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This article uses a combination of three ideas from simulation to establish a nearly optimal polynomial upper
bound for the joint density of the stable process and its associated supremum at a fixed time on the entire support
of the joint law. The representation of the concave majorant of the stable process and the Chambers-Mallows-
Stuck representation for stable laws are used to define an approximation of the random vector of interest. An
interpolation technique using multilevel Monte Carlo is applied to accelerate the approximation, allowing us to
establish the infinite differentiability of the joint density as well as nearly optimal polynomial upper bounds for the
joint mixed derivatives of any order.

Keywords: Joint density bounds; stable supremum

1. Introduction

Let (Xt )t≥0 be a non-monotonic α-stable process started at zero, P(X0 = 0) = 1, with α ∈ (0,2) and
positivity parameter

ρ := P(X1 > 0) ∈ [1 − 1/α,1/α] ∩ (0,1). (1.1)

For any fixed T > 0, denote by XT := sups∈[0,T ] Xs its supremum over the time interval [0,T]. Our main
result, Theorem 1 below, provides the regularity and upper bounds for the joint density of (XT ,XT ) and
its derivatives of any order. These explicit polynomial bounds, valid on the entire support set of the
joint law, are nearly optimal. For a detailed explanation, see the discussion following Theorem 1.

The joint law of (XT ,XT ) arises in the scaling limit of many stochastic models, including queues
with heavy-tailed workloads (see [11, §5.2] and the references therein). In such cases, the bounds in
Theorem 1 are necessary to construct asymptotic confidence intervals. Moreover, in some prediction
problems (e.g. [2]), regularity of the density of XT − XT , established in Theorem 1, is important.

Our approach to this problem is rooted in recent advances in simulation used to build an efficient
approximation of the law of (XT ,XT ). More precisely, we use the representation of the concave ma-
jorant of a stable process, recently applied in [19] to construct a geometrically convergent simulation
algorithm for sampling from the law of (XT ,XT ). In order to analyse the regularity of this joint law, we
express the stable random variables arising in the concave majorant representation of the supremum XT

via the classical Chambers-Mallows-Stuck representation. This approach in studying the regularity and
upper bounds of the densities of the joint law differs from the probabilistic and analytical techniques
applied in the literature so far (see [20] for a presentation of our results and techniques).

In general, it is well-known that the properties of an approximation do not necessarily persist in the
limit (see [3] for a comprehensive study in the case of the central limit theorem). In our case, in order
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to establish regularity and achieve nearly optimal upper bounds of the limit law, we accelerate the con-
vergence of the approximation procedure using ideas behind the multilevel Monte Carlo method. This
method has been successfully applied in Monte Carlo estimation (see [15] and the references in [14]) to
reduce the computational complexity of the algorithm for a pre-specified level of accuracy. In theoreti-
cal terms, we apply the multilevel idea as an interpolation methodology (we have not been able to find
multilevel Monte Carlo methods used for this purpose in the literature). Other interpolation techniques
applied to stochastic equations are found in [1], see also the references therein. In fact, the authors in [1]
use a different interpolation technique to obtain qualitative properties using approximation methods. In
the examples they treat, it is hard to tell if they achieve optimal results. In our case, the near optimal-
ity is due to the geometrical convergence of the approximation of the joint law based on the concave
majorant, see [19].

To the best of our knowledge, only the regularity of the density of the marginals of (XT ,XT ) has
been considered so far. The first component XT follows a stable law, which is very well understood (see
e.g. [29] and the references therein) and whose density has the following asymptotic behavior

P(XT ∈ dx) x→∞≈ T x−α−1dx; P(XT ∈ dx) x→0≈ T−1/αdx. (1.2)

Even though its law has been the focus of a number of papers over the past seven decades (starting with
Darling [10], Heyde [21] and Bingham [5]), far less information is available about the density of the
second component, XT , which is a functional of the path of a stable process. Most of the results about
the law of the supremum of a Lévy process rely on the Wiener-Hopf factorisation and/or the equiva-
lence with laws related to excursions of reflected processes [8,9]. For example, in [7], the author obtains
explicit formulae for the supremum in the spectrally negative stable and symmetric Cauchy cases. The
smoothness of the density of the supremum XT is known, see e.g. [27, Thm 2.4 & Rem. 2.14].

The papers [12,13] study the asymptotic behaviour of the density of the supremum at infinity and at
zero. In [13], the authors rely on local times and excursion theory, the Wiener-Hopf factorisation and a
distributional connection between stable suprema and stable meanders. Power series expansions of the
density of XT have been established in [22,23] in some particular situations. Since stable processes are
self-similar and Markov, results in [27] can be used to deduce the asymptotic behaviour of the density
(and its derivatives) of XT , see the paragraph following Corollary 2 below.

In short, the proofs of the results obtained so far in the literature rely on excursion theory or the
Wiener-Hopf factorisation. These methods exploit the independence of Xe and Xe − Xe over an in-
dependent exponential time horizon e. The dependence of all of the above methods on a number of
specific analytical identities for the law of XT makes them hard to generalise in order to study the law
of (XT ,XT ).

A result closer to our study appears in [13,27]:

P(XT ∈ dy)
y→∞
≈ T y−α−1dy; P(XT ∈ dy)

y→0
≈ T−ρyαρ−1dy. (1.3)

Taking into consideration the asymptotics in (1.2)–(1.3), it is natural that the asymptotics for the law
of (XT ,XT ) are determined by four sub-domains in the support O := {(x, y) ∈ R2 : y >max{x,0}}. Our
upper bound on the joint density and its derivatives, illustrated in Figure 1 below, is close to optimal
in the sense that we obtain such a result for any α′ arbitrarily close to α featuring in (1.2)–(1.3). The
reason why we are unable to obtain the result for the choice α′ = α is technical and due to the use of
moments to bound tail behaviours in the spirit of Markov’s and Chebyshev’s inequalities.

Malliavin calculus is a long developed subject in the area of stochastic analysis of jump processes.
The ultimate goal of the general theory is to obtain an infinite dimensional calculus with the view of
investigating random quantities generated by the jump process and, in particular, the regularity of the
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law of path functionals of the process (see e.g. [4,26] for a general reference). Notably, these theoretical
developments in Malliavin calculus have fallen short of the problem of the regularity of the density of
XT , because the supremum of a jump process (as a random variable) appears not to depend smoothly
on the underlying jumps. An exception is the result in [6], where the authors rely on the Lipschitz
property of the supremum functional to prove the existence of a density for the supremum of a jump
process in a general class, using the so-called lent-particle method. However, since XT is not a smooth
functional of the path, it is unclear how to apply these methods to analyse the regularity and behavior
of the density near the boundary of its support.

The approach used in this article does not fall in any of the above categories of Malliavin Calculus,
nor does it rely on any results from Malliavin Calculus of jump processes. More precisely, we do not
use infinite dimensional objects but only study limits of finite collections of random variables, arising
in the noise used in our representation of the law of (XT ,XT ). Our main underlying idea is to exploit
the geometrically convergent approximation of the random vector of interest, establish the required
properties of the densities for the approximate vectors and prove that these properties persist in the
limit. In this sense, our approach is both self-contained and elementary.

More specifically, we establish a probabilistic representation for the joint density of (XT ,XT ) and its
derivatives in Theorem 7 below, based on a telescoping sum of successive approximations analogous
to the multilevel method (cf. [15]). The telescoping sum formula for the density and its derivatives is
based on an elementary integration-by-parts formula for successive finite dimensional approximations
of (XT ,XT ). These approximations do not use the path of the stable process (Xt )t∈[0,T ] directly as would
be the case in Malliavin Calculus for processes with jumps. Instead, the concave majorant of (Xt )t∈[0,T ],
given in [28, Thm 1], is used to represent (XT ,XT ) as an infinite series [18,19]. The terms in this series
are the increments of the stable process over macroscopic (but geometrically small) time steps given
by an independent stick-breaking process on [0,T] (for more details, see Section 3.1). We then build
our elementary finite-dimensional integration-by-parts formulae for the partial sum approximations of
(XT ,XT ) using the scaling property of stable increments and their Chambers-Mallows-Stuck represen-
tation [31], which in the non-Cauchy case α � 1, amounts to a semi-linear function of independent
uniform and exponential variables, Section 3.1.

1.1. Organisation

The remainder of the paper is organised as follows. In Section 2 we present Theorem 1, the main result
of the paper, and some applications of these results. Subsection 3.1 introduces the technical notation for
the proofs and Subsection 3.2 establishes the integration-by-parts formula (Ibpf). In Section 4, we give
the proof of our main result, Theorem 1 and an important technical Proposition 8, which gives all the
bounds needed in order to be applied in the Ibpf formula obtained. The proof of our main result uses
the interpolation method in the sense that the approximation method based on the convex majorant
converges geometrically fast while the density bounds explode polynomially. Combining these two
characteristics one obtains the almost optimal bounds.

We close the article with some technical appendices which prove the important technical Proposition
8. The proof of this proposition is composed of algebraic inequalities which are obtained in Subsection
5.2. The upper bounds are products of powers of basic random variables. After the proof we give also
a heuristic interpretation of a basic interpolation technique used in the estimation of the moments.
Finally, the moment estimates are obtained in Subsection 5.3. Throughout the article we concentrate
on the case α � 1 leaving the special Cauchy case, α = 1 as well as estimates on the moments of a
stick-breaking process to the supplement in [16].

Section 6 concludes the paper, remarking on our techniques and methodology as well as possible
extensions.
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2. Main result and applications

Recall the open set O = {(x, y) ∈ R2 : y >max{x,0}} defined above. We now state our main result:

Theorem 1. Assume that α ∈ (0,2). Let F(x, y) := P(XT ≤ x,XT ≤ y) be the distribution function of
(XT ,XT ). The joint density of F exists and is infinitely differentiable on the open set O. Moreover, for
any fixed n,m ≥ 1 and α′ ∈ [0,α) there is some C > 0 such that for all (x, y) ∈ O and T > 0, we have

|∂nx ∂my F(x, y)| ≤ Cy−m(y − x)1−n−m(2y − x)m−1min{ f 00
α′ (x, y), f 01

α′ (x, y), f 10
α′ (x, y), f 11

α′ (x, y)}, (2.1)

where f i jα′ (x, y) := T
α′
α (i(2−ρ)+j(1+ρ)−1)(y − x)α′(1−ρ)−iα′(2−ρ)yα

′ρ−jα′(1+ρ) for i, j ∈ {0,1}.

Theorem 1 presents a bound on the mixed derivatives of the joint density of (XT ,XT ). The decay of
the bound as y tends to either infinity or zero is almost sharp in the following sense: if one sets n = 1
and α′ = α in (2.1) (cf. Figure 1 below) and integrates out x over R, the decay of the obtained bound
matches the actual asymptotic behaviour of the density of XT known from the literature [13,22,23].
That is, marginals of the above bounds match the estimates in (1.2) and (1.3). In fact, the bound in
Corollary 2 below is established in this way. The constant C in (2.1) can be made explicit. Instead of
giving a formula for C, which would be lengthy and suboptimal (cf. Remark 4(i) below), we point out
that (α − α′)C remains bounded as α′ ↑ α. An alternative way to understand the optimality property is
through a change of variables in equation (3.1) which will be proven in Section 4.

