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Abstract

This paper provides a comprehensive analysis of the day of the week, non-trading day
(post-holiday), and month of the year seasonal effects in the daily returns and volatility
of the S&P 500 index. We use bootstrapping to demonstrate that, surprisingly, these
three prominent calendar effects are statistically significant in daily volatility, but not in
daily average returns. We model this form of seasonal heteroscedasticity by introducing
the periodic stochastic volatility (PSV') model for characterizing the seasonal patterns
of daily financial market volatility. We analyze the interaction of seasonal heteroscedas-
ticity with fat tails by comparing the performance of Gaussian PSV and fat-tailed PSV't
specifications to the plain vanilla SV and SVt benchmarks. Consistent with the boot-
strapping results, we find strong evidence of seasonal periodicity in volatility, which
substantially reduces the need for fat tails, and is robust to the exclusion of the Crash of
1987 outliers. The SV parameters are estimated by implementing the Bayesian MCMC
methods developed by Chib, Nardari and Shephard (2002), with the addition of a Gibbs
step for sampling the seasonal volatility level effects. We compute in-sample and out-
of-sample density forecasts for assessing the adequacy of the conditional distribution.
We conclude by using Bayes factors as a likelihood-based framework for ranking the SV
specifications.
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1 Introduction

It is widely documented that expected stock returns exhibit strong seasonal patterns in the
form of day of the week, month of the year and post-holiday effects (Lakonishok and Smidt
(1988)). For example, Keim (1983) and Reinganum (1983) showed that small firms display
abnormal returns (measured relative to the CAPM) during the first two weeks of January.
This anomaly became known as the “turn-of-the-year effect”, and is more frequently referred
to as the “January effect”. French (1980) and Keim and Stambaugh (1984) observed that the
average return to the S&P composite portfolio over weekends was negative and statistically
significant. This second calendar anomaly is known as the “weekend effect”. Further, French
and Roll (1986) and Baillie and Bollerslev (1989) noted that volatility tends to be higher
following non-trading days (post-holidays). We refer to this as the “holiday effect” or “non-
trading day" effect.

Subsequent to their discovery, there have been many attempts to justify these seasonal-
ities!. However, there is still no equilibrium model of asset prices, which can explain why
expected returns should display calendar regularities. Possible explanations include inven-
tory adjustments of different traders (Ritter (1988)), the timing of trades by informed and
uninformed traders (Admanti and Pfeiderer (1988)), specialists’ strategies in response to in-
formed traders (Admanti and Pfeiderer (1989)), the timing of corporate news releases (Penman
(1987)), tax induced trading (Lakonishok and Smidt (1986)), and the window dressing induced
by periodic evaluation of portfolio managers (Haugen and Lakonishok (1988)). Other theories
focus on the institutional arrangements in financial markets. For example, the January effect
has been linked to year-end tax-loss selling pressure, which reduces stock prices in December,
leading to a rebound in early January as investors repurchase these stocks to reestablish in-
vestment positions (Roll (1983)). Glosten, Jagannathan and Runkle (1993) also suggest that
consumer sales exhibit a pronounced quarterly seasonal pattern, of which the fourth quar-
ter is the important holiday season. January is the period when comprehensive and reliable
information about consumer spending typically becomes available. Explanations offered for
the strong Monday effect in stock returns include delays between trading and settlements in
stocks (Lakonishok and Levi (1982)), measurement error (Keim and Stambaugh (1984)), in-
stitutional factors (Flannery and Protopapadakis (1988)), and trading patterns (Lakonishok
and Maberly (1990)).

This paper provides a comprehensive analysis of the day of the week, non-trading day, and
month of the year seasonal effects in the daily returns and, more importantly, in the volatility
of the S&P 500 index over the years 1980-2001. Specifically, we find that Mondays tend to
have the lowest return and highest volatility. Wednesdays have the second highest return and
the lowest volatility. January has the highest return, while October has the highest volatility.
Finally, the first weekday after a non-trading weekday (a post-holiday) has a negative average
return and very high volatility.

'In fact, Sullivan, Timmermann and White (2001) argue that such theories are “after the fact” rational-
izations of observed phenomena.



Even though the seasonal patterns of monthly, daily and intraday returns have received
much attention in the finance and econometrics literature, there is surprisingly little work
done on the seasonality of daily volatility, even within the broadly used GARCH framework.
Perhaps the closest to providing a thorough examination of seasonal periodicity in both the
returns and the variance of daily S&P 500 index is Gallant, Rossi and Tauchen (1992) in their
investigation of return-volume comovements. Further, Andersen and Bollerslev (1997) and
Beltratti and Morana (1999) study the intraday periodicity of asset returns, which takes the
form of cycles repeating within the day and week. Bollerslev and Ghysels (1996) propose a
periodic GARCH (P-GARCH) model designed to capture the repetitive seasonal time variation
in volatility. Glosten, Jagannathan and Runkle (1993) use a GARCH-M model on monthly
equity data, which only conditions on January and October effects. Beller and Nofsinger
(1998) examine only month of the year volatility effects using monthly data. Balaban, Bayar
and Kan (2001), Berument and Kuymaz (2001), and Frances and Paap (2000) examine only
the day of the week effect on stock market volatility.

This investigation has four objectives: (i) to measure the size of the seasonal heteroscedas-
ticity observed in the form of day of the week, non-trading day, and month of the year seasonal
level effects in both the daily returns and the daily volatility of the S&P 500 index; (ii) to
provide a careful analysis of the statistical significance of seasonality, which will allow us to
report the striking new result that most calendar effects are strongly statistically significant
in volatility, but not in expected returns; more importantly (iii) to introduce and estimate the
periodic stochastic volatility model (PSV'), which is designed to exploit the observed seasonal
heteroscedasticity; and finally (iv) to formally analyze the interaction between seasonal peri-
odicity and fat tails by assessing the performance of Gaussian and fat-tailed periodic stochastic
volatility specifications set against appropriate plain vanilla SV and SVt benchmarks. The
second, and especially the third and fourth objectives are novel contributions to the existing
literature.

Early work on seasonal abnormalities in expected stock returns has in general found over-
whelming evidence of statistical significance for most calendar effects. For example, Lakon-
ishok and Smidt (1989) implement two-sided ¢ tests and joint F' tests on ninety years of Dow
Jones Industrial Average (DJIA) daily returns and find that the seasonal patterns in the
rates of return are small but very statistically significant. Two recent empirical studies offer
conflicting conclusions. On the one hand, Hansen and Lunde (2003) design a x? test, which
exploits the correlation structure of calendar effects. Using stock indices from 10 countries,
they find strong evidence that a large universe of calendar effects is statistically significant in
return means and standardized return means. On the other hand, Sullivan, Timmermann and
White (2001) develop a new model-free bootstrap procedure, which explicitly measures the
distortions on statistical inference induced by data mining. They use 100 years of DJIA daily
returns in order to analyze whether a particular set of calendar-based trading rules yields a
higher (standardized) return than a buy and hold strategy and conclude that calendar efects
are no longer statistically significant. Notably, none of these studies models periodicity in
volatility.



In this paper, we use simple bootstrapping to simulate the empirical distribution of the
seasonal return means and absolute return means and perform formal hypothesis testing.
The null hypotheses are all one-sided and test whether (for example) the returns of January
are equal versus higher (or for other calendar effects lower) than the rest of the months. We
demonstrate that, surprisingly, the three prominent calendar effects are statistically significant
only in daily volatility and not in daily average returns. We also show that our bootstrapping
results are not driven by the Crash 1987 outliers. Specifically, all the results are robust to the
exclusion of the three most volatile days of October 1987: Monday, October 19, 1987, when
the S&P 500 composite index plunged 22.9% (the minimum in our sample) on the second
highest volume ever recorded (604 million shares); Tuesday, October 20, when the S&P 500
index rose by 5.2% on the highest volume ever recorded (608 million shares); and Wednesday,
October 21, when the S&P 500 rose 8.7% (the maximum in our sample) with the trading of
450 million shares.

The bootstrapping evidence strongly indicates that a volatility model should perform bet-
ter if it was generalized to account for the observed seasonal periodicity in volatility. In this
context, the main contribution of this paper is that it introduces and estimates the periodic
stochastic volatility (PSV') model, and then formally examines the interaction between sea-
sonal heteroscedasticity and fat tails. The PSV model generalizes the constants in both the
conditional mean and the conditional variance functions in order to account for the day of
the week, holiday, and month of the year seasonal level effects. Specifically, the conditional
standard deviation of the periodic SV specifications is subject to a periodic seasonal level
effect, which is separate from the dynamic SV component. The most comprehensive periodic
specification uses a cyclical and parsimonious six term Fourier approximation, which fits the
month of the year effect reasonably well and reduces the parameter dimension of the model.?

The study adopts a univariate discrete-time SV framework and tests the performance of
Gaussian PSV and fat-tailed PSV't specifications against two benchmark SV models: (i) the
plain vanilla SV model, which assumes conditionally Gaussian innovations, an autoregressive
conditional mean, and a persistent stochastic log-variance process; and (ii) the fat-tailed SVt
model, which is designed to capture the excess kurtosis of daily returns by assuming that daily
innovations follow a Student-t distribution. In total, we estimate eight SV specifications.

Unlike statistical jump processes specified in returns and volatility, the timing and size of
which are estimated ex-post and are ex-ante unforecastable? the timing of seasonal periodicity
is perfectly observed. Conditioning on seasonality adjusts the level of the returns and the
volatility process every day so that the persistent stochastic volatility component can better
accommodate the shocks that may be specific (for example) to a Monday in October. We
analyze the statistical interaction between seasonal periodicity and fat tails and demonstrate
that the PSV model reduces and even eliminates the need for a fat-tailed SV specification.

2For Flexible Fourier Form (FFF) modelling of intraday periodic volatility components see Andersen and
Bollerslev (1997), and Beltratti and Morana (1999). For the details of FFFs in general see Gallant (1981).

3 Johannes, Kumar and Polson (1999) propose a state dependent jump model, where the jump size and the
jump intensity are functions of lagged returns and lagged implied volatilities, and find evidence of predictability.



This result is also robust to the Crash of 1987 outliers.

