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1 Abstract6

Counter-intuitive prey strategies against predators with finite budget in a search game: protection7

heterogeneity among sites matters more than their number.8

Combining the search and pursuit aspects of predator-prey interactions into a single game,9

where the payoff to the Searcher (predator) is the probability of finding and capturing the Hider10

(prey) within a fixed number of searches was proposed by Gal and Casas (2014). Subsequent11

models allowed the predator to continue his search (in another ’round’) if the prey was found but12

escaped the chase. However it is unrealistic to allow this pattern of prey relocation to go on forever,13

so here we introduce a limit of the total number of searches, in all ’rounds’, that the predator can14

carry out. We show how habitat structural complexity affects the mean time until capture: the15

quality of the location with the lowest capture probability matters more than the number of hiding16

locations. Moreover, we observed that the parameter space defined by the capture probabilities17

in each location and the budget of the predator can be divided into distinct domains, defining18

whether the prey ought to play with pure or mixed hiding strategies.19

2 Introduction20

Predator-prey interactions often have two distinct phases, and game theory has been widely used21

to model these encounters separately [Bro13] First, the predator searches for the prey (a search22

game). Then the predator pursues the prey (a differential game of pursuit evasion). In two recent23

papers, [GC14] and [GAC15], these two phases of the interaction were combined into a single24

constant-sum game. In both models, the prey/hider can locate in any of a set of n heterogeneous25
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Γm Game

a multi-stage game where each prey successful evasion

decreases predator budget m

Formally, it should be noted Γ
n,{pi,1≤i≤n}
m

k/m
budget of the predator m refers to the

current paper while k refers to the total budget over all periods in previous papers

n total number of locations

v(m) value of the Γm game

pi
probability of prey capture if found at location i.

p1 < · · · < pn

b and c For n=2 locations, p1=b and p2=c

hi (Prey strategy) probability of prey hiding at location i

sx
(Predator strategy)

probability of predator using the permutation x of the locations

xi Rank of the location i in the permutation x chosen by the predator

s∗/sNASH

s∗ is the optimal strategy of the prey.

When the prey is also optimizing, s∗ = sNASH , computed at a Nash-equilibrium

Pm indicates that Γm has a pure strategy set

Mm indicates that Γm has a mixed strategy set such that ∀i > 1, hi = 0 and h1 = 1

Bm indicates that Γm has a mixed strategy set such that hn = 0 but h1 ̸= 1

Table 1: List of common notations.

locations, where each has a distinct probability that the prey will be captured if found in that26

location. The first paper is a single round model, where the predator/searcher can look into any27
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k of the locations. The predator ’wins’ the game if it finds the prey and successfully pursues it.28

The Hider wins if it is not found by the k’th search or if it is found but escapes the pursuit.29

The second paper is a repeated game version of the first, in which an escaping prey can relocate30

and play the same game in another round. This model is more realistic but still allows unrealistic31

indefinite time and unlimited stamina for the predator. To remedy this problem, we introduce here32

a bound m on the total number of searches available to the predator, summed over all rounds.33

Unlike the per round search limit k of the earlier papers, our total bound m can be larger than the34

number of locations. We call this game the recursive game Γ (m) , because it can end either with35

a successful pursuit or lead to a reduced game Γ (m′) , m′ < m. In particular, if the prey escapes36

the pursuit on the t’th search of the game Γ (m), the Searcher and the Hider then play the smaller37

game Γ (m− t), as t of the m available searches have been used up. The biological interpretation38

of the total search bound m is varied: patience, motivation, energy budget, number of matured39

eggs in a female parasitoid wasp all of which is usually mixed under the term ”giving-up time”40

in ecology. We start this paper by a state-of-the-art on search problems with finite budget, and41

the interpretation of the ”budget” m in ecology. Then, we introduce the main results of Gal and42

Casas [GC14] in order to formalize the recursive Γm game. For every given m, we then completely43

solve the game for the sub-cases n = 2,n = 3 locations, and the case with 1 good location and44

n-1 identical bad locations. Based on these results, we propose conjectures concerning the general45

case n ≥ 4 locations. We discuss the influence of the nature of the hiding locations (”structural46

complexity”) on the overall probability of capture, and explain the unexpected optimal hiding and47

searching strategies.48
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3 State of the art49

We divide our literature survey into two parts. The first part covers problems in predator search50

and pursuit of prey. The second covers search games.51

3.1 Predators’ limited resources for foraging52

The upper bound m can be interpreted as a time or resource budget, but also as something which53

reflects the motivation of the predator, i.e. its willingness to forage (patience), level of hunger, and54

so on: an hungry predator could be modelled as an agent with a higherm than a satiated one, when55

m represents the willingness to forage. The number of hours or resources spent inspecting are often56

not reset to its original value like in the repeated game [GAC15], but decreases over time. Diurnal57

predators stop indeed searching at sunset (correlation between light intensity and foraging period,58

[KB01]), some animals have a very short lifespan impacting their foraging decision [Waj+06], and59

egg load of a female parasitoid wasp cannot be restored to its original number at the fast behavioral60

scale (e.g. around 36 eggs in a 1-d-old parasitoid wasp, [MM02]). The variable m can describe a61

budget inherent to the physiology of an animal, such as muscle state, body temperature, aging,62

condition ... as described in Houston and MacNamara [HKE80]. Many animals with low Surface-63

