
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/178986 

 

 

 

 
Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/178986
http://wrap.warwick.ac.uk/178986
mailto:wrap@warwick.ac.uk


Division of Indivisible Items: Fairness, Efficiency,

and Strategyproofness

by

Ankang Sun

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy in Business and

Management

Warwick Business School

December 2022



Contents

List of Tables iv

List of Key Symbols v

Acknowledgments vi

Declarations vii

Abstract viii

Chapter 1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Structure and Summary of Results . . . . . . . . . . . . . . . 4

Chapter 2 Preliminaries 6
2.1 Basic Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Fairness Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Envy-Freeness . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Equitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Proportionality and Other Share-Based Fairness . . . . . . . 9

2.3 Economic Efficiency and Social Welfare . . . . . . . . . . . . . . . . 10
2.3.1 Pareto Optimality and Social Welfare Functions . . . . . . . 10
2.3.2 Price of Fairness . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Strategyproofness and Other Properties . . . . . . . . . . . . 13

i



Chapter 3 Fairness Criteria for Allocating Indivisible Chores: Con-
nections and Efficiencies1 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Some Simple Observations . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Guarantees from Envy-Based Relaxations . . . . . . . . . . . . . . . 22
3.4 Guarantees from Share-Based Relaxations . . . . . . . . . . . . . . . 29
3.5 Guarantees beyond the Additive Setting . . . . . . . . . . . . . . . . 37
3.6 Price of Fairness under Additive Setting . . . . . . . . . . . . . . . . 43

3.6.1 Two Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.2 More than Two Agents . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Price of Fairness beyond Additive Setting . . . . . . . . . . . . . . . 52
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 4 Equitability and Welfare Maximization for Allocating In-
divisible Items2 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Results on Price of Fairness . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 With respect to Egalitarian Welfare . . . . . . . . . . . . . . 61
4.2.2 With respect to Utilitarian Welfare . . . . . . . . . . . . . . . 63

4.3 Results on Computational Complexity . . . . . . . . . . . . . . . . . 72
4.3.1 Non-equivalence between Goods and Chores . . . . . . . . . . 73
4.3.2 Computational Complexity with Variable Number of Agents 75
4.3.3 Computational Complexity with Fixed Number of Agents . . 80

4.4 Pseudo-Polynomial-Time Algorithms for Fixed Number of Agents . . 91
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 5 Allocating Indivisible Items to Strategic Agents 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

1This chapter is based on a research article by Sun et al. [99]
2This chapter is based on a research article by Sun et al. [100]

ii



5.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Results under Deterministic Setting . . . . . . . . . . . . . . . . . . 110

5.2.1 A Strategyproof and Efficient Mechanism . . . . . . . . . . . 110
5.2.2 Incorporate Additional Properties . . . . . . . . . . . . . . . 112

5.3 Results under randomized Setting . . . . . . . . . . . . . . . . . . . . 113
5.3.1 A Strategyproof, Efficient, and Fair Randomized Mechanism 114
5.3.2 A Strategyproof, Efficient, and Fair Randomized Mechanism

for Allocating Mixed Items to Two Agents . . . . . . . . . . . 122
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 6 Conclusion 128

iii



List of Tables

3.1 Prices of fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Prices of fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Computational complexity for fixed n . . . . . . . . . . . . . . . . . 59
4.3 The fair-chores instance for Theorem 4.2.2 . . . . . . . . . . . . . . . 62
4.4 The fair-goods instance for Theorem 4.2.4 . . . . . . . . . . . . . . . 64
4.5 The fair-goods instance for Theorem 4.2.5 . . . . . . . . . . . . . . . 68
4.6 The fair-chores instance for Theorem 4.3.1 . . . . . . . . . . . . . . . 75
4.7 The fair-goods instance for Theorem 4.3.1 . . . . . . . . . . . . . . . 76
4.8 The fair-chores instance for Theorem 4.3.3 . . . . . . . . . . . . . . . 77
4.9 The fair-chores instance for Theorem 4.3.4 . . . . . . . . . . . . . . . 78
4.10 The fair-chores instance for Theorem 4.3.7 . . . . . . . . . . . . . . . 81
4.11 The fair-goods instance for Theorem 4.3.7 . . . . . . . . . . . . . . . 82
4.12 The fair-chores instance for Theorem 4.3.9 . . . . . . . . . . . . . . . 83
4.13 The fair-goods instance for Theorem 4.3.9 . . . . . . . . . . . . . . . 83
4.14 The fair-chores instance for Theorem 4.3.12 . . . . . . . . . . . . . . 86
4.15 The fair-goods instance for Theorem 4.3.12 . . . . . . . . . . . . . . 88
4.16 The fair-chores instance for Theorem 4.3.13 . . . . . . . . . . . . . . 89
4.17 The fair-chores instance for Theorem 4.3.14 . . . . . . . . . . . . . . 90

iv



List of Key Symbols

N Then set of agents
E The set of items
V The set of valuation functions
I A fair division instance
vi The valuation function of some agent i

A An allocation of items to agents
Ai The set of items received by some agent i in an allocation
UW The function of utilitarian welfare
EW The function of egalitarian welfare
OPTU The maximum utilitarian welfare of some instance
OPTE The maximum egalitarian welfare of some instance
PoFW The price of fairness with respect to welfare function W

v The type profile of agents
b A reporting profile of agents
M A mechanism

v



Acknowledgments

This thesis is the outcome of four years of doctoral studies at the University of

Warwick. Despite the inevitable challenges and difficulties, this journey was also

enchanting, fulfilling, and memorable.

First and foremost, I would like to express my deepest appreciation to my

supervisors, Professor Bo Chen and Dr. Xuan Vinh Doan, for their invaluable

guidance, advice, and support throughout my doctoral studies. I am honored to

have had the privilege of being their student.

I also want to extend my gratitude to Professor Steve Alpern, Professor

Pietro Micheli, and Dr. Nursen Aydin for their insightful suggestions during my

upgrading and annual reviews.

My most special appreciation goes to my family. I want to thank my parent

for their endless support and love. Finally, I am extremely grateful to my wife,

Yifan, for always encouraging and believing in me throughout this journey.

vi



Declarations

I hereby declare that this thesis is submitted to the University of Warwick in sup-

port of my application for the degree of Doctor of Philosophy. It has been composed

by myself and has not been submitted for a degree at another university. I further

declare that a paper titled “Connections between Fairness Criteria and Efficiency for

Allocating Indivisible Chores”, drawn from Chapter 3, was co-authored with Prof.

