODUCTION

Kink oscillations of plasma loops that form active regions of the
corona are among the most studied wave phenomena in the solar
atmosphere (e.g. Nakariakov & Kolotkov 2020; Nakariakov et al.
2021). The oscillations are usually seen as oscillatory transverse
displacements of bright loops in the plane of the sky with high-
resolution extreme ultraviolet (EUV) imagers, such as the Transition
Region and Coronal Explorer (TRACE), Solar Dynamics Obser-
vatory/Atmospheric Imaging Assembly (SDO/AIA), and the Solar
Orbiter Extreme Ultraviolet Imager (SolO/EUI) (e.g. Aschwanden
et al. 1999, 2002; Nakariakov et al. 1999; Aschwanden & Schrijver
2011; Zhong et al. 2022), respectively. Kink oscillations have also
been found as periodic Doppler shifts of coronal emission lines,
i.e. as periodic movements of the emitting plasma along the line of
sight (Tian et al. 2012). Kink oscillations attract attention as a highly
useful tool for probing physical parameters of coronal active regions,
such as the absolute value of the magnetic field (e.g. Nakariakov
& Ofman 2001), density stratification, and the dependence of the
magnetic field on height (e.g. Andries, Arregui & Goossens 2005;
Ruderman, Verth & Erdélyi 2008), as well as in the context of heating
of the solar corona (see e.g. Van Doorsselaere et al. 2020, for a recent
comprehensive review).

Kink oscillations appear in two distinct regimes, the large-
amplitude rapidly decaying oscillations (e.g. Nakariakov et al. 1999;

* E-mail: V.Nakariakov@warwick.ac.uk

© 2023 The Author(s).

Goddard et al. 2016; Nechaeva et al. 2019) and low-amplitude
decayless oscillations (e.g. Wang et al. 2012; Anfinogentov, Nistico
& Nakariakov 2013). In both regimes, the oscillation is a standing
wave, with the nodes at the footpoints. In the majority of cases,
kink oscillations have maximum displacement amplitudes near the
loop top, i.e. correspond to the fundamental harmonic, while higher
harmonics have been detected too (e.g. De Moortel & Brady 2007;
Andries et al. 2009). Typical oscillation periods are several minutes.
The periods are observed to increase with the increase in the loop
length (Anfinogentov et al. 2013; Nechaeva et al. 2019). The phase
speed is estimated by the ratio of the wavelength and the oscillation
period. In the majority of cases, decaying oscillations are excited
by a displacement of the loop from an equilibrium by a low coronal
eruption (Zimovets & Nakariakov 2015). Typical initial displacement
amplitudes of decaying kink oscillations are several megametres.
In the decayless regime, oscillation amplitudes are much lower,
typically smaller than a few hundred kilometres. Nistico, Nakariakov
& Verwichte (2013) observed an oscillatory decay of a displaced loop
to a stationary, i.e. decayless, oscillation.