Theorem 1 above suggests that the asymptotic behaviour of the joint density at (x, y) of (XT ,XT ) as
T → 0 is proportional to T2(y − x)−α−1y−α−1, see Figure 1. This is corroborated by the results in [7,9]
as we now explain. Recall from [7, Thm 6] that the density of (XT ,XT − XT ) satisfies

P(XT ∈ dx,XT − XT ∈ dy) = dxdy
∫ 1

0
q∗sT (x)q(1−s)T (y)Tds, (2.2)

where q∗t (resp. qt ) is the entrance density of the excursion measure of the reflected process of X (resp.
−X). If X has jumps of both signs, then [9, Thm 3.1] and [7, Ex. 3], imply that, as T → 0, the quantities
q∗sT (x)/(T

ρsρx−α−1) and q∗(1−s)T (x)/(T
1−ρs1−ρy−α−1) have positive finite limits that depend neither

on s nor (x, y). Thus the integral on the right-hand side of (2.2) is proportional to T2x−α−1y−α−1 as
predicted the bound in Theorem 1 (see also (3.1) below).

Figure 1. The set O = {(x, y) ∈ R2 : y > max{x,0}} (shaded in the figure) is the support of the joint density of
(XT ,XT ). According to Theorem 1, the support can be partitioned into 4 sub-regions according to which of the
functions f i jα , i, j ∈ {0,1}, is the smallest in the (optimal) case α′ = α.



Joint density of a stable process and its supremum 3447

Setting n = 1 and explicitly integrating in y over (0,∞) yields the following bounds.

Corollary 2. Let α ∈ (0,2) and define τy := inf{t > 0 : Xt > y}, y > 0. Then the distribution functions
F(y) := P(XT ≤ y) and P(τy ≤ T) are infinitely smooth on (0,∞) and, for every α′ ∈ [0,α) and n ≥ 1,
there exists some constant C > 0 such that for all y > 0 and T > 0, we have

|∂ny F(y)| ≤ Cy−n min
{
T

α′
α y−α

′
,T− α′

α ρyα
′ρ}, |∂nTP(τy ≤ T)| ≤ CT− 1

α−n min
{
T

α′
α y−α

′
,1
}
.

It has been pointed out to us [30] that the bound in Corollary 2 for α′ = α can be obtained from the lit-
erature. By studying the Mellin transform of XT [27, Thm 2.4] (via a distributional identity linking XT

to an exponential integral arising in the Lamperti representation of self-similar Markov processes [27,
Rem. 2.14]), one obtains the asymptotic behaviour in (1.3). Similar bounds can be obtained for the
derivatives of the density, implying Corollary 2.

Other consequences of our main Theorem 1 can also be derived. For example, the following result
reveals an interplay between the final value XT and the supremum XT .

Corollary 3. Assume that α ∈ (0,2) and let y ≥ T1/α, x ≤ 0. Then for any α′ ∈ (0,α)

P(XT ≤ x, τy < T) ≤ CT2 α
α′ y−α

′
min{y−α′

,(−x)−α′ }

Proof. The inequalities are obtained by direct integration of the bound in Theorem 1 as follows:

P(XT ≤ x,XT > y) ≤ CT2 α
α′

∫ ∞

L/(−x)
w−1−α′(1 + w)−α′

dw.

Our methods apply to the Brownian motion case α = 2, but the result does not reveal new information
since the density of (XT ,XT ) is known explicitly. Furthermore, in (1.1) we exclude boundary cases
ρ ∈ {0,1} as in those cases the monotonicity of paths of X implies XT = XT (resp. XT = X0) a.s. if
ρ = 1 (resp. ρ = 0).

We conclude this section with a remark on potential alternative approaches, based on analytical
methods rooted in the Wiener-Hopf factorisation, to the problem of controlling partial derivatives of
any order of the distribution function of the vector (XT ,XT ).

Remark 1. It is natural to enquire if similar results to those established here can be obtained by an-
alytic means. Let us comment on some of the steps one would have to take to obtain such results.
The Wiener-Hopf factorisation gives a representation for the characteristic exponent of (Xe,Xe − Xe),
where e is an independent and exponentially distributed random variable. Fourier and Laplace inver-
sions (in space and time, respectively) could be applied to such an expression to describe the law of
(XT ,XT − XT ). Similar ideas (together with local-time and excursion theories) were used to obtain
asymptotic behaviour of the density at infinity and at zero of the marginal law XT [12,13] as well as to
derive, for particular choices of parameters α and ρ, double power-series expansions of the density of
XT [22,23]. The restrictions on the parameters are such that, in particular if α is rational, then the se-
ries expansions converge only for finitely many values of ρ [23], suggesting that obtaining information
about the distribution of XT via the Wiener-Hopf factorisation is highly non-trivial.

Alternatively, a representation of ∂xF(x, y) = P(XT ∈ dx,XT ≤ y) in the special case α > 1 can be
obtained by [24, Thm 1] as follows: note that ∂xF(x, y) = P(y − XT ∈ y − dx, inft∈[0,T ](y − Xt ) ≥ 0) =
P̂y(X̂T ∈ y − dx, inft∈[0,T ] X̂t ≥ 0), where the law P̂y(·) of the Lévy process X̂ := y − X , started at y,
is α-stable with positivity parameter P̂y(X̂1 − y ≥ 0) = 1 − ρ. In [24], the authors describe the density
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P̂y(X̂T ∈ y − dx, inft∈[0,T ] X̂t ≥ 0) in terms of the double sine function S2, defined via the functional
equations

S2(z + 1;α) = 1
2 S2(z;α)/sin(πz/α), S2(z + α;α) = 1

2 S2(z;α)/sin(πz),

with the normalising condition S2((1 + α)/2;α) = 1 and the completely monotone function

G(x) :=
∫ ∞

0
e−zx z(αρ−1)/2 |S2(1 + α + α(1 − ρ)/2 + iα(log z)/(2π);α)|2dz.

The density P̂y(X̂T ∈ y − dx, inft∈[0,T ] X̂t ≥ 0) is an integral of the product of functions

φ(x; ρ)� ex cos(πρ) sin(x sin(πρ) + πρ(1 − α(1 − ρ))/2) +
√
α

4π
S2(−α(1 − ρ))G(x).

More precisely, [24, Thm 1] yields the following identity valid when either α > 1 or ρ = 1/2:

∂xF(x, y) = 2
π

∫ ∞

0
e−Tt

α
φ(yt; 1 − ρ)φ((y − x)t; ρ)dt .

In order to apply this identity to obtain asymptotic bounds on the derivatives |∂nx ∂my F(x, y)| for arbi-
trary n,m ∈ N when α > 1 or ρ = 1/2, it would be necessary to employ Leibniz product rule repeatedly
and control the sum of the products of the derivatives of φ that arise under the integral. This approach,
suggested by the referee, appears plausible but evidently nontrivial.

We do not pursue these ideas further in this paper as our aim here is to show the utility of a set of
probabilistic techniques different from those commonly used in the literature. Moreover, we stress that,
as will become clear from the differential structure introduced in Section 3.2 below, our arguments
use differentiation with respect to a part of the randomness of the stable laws only. In particular, the
trigonometric functions appearing in the structure of stable laws are not differentiated. In this sense, our
technique is difficult to compare directly with the potential approach described in the present remark.

3. Tools: Approximation method and sequential Ibpf

In this section, we describe the elements and notation used to describe the approximation to (XT ,XT )
as well as the Ibpf that this approximation generates.

3.1. Approximation method for (XT , XT )

Throughout the article, we fix T > 0 and we will use a decomposition of the random variable XT based
on X+ := XT which denotes the supremum of (Xt )t∈[0,T ] and its reflected process X− := X+ − XT .
Henceforth, we work with (X+,X−), supported on R2

+, instead of working with (XT ,XT ). The ± notation
is useful in order to write dual formulas that are valid for both signs.

In fact, the proof of Theorem 1 studies the equivalent pair (X+,X−), instead of (XT ,XT ), and shows
the following: let F̃(x, y) := P(X+ ≤ x,X− ≤ y), then for any α′ ∈ [0,α) and n,m ≥ 1 there exists some
constant C > 0 such that for any T, x, y > 0 we have

|∂nx ∂my F̃(x, y)| ≤ Cx−ny−m min
{
T

α′
α x−α

′
,T− α′

α ρxα
′ρ} min

{
T

α′
α y−α

′
,T− α′

α (1−ρ)yα
′(1−ρ)} . (3.1)
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Figure 2. Randomly selecting three faces of the concave majorant C of X (the smallest concave function dominat-
ing the path of X) in a size-biased way. The total length of the thick blue segment(s) on the abscissa equal the stick
remainders L0 = T , L1 = T − �1 and L2 = T − �1 − �2, respectively, where �1 = d1 − g1 and �2 = d2 − g2. The inde-
pendent random variables V1,V2,V3 are uniform on the sets [0,T], [0,T] \ (g1,d1), [0,T] \

⋃2
i=1(gi,di), respectively.

The interval (gi,di) is the face of C containing Vi . By [19, §4.1], this procedure yields a stick-breaking process �
and, conditionally given �, the increments C(di) − C(gi) are independent with the same law as Xt at t = �i , i.e.,

C(di) −C(gi)
d
= �

1/α
i

Si .

For this reason, we will use in many formulas multiple ± and ∓ signs. It is assumed that the signs
match, i.e., all ± are + (resp. −) and all ∓ are − (resp. +) simultaneously. For example, A± = ∓B∓ if
and only if A+ = −B− and A− = +B+. Additionally, we use the notation [x]+ = max{x,0} and [x]− =
max{−x,0}. We stress that if the brackets are not present, then the notation refers to a different object.
For example, X±,n denote the approximations for X± respectively and D±

n are the associated derivative
operators to be defined below. Finally, we denote x ∧ y =min{x, y} and x ∨ y =max{x, y}.

We will use an approximation method for the pair (XT ,XT ) used in [19, §4.1] (see also [18, Eq. (2.2)],
[28, Thm 1] and [17, Thm 2.1]) which is based on the concave majorant of X , see Figure 2.

The procedure constructs a random sequence of disjoint sub-intervals of the time interval [0,T] that
cover it geometrically fast. This is called a stick-breaking process: � = (�i)i≥1 on the interval [0,T].
That is, based on the i.i.d. uniform random variables Ui ∼ U(0,1), define L0 := T and for each i ∈ N,
Li := Li−1Uk and �i = Li−1 − Li = Li−1(1 −Ui) = T(1 −Ui)

∏i−1
j=1 Uj . It is easy to see that

∑∞
i=1 �i = T

and E[�pi ] = T p (1 + p)−i for any p > 0. That is, the convergence of the total length of the sequence of
disjoint intervals

⋃i
j=1[Lj−1,Lj ] to T is geometrically fast.

Consider an independent i.i.d. sequence of stable random variables (Si)i≥1 with parameters (α, ρ)
(i.e. Si

d
=X1). When α � 1, the Chambers-Mallows-Stuck representation of these stable random variables

(see [31]) is Si = E1−1/α
i Gi and Gi = g(Vi), i ∈ N, for i.i.d. exponential random variables (Ei)i≥1 with

unit mean independent of the i.i.d. U(− π
2 ,

π
2 ) random variables (Vi)i≥1 and function

g(x) :=
sin

(
α
(
x +ω

) )
cos1/α(x) cos1−1/α (

(1 − α)x − αω
) , x ∈

(
− π

2
,
π

2

)
, (3.2)

where ω := π(ρ− 1
2 ). Note that indeed P(Si > 0) = ρ. We assume that all the above random variables are

defined on a probability space (Ω,F ,P). These random elements and the coupling in [19, §4.1] provide
an almost sure representation for (XT ,XT ):

XT = X+ and XT = X+ − X−, where X± :=
∞∑
i=1

�
1/α
i [Si]±. (3.3)
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The series in the definitions of X+ and X− have non-negative terms and converge almost surely by the
equalities in (3.3). Note again, that the convergence in the above infinite sum is “geometrically fast”.