We compute in-sample and out-of-sample density forecasts for assessing the adequacy of
the conditional distribution of the SV specifications. We explicitly test whether modelling the
distinct behaviour of different days and months results in better one-step ahead volatility and
density forecasts. We also compute Bayes factors, which provide a framework for specification
diagnostics and model selection over the set of SV models. Bayes factors account for both
estimation risk by integrating out parameter uncertainty and for model risk, which arises
from the uncertainty over selecting a model specification. More importantly, the Bayes factor
diagnostic measures the statistical cost of dimensionality due to the explicit accounting of all
seasonal periodic effects in returns and volatility.

Models of stochastic volatility have been used extensively in theoretical option pricing
since the contribution of Hull and White (1987) in generalizing the Black-Scholes option
pricing scheme. Like GARCH-type models, they are designed to capture the persistent and
hence predictable component of daily volatility (for a comparison of GARCH and SV models
see Fleming and Kirby (2003)). However, SV has a fundamental difference with GARCH.
The assumption of a stochastic second moment introduces an additional source of risk that
cannot be perfectly hedged using ¢ — 1 information. A GARCH specification describes the
conditional distribution of returns as being a function of exclusively past information. In
contrast, the SV model specifies the joint conditional distribution of both the return and
the volatility process. Intuitively, SV allows for the possibility of random (but rather small)
contemporaneous volatility shocks due to news events and policy changes. In other words,
there may exist unobserved contemporaneous variables that affect the volatility process, which
is not possible in GARCH.

Despite their parsimonious structure, intuitive appeal and popularity in theoretical option
pricing, SV models have been much less popular than GARCH in empirical applications. This
is exclusively due to the difficulties associated with estimating SV models using conventional
Classical econometric methods. Specifically, models of discrete-time stochastic volatility can-
not be estimated with likelihood-based methods because the likelihood function is not avail-
able analytically.* Bayesian estimation offers a substantial computational advantage over any
Classical approach because it avoids tackling very difficult, if not intractable, numerical opti-
mization procedures. This has turned the development of fast and efficient Bayesian MCMC
algorithms for the estimation of SV models into one of the most promising and challenging
tasks of modern time series analysis.’

The SV parameters are estimated by implementing the MCMC algorithm of Chib, Nardari
and Shephard (2002), which builds on the procedures developed by Kim, Shephard and Chib
(1998).5 The specification and model selection tests are based on the filtering methods of Pitt

*In the Classical framework, Sandmann and Koopman (1998) propose a Monte Carlo Likelihood (MCL)
method for estimating simple (plain vanilla) SV models. For a Simulated Maximum Likelihood (SML) esti-
mation method of heavy-tailed SV models see Liesenfeld and Jung (2000).

For a general reference on MCMC methods in financial econometrics see Johannes and Polson (2002).

6For an alternative reference on Bayesian analysis of SV models see Jacquier, Polson and Rossi (2002).



and Shephard (1999). The marginal likelihood input to the computation of Bayes factors is
constructed as in Chib (1995), and Chib and Jeliazkov (2001).

The paper is organized as follows. Section 2 describes the size and statistical significance
of seasonal periodicity in the daily S&P 500 average returns and average absolute returns.
Section 3 discusses the plain vanilla Gaussian SV and the fat-tailed SVt models, and then
presents in detail three periodic SV specifications which condition on day of the week, post-
holiday and month of the year information in both the mean and the conditional variance.
The SV specifications lead to the testing hypotheses presented in Section 4. A sketch of the
MCMC algorithm is offered in Section 5. Section 6 examines the in-sample and out-of-sample
conditional dynamics of the SV models and discusses Bayes factors as a diagnostic tool for
model selection. Section 7 discusses the results and Section 8 concludes.

2 S&P 500 Returns Data

Let P, denote the daily closing value of the S&P 500 Composite Price Index. Then, the
continuously compounded per cent returns are constructed as
B

y: = 1001og Iz

t—1

(2.1)

The information available to the econometrician at time ¢ is Fy = {y; y;—1, ..., y1}. The sample
size of the daily returns is 7" = 5552 and covers the 22 year period from January 1, 1980 to
December 31, 2001. The source of the data is Datastream.

2.1 Descriptive Statistics and Seasonality

Table 1 presents the descriptive statistics of y;, |y;| and log |y;|. These statistics verify that
daily returns exhibit negative skewness, high kurtosis and low short-lived serial correlation.
Absolute returns are extremely noisy and persistent: they have high positive skewness, im-
mense kurtosis, and long-lived positive serial correlation. Finally, the log-absolute returns are
much closer to normality than the daily y; and |y|.

Table 2A presents the day of the week seasonal behaviour of the data. Specifically, Mondays
exhibit by far the lowest average return (which is essentially zero) and the highest volatility,
where the latter is proxied simply by the mean of |y;|. Further, we pay special attention to the
HOL days, which we define as the weekdays that follow a non-trading weekday (i.e. HOL is a
post-holiday). HOL days remarkably have a negative average return and very high volatility,
which is 24.6% higher than their complement (i.e. the non-HOL days).

Table 2B displays the month of the year seasonality. October is by far the most volatile
month in that the sample mean of the October absolute returns is 29.6% higher than that
of the rest 11 months. January has the highest return and second highest volatility. June is
the quietest month (least volatile). An important aspect of these data is shown in Table 2C.



Specifically, these results remain largely unaffected when we exclude the three most volatile
days of the sample: Monday, October 19, 1987 (the minimum), to Wednesday, October 21,
1987 (the maximum). Monday and October are still the most volatile of all days and months,
respectively. However, October’s volatility is now only 19.4% higher than its complement.

2.2 Statistical Significance and Bootstrapping

Even though it is clear that each day and month has a different sample mean for the daily
return and volatility level, it is also crucial to determine which of the seasonal effects are
statistically significant. We use bootstrapping to simulate the empirical distribution of the
seasonal sample means and perform formal hypothesis testing. This is a first step in deter-
mining the significance of periodic seasonality in daily volatility (seasonal heteroscedasticity)
by conducting a careful model-free examination of the data. As we will see, the results offer
ample motivation for the periodic specification of the stochastic volatility models that follow.
Specifically, the null hypotheses are all one-sided and test whether (for example) the returns
of January are equal versus higher (or for other calendar effects lower) than the rest of the
months. Each hypothesis has been tested at 90%, 95%, and 99% confidence levels. The details
on forming one-sided hypothesis tests using bootstrapping are in Appendix A (also see Hansen
(2003)).

Tables 2A and 2B demonstrate that the null hypothesis is only rejected for the Tuesday and
Wednesday returns with 90% confidence, and for the September returns with 95% confidence.
This is a striking new result based on the bootstrapping of the seasonal sample means. Among
the 18 seasonal dummies examined, only three are statistically significant in their average
returns. In fact, two of the three (Tuesday and Wednesday) are significant only at the low
level of a = 10%, and then become insignificant when excluding the three Crash of 1987
outliers (see Table 2C). None of the calendar effects discussed extensively in the asset pricing
literature such as Monday, Holiday, January and October are actually statistically significant
in the daily returns of the S&P 500 series!

These results change drastically when we test for seasonal heteroscedasticity. For the
day of the week effect in absolute daily returns (a model-free proxy of volatility) Monday
is rejected with 95% confidence, whereas Wednesday and HOL with 99% confidence. For
the month of the year effect in absolute daily returns, May, June, July and October are
rejected with 99% confidence and December with 90% confidence. Hence many of the seasonal
effects that the asset pricing literature has investigated in expected returns turn out to be
statistically significant only in volatility, namely Monday, Wednesday, Holiday and October. It
is important to note that as Tables 2C and 2D demonstrate, these results are not driven by the
Crash of 1987 and tend to remain valid for four different subsamples examined. In particular,
removing the three most volatile days of the sample (October 19-21) does not change the
results noticeably: the volatilities of Wednesday and October remain statistically different to
their complements with 99% confidence, and the null for Monday’s volatility is now rejected
with 90% confidence instead of 95%. Further, all seven calendar effects which are statistically



significant for the full sample remain significant for at least two of the four subsamples, while
three seasonals are so for three of the four subsamples. Interestingly, January is the one
prominent calendar effect, which is statistically significant for neither returns nor volatility
and this is true for all four subsamples.

Figure 1 displays the seasonal heteroscedasticity of the S&P 500 index by graphing the
u-shaped day of the week and the month of the year average absolute returns over the entire
sample. Figures 2 and 3 isolate the effects of Monday and Wednesday on the one hand, and
January, October and HOL on the other. These two figures offer a visual inspection of (i)
the overlap of the two bootstrap distributions for each seasonal mean and its complement,
and (ii) the position of a sample mean in the bootstrap distribution of its complement. For
Monday, Wednesday and October we also graph the bootstrap distributions excluding the
three most volatile days of the sample (October 19-21) and thus provide a visual illustration
of the fact that the statistical significance of these three seasonal volatility effects is robust
to the three day exclusion. In short, there is strong quantitative and visual evidence that for
the dataset examined here, there is clear misspecification if we assume that the volatility of
all days and months persists around the same constant. It is important to note that we do
not argue that the seasonal effects remain constant over time or that the stronger effects are
statistically significant every single time period. On average, however, seasonality in volatility
is strong and statistically significant throughout the entire sample.

3 Stochastic Volatility

3.1 The Plain Vanilla SV model

In the stochastic volatility (SV) framework, the plain vanilla SV model presents the benchmark
against which model comparisons will be conducted. According to this plain vanilla SV
benchmark, the daily S&P 500 returns are assumed to follow a univariate discrete-time AR(1)
process and are driven by Gaussian innovations:

Yo =+ py1 + wr (3.1)

Wt = E¢V¢, Et ~ NID (O, 1) (32)

The persistence of the stochastic conditional volatility v, is captured by the latent log-
variance process h;, which is modelled as a dynamic Gaussian variable:

vy = exp (he/2) (3.3)

he = p+ Xy + ¢ (hur — p) + oy, 1y~ NID(0,1) (3.4)



In the SV model, return and volatility innovations are independent: {¢;} L {n,}. Further,
the model assumes (and the estimation algorithm imposes) |p|, |¢| < 1 so that both returns
and their volatility are stationary processes.” Finally, all SV specifications examined in this
paper reduce 3'X; = Byy—1. In words, if 3; < 0 the lower the return shock, the higher
the conditional variance in the next few periods. This simple specification allows for a level
component measured by (3,11, as well as a dynamic component measured by ¢’ B1Yi—j. In
the following sections, the plain vanilla SV specification is generalized to account for the fat
tails (excess kurtosis), and seasonal periodicity of the daily S&P 500 returns and volatility in
the form of day of the week, holiday, and month of the year periodic calendar effects.

