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Phase Transitions in Biased Opinion Dynamics with 2-choices

Rule

Arpan Mukhopadhyay

Department of Computer Science
University of Warwick

Abstract

We consider a model of binary opinion dynamics where one opinion is inherently ‘superior’
than the other and social agents exhibit a ‘bias’ towards the superior alternative. Specifically,
it is assumed that an agent updates its choice to the superior alternative with probability
α > 0 irrespective of its current opinion and the opinions of the other agents. With probability
1 − α it adopts the majority opinion among two randomly sampled neighbours and itself. We
are interested in the time it takes for the network to converge to a consensus on the superior
alternative. In a complete graph of size n, we show that irrespective of the initial configuration of
the network, the average time to reach consensus scales as Θ(n logn) when the bias parameter α
is sufficiently high, i.e., α > αc where αc is a threshold parameter that is uniquely characterised.
When the bias is low, i.e., when α ∈ (0, αc], we show that the same rate of convergence can
only be achieved if the initial proportion of agents with the superior opinion is above certain
threshold pc(α). If this is not the case, then we show that the network takes Ω(exp(Θ(n))) time
on average to reach consensus.

Keywords— Biased opinion dynamics, 2-choices rule, phase transitions

1 Introduction

Opinion dynamical models are used extensively in statistical physics and computer science to study the effects
of different local interaction rules on the adoption of new technologies and products. One key question in
this context is how fast can a new/superior technology replace an old/outdated technology in a network
of connected of agents? Classical opinion dynamical models with two competing opinions (or technologies)
assume the opinions to be indistinguishable; indeed under both voter and majority rule models, agents update
their opinions purely based on the opinions of other agents in their neighbourhoods without exhibiting any
preference for any opinion. However, to capture the inherent superiority of one opinion over another, we
need to incorporate some form of “bias” towards one of the two opinions.

Opinion dynamical models with bias have been studied recently in [1, 2, 3, 4]. A strong form of bias is
considered in [3, 4]; a bias parameter α ∈ (0, 1) is introduced; with probability α an agent is assumed to
perform a biased update in which it adopts the superior opinion independently of its current opinion and the
opinions of all other agents; with probability 1 − α the agent performs a regular update in which it adopts
the majority opinion among all agents in its neighbourhood. The later update rule is often referred to as the
majority rule in the literature. Clearly, in this model, any network will eventually reach consensus on the
superior opinion. It is shown in [3] that the expected time taken for the network to reach consensus on the
superior opinion is exponential in the minimum degree of the underlying graph. Thus, in graphs where the
neighbourhood size of each agent is proportional to the network size, the consensus time grows exponentially
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with the network size. This naturally prompts the question if simpler rules exist under which consensus can
be achieved faster.

To address this question, we consider a simpler rule called the 2-choices rule [5] for regular updates. Under
the 2-choices rule, an agent samples two other agents from its neighbourhood and updates to the majority
opinion among the sampled agents and the agent itself. For graphs where the neighbourhood sizes are large,
this modified rule greatly reduces the communication overhead associated with computing the majority
opinion since an agent no longer needs to know the opinions of all other agents in its neighbourhood; only
knowing the opinions of the two sampled agents suffices. The 2-choices rule also reduces the chance that an
updating agent adopts the worse alternative when a majority of its neighbours have chosen this alternative.
Hence, this modification should not only reduce the communication overhead, but also ‘facilitate’ consensus
on the superior alternative. In this paper, we analytically characterise the improvement to the speed of
consensus brought about by this modified rule.

Specifically, we show that if the network is a complete graph and the bias parameter α is sufficiently
high (α > 1/9), then consensus is achieved on the superior opinion in Θ(n logn) time, where n denotes the
number of agents in the network. When bias is small (i.e., when α < 1/9) we show that the consensus time
depends on the initial configuration of the network. More specifically, when the bias parameter α is small,
fast consensus (i.e., Θ(n logn) time) is achieved only if the initial proportion p of agents with the superior
opinion is above a certain threshold value pc(α) (explicitly characterised). If p < pc(α) we show that the
network takes exponentially long time to reach consensus. Thus, the speed with which the network reaches
consensus on the superior opinion undergoes a sharp phase transition depending on the values of α and p.
Through simulations, we observe similar behaviour on other classes of graphs, e.g., on random d-regular
graphs both with d = Θ(logn) and Erdős-Rényi graphs with edge probability Θ(logn/n). To establish our
theoretical results, we use a novel characterisation of the expected number of visits of a random walk to
a given state using a branching process. We expect this technique to be useful in the analysis of other
interacting particle system models. Thus, in summary, our contributions are the following:

• (Fast consensus) For complete graphs, we show the existence of a sharp threshold such that if the bias
parameter α is above the threshold, then consensus is achieved on the superior opinion starting from
any initial configuration in Θ(n logn) time on average. If the bias parameter α is below the threshold,
we show the existence of another sharp threshold such that if the initial proportion p of agents with
the superior opinion is above this threshold, then consensus can be achieved in Θ(n logn) time.

• (Slow consensus) We show that when both the bias parameter α and the initial proportion p of agents
with the superior opinion are below their corresponding thresholds, the average consensus time on
complete graphs is Ω(exp(Θ(n))), i.e., grows exponentially with the network size.