As stated in the Introduction, we base our finite dimensional integration by parts formulas using only
the exponential random variables Ei . In order to build approximations of the above random variables
on finite dimensional spaces with smooth laws, we truncate the infinite sums up to the n-th term. With
this in mind and in order to preserve the existence of densities, we replace the remainder with anη±
as follows: let (an)n∈N be a positive and strictly decreasing sequence defined as an := T1/ακn with
κ ∈ (0,1). Therefore an ↓ 0 as n →∞. The random variables η± are exponentially distributed with unit
mean independent of each other and of every other random variable. With these elements we define the
n-th approximation to χ = (X+,X−) as χn = (X+,n,X−,n), n ∈ N given by (with convention X±,0 := 0)

X±,n :=
n∑
i=1

�
1/α
i [Si]± + anη

1−1/α
± =

n∑
i=1

�
1/α
i E1−1/α

i [Gi]± + anη
1−1/α
± . (3.4)

We introduce the following assumption, valid throughout the paper, and crucial to obtain good posi-
tive and negative moment estimates for X±,n (see Lemma 11 below).

Assumption (A-κ). The constant κ ∈ (0,1) in an = T1/ακn satisfies κα ≥ ρ∨ (1 − ρ).

For any m ∈ N, n ∈ N∪ {∞} and A ⊂ Rm, let Cn
b
(A) be the set of bounded and n-times continuously

differentiable functions f : Rm → R on the open set A and whose derivatives of order at most n are
all bounded. Furthermore for f ∈ C1

b
(R2) we denote the partial derivatives with respect to the first and

second component by ∂+ f and ∂− f , respectively.

3.2. Sequential integration by parts formulae via a multilevel method

In order to state the finite dimensional Ibpf, we will use a derivative operator notation with respect to a
set of random variables. Thus, for any random variable F = f (ϑ,K), where f is differentiable in the first
component and the random variable ϑ is independent of the random element K, the derivative ∂ϑ[·]
is well-defined and given by ∂ϑ[F] = ∂ϑ f (ϑ,K). Recall that the random variables {Ei,Ui,Vi,η±; i ∈ N}
are independent (i.e. the joint law is a product measure), making the derivatives in the following lemma
well-defined.

Lemma 4. For any m ∈ N, define the differential operators

D±
m := η±∂η± +

m∑
i=1

Ei1{[Gi ]±>0}∂Ei . (3.5)

Then for any function f : R+→ R+ and p ∈ R \ {0} we have

Ei∂Ei [X±,n] = (1 − 1/α)�1/αi E1−1/α
i [Gi]±1{i≤n}, k ∈ N,

D±
mXp

±,n = (1 − 1/α)pXp
±,n, D±

m

[
f (X∓,n)

]
= 0, m ≥ n ≥ 1.

(3.6)

Proof. The first two identities follow easily. For the third identity, note that X±,n > 0 a.s. and thus, its
reciprocal and any of its powers are always well defined real numbers. The other identities follow from
the first one and the corresponding formula for η±∂η±[X±,n].
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Remark 2. (i) The identity D±
mXp

±,n = (1−1/α)pXp
±,n, m ≥ n ≥ 1, in (3.6) reveals a regenerative prop-

erty of X±,n with respect to the operator D±
m (like the fact that in classical calculus the derivative of

the exponential function is itself). In fact, this is the main motivation behind the definition of D±
m.

This regenerative structure relies on the particular dependence of X±,n on Si and Ei , i ∈ {1, . . . ,n}.
(ii) The indicators 1{[Gi ]±>0} in the definition of D±

m ensure that when applied to f (χn), only one of
the partial derivatives of f appears due to (3.6) (see (3.8) below).

Now, we introduce the space of smooth random variables. Given any metric space S, define the space
of real-valued bounded and continuous functions on (0,∞)m × S that are C∞

b
in its first m components

S∞((0,∞)m,S) :=
{
φ : (0,∞)m × S → R; φ is continuous, φ(·, s) ∈ C∞

b ((0,∞)m;R), ∀s ∈ S
}
.

Define Sm(Ω) :=
{
Φ ∈ L0(Ω) : ∃φ(·,ϑ) ∈ S∞((0,∞)3m+2,S) and Φ = φ(Em,Um,Vm,η+,η−,ϑ)

}
, where

Em := (E1, . . . ,Em), Um := (U1, . . . ,Um), Vm := (V1, . . . ,Vm) and ϑ is any random element in some
metric space S independent of (Em,Um,Vm,η+,η−). For instance, if the random variable Φ is a
function of (E∞,U∞,V∞), we say that Φ ∈ Sm(Ω) if the property defining this set is satisfied with
ϑ = ((Em+1,Em+2, . . .),(Um+1,Um+2, . . .),(Vm+1,Vm+2, . . .)) representing all the random variables with
indices larger than m. We describe now the following finite dimensional Ibpf for a fixed approximation
parameter n. Recall that χn = (X+,n,X−,n) for n ∈ N.

Proposition 5. Fix n,m ∈ N with m ≥ n. Then for any Φ ∈ Sm(Ω) and f ∈ C1
b
((ε,∞)2),

E[∂± f (χn)Φ] = E[ f (χn)H±
n,m(Φ)], where

H±
n,m(Φ) :=

1
X±,n

α

α − 1

( (
η± − 1

α
+

m∑
i=1

(Ei − 1)1{[Gi ]±>0}
)
Φ −D±

m[Φ]
)
∈ Sm(Ω).

(3.7)

Proof. Note that [x]± > 0 if and only if ±x > 0. The chain rule for derivatives and (3.6) yield

D±
m[ f (χn)] = ∂± f (χn)D±

m[X±,n] = (1 − 1/α)∂± f (χn)X±,n. (3.8)

Denote ∂̃ϑ[Y ] :=Y − ∂ϑ[Y ]. Let η be an exponential random variable with unit mean. If Λi := hi(η)
for some hi ∈ S∞((0,∞);R), i ∈ {1,2}, then the classical Ibpf (with respect to the density of η) gives

E[Λ1η∂η[Λ2]] = E[∂η[Λ1Λ2η] −Λ2∂η[Λ1η]] = E[Λ1Λ2η −Λ2∂η[Λ1η]] = E[Λ2∂̃η[Λ1η]]. (3.9)

Integration by parts with respect to η± and Ek for each i ≤ n gives, by (3.6), (3.8) and (3.9),

E [∂± f (χn)Φ|F−E ] =
α

α − 1
E

[
Φ

X±,n
D±

m[ f (χn)]
����F−E ]

=
α

α − 1
E

[
f (χn)

(
∂̃η±

[
Φη±
X±,n

]
+

m∑
i=1

∂̃Ei

[
ΦEi1{[Gi ]±>0}

X±,n

] ) ����F−E ]
= E[ f (χn)H±

n,m(Φ)|F−E ]. (3.10)

Above we denoted by F−E the σ-algebra generated by all but the random variables η+, η− and Ei , i ∈ N
which are used in the integration-by-parts. Taking expectations in (3.10) completes the proof.
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Remark 3. (i) Observe that the role of ε in the previous result is to ensure that the expectation on the
right-hand side in (3.7) is finite (by making the quotient f (χn)/X±,n bounded).

(ii) Recall that exponential laws are discontinuous at zero. Still, in the above Ibpf, these boundary
terms do no appear. This is due to the factors Ei∂Ei and η±∂η± which appear in the definition of D±

m

in (3.5). In exchange, one has X±,n in the denominator of the expression for H±
n,m(Φ).

As H±
n,m(Φ) ∈ Sm(Ω) for any Φ ∈ Sm(Ω), m ≥ n, we inductively define the sequence of operators

{H±,k
n,m(·)}k∈N for every n,m ∈ N such that m ≥ n as

H±,k+1
n,m (Φ) := H±

n,m(H
±,k
n,m(Φ)) for k ≥ 0, where H±,0

n,m(Φ) :=Φ.

Let us state some basic properties of the weights H±
n,m(Φ).

Lemma 6. The operators H±,k
n,m(·) and H∓, j

n,m(·) commute. Moreover, if α � 1 and Φ does not depend on
Em or η±, then D±

m[Φ] = 0 and hence H±
n,m(Φ) = H±

n,m(1)Φ.

These iterated operators are useful in order to define the multiple Ibpf formulas for the limit random
variables in combination with the so-called Multi level Monte Carlo method which can be interpreted
as an interpolation formula which uses approximations in order to describe the behavior of the limit.
This is done in the next result.

Theorem 7. Let Φ ∈ Sn(Ω) for all n ∈ N. For any n ≥ 1, k+, k− ≥ 0 and f ∈ Ck++k−
b

([ε,∞)2) we have

E
[
∂k++ ∂

k−
− f (χ)Φ

]
=E

[
〈 f ,Φ〉k+ ,k−n

]
(3.11)

〈 f ,Φ〉k+ ,k−n := f (χn)H+,k+n,n

(
H−,k−
n,n (Φ))

+

∞∑
i=n

(
f (χi+1)H+,k+i+1,i+1

(
H−,k−
i+1,i+1(Φ)

)
− f (χi)H+,k+i,i+1

(
H−,k−
i,i+1(Φ))

)
. (3.12)

Proof. Note that E[ f̃ (χn)] → E[ f̃ (χ)] as n → ∞ for any bounded and continuous function f̃ since
χn → χ a.s. Recall that ∂k++ ∂

k−− f is continuous and bounded. By telescoping we find

E[∂k++ ∂k−− f (χ)Φ] = E[∂k++ ∂k−− f (χn)Φ] + E
[ ∞∑
i=n

(∂k++ ∂k−− f (χi+1) − ∂k++ ∂k−− f (χi))Φ
]
.

The first term equals E[ f (χn)H+,k+n,n (H−,k−
n,n (Φ))] by Proposition 5. Applying Proposition 5 again

shows that each term in the above sum equals its corresponding term in (3.12), yielding (3.11).

It is clear that iterations of H±
n,m have long and complex explicit expressions. In particular, the

remaining goal is to find proper bounds for the iterated operators which appear in formula (3.11).
In order to complete the arguments for our main proofs we will need that the infinite sum appearing

in (3.11) converges absolutely. Furthermore, bounding this sum becomes important in obtaining upper
bounds for the joint density and its derivatives. This is all done at once in the next proposition. Its proof
is technical but only uses basic algebra and moments of the random variables in involved in Section
3.1.
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We are interested in the explicit decay rate of the terms in the sum of Theorem 7 for a special
class of functions f related to the distribution of χ. This description will then be used to finally prove
Theorem 1. More precisely, given some measurable and bounded h : R2

+→ R and x+, x− > 0, we will
consider the function f given by

f (x, y) :=
∫ x

0

∫ y

0
h(x′, y′)1{x′>x+ ,y′>x− }dy

′dx′, x, y ∈ R+. (3.13)

We are interested in such class of functions since the particular choice h = 1 yields E[∂+∂− f (χ)] =
P(X+ > x+,X− > x−). Note also that for a general h, the inequality | f (x, y)| ≤ ‖h‖∞xy holds for any
x, y ∈ R+, where ‖h‖∞ := supx,y∈R+ |h(x, y)|. We denote by A(K, x+, x−), K > 0, the class of functions
f satisfying (3.13) for some measurable function h : R2

+→ R with ‖h‖∞ ≤ K .
We denote the random variables arising in 〈 f ,Φ〉k+ ,k−n of Theorem 7 by

Θ
f
n,m ≡Θ f ,Φ

n,m(k+, k−) := f (χn)H+,k+n,m

(
H−,k−
n,m (Φ)

)
, for m ≥ n, and

Θ̃
f
n ≡ Θ̃

f ,Φ
n (k+, k−) :=Θ f

n+1,n+1(k+, k−) −Θ
f
n,n+1(k+, k−).