3.2 SV with Fat Tails (SVt)

Excess kurtosis is a highly documented higher order moment property of daily equity returns,
which deviates from Gaussian behaviour. The presence of fat tails in daily returns implies
a positive probability that very large positive or negative shocks may occur. For example,
in the case of the S&P 500 daily returns sample examined here, such shocks are up to 23
standard deviations below, and up to 8 standard deviations above the daily return mean. A
standard way of modelling fat tails is by assuming that the daily innovations follow a Student+
distribution:

wy = wvy,  up ~iid t(0,1,v) (3.5)

This assumption defines the SVt model.

The univariate SV models with either Gaussian or Student-t innovations can be put in a
convenient state-space form. Specifically, Kim, Shephard and Chib (1998) take a logarithmic
transformation of the observed returns data and approximate the log x? (1) distribution by
a seven-component mixture of normal densities. Then, both the transformed data and the
log-variance equations are linear and conditionally Gaussian. This transformation to a con-
ditionally Gaussian state-space model via a mixture of normals approximation allows the use
of the Kalman filter and has been fundamentally important in the development of efficient
MCMC estimation procedures (see Appendix B for some of the details).

3.3 Periodic Stochastic Volatility (PSV)

This paper introduces a set of periodic SV specifications in which the constants (levels) in
both the conditional mean and the conditional variance are generalized to account for three
distinct types of seasonality: day of the week, holiday (non-trading day) and month of the
year effects. In the PSV framework, we explore the three following specifications with both
Gaussian and Student-t innovations.

"In practice, the stationarity restrictions are never violated for daily returns data.



3.3.1 A Comprehensive Specification with a Cyclical Month of the Year Effect
(PSVe)

In the high-dimensional specification we denote as PSV, the mean has a simple day of the
week and holiday effect:

o= =ap;+ any (3.1)
apy = 8o+ 61 MON, + 8,TUE, + 6sWED, + 8, THU, + 6sHOL, (3.2)

and a parsimonious cyclical six-term month of the year effect®

. 2 2T . 47
ope = 56 Sin Emt + 57 COS Emt + 58 Sin Emt
4 A 67
+(59 COS <Emt> + (510 Sin <Emt> + (511 COS (Emt) (33)

where HOL, is a dummy variable for the day which follows a non-trading day, that is a
weekday which follows a weekday for which the market was closed (i.e. HOL,; is a post-
holiday). All the day dummies are in {0, 1}, and m; € {1,2,...,12}. Note that the constant
of the Fourier expansion is absorbed by dy.

Similarly, the volatility process is generalized to account for the three seasonal effects:

vy =lrexp (he/2), 1 =exp(y,/2) (3.4)
Ve = VDt T Ve (3.5)

. 2T . 2T n . 47
= in|— —m sin [ —m
Yt Ve S 19 my 77 COS 1o Vs 1o

4r . [ 6m 6
+74 COS T3 + Y10 sin T3 + 741 COS T3 (3.7)

8 Any periodic function f (m;) can be represented by f (m;) = Z?:o [a; sin (25 my) + b; cos (F5my)],

12
where a; and b; are the Fourier coefficients. These are the regression coefficients obtained by regress-
2mj

in my) on sin (25m,) and cos (25m,). In notation local to this footnote, we use the approximation
g 12 12

f(ms) =by + aysin (Ql—gmt) + b1 cos (%mt) + as sin (%mt) + bs cos (%mt) + a3 sin (%mt) + b3 cos (%mt),
where by is absorbed by the constant of the return equation. Clearly, the three frequencies used
are w; = %l for j = {1,2,3}. The phase of this Fourier process is equal to by + b1 + by + b3, which
denotes where the Fourier cycle is at m; = 0. For more details on the Flexible Fourier Form (FFF)
see Gallant (1981).



Note that there is no need for a constant in v,,, because it is absorbed by u, which is

the “fundamental” or acyclical component of the log-variance h;. In words, the conditional
standard deviation of the PSV, specification is subject to the seasonal level effect [;, which
is separate from the dynamic component exp (h;/2).

Clearly, the PSVy model is designed to capture all three calendar effects in both the first
and the second conditional moments using (in the context of the SV framework) the lowest
parameter dimension possible. The purpose of the PSV; specification is not only to isolate the
exact effect of each day and month, but more importantly to test whether adjusting the return
and volatility levels to fully account for seasonal periodicity results in superior performance.

The key to this specification is the six-term Fourier approximation of the month of the
year effect. The dimension of this approximation was chosen such that it fits the monthly
seasonality reasonably well, while using substantially less parameters than a series of eleven
monthly dummies. The six-term Fourier approximation is shown in Figure 4. For the PSV(
specification, the MCMC algorithm must provide estimates of the four sets of parameters
0 = {0,,v,0,5,03}. Here, 0; = {00, p} is the set of parameters of the conditional mean,
0y = {u, B, 0,0%} is the set of parameters of the Gaussian log-variance process, and 3 =
{5j, ’yj}, 1 < j <11 are the dummy and Fourier coefficients in the mean and the conditional
log-variance, respectively. All § parameters are time invariant.

3.3.2 Two Parsimonious Periodic Specifications (PSVy, PSVy)

It is useful to also examine two parsimonious low-dimensional PSV specifications, which
selectively account for the stronger seasonal return and volatility effects. In the case of the
PSV;, model, the mean has the following specification:

O = 0y = (50 + 51MONt + (52WED,§ + (53HOL,§ + (54JAN¢ + (55OCE (38)

Clearly, §¢ is the constant for any day other than Monday, Wednesday and HOL, and any
month other than January and October.
Similarly, the volatility seasonal level effect of PSV7, is:

v =11 MON; + v, WED, + v,HOL; + v, JAN; + v;0CT, (3.9)

Isolating the Monday, Wednesday, and Holiday effects on the one hand, and the January
and October effects on other hand, clearly provides for a parsimonious PSV model. Note that
the January and October volatility scale factors are consistent with the specification of Glosten,
Jagannathan and Runkle (1993). More importantly, this parsimonious specification allows for
testing how well the PSV, model performs against both the cyclical PSV specification and
the aperiodic plain vanilla SV model.

We define PSVy as the second parsimonious specification, which only conditions on the
strongest and highly statistically significant seasonal effect, the non-trading day HOL effect.

10



The PSVy model ignores day of the week and month of the year effects and is therefore highly
parsimonious. The mean and log-variance levels are simply

a=o; =0 +0,HOL, (3.10)
v =711 HOL, (3.11)

3.3.3 Seasonality and Fat Tails (PSV't)

All three PSV specifications presented above assume Gaussian return innovations, but have
an equivalent fat-tailed representation which assumes Student—t innovations. Hence we spec-
ifty PSVte, PSVtr, and PSVty. The fat-tailed periodic specifications are instrumental in
examining the relation between fat tails and seasonality.

4 Testing Hypothesis

In Section 2, we conducted model-free testing of the statistical significance of seasonal peri-
odicity and seasonal heteroscedasticity using bootstrapping. In this section, we discuss a set
of testing hypotheses, which are based on appropriately specified stochastic volatility models.
We will explore two types of tests: (i) measuring whether the set of estimated Student+ and
periodic parameters are statistically different from zero, and (ii) assessing the overall perfor-
mance of all SV specifications by ranking them using the toolkit discussed in the next two
sections.

4.1 Parameter Significance

The Gaussian and fat-tailed stochastic volatility specifications discussed thus far {SV, PSV,
PSVy, PSVg}and {SVt, PSVte, PSVty, PSVity}, respectively, provide a framework for for-
mally testing three hypotheses on parameter significance. First, does the conditional Student-t
distribution fit the data better than a Gaussian? In other words, do we get low values for the
estimate of the degrees of freedom parameter v7 Second, does a full account of the periodic
seasonal level effects in both the first and the second time-varying moments result in large
seasonal coefficients, which are statistically different from zero? Further, are there parsimony
gains from reducing the high dimension of PSV to the lower dimension of PSV}, and even
more so PSVy? Third, is there interaction between fat tails and seasonal heteroscedasticity?
Specifically, does the conditioning on day of the week, holiday, and month of the year effects
reduce or eliminate the need for fat-tailed SV specifications? These are summarized by three
separate null hypotheses:

H, : Plain-Vanilla SV

or
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HY © v >30; No Fat Tails (4.1)

HP 0j=7;=0Vj; No Seasonality
Hf H' and HP
H,: otherwise (4.4)

4.2 Performance Evaluation

We assess the conditional dynamics of all SV specifications by computing one-step ahead
density forecasts. We evaluate the relative performance of each specification by ranking all
SV models according to the likelihood-based Bayes factor criterion. Specifically, we examine
four questions, which we answer by comparing the performance of the following four sets of
models:

e Should we condition on the three seasonal effects? (SV vs. three PSV specifications)
e Should we use the Student-t distribution? (SV vs. SVt)

e What is the relative importance of fat tails and seasonality? (SVt vs. three PSV
specifications)

e Are fat tails necessary after conditioning on seasonality? (three PSV vs. three PSVt
specifications)

For all four questions, we will examine both the full sample and an adjusted sample which
excludes the three extreme outliers of October 19-21, 1987. These three dates capture the
Crash effect, as October 19 is the minimum return and October 21 is the maximum return in
the sample. This is of interest as we need to determine the extent to which the fat tails on the
one hand, and the Monday, Tuesday, Wednesday and October effects on the other hand, are
driven by the three observations. The set of tools we use in order to answer these questions
are presented in the next two sections.

5 Bayesian MCMC Estimation

We perform Bayesian MCMC estimation by constructing a Markov chain whose limiting dis-
tribution is the target posterior density of interest. This Markov chain is a Gibbs sampler in
which all parameters are drawn sequentially from their full conditional posterior distribution.
The chain is then iterated a large number of times and the sampled draws, beyond a burn-in
period, are treated as variates from the target distribution.

12



For example, in the case of the high-dimensional PSVts model, the MCMC algorithm
produces estimates of the posterior means of (i) the parameters of the return equation {6, v},
where 0, = {a, p}, (ii) the log-volatility parameters 0y = {u, 81, ¢,c?}, and (iii) the seasonal
parameters 03 = {7, 0} for the day of the week, holiday, and month of the year effects in both
the mean {d;} and the variance {v;}, j < 11.