• (Other classes of graphs) Through extensive simulations we study consensus on other classes of graphs.
Specifically, we observe similar behaviour on random d-regular graphs with d = Θ(logn) and on Erdős-
Rényi graphs with edge probability logn/n. For d-regular graphs with constant degrees d = O(1) we
do observe a phase transition but the behaviour below criticality is different from that in complete
graphs or other dense graphs studied in this paper.

1.1 Related Literature

The simplest model of opinion dynamics studied in the literature is the voter model where an agent simply
copies the opinion of an agent sampled randomly from its neighbourhood. Thus, in the voter model, the
probability that an agent adopts a specific opinion is equal to the proportion of agents having the same
opinion in its neighbourhood. Due to the linearity of the resulting dynamics and its duality with coalescing
random walks, the voter model has been extensively studied in the literature. The duality between the
voter model and coalescing random walks was first observed independently in [6] and [7]. Using this duality,
the model has been analysed on different classes of graphs such as regular lattices [8], random d-regular
graphs [9], and ER graphs [10]. It is known that for connected graphs the probability of reaching consensus
on a specific opinion is proportional to the initial volume (sum of degrees) of nodes having that opinion. It
is also known that the mean consensus time for the asynchronous version of the voter model (where in each
round only one randomly sampled agent updates its opinion) is Ω(n2) for most graphs.
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Another important model of opinion dynamics is the majority rule model wherein an agent adopts the
majority opinion among all agents in its neighbourhood. It was shown in [11] that with high probability for
a family of expander graphs with sufficiently large spectral gap, the majority dynamics leads to a consensus
on the opinion having the initial majority, provided that the imbalance between the initial majority opinion
and the alternate opinion is sufficiently high. Bounds on the consensus time for the majority rule model
was obtained in [12] for expanders and Erdos-Renyi random graphs. For expanders with sufficiently large
spectral gaps, it was shown that consensus can be achieved on the initial majority opinion in O(logn) steps
in the synchronous model where all agents update in each round. For ER graphs, it was shown that if the
edge probability is above the connectivity threshold of logn/n, then consensus can be achieved on the initial
majority opinion in constant number of rounds. The majority rule model has also been studied for other
classes of graphs such as finite lattices [13], random regular graphs [14], and infinite trees [15].

Although the majority rule leads to faster consensus on many classes of graphs, it requires an agent
to know the states of all other agents in its neighbourhood. This may be too computationally expensive
when neighbourhood sizes are large. A simpler alternative is to consider the 2-choices rule where an agent
only samples two random neighbours and changes to the majority opinion among the sampled agents and
the agent itself. Rules similar to the 2-choices rule, where groups of agents are formed at each instant
and all agents in the group update to the majority opinion within the group, were analysed in the physics
literature [16, 17, 18]. A generalisation of 2-choices rule, where the updating agent samples m agents from
its neighbourhood and only changes its opinion if d or more of the sampled agent differ from the updating
agent, was analysed in the continuous time in [19]. The 2-choices rule that we consider in this paper was first
analysed for random d-regular graphs and expanders in [5]. It was shown that consensus can be achieved
in O(logn) time with high probability on the initial majority opinion provided that the initial imbalance is
sufficiently high.

Opinion dynamical models with bias have been considered in the recent literature. These models are
designed to capture the superiority of one alternative over another. Accordingly, in these models, the agents
exhibit some form of bias towards the superior opinion. In [1, 2] a weak form of bias is considered. Here,
agents with the superior opinion update with a lesser frequency than agents with the alternative opinion. It
has been shown in [1] that, under the voter rule and the 2-choices rule, consensus is achieved in O(logn) time
for complete graphs. For the voter model, the probability of achieving consensus on the superior opinion
approaches to one as the network size grows. For the 2-choices rule, consensus is achieved on the superior
opinion with high probability only when the initial proportion of agents with the superior opinion is above
a certain threshold.

The form bias studied in this paper is introduced recently in [3, 20]. These papers show that on dense
graphs the speed of consensus can be slow (depending on the minimum degree of a node) if the agents follow
the majority rule during a regular update. The papers also analyse the voter rule under this form bias and
show that consensus with the voter rule can be achieved in O(n logn) time. Our model is different from these
models as we consider the 2-choices rule as the main update rule. Furthermore, we study the dynamics under
the 2-choices rule as a function of the bias parameter α as well as the initial proportion p of agents with the
superior opinion. This is unlike the previous papers [3, 20], where the dynamics is studied as a function of α
only with a fixed value of p (specifically, p = 0). We show that phase transitions can occur with respect to
both α and p. Similar phase transitions have been recently reported in [21, 22, 23] for noisy versions of the
k-majority dynamics. However, the focus of these papers is a state of ‘near consensus’ where both opinions
co-exist but the proportion of agents with one of the opinions is arbitrarily small. In contrast, our results
focus on the state of full consensus in which the inferior opinion is completely eliminated. Furthermore, we
obtain bounds on the mean of the consensus time that are stronger than high probability bounds obtained
in previous papers. The technique used here is also quite different from those used in the earlier works; while
earlier works use concentration around the mean drift, we use suitably constructed branching processes to
obtain bounds on the number of visits to different states.
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1.2 Organisation

The rest of the paper is organised as follows. In Section 2, we introduce the model studied in this paper.
Next, in Section 3 we present the theoretical analysis of the model for complete graphs. Section 4 provides
numerical results to support our theoretical findings and also demonstrates similar behaviour for other classes
of graphs. Finally, we conclude the paper in Section 5.