(3.14)

We will dropΦ and or (k+, k−) from the notation if it is well understood from the context. The following
key result provides bounds on moments.

Proposition 8. Let κ ∈ (0,1) be as in Assumption (A-κ). Fix any p ≥ 1, k± ≥ 2 and α′ ∈ [0,α). Given
some φ ∈ Ck++k−

b
(R2), define Φ := φ(χ). Let Θ f

n,m and Θ̃ f
n be given by (3.14), then the following hold.

(a) For s := p ∧ α′ there is a constant C > 0 such that for any K,T, x+, x− > 0 and m ≥ n:

E

[
sup

f ∈A(K ,x+ ,x−)
|Θ̃ f

n |p
]
≤ CKp

T2 α′
α
( (

1 + s
α

) −n
+ κns

)
np′

xp(k+−1)+α′
+ xp(k−−1)+α′

−
, (3.15)

E

[
sup

f ∈A(K ,x+ ,x−)
|Θ f

n,m |p
]
≤ CKp T2 α′

α mp′

xp(k+−1)+α′
+ xp(k−−1)+α′

−
, (3.16)

where p′ = p(k+ + k−) + [α′ − 1]+ + [α′ − s − 1]+.
(b) Consider any u ∈ (0,(α − α′)(ρ ∧ (1 − ρ))/p) and let p′ = p(k+ + k−), then for some C > 0 and all
K,T, x+, x− > 0 and m ≥ n, the following inequalities hold

E

[
sup

f ∈A(K ,x+ ,x−)
|Θ̃ f

n |p
]
≤ CKp

T− α′
α
( (

1 + pu
α

) −n
+ κnpu

)
np′

xp(k+−1)−α′ρ
+ xp(k−−1)−α′(1−ρ)

−
, (3.17)

E

[
sup

f ∈A(K ,x+ ,x−)
|Θ f

n,m |p
]
≤ CKp T− α′

α mp′

xp(k+−1)−α′ρ
+ xp(k−−1)−α′(1−ρ)

−
. (3.18)

(c) Consider any u ∈ (0,(α − α′)(ρ ∧ (1 − ρ))/p) and let p′ = p(k+ + k−), then for some C > 0 and all
K,T, x+, x− > 0 and m ≥ n, the following inequalities hold

E

[
sup

f ∈A(K ,x+ ,x−)
|Θ̃ f

n |p
]
≤ CKp

( (
1 + pu

α

) −n
+ κnpu

)
np′

xp(k+−1)
+ xp(k−−1)

−
min

{
T

α′
α (1−ρ)

x−α
′ρ

+ xα′
−
,

T
α′
α ρ

xα′
+ x−α

′(1−ρ)
−

}
, (3.19)
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E

[
sup

f ∈A(K ,x+ ,x−)
|Θ f

n,m |p
]
≤ CKp mp′

xp(k+−1)
+ xp(k−−1)

−
min

{
T

α′
α (1−ρ)

x−α
′ρ

+ xα′
−
,

T
α′
α ρ

xα′
+ x−α

′(1−ρ)
−

}
. (3.20)

Remark 4. (i) Clearly the above inequalities imply the absolute convergence of the sum in (3.11).
(ii) We will use part (a) when x+ and x− both take large values, part (b) when they are both small

and part (c) for the mixed case in which x+ is small and x− is large or vice versa, cf. Figure 1.

The proof of this key technical result is given in Subsections 5.2 and 5.3. With these preparations,
now we are ready to give the proof of our main result.

4. Proof of Theorem 1

In the present subsection we will prove Theorem 1. We will follow the structure presented in the proof
of Theorem 2.1.4 in [25]. In fact, consider a test function f ∈ C∞

b
(R2) then a similar representation as

(3.13) gives for F(x, y) := [x − x+]+[y − x−]+

f (x+, x−) =
∫
R

2
+

F(x′, y′)∂+∂− f (x′, y′)dy′dx′.

Next, using Theorem 7 and Fubini theorem with F̂(x′, y′) = [x′ − X+]+[y′ − X−]+, we obtain

E [∂+∂− f (χ)] = E
[
〈 f ,1〉1,1

n

]
=

∫
R

2
+

∂+∂− f (x′, y′)E
[
〈F̂(x′, y′),1〉1,1

n

]
dy′dx′.

This readily implies that the density of χ at (x′, y′) exists and can be expressed as E
[
〈F̂(x′, y′),1〉1,1

n

]
.

In a similar fashion, one considers for k+, k− ≥ 1

E

[
∂k++ ∂

k−
− f (χ)

]
= E

[
〈 f ,1〉k+ ,k−n

]
=

∫
R

2
+

∂+∂− f (x′, y′)E
[
〈F̂(x′, y′),1〉k+ ,k−n

]
dy′dx′.

From here, one obtains the regularity of the law of χ. The next step, is to obtain the upper bound for
E

[
〈F̂(x+, x−),1〉k+ ,k−n

]
. That is, our goal is to prove

��E[〈F̂(x+, x−),1〉k+ ,k−n

] �� ≤ Cx−k−+ x−k+−

× min
{
T2 α′

α x−α
′

+ x−α
′

− ,T
α′
α ρx−α

′
+ xα

′(1−ρ)
− ,T

α′
α (1−ρ)xα

′ρ
+ x−α

′
− ,T

− α′
α xα

′ρ
+ xα

′(1−ρ)
−

}
. (4.1)

In fact, the above bounds follow from Proposition 8 (a)–(c) (with p = 1). We use part (a) when x+
and x− both take large values, part (b) when they are both small and part (c) for the mixed case in
which x+ is small and x− is large or vice versa, cf. Figure 1. Each application of Proposition 8 yields
summable upper bounds on the summands of the series defined by 〈F̂(x+, x−),1〉k+ ,k−n . The minimum
in (4.1) is the smallest sum of these upper bounds as a function of (x+, x−) and T .

Observe that the derivatives of F in Theorem 1 can be expressed in terms of the derivatives of
G(x+, x−) := P(X+ > x+,X− > x−) as follows: the linear transformation (XT ,XT ) �→ (XT ,XT − XT )



Joint density of a stable process and its supremum 3455

yields ∂x∂yF(x, y) = ∂+∂−G(y, y − x) for y > x ∨ 0. Therefore, (4.1) gives (2.1) as follows:

|∂nx ∂my F(x, y)| =
����m−1∑
i=0

(
m − 1

i

)
∂m−i
+ ∂n+i− G(y, y − x)

���� ≤ m−1∑
i=0

(
m − 1

i

)
|∂m−i
+ ∂n+i− G(y, y − x)|

≤
m−1∑
i=0

(
m − 1

i

)
Cyi−m(y − x)−n−i min{ f 00

α′ (x, y), f 01
α′ (x, y), f 10

α′ (x, y), f 11
α′ (x, y)}

=Cy−m(y − x)1−n−m(2y − x)m−1 min{ f 00
α′ (x, y), f 01

α′ (x, y), f 10
α′ (x, y), f 11

α′ (x, y)}. �

5. Technical results

In this section, we study the upper bounds in the technical Proposition 8. It is the key result in order to
obtain Theorem 1.

5.1. Upper bounds on the Ibpf

We start with some basic properties for the operator H which are useful for bounding Θ f
n,m and Θ̃ f

n.
For any m ∈ N, define

Σ±m := η± +
m∑
i=1

Ei1{[Gi ]±>0} and σ±m := 1 +
m∑
i=1

1{[Gi ]±>0} .

This notation allows us to simplify (3.7). In fact, for any Φ ∈ Sm(Ω), we have

H±
n,m(Φ) =

α/(α − 1)
X±,n

( (
Σ±m − σ±m + 1 − 1

α

)
Φ −D±

m[Φ]
)
, D±

m[Σ±m] = Σ±m, D±
m[σ±m] = 0. (5.1)

Lemma 9. Fix any k± ≥ 0 and suppose Φ := φ(χ) for some φ ∈ Ck++k−
b

(A) with A ⊂ R2
+. Then for any

m > n, we have

H+,k+n,m (H−,k−
n,m (Φ))Xk+

+,nXk−
−,n = H+,k+

n+1,m(H
−,k−
n+1,m(Φ))X

k+
+,n+1Xk−

−,n+1. (5.2)

Moreover, if we set

Zm := Σ+,m + Σ−,m = η+ + η− +
m∑
i=1

Ei, m ∈ N, (5.3)

then there is a bivariate polynomial pφ
k+ ,k−

(·, ·) of degree at most k+ + k− whose coefficients do not
depend on n or m, such that

|H+,k+n,m (H−,k−
n,m (Φ))Xk+

+,nXk−
−,n | ≤ 1{χ∈A}pφ

k+ ,k−
(Zm,m), for all m ≥ n. (5.4)

Proof. The proof is simple: we only need to expand the formula for H+,k+n,m (H−,k−
n,m (Φ)) and then uni-

formly bound all the derivatives of φ by the same constant.
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Recalling that D±
m[(Σ±m,X

−p
±,n)] = (Σ±m,(1/α − 1)pX−p

±,n) and D∓
m[(Σ±m,σ±m,σ∓m,X

−p
±,n)] = 0 for p > 0,

we deduce that an iteration of (5.1) yields X−k+
+,n X−k−

−,n multiplied by a polynomial of degree k+ in
Σ+m and σ+m. Its coefficients are themselves polynomials of degree k− in Σ−m and σ−m multiplied by a
linear combination of the derivatives ∂ j++ ∂

j−− φ(χ) for j± ≤ k±. This directly implies (5.2). Since those
derivatives are bounded and we have the a.s. bounds Σ±m ≤ Zm and σ±m ≤ m, we may bound the entire
expression by a constant (independent of n and m) multiplied by a polynomial of degree k+ + k− in Zm

and m. This completes the proof in this case.

5.2. Proof of Proposition 8, Part I: Interpolation inequalities

As we stated previously the proof of the technical Proposition 8 is self-contained and it is divided in
two parts. In a first part, we mainly use basic inequalities which will depend on powers of X±,n, Zm,
�n, η± and Δ±,n := X±,n − X±,n−1. Taking expectations on these inequalities will bring us to consider
moments properties which are studied later in Subsection 5.3. We assume those results and give the
proof of this Proposition here.

Proof of Proposition 8. In the estimates that follow, we make repeated use of the following inequality���� k∑
i=1

xi

����q ≤ k[q−1]+
k∑
i=1

|xi |q, for any q > 0 and xi ∈ R, (5.5)

which follows from the concavity of x �→ xq if q ≤ 1 and Jensen’s inequality if q > 1. Moreover, we
frequently apply the following basic interpolating inequalities: 1{y>x } ≤ yv x−v for all v ≥ 0 where we
interpret the upper bound as 1 if v = 0. Also, if y, z ≥ 0 then for all r ∈ [0,1]

y ∧ z ≤ yr z1−r and y ∨ z ≥ yr z1−r . (5.6)

Define (m±,n,M±,n) := (X±,n ∧ X±,n+1,X±,n ∨ X±,n+1) then m±,n = X±,n+1 ∧ X±,n ≥ κX±,n since
X±,n+1 ≥ κX±,n. Similarly, M±,n ≤ κ−1X±,n+1.

Part (a). We will proceed in three steps. Step I) is also used in the proofs of (b) and (c).
I) Recall the definition Zm in (5.3) and consider the polynomial pφ

k+ ,k−
from Lemma 9. According to

Lemma 9 with A= R2
+, we have for f̃ (x, y) := f (x, y)/(xk+ yk−)��Θ̃ f

n

��p = �� f (χn+1)H+,k+n+1,n+1

(
H−,k−
n+1,n+1(Φ)

)
− f (χn)H+,k+n,n+1

(
H−,k−
n,n+1(Φ)

) ��p
=

������ f (χn+1)
Xk+
+,n+1Xk−

−,n+1

− f (χn)
Xk+
+,nXk−

−,n

������
p ��H+,k+

n,n+1

(
H−,k−
n,n+1(Φ)

)
Xk+
+,nXk−

−,n
��p (5.7)

≤
��� f̃ (χn+1) − f̃ (χn)

���p pφ
k+ ,k−

(Zn+1,n + 1)p .