The key to estimating the PSV models is the efficient sampling of the seasonal level effects
in the conditional variance. The paper adds a simple Gibbs step to the Chib, Nardari and
Shephard (2002) algorithm, in which the v = {vj} vector is drawn conditional on the log-
volatilities {h;} using a precision-weighted average of prior information and the conditional
likelihood. Despite its simplicity, this method is numerically superior to the sampling of v in
the same block as the log-volatility parameters 0, because it avoids the numerical problems
which may arise from high-dimensional optimization. The results indicate that the simple
Gibbs step is highly efficient. The details on sampling {vj} are summarized in Appendix B.

5.1 MCMC Diagnostics

The mean of the MCMC draws is an asymptotically efficient estimator of the posterior mean
of 0 (see Geweke (1989)). The Numerical Standard Error (NSE) is the square root of the

asymptotic variance of the estimator:
S
NSE =14 — 5.1
V5 (5.1)

By
S=9+2) K(2)7 (5.2)
j=1

Here, M = 5,000 is the number of iterations (beyond the initial burn-in of 1,000 iterations),
7 =1,..., By = 500 lags is the set bandwidth, z = E%v and ﬁj is the sample autocovariance
of the MCMC draws of each estimated parameter cut according to the Parzen kernel K (z).

The NSE diagnostic is distinct from the MCMC standard deviation reported in Tables 3
through 7. The latter is simply a measure of the variation in the MCMC parameter draws. In
contrast, NSE is a measure of variation of the posterior mean estimate across many MCMC
chains that can be potentially run. In other words, NSE measures how much difference one
should expect in the estimate of the posterior mean if the experiment were to be repeated,
and hence provides a measure of convergence.

The Relative Numerical Inefficiency (RNI) is given by

By

RNI =142 K(2)p(j) (5.3)

j=1
where p (j) is the autocorrelation in the MCMC draws at lag j for the parameter of interest.
RNI accounts solely for the variance inflation (inefficiency) due to the serial correlation of

13



the MCMC parameter draws (see Geweke (1992) for the details). In general, the lower the
serial correlation, the lower the number of iterations needed to attain a given level of numerical
accuracy. For example, if RNI were to be halved, one would need half the number of iterations
to attain the same level of numerical accuracy. The relatively low RNI values reported in
Tables 3-7 reflect the efficiency of the two separate Metropolis-Hastings algorithms used to
sample 0, and v.

5.2 Volatility Estimates

The conditional dynamics of the SV model are essentially driven by the persistent, latent and
Gaussian log-volatility process {h;}. The tools of Chib, Nardari and Shephard (2002) allow
the simulation of three distinct estimates of the {h;} vector. First is the smoothed volatility.
The MCMC chain samples from the density h®) | Fr, 0@ . In words, it samples the {hgi)

vector at a given iteration i = 1, ..., M conditional on the information F7 from the full dataset

(hence smoothed) and the parameter vector draw o).

Second is the filtered volatility. The Auxiliary Particle Filter of Pitt and Shephard (1999)
samples from the density h‘g | F;, 0. In words, it generates a j = 1,..., M = 2,000 vector of
log-volatilities (the “particles”) at each ¢, given the information set F; and the true values of
0 proxied by the MCMC posterior mean estimates. This is a non-trivial task performed by an
Auxiliary Sampling-Importance Resampling algorithm. The SV application of the algorithm
is also detailed in Chib, Nardari and Shephard (2002).

Third is the one-step ahead predictive volatility. This samples from h{ o1 | Fi, 0. Given a
vector of j = 1,..., M = 2,000 particles from the filtered density hi | F, 0 it is straightfor-
ward to compute the one-step ahead vector of particles from the predictive density using the
Gaussian evolution equation:

ho=p+B8Xe+¢ (bl —p) +only,  nq~NID(0,1) (5.4)

5.3 Log-Likelihood

The likelihood function of SV models is not available analytically and hence must be simulated.

T
L(6;y) = f(y1,..yr | Fo,0) H (e | Fi-1,0 (5.5)

Specifically, the log-likelihood function is evaluated under the predictive density as

T T
logL =" log f(y: | Fr1,0) = > log f; (y | hs,0) (5.6)
t=1

t=1
where h; is the one-step ahead predictive volatility h; | Fi_1, 6, and 0 is taken as the posterior
mean estimate from the MCMC simulations.
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6 Performance Evaluation

A statistical model will not be empirically successful unless it is well specified. For example,
a risk manager may be interested in the average probability with which an event arises.
This is determined by a well-specified unconditional distribution. More importantly, however,
managing day-to-day risk involves making decisions conditional on all available information
at time t. This requires a well-specified conditional distribution. This section formally tests
whether the PSV models (i) perform better in capturing the in-sample and out-of-sample
conditional dynamics of the daily S&P 500 returns and volatility period-by-period, and (ii)
are better specified than the SV and SVt benchmarks using Bayes factors as the criterion for
model selection.

6.1 Density Forecasts and Conditional SV Dynamics

Kim, Shephard and Chib (1998) form a set of diagnostic tests for assessing the adequacy of
the conditional distribution of SV models using the simple Rosenblatt (1952) transformation.
This defines SV residuals as

urr1 = Pr(Yipr < wegr | hey, 0) ~UID[0,1] (6.1)

where y; 1 is the ex-post realized return and 6 is the posterior mean estimate. The probability
is evaluated using the ex-ante forecasted cumulative distribution function, where {h;,1} is the
one-step ahead predictive log-volatility hyyq | Fi, 0. The uniform residuals are then mapped to
a normal distribution simply because there is a larger battery of specification tests available
for a normal random variable. Then, under the null that the model is correctly specified,
nir1 = f! (ugy1) should be Gaussian white noise. Note that the normalized residuals {n;;}
contain the same information as the uniform {u;}.

Using these normalized residuals as a basis for diagnostic testing is not restricted to SV
models. Berkowitz (2001) suggests the use of n;,1 (also known as density forecasts) for eval-
uating the performance of generic risk models. An important advantage of density forecasts
is that there are as many of them as data observations. In contrast, for example, the popular
value-at-risk (VaR) calculation measures the frequency of tail events and hence produces too
few tail observations for reasonable sample sizes. Further, note that density forecasts also
account for the size of observations, not just their frequency. In short, therefore, density fore-
casts offer statistical power that is missing in VaR calculations, while using information from
the entire conditional distribution, not just a single quantile.

Tables 8A, 8B, and 8C report the specification tests for the in-sample and out-of-sample
{ns11} diagnostics. We follow the notation of Bowman and Shenton (1975) and define v/b; =
ms/ m;’/ > and by = my /m3, where m; is the jth centralized sample residual moment. Then,
we define SKEW and KURT to be the asymptotic standard normal test statistics of v/b;
and by respectively:
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SKEW = \/?/E ~ N (0,1) (6.2)

KURT = \/g (by — 3) ~ N (0,1) (6.3)

The identification of skewness and excess kurtosis in the density forecasts is very important.
As it becomes increasingly difficult to capture the properties of higher order moments, mis-
specification occurs more often at the tails of the predictive density. It is straightforward to
prove that if the observed data y; is fat-tailed relative to the SV model, then the density
forecasts will be fat-tailed relative to the standard normal.’

6.2 Model Risk and Bayes Factors

Model risk arises from the uncertainty over selecting a model specification. Bayes factors can
account for model risk by providing a framework for specification diagnostics over a set of
given models. Specifically, a Bayes factor offers a summary of the evidence provided by the
data in favour of a scientific theory represented by a statistical model.!? Consider the two
competing hypotheses (models) M; and M,. Using Bayes theorem, it is straightforward to
show that the Bayes factor By (in favour of model M,) is the ratio of posterior to prior odds

_p(My | y)m (M)

By = 6.4
%= D Oh [) 7 (0h) o0
and is computed as the ratio of the marginal likelihoods
p(y | Ma)
By = —/———= 6.5
% (] M) (0:)
The marginal likelihood of a model is defined as
P 1 3) = [ 201050 = [ p(y10.00)7 (0| 217 d9 (6.6)

Note that the marginal likelihood is an averaged and not a maximized likelihood. This implies
that the Bayes factor is an automatic “Occam’s Razor” in that it integrates out parameter
uncertainty.!! Further, the marginal likelihood is simply the normalizing constant of the
posterior density. Suppressing the model index M; for simplicity, the marginal likelihood can
be written as

9For the proof see Berkowitz (2001).

10Gee Kass and Raftery (1995) for a review of Bayes factors.

1 OQccam’s razor is just the principle of parsimony. For an econometrician, the most useful statement of
the principle is “among two competing theories, which make exactly the same prediction, the simplest one is
best”.
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_ Sl (0)

where f (y | 0) is the likelihood, 7 (f) the prior density, 7 (6 | ) the posterior density, and 6 is

(6.7)

evaluated at the posterior mean estimate 6*. Since 6 is drawn in the context of Gibbs MCMC
sampling, the posterior density 7 (6 | y) is computed using the technique of reduced conditional
MCMC runs of Chib (1995). For the parameter blocks of f (the log-variance parameters and
the degrees of freedom) which are sampled in the MCMC chain by implementing a Metropolis-
Hastings algorithm, the posterior density is computed as in Chib and Jeliazkov (2001).

To assess the information provided by a Bayes factor, it is useful to consider twice its
natural logarithm so as to be on the same scale as the likelihood ratio statistics. To make
the interpretation more familiar, Table 10A presents the range of the values of 21n (By;) that
constitute evidence against the null hypothesis M;. Finally, note that model comparisons
based on Bayes factors are asymptotically equivalent to evaluations based on the Schwartz (or
equivalently the BIC) criterion.'?

7 Results and Discussion

7.1 Parameter Estimates

Tables 3 through 7 present the MCMC posterior mean estimates for the parameters of all SV,
SVt, PSV and PSVt specifications examined in this paper. As seen in Table 3, there are
four benchmark properties for the plain vanilla SV parameter estimates when applied to the
daily S&P 500 returns: (i) low persistence in the mean (p = 0.052), (ii) very high persistence
in the conditional log-variance (¢ = 0.969), (iii) a negative relationship between volatility and
lagged returns (5, = —0.088), and (iv) an important stochastic component in the conditional
log-variance (02 = 0.028 or 0 = 0.167). All parameters are well estimated as indicated by their
low RNT and close to zero NSE values. In general, for all aperiodic and periodic specifications
we run, the non-seasonal parameter estimates for persistence, leverage and stochastic variance
are very similar to the benchmark SV case. Hence we will now focus exclusively on the added
value of each PSV, SVt and PSV't specification relative to the plain vanilla SV. In particular,
we will emphasize the three following strong results.