There is a wealth of theoretical studies interpreting the damping
of kink oscillations as linear transformation of a collective mode into
highly localized torsional Alfvénic oscillations of individual surfaces
of a constant Alfvén speed (e.g. Goossens, Hollweg & Sakurai 1992;
Ruderman & Roberts 2002; Goossens, Andries & Arregui 2006).
According to the theory, in the initial stage of the kink oscillation,
the amplitude decreases as a Gaussian function, followed by an
exponential decay (e.g. Pascoe et al. 2013). The Gaussian decay
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phase is pronounced in loops with low contrasts of external and
internal densities. Such a combined, Gaussian—exponential damping
pattern has been observationally confirmed by Pascoe et al. (2016a,b,
2017) and Pascoe, Goddard & Van Doorsselaere (2020). However,
in the analysis of kink oscillation, the Gaussian decay phase is
often neglected, and, in particular, the damping time is estimated
by an exponentially decaying oscillation envelope (see e.g. Ofman
& Aschwanden 2002; Goddard et al. 2016; Nechaeva et al. 2019;
Dai et al. 2021; Mandal, Tian & Peter 2021; Conde, Jain & Jatenco-
Pereira 2022; Zhang et al. 2022, for some more recent works).
Other damping mechanisms may be wave tunnelling or leakage,
caused by the active region geometry and other 3D effects (e.g.
Brady, Verwichte & Arber 2006; Selwa, Ofman & Solanki 2011;
Hindman & Jain 2014). Moreover, there is a growing theoretical
evidence that the decay may actually be a non-linear process such
as Kelvin—Helmholtz instability (KHI; e.g. Terradas et al. 2008;
Magyar & Van Doorsselaere 2016; Van Doorsselaere et al. 2021;
Ruderman & Petrukhin 2022). The non-linear nature of the damping
is also indicated by the empirically established dependence of the
oscillation quality factor, i.e. the ratio of the damping time to
the oscillation period upon the amplitude (Goddard & Nakariakov
2016; Nechaeva et al. 2019; Arregui 2021). A non-linear decay
pattern is not necessarily an exponential one. For example, the low-
dimensional modelling of the decay of an impulsively excited kink
oscillation to the stationary oscillation driven by a self-oscillatory
mechanism demonstrated its superexponential nature (Nakariakov
& Yelagandula 2023). Thus, the choice of the model function for
empirical fitting decay patterns of kink oscillations remains an open
question.

The aim of this paper is to compare the exponential, superexpo-
nential, and Gaussian—exponential models, applying them to several
randomly selected kink oscillation events. An additional aim is to
validate the need for accounting for the superexponential damping
regime, and the associated re-evaluation of the damping times. We do
this on a small sample of events, before performing a very laborious
reanalysis of all 223 oscillations in the catalogue of Nechaeva
et al. (2019). The comparison is performed by assessing the mutual
Bayesian factors of the chosen damping models (e.g. Arregui 2018,
2022; Anfinogentov et al. 2022). In Section 2, we demonstrate the
data and analytical technique used in this study. In Section 3, we
compare oscillation damping with three theoretical models using
observed signals. A summary of the findings and discussions are
presented in Section 4.

2 OBSERVATIONAL DATA ANALYSIS

In the previous work, Nechaeva et al. (2019) created a comprehensive
catalogue of decaying kink oscillations of 223 solar coronal loops,
extending from the works of Zimovets & Nakariakov (2015) and
Goddard et al. (2016). The catalogue provides general information
about each loop, including slit position, starting time of oscillation,
oscillation period and amplitude, exponential damping time, and
other physical parameters. For our analysis, we select two events
that have been previously studied by Nistico et al. (2013) and Pascoe
et al. (2016a,b, 2017) for comparison, and eight other randomly
selected events from the catalogue of Nechaeva et al. (2019).

A summary of the key physical parameters of the selected
oscillation events and host loops is given in Table 1. As seen in
this table, all of the oscillating loops are situated off the solar limb.
Nine events are associated with solar flares. For loops L1 and L2, the
estimations of the loop lengths and oscillation amplitudes are given
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without the error bars, as it is in the catalogue of Nechaeva et al.
(2019).

We use EUV image sequences of the host solar coronal active
regions, taken with the AIA (Lemen et al. 2012) onboard SDO
(Pesnell, Thompson & Chamberlin 2012) to investigate the damping
properties of our kink oscillation events. For each event, 900 image
frames at the 171 A channel with a spatial resolution of 0.6 arcsec
and a time cadence of 12 s are requested from the Joint Science
Operations Center. We cut out image sequences after performing the
differential rotation correction on the processed level 1.5 data.

The regions of interest are 250 pixels x 250 pixels in size, centred
by the slit mid-points (see Table 1). The time duration of each data
set is 3 h, covering the full oscillation of each loop.

Then, time—distance (TD) analysis is performed to obtain the oscil-
lation signals. To create TD maps, we take linear slits perpendicular
to the oscillating loop in the vicinity of the loop apex, whose positions
are provided by Nechaeva et al. (2019). For each event, slits are 5
pixels in width, and the average value of intensity over this width is
calculated to increase the signal-to-noise ratio.

The decaying oscillating perpendicular displacements are clearly
observed by eye in the TD maps for the considered oscillating loops
(see Figs 1 and A1).