The goal for the rest of the proof is to provide algebraic inequalities for the above expression which
depend explicitly on powers of Δ±,n, X±,n and Zn+1. Through these expressions, we will later show
that, in expectation, the first factor in the last line of (5.7) decays geometrically in n while the second
factor has polynomial growth in n.

II) Next, we obtain an upper bound for the modulus of continuity of the map f̃ which appears in (5.7)
and where f is given in (3.13). This map is absolutely continuous with respect to Lebesgue measure



Joint density of a stable process and its supremum 3457

and thus a.e. differentiable with

|∂+ f̃ (x, y)| = 1{x>x+ ,y>x− }

����∂+ f (x, y)
xk+ yk−

− k+ f (x, y)
xk++1yk−

���� ≤ 1{x>x+ ,y>x− }c1x−k+ y1−k−,

|∂− f̃ (x, y)| = 1{x>x+ ,y>x− }

����∂− f (x, y)
xk+ yk−

− k− f (x, y)
xk+ yk−+1

���� ≤ 1{x>x+ ,y>x− }c1x1−k+ y−k−,

where c1 := (k+ + 1)(k− + 1)‖h‖∞. Then, for any x, x′, y, y′ ∈ R+, denote (mx,Mx) := (x ∧ x′, x ∨ x′)
and (my,My) := (y ∧ y′, y ∨ y′) and observe:

| f̃ (x, y) − f̃ (x′, y′)| =
���� ∫ x

x′
∂+ f̃ (z, y)dz +

∫ y

y′
∂+ f̃ (x′, z)dz

����
≤

1{Mx>x+ ,My>x− }c1 |x − x′|
(mx ∨ x+)k+ (my ∨ x−)k−−1

+
1{Mx>x+ ,My>x− }c1 |y − y′|
(mx ∨ x+)k+−1(my ∨ x−)k−

(5.8)

≤ 1{Mx>x+ ,My>x− }
c1

xk++ xk−−

(
|x − x′|x− + |y − y′|x+

)
. (5.9)

Note that in the inequality (5.8), we have used that k+, k− ≥ 2 and that the support of g is contained
in [x+,∞) × [x−,∞). Moreover, since f in (3.13) satisfies | f (x, y)| ≤ ‖h‖∞xy, we have | f̃ (x, y)| ≤
‖h‖∞x1−k+ y1−k− . Hence, for any x, x′, y, y′ ∈ R+ we have

| f̃ (x, y) − f̃ (x′, y′)| ≤ 1{Mx>x+ ,My>x− } sup
z>mx ,w>my

| f̃ (z,w)|

≤ 1{Mx>x+ ,My>x− }c2(mx ∨ x+)1−k+ (my ∨ x−)1−k−,
(5.10)

where c2 := 2‖h‖∞. Typically, each maximum in a denominator is lower bounded via (5.6).
III) Now, with the above bound we will show that the upper bound for Θ̃ f

n depends on moments of
basic random variables. Recall that s = p∧α′. Applying (5.5) (with q = s/p) and (5.6) (with r = s/p) to
the minimum of the two bounds obtained in (5.9) and (5.10) in the form (5.9)s/p(5.10)1−s/p and using
x+ ≤ mx ∨ x+ and x− ≤ my ∨ x− yields: for any x, x′, y, y′ ∈ R+ the following inequality holds,

| f̃ (x, y) − f̃ (x′, y′)| ≤
1{Mx>x+ ,My>x− }c

1/p
3

xk+−1+s/p
+ xk−−1+s/p

−

(
|x − x′|s/pxs/p− + |y − y′|s/pxs/p+

)
,

where c3 := cs1cp−s2 . In what follows, this interpolation method is used in all cases with different com-
binations of power parameters.

Then (5.5) gives

| f̃ (χn+1) − f̃ (χn)|p ≤
1{M+,n>x+ ,M−,n>x− }2

p−1c3

xp(k+−1)+s
+ xp(k−−1)+s

−

(
|Δ+,n+1 |sxs− + |Δ−,n+1 |sxs+

)
.
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Applying the inequality 1{M±,n>x± } ≤ x−v± Mv
±,n, for v = α′ − s ≥ 0 and (5.7) we obtain

|Θ̃ f
n |p ≤

2p−1c3pφ
k+ ,k−

(Zn+1,n + 1)p

xp(k+−1)+α′
+ xp(k−−1)+α′

−

(
|Δ+,n+1 |sMα′−s

+,n Mα′
−,n + |Δ−,n+1 |sMα′−s

−,n Mα′
+,n

)

≤
2p−1c3pφ

k+ ,k−
(Zn+1,n + 1)p

κ2α
′−sxp(k+−1)+α′

+ xp(k−−1)+α′
−

(
|Δ+,n+1 |sXα′−s

+,n+1Xα′
−,n+1 + |Δ−,n+1 |sXα′−s

−,n+1Xα′
+,n+1

)
,

where the second inequality follows from M±,n ≤ κ−1X±,n+1. Finally, as α′ < α, Lemma 10 gives (3.15).
To prove the second statement in (a), we proceed as before. We start by using the inequality

| f̃ (χn)|p ≤ 1{X+,n>x+ ,X−,n>x− } ‖h‖p∞xp(1−k+)+ xp(1−k−)− and the bound 1{X±,n>x± } ≤ Xα′
±,nx−α

′
± . An ap-

plication of Lemma 10 then yields (3.16).
Part (b). Let c4 := 21−1/pcu1 c1−u

2 where u ∈ [0,1] is given in the statement. Applying (5.6) (with
r = u) and (5.5) (with q = p) to the minimum of (5.8) and (5.10) in the form (5.8)u(5.10)1−u yields

| f̃ (x, y) − f̃ (x′, y′)|p ≤ 1{Mx>x+ ,My>x− }c
p
4

|x − x′|pu/(mx ∨ x+)pu + |y − y′|pu/(my ∨ x−)pu

(mx ∨ x+)p(k+−1)(my ∨ x−)p(k−−1)

≤ 1{Mx>x+ ,My>x− }c
p
4

|x − x′|pu/mpu
x + |y − y′|pu/mpu

y

(mx ∨ x+)p(k+−1)(my ∨ x−)p(k−−1) . (5.11)

By (5.6) we have mx ∨ x+ ≥ mr
x x1−r
+ and my ∨ x− ≥ mr′

y x1−r′
− for any r,r ′ ∈ [0,1]. Since α′ < α ≤

1/[ρ∨ (1− ρ)], we choose r = α′ρ/[p(k+ − 1)] and r ′ = α′(1− ρ)/[p(k− − 1)]. Applying these interpo-
lating inequalities to (5.11) and combining them with (5.7) gives

��Θ̃ f
n

��p ≤
cp4 pφ

k+ ,k−
(Zn+1,n + 1)p

xp(k+−1)−α′ρ
+ xp(k−−1)−α′(1−ρ)

−

( |Δ+,n+1 |pu

mα′ρ+pu
+,n mα′(1−ρ)

−,n
+

|Δ−,n+1 |pu

mα′ρ
+,nmα′(1−ρ)+pu

−,n

)
,

≤
cp4 pφ

k+ ,k−
(Zn+1,n + 1)p

κα
′+pu xp(k+−1)−α′ρ

+ xp(k−−1)−α′(1−ρ)
−

( |Δ+,n+1 |pu

Xα′ρ+pu
+,n Xα′(1−ρ)

−,n
+

|Δ−,n+1 |pu

Xα′ρ
+,n Xα′(1−ρ)+pu

−,n

)
,

where we used the restriction that m±,n ≥ κX±,n. Moreover, as u ∈ (0,(α −α′)(ρ∧ (1− ρ))/p), we have
α′ρ+ pu < αρ and α′(1 − ρ) + pu < α(1 − ρ). Hence, applying Lemma 12 gives (3.17).

The proof of (3.18) is analogous to that of (3.17). Indeed, using (5.6) and the inequality | f̃ (χn)| ≤
‖h‖∞(X+,n ∨ x+)1−k+ (X−,n ∨ x−)1−k− we obtain

| f̃ (χn)|p ≤ ‖h‖p∞xp(1−k+)+α
′ρ

+ xp(1−k−)+α
′(1−ρ)

− X−α′ρ
+,n X−α′(1−ρ)

−,n .

The inequality (3.18) then follows from Lemma 12, completing the proof of (b).
Part (c). We will only prove the bound for the first argument of the minimum in the right hand

side of (3.19) and (3.20); the other case is analogous. We proceed as in (b): using (5.6), (5.7), (5.11)
but instead of the interpolating inequality using r , we use the bound 1{M+,n>x+ } ≤ Mv

+,nx−v+ , for any
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v = α′ − pu,α′ ≥ 0), to obtain

��Θ̃ f
n

��p ≤
cp4 pφ

k+ ,k−
(Zn+1,n + 1)p

xp(k+−1)+α′
+ xp(k−−1)−α′(1−ρ)

−

( |Δ+,n+1 |puMα′−pu
+,n

mα′(1−ρ)
−,n

+
|Δ−,n+1 |puMα′

+,n

mα′(1−ρ)+pu
−,n

)

≤
cp4 pφ

k+ ,k−
(Zn+1,n + 1)p

κα
′(2−ρ)+pu xp(k+−1)+α′

+ xp(k−−1)−α′(1−ρ)
−

( |Δ+,n+1 |puXα′−pu
+,n+1

Xα′(1−ρ)
−,n

+
|Δ−,n+1 |puXα′

+,n+1

Xα′(1−ρ)+pu
−,n

)
,

where we used the fact that M±,n ≤ κ−1X±,n+1 and m±,n ≥ κX±,n. Lemma 12 then implies (3.19).
Using the inequality | f̃ (χn)| ≤ 1{X+,n>x+ ,X−,n>x− } ‖h‖∞(X+,n ∨ x+)1−k+ (X−,n ∨ x−)1−k− , (5.6) and

the bound 1{X+,n>x+ } ≤ Xα′
+,nx−α

′
+ , we obtain

��Θ f
n,m

��p ≤
‖h‖p∞pφ

k+ ,k−
(Zm,m)p

xp(k+−1)+α′
+ xp(k−−1)−α′(1−ρ)

−

Xα′
+,n

Xα′(1−ρ)
−,n

.

which yields (3.20) by Lemma 12, completing the proof of the proposition.

Remark 5. Analyzing the above proof, we can see the interpolation method at work here. In fact, to
interpret the estimates of Proposition 8, one may say that all polynomial terms in n arise due to the
polynomial growth of H±,k±

n,m (see (5.4) in Lemma 9), through the term pφ
k+ ,k−

(Zm,m)p which appears
in the upper bounds. On the other hand, the geometrically decreasing terms are produced by the expo-
nentially fast decay of the differences Δ±,n := X±,n − X±,n−1 in Θ̃ f

n. We stress that another achievement
of the interpolation method is that the moment estimates of Proposition 8 hold for any p ≥ 1.

5.3. Proof of Proposition 8, Part II: The moment bounds

In this section, we state explicit moment estimates for the quantities that appear in the weights of the
multiple Ibpf of Theorem 7. These bounds were the last step in the proof of Proposition 8 above. The
proofs in this section, are independent of everything that have preceded them. In order to obtain near
optimal bounds in Theorem 1, we first study the growth of the moments of Xp

±,n for p arbitrarily close
to α in Lemmas 10, 11 and 12. Since the α-moment of the stable law does not exist, the bounds in
these lemmas cannot be obtained e.g. via Hölder’s inequality. Their proofs consist of a direct, but very
careful, analysis of the corresponding expectations.