In the SVt model, the role of the degrees of freedom parameter v is to capture the large
excess kurtosis due to the frequent outliers in the unconditional distribution of daily returns.
The MCMC posterior mean estimates for v are presented in Tables 4A and 4B. As expected,
the posterior mean of v is relatively low (v ~ 11) for the full sample. Surprisingly, v remains

12The Schwartz criterion is defined as S = logp (y \ 0., Mg) —logp (y | 0, Ml) — 1 (dy — dy)log (T'), where

d; is the dimension of 6;. As T'— oo the Schwartz criterion satisfies %% — 0 and thus may be viewed
as a rough approximation to the log of the Bayes factor. Note that BIC' = —25. Again, see Kass and Raftery

(1995) for the details.

17



low (v &~ 12) even when we re-estimate the SVt model on the same data but exclude the three
days of the Crash of 1987 (October 19-21). Therefore, the v estimate is robust to exclusion
of the largest outliers in the data.

Without exception, for all PSV't specifications, the inclusion of the seasonal level effects
in volatility essentially eliminates the need for a Student—t distribution. Even in the presence
of only the (very statistically significant) holiday effect, the degrees of freedom parameter
jumps from a value of v ~ 11 in SVt to a Gaussian-like value'® of v ~ 38 in PSVty. The
addition of more seasonals reduces even further the need for fat tails: the more seasonals
we accounted for, the higher the value of v (v ~ 47 for PSVt; and v ~ 52 for PSVtc).
These high v estimates appear to be statistically significant!* since in all cases the 5% lower
percentile of the MCMC draws for the degrees of freedom is very close to a Gaussian value
of 30. Further, consistent with one of the main themes in this paper, these results are robust
to the exclusion of the three Crash of 1987 days. The exclusion raises the v values slightly,
but all conclusions relevant for the full sample are still valid. In conclusion, the combination
of the low v estimate for SV't, its lack of sensitivity to the 1987 outliers, and especially the
massive effect of seasonal heteroscedasticity on fat tails provide the first strong result of the
evidence offered by the parameter estimates.

Having established the effect of seasonal heteroscedasticity on fat tails, Tables 5, 6 and 7
present the MCMC posterior means for the seasonal parameters in the mean and log-variance
of the Gaussian PSVy, PSV;, and PSVy specifications. Perhaps the easiest specification
to interpret is the parsimonious PSV; model, which conditions both returns and their log-
variance on Monday, Wednesday, Holiday, January and October effects. In this model, January
has the highest positive effect on the conditional mean (§, = 0.053), and HOL the highest
negative effect (05 = —0.081). In fact, a common theme across all three seasonal models is
that the holiday effect is by far the strongest in both returns and volatility. In the PSVp
model, HOL raises the level of the conditional variance by a factor of exp (v5) = 1.54. This
is much higher than the Monday volatility effect (exp (y,) = 1.09), the January volatility
effect (exp (v3) = 1.24), and even the October volatility effect (exp (v,) = 1.25). As expected,
Wednesday lowers the conditional variance by a factor of exp (7,) = 0.88. The strength of
the periodic volatility effects provides the second major finding offered by the evidence. Note
that in the full parametric PSV;, model, the January volatility effect is strong and statistically
significant even though the bootstrapping evidence did not provide such strong support.

Similar to our model-free discussion of the seasonal properties of the data using bootstrap-

3For values v > 30 the Student-t distribution becomes indistinguishable from the Gaussian. From a
technical point of view, note that the higher the value for v, the more the Student—t distribution resembles
the Gaussian and hence the more difficult it is to estimate the exact value for v. This is reflected in the large
NSE and RNI values for the v estimates of the PSV¢ models.

14]deally, in Bayesian estimation we measure the statistical significance of the estimated parameters by
forming a Bayesian confidence interval. However, this requires full specification of the marginal posterior
distribution, which for the SV parameters is not available analytically. Indeed, this is the reason why we
perform MCMC estimation in the first place.
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ping, perhaps the most important aspect of the parameter estimates is not their size but their
statistical significance. In the Bayesian MCMC framework, we assess statistical significance
by reporting the 5% and 95% percentiles of the MCMC draws and examine whether the range
of 90% of the draws includes zero'®. The third and final finding on the parameter estimates is
consistent with the bootstrapping results: none of the seasonal coefficients in the mean (even
in the comprehensive PSV: model) are statistically different from zero! In contrast, all the
seasonal parameters in the log-variance of the PSV, model are quite statistically different
from zero (with the exception of Monday, which is at the very margin). Interestingly, for the
PSVe specification only one of the six Fourier coefficients is statistically different from zero
leading us to believe that modelling the seasonal behaviour of all 12 months is not necessary
as not all are statistically significant in the data.

7.2 Bayes Factor Diagnostics and Density Forecasts

All SV specifications are ranked by the likelihood-based Bayes factor criterion. The Bayes
factor calculations are shown in Table 10B and present us with a very strong result. Without
exception, the Bayes factor rankings are purely driven by the degrees of freedom estimates:
the lower the estimated v, the higher the ranking of the model. In other words, SVt is ranked
first and SV last. Following SVt are all the PSVt models, where PSVty (v = 38) is second,
PSSVt (v = 47) is third, and PSVts (v = 52) is fourth. This result is in stark contrast
to the idea behind the high estimated values for the degrees of freedom parameter v of the
PSVt specifications. For the 22 year sample of daily S&P 500 data, the PSV't estimates of
v are consistent with the Gaussian distribution. Therefore, whereas the data indicates that a
Student-t specification is not necessary when we explicitly model seasonal heteroscedasticity,
the likelihood (and hence the Bayes factors) favours the model with the lowest . We believe
that this is a general weakness of likelihood-based measures, which just tend to magnify the
effect of outliers, and it does not invalidate the effect of seasonal heteroscedasticity on fat
tails. For example, we recomputed a set of artificial values for the PSV't log-likelihood using
the estimated PSVt parameters and an artificially set v = 11.11 (because it is equal to that
of SVt). Now, the PSVt models dominate the SVt (not reported in the Tables) even from
a likelihood point of view. In other words, it is precisely the conditioning on the periodic
volatility effects that raises the estimate of v, and therefore makes the PSV't less attractive
than SVt from a likelihood point of view.

An examination of the ranking of the Gaussian PSV models leads to three interesting
conclusions. First, all of them dominate the plain vanilla SV. Second, the low-dimensional
PSV;, dominates the high-dimensional PSV. Hence from a likelihood point of view, it is best
to explicitly model only the periodic volatility effects that are clearly statistically significant.
Third, the PSVy and PSVy are equally ranked. Therefore, even though a full account of

15Recall that each seasonal effect changes the mean of the return and log-variance equations in one direction,
i.e. Monday raises volatility, while Wednesday lowers it. Hence this is roughly equivalent to one-sided
hypothesis testing at the a« =5% level.
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seasonality (PSV() results in higher log-likelihood than just conditioning on the holiday effect
(PSVg), the penalty on the high dimension of PSV( for lack of parsimony cancels out its
likelihood advantage. Figure 5 displays the difference in the period-by-period predictive log-
densities between SVt and all periodic specifications over time. The sum of these differences
is the difference in the log-likelihoods. Figure 6 shows the cumulative differences, where the
final point on these lines is just the log-likelihood. Clearly, the likelihood dominance of SVt
can be attributed to accommodating better the recurring outliers in the data.

Tables 8A and 8B present the log-likelihood values for the full sample and for selected days
and months. For example, the log-likelihood for Monday is just the sum of the predictive log-
density of each model only for the observations which are Mondays. The ranking of the models
does not appear to be reversed in isolating the likelihood over a given seasonal effect. The one
exception is the strong HOL effect, for which all PSV and PSV't specifications (all of which
condition on at least HOL) dominate the SVt. This is further evidence of the importance of
explicitly modelling the holiday effect, even from a likelihood point of view. The likelihood
values are consistent with the Bayes factor result that PSV], is the best Gaussian model.

The in-sample conditional dynamics of all SV models are assessed by examining deviations
of the density forecasts {n;,1} from the N (0,1) distribution. Table 8C presents the results.
All PSV models perform better than the plain vanilla SV. The low-dimensional PSV;, and
PSVty are the best among all periodic Gaussian and Student-t models, respectively, in re-
ducing the kurtosis of the density forecasts. Again, SVt is the best performer and reduces
substantially the excess kurtosis of the {n;1} from the N (0, 1) distribution. A visually more
attractive way to assess the performance of all Gaussian and Student-t models is by simply
inspecting the Q) plots presented in Figures 7 and 8.

Additionally, we perform an out-of-sample exercise using two full years of return data,
the years 2002 and 2003, by conditioning on the in-sample parameter estimates for the years
1980-2001, which have been presented in Tables 3-7. Unfortunately, it is not numerically
feasible to update the posterior estimate of the parameters every day a new out-of-sample
observation is added because of the substantial time it takes to re-run the MCMC algorithm.
Further, in the out-of-sample case, it is not possible to compute Bayes factors because the
out-of-sample posterior density 7 (6 | y) is not available analytically. The posterior density
can only be simulated in-sample using the MCMC estimation algorithm and implementing
the techniques of reduced conditional runs of Chib (1995) and Chib and Jeliazkov (2001).
Hence we rank the out-of-sample performance of the SV models using the estimate of the
out-of-sample likelihoods presented in Tables 9A for 2003 and 9B for 2002-2003. For 2002,
SVt is still slightly better in terms of its log-likelihood and all other models are virtually
indistinguishable. However, an interesting exception to this rule is that for the 2002-2003
period, the PSV't models have higher likelihood that SVt. Finally, the out-of-sample density
forecasts are worse than the in-sample values, especially in that the variance of {n;,} is far
from unity and closer to the value of 2.
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8 Concluding Remarks

This paper has provided a comprehensive analysis of the day of the week, holiday, and month
of the year seasonal effects in the daily returns and volatility of the S&P 500 index over
the years 1980-2001. We find that Mondays tend to have the lowest return and highest
volatility. Wednesdays have the second highest return and the lowest volatility. January has
the highest return, while October has the highest volatility. Finally, the first trading weekday
after a holiday has a negative average return and very high volatility. More importantly, by
bootstrapping the means of daily returns and daily absolute returns, we have demonstrated
that these three prominent calendar effects are statistically significant only in daily volatility
and not in daily average returns. This result is robust to the exclusion of the three most volatile
days of the sample, Monday October 19, 1987 to Wednesday, October 21, 1987. Therefore,
the evidence clearly indicates that a stochastic volatility model should perform better if it was
generalized to account for the observed seasonal periodicity in volatility.