2 Model

In this section, we describe the model studied in this paper. The model consists of a network of n agents
described by an undirected graph Gn = (Vn, En), where the nodes in Vn (with |Vn| = n) represent the agents
and the edges in En represent the connections between the agents. For each agent (node) u ∈ Vn, we denote
by Nu = {v : (u, v) ∈ En}, the set of neighbours of u.

Time is assumed to be discrete and at each discrete time instant t ∈ Z+ each agent is assumed to have
an opinion in the set {0, 1}. Without loss of generality, we assume that 1 is the superior opinion. Let
Xu(t) ∈ {0, 1} denote the opinion of agent u at time t. At t = 0, the opinions of the agents are initialised
such that |{u ∈ Vn : Xu(0) = 1}| = dpne for some p ∈ [0, 1). Hence, p fraction of agents initially have the
superior opinion 1.

At each instant t ≥ 0, an agent, sampled uniformly at random, updates its opinion: with probability α,
it performs a biased update in which it adopts the superior opinion irrespective of its current opinion and
the opinions of all other agents; with probability 1− α it performs a regular update following the 2-choices
rule in which the updating agent samples two neighbours uniformly at random (with replacement1) and
adopts the majority opinion among the sampled agents and the agent itself. Therefore, if U(t) denotes the
randomly sampled agent at time t, then at time t+ 1 the opinion of the agent is given by

XU(t)(t+ 1) =

{
1 w.p. α,

M(t) w.p. 1− α,
(1)

where M(t) = 1
(
XU(t)(t) +XN1(t)(t) +XN2(t)(t) ≥ 2

)
denotes the majority opinion among two randomly

sampled neighbours N1(t) and N2(t) of U(t) and the agent U(t) itself. The parameter α ∈ (0, 1] represents
the bias towards the superior opinion and is referred to as the bias parameter of the model.

The state of the network at any time t ≥ 0 can be represented by the vector X(t) = (Xu(t), u ∈ Vn) of
opinions of all the agents. The process X(·) is Markov on the state space {0, 1}n with a single absorbing
state 1 where all agents have opinion 1. We refer to this absorbing state as the consensus state. Since it
is possible to reach the consensus state from any other state in a finite number of steps, with probability
one the chain is absorbed in the consensus state in a finite time. We refer to this time as the consensus
time. The objective of the rest of the paper is to analyse the mean consensus time for different values of the
parameters n, α, p and for different classes of graphs.

3 Analysis for complete graphs

In this section, we assume that Gn is a complete graph on n nodes. For complete graphs, the process
X̄n = (X̄n(t) = |{u ∈ Vn : Xu(t) = 1}|, t ≥ 0) counting the number of agents with opinion 1 is a Markov
chain on Z+ with absorbing state n. For the chain X̄n, the transition probability p̃i,j from state i to j is
given by p̃i,j = pi,j + o(1/n) where

1Note that sampling with or without replacement does not make any difference when the neighbourhood size is
proportional to n since the probability of choosing the same neighbour twice tends to zero as n → ∞.
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pi,j =



(
1− i

n

) (
α+ (1− α)

(
i
n

)2)
, if j = i+ 1,

i
n

(1− α)
(
1− i

n

)2
, if j = i− 1,

1− pi,i+1 − pi,i−1, if j = i,

0, otherwise.

(2)

Note that pi,j denotes the transition probability of a slightly modified chain Ȳ n (with the same absorbing
state n) where an agent during a regular update can sample itself in addition to its neighbours. Below we
analyse this modified chain as it is simpler to do so and the asymptotic (in n) results we obtain for this
modified chain also hold for the original chain (see Remark 2 for more explanation).

Below we characterise the scaling law of T̄n(p) = Edpne [Tn], where Ex [·] denotes expectation conditioned
on Ȳ n(0) = x and Tk = inf

{
t ≥ 0 : Ȳ n(t) = k

}
denotes the first time the network reaches state k. Our main

result is described in Theorem 1 below.

Theorem 1. For complete graphs we have the following

1. (Fast consensus) For each α ∈ (1/9, 1), we have T̄n(p) = Θ(n logn) for all p ∈ [0, 1).

2. (Fast consensus) For each α ∈ (0, 1/9), there exists pc(α) ∈ (0, 1) such that if p ∈ [pc(α), 1), then
T̄n(p) = Θ(n logn). Furthermore, the threshold pc(α) is the unique solution in the range (x̄α, 1) of the
equation ∫ pc(α)

xα
log(fα(x))dx = 0, (3)

where fα(x) = (1−α)x(1−x)

α+(1−α)x2
, xα = 1

4

(
1−

√
1− 8α

1−α

)
and x̄α = 1

4

(
1 +

√
1− 8α

1−α

)
.

3. (Slow consensus) For each α ∈ (0, 1/9) and p ∈ [0, pc(α)), we have T̄n(p) = Ω(exp(Θ(n))).

The above theorem implies that when the bias parameter is sufficiently high (α > 1/9), the network
quickly (in Θ(n logn) time) reaches consensus on the superior opinion irrespective of its initial state. This is
in sharp contrast to the result of [20] where the consensus time is exponential in n for all values of the bias
parameter α. The theorem further implies that even with low value of the bias parameter α (for α < 1/9)
fast consensus can be achieved as long as the initial proportion p of agents with the superior opinion is above
a threshold value denoted by pc(α). We explicitly characterise this threshold pc(α) required to ensure fast
consensus when the bias is low. If the bias parameter is low (α < 1/9) and the initial proportion of agents
with the superior opinion is below the threshold, i.e., p < pc(α), then the mean consensus time is exponential
in n which corresponds to slow speed of convergence. Thus, our model exhibits rich behaviour in terms of
the parameters α and p.