There are two types of bounds according to whether they involve positive or negative moments of
X±,n. They correspond to the behavior at infinity or at zero in the estimates that we obtain in Theorem 1
as can be deduced from the proof of Proposition 8. Throughout the present section we use the notation
from Subsection 3.1. In particular, recall the definition of Zm in (5.3) and Assumption (A-κ): κα ∈
[ρ∨ (1 − ρ),1). Explicit constants in the results in this section can be recovered from the proofs.

We begin by recalling the Mellin transform of a stable random variable (see [32, Thm 2.6.3])

E[Sp
1 1{S1>0}] = ρ

Γ(1 + p)Γ(1 − p/α)
Γ(1 + pρ)Γ(1 − pρ) , p ∈ (−1,α).

When α � 1, by the independence Ei⊥⊥Gi we deduce that, for any p ∈ [0,α),

E[Gp
i 1{Gi>0}] =

E[Sp
i 1{Si>0}]

E
[
Ep(1−1/α)
i

] = ρΓ(1 + p)Γ(1 − p/α)
Γ(1 + pρ)Γ(1 − pρ)Γ(p(1 − 1/α) + 1) . (5.12)
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Finally, we recall that E[Ep
1 ] = Γ(1 + p) is finite if and only if p > −1.

5.4. Positive moments

Lemma 10. Let p,q, s ≥ 0 satisfy q ≤ p < α. Then, there exists a constant C > 0 such that for any m ≥ n
and T > 0 we have

E
[
Xp−q
±,n Xp

∓,n |Δ±,n |qZs
m

]
≤ CT2 p

α

( (
1 + q

α

) −n
+ κqn

)
m[p−1]++[p−q−1]++s . (5.13)

Remark 6. (i) Note that the exponent in E1−1/α appearing in X±,n changes sign when α ∈ (0,1) and
α ∈ (1,2). For this reason, most of the proofs for estimating the above bounds of moments will have
to be done in three separate cases: α ∈ (0,1), α = 1 and α ∈ (1,2). This makes the proofs slightly long
because some inequalities change depending on the above cases.

(ii) Note that due to the scaling property of the stick breaking process and an the factor of T2 p
α is

easily obtained. In fact, we will assume, without loss of generality, in all proofs in this section that
T = 1. In the Lemma statements, we have left the dependence on T and in some major points of the
proof too. In a first reading, one may assume always that T = 1.

(iii) We consider in all proofs only one combination of ± signs. The other case follows mutatis
mutandis.

Proof of Lemma 10. We first make a number of reductions that simplify the proof. We will assume
p,q > 0. The remaining cases (when at least one of the two parameters is zero) follow similarly by
ignoring the corresponding terms in the calculations.

Let c = 2[p−1]++[p−q−1]++[q−1]+ and use (5.5) to obtain

Xp−q
+,n Xp

−,n |Δ+,n |q ≤ c
( ( n∑

i=1

�
1/α
i [Si]+

) p−q
+ ap−q

n η
p−q
+

) ( ( n∑
i=1

�
1/α
i [Si]−

) p
+ ap

nη
p
−

)
×

(
(�1/αn [Sn]+)q + aq

n−1η
q
+

)
. (5.14)

Our goal is now to provide an upper bound for the expectation of the right hand side of the above
inequality multiplied by Zs

n. This leads to eight terms which must be treated individually to show that
their expectations decay exponentially at least as a polynomial (in n) multiple of aq

n−1 or E[�q/αn ] =
(1+ q/α)−n. We treat the hardest term in (5.14); which contains the product of sums of [Si]±. The other
terms are easier to treat as we remark at the end of the proof. Therefore we will consider, for r ∈ {0,q}

A := E
[ ( n∑

i=1

�
1/α
i [Gi]+ci

) p−q ( n∑
j=1

�
1/α
j [G j ]−cj

) p
(�1/αn [Gn]+cn)r

����F−E ]
Zs
m, r ∈ {0,q}, (5.15)

where ci = E1−1/α
i

and F−E = σ(�i,Gi; i ∈ N). We estimate (5.15) in steps:
I) In this step we separate the expectation in (5.15) using the independence of G, E and �. Let

r ∈ {0,q} and p′ := [p− 1]+ + [p− q − 1]+ and fix any positive constants (ci)i∈N. Applying (5.5) yields

E

[ ( n∑
i=1

�
1/α
i [Gi]+ci

) p−q ( n∑
j=1

�
1/α
j [G j]−cj

) p
(�1/αn [Gn]+cn)r

����F−E ]
(5.16)



Joint density of a stable process and its supremum 3461

≤ np′
E

[ n∑
i=1

n∑
j=1

�
p−q
α

i �
r
α
n �

p
α
j ([Gi]+ci)p−q([G j ]−cj)p([Gn]+cn)r

����F−E ]

≤ 2np′
n−1∑
j=1

n∑
i=j+1

E

[
�

p−q
α

i �
r
α
n �

p
α
j

]
E
[
([Gi]+)p−q([Gn]+)r

]
E
[
([G j ]−)p

]
cp−qi cpj crn,

Note that the cases j ∈ {i,n} do not appear because [x]+[x]− = 0. The above expression is a linear
combination of monomials in ci , cn and cj . We will analyse and bound the coefficients.

The last two expectations within the sum on the right side of the above inequality can be computed
using (5.12) and the value of their product only depends on whether i = n or not. In fact, for r ∈ {0,q}

E
[
([Gi]+)p−q([Gn]+)r

]
≤ max{E[([G1]+)p],E[([G1]+)p−q]E[([G1]+)q],E[([G1]+)p−q]},

which can be bounded by an explicit constant using (5.12).
II) Now, we obtain an important part of the bound in (5.13) which is due to the stick breaking process.

That is, an application of Lemma 13(b) in [16] yields the existence of some c′ > 0 independent of j, i
and n such that for θ = α+p+r

α+2p+r < 1, we have E[�(p−q)/αi �
p/α
j �

r/α
n ] ≤ c′θi+j(1 + r/α)−n.

III) Now, we estimate the moments of the remaining random variables Ei which appear in the coef-
ficients ci . By the previous steps and (5.16), we deduce that for some constant c′′ > 0 independent of j,
i and n, we have

E[A] ≤ c′′np′ (1 + r
α

) −n n−1∑
j=1

n∑
i=j+1

θi+jE

[
E (1−1/α)(p−q)
i E (1−1/α)p

j E (1−1/α)r
n Zs

m

]
.

Next, we will show that the expectation on the right side in the above inequality is bounded by a
multiple of ms . As the term θi+j vanishes geometrically fast, we would then obtain

E[A] ≤ c′′′np′ms (1 + r
α

) −n
. (5.17)

To prove (5.17), observe that Zn in (5.3) is a Gamma distributed random variable, hence E
[
Zs
n

]
=

Γ(n + s + 2)/(n + 1)!. Using the two-sided bounds in Stirling’s formula we see that this expression
is bounded by a multiple of ms . In fact, a similar upper bound holds for E[Zs

mEr1
i Er2

j Er3
n ] with r1 =

(1 − 1/α)(p − q), r2 = (1 − 1/α)p and r3 = (1 − 1/α)r . Note that r1,r2,r3 > −1 in the case i < n and
r1 + r3 > −1, r2 > −1 in the case that i = n. Furthermore, even in the case α ∈ (0,1), our hypotheses on
p and q ensure that r1, r2 and r3 satisfy these conditions. Indeed, for instance, when the indices n,i, j
are different and n ≥ 4, we can decompose Zm into 4 terms according to the index of E within Zm

which may equal one of the indices n,i, j so that, by (5.5),

E
[
Zs
nEr1

i Er2
n Er3

j

]
= 4[s−1]+

(
E[Es+r1

i ]E[Er2
n ]E[Er3

j ] + E[Er1
i ]E[Es+r2

n ]E[Er3
j ]

+ E[Er1
i ]E[Er2

n ]E[Es+r3
j ] + E[Er1

i ]E[Er2
n ]E[Er3

j ]E[Zs
m−3]

)
.

(5.18)

The quantity in (5.18) grows as a constant multiple of ms (via the s-moment of Zm−3), implying (5.17).
Finally, to bound other terms in (5.14), we repeat the above arguments. This is slightly easier because:

1. The variables η+ and η− are independent of the sequence (�i,Si)i∈N.
2. Hence, when taking expectations, the variables η+ and η− will factorise by independence. These

variables are multiplied by powers of an = κn and satisfy E[ηr±] = Γ(1 + r) for r > −1 so their estima-
tion is easier.
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3. The final bound also uses the inequality an ≤ an−1, a consequence of Assumption (A-κ).

Putting the above arguments together completes the proof of Lemma 10, since all eight terms decay as
fast as aqn or (1 + q/α)−n and n ≤ m.

5.5. Negative and mixed moments: Proofs of Lemmas 11 and 12

The ideas of the proof of Lemma 10 can be used again for negative moments but an additional idea is
required in order to use similar techniques. This is provided by the following equality:

λ−p = Γ(p)−1
∫ ∞

0
xp−1e−λxdx, for p > 0, (5.19)

which expresses the negative power λ−p using an exponential expression which in our case leads to the
study of the Laplace transform of the respective random variable whose inverse moment we want to
estimate. The use of this technique leads to the following results.

Lemma 11. Recall that α � 1 and the Assumption (A-κ) are in force. Below, we assume that r ≥ 0 and
u,v,w ≥ 0 be arbitrary.

(a) Fix any p ∈ (0,αρ), q ∈ [0,α(1 − ρ)). There exists a positive constant C such that for any j,n ∈ N
and T > 0, the following bound holds:

E

[ �r
n+1Eu

j η
v
+η

w
−

Xp
+,nXq

−,n

]
≤ CTr− p+q

α (1 + r)−n. (5.20)

(b) Fix any p ∈ (0,αρ), q ∈ (0,α). There exists a positive constant C such that for any j,n ∈ N and T > 0,
the following bound holds:

E

[ Xq
−,n�

r
n+1Eu

j η
v
+η

w
−

Xp
+,n

]
≤ CTr+

q−p
α (1 + r)−n.

Lemma 12. Let p,q,r, s ≥ 0 satisfy p ∈ [0,αρ), q ∈ [0,α(1 − ρ)) and r ∈ [0,α). There exists a constant
C > 0 such that for any m ≥ n and T > 0 we have

E

[ |Δ±,n+1 |r Zs
m

Xp
+,nXq

−,n

]
≤ CT (2r−p−q)/α

( (
1 + r

α

) −n
+ κnr

)
ms′,

where s′ = 1{s>0}(s ∨ 1). Similarly, for any p ∈ [0,α), r ∈ [0,p] and q ∈ [0,α(1 − ρ)), there is some
C > 0 such that for all m ≥ n and T > 0

E

[ |Δ+,n+1 |r Xp−r
+,n+1Zs

m

Xq
−,n

]
≤ CT (p−q)/α

( (
1 + r

α

) −n
+ κnr

)
ms′ .

Proof of Lemma 11. Recall that we assume without loss of generality that T = 1. The identity (5.19)
will be used with λ = X+,n (and later with λ = X−,n). The resulting expression will be bounded by
separately integrating the variables G1, . . . ,Gn and η+,η−, then and E1, . . . ,En and finally �1, . . . ,�n+1
as in the proof of Lemma 10. These bounds require preliminary calculations for the expressions arising
in the inequalities developed below, so we begin with those. Let ζ = 1−1/α, c, δ and γ be as defined in
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Lemma 15 of [16]. These are constants that appear in the bounds for the Laplace transform of random
variables used in the Chambers-Mallows-Stuck representation of stable laws.