In this context, the main contribution of the paper is that it introduces and estimates
the periodic stochastic volatility model, and then formally examines the interaction between
seasonal heteroscedasticity and fat tails. The model-specific results point towards three sets
of conclusions. First, consistent with the bootstrapping evidence, we find that conditioning
on the periodic seasonal effects results in estimates for the seasonal coefficients, which are
large and statistically different from zero only in the volatility equation, and not in the return
equation. We also find strong parsimony gains from reducing the dimension of the PSV model
by explicitly modelling only the seasonals that for this dataset are statistically significant.
There is, therefore, clear misspecification if we use an SV model to form an estimate of
tomorrow’s volatility without conditioning on the fact that tomorrow could be (say) a Monday
in October. In fact, the holiday effect is by far the strongest seasonal effect in both returns
and volatility.

Second, the conditioning on day of the week, holiday, and month of the year effects reduces
and even eliminates the need for fat tails. The estimate of the degrees of freedom parameter
in the Student-t distribution of all PSV't specifications is substantially higher than the one for
SVt. In effect, the degrees of freedom estimates are so high that the Student- distribution
behaves exactly like a Gaussian.

Finally, the rankings of all SV specifications according to the likelihood-based Bayes factor
diagnostic and the one-step ahead density forecasts favour the simple SVt model exclusively
because it has the lowest degrees of freedom. All the results above are not sensitive to the
Crash of 1987 outliers.
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Table 1: Descriptive Statistics for the Daily S&P 500
Jan 1, 1980 to Dec 31, 2001 (T=5552)

Returns Absolute Returns Log-Abs Returns
Yi || log [y|
Mean 0.043 0.713 -0.855
St. Deviation 1.040 0.758 1.189
Skewness -2.128 6.575 -1.067
Kurtosis 49.56 143.8 4.873
Minimum -22.83 0.0009 -6.966
STDs from Mean -22.00 -0.941 -5.141
Date Oct 19, 1987 Oct 31, 2001 Oct 31, 2001
Maximum 8.709 22.83 3.128
STDs from Mean 8.33 29.20 3.351
Date Oct 21, 1987 Oct 19, 1987 Oct 19, 1987
corr (Ye,Yi—1) 0.034 0.176 0.052
corr (Y Yi—2) -0.038 0.186 0.058
corr (Y Yi—3) -0.033 0.182 0.090
corr (Yt Yi—10) 0.002 0.122 0.086
corr (Y Yi—a5) -0.030 0.095 0.117

Table 1. Descriptive statistics
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Table 2A: Day of the Week Effect
Days Mean Mean Mean Mean
of s of yP“ of |y,| of |y
Full Sample 5552 0.043 0.713
(0.020,  0.066) (0.697, 0.730)
MON 1060 0.0009 0.052 0.763* 0.702
(—0.066, 0.063) (0.028, 0.077) | (0.713, 0.818) (0.685, 0.719)
TUE 1135 0.078" 0.034 0.725 0.711
(0.029, 0.127)  (0.008, 0.059) | (0.692, 0.758) (0.692, 0.730)
WED 1136 0.076* 0.034 0.662*** 0.727
(0.032, 0.121)  (0.008, 0.060) | (0.631, 0.694) (0.708, 0.747)
THU 1114 0.014 0.050 0.708 0.715
(—0.033, 0.063) (0.023, 0.075) | (0.675, 0.742) (0.697, 0.734)
FRI 1107 0.041 0.043 0.713 0.714
(=0.008, 0.091) (0.017, 0.069) | (0.679, 0.749) (0.695, 0.733)
HOL 184 —0.014 0.045 0.882"** 0.708
(—0.163, 0.130) (0.021, 0.067) | (0.780, 0.984) (0.691, 0.725)

Table 2A: Day of the Week Seasonal Level Effects for the daily returns y;, the daily absolute
returns |y;|, and their complements.

The variables ytD ¢ and |yf’ C| are the day complements of 9, and |yt| respectively. In other words, they
contain the full sample except for the day in that row. For example, the ytD C of Monday are the returns
of all days except Monday. HOL captures the non-trading day (post-holiday) effect and is defined as a
weekday that follows a weekday for which the market was closed. The numbers in parenthesis are the 5%
and 95% quantiles for the means generated by 10,000 bootstrap samples. We display the central 90% of the
bootstrap distribution because this leaves 5% on the side for which the one-sided hypothesis test is performed.
In the mean of ¢y column, a number in bold indicates that the average return for the day in that row is
significantly different from zero. In the mean of ’yt| column, a bold number indicates that the central 90%
of the bootstrap distribution of this day is completely non-overlapping to that of its day complement for up
to two decimal digits. One asterisk indicates that the relevant one-sided null hypothesis that y; = yi\/l Cis
rejected at significance level « = 10% using bootstrapping. Two asterisks are for rejections at &« = 5%, and

three asterisks are for rejecting the null hypothesis at o« = 1% significance.
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Table 2B: Month of the Year Effect
Days Mean Mean Mean Mean
of s of y'¢ of [y:] of |y
Full Sample 5552 0.043 0.713
(0.020,  0.066) (0.697,  0.730)

JAN 462 0.099 0.037 0.754 0.710
(0.015, 0.181)  (0.014, 0.061) | (0.697, 0.813) (0.693, 0.727)

FEB 422 0.019 0.045 0.713 0.714
(—0.055, 0.093) (0.020, 0.069) | (0.664, 0.777) (0.696, 0.731)

MAR 481 0.026 0.044 0.707 0.744
(—0.048, 0.099) (0.049, 0.068) | (0.658, 0.759) (0.697, 0.732)

APR 453 0.074 0.040 0.746 0.711
(—0.008, 0.155) (0.016, 0.063) | (0.691, 0.805) (0.693, 0.729)

MAY 465 0.063 0.041 0.650™** 0.719
(—0.004, 0.126) (0.016, 0.065) | (0.607, 0.693) (0.702, 0.737)

JUNE 472 0.044 0.042 0.620™** 0.722
(=0.016, 0.106) (0.017, 0.067) | (0.583, 0.658) (0.704, 0.741)

JULY 466 0.030 0.044 0.644™** 0.720
(—0.033, 0.092) (0.019, 0.068) | (0.605, 0.684) (0.703, 0.738)

AUG 486 —0.003 0.047 0.697 0.715
(—0.079, 0.071) (0.022, 0.071) | (0.644, 0.752) (0.698, 0.733)

SEPT 445 —0.044* 0.050 0.728 0.712
(—0.127, 0.036) (0.026, 0.074) | (0.672, 0.789) (0.695, 0.730)

oCT 486 0.038 0.043 0.902** 0.695
(—0.093, 0.161) (0.021, 0.065) | (0.802, 1.018) (0.681, 0.711)

NOV 448 0.083 0.039 0.726 0.712
(0.010, 0.158)  (0.016, 0.063) | (0.677, 0.777) (0.695, 0.731)

DEC 466 0.082 0.039 0.671* 0.717
(0.011, 0.151)  (0.014, 0.063) | (0.624, 0.719) (0.700, 0.735)

Table 2B: Month of the Year Seasonal Level Effects for the daily returns v, the daily
absolute returns |y;|, and their complements.

The variables th ¢ and |yiM C| are the month complements of 1/ and |yt| respectively. In other words,
they contain the full sample except for the month in that row. For example, the yiw C of January are the
returns of all days except for January. The numbers in parenthesis are the 5% and 95% quantiles for the means
generated by 10,000 bootstrap samples. In the mean of y; column, a number in bold indicates that the average
return for the month in that row is significantly different from zero. In the mean of |Z/t| column, a bold number
indicates that the central 90% of the bootstrap distribution of this month is completely non-overlapping to
that of its month complement for up to two decimal digits. One asterisk indicates that the relevant one-sided
null hypothesis that y; = yiM Cis rejected at significance level &« = 10% using bootstrapping. Two asterisks

are for rejections at @ = 5%, and three asterisks are for rejecting the null hypothesis at a = 1% significance.
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Table 2C:
Seasonality with and without the three days: October 19-21, 1987
Mean of y; Mean of |y
FULL SAMPLE FULL-3 | FULL SAMPLE FULL-3
ALL DAYS 0.043 0.044 0.713 0.707
(0.020,  0.066) (0.023,  0.066) (0.697,  0.730) (0.692, 0.723)
MON 0.0009 0.022 0.763** 0.742*
(—0.066, 0.063) (=0.032, 0.077) (0.713,  0.818) (0.703,  0.781)
TUE 0.078* 0.073 0.725 0.721
(0.020, 0.127) (0.025, 0.121) (0.692, 0.758) (0.689, 0.754)
WED 0.076* 0.068 0.662** 0.654™
(0.032, 0.121) (0.025, 0.112) (0.631, 0.694) (0.625, 0.684)
ocT 0.038 0.057 0.902** 0.831*
(—0.093, 0.161) (—0.039, 0.151) (0.802, 1.018) (0.761,  0.905)

Table 2C. Seasonality with and without the three most volatile days of the sample period:
Monday October 19, 1987 to Wednesday, October 21, 1987.

The numbers in parenthesis are the 5% and 95% quantiles for the means generated by 10,000 bootstrap
samples. One asterisk indicates that the relevant one-sided null hypothesis that y; = y,f” C s rejected at
significance level & = 10% using bootstrapping. Two asterisks are for rejections at &« = 5%, and three

asterisks are for rejecting the null hypothesis at o« = 1% significance.
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Table 2D:
Statistical Significance in Volatility by Subsamples
Mean of |y
1980-84 1985-89 1990-94  1995-2001
| ALLDAYS [0.730 |o0.727 [0.553 [0.813
MON 0.822** [ 0.822 | 0.605* | 0.792
WED 0.722 | 0.653* | 0.472"* | 0.759"
| HOL 10.835 | 0.937* [0.731** |0.972
JAN 0.727 [0.833 [0.600 |0.829
MAY 0.576*** | 0.637* | 0.528 | 0.797
JUNE 0.637** | 0.633 | 0.519 | 0.673*
JULY 0.626* | 0.631** | 0.489" | 0.776
oCT 0.791 | 1.23* |0.617 | 0.947*

Table 2D: The statistical significance of selected seasonal effects in volatility for four
subsamples.