We breakdown the proof of the above theorem into several simpler steps. The first step is to make the
following simple observation which expresses the mean consensus time as a function of the number of visits
of the chain Ȳ n to different states in its state-space {0, 1, . . . , n}.

Lemma 1. Let Zk denote the number of visits of the chain Ȳ n to the state k ∈ {0, 1, . . . , n} before absorption.
Then, for any starting state x = X̄n(0) ∈ {0, 1, . . . , n}, the average consensus time is given by

Ex [Tn] =

n−1∑
k=0

Ex [Zk]

(1− pk,k)
, (4)

where pk,k is the transition probability from state k to itself given by (2).

Proof. Observe that the consensus time Tn can be written as

Tn =

n−1∑
k=0

Zk∑
j=1

Mk,j , (5)

5



where Zk denotes the number of visits to state k before absorption and Mk,j denotes the time spent in state k
in the jth visit. Clearly, the random variables Zk and (Mk,j)j≥1 are independent of each other. Furthermore,
(Mk,j)j≥1 is a sequence of i.i.d. random variables with geometric distribution given by Px (Mk,j = i) =
pi−1
k,k (1− pk,k) for all j. Hence, applying Wald’s identity to (5) we have

T̄n(p) = Ex [Tn]

=

n−1∑
k=0

Ex

[
Zk∑
j=1

Mk,j

]

=

n−1∑
k=0

Ex [Zk]Ex [Mk,j ]

=

n−1∑
k=0

Ex [Zk]

(1− pk,k)
, (6)

where the last step follows from the fact that Ex [Mk,j ] = 1/(1− pk,k) for each j ∈ [Zk].

From the above lemma, it is evident that in order to obtain bounds on Ex [Tn] we need to obtain bounds
the expected number of visits Ex [Zk] to different states and the transition probabilities pk,k. Using this
approach, we first obtain a lower bound on T̄n(p).

Lemma 2. For any α ∈ (0, 1) and p ∈ (0, 1) we have T̄n(p) = Ω(n logn).

Proof. From (2) we obtain

1− pk,k =

(
1− k

n

)(
α+ (1− α)

k

n

)
≤ max (α, 1− α)

(
1− k

n

)(
1 +

k

n

)
Furthermore, we have Ex [Zk] ≥ 1(k ≥ x) since states k ≥ x are visited at least once. Hence, using the above
two inequalities in (4) we obtain

T̄n(p) ≥
n−1∑
k=0

1(k ≥ dnpe)
max (α, 1− α)

(
1− k

n

) (
1 + k

n

)
=

n

2 max (α, 1− α)

n−1∑
k=dnpe

(
1

n− k +
1

n+ k

)

>
n

2 max (α, 1− α)

n−1∑
k=dnpe

(
1

n− k

)
≥ n

2 max (α, 1− α)
log (n− dnpe+ 1) ,

which completes the proof.

To obtain an upper bound on the mean consensus time T̄n(p) similarly, we need an upper bound on the
expected number of visits Ex [Zk] to state k for each k ∈ {0, 1, 2 . . . , n}. We obtain such an upper bound
using a technique developed in [1] where the number of visits to each state is expressed as a function of
a branching process. Specifically, we define ζk to be the number of jumps from state k to state k − 1 for
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any k ∈ {1, 2, . . . , n}. Clearly, ζn = 0 and, if the starting state is x = Ȳ n(0) ∈ [1, n), then ζk satisfies the
following recursion:

ζk =

{∑ζk+1

l=0 ξl,k, if k ∈ {x, x+ 1, . . . , n− 1},∑ζk+1

l=1 ξl,k, if k ∈ {0, 1, . . . , x− 1},
(7)

where ξl,k denotes the number of jumps from state k to state k − 1 between the lth and (l + 1)th visit to
state k+ 1. Note that the first sum in (7) (for k ≥ x) starts from l = 0 whereas the second some starts from
l = 1. This is because for k ≥ x, jumps from k to k − 1 can occur even before the first jump from k + 1
to k. This is not the case for states k < x. Furthermore, {ξl,k}l≥0 is a sequence of i.i.d. random variables
independent of ζk+1. Hence, the sequence {ξn−k}k defines a branching process. Moreover, the number of
visits to state k can be written as

Zk =

{
1 + ζk + ζk+1, if k ∈ {x, x+ 1, . . . , n− 1},
ζk + ζk+1, if k ∈ {0, 1, . . . , x− 1},

(8)

where the additional one appears in the first case (for k ≥ x) because the states k ≥ x are visited at least
once before the chain is absorbed in state n. It is the above characterisation of the Zk that we shall use
to obtain upper bounds on Ex [Zk]. Precisely, we obtain bounds on Ex [ζk] to bound Ex [Zk]. In the lemma
below, we express Ex [ζk] in terms of the transition probabilities of the chain Ȳ n.

Lemma 3. For any k ∈ {1, 2, . . . , n}, let ζk denote the number of jumps of the chain Ȳ n from state k to
state k − 1. We have ζn = 0 and

Ex [ζk] =


∑n−1
t=k

∏t
i=k

pi,i−1

pi,i+1
, for x ≤ k ≤ n− 1,(∏x−1

i=k

pi,i−1

pi,i+1

)
Ex [ζx] , for 0 ≤ k < x,

(9)

where for each i, j ∈ {0, 1, . . . , n}, pi,j denotes the transition probability of the Markov chain Ȳ n from state
i to state j and is given by (2).