Bo Chen and Dr. Xuan Vinh Doan, and I contributed 80% of this work. A prelim-

inary version of this paper appeared in the Proceedings of the 20th International

Conference on Autonomous Agents and MultiAgent Systems [99]. A paper titled

“Equitability and Welfare Maximization for Allocating Indivisible Items”, drawn

from Chapter 4, was co-authored with Prof. Bo Chen and Dr. Xuan Vinh Doan,

and I contributed 80% of this work. This paper has been accepted by Journal of

Autonomous Agents and Multi-Agent Systems [100].

vii



Abstract

This thesis theoretically studies fairness, efficiency, and strategyproofness, in
the model of assigning a set of indivisible items to multiple agents. Fairness, with
an interpretation of social justice, ensures that everyone is treated unbiasedly. Effi-
ciency, a quantitative indicator, measures the utilization of the total resource. Strat-
egyproofness, a desired property of the assignment protocol, inhibits the strategic
behavior of misreporting information from participants. This work, first in Chap-
ter 3, focuses on the allocation of chores (items with non-positive value) and studies
two envy-based and two share-based fairness criteria. The analysis provides the con-
nections between fairness criteria and also investigates, in the worst-case scenario,
the efficiency loss when requiring allocations to be fair by establishing the corre-
sponding price of fairness. This thesis, then in Chapter 4, studies two relaxations
of equitability, a fairness notion that ensures agents the same level of value. This
chapter cares about both cases of goods (items with non-negative value) and chores.
The chapter first investigates the trade-off between efficiency and fairness and then
provides the picture of the computational complexity of (i) deciding the existence of
approximately equitable and welfare-maximizing allocation; (ii) computing a welfare
maximizer among all approximately equitable allocation. Chapter 5 considers the
setting where agents’ preferences over items are their private information and not
publicly known anymore. Agents are required to report their preferences so that as-
signment procedures can be carried on. Agents can and will report false information
if they are able to receive additional value by doing so. This chapter proposes deter-
ministic and randomised (group) strategyproof mechanisms in which each agent’s
(expected) value is maximized when she reports the true preference. Besides strate-
gyproofness, the proposed mechanisms can output efficient allocations that capture
a certain degree of fairness.
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Chapter 1

Introduction

1.1 Introduction

The resource allocation problem is arguably a central matter of concern among
Operations Research, Computer Science, and Economics. Resource allocation is to
assign available resources to various users or agents, and each agent has his/her own
evaluation of resources. Resource allocation problems, without any doubt, happen
quite often in practice and are relevant to a wide range of applications, including
but not limited to airport traffic management [49], scheduling and manufacturing
[102, 98], and public transport [46]. Essentially, addressing these questions requires
thinking of who gets what and how and why, which is, however, still very much a
work in progress.

Resources can be theoretically modeled as items to be assigned to the par-
ticipants or agents and, in general, are classified into two categories, divisible and
indivisible items. A divisible item can be arbitrarily cut into several small pieces
and assigned to multiple agents, and the problem regarding divisible items is also
known as cake-cutting. On the contrary, each indivisible item has to be assigned
as a whole to a single agent. Indivisible item assignment problems are prevalent in
diverse real-world scenarios, including but not limited to higher education [4, 60, 74],
healthcare [84, 87, 96], and business organizations [3, 9, 94]. These types of prob-
lems occur when assigning items that cannot be divided without losing their value,
or when assigning tasks that cannot be broken down into smaller parts. Examples
include assigning courses to professors at a university, as each course is typically
assigned to a single professor and cannot be divided. Similarly, assigning shifts to
nurses or doctors at a hospital presents an indivisible item assignment problem since
each shift requires one person to perform their duties and cannot be divided. More-
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over, assigning specialized tasks to employees in a workplace, such as conducting a
specific experiment, can also be an indivisible items assignment problem since the
task may require specific skills or knowledge that cannot be divided among multiple
workers.

Besides whether it is indivisible or not, items can also be distinguished accord-
ing to the type of impact on agents. Goods are the items resulting in positive value
or benefit for agents, while chores are the items associated with non-negative value
or cost. An alternative understanding of chores is that the value of chores represents
the effort that the agents need to spend on completing the assigned items or tasks,
and hence agents in the setting of chores tend to minimize their values. The exam-
ples mentioned above, such as the allocation of teaching workloads among faculty
members, shifts among nurses, and specialized tasks among employees, represent
assignment problems for indivisible chores. On the other hand, for the indivisible
goods, real-life examples include real estate properties, such as houses, apartments,
and land plots; works of art, such as paintings and sculptures; intellectual properties,
such as patents, trademarks, and copyrights; and other indivisible assets, such as
rare collectibles and vintage cars.

Fairness, or being fair, with the broadest sense interpretation that people
should receive what they deserve, is a crucial social concept and remarkably matters
in almost every resource allocation problem. The concepts of fair treatment of
individuals and equitable distribution of resources are fundamental social ideals
that are closely related to the concept of fairness. Fairness is essentially about
ensuring that individuals receive what they deserve based on factors such as their
contribution, need, or merit. Fairness is a fundamental value that underpins many
societies around the world, and it is reflected in various aspects of our lives, from
the legal system to the workplace and beyond. The importance of fairness lies in
its ability to create a sense of trust and mutual respect within a community. When
people feel that they are being treated fairly, they are more likely to trust others
and cooperate with them, leading to more harmonious and productive relationships.
Fairness is also critical for promoting social mobility and reducing inequality. When
resources are allocated fairly, people have the opportunity to succeed based on their
abilities and effort, rather than their social status or background. This can lead to
a more equal and just society, where everyone has the opportunity to reach their
full potential and contribute to the common good.

In addition to fairness, social welfare or efficiency, a competing criterion to
fairness, is also an important factor that needs to be taken into account. From the
perspective of system optimality, a community leader or a central decision maker
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(if one exists) tends to utilize resources as efficiently as possible. Traditionally,
works study fairness and efficiency independently, such as quantitatively character-
izing the fair/efficient outcomes and investigating the existence and computation
aspects of such fair/efficient allocations. With more in-depth research, the trade-
off between efficiency and fairness has been observed. In general, an efficient or a
welfare-maximizing allocation highly likely leads to unfair outcomes, and reversely,
requiring a fair outcome inevitably sacrifices the efficiency of the outcome. These
observations make understanding the trade-off between efficiency and fairness inter-
esting and worthwhile to explore. In the past decade, a line of research [30, 47, 28]
quantitatively studies the efficiency loss under fairness constraints. Bertsimas et al.
[30] and Caragiannis et al. [47] independently propose the notion of price of fairness
(PoF) to quantify the extent of welfare loss when ensuring outcomes are fair. The
PoF is defined as the ratio, in the worst-case scenario, between the unconstrained
optimal social welfare and the optimal social welfare achieved by fair allocations.
Successfully bounding the PoF ratio is capable of yielding a comprehensive under-
standing of the fairness and efficiency trade-off.

The aforementioned research regarding efficiency and fairness relies on the
assumption of information completeness, which in our context, refers to that agents’
preferences or valuations over items being publicly known or at least known by the
central decision maker. Nevertheless, valuations, in practice, are agents’ private
information and are not accessed by the central decision maker. Although the cen-
tral decision maker can collect information from agents by asking them to report
their valuations, agents may not always tell the truth, especially in situations where
misreporting can strictly benefit them. With the presence of false information, the
assignment protocol supposed to output fair and efficient outcomes may lead to un-
reasonable solutions. This challenge requires the central authority to not only focus
on the performance of outcomes but also to take the potential strategic behaviors
of agents into account. One way to approach this challenge is to design truthful or
strategyproof mechanisms, in which, compared to what can be achieved under truth-
ful reporting, agents can never be strictly better off by reporting false information.
Designing strategyproof mechanisms solely may not be extremely hard, whereas it is
much more challenging to propose a strategyproof mechanism that can also output
fair or efficient allocations.

3



1.2 Thesis Structure and Summary of Results

The thesis, first in Chapter 2 (Preliminaries), introduces the model of the allocation
of indivisible items and defines the essential mathematical terminologies, such as the
sets of agents, items, and valuation functions. Meanwhile, the formal definitions of
all solution concepts, including fairness criteria and welfare functions, are presented.
The last subsection (Section 2.4) of Chapter 2 contains terminologies and notations
regarding the problem related to mechanism design.