The first three subsamples are of five years each and the last is of the remaining seven years. The displayed
seasonal variables are the seven calendar effects (two days, four months, one holiday), which in the full sample

(1980-2001) were statistically significant in volatility with at least 95% confidence, plus January.
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Table 3: SV Parameter Estimates
SV Posterior | MCMC  NSE | Lower Upper | RNI
Parameter Mean Std Dev

a 0.039 0.010  0.0002 | 0.022 0.055 | 1.78

p 0.052 0.014  0.0002 | 0.029 0.075 | 1.28
-0.197 0.078  0.0022 | -0.326 -0.069 | 4.13

B4 -0.088 0.010  0.0004 | -0.105 -0.072 | 6.87
) 0.969 0.005  0.0001 | 0.961 0.977 | 3.95
o? 0.028 0.004  0.0002 | 0.022 0.036 | 6.08

Table 3. SV Model:
MCMC Parameter Estimates for the Full Sample.
In all specifications, the MCMC chain run for 5,000 iterations after an initial burn-in of 1,000 iterations.

Lower and Upper indicate the 5% and 95% percentiles of the MCMC draws.
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Table 4A:
SV Estimates of v for all models, Full Sample
Model Posterior MCMC NSE Lower Upper RNI
Mean  Std Dev
SVt 11.11 1.95 0.229 828 16.12 68.96
PSVite 52.3 11.3 2.89 278 65.6  327.6
PSVty 46.7 11.7 294 288 66.2  315.7
PSVity 37.9 9.43 2.00 23.7 60.2 14.41
Table 4B:

Estimates of v excluding October 19-21, 1987
Model Posterior MCMC NSE Lower Upper RNI
Mean  Std Dev

SVt 11.98 1.88 0.200 9.35 15.25 56.41

PSVitc 55.9 5.07 1.15 479 64.4 256.4
PSVty, 08.3 6.38 1.53  47.0 65.2  289.1
PSVty 46.5 15.2 3.98  19.1 63.9 3434

Table 4. MCMC estimates of the degrees of freedom parameter v for all fat-tailed SVt
specifications with and without seasonal periodicity.
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Table 5A: PSV, Seasonal Parameters in the Mean
Seasonal PSVea Posterior || MCMC  NSE | Lower Upper | RNI
Effects | Parameter Mean Std Dev
const do 0.059 0.024  0.0004 | 0.020 0.098 | 1.21
MON 01 -0.018 0.035  0.0005 | -0.077 0.038 | 1.10
TUFE 0o -0.024 0.033  0.0004 | -0.078 0.032 | 0.76
WED 03 0.002 0.032  0.0006 | -0.051 0.055 | 1.52
THU 04 -0.043 0.033  0.0004 | -0.097 0.011 | 0.86
HOL o5 | -0.089 | 0073 0.0011]-0.209 0.032 | 1.17
Fourierl 06 0.011 0.015  0.0003 | -0.014 0.036 | 1.60
Fourier2 07 0.013 0.015 0.0002 | -0.011 0.037 | 1.13
Fourier3 0g -0.006 0.015  0.0002 | -0.030 0.018 | 0.89
Fourierd 0o 0.015 0.014  0.0002 | -0.009 0.039 | 0.80
Fourierb 010 -0.008 0.015  0.0003 | -0.032 0.017 | 1.54
Fourier6 011 0.002 0.014  0.0002 | -0.021 0.026 | 1.09

Table 5B: PSV Seasonal Parameters in the log-Variance
Seasonal PSVe Posterior || MCMC  NSE | Lower Upper | RNI
Effect | Parameter Mean Std Dev
const 1 -0.200 0.088  0.0047 | -0.346 -0.052 | 14.33
MON o2 0.082 0.064  0.0040 | -0.025 0.187 | 19.68
TUE Yo -0.014 0.065  0.0044 | -0.124  0.090 | 23.70
WED Y3 -0.131 0.062  0.0046 | -0.234 -0.029 | 27.10
THU on -0.020 0.063  0.0039 | -0.123 0.081 | 19.59
HOL v, | 0415 || 0111  0.0037 ] 0.233 0.601 | 5.59
Fourierl Yo 0.151 0.085  0.0090 | 0.013 0.293 | 55.43
Fourier2 Y7 0.050 0.080  0.0076 | -0.087 0.175 | 44.42
Fourier3 o 0.006 0.0564  0.0040 | -0.084 0.094 | 27.33
Fourierd o -0.064 0.051  0.0029 | -0.150 0.021 | 15.34
Fourierd Y10 0.039 0.042  0.0018 | -0.027 0.109 | 9.51
Fourier6 Y11 -0.069 0.042  0.0018 | -0.137 -0.002 | 9.34

Table 5. PSVy Model:

MCMC Estimates of the Seasonal Parameters in the Conditional Mean and log-Variance for
the Full Sample.
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Table 6A: PSV; Seasonal Parameters in the Mean

Seasonal PSSV, Posterior || MCMC  NSE | Lower Upper | RNI
Effect | Parameter Mean Std Dev
MON 01 0.008 0.029  0.0004 | -0.040 0.056 | 1.06
WED 0o 0.025 0.026  0.0004 | -0.017 0.067 | 0.946
HOL 03 -0.081 0.073  0.0012 | -0.204 0.041 | 1.33
JAN 04 0.053 0.040  0.0005 | -0.014 0.118 | 0.859
ocT 05 0.014 0.039  0.0005 | -0.050 0.078 | 0.656

Table 6B: PSV; Seasonal Parameters in the log-Variance

Seasonal PSSV, Posterior || MCMC  NSE | Lower Upper | RNI
Effect | Parameter Mean Std Dev
MON o2 0.083 0.056  0.0032 | -0.008 0.176 | 16.07
WED Yo -0.130 0.053  0.0025 | -0.216 -0.043 | 10.86
HOL Vs 0.433 0.112  0.0046 | 0.248 0.622 | &.51
JAN o 0.215 0.108  0.0063 | 0.036 0.392 | 16.77
oCcT Vs 0.224 0.112  0.0050 | 0.040 0.405 | 10.20

MCMC Estimates of the Seasonal Parameters in the Conditional Mean and log-Variance for

Table 6. PSV;, Model:

the Full Sample.

Table 7: PSVy Holiday Effects
Seasonal PSVy Posterior || MCMC  NSE | Lower Upper | RNI
Effect | Parameter Mean Std Dev
HOL 01 -0.091 0.073  0.0014 | -0.211 0.025 | 1.92
HOL o2 0.456 0.113  0.0040 | 0.272 0.646 | 6.28

MCMC Estimates of the Holiday Effect Parameters in the Conditional Mean and

Table 7. PSVy Model:

log-Variance for the Full Sample.
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Table 8A: In-Sample Log-Likelihood

MODEL | Full Sample MON WED

HOL JAN OCT

SV | -8387.8 -1701.8 -1569.4 -337.6 -952.2 -898.9
PSVe -8287.0 -1657.3 -1588.3 -300.1 -889.2 -919.1
PSVy, -8140.8 -1664.3 -1594.2 -299.0 -764.5 -881.6
PSVy -8360.6 -1688.7 -1568.0 -305.5 -933.8 -909.4
SVt -7765.0 -1555.4 -1514.7 -302.7 -707.7 -785.5
PSVta -7989.3 -1615.0 -1569.0 -292.4 -730.9 -855.8
PSVtr -7939.3 -1596.0 -1562.8 -293.4 -726.6 -817.8
PSVty -7932.2 -1606.8 -1550.2 -292.5 -735.4 -830.0
Table 8B:
Log-Likelihood excluding October 19-21, 1987
MODEL | Full Sample MON WED  OCT
SV | -8314.2  -1635.2 -1565.8 -825.3
PSVe -8213.9 -1591.1 -1584.7 -846.0
PSVy, -8065.5 -1595.8 -1590.5 -806.2
PSVy -8283.1 -1618.1 -1564.4 -831.9
SVt -7779.3 -1536.6 -1511.1  -759.8
PSVta -7942.3 -1575.0 -1565.4 -808.3
PSVtr -7900.3 -1563.8 -1559.2  -T78.7
PSVty -7891.6 -1573.1 -1546.6  -789.3
Table 8C: In-Sample {n;,,} Diagnostics
MODEL VAR SKEW KURT BL(30)
SV 126 -1.63 529 410 |
PSVe 1.25  -3.31 49.1 40.6
PSVy, 1.19  -5.38 40.9 45.1
PSVy 1.26 -2.36 04.4 40.4
SVt .11 -3.23 9.47 40.7
PSVte  1.08  -2.80 29.4 49.3
PSVt, 106 -4.60 18.7 44.8
PSVty 105 -4.86 19.9 45.3

Table 8. In-Sample Diagnostics
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The in-sample period is 1980-2001. Tables 8A and 8B isolate the likelihood of all models for selected days
and months. The VAR, SKEW, KURT and BL(30) statistics are for the in-sample one-step ahead density
forecasts. BL(30) is the Box-Ljung statistic at 30 lags. Note that 2 (30;.90) = 40.3 and x> (30;.95) =




Table 9A:
Out-of-Sample Diagnostics for 2002
MODEL | log-L. VAR SKEW KURT BL(30)
SV | -533.4  1.96 0.95 -1.56 38.9
PSVe -539.8  2.02 0.78 -1.30 43.5
PSVvy, -633.3  2.00 0.79 -1.45 38.5
PSVy -533.4  1.98 0.72 -1.52 38.8
SVt -501.6 1.62 0.94 -2.36 41.5
PSVity |-535.3 1.83 0.91 -1.49 47.9
PSVt;, |-527.5 1.80 0.80 -1.85 44.4
PSVity |-526.5 1.78 0.84 -1.88 42.8
Table 9B:
Out-of-Sample Diagnostics for 2002-2003
MODEL | logL. VAR SKEW KURT BL(30)
SV ]-1066.9 195 078  -2.20  74.6
PSVe -1079.7  2.01 1.10 -1.83 83.6
PSSV, -1066.7  2.00 1.11 -2.06 73.8
PSVy -1066.8  1.98 1.02 -2.15 74.5
SVt -1003.2  1.62 1.33 -3.34 79.5
PSVts -925.8  1.57 0.17 -1.60 49.2
PSSVt -920.6  1.56 0.06 -1.73 47.9
PSVty -921.0  1.55 0.08 -1.65 48.1

Table 9. Out-of-Sample Diagnostics

The out-of-sample period is 2002 in Table 9A, and 2002-2003 in Table 9B.
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Table 10A: Interpreting Bayes Factors!'®
21n (By) By, Evidence against M;
0 to 2 1to3  Not worth more than a bare mention
2to6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

Table 10B: Bayes Factors (21n B;;)
MODEL PSVe PSSV, PSVyg SVt PSVte PSVt, PSVity
SV -43.6  -433 447 -1226  -672 -857 -909
PSVe -390 -1.06 -1182  -628 -813 -865
PSVy, 388 -793  -2583 -2768 -2820
PSVy -1181 -627 -812 -864
SVt 554 369 317
PSVte -185 -237
PSVty -52

Table 10. Bayes Factors

The entries are two times the natural of the Bayes factor for the row model versus the column model. We
use 21n Bij so as to be on the same scale as the likelihood ratio statistics. These are in-sample results for the

period 1980-2001. For a more detailed interpretation of these numbers see Section 6.2.