Proof. We observe that ζk+1 and {ξl,k}l≥0 are independent of each other and {ξl,k}l≥0 is a sequence of i.i.d.
random variables with

Px (ξl,k = i) =

(
pk,k−1

1− pk,k

)i(
pk,k+1

1− pk,k

)
for all i ∈ Z+ and all l ≥ 0. Hence, we have

Ex [ξl,k] =
pk,k−1

pk,k+1
,

for all l ≥ 0. Applying Wald’s identity to (7) we obtain the following recursions

Ex [ζk] =

{
(1 + Ex [ζk+1])

pk,k−1

pk,k+1
, if k ≥ x,

Ex [ζk+1]
pk,k−1

pk,k+1
, if k < x,

(10)

Upon solving the above recursions with boundary condition ζn = 0, we obtain desired result.

From (9), we observe that the ratio pi,i−1/pi,i+1 plays a crucial role in the expression of Ex [ζk]. Hence,
by characterising this ratio, we can characterise Ex [ζk]. We note from (2) that

pi,i−1

pi,i+1
= fα(i/n), (11)

where fα : [0, 1]→ R+, for each α ∈ (0, 1), is as defined in Theorem 1. In the lemma below, we obtain a list
some important properties of the function fα.
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Lemma 4. For α ∈ (0, 1), define fα : [0, 1]→ R+

fα(x) ,
(1− α)x(1− x)

α+ (1− α)x2
(12)

Then fα satisfies the following properties

1. For all α ∈ (0, 1), fα is strictly increasing in [0, xα), strictly decreasing in (xα, 1], and, in the domain
[0, 1], attains its maximum value at xα, where

xα ,

√(
α

1− α

)2

+
α

1− α −
α

1− α ∈ [0, 1). (13)

2. Let rα , fα(xα) = maxx∈[0,1] fα(x). Then, for α ∈ (1/9, 1), we have rα < 1, and, for α ∈ (0, 1/9), we
have rα > 1.

3. For α ∈ (0, 1/9], we have fα(x) ≥ 1 iff x ∈ [xα, x̄α], where

xα =
1

4

(
1−

√
1− 8α

1− α

)
(14)

x̄α =
1

4

(
1 +

√
1− 8α

1− α

)
(15)

Furthermore, fα(xα) = fα(x̄α) = 1 and xα ∈ [xα, x̄α].

4. For α ∈ (0, 1/9), define gα(x) ,
∫ x
xα

log(fα(x))dx. Then gα has a unique root pc(α) ∈ (x̄α, 1).

Furthermore, gα(p) > 0 if p ∈ [x̄α, pc(α)) and gα(p) < 0 if p ∈ (pc(α), 1)

Proof. Taking the derivative of (12) with respect x we obtain

f ′α(x) =
−(1− α)2x2 − 2α(1− α)x+ α(1− α)

(α+ (1− α)x2)2 .

We note that the numerator of the above expression is zero when x = xα, positive when x ∈ [0, xα) and
negative when x ∈ (xα, 1], where xα is as defined in (13). This proves the first statement of the lemma.

Next, we note from (12) that the condition fα(x) Q 1 is equivalent to 2x2−x+ α
1−α R 0. Hence, fα(x) < 1

for all x ∈ [0, 1] if and only if 1 − 8 α
1−α < 0 or equivalently iff α > 1/9. Furthermore, for α ∈ (0, 1/9], we

have 2x2 − x+ α
1−α = (x− xα)(x− x̄α) where xα and x̄α are as defined in (14) and (15), respectively, and

for α < 1/9 we have xα < x̄α and xα ∈ (xα, x̄α). Combining the above facts we have the second and the
third statements of the lemma.

We now turn to the last statement of the lemma. Note that for α ∈ (0, 1/9), we have

gα(x̄α) =

∫ x̄α

xα

log(fα(x))dx ≥ log(fα(xα)) = log(rα) > 0,

where the last inequality follows from the fact that rα = fα(xα) > 1 for α ∈ (0, 1/9) as established in the
previous paragraph. Using (12), we can compute gα in closed form. This is given as follows

gα(x) = x log

(
(1− α)x

α+ (1− α)x2

)
− (1− x) log(1− x) + log(1− xα)

− 2

√
α

1− α

(
arctan

(√
1− α
α

x

)
− arctan

(√
1− α
α

xα

))
(16)

From the above it follows that limx→1− g(x) < 0 since xα < 1 and arctan(·) is an increasing function.
Furthermore, we have g′α(x) = log(fα(x)) < 0 for x ∈ (x̄α, 1). Hence, there must exist a unique root pc(α) of
gα in (x̄α, 1) and gα(p) must be strictly negative for p ∈ (pc(α), 1) and strictly positive for p ∈ [x̄α, pc(α)).
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We are now in a position to complete the proof of Theorem 1. We use Lemma 3 and the properties of fα
proved in Lemma 4 to obtain upper bounds of Ex [ζk]. These upper bounds, in turn, provide upper bounds
on Ex [Zk] using (8). Finally, we use Lemma 1 and the upper bounds on Ex [Zk] to obtain an upper bound
on the mean consensus time T̄n(p). The complete proof is given below.