Volume ratios are under severe budget constraints and need to make enough energy reserves to64

survive fatal climatic conditions (e.g. predatory Etruscan shrews are on negative energy budget65

during winter [Bre+11]). Some aerial predators, such as marine birds or sea mammals dive in66

the water to forage, and their foraging sessions are limited by the amount of oxygen they have in67

reserve.68
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Moreover, the parameter m is reminiscent of the ecological concept of Giving-Up Time (GUT)69

concept as the time interval between the last item (e.g. prey capture) encountered and the moment70

when the forager leaves a patch [KRC74]. Based on dynamic programming, Green [Gre84] proposed71

the assessment rule, a rule for deciding when to leave a patch, which is only based on the number72

of prey caught at a given time whatever the exact timing of the captures. Waage [Waa79] proposed73

a model to predict patch leaving time based on a motivation level, a tendency to stay in a patch74

which decays from an initial motivation level to zero at a constant rate every time a forager75

fails to find a prey, because of habituation, and leaves a patch when the motivation falls below76

zero. The GUT depends also on the general quality of the environment. If patches are scarce77

in the environment, or if travelling costs between patches are high, the predator is expected to78

spend more time in a patch, thus m would be higher [SK78]. In this paper, we propose a model79

which is reminiscent of GUT models: a predator with a decremental budget and a given degree80

of persistence. However, contrary to most GUT models in which the harvested resources are81

described as passive behaviorally inert resources, we use a game theory approach to model the82

active avoidance of the prey.83

3.2 The Search Game Literature84

The problem of minimizing the expected number of searches required to find an object which is85

hidden among a number of discrete locations (often called boxes) goes back a long way. Usually,86

the locations are assumed to be heterogeneous in the detection probability qi that the object will87

be found if its location is searched, with a corresponding overlook probability 1 − qi. Sometimes88
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this problem is formulated as a game (two person zero-sum) where the object is a hider who wants89

to maximize the number of searches required to find him. The classical optimization problem of90

the searcher was solved by Blackwell (see Matula [Mat64]) and was extended to game theoretic91

versions by many authors. A recent problem with multiple hidden objects was solved in [Lid13].92

A version of the problem, where the searcher wishes to maximize the probability of finding the93

object within a given number of searchers, is solved in [LS16]. The possibility of combining the94

predator’s problems of searching for and successfully pursuing the prey was introduced in [GC14]95

and [GAC15], with the predator modeled as searcher and the prey as hider. These have already96

been described in the Introduction and the first one will be examined in more detail in the next97

Section. The capture probability pi , that the prey is subsequently captured in the chase at location98

i is related to the detection probability qi (or the overlook probability). The main difference is that99

if the object is overlooked, the search continues uninterrupted whereas if the prey/hider is found100

but not captured, the searcher knows this and the stage game ends. In some models, the prey can101

only be found if its location is searched and also if it is in a period of vulnerability. Such models102

are called patrolling games [AMP11]. If the prey is mobile, the predator has an additional option,103

not consider here, of remaining stationary in the hope of ambushing a prey that might come to it.104

This type of search is considered in [ZFZ11] and [Alp+11]. Other applications of search theory to105

predator-prey interactions are given in [Pit13] and [Bro13]. See also [BR22] for more far-reaching106

analysis. Our model has costs for predator travelling (moving between locations as measured by107

searches), but not for pursuit. For something in this direction, see [BK15]. A variation of the108

original problem by Gal and Casas where each location takes a certain amount to inspect by a109
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Searcher with a total time budget k (not necessarily an integer) was proposed in [AL20].110

3.3 The One Stage game: a stepping stone towards our new model111

The current paper can be seen as a generalisation of the single stage game G2014
k of [GC14] men-112

tioned earlier. As this is our point of departure, we describe that model in detail here. A (station-113

ary) Hider locates in one of n locations i ∈ N = {1, 2, ..., n} while the Searcher inspects (searches)114

k of these, where n and k are parameters of the game. The order of inspection is not important115

there, though in our extended version order it will be. If the Searcher inspects the location i chosen116

by the Hider, we say that the the Hider is found ; in this case it is captured, with a probability pi117

that depends on the location i. For convenience we rank the hiding locations in decreasing order118

of attractiveness to the Hider so that p1 ≤ p2 ≤ ... ≤ pn,. The Searcher wins the game if it finds119

and then captures the Hider. The Hider wins if it is not found in the k searches or if it is found120

but not captured. The game has constant sum. The payoff matrix is a matrix where the rows121

are the
(
n
k

)
k-subsets Sk of N and the columns are the n hiding locations, whose entries are the122

probability that the Searcher (row player) wins by finding and capturing the Hider:123

a(Sk, i) =


pi if i ∈ Sk,

0 if i /∈ Sk.

A mixed Hiding strategy is a probability vector of hiding probabilities h = (h1, h2, ..., hn)124

where hi is the probability that the Hider hides at location i. A mixed strategy for the Searcher is125

a probability distribution over k-subsets of N . Clearly there is a probability ri that location i is126

inspected (i ∈ S) to every such mixed search strategy. Conversely, if we know all the probabilities127

ri, we can determine the mixed search strategy. Thus, we define the mixed search strategy as a128
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vector of probabilities r = (r1, r2, ..., rn) where ri is the probability that the Searcher visits location129

i during the k rounds, satisfying130

n∑
1

ri = k, for all i ∈ N .

In this constant sum game, the value v is the overall probability P of capture, with best play131

on both sides. Note that if the Searcher inspects location i when the Hider uses the mixed strategy132

h, the Searcher wins with probability hi pi, the probability that the Hider is found multiplied by133

the probability it is then captured. We will often consider the equalizing mixed hiding strategy134

called h∗ which makes all these probabilities the same, that is,135

hipi = λ, for all i ∈ N

for some constant λ.We say that h∗ is the Hider strategy which makes all locations equally attractive

for the Searcher. The above equations have a unique solution given by

λ =
1

n∑
1

1
pi

, and

h∗
i = λ/p, i ∈ N .