The results of this thesis are presented in Chapters 3, 4, and 5. Chapter 3 fo-
cuses on the allocation of chores and investigates the connections among envy-based
and share-based fairness criteria, and establishes their prices of fairness with respect
to utilitarian welfare. Chapter 4 studies the notion of equitability in conjunction
with system efficiency. It is known that equitable allocations do not always exist in
the case of indivisible items, so two relaxations of equitability are considered. The
last technique chapter (Chapter 5) addresses the problem of fair indivisible item
allocations under the mechanism design framework, in which agents’ preferences are
their private information and are no longer publicly known. The main result for
these three technique chapters is summarized as follows.

Chapter 3: Fairness Criteria for Allocating Indivisible Chores: Con-
nections and Efficiencies

This chapter studies several fairness notions in allocating indivisible chores to agents
who have additive and submodular cost functions. The fairness criteria we are
concerned with are envy-free up to any item (EFX), envy-free up to one item (EF1),
maximin share (MMS) fairness, and pairwise maximin share (PMMS) fairness, which
are proposed as relaxations of envy-freeness in the additive setting. For allocations
under each fairness criterion, we establish their approximation guarantee for other
fairness criteria. Under the additive setting, results in this chapter show strong
connections between these fairness criteria and, at the same time, reveal intrinsic
differences between goods allocation and chores allocation. However, such strong
relationships cannot be inherited by the submodular setting, under which PMMS
and MMS are no longer relaxations of envy-freeness and, even worse, few non-trivial
guarantees exist. We also investigate efficiency loss under these fairness constraints
and establish their prices of fairness.
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Chapter 4: Equitability and Welfare Maximization for Allocating
Indivisible Items

This chapter considers fair allocations of indivisible goods and chores in conjunction
with system efficiency, measured by two social welfare functions, namely utilitarian
and egalitarian welfare. The fairness criteria we are concerned with are equitability
up to any item (EQX) and equitability up to one item (EQ1). For the trade-off
between fairness and efficiency, we investigate efficiency loss under these fairness
constraints and establish the price of fairness. From the computational perspec-
tive, we provide a complete picture of the computational complexity of (i) deciding
the existence of an EQX/EQ1 and welfare-maximizing allocation; (ii) computing a
welfare maximizer among all EQX/EQ1 allocations.

Chapter 5: Allocating indivisible items to strategic agents

This chapter studies the problem of fairly allocating indivisible items to agents under
the mechanism design framework, in which agents’ preferences are privately known.
To escape the impossibility presented by Amanatidis, Birmpas, Christodoulou and
Markakis [5], we restrict to the setting where agents’ valuations are binary additive
and restricted additive, two subclasses of the additive valuation. We first show that
no deterministic mechanism can be strategyproof, Pareto optimal, and equitability
up to one item, even when assigning chores to two agents with binary additive
valuations. If randomisation is allowed, in the setting of allocating chores to agents
with restricted additive valuations, we design a group-strategyproof (in expectation)
mechanism that is also ex-ante Pareto optimal, envy-free, equitable and ex-post envy-
free to one item, equitability up to one item. We also extend to the setting where
items are mixtures of goods and chores, and provide a strategyproof (in expectation)
mechanism for two agents that also achieves ex-ante Pareto optimality and exact
fairness and ex-post relaxed fairness.
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Chapter 2

Preliminaries

In this chapter, we first define basic notations used throughout the thesis. Then,
we formally present the underlying solution concepts, including various fairness cri-
teria and social welfare functions. We also introduce terminologies and notations
implemented in problems under the framework of mechanism design.

2.1 Basic Notations

Denote by [k] = {1, . . . , k} for any positive integer k. A fair division instance I =
〈N, E, V〉 is composed of a set N = {1, . . . , n} of n agents and a set E = {e1, . . . , em}
of m indivisible items. Each agent i is associated with a valuation function vi ∈ V
and vi : 2E → R. An item e ∈ E can be either a good that brings non-negative
values to agents or a chore resulting in non-positive values. Although an item can be
a good for one agent and a chore for another, in most places (except for Section 5.3.2)
of this thesis, we focus on the case where all items are goods or all items are chores.
Formally, we say an item e ∈ E is a good if vi({e}) ≥ 0 for any i ∈ [n], and is a chore
if vi({e}) ≤ 0 for any i ∈ [n]. Moreover, we call I a fair-goods (resp., fair-chores)
instance if every item is a good (resp., a chore). Throughout the thesis, we assume
that for all i, vi(∅) = 0 and vi(·) is monotone, i.e., for any S ⊆ T , vi(S) ≤ vi(T )
for the allocation of goods and vi(S) ≥ vi(T ) in the case of chores. We say a (set)
function v(·) is

• Additive, if v(S) = ∑
e∈S v({e}) for any S ⊆ E.

• Submodular, if for any S ⊆ T ⊆ E and e ∈ E \ T , v(T ∪ {e}) − v(T ) ≤
v(S ∪ {e})− v(S).
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• Subadditive, if for any S, T ⊆ E, v(S ∪ T ) ≤ v(S) + v(T ).

It is easy to see that additivity implies submodularity and that non-negative sub-
modularity implies subadditivity. For simplicity, instead of vi({e}), we use vi(e) to
represent the value of item e for agent i.

Every assignment of a set of items S ⊆ E to agents results in an allocation
A = (A1, . . . , An) that is an n-partition of S with Ai ∩ Aj = ∅ for any i ,= j and
⋃

i∈N Ai = S. A subset S ⊆ E also refers to a bundle of items. For any bundle S and
k ∈ N+, we denote by Πk(S) the set of all k-partition of S and by [k] = {1, . . . , k}.
We also denote by |S| the number of items of S.

2.2 Fairness Criteria

Fair allocation problems have been extensively studied through the years, and a
plethora of fairness criteria have been proposed. Due to the different characteristics
of allocation problems and different expectations of the allocation result, there is
no single fairness criterion that can be universally implemented for all allocation
problems. In the following, we formally present the (α-approximation) fairness
criteria that we are concerned with in the thesis.

2.2.1 Envy-Freeness

In the fair division literature, one of the most compelling solutions is envy-freeness
(EF) [64]. It portrays agents’ attitudes toward the bundle of items received by others.
In an envy-free allocation, the value of each agent is at least as high as the value
that she assigns to any other agent’s bundle.

Definition 2.2.1 (α-EF). In the case of goods, for any α ∈ (0, 1], an allocation
A = (A1, . . . , An) is α-EF if for any i, j ∈ [n], vi(Ai) ≥ α · vi(Aj) holds. In the
case of chores, for any α ∈ [1, +∞), the allocation A is α-EF if for any i, j ∈ [n],
vi(Ai) ≥ α · vi(Aj) holds. In particular, 1-EF is simply called EF.

One weakness of the EF solutions is that an envy-free allocation does not
always exist in the setting of indivisible items. For example, one can think of
allocating an indivisible item to two agents, both of whom value the item at one.
Every assignment inevitably results in envy. Even worse, from the computational
complexity perspective, one can not, in polynomial time, determine whether an EF
allocation exists or not [40]. Given these obstacles, researchers instead focus on EF
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relaxations with guaranteed existence. The notion of envy-free up to one item (EF1)
[45, 48, 85] is a realistic relaxation of EF, and intuitively, in an EF1 allocation, agent
i may envy agent j, but envy can be eliminated by removing one item.