2.1 Loop-tracking algorithms

A time series of oscillating displacements of a loop is obtained from
TD map by an automated loop-tracking technique. At each instant
of time in the TD map, we extract the loop’s intensity profile along
the slit (see Fig. 2), and estimate the location of the loop centre or
one of its boundaries mainly by fitting with a prescribed function.

In this study, the following six tracking algorithms (depicted in
Fig. 2) are adopted to obtain the oscillatory displacements of loop
centres or boundaries:

(1) A Gaussian function is applied to fit the loop’s intensity profile,
resulting in a time series for the position of the peak brightness across
the oscillating loop [Fig. 2(a)]. Since the full width at half-maximum
(FWHM) is usually taken as the characteristic loop width (e.g Wang
et al. 2012; Klimchuk & DeForest 2020) in observations, we set this
quantity as the fitting range for the following algorithms (ii)—(iv).

(ii) A parabolic function is applied to fit the intensity profile within
the FWHM estimated at step (i), thereby determining the position of
the peak brightness by its local maximum [Fig. 2(b)].

(iii) Similar to (ii) but with a cubic parabolic function [Fig. 2(c)].

(iv) An area integral under the intensity curve is calculated, and
positions of the area bisector lines are taken as loop centre positions
[Fig. 2(d)].

(v) A Gaussian function is applied to fit the spatial derivatives
(Anfinogentov et al. 2013) of intensity profile across one-half of the
loop. The Gaussian fitting centre indicates the highest (negative)
gradient of the loop’s intensity profile, i.e. the loop boundary
[Fig. 2(e)].

(vi) A hyperbolic tangent function, F(x) = Atanh (*3) 4 C,
where A, A, and C are arbitrary constants determined by the fitting
procedure, is applied to fit intensity profiles across one-half of the
loop. The inflexion point given by x is used to indicate the position
of the loop boundary [Fig. 2(f)]. Fitting is performed with the routine
mpfit.proin IDL.

The dependence of the oscillation properties on the loop-tracking
algorithms is of interest. We take oscillating loops L5, L6, L10, and
L2 (see Fig. 1) as an example to demonstrate the application of the
loop-tracking algorithms described earlier. For each event, we obtain
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Table 1. Kink oscillation events under study, randomly selected from the catalogue (Nechaeva et al. 2019). The loop and oscillation
parameters are taken from the catalogue. The dash means that the event is not associated with a flare.

No. Slit mid-point Date Time Flare Length Period Osc. amp.
(x, y) (arcsec) (UT) (Mm) (min) (Mm)

L1 954.5, 307 2012 May 26 20:36:47 SOL2012-05-26T20:09 162 7.67 £0.04 9.4

L2¢ —980.5, 354 2012 May 30 08:58:57  SOL2012-05-30T08:35 234 4.28 £0.02 8.8

L3 1098, 347 2014 Jul 11 23:40:11 SOL2014-07-11T23:38 489 £ 10 11.83 £0.38 75+£13
L4 —1010.5, —14.5 2014 Nov 15 12:00:00 SOL2014-11-15T11:47 200 £ 10 9.27+0.13 72+0.8
L5 1151.5, 50 2015 Apr23  16:55:49 SOL2015-04-23T16:38 431+8 20.43 £0.47 145+2.6
L6 1128.5, —89.5 20150ct 02 03:08:58 - 394 £20 17.19 £ 0.76 128 £3.6
L7 1062.5, 304.5 2015 Oct 27 14:42:10  SOL2015-10-27T13:12 328 £ 10 12.81 £0.32 6.1 £13
L8 —1150.5, —90.5 2015Dec20  01:11:58  SOL2015-12-20T01:09 436 £9 18.59 £ 0.78 134 +2.1
L9 —1066.5, 388 2016 Jul 10 00:56:46  SOL2016-07-10T00:50 547 £ 11 10.76 £0.28 12.1 £ 1.1
L10 949, —306.5 2017 Sep 07  18:08:45 SOL2017-09-07T18:02 326+9 8.32 £0.10 21.5+24