Proof of (a), part 1: The case q = 0. We first provide an explicit upper bound for E
[
�r
n+1Eu

j η
v
+X−p
+,n

]
(the case q = 0 and w = 0 in Lemma 11(a)) using the following: let bρ := 1/(γαρ) ≥ 1 and

ds :=2s max{1, sse−s,Γ(s + 1)}, for s ≥ 0,

P(x,p,q) :=
((x ∧ 1)−p − 1)

p
+

x−q(x ∧ 1)q−p
q − p

, for x,p,q > 0,q > p,

Qp(r,u) :=
αu(1 + r) − up

p(1 − p)(αu(1 + r) − p)(1 − p/α) , for u ∈ (0,1], p ∈ (0,min{αu,1}), r ≥ 0.

d ′
u :=max{E[Eu

j ],E[E
u
j ]E[E

−ζ
k

],E[Eu−ζ
j ]}.

(5.21)

Using these definitions, it is enough to prove that for p ∈ (0,αρ), r,u,v ≥ 0 and j,n ∈ N it holds

E

[ �r
n+1Eu

j η
v
+

Xp
+,n

]
≤

Tr− p
α bρcd ′

udv
Γ(p)(1 + r)n

(
1
p
+Qp(r, ρ) + (1 − ρ)nP

(
T− 1

α an,p, δ
) )
. (5.22)

The special case of (5.20) with q = 0, w > 0 follows from the independence η−⊥⊥(η+,Ej,�n+1,X+,n),
(1.1), (5.22) and Assumption (A-κ). In fact, all the terms within the parentheses in (5.22) are readily
bounded by a constant except (1 − ρ)nκ−pn which is bounded due to Assumption (A-κ).

For the proof of (5.22), recall that X+,n =
∑n

i=1 �
1/α
i Eζ

i [Gi]+ + anη
ζ
+ with ζ = 1 − 1/α.

Fix p ∈ (0,αρ). A change of variables applied to the definition of the Gamma function gives

Γ(p)X−p
+,n =

∫ ∞

0
xp−1e−xX+,n dx ≤ 1/p + J+,p, where J±,p :=

∫ ∞

1
xp−1e−xX±,n dx. (5.23)

Next, we bound the conditional expectation E
[
ηv+J+,p

��G]
, where G := σ(�k,Ek ; k ∈ N). By Lemma 15

in [16] (with parameter x�1/α
k

Eζ
k

), we have

E
[
ηv+J+,p

��G]
=

∫ ∞

1
xp−1
E
[
ηv+e−xanη

ζ
+
��G] n∏

k=1

E
[
e−x�

1/α
i E

ζ
i [Gi ]+

��G]
dx

≤cdv

∫ ∞

1
xp−1 min{1,(anx)−δ}

n∏
k=1

(
1 − ρ+ ρmin

{
1,

bρE−ζ
k

�
1/α
k

x

})
dx. (5.24)

Using that �n+1 = (1 −Un+1)Un...Uk+1Lk and Lk ≤ Lk−1 (see Subsection 3.1), then for any measur-
able function g ≥ 0 and k ≤ n, we have

E[�rn+1g(�k)] = (1 + r)k−n−1
E[Lr

kg(�k)] ≤ (1 + r)k−n−1
E[Lr

k−1g(�k)]. (5.25)

Moreover, we have E[Eu
j min{1,E−ζ

k
y}] ≤ d ′

u min{1, y} by definition (5.21). In fact, if y > 1, then d ′
u ≥

E[Eu
j ] and if y < 1, then d ′

uy ≥ E[Eu
j E−ζ

k
y].

Since the factors in the product of (5.24) are in [0,1], the first inequality in Lemma 14 of [16], (5.25)
and bρ ≥ 1 yields

E

[
�rn+1Eu

j

n∏
k=1

(
1 − ρ+ ρmin

{
1,bρE−ζ

k
�
−1/α
k

/x
} ) ]
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≤ (1 − ρ)nE[�rn+1]E[E
u
j ] +

n∑
k=1

ρ(1 − ρ)k−1
E
[
�rn+1Eu

j min
{
1,bρE−ζ

k
�
−1/α
k

/x
} ]

≤
(1 − ρ)nd ′

u

(1 + r)n+1 +
d ′
u

(1 + r)n
∞∑
k=1

ρ(1 − ρ)k−1(1 + r)k−1
E
[
Lr
k−1 min

{
1,bρ�

−1/α
k

/x
} ]

≤ d ′
u(1 + r)−n

(
(1 − ρ)n + bρAρ(x)

)
,

where we define Aρ(x) :=
∑∞

k=1 ρ(1 − ρ)k−1(1 + r)k−1
E[Lr

k−1 min{1,�−1/α
k

/x}] for x > 0.
Hence, the inequality E[�r

n+1Eu
j η

v
+X−p
+,n]Γ(p) ≤ d ′

udv(1 + r)−n(1/p + cK) holds for

K :=
∫ ∞

1
xp−1 min

{
1,(anx)−δ

}
((1 − ρ)n + bρAρ(x))dx.

Next, we apply Lemma 15(c) in [16] to find a formula for
∫ ∞

1 xp−1 Aρ(x)dx. Note that p < αρ implies
(1−ρ)(1+r)
1+r−p/α =

1+r−ρ(1+r)
1+r−p/α < 1, so Fubini’s theorem and Lemmas 15(c) and 13(c) in [16] yield∫ ∞

1
xp−1 Aρ(x)dx =

∞∑
k=1

ρ[(1 − ρ)(1 + r)]k−1
E

[
Lr
k−1

∫ ∞

1
xp−1 min{1,(�1/α

k
x)−1}dx

]

=

∞∑
k=1

ρ[(1 − ρ)(1 + r)]k−1
E

[
Lr
k−1

(
�
−p/α
k

p(1 − p) −
1
p

) ]

=

∞∑
k=1

ρ[(1 − ρ)(1 + r)]k−1
(
(1 + r − p/α)1−k
p(1 − p)(1 − p/α) −

(1 + r)1−k
p

)
=Qp(r, ρ).

(5.26)

Thus (5.22) follows from (5.26) and Lemma 15(c) in [16] since for any p < αρ and n ∈ N we have

K ≤
∫ ∞

1
xp−1 ((1 − ρ)n min{1,(anx)−δ} + bρAρ(x)

)
dx ≤ bρ

[
(1 − ρ)nP

(
an,p, δ

)
+Qp(r, ρ)

]
.

Proof of (a), part 2. The case q ∈ (0,α(1 − ρ)). The general case of (5.20) for q > 0 follows similarly
but with lengthier expressions. Recall that B(·, ·) denotes the beta function and define for any u ∈ (0,1],
p ∈ (0,αu ∧ 1), q ∈ (0,α ∧ 1) and r ≥ 0,

Rp,q(r,u) :=
(Γ(1/α) ∨ 1)B

(
1 + r − p/α,1 − q/α)u(1 − u)(1 + r)2(1 + r − p/α)

pq(1 − p)(1 − q)(1 − p/α)(u(1 + r) − p/α) .

Fix p ∈ (0,αρ), q ∈ (0,α(1 − ρ)) and r,u,v,w ≥ 0. We will prove that for all j,n ∈ N, we have

E

[ �r
n+1Eu

j η
v
+η

w
−

Xp
+,nXq

−,n

]
≤

Tr− p+q
α bρb1−ρc2d ′

udvdw
Γ(p)Γ(q)(1 + r)n

[
(1 − ρ)nP

(
T− 1

α an,p, δ
)
/q + ρnP

(
T− 1

α an,q, δ
)
/p

+
(
(1 − ρ)n + ρn

)
P
(
T− 1

α an,p, δ
)
P
(
T− 1

α an,q, δ
)

+ 1/(pq) +Qp(r, ρ)/q +Qq(r,1 − ρ)/p + Rp,q(r, ρ) + Rq,p(r,1 − ρ)
]
,

Once this bound is proven the final result follows as in part 1, by (1.1) and Assumption (A-κ). Indeed,
((1 − ρ)n + ρn)P(T−1/αan,p, δ)P(T−1/αan,q, δ) ≤ (1/p + 1/(δ − p))(1/q + 1/(δ − q))2κnα−n(p+q), by
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Assumption (A-κ), which is bounded for n ∈ N because p + q < α. Therefore we just need to prove the
above inequality.

Applying (5.23) twice, we get Γ(p)Γ(q)X−p
+,nX−q

−,n ≤ 1/(pq)+ J−,q/p+ J+,p/q + J+,pJ−,q . It remains
to multiply the previous inequality by �rnEu

j η
v
+η

w
+ and take expectations. The first term on the right side

yields E[�r
n+1Eu

j η
v
+η

w
− ]/(pq) ≤ (1+ r)−n−1d ′

udvdw/(pq). The second and third terms are bounded as in
the special case q = 0, since η+ (resp. η−) is independent of X−,n (resp. X+,n).

It remains to bound E[�r
n+1Eu

j η
v
+η

w
− J+,pJ−,q]. Applying Lemma 15(b) of [16] twice,

E[e−x[G1]+−y[G1]− ] ≤ Υ(x, y) := ρmin{1,bρ/x} + (1 − ρ)min{1,b1−ρ/y} ≤ 1.

Write E[�r
n+1Eu

j η
v
+η

w
− J+,pJ−,q |σ(�k,Ek ; k ∈ N)] =

∫ ∞
1

∫ ∞
1 xp−1yq−1S(x, y)dydx, where

S(x, y) := �rn+1Eu
j E

[
ηv+η

w
− e−xX+,n−yX−,n

��σ(�k,Ek ; k ∈ N)
]

= �rn+1Eu
j E

[
ηv+e−xanη

ζ
+

]
E

[
ηv−e−yanη

ζ
−
] n∏
k=1

E

[
e−�

1/α
k

E
ζ
k

(
x[Gk ]+−y[Gk ]−

) ���σ(�k,Ek ; k ∈ N)
]

≤ c2dvdw min{1,(anx)−δ}min{1,(any)−δ}�rn+1Eu
j

n∏
k=1

Υ(Eζ
k
�

1/α
k

x,Eζ
k
�

1/α
k

y),

and the inequality follows from Lemma 15(a) in [16]. Use Lemma 14 in [16] and (5.25) on the inequality
E[Eu

j min{1,E−ζ
k

x}min{1,E−ζ
1 y}] ≤ d ′

u(Γ( 1
α ) ∨ 1)min{1, x}min{1, y} for k ≥ 2 to get

E

[
�rn+1Eu

j

n∏
k=1

Υ(Eζ
k
�

1/α
k

x,Eζ
k
�

1/α
k

y)
]

≤ ((1 − ρ)n + ρn)E[�rn+1]E[E
u
j ] +

n∑
k=2

ρ(1 − ρ)k−1
E

[
�rn+1Eu

j min
{
1,

bρE−ζ
k

�
1/α
k

x

}
min

{
1,

b1−ρE−ζ
1

�
1/α
1 y

}]

+

n∑
k=2

(1 − ρ)ρk−1
E

[
�rn+1Eu

j min
{
1,

bρE−ζ
1

�
1/α
1 x

}
min

{
1,

b1−ρE−ζ
k

�
1/α
k

y

}]
≤ bρb1−ρd ′

u(1 + r)−n[(1 − ρ)n + ρn + (Γ(1/α) ∨ 1)(Bρ(x, y) + B1−ρ(y, x))],

where Bs(x, y) :=
∑∞

k=2 s(1 − s)k−1(1 + r)kE
[
Lr
k−1 min

{
1,�−1/α

k
/x

}
min

{
1,�−1/α

1 /y
} ]

for x, y > 0.
Next we bound some integrals of Bs . Recall that p+ q < α and E[Ur (1−U)s] = B(r + 1, s+ 1). Thus

an application of Fubini’s theorem, Lemmas 13(c) and 15(c) in [16] yields∫ ∞

1

∫ ∞

1
xp−1yq−1Bρ(x, y)dydx

=

∞∑
k=2

ρ(1 − ρ)k−1

(1 + r)−k
E

[
Lr
k−1

∫ ∞

1

∫ ∞

1
xp−1yq−1 min

{
1,�−1/α

k
/x

}
min

{
1,�−1/α

1 /y
}

dydx
]

=

∞∑
k=2

ρ(1 − ρ)k−1

(1 + r)−k
E

[
Lr
k−1

(
�
−p/α
k

p(1 − p) −
1
p

) (
�
−q/α
1

q(1 − q) −
1
q

) ]
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≤
∞∑
k=2

ρ(1 − ρ)k−1

(1 + r)−k
E

[ Lr
k−1�

−p/α
k
�
−q/α
1

pq(1 − p)(1 − q)

]
= Rp,q(r, ρ)/(Γ(1/α) ∨ 1).