It follows from the formula for λ and the assumption that the pi are increasing in i that 1 ≤ p1/λ ≤136

n.137

The solution of the game is easy to see in the two extreme cases where k = 1 and where k = n.138

When k is 1 this is a standard hide-seek game, sometimes called a diagonal game. The value of this139

game is λ. The Hider should adopt h∗ to make all locations equally attractive, and the Searcher140

should inspect locations with probabilities proportional to their capture probabilities pi. On the141
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other hand, when k = n and all locations are inspected, only the Hider has a strategic choice. The142

strategies ’Hiding in location i ≥ 2’ are dominated by the strategy ’Hiding in location 1 so clearly143

location i = 1 is best for him, with a value of p1. The surprising finding of [GC14] is that for small144

k the solution is like that for k = 1 and for large k the solution is like that of k = n. The threshold145

of k is given by p1/λ. This result is stated below.146

Theorem 1 The solution of the one-stage game [GC14] described above depends on the value of147

k relative to p1/λ.148

1. If k < p1/λ then the optimal hiding strategy is h∗, the optimal search strategy visits each149

location i with probability ri = kλ/pi and the value is kλ.150

2. If k ≥ p1/λ then the value is p1. The Hider can guarantee paying at most p1 by always151

hiding at location 1 and the Searcher can guarantee at least p1 by choosing r1 = 1 <152

kλ/p1 and ri ≥ min(kλ/pi, 1) for all 2 ≤ i ≤ k.153

In this game the Hider wins if it is found and then escapes the pursuit. In a subsequent model154

(a repeated game)[Alp+19], after such an escape by the Hider, it is allowed to relocate to any of the155

locations and the game continued with again k searches in each such stage game. This repetition156

could go on indefinitely, though the game ends eventually with probability 1. Such indefinite157

repetition is unrealistic in a biological setting with limited stamina of both parties, particularly158

for the predator. So, in the new model, we introduce in the next section, the game does continue159

after the prey escapes a pursuit, but the predator has a limited total number of searches in all160

stages of the game.161
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4 Formalisation of the new Game Γm : Limit on Total162

Searches163

We now consider a recursive version Γm of the search-pursuit game, where the predator has a164

limit m on the total number of looks in all rounds. So, unlike the one-stage game budget k of165

searches, m can be greater than the number n of locations [GC14]. Unlike the budget of k searches166

per round of the repeated game [GAC15], here the Searcher can keep looking until a total of m167

searches have been made. Moreover, the order of the searches now matters because it is better168

for the searcher to find the Hider early in the round rather than late, as then it will have more169

searches left in the next round, supposing the Hider escapes. The game can end in one of two170

ways. If the Searcher finds the Hider (looks in the Hider’s location) and successfully pursues and171

captures him, the Searcher wins and the payoff is 1 If at some point the searcher has only 1 look172

left and either does not find the hider; or finds him but fails to capture him, then the Hider wins173

and the payoff is 0.174

An example scenario is as follows. Suppose the initial budget (number of looks) is m = 12175

(say daylight hours) and there are n = 7 locations (Fig. 1). In round 1 (beginning of the day)176

the Searcher finds the Hider on his 5’th look but fails to catch him at that hiding location. Then177

the Hider relocates and in round 2 the Searcher finds him on his 4th look, but again fails to catch178

him. In round three, with the Searcher having 12− 5− 4 = 3 remaining looks, it fails to find him179

on any of the 3. The Hider then wins.180

We can describe the above problem as a recursive game Γm. The Hider begins by choosing a181

location i ∈ N = {1, . . . , n} . The Searcher looks at locations, one at a time, until it either runs182

10



Figure 1: Definition of the Γk game. (a) In the Γk game, the predator starts with an initial

number of looks k (k=12 in this example) and loses one look every time it inspects a location (in

dark blue). The prey hiding location is shown in light grey. In this example, the prey successfully

relocates to another location whenever it is found, as shown in green. Each successful relocation

of the prey indicates the beginning of a new round. The predator eventually loses as it runs out

of looks. (b) Extended form of the game Γk
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out of searches (possible only if m < n) or it finds the Hider when it searches location i on the t’th183

search, t ≤ n. In the latter case it captures the Hider with probability pi (winning the game with184

payoff 1) or fails with complementary probability 1−pi. In the latter case the game continues, but185

the number of searches is reduced to m − t (that is, the game Γm−t is played). The Hider wins186

(payoff 0) if the Searcher runs out of searches while the Searcher wins (payoff 1) if it captures the187

Hider.188

Let’s formalize the payoff matrix. A strategy for the Hider is one of the n hiding locations. A189

strategy for the Searcher is a permutation s = (x1, x2, . . . , xn) of the locations N, where xj denotes190

the location searched in period j , if the Hider has not been found by then. Of course if m < n,191

only the first m locations in x will be relevant (strategies will be equivalent if they agree in the192

first m places).We denote by xj the position of location j in the permutation x, for example if193

x = (3, 1, 2, 4) then x1 = 2. Thus the payoff matrix for the recursive game Γm , with row player194

(Searcher) as maximizer, and the Hider’s location denoted by i, is given by A = {ax, i} where A195

is the n! by n matrix with entries196

ax,i =


0 if xi > m,

pi + (1− pi) Γm−xi if xi ≤ m.

(1)

The case xi > m can only occur if m < n, and corresponds to the situation where the Searcher197

was planning to inspect the Hider’s location i at time xi, but as xi is larger than his remaining198

number of looks m, it has run out of time (or looks), and loses the game. The other case is199

where the Searcher finds the Hider on his xith search. It then captures the Hider, and receives200

payoff 1, with probability pi. With complementary probability 1 − pi the Hider escapes, leaving201

the Searcher with only m − xi searches, so that the smaller game Γm−xi is then played. Using202
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the notation v (j) = value (Γj) and assuming we know the values v(j) for all the smaller games203

Γj, j = 0, 1, . . . ,m− 1 we can solve for v (m) recursively, starting from v(0)=0 (the Hider wins if204

the Searcher has no more looks). We have205

v (m) = value (A (v (1) , v (2) , . . . , v (m− n))) . (2)

This notation makes explicit the dependence of v (m) on the lower values v (1) to v (m− n) , since206

the smallest possible value of m− xi is m− n. Observe that when m ≥ n the top case xi > m in207

(1) is not possible, so the game can either continue (to another stage) or conclude with a win for208

the Searcher. If there is only m = 1 look available, it is easy to see that the game Γ1 has the value209

v (1) = λ(p) =
1∑n

i=1 1/pi
.