“Events L1 and L2 are selected from Nistico et al. (2013) and Pascoe et al. (2016a,b, 2017).
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Figure 1. Four typical TD maps with decaying oscillating displacement signals, corresponding to loops L5 (a), L6 (b), L10 (c), and L2 (d). The white vertical
dashed lines indicate the start time of oscillations. The black, purple, green, and red dots mark the centre of the oscillating loop by algorithms (i)—(iv), and the
black and cyan triangles mark the edge by algorithms (v) and (vi). In panel (a), the blue triangles on the edge of loops indicate the signal determined by eye.

a set of six decaying oscillatory signals with these algorithms, each
denoted as &,,(¢), where n ranges from 1 to 6, respectively. In addition,
we add the boundary displacement signal obtained manually, by
clicking the TD maps with a cursor, as £7(¢), for comparison.

We first manually clicked data points on the upper loop boundary
and performed cubic spline interpolation to achieve &7 instantaneous
positions in each time frame [see the blue triangles in Fig. 1(a)]. Then,
we employed the six automated loop-tracking algorithms (i)—(vi) to
compute oscillation signals &,—£¢, which are shown in Fig. 1(a) by
different coloured symbols.

For L5, the four series of signals & ;—£ 4 tracking the loop centres are
situated close to each other and almost indistinguishable. Likewise,
the signals £s—&7 outline the outermost oscillating loop boundary

well. Among them, signals &5 and £ appear to be smoother and more
rounded compared to £7. L5 has an appropriate width and stands up
against the background clearly without overlapping structures. That
is why the oscillation signals obtained by different algorithms show
good stability, consistency, smoothness, clarity, and data integrity.
For other loops, a user should choose an algorithm that works best in
each particular case. For example, in Fig. 1(b) the centre signals are
contaminated by the overlapped loop structures, so that the boundary-
based algorithms (v) and (vi) are better choices. In Fig. 1(c), the loop
brightness significantly decreases near the end of the oscillation.
The decrease in the loop contrast with the background leads to a
more frequent appearance of outliers in the considered loop-tracking
algorithms. Also, some interference between oscillation peaks may
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Figure 2. Six algorithms (i)—(vi) to track the loop oscillation signals, respectively. Blue arrows in panels (a)-(d) show the loop centre positions to track &—£4,
and those in panels (e) and (f) show boundary positions in 5 and &¢. The red dashed lines represent the fitting results in all panels, except in panel (d), where
it represents a bisecting line. The black dotted line in panel (e) represents the derivative of the intensity profile. Intensity profiles are taken from loop L5 as an

example.

occur if the oscillation period is too short. Hence, the centre signals
are slightly better than the boundary ones in Fig. 1(d). Addressing
these results, various extreme situations with low signal to noise,
loop contrast, etc., have been comprehensively tested on synthetic
data, making sure our methodology is reliable for the following
analysis.

2.2 Analysis of oscillation parameters with MCMC Bayesian
inference

In order to analyse the oscillatory loop displacements &,(¢) derived
in Section 2.1 and obtain their parameters, we fit each of them by
a decaying harmonic function with a cubic—parabolic background
trend,

. 2
&,(t) = AM(t)sin (?t + (p) + T(1),
T(t):a0+a|t+a2t2+a3t3, (1)

where A is the initial displacement amplitude, M(¢) is the oscillation
damping model, P is the oscillation period, and ¢ is the initial phase.
The parameters ay, a1, a», and az are constant coefficients.

In this work, we consider three possible scenarios for the damping
of kink oscillations, proposed hitherto. Namely, these three models
include exponential damping M.(?) (e.g. Goossens et al. 1992, 2006;
Ruderman & Roberts 2002), Gaussian—exponential damping M,(f)
(Pascoe et al. 2013, 2016a), and superexponential damping M;(r)
(De Moortel, Hood & Ireland 2002; Nakariakov & Yelagandula
2023),
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where 7. stands for the exponential damping time, 7, and 74, are
the characteristic damping times of the Gaussian and exponential
phases in the Gaussian—exponential model, respectively, #; is the
switch time between these two phases, 7 is the damping time in
the superexponential model, and d is the superexponential power
index. We set Ay = exp(—ts2 / 2rg2) to fulfill the continuity around #
for the piecewise function given by equation (3). Note that these three
damping models have different numbers of free parameters, which
is important for their comparison.