Proof of Theorem 1: From Lemma 1 it follows that

T̄n(p) =

n−1∑
k=0

Edpne [Zk]

(1− pk,k)

=

n−1∑
k=0

Edpne [Zk]

(1− k
n

)(α+ (1− α) k
n

)

= n

n−1∑
k=0

Edpne [Zk]

(
1

n− k +
1

α
1−αn+ k

)
(17)

Hence, to prove Tn(p) = O(n logn), it is sufficient to establish that Edpne [Zk] ≤ C for all k ∈ {0, 1, . . . , n},
where C > 0 is a constant independent of k. Indeed, if Edpne [Zk] ≤ C for each state k ∈ {0, 1, . . . , n}, then
for n ≥ 1−α

α
we have

T̄n(p) ≤ nC
n−1∑
k=0

(
1

n− k +
1

k + 1

)

= 2nC

n−1∑
k=1

1

k

= O(n logn) (18)

Hence, to prove the first two statements of the theorem, it is sufficient to show that, under the conditions
stated in these statements, Edpne [Zk] is uniformly bounded by some constant for all k ∈ {0, 1, . . . , n− 1}.
This what we prove next.

Using the first two properties of fα proved in Lemma 4 and (9), we see that for α ∈ (1/9, 1) we have

Ex [ζk] ≤

{∑n−1
t=k r

t−k+1
α < rα

1−rα , for x ≤ k ≤ n− 1

Ex [ζx] < rα
1−rα , for k < x,

(19)

where rα < 1 is as defined in Lemma 4. Hence, from (8) we have that for all α ∈ (1/9, 1) and all k ∈
{0, 1, . . . , n− 1},

Ex [Zk] ≤ 1 + rα
1− rα

.

This establishes the first statement of the theorem.
We now prove the second statement of the theorem. For α ∈ (0, 1/9), the third statement of Lemma 4

implies pc(α) > x̄α. Furthermore, by the first and third statements of Lemma 4, it follows that fα is strictly
decreasing in the range [x̄α, 1). Hence, for p ≥ pc(α) > x̄α we have fα(p) < fα(x̄α) = 1. Furthermore, for
all k ≥ x ≥ pn we have

pk,k−1

pk,k+1
= fα(k/n) ≤ fα(p) < 1.

Let rp , fα(p) < 1. Then, from (9), we have that for k ≥ x

Ex [ζk] ≤
n−1∑
t=k

rt−k+1
p <

rp
1− rp

.

Hence, from (8) we have that

Ex [Zk] ≤ 1 + rp
1− rp

9



for k ≥ x. Moreover, for k < nx̄α ≤ x = dpne we have

x−1∏
i=k

pi,i−1

pi,i+1
=

dpne−1∏
i=k

fα(i/n)

(a)

≤
dpne−1∏
i=dnxαe

f(i/n)

= exp

 dpne−1∑
i=dnxαe

log (fα(i/n))


(b)
= exp

(
n

(∫ p

xα

log(fα(x))dx+O(1/n)

))
(c)
= exp (ngα(p) +O(1))

(d)
= O(1),

where (a) follows from the facts that fα(i/n) ≤ 1 for i ≤ nxα and fα(i/n) ≥ 1 for nxα ≤ i ≤ nx̄α;

(b) follows from the fact that the Riemannian sum (1/n)
∑dpne−1

i=dnxαe
log (fα(i/n)) converges to the integral∫ p

xα
log(fα(x))dx as n → ∞ with an error of O(1/n); (c) follows from the definition of gα in Lemma 4; (d)

follows from the fact that for p ≥ pc(α) > x̄α we have gα(p) ≤ 0 by the last statement of Lemma 4. For
x > k ≥ nx̄α we have

x−1∏
i=k

pi,i−1

pi,i+1
=

dpne−1∏
i=k

f(i/n) ≤ 1,

because for i ≥ nx̄α we have fα(i/n) ≤ 1. Hence, for all k < x, it follows from (9) that Ex [ζk] = O(1)Ex [ζx] =
O(1). Finally, from (8) we obtain that Ex [Zk] = O(1) for all k < x. This establishes the second statement
of the theorem.

We now turn to the third statement of the theorem. Note from (17) that to prove this statement, it
suffices to show that Edpne [Zk] = Ω(exp(Θ(n))) for k = dnxαe when α ∈ (0, 1/9) and p ∈ (0, pc(α)). First,
note that for α ∈ (0, 1/9), p ∈ (xα, pc(α)), and k = dnxαe we have

x−1∏
i=dnxαe

pi,i−1

pi,i+1
=

dnpe−1∏
i=dnxαe

fα(i/n)

= exp

(
n

∫ p

xα

log(fα(x))dx+O(1)

)
= Ω(exp(Θ(n))),

where the last line follows from the fact that
∫ p
xα

log(fα(x))dx = gα(p) > 0 for p ∈ (xα, pc(α)). Hence,

Ex
[
ζdxαne

]
= Ω(exp(Θ(n)))Ex [ζx] = fα(p)Ω(exp(Θ(n))) since Ex [ζx] > fα(x/n) = fα(p) + o(1). Hence,
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Ex
[
Zdnxαe

]
= Ω(exp(Θ(n))). For p ∈ [0, xα] we have

Ex
[
ζdxαne

]
>

dnx̄αe−1∏
i=dnxαe

pi,i−1

pi,i+1
=

dnx̄αe−1∏
i=dnxαe

fα(i/n)

= exp

(
n

∫ x̄α

xα

log(fα(x))dx+O(1)

)
= Ω(exp(Θ(n))),

This proves the third part of the theorem.