That is, the game Γ1 is identical to the game G2014
1 of Gal and Casas ([GC14]) (with the same210

vector p and n).211

5 Resolution of the Γm game212

We have solved particular cases (n=2 locations, n=3 locations, 1 good location and N bad locations)213

as a stepway to games with many hiding sites.214

5.1 The specific case of n = 2 locations215

5.1.1 Formalisation of the game216

In order to get the solution to the recursive game, we start by restricting our attention to the case217

of n=2 locations, with capture probabilities denoted by p1 = b and p2 = c, with 0 < b ≤ c ≤ 1. As218
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above we have v (0) = 0 and v (1) = λ (b, c) = bc/ (b+ c) . For m ≥ 2 the game Γm is given by the219

following matrix.220

x\i 1 2

1, 2 b+ (1− b) Γm−1 c+ (1− c) Γm−2

2, 1 b+ (1− b) Γm−2 c+ (1− c) Γm−1

.

There are only two search strategies, depending on which location is searched first. If the Hider is

in location 1, it will be found (as m = 2 searches are sufficient) and then it will be captured with

probability b and will escape with probability 1− b. In this case the Searcher has m− 1 searches

left if it searched location 1 first, and m− 2 searches left if it searched 2 first. We know that the

values vm are non-decreasing in m, as more searches can only help the Searcher. Observe that the

upper left matrix entry (search 1 first, hide at 1) is a pure saddle point if we have

b+ (1− b) vm−1 ≤ c+ (1− c) vm−2, or equivalently

vm−1 ≤ f (b, c, vm−2) , where (3)

f (b, c, x) =
1− c

1− b
x+

c− b

1− b
.

Since we are still restricting to n = 2 locations, the Hider can be found only on the first or second221

search, so the Searcher’s budget m can go down by 2 at most. Hence the recursion that defines vm222

depends only on the two previous values, vm−1 and vm−2. We can evaluate the value and determine223

the nature of the games Γm (whether there is a solution in pure or mixed strategies) for everym > 1224

based on the location of the pair ( vm−1,vm−2) relative to the f line (the saddle point condition225

(3)) (See Supplementary). This preliminary analysis, made for various (b,c) pairs, suggests the226

existence of three distinct domains. For (b, c) = (0.4, 0.5), players have mixed strategies in all227
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games Γm,m > 1. For (b, c) = (0.4, 0.8), players have pure strategies in all games Γm,m > 1. For228

(b, c) = (0.4, 0.6), players have pure strategies if m=2 and mixed strategies otherwise. We have229

generalized this observation by finding the equations of the boundaries of the three domains.230

Figure 2: For n=2 locations, with capture probabilities b and c > b, the (b,c) space can be

divided into three domains which define the nature of the hider and searcher strategies. (a) The

(b,c) space can be divided into three domains. In Domain I (e.g. blue dot), the players have

pure strategies in all games Γm,m > 1.. In Domain III (e.g. green dot), the players have mixed

strategies in all games Γm,m > 1. In Domain II (e.g. orange dot), players have pure strategies if

m = 2 and mixed strategies otherwise. (b-c-d) Optimal hiding (b1,c1,d1) and searching (b2,c2,d2)

probabilities for the three representative couples of probabilities (p1,p2) presented in Figure a ((b)

blue dot, (c) orange dot, (d) green dot). h1 and s12 are represented by plain lines, while h2 and

s21 are represented by dashed lines.
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5.1.2 A general solution to the two-locations game231

Let’s find the equations of the three distinct domains. For the case m = 2 the saddle point232

condition (3) becomes233

v1 =
bc

b+ c
≤ f (b, c, 0) .

If we solve the above inequality for c in terms of b, we get234

c ≥ b(1− b+
√
b2 − 2b+ 5)/2 ≡ ϕ(b)

This defines the function g which is drawn as a thick line in Figure 2a. If (b, c) lies above ϕ, then235

Γ2 has a pure strategy solution, otherwise Γ2 has a mixed strategy solution.236

237

For the case m = 3, the saddle point condition (3) becomes238

v2 ≤ f (b, c, 1) .

If we replace v2 by b+ (1− b) bc
b+c

and solve the inequality for c in terms of b, we get239

c > 2b− b2 ≡ h(b)

This defines the function h which is drawn as a dashed line in Figure 2a. If (b, c) lies above ϕ = h,240

then Γm>2 has a completely mixed strategy solution, and a pure solution otherwise.241

242

To sum up, the curves ϕ and h delimitate three domains. A pair (b,c) in the domain I (blue)243

lies above both ϕ and h, thus Γ2 and Γm≥3 have a pure strategy solution. We called this domain244

”P2P∞”. A pair (b,c) in the domain III (green) lies under both h and g, thus Γ2 and Γm≥3 have a245
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mixed strategy solution. We called this domain ”M2M∞”. A pair (b,c) in the domain II (orange)246

lies above h thus Γ2 has a Pure solution (”P2...”). However, the pair (b,c) lies under Φ, thus Γm≥3247

have a mixed strategy solution (”...M∞”). We called this domain ”P2M∞”248

Moreover, based on the usual results for the bi-matrix games, we can obtain a general expression249

for the values as well as for the optimal hiding and searching strategies, based on the capture250

probabilities b and c and the parameter m only. Our main result is the following.251

Theorem 2 Consider the game Γm with two locations with capture probabilities 0 < b ≤ c ≤252

1 and m searches. The nature of the solution depends only on the capture probabilities b and253

c. Let E= (1−b)(1−c)
2−b−c

. Let r1 =
E−

√
E(E+4)

2
and r2 =

E+
√

E(E+4)

2
. For m = 1 there is a unique254

completely mixed strategy solution with value v1 = λ = bc/ (b+ c)255

(I) If c > 2b − b2 then there is a pure strategy solution (there is a saddle point: hiding and256

searching in location 1). The Hider should always goes to location 1, and the Searcher should257

always start by searching location 1 (h∗ = 1 and s∗ = [1, 2]). Moreover, the value is given by258

vm = 1 + (1− b)m−1

(
bc

b+ c
− 1

)
,∀m ≥ 1.