Definition 2.2.2 (α-EF1). In the case of goods, for any α ∈ (0, 1], an allocation
A = (A1, . . . , An) is α-EF1 if any i, j ∈ [n], there exists e ∈ Aj such that vi(Ai) ≥
α · vi(Aj \ {e}). In the case of chores, for any α ∈ [1, +∞), the allocation A is
α-EF1 if for any i, j ∈ [n], there exists e ∈ Ai such that vi(Ai \ {e}) ≥ α · vi(Aj). In
particular, 1-EF1 is simply called EF1.

Another popular relaxation of EF is called envy-free up to any item (EFX)
[48, 51, 93]. Different from EF1, EFX requires that envy can be eliminated by
removing an arbitrary non-zero value item.

Definition 2.2.3 (α-EFX). In the case of goods, for any ∈ (0, 1], an allocation
A = (A1, . . . , An) is α-EFX if for any i, j ∈ [n] and for every e ∈ Aj with vi(e) > 0,
vi(Ai) ≥ α · vi(Aj \ {e}) holds. In the case of chores, for any α ∈ [1, +∞), the
allocation A is α-EFX if for any i, j ∈ [n] and for every e ∈ Ai with vi(e) < 0,
vi(Ai \ {e}) ≥ α · vi(Aj) holds. In particular, 1-EFX is simply called EFX.

2.2.2 Equitability

The notion of equitability [42, 57, 66] is originally studied in the cake-cutting problem
(a divisible item). Informally, equitability ensures that each agent is equally happy
with his/her bundle, or agents should receive the same level of value. Note that the
aforementioned (relaxed) envy-freeness is defined in an intrapersonal manner, while
equitability acts as an interpersonal fairness criterion.

Definition 2.2.4 (EQ). An allocation A = (A1, . . . , An) is equitable (EQ) if for
any i, j ∈ [n], vi(Ai) = vj(Aj).

Unfortunately, an EQ allocation does not always exist, and a typical example
is assigning one indivisible item to two agents. Motivated by this impossibility result,
we instead are concerned with its two relaxations, equitable up to one item (EQ1)
and equitable up to any item (EQX) [66, 67, 73], both of which can be satisfiable
under additive valuations.

Definition 2.2.5 (α-EQ1). In the case of goods, for any α ∈ (0, 1], an allocation
A = (A1, . . . , An) is α-EQ1 if for any i, j ∈ [n], there exists e ∈ Aj such that
vi(Ai) ≥ α · vj(Aj \ {e}). In the case of chores, for any α ∈ [1, +∞), the allocation
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A is α-EQ1 if for any i, j ∈ [n], there exists e ∈ Ai such that vi(Ai\{e}) ≥ α·vj(Aj).
In particular, 1-EQ1 is simply called EQ1.

Definition 2.2.6 (α-EQX). In the case of goods, for any α ∈ (0, 1], an allocation
A = (A1, . . . , An) is α-EQX if for any i, j ∈ [n] and for every e ∈ Aj with vj(e) > 0
, vi(Ai) ≥ α · vj(Aj \ {e}) holds. In the case of chores, for any α ∈ [1, +∞), the
allocation A is α-EQX if for any i, j ∈ [n] and for every e ∈ Ai with vi(e) < 0,
vi(Ai \ {e}) ≥ α · vj(Aj) holds. In particular, 1-EQX is simply called EQX.

In EQ1 or EQX allocations, the value of agent i can be smaller than the
value of agent j, but agent i would receive a value no less than that of agent j if
an item is removed. The specific way of removing an item depends on the nature
of the underlying items, goods or chores. Moreover, it is straightforward to see that
α-EQX is stricter than α-EQ1 for any α in both cases of goods and chores.

2.2.3 Proportionality and Other Share-Based Fairness

Note that both (relaxed) envy-freeness and equitability are defined in the way that
after revealing the final allocation, an agent examines whether she is treated fairly
based on her bundle and the bundles assigned to others. Another school of fairness
is defined by requiring agents to receive an absolute value or share. The notion of
proportionality is the first few share-based fairness criteria to be studied, and in a
proportional (PROP) allocation, the value of each agent is at least 1/n of her value
on all items.

Definition 2.2.7 (PROP). An allocation A = (A1, . . . , An) is PROP if for any
i ∈ [n], vi(Ai) ≥ 1/n · vi(E) holds.

In the allocation of indivisible items, PROP allocations do not always, and
a non-existence example is assigning one item to two agents. Then the notion of
proportional up to one item (PROP1) [14, 56], a relaxation of PROP, is proposed.

Definition 2.2.8 (PROP1). In the case of goods, an allocation A = (A1, . . . , An)
is PROP1 if for any i ∈ [n], there exists e /∈ Ai such that vi(Ai ∪ {e}) ≥ 1/n · vi(E).
In the case of chores, the allocation A is PROP1 if for any i ∈ [n], there exists
e ∈ Ai such that vi(Ai \ {e}) ≥ 1/n · vi(E) holds.

The maximin share (MMS) fairness, recently proposed by Budish [45], is
another relaxation of PROP. The idea of MMS is a generalization of the “cut and
choose” protocol from the cake-cutting problem. More specifically, imagine that
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agent i has the opportunity to partition S into k bundles, then the corresponding
MMS of agent i is the maximum value that she can guarantee if she is to receive the
bundle of the smallest value. The formal definition of MMS is presented as follows,

MMSi(k, S) = max
A∈Πk(S)

min
j∈[k]

vi(Aj).

The MMS fairness requires that each agent receives value at least his/her maximin
share.

Definition 2.2.9 (α-MMS). In the case of goods, for any α ∈ (0, 1], an allocation
A = (A1, . . . , An) is α-MMS fair if for any i ∈ [n], vi(Ai) ≥ α · MMSi(n, E) holds.
In the case of chores, for any α ∈ [1, +∞), the allocation A is α-MMS fair if for
any i ∈ [n], vi(Ai) ≥ α · MMSi(n, E) holds. In particular, 1-MMS fair is simply
called MMS fair.

We are also interested in another share-based fairness criterion, pairwise
maximin share (PMMS), which is similar to MMS, but instead of partitioning E

into n parts, agent i considers 2-partition of the union of his and another agent’s
bundle. The formal definition of PMMS is presented as follows.

Definition 2.2.10 (α-PMMS). In the case of goods, for any α ∈ (0, 1], an allocation
A = (A1, . . . , An) is α-PMMS fair if for any i, j ∈ [n], vi(Ai) ≥ α ·MMSi(2, Ai∪Aj)
holds. In the case of chore, for any α ∈ [1, +∞), the allocation A is α-PMMS fair
if for any i, j ∈ [n], vi(Ai) ≥ α · MMSi(2, Ai ∪ Aj) holds. In particular, 1-PMMS
fair is simply called PMMS fair.

2.3 Economic Efficiency and Social Welfare

The fairness criteria mentioned above only are not capable of capturing the whole
picture of this thesis, and especially, a significant task of this thesis is to characterize
the trade-off between fairness and efficiency quantitatively. In order to investigate
the fairness and efficiency trade-off, the notion(s) of efficiency needs to be introduced.
In this section, we formally present the definition of Pareto optimal (PO) allocation
and two social welfare functions, namely utilitarian welfare and egalitarian welfare.

2.3.1 Pareto Optimality and Social Welfare Functions

The notion of Pareto optimality characterizes a situation in which no agent can
be better off without making at least another agent worse off. The mathematical

10



definition is provided in the following.