Remark 1. From the proof above, it is clear that the absorption time of the chain Ȳ n crucially depends on
the ratio of the down-transition probability pi,i−1 to the up-transition probability pi,i+1 at any given state i.
If this ratio is smaller than one at a given state i, then the chain has a tendency to drift quickly towards the
absorbing state n. Similarly, if the ratio is larger than one, then the chain has a tendency to move towards
state 0 and hence it takes longer to reach the absorbing state n. Since the value of this ratio depends on the
bias parameter α as well as on the initial proportion p of agents with the superior opinion, we observe phase
transitions with respect to both the parameters.

Remark 2. Although we have proved the theorem for the modified chain Ȳ n, the proof can be extended to the
original chain X̄n. This is because the results of Lemma 1 and Lemma 3 are also applicable to the original
chain if the transition probabilities are replaced by those of the original chain. Furthermore, the transition
probabilities of the two chains satisfy the following relations

1− p̃k,k = 1− pk,k + (1− α)
k

n

(
1− k

n

)(
n2

(n− 1)2
− 1

)
≤ 1− pk,k,

and p̃k,k−1/p̃k,k+1 = pk,k−1/pk,k+1 + o(1), where we recall that p̃k,k denotes the transition probability from
state k to itself for the original chain X̄n. We note that the same lower bound as in Lemma 2 can be obtained
for the chain X̄n since we have 1 − p̃k,k ≤ (max(α, 1 − α) + o(1))(1 − k/n)(1 + k/n). Similarly, the upper
and lower bounds on the expected number of visits to each state derived for the modified chain also hold for
the original chain for large enough n. Combining the above, we obtain the same asymptotic bounds for the
original chain X̄n as we have for the modified chain Ȳ n.

4 Numerical Results

In this section, we present numerical results for the model presented in this paper. We first present results
to support our theoretical findings on complete graphs. We then present simulation results for other classes
of graphs. Error-bars in the plots represent 95% confidence intervals. Also, to understand the growth rates
better, we overlay the plots obtained from simulations on theoretical growth rates obtained by plotting
appropriately scaled functions.

4.1 Complete graphs

For complete graphs, the mean consensus time T̄n(p) can be computed numerically using the first step
analysis of the Markov chain Ȳ n. This method is more exact and computationally less expensive than
simulating the chain a large number of times to obtain the average absorption time. Hence, we adopt
this method for complete graphs. With a slight abuse of notation let T̄n(k) denote the average absorption
time of the chain starting from state k ∈ {0, 1, . . . , n}. Then, from first step analysis we have for each
k ∈ {0, 1, . . . , n}

T̄n(k) = 1 + pk,k−1T̄n(k − 1) + pk,k+1T̄n(k + 1) + pk,kT̄n(k), (20)

where pi,j is as defined in (2). Simplifying the above and using the boundary condition T̄n(n) = 0 we obtain

11



T̄n(p) := T̄n(dnpe) =

n−1∑
k=dnpe

Sn(k), (21)

where Sn(k) satisfies the following recursion:

Sn(k) =
1

pk,k+1
+
pk,k−1

pk,k+1
Sn(k − 1), (22)

with Sn(0) = 1/α. We find the expected consensus time numerically by solving the above recursion for
different values of n, α, and p. First, we choose α = 0.1 < 1/9. For this value of α, we can numerically
compute the value of pc(α) by solving (3). This value turns out to be 0.431 (accurate to the third decimal
place). In Figures 1a and 1b we plot the normalised (by the network size) average consensus time as a
function of the network size for p = 0.4 < pc(α) = 0.431 and p = 0.5 > pc(α) = 0.431, respectively. As
expected from Theorem 1 we observe that the mean consensus time grows exponentially for p < pc(α) and
as Θ(n logn) for p > pc(α).

0 200 400 600 800
n

0

50

100

150

200

250

300

̄ T n
̄p
)/n

Theory
exp̄0.006 * n)

(a) α = 0.1 < 1/9, p = 0.4 < pc(α) = 0.431
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(b) α = 0.1 < 1/9, p = 0.5 > pc(α) = 0.431

Figure 1: Mean consensus time per node T̄n(p)/n as a function of the network size for α = 0.1 < 1/9
for complete graphs

Next, we choose α = 0.125 > 1/9. For this choice of α, we expect (from Theorem 1) the mean consensus
time to grow as Θ(n logn) for all values of p. This is verified in Figures 2a and 2b, where we choose p = 0
and p = 0.5, respectively. We observe that in both cases T̄n(p) = Θ(n logn).

4.2 Random d-regular graphs with d = Θ(log n)

We now present simulation results for random d-regular graphs where the degree d for each node is chosen
to be d = dlogne. We use the networkx package to generate random d-regular graphs. For each randomly
generated graph, we run the protocol until the network reaches consensus. The above procedure is repeated
500 times and mean consensus time is computed over these 500 runs. We further repeat this for different
values of n, α, and p. In Figures 3a and 3b we fix α to be 0.05 and plot the normalised mean consensus
time as a function of the network size for p = 0.05 and p = 0.8, respectively. Similar to complete graphs, we
observe that the mean consensus time grows exponentially with n when both α and p are low. In contrast,
when the initial proportion of agents having the superior opinion is sufficiently large, the mean consensus
time grows as Θ(n logn) even when the bias parameter α is small.