We fit the trend 71(¢) using the polyfit.pro. Detrended signals
are best fitted with the expressions given by equation (1) with
decay models [equations (2)—(4)] with the Solar Bayesian Anal-
ysis Toolkit (SOBAT; Anfinogentov et al. 2021) implementing the
Bayesian inference with the Markov chain Monte Carlo (MCMC)
sampling method. Best-fitting examples for the signals obtained by
algorithm (iv) or (vi), described in Section 2.1, are shown in Fig. Al.
The green, red, and blue fitting curves stand for the exponential,
superexponential, and Gaussian—exponential damping model results,
respectively. All ten kink oscillation events are well identified,

Agexp [ —
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Table 2. Bayesian factors, damping times, and physical parameters for the most probable decay model. Parameters M., M, and M, stand for
exponential, superexponential, and Gaussian—exponential model, respectively. The period and oscillation amplitude values are taken from the
preferred model for each event.

No. 2InBse 2InBsg 2InBeg Gaussian—exp. Exp. Superexp.  Preferred M Period Osc. amp.
To/Tge Te T model Index d (min) (Mm)
L1 213 423 210 14.75%53/16.8571%8  21.987270 23597729 M 172803 7757012 8.46716
L2 068 219 207 13.4810%/11.037341 13.617383 1577708 M. 118542 4187028 8.06757)
L3 2840 475 -23.65 27.941335/9.5173%56 38.76788% 40.0413% M 2917585 11561015 747100
L4 375 -191 184 22.8879%31/28.46132%  40.3671%17 39.59T103 M, 1217034 8714005 7.95+0-2¢
LS 7569 1496 —61.01 30.137297/10.0377 43 34297373 44.091370 M 260105 20427028 1115107
L6 2797 —671 -3468  29.527399/12.4300%0 50017212 4161708 M, 2.001097 17.031038 9.911053
L7 1580 513 —10.67  25.637311/13237886 370574458 36.86782) M 2487047 11.90%025 518101
_ +2.78 +7.09 +3.10 +4.43 +0.18 +0.21 —+0.66
L8  123.02 2635 -96.67  25.907%7820.85%107 34787310 388974 M, 2.147038  17.23%0% 8707058
LY 7501 1553 —59.47 26.7675:5416.7271%38 33.42%890 383513 M 2.50709%  13.14%0%  8.16708
L1I0 7076 2005 —50.71 15.78+223/5.57+8.28 2071758, 22.88%372 M 272408 g 174017 16.39+]98
100fa) e K 100 ) Me Prefered 1
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Figure 3. Damping times t estimated by different models against oscillation periods P in log—log plots. (a): Power-law fit to parameters of 10 loops in
exponential model. (b): Power-law fit to preferred parameters of 9 loops (dashed line) and 7 superexponential loops (solid line), respectively. Gradients of the
power-law fitting lines in panels (a) and (b), standing for the power-law index, are 0.66 & 0.17, 0.67 & 0.16, and 0.73 % 0.15, respectively. Blue bars indicate
the 95 per cent credible intervals of periods and damping times calculated with MCMC method. Two damping times derived from the Gaussian—exponential

model are plotted but not included in the fitting process.

tracked, and fitted for more than four consecutive oscillation cycles.
The best-fitting oscillation parameters obtained with this fitting
procedure are summarized in Table 2.

3 RESULTS OF DAMPING MODEL
COMPARISON

In addition to the reliable estimation of the model parameters and
their credible intervals, the use of SOBAT enables us to quantitatively
compare our three different damping models given by equations
(2)—-(4) in the application to our 10 kink oscillation events, using
the Bayesian factor B;;, which is the ratio of Bayesian evidence of
model i to that of model j. The higher value of the Bayesian factor
B;j, in general, indicates the preference of model i over model j (see
section 5.2 in Anfinogentov et al. 2021, for details).