•• (III) Let’s present Domain III before Domain II for simplicity. If c < b
(
1− b+

√
b2 − 2b+ 5

)
/2259

then Γm has a completely mixed solution. The Hider should hide in location 1 with probability260

h1 = 1−c
2−b−c

and in location 2 with probability h2 = 1−b
2−b−c

< h1. The Searcher should search261

location 1 first with probability s12 =
c−b+(1−c)vm−1−(1−b)vm−2

(vm−1−vm−2)(2−b−c)
and should search location 2 first262

with probability s21 = 1− s12 < s12. The searching probabilities converge and we have263

limm→∞s12(m) =
r2(1− c) + (b− 1)

(r2 − 1)(2− b− c)
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Moreover, the value is given by

vm = 1 +
1− r2 − v1
r2 − r1

rm1 +
r1 + v1 − 1

r2 − r1
rm2 ,∀m ≥ 0

• (II) If b
(
1− b+

√
b2 − 2b+ 5

)
/2 < c < 2b − b2, then the solution of Γ2 is pure, while the264

solution of Γm≥3 is completely mixed. For m=2, the Hider should always goes to location265

1, and the searcher should start by searching location 1 (h∗ = 1 and s∗ = [1, 2]). For266

m=3, the Hider should hide in location 1 with probability h1 =
1−c

2−b−c
and in location 2 with267

probability h2 = 1−b
2−b−c

< h1. The Searcher should search location 1 first with probability268

s12 =
r2(1−c)+(b−1)
(r2−1)(2−b−c)

and should search location 2 first with probability s21 = 1− s12 < s12.269

To sum up, the space (b, c) is divided into 3 domains which dictate the behavior of the players270

(2a). Moreover, for the hider, there are rapid changes in locations (the optimal hiding strategies271

become not independent of m) as we approach the deadline m = 0. As shown in the Fig. (2c1), the272

optimal hiding strategy for the game Γ2 consists in hiding in location 1 with probability h1 = 1,273

but this conclusion does not hold for the game Γ1 or Γ3. In contrast, the optimal hiding strategies274

do not change when m increases if m is ’sufficiently’ high (e.g. m > 4 in the Fig. (2c1). The rapid275

changes in locations are particularly visible for a pair (b,c) located in the Domain II (orange).276

This suggests that the behavior of the game is more ”monotonous”, when one hiding location is277

clearly better than the other (b << c) or when the hiding locations are very similar (b <≈ c).278

5.2 The case with n=3 locations279

To further understand the game Γm, we have solved the case of n=3 locations. Briefly, the main280

result is the following theorem.281
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Theorem 3 Consider the game Γm with n=3 locations with capture probabilities denoted by p1,282

p2 and p3, with 0 < p1 < p2 < p3 < 1.283

The (p1, p2, p3) space can be divided into up to 15 distinct domains dictating the strategies players284

should adopt for all the games Γm,m > 0. Some domains are absent when p1 is above a threshold.285

The exact caracterisation for the boundaries of Fig. 3a, and the conditions for their existence286

are detailed in Supplementary Materials. Concerning the players strategies, we have plotted in287

Figs. 3b,c,d these strategies for three representative domains. The strategies for the 15 different288

domains can be found in Supplementary Materials. The Hider should either avoid locations 2 and289

3 and hide in location 1 (h1 = 1, h2 = 0, h3 = 0, see e.g. Fig. 3b1 for m=8), avoid only 3 and290

hide in either 1 or 2 (h1 < h2 ̸= 0, h3 = 0) , see e.g. Fig. 3b2 for m=8) , or hide in either location291

1, 2 or 3. In this latter case, the prey should hide more in the worst location than in the best292

location (h1 < h2 < h3 ̸= 0, , see e.g. Fig. 3b3 for m=8). For large m, the Searcher would use293

the permutation 123 with the highest probability (∀s, s ≤ s123, Figs. 3b2,c2,d2), meaning that the294

Searcher would concentrate its efforts on the locations with the lowest capture probabilities (e.g.295

location 1).296

As for the case n = 2 locations, we can observe rapid changes in locations towards the deadline297

m = 0. This is particularly striking for a triplet (p1,p2,p3) located in Domain 12: the hiding298

probabilities become independent of m when m is greater than 7. In contrast, for a triplet located299

in Domain 1 (”location 1 is greater than the two others), or in Domain 14 (”locations 1 and 2 are300

similar”, the hiding probabilities become independent of m more rapidly.301
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Figure 3: The (p1,p2,p3) space can be divided into up to 15 distinct domains. (a) For p1=0.2, the

space (p2,p3) is delimited into 14 (out of 15) different domains (magnified view of the grey box

is plotted in the bottom left). The vertical line p2 = p1 indicates that p1 < p2. (b-c-d) Hiding

and searching strategies for 3 (out of 15) representative domains. (b) The optimal Hider strategy

h∗ (b1-c1-d1) and an optimal Searcher strategy s∗ (b2-c2-d2) for a triplet (p1, p2, p3) located in

Domain 1. (b), Domain 12 (c) or Domain 14 (d).

5.3 A Game with only one good hiding location302

In order to caracterize how the presence of a further hiding location affects the Γm game, we303

consider the particular case of the Γm game with 1 good hiding location G, with probability of304

capture of g < 1 and N=n-1 bad locations B with probability of capture of pBAD. Note that there305

are n locations in total.306

By symmetry arguments, we can limit our analysis to only these two following hiding strategies:307

G (hiding at the good location 1) and B (hiding at a random bad location). The Searcher has308

at most n searching strategies, which consists in searching the good location in the i-th position309
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(1 ≤ i ≤ n) and searching a bad location otherwise.310

5.3.1 The case in which the Hider can’t escape from bad locations (pBAD = 1).311

Let’s choose pBAD = 1 (if the Hider is found, there is certain capture). For m ≥ n, by dominance312

arguments, we can conclude that the game has always a saddle point (G,GBm−1) : searching313

location G first, and hiding in location 1. For m < n = N + 1, by dominance arguments, we314

can reduce further the number of the Searcher strategies to only two: Bm which inspects m bad315

locations randomly and GBm−1 which inspects the good location (first) and m − 1 random bad316

locations. If the good location is inspected on the t’th search and the Hider is there, the Searcher317

payoff is 1 if the pursuit is successful and is vm−t if it is not. Since vm is increasing in m, searching318

the good location in period t = 1 dominates. For m ≤ N , the game is reduced to a 2 × 2 payoff319

matrix as follows, where vm denotes the value of the game Γm320

Searcher/Hider G B

GBm−1 g + (1− g) vm−1
m−1
N

Bm 0 m
N

(4)

Thus,321

Lemma 4 The game Γ (m) , m ≤ n has the saddle point (G,GBm−1) if and only if322

g + (1− g) vm−1 ≤
m− 1

N
(5)

The values are given by323

vm =


g + (1− g) vm−1 if g + (1− g) ≤ m−1

N
.