In Figures 4a and 4b we choose α = 0.8 plot the normalised mean consensus time as a function of the
network size for p = 0.005 and p = 0.8, respectively. We observe that in both cases the mean consensus
time grows as Θ(n logn). This indicates that if the bias parameter α is sufficiently large then the network
reaches consensus to the superior opinion in Θ(n logn) time irrespective of the initial proportion of agents
having the superior opinion.
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(a) α = 0.125 > 1/9, p = 0
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(b) α = 0.125 > 1/9, p = 0.5

Figure 2: Mean consensus time per node T̄n(p)/n as a function of the network size for α = 0.125 >
1/9 for complete graphs
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(a) α = 0.05, p = 0.05
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Figure 3: Mean consensus time per node T̄n(p)/n as a function of the network size for α = 0.05 for
random d-regular graphs with d = dlog ne.

4.3 Random d-regular graphs with d = O(1)

We now investigate the biased opinion dynamics on random d-regular with constant degree, i.e., d = O(1).
Specifically, we set d = 5 and simulate the network for different values of n, α, and p. As before, we generate
a random 5-regular graph using the networkx package and run the protocol on this randomly generated
instance until consensus is reached. The above procedure is repeated multiple times (each with a newly
generated random graph) to obtain the mean consensus time within the desired confidence bounds. In
Figures 5a and 5b, we fix α = 0.05 and choose p = 0.05 and p = 0.8, respectively. We observe that the
normalised mean consensus time grows approximately linearly in n (i.e., T̄n(p) = O(n2)) when both α and p
are small. This is unlike the previous results for dense graphs, where, for small values of α and p, the mean
consensus time is exponential in n. This reduction in absorption time can be intuitively explained by the
fact that a smaller neighbourhood size reduces the chance of an agent updating to the worse opinion when
a fixed proportion of all the agents have the worse opinion. Based on this intuition we conjecture that for
small values of p and α the mean consensus time grows polynomially in n when the neighbourhood size d
is constant higher than 2. The case of cycles (where d = 2) has already been considered in [20]. But in
the case of cycles there is no phase transition; indeed, it has been shown in [20] that for cycles consensus is
achieved on the superior opinion in O(n logn) time for all values of α even when p = 0.
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(a) α = 0.8, p = 0.05
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Figure 4: Mean consensus time per node T̄n(p)/n as a function of the network size for α = 0.8 for
random d-regular graphs with d = dlog ne.
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Figure 5: Mean consensus time per node T̄n(p)/n as a function of the network size for α = 0.05 for
random d-regular graphs with d = 5.

In Figures 6a and 6b, we plot the mean consensus time as a function of the network size for p = 0.05
and p = 0.8, respectively, keeping α = 0.8. In both cases, we observe that the mean consensus time grows
as Θ(n logn). Thus, in these regimes, the behaviour of random d-regular graphs with d = O(1) is similar to
that of random d-regular graphs with d = Θ(logn).

4.4 Erdős-Rényi graphs with edge probability log n/n

Finally, we present results for Erdős-Rényi graphs where the edge probability is fixed at the connectivity
threshold logn/n. The experiments are designed in the same way as described for other classes of graphs.
The normalised mean consensus time as a function of the network size n is plotted for different values of α
and p: in Figures 7a and 7b for α = 0.05 and in Figures 8a and 8b for α = 0.8. We observe similar phase
transitions as in the case of complete graphs, i.e., the mean consensus time grows as Θ(n logn) in all cases
except when both α and p are low.
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(a) α = 0.8, p = 0.05
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Figure 6: Mean consensus time per node T̄n(p)/n as a function of the network size for α = 0.8 for
random d-regular graphs with d = 5.
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Figure 7: Mean consensus time per node T̄n(p)/n as a function of the network size for α = 0.05 for
Erdős-Rényi graphs with edge probability log n/n.

5 Conclusion and future work

In this paper we have studied a model of binary opinion dynamics where the agents show a strong form
of bias towards one of the opinions, called the superior opinion. We showed that for complete graphs the
model exhibits rich phase transitions based on the values of the bias parameter and the initial proportion
of agents with the superior opinion. Specifically, we proved that fast consensus can be achieved on the
superior opinion irrespective of the initial configuration of the network when bias is sufficiently high. When
bias is low, we show that fast consensus can only be achieved when the initial proportion of agents with
the superior opinion is above a certain threshold. If this is not the case, then we show that consensus takes
exponentially long time. Through simulations, we observed similar behaviour for several classes of dense
graphs where the average degree scales at least logarithmically with the network size. For sparse graphs,
where the average degree is constant, we observed that phase transitions do occur but the behaviour below
criticality is different to that of dense graphs. Specifically, we observed that when both bias and the initial
proportion of agents with the superior opinion are low, the average consensus time is still polynomial in the
network size.

Several directions remain open for theoretical investigation. One immediate problem is to theoretically
establish the observed phase transitions for dense graphs. Here, it will be interesting to find out how ‘dense’
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Figure 8: Mean consensus time per node T̄n(p)/n as a function of the network size for α = 0.8 for
Erdős-Rényi graphs with edge probability log n/n.

a graph must be in order for it to exhibit the same phase transitions as in complete graphs. Similar questions
remain open for sparse graphs such as d-regular expanders with constant d. Here, it will be of interest to find
out how the threshold valued of the parameters depend on the average degree d or the spectral properties of
the expander. It is also worth analysing the exact behaviour below criticality. The numerical experiments
conducted in this paper suggests that the consensus time is still polynomial below criticality (unlike in
complete graphs where it is exponential), but it would be challenging to obtain exact bounds in this case.
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