3.1 Quantitative comparison for observed events

Using mcmcfit .pro routine from SOBAT package with 10° sam-
ples and loop LS5 as an example, signals &,—£¢ are independently

best fitted with three damping models given by equations (2)—(4).
Bayesian factors are calculated using mcmcfitevidence.pro
routine. For £,-£¢, the mean values of their Bayesian factors By,
By, and By are 75.69, 14.69, and —61.01 (see Table 2), respectively,
averaged over the six automated loop-tracking algorithms. As a
validation, the Bayesian factors of &7 show similar values (42.12,
13.47, and —28.65). Thus, we obtain strong evidence in favour of
the superexponential model in comparison to the other two models
for loop LS. Following this approach, the preferred damping model
is identified for each kink oscillation event considered (see Table 2).
Namely, the superexponential model has stronger evidence in 7 out
of all 10 kink oscillation events, exponential damping is preferred in
2 events, and Gaussian—exponential is preferred in 1 event. For each
event, the model parameters (i.e. the oscillation period and projected
amplitude, and damping time, and the superexponential power index
for the events that are better fitted by that model) are shown for the
preferred damping model, averaged over all loop-tracking methods
applied in this study.
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The obtained oscillation periods and amplitudes are consistent
with those from the catalogue of Nechaeva et al. (2019), shown
in Table 1, while the oscillation damping time depends upon the
choice of the damping model and may differ significantly from
its exponential value. We also note that the obtained values of the
superexponential power index d are generally consistent with the
value of about 2 observed by De Moortel et al. (2002).

3.2 Correlation between the oscillation parameters

According to the analysis presented earlier, we obtain that more
than a half of the analysed events exhibit a preference of the
superexponential model. As revealed in Table 2, the damping time
calculated in the superexponential model is generally greater than
that in the exponential model, which in turn is greater than that in
the Gaussian—exponential model.

As our analysis demonstrated the sensitivity of the damping
time estimation to the chosen damping model, we investigate the
dependence of the damping time on the oscillation period, and the
association between the quality factor of the oscillations and their am-
plitude. Fig. 3 shows the scatter diagram of the oscillation damping
times versus the corresponding oscillation periods. The 95 per cent
credible intervals of the damping time are indicated by the blue error
bars in the figure. Previous estimations (Aschwanden et al. 2002;
Verwichte et al. 2013; Goddard et al. 2016; Nechaeva et al. 2019) have
demonstrated an empirical linear scaling of the damping time with
the oscillation period, which is mainly consistent with our results.

To estimate the scaling of the damping time determined by a spe-
cific model, with the oscillation period, we use the 1infit.proto
fit a power-law function to parameter pairs in a logarithmic scale. The
fitting of 10 points estimated by the exponential damping model in
Fig. 3(a) demonstrates a power-law index of 0.66 £ 0.17. This value is
roughly consistent with the result obtained by Nechaeva et al. (2019)
under the assumption of the exponential damping. As the damping
time in the Gaussian—exponential model is not a single value and this
model has the highest preference in only one event in our data set, we
exclude that event from estimation. In Fig. 3(b), the parameters 7, and
7o from the Gaussian—exponential model are shown but not included
in any fitting process. As demonstrated by Fig. 3(b), the power-law
fits to the preferred model parameters for nine (with preferences in
favour of the exponential and superexponential damping models)
and seven (the superexponential damping model only) cases are
similar, with values of 0.73 £ 0.15 and 0.67 & 0.16, respectively. The
exponential damping time 7, of the Gaussian-exponential model,
which is preferred for loop L6 shown in Fig. 3(b) (see the black
squares), clearly stands out as an outlier from the best-fitting lines.