−(m/N)(g+(1−g)vm−1)
(−1/N)−(g+(1−g)vm−1)

otherwise

(6)

For m ≥ n, the game Γ (m) has the saddle point (G,GBm−1).324
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The following theorem shows that we can determine the nature of the solution (Pure or Mixed)325

of Γm based only on m,g and n. Moreover, for m sufficiently large, the Hider should always hide326

in the good location, and the Searcher should always play GBm−1
327

Theorem 5 For fixed n ≥ 1 and 0 < g < 1, let’s define a threshold for m as follows mth =328

1 +N − 1/g = n− 1/g.329

• For m ≥ mth, if Γ (m) has the pure saddle point (G, GBm−1) then so does Γ (m+ 1). The330

Hider should always hide in the good location, and the Searcher should always play GBm−1.331

The value is given by vm = g + (1− g)vm−1332

• For m < mth, if Γ (m) has a mixed solution, then so does Γ (m+ 1). The Hider should333

hide in the good location with probability hG = 1
1+N(g+(1−g)vm−1)

and in a bad location with334

probability hB = 1 − hG. The Searcher should play GBm−1 with probability sGBm−1
> sB

m
.335

The value is given by vm = m(g+(1−g)vm−1)
N(g+(1−g)vm−1)+1

336

We have ∇mth(N, g) = (1, 1
g2
). As g < 1 by definition, the quality of the best location has a337

stronger impact on the boundary between the pure and mixed solutions regimes than the number338

of locations.339

5.3.2 The case when the Hider can escape from bad locations (pBAD < 1)340

We now generalize the previous result by letting pBAD, the probability of capture in the bad341

locations, be different from 1 ( pBAD ≤ 1). The Hider has still two strategies. However, for the342

Searcher, the dominance arguments do not always hold. The Searcher has n strategies, each consists343
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in searching the good location G in the i-th position, with 1 ≤ i ≤ n. We define M = min(m,n).344

The N × 2 payoff matrix is given by345

Searcher / Hider G B

GBM−1 g + (1− g)vM−1
MpBAD

N
+ (1−pBAD)

N

∑
1≤j≤M,j ̸=1 vm−j

BGBM−2 g + (1− g)vM−2
MpBAD

N
+ (1−pBAD)

N

∑
1≤j≤M,j ̸=2 vm−j

. . . . . . . . .

BM−1G g + (1− g)vM−n
MpBAD

N
+ (1−pBAD)

N

∑
1≤j≤M,j ̸=n vm−j

(7)

346

347

Lemma 6 The game Γm has a pure saddle point with hiding at location G, and searching at348

location G first if349

g + (1− g)vm−1 ≤
(M − 1)pBAD

n− 1
+

1− pBAD

n− 1

n∑
j=2

vm−j. (8)

Thus, the value vm is given by vm =


g + (1− g)vM−1 if Eq.(8)

(M−1)p(1−g)+g(1−p)+(1−g)(1−p)
∑M

j=1 vm−j

2−p−n+g(n−1)
otherwise

350

Theorem 7 ∀n ∈ N, for any m ≥ n,351

if Eq. 6 holds, then hG(m) = 1 and hB(m)=0352

otherwise, hG(m) = 1−b
n−(n−1)g−b

and hB(m) = 1−g
n−(n−1)g−b

.353

The Theorem 7 above indicates that the hiding probabilities are known for a given m ≥ n, and are354

not a function of the previous values. It should be noted that ”Γ(m) has a pure solution” =⇒355
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”Γ(m + 1) has a mixed solution” only for ”large” m, v.i.z. m should satisfy (see Supplementary356

Materials)357

g ≤ vm−1 − vm−n

n− 1−
∑n

j=2 vm−j

(9)

Simulations indicates qualitatively that, as before, for a given m, the values of the Γm Game358

increases with an increasing number of locations, while they decrease with a decreasing g (the359

lowest the capture probability in the best location, the lowest the value).360

5.4 The general case n ≥ 4361

Here, we propose some conjectures for higher values of n, based on the computation of the re-362

cursion (equation 2) with custom-made Python scripts (see Supplementary Materials) and on our363

understanding of the cases n=2, n=3 and the case with only one good location. First, for large364

m >> n, the optimal hiding strategies do not change with an increasing number of looks m. In365

other words, for large m, the formula for hi is not a function of m.366

Second, when a hiding location is clearly ”good enough” in comparison to the others, the hider367

has a pure strategy which consists in hiding exclusively in the best location. In this case, the value368

vm is given by p1 + (1 − p1)vm−1∀m > 1. Thus, the quality of the best location (probability p1)369

drives the variance of the overall capture probability, as it was pointed out by a PCA (Figure S5).370

When the capture probabilities pi are ”relatively close to each other”, the prey should use a mixed371

strategy. For m >> n, this strategy consists surprisingly in hiding more in location n, which has372

the highest probability of prey capture, than in the best locations. For instance, in the domain II373

of the game with n = 2 locations, h2 > h1 for m ≥ 3, Fig. 2c1. Similarly, in the domain 12 of the374
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game with n = 3 locations, h3 > h2 > h1 for m ≥ 7. , Fig. 2c1 There are also other regimes in375

which the prey has a strategy set composed of pure and mixed strategies (avoid j locations and376

hide in the remaining n-j locations), (see for instance Figure S4, or Fig. 2d1 where h3 = 0 while377

h2 > h1 ).378

Third, for large m an optimal Searcher strategy consists in concentrating its efforts on the loca-379

tions with the lowest capture probabilities. The strategy [1, 2, ..., n], which consists in searching380

locations in increasing order, would be prioritized. If 0 < sj < 1 (permutation j should be used381

with a probability which is neither 0 nor 1), sj depends on m but converges for increasing m.382