Definition 2.3.1 (PO). An allocation A = (A1, . . . , An) is PO if there is no allo-
cation B = (B1, . . . , Bn) that Pareto-dominates it, i.e., satisfies vi(Bi) ≥ vi(Ai) for
all i ∈ [n] and at least one inequality is strict.

In welfare economics, the social welfare function is a microeconomic tech-
nique for evaluating the well-being at the aggregate level. The thesis considers two
canonical welfare functions, utilitarian welfare (UW) and egalitarian welfare (EW).
Utilitarian welfare is the sum of individuals’ values, and egalitarian welfare is equal
to the value of the worst-off agents. The formal definitions of welfare functions are
provided as follows.

Definition 2.3.2. Given an allocation A = (A1, . . . , An), the utilitarian welfare of
A is defined as UW(A) = ∑

i∈[n] vi(Ai) and the egalitarian welfare of A is defined
as EW(A) = mini∈[n] vi(Ai).

Among all allocations, we are particularly interested in the one that has
the maximum utilitarian/egalitarian welfare and such an allocation is also called a
welfare maximizer.

Definition 2.3.3. An allocation A is a utilitarian welfare maximizer (UWM) and
an egalitarian welfare maximizer (EWM) if it has maximum utilitarian welfare and
maximum egalitarian welfare, respectively.

2.3.2 Price of Fairness

The price of fairness (PoF) quantifies the loss of economic welfare when enforcing
allocation fairness. For allocation of goods, PoF is the supremum ratio over all
problem instances between the maximum welfare of all allocations and maximum
welfare of all fair allocations. In the case of chores, PoF is the supremum ratio over
all problem instances between the maximum welfare of all fair allocations and max-
imum welfare of all allocations. The price of fairness has been applied to quantify
the welfare loss under fairness requirements in both settings of goods [12, 28, 47] and
chores [47, 77, 78]. Following previous studies [28, 47, 78], when we are concerned
with the price of fairness, we assume that each agent i’s valuation function is normal-
ized; that is, vi(E) = 1 for goods and vi(E) = −1 for chores. Given an instance I
and a welfare function W ∈ {EW, UW}, denote by OPTW (I) the maximum welfare
with respect to W over all allocations of instance I. For ease of notations, when the
instance I is clear from the context, we use OPTE and OPTU to refer OPTEW (I)
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and OPTUW (I), respectively. Moreover, given a fairness criterion F and an instance
I, denote by F (I) the set of all allocations satisfying F .

Definition 2.3.4. Given a fair-goods instance I, for any fairness criterion F and
welfare function W , the price of F with respect to W is defined as

PoFW = sup
I

min
A∈F (I)

OPTW (I)
W (A) .

In the case of chores, swap the positions of the numerator and denominator.

In the above definition, we apply the following convention for the case where
the maximum welfare of a fair-chores instance is equal to zero: if some fair allocation
can achieve welfare zero, then the price of fairness is 1; otherwise, the price of fairness
is infinite. The price of fairness with respect to fairness notion F is also called price
of F, i.e., price of EQ1 and price of EF1.

2.4 Mechanism Design

Under the mechanism design setting, agents are rational and selfish and will behave
strategically to gain benefit as much as possible. In particular, each agent privately
observes her preference, which is not available to other agents. This is modeled by
the fact that agent i privately knows her true valuation function vi. Note that in
Chapter 5, the terminology vi always refers to the true valuation function of agent i.
We refer vi as the type or private value of agent i and denote by Vi the set of type of
agent i and by V = V1× · · · Vn the set of all profiles. A type profile includes the type
of all agents and is represented as v = (v1, . . . , vn). In the context of mechanism
design (Chapter 5), allocations are sometimes written in the form of matrices. With
a slight abuse of notations, an allocation or an allocation matrix A = (aji)j∈[m],i∈[n]
is an m × n matrix, and the i-th column Ai determines the assignment of agent
i. In a deterministic allocation A, the entry aji is equal to either 0 or 1, and
aji = 1 implies that item ej is (entirely) assigned to agent i; otherwise, not. In
a randomised allocation A, the entry aji is the probability of assigning item ej to
agent i and takes value 0 ≤ aji ≤ 1. We, with a slight abuse of notation, also use Ai,
the i-th column of matrix A, to represent the set of (fractional) items or the bundle
received by agent i under allocation A. Hence, the value of agent i in allocation A
is equal to vi(A) = vi(Ai) = ∑

j∈[m] ajivi(ej). Note that by well-known Birkhoffvon
Neumann (BvN) decomposition, a randomised allocation can also be interpreted as
a probability distribution over a set of deterministic allocations. As a consequence,
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for a randomised allocation A, the quantity ∑
j∈[m] ajivi(ej) is also the expected

value received by agent i. Moreover, for a randomised allocation A = (aji)j∈[m],i∈[n],
the entry aji can be interpreted as the fraction of item ej assigned to agent i, and
thus, every randomised allocation implements a fractional allocation.

Denote by A the set of allocation matrices. A deterministic/randomised
mechanism asks each agent to report his type and outputs an allocation based on
the reporting. Due to the combinatorial explosion, it is irrealistic for agents to report
their value on every subset S ⊆ E. We then restrict to the additive setting, and in
particular, each agent i bids bi(e) for every e ∈ E and his bids on a set S ⊆ E can be
computed as ∑

e∈S bi(e). A mechanism M takes a reporting profile b = (b1, . . . , bn)
as input and outputs an allocation M(b) ∈ A. We remark that agent i may report
or bid bi different from his type if misreporting can increase her value. To simplify
notations, we use a common notation in the game theory literature; that is, given a
reporting profile and a set of agent S ⊆ [n], denote by bS the set of bids from agents
in S, and b−S = b[n]\S . Similar notations hold for agents’ type and the set of agents’
type.

2.4.1 Strategyproofness and Other Properties

We now introduce the notion of strategyproofness, also known as truthfulness. In a
strategyproof (SP) mechanism, it is always the best response for an agent i to report
his type, irrespective of what is reported by the rest of the agents. In other words,
no agent can gain additional value (compared to the value received when reporting
truthfully) by misreporting. In the following, we formally define the strategyproof-
ness in both deterministic and randomised settings.

Definition 2.4.1 (SP). A deterministic mechanism M is strategyproof if ∀i ∈ [n],
∀vi ∈ Vi, ∀bi ∈ Vi, ∀b−i ∈ V−i, the following holds

vi(M(vi, b−i)) ≥ vi(M(bi, b−i)).

Definition 2.4.2 (SPIE). A randomised mechanism M̃ is strategyproof in expecta-
tion (SPIE) if ∀i ∈ [n], ∀vi ∈ Vi, ∀bi ∈ Vi, ∀b−i ∈ V−i, the following holds,

EA∼M̃(vi,b−i)
[vi(Ai)] ≥ EA∼M̃(bi,b−i)

[vi(Ai)].

Strategyproofness can prevent manipulations from a single individual agent,
but it may not be able to prohibit the strategic behaviour of a group of agents. We
also consider groupstrategyproof (GSP) mechanisms, in which no group of people
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can collude to misreport their valuations in a way that makes at least one member
of the group better off without making any of the remaining members worse off.

Definition 2.4.3 (GSP). A deterministic mechanism M is said to be GSP if there
does not exist a coalition S ⊆ N and a reporting profile (bS , b−S) such that for all
i ∈ S, vi(M(bS , b−S)) ≥ vi(M(vS , b−S)) and at least one strict inequality holds.