Goddard & Nakariakov (2016) and Nechaeva et al. (2019) found
that the quality factor Q defined as the ratio of the damping time
to the oscillation period depends on the oscillation displacement
amplitude, with the dependence approximated by a power law. In
those studies, the quality factor was estimated by the exponential
damping model. Scaling of Q estimated in our study with the
oscillation amplitude is shown in Fig. 4. Only the events that show
the preference of the exponential and superexponential damping
models are shown. The red dashed curve is the scaling result from
Nechaeva et al. (2019). We see that the quality factor Q decreases
with the oscillation amplitude, as it has been found before. We
need to stress that the fitting curve is determined by the upper outer
boundary of the data cloud because of the projection effect (Goddard
& Nakariakov 2016; Nechaeva et al. 2019).
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Figure 4. Quality factor Q defined as the ratio of the damping time 7, to
the oscillation period P in preferred models, plotted against their projected
oscillation amplitude. The black dashed line shows the power-law scaling
with the index of 0.68, determined in Nechaeva et al. (2019). The symbols
in this figure have same meaning as in Fig. 3, including 2 exponential and 7
superexponential data points.

4 DISCUSSION AND CONCLUSIONS

Using the Bayesian analysis method, we performed a comparison of
three previously proposed models of damping of kink oscillations
in 10 randomly chosen coronal loops. In each event, we extracted
oscillatory patterns from a TD map by six different loop-tracking
algorithms based on the identification of the instantaneous location
of the centre or boundary of the oscillating loop. We demonstrated
that those six different algorithms produce rather similar outcomes
that do not affect the results. It is found that out of 10 kink oscillations
selected for investigation, a superexponential damping model is
preferred in 7. In two events, the damping is more aptly described by
an exponential model. In one event, the preferential damping model is
Gaussian—exponential. This finding indicates that the superexponen-
tial decay pattern that was recently proposed theoretically for kink
oscillations of a self-oscillatory nature (Nakariakov & Yelagandula
2023) is a plausible model. This result, based on the analysis of a
limited number of events, justifies the need for a much more laborious
analysis of a larger number of kink oscillation events in a similar
fashion.

According to Nakariakov & Yelagandula (2023), the superexpo-
nential damping has been found to occur when an impulsively excited
oscillation decays not to a zero amplitude, i.e. to an equilibrium,
but to a stationary amplitude of a decayless regime. In the data
analysis, the stationary amplitude may be lower than observational
resolution, and hence the oscillation apparently decays to zero. As an
exponential model is a limiting case of the superexponential model,
corresponding to the index d = 1, the exponential model may still
be sufficiently correct in general. Also, our analysis shows that the
Gaussian—exponential model performs well in most cases, but a large
number of free parameters decreased its advantage in the Bayesian
comparison. In all 10 analysed events, longer oscillation periods are
found to correspond to longer damping times. Upon further analysis,
this relationship generally confirmed a power-law scaling with a
consistent exponent of around 0.6-0.7, established in Nechaeva et al.
(2019).

The damping model that attributes the kink oscillation damping
to the transition to a stationary oscillation in the decayless regime
requires further development, including its confirmation by full
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magnetohydrodynamic numerical simulations. In particular, it should
be investigated whether the superexponential function is indeed the
best analytical expression for that process. Other open questions are
whether the index d is actually significantly different from unity
and whether there is a combined Gaussian—superexponential decay
pattern.

The small number of the analysed events, only 10, does not allow
us to make rigorous conclusions about the empirical occurrence
rates of various damping regimes. However, our findings indicate the
need for reconsideration of the events presented in the catalogue of
Nechaevaetal. (2019), possibly supplemented by more recent events.
The aim of this reconsideration is to determine the preferential damp-
ing model for each event, choosing from the exponential, Gaussian—
exponential, and superexponential ones, and, possibly, other models
provided by theory. For most preferential models, the corresponding
damping times should be estimated. Analysis of empirical scalings of
various oscillation parameters requires the use of corrected values of
the damping times and quality factors. On the other hand, theoretical
modelling of decaying kink oscillations should provide us with
scalings typical for various damping mechanisms, including KHI
and wave tunnelling and leakage.
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Figure Al. Decaying kink oscillations of 10 coronal loops (L1-L10) and their SOBAT analysis results. The black dots are the oscillatory signals. The green,
red, and blue curves represent the MCMC fitting results of the exponential, superexponential, and Gaussian—exponential models, respectively. The white dashed
curves in each panel represent their background trend. The white and blue vertical dashed lines indicate the start time 7y of each signal and switch time #; in the
Gaussian—exponential model, respectively.
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