6 Discussion383

6.1 The Γm game, a framework which generalises previous search-and-384

pursuit games385

Our model improves the degree of realism of search and pursuit of previous games. In the original386

game G2014
k , the budget (per round looks) k implicitly drops to 0 when the prey evades capture.387

In the game G2015
k , k resets to its original value whenever the prey is found, with a probability388

β. Here, we use a finite total budget m of resources in all rounds, being time, eggs, ”munitions”389

or internal state. Our model led to qualitative and quantitative results which can be summed up390

as follows: (1) The predator foraging success decreases with spatial complexity (number of hiding391

places and quality of the best location). (2) We can observe rapid changes in locations just before392

the protagonists reach the deadline. This is particularly observable for e.g. the Domain 12 in393
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Fig. 3, where the location with the highest hiding probability changes as m becomes lower than394

8. This behavior near the deadline is reminiscent of the dynamic optimisation models reviewed in395

[HKE80]. Conversely, when m is above an undetermined threshold, the optimal hiding strategies396

become independent of the number of looks m. In other words, there is a uniformly optimal strat-397

egy for Γm when ”m is sufficiently large”. This means that the prey can minimise the probability of398

capture and carry out the optimal strategy without even knowing the budget of the predator (also399

called deadline in Lin and colleagues [LS16]) is unknown. (3) For large m, depending on a complex400

interplay between the capture probabilities pi, the prey should either hide more in the worst loca-401

tions and less in the best locations, or on the contrary avoid totally the worst locations. When the402

location 1 is ”clearly better” than the others, the optimal strategy would consist in keeping hiding403

in the same place (location 1) over and over, as long as m is greater than 1 (4) For large m, the404

predator should concentrate his efforts on the locations in which the prey capture probabilities are405

the lowest. For instance, in the game with n = 2 locations, the probability of inspecting location 1406

first (s12) is higher than the probability of inspecting location 1 last (s21) whatever the domain I,407

II or III. 2b2-c2-d2. This is highly counter-intuitive at first glance. We discuss these results in turn.408

409

6.2 Leveraging some of the model’s assumptions410

Some assumptions of the model are the following (1) The prey does not change her location when411

the predator is searching until it is found (the rash prey hypothesis). (2) all locations are equally412

easy to search and there aren’t any travel costs between locations. (i.e. searching cost one look in413
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every locations) (3) The parameter m can only decrease over ”time” (time moves forwards). (4)414

The number of escape moves of the prey is bounded by m, i.e. there is no fatigue in the prey415

indicating that the drive to survive is stronger than losing energy. (5) The individual capture416

probabilities pi in each location i do not evolve over time. (6) The Γm game is a zero-sum two417

players game (7) The predator is aware of the total number of locations. (8) The prey knows the418

budget m of the predator and bases her decisions accordingly. Both players know the number and419

qualities (pi) of locations but not the strategy chosen by the other at each round. (9) The prey420

can decide where it will hide after a pursuit and all locations are equally affordable. We discuss421

here a few of these assumptions of our model.422

The hiding locations and their connectivity patterns in our model are supposed equivalent, and423

a more accurate representation would consist in representing hiding locations as the nodes of a424

weighted graph. The nodes would be networked together thanks to weighted edges [AG06], as a425

first step towards either the consideration of 3D continuous geometrical environments or that some426

location requires more investment to search. The Γm corresponds to the search game of a mobile427

hider in a fully connected graph but with a finite budget. The search problem of a mobile hider428

was solved by [Gal80] and the value is (1+ϵ)µ
ρ

where µ is the Lebesgue measure and ρ the maximal429

discovery rate. With a few modifications of the equation, we can take into account spatial features430

(connectivity and heterogeneity of locations) and considered whether higher graph connectivity431

increases the value of the game.432

Incomplete information game with predators having a priori ideas concerning the number of lo-433

cations and capture probabilities could be Bayesian updated [Alp+19]. A promising perspective434

27



would be the application of our framework to the robotic problems of search-and-pursuit in polyg-435

onal environments with visibility polygons when characterizing the environment as a collection436

of discrete locations is more tricky [Li+18]. The model proposes indeed new optimal searching437

strategies which could be easily implemented for the development of autonomous navigating agents.438

6.3 Counterintuitive prey strategies439

The previous search-and-pursuit games and our Γm game share a global result: the parameter space440

(p={pi}) can be divided into domains, in which the prey should either always go to location 1, or441

hide differently. In the original model G2014
k , the prey knows that if it successfully escapes, it would442

win, or lose otherwise (that is why the number of looks k was lower than n). For k < kthreshold, the443

prey plays a equally-attractive strategy (making hipi constant ∀i). Moreover,an increasing number444

of looks k also encourages the prey to always hide in the best locations [GC14]. Indeed, as the445

number of looks increases, it is more likely to be found. Thus, for k > kthreshold, it should hide in446

location 1 (with the lowest capture probability). In the Γm game, evading once the predator is not447

sufficient to win the game because the predator can retry an attack if it has enough resources. Even448

for a large m, always hiding in the location 1 may not be the best strategy. The conclusions of the449

original model of 2014 and our model seem therefore to mismatch, but we solved this discrepancy450

by pointing out that the G2014
k was a particular case of our Γm game. The most surprising result451

concerning the hiding strategies was that, for m >> n, the prey should sometimes hide more in452

the worst locations than in the best locations, which is quite counter-intuitive. We provide an453

explanation next.454
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First, we remind that the predator wants to capture the prey before a deadline, not necessarily455

as soon as possible. As in all zero-sum games, the objectives of both protagonists are opposing.456

We imagine a predator thinking with a minimax point of view. It might be tempted to inspect457

the locations with the highest capture probabilities first, and to inspect the locations in decreasing458

order of the capture probabilities. However, if the prey is hidden in location 1 (with the lowest459

capture probability), the predator loses twice. Not only does it wasted n searches, but it also ends460

up in the location with the lowest capture probability, and another round is very likely to start.461