Definition 2.4.4 (GSPIE). A randomised mechanism M̃ is group-strategyproof in
expectation (GSPIE) if there does not exist a coliation S ⊆ N and a reporting profile
(bS , b−S) such that for all i ∈ S, EA∼M̃(bS ,b−S)[vi(Ai)] ≥ EA∼M̃(vS ,b−S)[vi(Ai)] and
at least one strict inequality holds.

We are also concerned with the notion of anonymity, requiring that the
identity of an agent does not affect the assignment received by her. Throughout the
thesis, given a permutation σ : [n]→ [n], let σ(t) be the t-th element of σ([n]).

Definition 2.4.5. A mechanism M is said to be anonymous if for any permutation
σ and two reporting profiles b = (b1, . . . , bn) and b′ = (bσ(1), . . . , bσ(n)) with output
allocation matrices A and A′, it holds that Aσ(t) = A′

t for each t ∈ [n].

The last property we care about is non-bossiness [97, 101]. A mechanism is
non-bossy if an agent cannot change the allocation of other agents without changing
her own assignment.

Definition 2.4.6. A mechanism M is said to be non-bossy if for any two differ-
ent reporting profiles b = (bi, b−i) and b′ = (b′

i, b−i) with M(bi, b−i) = A and
M(b′

i, b−i) = A′, Ai = A′
i implies Aj = A′

j for any j ,= i.
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Chapter 3

Fairness Criteria for Allocating
Indivisible Chores: Connections
and Efficiencies1

3.1 Introduction

There emerges a tremendous demand for fair division when a set of indivisible re-
sources, such as classrooms, bandwidths, and properties, are divided among a group
of agents. Although this field has attracted the attention of researchers, a large pro-
portion of results are established when the underlying resources are goods. Whereas,
in some real-life division problems, such as assigning tasks among workers and allo-
cating teaching load among teachers, the objects to be allocated is chores bringing
non-positive value or cost to agents. Compared to goods, the fair division prob-
lem of chores is relatively under-developed. At first glance, fair chores allocation is
similar to the corresponding problems on goods. However, in general, chores allo-
cation is not covered by goods allocation and results established on goods do not
necessarily hold on chores. Existing works have already pointed out the difference
[36, 37, 44, 66, 67]. As an example, Freeman et al. [66] indicate that, when allocating
goods, a leximin2 allocation is PO and EQX, however, a leximin solution does not
even guarantee EQX in chores allocation.

In this chapter, we restrict ourselves to the setting of indivisible chores and
study the notions of EF1, EFX, MMS and PMMS, which have been well-studied

1This chapter is based on a research article by Sun et al. [99]
2A leximin solution selects the allocation that maximizes the utility of the least well-off agent,

subject to maximizing the utility of the second least, and so on.
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in the case of goods. Amanatidis et al. [7] compare the above four relaxations of
envy-freeness and provide results on the approximation guarantee of one to another.
A direct implication of these connections is that an approximation algorithm of one
notion can be directly transferred to the approximation algorithm of another. Bei
et al. [28] quantify the efficiency loss under fairness constraints, such as EF1, in
the case of goods and provide a sequence of results on the price of fairness. The
connections of these fairness criteria and the efficiency loss when enforcing allocation
fairness have not been resolved in the case of chores. In this chapter, we fill these
gaps by investigating the afore-mentioned four fairness notions on two aspects. On
the one hand, we study the connections between these criteria and, in particular, we
consider the following questions: Does one fairness criterion implies another? To
what extent can one criterion guarantee for another? On the other hand, we study
the trade-off between fairness and efficiency. Specifically, for each fairness criterion,
we investigate its price of fairness with respect to the utilitarian welfare.

On the connections between fairness criteria, we summarize our main results
in Figure 3.1 on the approximation guarantee of one fairness criterion for another.
Figures 3.1a and 3.1b show connections when agents’ valuation functions are ad-
ditive and submodular, respectively. As shown in Figure 3.1a below, when agents
have additive valuation functions, there exist evidently significant connections be-
tween these fairness notions. While some of our results show similarity to those
in goods allocation [7], others also reveal their difference. Figure 3.1b provides the
corresponding results under the submodular setting, which then show a sharp con-
trast to results under the additive setting. More specifically, except that PMMS can
have a bounded approximation guarantee on MMS, no non-trivial guarantee exists
between any other pair of fairness notions. After comparing each pair of fairness
notions, we compare the utilitarian welfare of fair allocations with the maximum
welfare of all allocations. To quantify the efficiency loss, we apply the idea of the
price of fairness and our results are summarized in Table 3.1. As detailed later in
the paper, most of the results summarized in Figure 3.1 and Table 3.1 are tight.

3.1.1 Related Works

The fair division problem has been studied for both indivisible goods [85, 32, 48]
and indivisible chores [19, 15, 67]. Among various fairness notions, a prominent
one is EF proposed by Foley [64]. But an EF allocation may not exist and even
worse, checking the existence of an EF allocation is NP-complete [16]. For the
relaxations of envy-freeness, the notion of EF1 originates from Lipton et al. [85] and
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Note: Figure 3.1a and Figure 3.1b illustrate connections between fairness criteria under
additive and submodular valuation functions, respectively. LB and UB stand for lower and
upper bound, respectively. Px.y points to Proposition x.y

Figure 3.1: Connections between fairness criteria

is formally defined by Budish [45]. Lipton et al. [85] provide an efficient algorithm
for EF1 allocations of goods when agents have monotone valuation functions. When
allocating chores, Aziz et al. [14] show that, in the additive setting, EF1 is achievable
by allocating chores in a round-robin fashion. Another fairness notion that has been
a subject of much attention in the last few years is MMS, proposed by Budish [45].
However, existence of an MMS allocation is not guaranteed either for goods [83] or
for chores [19], even with additive valuation functions. Consequently, more efforts
are on approximation of MMS in the additive setting, with Amanatidis et al. [8],
Ghodsi et al. [71], Garg and Taki [70] on goods and Aziz et al. [19], Huang and Lu
[79] on chores. Some other studies consider approximating MMS when agents have
(a subclass of) submodular valuation functions. Barman and Krishnamurthy [23]
consider the submodular setting and show that 0.21-approximation of MMS can be
efficiently computed by the round-robin algorithm. Barman and Verma [24] show
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Table 3.1: Prices of fairness

that an MMS allocation is guaranteed to exist and can be computed efficiently if
agents have submodular valuation functions with binary margin.

The notions of EFX and PMMS are introduced by Caragiannis et al. [48].
They consider goods allocation and establish that a PMMS allocation is also EFX
when the valuation functions are additive. Beyond the simple case of n = 2, the
existence of an EFX allocation has not been settled in general. However, significant
progress has been made for some special cases. When n = 3, the existence of an EFX
allocation of goods is proved by Chaudhury et al. [51]. Based on a modified version
of leximin solutions, Plaut and Roughgarden [93] show that an EFX allocation is
guaranteed to exist when all agents have identical valuations. The work most related
to ours is by Amanatidis et al. [7], which is on goods allocation under additive setting,
and provides connections among the above four relaxations of envy-freeness.