Putting all the above arguments together, the following inequalities imply part (a):

E[�rn+1Eu
j η

v
+η

w
− J+,pJ−,q] ≤

bρb1−ρd ′
udvdw

(1 + r)n/c2

∫ ∞

1

∫ ∞

1
xp−1yq−1 min{1,(anx)−δ}min{1,(any)−δ}

×
(
(1 − ρ)n + ρn + (Γ(1/α) ∨ 1)

(
Bρ(x, y) + B1−ρ(y, x)

) )
dydx

≤
bρb1−ρc2d ′

udvdw
(1 + r)n

[ (
(1 − ρ)n + ρn

)
P
(
an,p, δ

)
P
(
an,q, δ

)
+ Rp,q(r, ρ) + Rq,p(r,1 − ρ)

]
.

Proof of (b). Again, we use a slightly different combination of some of the previously explained
ideas. We begin using (5.5) and the equivalent of (5.23) to obtain

Γ(p)Xq
−,n

2(q−1)+Xp
+,n

≤
Γ(p)aqnηqζ−

Xp
+,n

+ (X−,n − anηζ−)q
(

1
p
+

∫ ∞

1
xp−1e−xX+,n dx

)
. (5.27)

It remains to multiply the above expression by �r
n+1Eu

j η
v
+η

w
− and take expectations.

The first term in (5.27) can be bounded as in part (a). The second term (X−,n−anη1−1/α
− )q/p in (5.27)

can be handled as in Lemma 10 (see (5.14) and (5.17)). Indeed, we have

(
X−,n − anηζ−

) q
�rn+1Eu

j η
v
+η

w
− =

( n∑
k=1

�
1
α

k
Eζ
k
[Gk]−�

r
q

n+1E
u
q

j

) q
ηv+η

w
− . (5.28)

The expected value of (5.28) may be bounded via Lq-seminorms: denote by ‖ϑ‖q = E[ϑq]1/q
′

the
Lq-seminorm of ϑ where q′ = q ∨ 1 (which is a true norm if q ≥ 1). Let gq = E[([Gk]−)q] and hu =
max{Γ(1 + u + qζ),Γ(1 + qζ)Γ(1 + u)}; observe that when α < 1, we have qζ > α − 1 > −1. Then the
triangle inequality and the independence gives

    n∑
k=1

�
1
α

k
Eζ
k
[Gk]−�

r
q

n+1E
u
q

j

    q′
q

≤
( n∑
k=1

   � 1
α

k
�

r
q

n+1

   
q

   Eζ
k

E
u
q

j

   
q

  [Gk]−
  
q

) q′

≤
hugqB(1 + q

α ,1 + r)
(1 + r)n

( n∑
k=1

(
1 + r + q

α

1 + r

) (1−k)/q′) q′
≤

hugq
(1 + r)n

B(1 + q
α ,1 + r)(1 + r + q

α )(
(1 + r + q

α )1/q
′ − (1 + r)1/q′

) q′ ,
which completes the bound on the second term in (5.27) once one notes that η+ and η− are independent
from the other variables and E[ηv+ηw− ] = Γ(v + 1)Γ(w + 1).

The third term in (5.27) may be bounded as follows. Set s = q/2 < α/2 ≤ 1, then use (5.5) to obtain

E

[ ( n∑
k=1

�
1
α

k
Eζ
k
[Gk]−

) q
�rn+1Eu

j η
v
+η

w
−

∫ ∞

1
xp−1e−xX+,n dx

]

≤
∫ ∞

1
xp−1
E

[ ( n∑
k=1

�
s
α

k
Esζ
k
([Gk]−)s

) 2

�rn+1Eu
j e−xX+,nηv+η

w
−

]
dx
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= 2
∫ ∞

1
xp−1

n∑
k=1

n∑
i=k+1

E

[
�

s
α

k
Esζ
k
([Gk]−)s�

s
α
i Esζ

i ([Gi]−)s�rn+1Eu
j e−xX+,nηv+η

w
−

]
dx

+

∫ ∞

1
xp−1

n∑
k=1

E

[
�

q
α

k
Eqζ
k

([Gk]−)q�rn+1Eu
j e−xX+,nηv+η

w
−

]
dx.

The previous expression can be dealt with as in (a) and (b). That is, first we average with respect to
(Gn)n∈N, using that E[([Gk ]−)se−x[Gk ]+] = E[([Gk]−)s]. In particular, one uses Lemma 15(b) in [16]
for the terms containing exponentials of G and (5.12) for the terms which do not contain exponentials
of G in order to obtain a similar estimate as in (5.24). For the terms which contain η±, one uses
Lemma 15(a) in [16]. Next, one takes expectations with respect to (En)n∈N. As in the proof of Lemma
11 (a), one defines the appropriate d ′

u which will bound all the required powers of E . Finally, as in
steps II) and III) of the proof of Lemma 10, we take the expectations for (�n)n∈N using Lemma 13(b)
in [16]. Each term in the first sum can be bounded by C′θi+k1 (1 + r)−n for some C ′ > 0, θ1 ∈ (0,1)
(independent of i, k,n) and all k < i ≤ n, whereas each term in the second sum can be bounded by some
C′′θk2 (1+ r)−n(1+ (1− ρ)nP(an,p, δ)) for some C′′ > 0, θ2 ∈ (0,1) (independent of i, k,n) and all k ≤ n.
The claim of part (b) then follows, completing the proof.

Proof of Lemma 12. We will prove the case s > 0, as the case s = 0 is very similar. The result is a
consequence of Lemma 11(a). Since [Sk ]+[Sk]− = 0, observe that using (5.5)

Zs
m ≤ (m + 2)[s−1]+

(
ηs+ + η

s
− +

m∑
k=1

Es
k

)
and Δ+n+1 = �

1/α
n+1[Sn+1]+ + (an+1 − an)ηζ+ .

Recall that Sn+1 = Eζ
n+1Gn+1, where Gn+1 and En+1 are independent of each other and of every other

random variable in the expectations of the statement. Similarly, (En+2, . . . ,Em) is independent of every
other random variable in the expectations of the statement. An application of Lemma 11(a) (and (5.12))
gives the claim if one uses hypothesis (A-κ). The second claim follows similarly using Lemma 11(b).
In particular, note that the restriction on r in the case (a) is due to the r-th moment of Gn+1 while in
the case (b), the restriction on r ensures that the power p − r of X+,n+1 is non-negative.

Remark 7. Note that in the above results the parameters for the negative moments can not achieve
their upper limit. This is the main reason for not being able to achieve α′ = α in Theorem 1.

6. Final remarks

In this section, we gathered some extra technical comments that may be useful for other developments.
(i) Our claim for nearly-optimal bound is not proven in two particular situations. That is, in the special
case where the stable process is of infinite variation and has only negative jumps (i.e. αρ = 1), XT has
exponential moments and therefore our bound is suboptimal for large y. However, the optimality of the
bound is retained in a neighborhood of 0. Although we do not provide the details here, our methods
could be applied to obtain the corresponding exponential bound for the density as y→∞ in this special
case, one may use the techniques in the proof of Proposition 8 (a) and (c) to obtain exponential bounds
in x+. In those cases, we would show that the densities and all their derivatives decay faster than
any polynomial x−p+ , p > 0, as x+→∞. In the other extreme, when the infinite variation process has
only positive jumps (i.e. α(1 − ρ) = 1), analogous remarks apply. (ii) We stress that the constant C in
Proposition 8 is independent of n and x± > 0 and that (α − α′)C is bounded as α′ → α.
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Acknowledgements

We would like to thank the anonymous reader for pointing us towards the reference [24], which helped
paint a more complete picture of the existing analytical results in the context of joint stable densities.

Funding

JGC and AM are supported by EPSRC grant EP/V009478/1 and The Alan Turing Institute under the
EPSRC grant EP/N510129/1; AM was supported by the Turing Fellowship funded by the Programme on
Data-Centric Engineering of Lloyd’s Register Foundation; AK-H was supported by JSPS KAKENHI
Grant Number 20K03666.

Supplementary Material

Supplement to “Joint density of the stable process and its supremum: Regularity and upper
bounds” (DOI: 10.3150/23-BEJ1590SUPP; .pdf). This supplement contains estimates on the moments
of a stick-breaking process as well as the special Cauchy case α = 1.

References

[1] Bally, V. and Caramellino, L. (2016). Stochastic Integration by Parts. Advanced Courses in Mathematics–
CRM Barcelona. Springer International Publishing.

[2] Bernyk, V., Dalang, R.C. and Peskir, G. (2011). Predicting the ultimate supremum of a stable Lévy process
with no negative jumps. Ann. Probab. 39 2385–2423. MR2932671 https://doi.org/10.1214/10-AOP598

[3] Bhattacharya, R.N. and Ranga Rao, R. (1986). Normal Approximation and Asymptotic Expansions. Mel-
bourne, FL: Robert E. Krieger Publishing Co., Inc. Reprint of the 1976 original. MR0855460

[4] Bichteler, K., Gravereaux, J.-B. and Jacod, J. (1987). Malliavin Calculus for Processes with Jumps. Stochas-
tics Monographs 2. New York: Gordon and Breach Science Publishers. MR1008471

[5] Bingham, N.H. (1973). Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch.
Verw. Gebiete 26 273–296. MR0415780 https://doi.org/10.1007/BF00534892

[6] Bouleau, N. and Denis, L. (2009). Energy image density property and the lent particle method for Poisson
measures. J. Funct. Anal. 257 1144–1174. MR2535466 https://doi.org/10.1016/j.jfa.2009.03.004

[7] Chaumont, L. (2013). On the law of the supremum of Lévy processes. Ann. Probab. 41 1191–1217.
MR3098676 https://doi.org/10.1214/11-AOP708

[8] Chaumont, L. and Małecki, J. (2016). On the asymptotic behavior of the density of the supremum of Lévy
processes. Ann. Inst. Henri Poincaré Probab. Stat. 52 1178–1195. MR3531705 https://doi.org/10.1214/15-
AIHP674

[9] Chaumont, L. and Małecki, J. (2021). Density behaviour related to Lévy processes. Trans. Amer. Math. Soc.
374 1919–1945. MR4216728 https://doi.org/10.1090/tran/8268

[10] Darling, D.A. (1956). The maximum of sums of stable random variables. Trans. Amer. Math. Soc. 83
164–169. MR0080393 https://doi.org/10.2307/1992908
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