Instead, inspecting the locations in increasing order of capture probabilities seems beneficial. If462

the prey is in location n, the predator loses again n searches, but the latter is very likely to capture463

the prey in location n, and thus win the game. If the prey is in location 1, the predator is unlikely464

to catch the prey, but at least it will not lose many looks, and it may be better for the predator465

to encounter the prey as many times as possible. Conversely, the only chance for the prey to466

survive is by driving the budget m down quite quickly to reach the absorbing state m=0. A prey467

acting in a minimax point of view would try to waste the predator’s budget m, even if it implies468

to hide in the locations with the highest capture probabilities (location n), as it is important469

to make big decreases in m. Once m gets closer to the deadline, such risks may no longer be470

needed, and the prey would hide in the locations with the lowest capture probabilities. Somewhat471

similar considerations of opposite dual motivations are at the heart of [Cla20] about searching with472

deadlines. However, in our work, the predator must keep an eye on its budget, and it doesn’t need473

to find the prey as soon as possible.474

Of course, in natural environments, the observed hiding patterns may differ given that the475
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prey has also other objectives, such as maximising foraging (the best hiding locations may be very476

costly) or the presence of intraspecific competition (ideal free distribution patterns)[CB15].477

478

6.4 Structurally complex environments479

The discrete locations in our model can be interpreted in a wide range of ways: hiding places,480

space coordinates, discretized angles of escapes, snapshots of visibility, and prey habitats at a481

larger scale. We have shown that the overall capture probability decreases with an increasing482

number of locations for a given number of looks m, which is consistent with a large body of483

ecological work. Although often underlooked, it is well-known that habitat structural complexity484

is a major determinant of predator-prey interactions ([CC82], [Hil75]), notably since MacArthur485

works on biogeography [MP66], where the structure of the environments is one of the ingredient486

of ”all interesting biogeographic patterns”. The prey density or predator’s avoidance success is487

thus positively correlated with the habitat structure, by limiting the number of predator-prey488

encounters. These phenomena have been described for different biological scales and organisms489

from bacteriophages and bacteria [Lou+20], immune cells migrating in 3D matrices [Sad+20],490

to damselfly and perches hunting in structurally complex Myriophyllum algae [WB04]. We now491

qualify this finding by claiming that the prey’s success is even more related to the quality of the best492

location than the number or heterogeneity of locations. When location 1 is ”good enough”, the493

prey’s strategy consists in always hiding in that location. Although being predictable, her losses494

would be worse if it would have hidden in an other location. It is such a low capture probability495
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that it worth hiding in there all the time. Defining a location ”good enough” depends on the496

quality of the other locations. The fact that the quality of a location depends on extrinsic factors497

(the quality of the other locations) is reminiscent of the marginal value theorem in foraging ecology,498

in which the same rationale was made for food patches. The presence of a very good refuge thus499

matters more than a large number of refuges of average quality.500
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[GAC15] Shmuel Gal, Steve Alpern, and Jérôme Casas. “Prey should hide more randomly when a616

predator attacks more persistently”. In: Journal of The Royal Society Interface 12.113617

(Dec. 2015), p. 20150861. issn: 1742-5689, 1742-5662. doi: 10.1098/rsif.2015.0861.618

url: https : / / royalsocietypublishing . org / doi / 10 . 1098 / rsif . 2015 . 0861619

(visited on 12/08/2021).620

[LS16] Kyle Y. Lin and Dashi I. Singham. “Finding a hider by an unknown deadline”. In:621

Operations Research Letters 44.1 (Jan. 1, 2016), pp. 25–32. issn: 0167-6377. doi: 10.622

1016/j.orl.2015.11.003. url: https://www.sciencedirect.com/science/623

article/pii/S0167637715001492 (visited on 02/08/2023).624

[Li+18] Alberto Quattrini Li et al. “A search-based approach to solve pursuit-evasion games625

with limited visibility in polygonal environments: 17th International Conference on626

Autonomous Agents and Multiagent Systems, AAMAS 2018”. In: 17th International627

Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018. Proceed-628

ings of the International Joint Conference on Autonomous Agents and Multiagent629

Systems, AAMAS (Jan. 1, 2018), pp. 1693–1701. issn: 9781510868083. url: http:630

37

https://doi.org/10.1017/CBO9781107447189
https://www.cambridge.org/core/books/escaping-from-predators/E38C1404A18013B678F098CEE1B1F040
https://www.cambridge.org/core/books/escaping-from-predators/E38C1404A18013B678F098CEE1B1F040
https://www.cambridge.org/core/books/escaping-from-predators/E38C1404A18013B678F098CEE1B1F040
https://doi.org/10.1098/rsif.2015.0861
https://royalsocietypublishing.org/doi/10.1098/rsif.2015.0861
https://doi.org/10.1016/j.orl.2015.11.003
https://doi.org/10.1016/j.orl.2015.11.003
https://doi.org/10.1016/j.orl.2015.11.003
https://www.sciencedirect.com/science/article/pii/S0167637715001492
https://www.sciencedirect.com/science/article/pii/S0167637715001492
https://www.sciencedirect.com/science/article/pii/S0167637715001492
http://www.scopus.com/inward/record.url?scp=85054714185&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85054714185&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85054714185&partnerID=8YFLogxK
ORSSA
Sticky Note
quotes go at end of title, if that is what you want.

ORSSA
Sticky Note
You seem to be repeating something here.



//www.scopus.com/inward/record.url?scp=85054714185&partnerID=8YFLogxK631

(visited on 02/23/2022).632

[Alp+19] Steve Alpern et al. “A stochastic game model of searching predators and hiding prey”.633

In: Journal of The Royal Society Interface 16.153 (Apr. 26, 2019), p. 20190087. issn:634

1742-5689, 1742-5662. doi: 10.1098/rsif.2019.0087. url: https://royalsocietypublishing.635

org/doi/10.1098/rsif.2019.0087 (visited on 12/08/2021).636

[AL20] Steve Alpern and Viciano Lee. “A Normal Form Game Model of Search and Pursuit”.637

In: Advances in Dynamic Games. Ed. by David M. Ramsey and Jérôme Renault. Cham:638
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