As for the price of fairness, Caragiannis et al. [47] show that, in the case of
divisible goods, the price of proportionality is Θ(√n) and the price of equitability
is Θ(n). Bertsimas et al. [30] extend the study to other fairness notions, maximin3

fairness and proportional fairness, and they provide a tight bound on the price of
fairness for a broad family of problems. Bei et al. [27] focus on indivisible goods and
concentrate on the fairness notions that are guaranteed to exist. They present an
asymptotically tight upper bound of Θ(n) on the price of maximum Nash welfare
[54], maximum egalitarian welfare [43] and leximin. They also consider the price
of EF1 but leave a gap between the upper bound O(n) and lower bound Ω(√n).

3It maximizes the lowest utility level among all the agents.
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This gap is later closed by Barman et al. [22] with the results that, for both EF1
and (1/2)-MMS, the price of fairness is O(√n). All the work reviewed above on the
price of fairness is on the additive setting. On the other hand, the price of fairness
has been studied in other multi-agent systems, such as machine scheduling [1] and
kidney exchange [59].

3.1.2 Preliminaries

As this whole chapter focuses on the allocation of chores, to avoid frequently switch-
ing the terminologies of valuation functions and cost functions, in this chapter we
instead assume that each agent i is associated with a cost function ci : 2E → R≥0.
The notion of cost function ci is used only in this chapter. We then rewrite the def-
initions of the fairness criteria and the utilitarian welfare function by cost functions
ci(·).

Definition 3.1.1 (α-EF). For any α ≥ 1, an allocation A = (A1, . . . , An) is α-EF
if for any i, j ∈ [n], ci(Ai) ≤ α · ci(Aj) holds.

Definition 3.1.2 (α-EF1). For any α ≥ 1, an allocation A = (A1, . . . , An) is
α-EF1 if for any i, j ∈ [n], there exists e ∈ Ai such that ci(Ai \ {e}) ≤ α · ci(Aj).

Definition 3.1.3 (α-EFX). For any α ≥ 1, an allocation A = (A1, . . . , An) is α-
EFX if for any i, j ∈ [n] and for any e ∈ Ai with ci(e) > 0, any ci(Ai\{e}) ≤ α·ci(Aj)
holds.

We remark that Plaut and Roughgarden [93] consider a stronger version of
EFX by dropping the condition ci(e) > 0. In this chapter, all results about EFX,
except Propositions 3.4.1 and 3.4.6, still hold under the stronger version.

With cost functions, the maximin share of agent i on set S among k agents
is defined as

MMSi(k, S) = min
A∈Πk(S)

max
j∈[k]

ci(Aj).

As for the (approximate) MMS fairness, we have the following definition.

Definition 3.1.4 (α-MMS). For any α ≥ 1, an allocation A = (A1, . . . , An) is
α-MMS fair if for any i ∈ [n], ci(Ai) ≤ α · MMSi(n, E) holds.

Definition 3.1.5 (α-PMMS). For any α ≥ 1, an allocation A = (A1, . . . , An) is
α-PMMS fair if for any i, j ∈ [n], ci(Ai) ≤ α · MMSi(2, Ai ∪Aj) holds.

Definition 3.1.6. Given an allocation A = (A1, . . . , An), the social cost of A is
∑

i∈[n] ci(Ai).
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We remark that with cost functions, the utilitarian/egalitarian welfare-maximizing
allocation now becomes the one that can minimize the underlying welfare.

3.2 Some Simple Observations

In this section, we first use a concrete example to provide the very first impression
of the connections among fairness criteria. Following the example, we present two
simple but non-trivial results, of which one is a lower bound of the maximin share
and the other one is a bound of an allocation on the notions of PMMS and MMS.

Example 3.2.1. Let us consider an example with three agents and a set E =
{e1, . . . , e7} of seven chores. Agents have additive cost functions, displayed in the
table below.

e1 e2 e3 e4 e5 e6 e7

Agent 1 2 3 3 0 4 2 1
Agent 2 3 1 3 2 5 0 5
Agent 3 1 5 10 2 3 1 3

It is not hard to verify that MMS1(3, E) = 5, MMS2(3, E) = 7, MMS3(3, E) =
10. For instance, agent 2 can partition E into three bundles: {e1, e3}, {e2, e7},

{e4, e5, e6}, so that the maximum cost of any single bundle for her is 7. Moreover,
there is no other partition that can guarantee a better worst-case cost.

We now examine allocation A with A1 = {e1, e4, e7}, A2 = {e2, e3, e6}, A3 =
{e5}. We can verify that ci(Ai) ≤ ci(Aj) for any i, j ∈ [3] and thus allocation A
is EF that is then also EFX, EF1, MMS and PMMS. For another allocation B
with B1 = {e1, e5, e7}, B2 = {e2, e4, e6}, B3 = {e3}, agent 1 would still envy agent
2 even if chore e7 is eliminated from her bundle, and hence, allocation B is neither
exact EF nor EFX. One can verify that B is indeed 7/3-EF and 2-EFX. Moreover,
allocation B is EF1 because agent 1 would not envy others if chore e5 is eliminated
from her bundle and agent 3 would not envy others if chore e3 is eliminated from
her bundle. As for the approximation guarantee on the notions of MMS and PMMS,
it is not hard to verify that allocation B is 7/5-MMS and 7/5-PMMS.

Next, we present some initial results, which reveal some intrinsic difference
in allocating goods and allocating chores as far as approximation guarantee is con-
cerned. First, we state a simple lemma concerning lower bounds of the maximin
share.
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Lemma 3.2.1. When agents have subadditive cost functions, for any i ∈ N and
S ⊆ E, we have

MMSi(k, S) ≥ 1
k

ci(S),∀k ∈ [n]; MMSi(k, S) ≥ ci(e),∀e ∈ S,∀k ∈ [n].

Proof. Let T = (T1, . . . , Tk) be the k-partition of S defining MMSi(k, S); that is
maxTj ci(Tj) = MMSi(k, S). We start with the lower bound k−1ci(S). Without
loss of generality, assume ci(T1) ≥ ci(T2) ≥ · · · ≥ ci(Tk) and as a result, we have
ci(T1) = MMSi(k, S). Then, the following holds

kci(T1) ≥
k∑

j=1
ci(Tj) ≥ ci(

k⋃

j=1
Tj) = ci(S),

where the second transition is due to subadditivity. Due to ci(T1) = MMSi(k, S),
we have MMSi(k, S) ≥ k−1ci(S). As for the lower bound ci(e), for any given chore
e ∈ S, there must exist a bundle Tj′ containing e. Due to the monotonicity of cost
function, we have ci(Tj′) ≥ ci(e), which combines MMSi(k, S) = c1(T1) ≥ c1(Tj′),
implying MMSi(k, S) ≥ ci(e). !

Based on the lower bounds in Lemma 3.2.1, we provide a trivial approxima-
tion guarantee for PMMS and MMS.

Lemma 3.2.2. When agents have subadditive cost functions, any allocation is 2-
PMMS and n-MMS.

Proof. Let A = (A1, . . . , An) be an arbitrary allocation without any specified prop-
erties. We first show it’s already an n-MMS allocation. By Lemma 3.2.1, for each
agent i, we have ci(E) ≤ n · MMSi(n, E). Then, due to the monotonicity of the cost
function, ci(Ai) ≤ ci(E) ≤ n · MMSi(n, E) holds.

Next, by a similar argument, we prove the result about 2-PMMS. By Lemma 3.2.1,
ci(Ai ∪ Aj) ≤ 2MMSi(2, Ai ∪ Aj) holds for any i, j ∈ N . Again, due to the mono-
tonicity of the cost function, we have ci(Ai) ≤ ci(Ai ∪ Aj) that implies ci(Ai) ≤
2MMSi(2, Ai ∪ Aj). Therefore, allocation A is also 2-PMMS, completing the proof.
!