16See Kass and Raftery (1995).
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Figure 1: Seasonal Heteroscedasticity. These are the day of the week and month of the year
average absolute returns. Lower and Upper indicate the 5% and 95% bootstrap confidence
intervals, respectively. The horizontal line is the average daily return across all days and
months.
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Figure 2: The Monday and Wednesday volatility effects. These are the kernel densities of the
means of absolute returns generated by 10,000 bootstrap samples of the original sample. The
vertical lines are drawn at the sample means. The adjusted samples exclude the three most
volatile days of the sample: Monday, October 19, 1987 to Wednesday, October 21, 1987.
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Figure 3: The October, January, and Holiday volatility effects. These are the kernel densities
of the means of absolute returns generated by 10,000 bootstrap samples of the original sample.
The vertical lines are drawn at the sample means. The adjusted sample for October excludes
the three most volatile days of the sample: Monday, October 19, 1987 to Wednesday, October
21, 1987.
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MONTH OF THE YEAR EFFECT
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Figure 4: The Fourier approximation. This is the fitted six-term Fourier approximation to
the average month of the year effect, which is obtained by running a simple OLS regression
of the daily returns on the six Fourier terms, and then using the estimated coefficients.
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Figure 5: The predictive log-densities. This is the period-by-period difference in the predictive

log-density of the SVt model minus that of each of the PSV and PSV't specifications.
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Figure 6: The cumulative log-densities. This is the cumulative period-by-period difference
in the predictive log-density of the SVt model minus that of each of the PSV and PSVt
specifications. The final point is just the difference in the log-likelihoods.
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Figure 7: QQ plots for the four Gaussian SV and PSV models.
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Figure 8: QQ plots for the four fat-tailed SVt and PSV't models
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A APPENDIX A

A.1 One-Sided Hypothesis Testing using Bootstrapping'’

Suppose we want to test Hy : #; = 65 or equivalently 61 — 0, = 0 against H : 0, <A92Aor
equivalently 6; — 05 < 0 at size a. We construct the test statistic T = (%1_%2_%) = (%1_%2)
S 1—V2— s\ V1—02

and reject in favour of H; if T' < ¢. The standard error in testing for the difference between

two sample means for unequal sample sizes, different population variances and independent

groups is computed as s (/0\1 — 52) = Tﬁl + Tfr The critical value c is selected so that
Pr(T'<c¢) = a or ¢ = q,, where ¢, is the quantile of the empirical distribution of test

statistic T" at the significance level a. Since ¢, is unknown, a bootstrap test replaces it with
the bootstrap estimate ¢ and the test rejects if T < ¢Z. Similarly, if the alternative is
Hy : 0, > 0, or 0; — 05 > 0, the bootstrap test rejects if T > ¢P .

Computationally, the critical value can be estimated from a bootstrap simulation by sort-

. .y 07 ,—05.4)—(01—0. ) .
ing the bootstrap t-statistics 7' = (O (Qf) ag)l 2>, where 5? » is the sample mean of ¢; in
s\V1—02

the b’th of a total of B bootstrap samples It is important to note that the bootstrap test
statistic is centered at the estimate «91 — 02, and the standard error s <«9 ) ) is calcu-

lated on the bootstrap samples as s (/G\j — @:) = \/ Var (@j — /0\*2), where Var (/0\: — /9\*2> =

B o~k A~k =k =* 2 =%k
% > {(91,1) — 927,)) — <91 — 92)} , where 0, is the average of the bootstrap means across all
b=1

the B bootstrap samples. Note that even though we generate the same number of bootstrap
samples B for both variables, it is the case that 6, and 0, (and hence 5;1) — gzb) are con-
structed using different original sample sizes T, but the same number of bootstrap samples B.
We set B = 10, 000 bootstrap samples. These t-statistics are then sorted to find the estimated
quantiles ¢Z or ¢f .

1"For the details on hypothesis testing using bootstrapping see Hansen (2003).
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B APPENDIX B: Sampling the Seasonal Level Volatil-
ity Effects

The parameters of all SV models examined in this paper are estimated using the Bayesian
MCMC tools of Chib, Nardari and Shephard (2002), which build on the procedures developed
by Kim, Shephard and Chib (1998). The algorithm constructs a Markov chain whose limiting
distribution is the target posterior density of interest. Here, the Markov chain is a Gibbs
sampler where all parameters are drawn sequentially from their full conditional posterior
distribution. The Gibbs sampler is iterated a large number of times and the sampled draws,
beyond a burn-in period, are treated as variates from the target distribution.

The periodic specifications require estimation of a high-dimensional parameter vector.
For example, in the case of the PSVt model, the MCMC algorithm produces estimates of
the posterior means of (i) the parameters of the return equation 6, = {«, p}, (ii) the degrees
of freedom parameter v of the Student-¢ distribution, (iii) the log-volatility parameters 6, =
{u, By, ¢, 0%}, and (iv) the seasonal parameters 63 = {~y,d} for the day of the week and month
of the year effects in both the mean {¢,} and the variance {'yj }, j < 11. The key to estimating
the high-dimensional SV models is the efficient sampling of the seasonal level effects in the
conditional variance. This is done using a simple Gibbs step where the v = {fyj} vector is
drawn conditional on the log-variance vector {h;} using a precision-weighted average of prior
information and the conditional likelihood. Despite its simplicity, this method is numerically
superior to the sampling of v in the same block as the log-volatility parameters 6,.

Specifically, the estimation of f5 involves a numerical optimization step, which generates a
proposal that is accepted according to the Metropolis-Hastings algorithm. Sampling v in the
same block as 5 requires high-dimensional optimization, which in turn may cause problems
such as slowing the algorithm considerably, returning a non-positive definite numerical Hessian
matrix, or producing an unacceptably high M-H rejection rate. The results indicate that the
simple Gibbs step is highly efficient in that the posterior mean estimates of v have very low
NSE and RNI values.

B.1 A brief sketch of the MCMC algorithm

1. Initialize 0, s, A\, v and transform the data into y; = log (% + c), ¢ = 0.001 to put the
model in state-space form. The “offset” constant ¢ eliminates the inlier problem.

2. Sample all the log-volatility parameters from their full conditional posterior density:
05 | y*,s,v. This posterior is not available analytically. We use the Kalman filter to
compute the log-likelihood of transformed data yf as a function of 6 (conditional on
s¢) and then optimize this conditional log-posterior. We generate a proposal from a t-
distribution ¢ (m, V, ) where m is the mode, V' is the inverse of the negative Hessian and £
a tuning parameter. The proposal is then accepted according to the Metropolis-Hastings
algorithm. The optimization step makes this an independence chain M—H algorithm and
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goes a long way in reducing the autocorrelation in the draws of the MCMC chain. For
more details on the M-H algorithm see Chib and Greenberg (1995).

3. Sample the seasonal coefficients in the log-variance equation from their full conditional
posterior v | y*, D, h, s using the Gibbs step detailed below separately.

4. Sample the log-volatility vector {h:} in one block from the full conditional posterior
distribution: h | y*,s,0. This step uses the de Jong and Shephard (1995) simulation
smoother which is an algorithm designed for efficient sampling of the state vector in a
state-space model.

5. Sample the degrees of freedom parameter of the conditional distribution from the full
conditional density: v | y,h,0. Again, we optimize the conditional log-posterior with
respect to v and then use the mode and a scaled inverse of the negative Hessian to
generate a proposal that is accepted according to the Metropolis-Hastings algorithm.
This independence chain M-H algorithm is also crucial in contributing to low Relative
Numerical Inefficiencies for the parameters of interest.

6. Sample A | y, h, 6 directly from its posterior:

v+1 2
A h, 0 ~ G B.1
t ‘ Yt, N, amma ( 92 ) u+w§/vf) ( )

7. Sample all the conditional mean coefficients (including the seasonal coefficients in the

mean) 01,9 | y,D,h,\ simply using a precision-weighted average of a set of normal
priors and the normal conditional likelihood. Then update the transformed data y; =

log (;Tz v c), ¢ = 0.001.
t
8. Finally, sample the mixture indicator variable s | y*, h, 8 directly from its posterior:

Pr (s | yf he) o Pr(sy) ¢ (y; | he + 7' Dy + mg, v2) t<T (B.2)

9. Go to step 2 and iterate.

B.2 The Gibbs step

Consider the state-space representation of the periodic SV model

yr =Dy + hy + 2, 2 | st ~ N (mst, vﬁt) (B.3)

hy = pA4 Brye—1 + ¢ (hy—y — p) + oy, n, ~ NID(0,1) (B.4)
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11
YDy = v;Djs (B.5)
j=1

We wish to sample the coefficients of the level volatility effects v = {%‘}» J < 11 from
v | y*, D, h, s using a precision-weighted average of the prior and the conditional likelihood.

Define the vector of priors v ~ N (v,,I5"), where 75 = [0,...,0] € R and I';" = I.

Consider the model equation

y: = ’}//Dt + ht + 2ty Zt | St ~~ N (mst, Ust) (B6>
and rename
. £ —hy —mg ~ D;
Y = b P T et 3 Dj, ==
Vst Ust
Then, the posterior mean estimates of the v vector are simply given by
7=V, [FO% + ﬁ’y} e R (B.7)
(B.8)

-1
Vv, = [Fo n D'D} € plixil
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