As can be seen from the proof of Lemma 3.2.2, in allocating chores, if one
assigns all chores to one agent, then the allocation still has a bounded approximation
for PMMS and MMS. However, when allocating goods, if an agent receives nothing
but his maximin share is positive, then clearly the corresponding allocation has an
infinite approximation guarantee for PMMS and MMS.
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3.3 Guarantees from Envy-Based Relaxations

Let us start with EF. According to definitions, for any α ≥ 1, α-EF is stronger than
α-EFX and α-EF1. Following propositions present the approximation guarantee of
α-EF for MMS and PMMS.

Proposition 3.3.1. When agents have additive cost functions, for any α ≥ 1, an
α-EF allocation is also nα

n−1+α -MMS fair, and this result is tight.

Proof. We first prove the upper bound and focus on agent i. Let A = (A1, . . . , An)
be an α-EF allocation, then according to its definition, ci(Ai) ≤ α · ci(Aj) holds for
any j ∈ N . By summing up j over N \{i}, we have (n−1)ci(Ai) ≤ α·

∑
j∈N\{i} ci(Aj)

and as a result, (n−1+α)ci(Ai) ≤ α·
∑

j∈N ci(Aj) = α·ci(E) where the last transition
is by the additivity of cost functions. On the other hand, from Lemma 3.2.1, it holds
that MMSi(n, E) ≥ 1

nci(E), implying the ratio

ci(Ai)
MMSi(n, E) ≤

nα

n− 1 + α
.

Regarding tightness, consider the following instance with n agents and n2

chores denoted as {e1, . . . , en2}. Agents have an identical cost profile and for every
i ∈ [n], ci(ej) = α for 1 ≤ j ≤ n and ci(ej) = 1 for n + 1 ≤ j ≤ n2. Consider
allocation B = (B1, . . . , Bn) with Bi = {e(i−1)n+1, . . . , ein} for any i ∈ N . It is
not hard to verify that allocation B is α-EF. As for MMS1(n, E), since in total we
have n chores with cost α each and (n − 1)n chores with cost 1 each, then in the
partition defining MMS1(n, E), each bundle contains exactly one chore with cost α

and n− 1 chores with cost 1. Consequently, we have MMS1(n, E) = n− 1 + α and
the approximation ratio is equal to

c1(B1)
MMS1(n, E) = nα

n− 1 + α
,

which completes the proof. !

Proposition 3.3.2. When agents have additive cost functions, for any α ≥ 1, an
α-EF allocation is also 2α

1+α -PMMS fair, and this result is tight.

Proof. We first prove the upper bound. Let A = (A1, A2, . . . , An) be an α-EF
allocation, then according to the definition, for any i, j ∈ N , ci(Ai) ≤ α · ci(Aj)
holds. By additivity, we have ci(Ai ∪Aj) = ci(Ai) + ci(Aj) ≥ (1 + α−1) · ci(Ai), and

22



consequently, ci(Ai) ≤ α
α+1 · ci(Ai ∪ Aj) holds. On the other hand, from Lemma

3.2.1, we know ci(Ai ∪Aj) ≤ 2 · MMSi(2, Ai ∪Aj), and therefore the following holds

ci(Ai) ≤
2α

α + 1 · MMSi(2, Ai ∪Aj).

As for tightness, consider an instance with n agents and 2n chores denoted as
{e1, e2, . . . , e2n}. Agents have identical cost profile and for every i ∈ [n], ci(e1) =
ci(e2) = α and ci(ej) = 1 for 3 ≤ j ≤ 2n. Now, consider an allocation B =
(B1, . . . , Bn) where Bi = {e2i−1, e2i} for any i ∈ N . It is not hard to verify that
allocation B is α-EF and except for agent 1, no one else will violate the condition
of PMMS. For any j ≥ 2, one can calculate MMS1(2, B1 ∪Bj) = 1 + α, yielding the
ratio c1(B1)

MMS1(2,B1∪Bj) = 2α
1+α , as required. !

Proposition 3.3.2 indicates that the approximation guarantee of α-EF for
PMMS is independent of the number of agents. However, according to Proposi-
tion 3.3.1, its approximation guarantee for MMS is affected by the number of agents.
Moreover, this guarantee ratio converges to α as n goes to infinity.

We remark that none of EFX, EF1, PMMS and MMS has a bounded guaran-
tee for EF. We show this by a simple example. Consider an instance of two agents
and one chore, and the chore has a positive cost for both agents. Assigning the
chore to an arbitrary agent results in an allocation that satisfies EFX, EF1, PMMS
and MMS, simultaneously. However, since one agent has a positive cost for his own
bundle and zero cost for other agent’s bundle, such an allocation has an infinite
approximation guarantee for EF.

Next, we consider approximation of EFX and EF1.

Proposition 3.3.3. When agents have additive cost functions, an α-EFX allocation
is α-EF1 for any α ≥ 1. On the other hand, an EF1 allocation is not β-EFX for
any β ≥ 1.

Proof. We first show the positive part. Let A = (A1, A2, . . . , An) be an α-EFX
allocation, then according to its definition, ∀i, j ∈ N, ∀e ∈ Ai with ci(e) > 0, ci(Ai \
{e}) ≤ α · ci(Aj) holds. This implies A is also α-EF1.

For the impossibility result, consider an instance with n agents and 2n chores
denoted as {e1, e2, . . . , e2n}. Agents have identical cost profile. The cost function of
agent 1 is: c1(e1) = p, c1(ej) = 1,∀j ≥ 2 where p 1 1. Now consider an allocation
B = (B1, . . . , Bn) with Bi = {e2i−1, e2i},∀i ∈ N . It is not hard to see allocation B
is EF1 and except for agent 1, no one else will envy the bundle of others. Thus, we
only concern agent 1 when calculating the approximation guarantee for EFX. By
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removing chore e2 from bundle B1, c1(B1\{e2})
c1(Bj) = p

2 holds for any j ∈ N \ {1}, and
the ratio p

2 →∞ as p→∞. !

Next, we consider the approximation guarantee of EF1 for MMS. In allocat-
ing goods, Amanatidis et al. [7] present a tight result that an α-EF1 allocation is
O(n)-MMS. In contrast, in allocating chores, α-EF1 can have a much better guar-
antee for MMS.

Proposition 3.3.4. When agents have additive cost functions, for any α ≥ 1 and
n ≥ 2, an α-EF1 allocation is also nα+n−1

n−1+α -MMS, and this result is tight.

Proof. We first prove the upper bound. Let A = (A1, . . . , An) be an α-EF1 allo-
cation and the approximation guarantee for MMS is determined by agent i. We
can further assume ci(Ai) > 0; otherwise agent i meets the condition of MMS and
we are done. Let ē be the chore with largest cost for agent i in bundle Ai, i.e.,
ē ∈ arg maxe∈Ai ci(e).

By the definition of α-EF1, for any j ∈ N \{i}, ci(Ai \{ē}) ≤ α ·ci(Aj) holds.
Then, by summing up over j ∈ N \ {i} and adding a term αci(Ai) on both sides,
the following holds,

α ·
∑

j∈N

ci(Aj) ≥ (n− 1 + α)ci(Ai)− (n− 1)ci(ē). (3.1)

From Lemma 3.2.1, we have MMSi(n, E) ≥ max{ 1
nci(E), ci(ē)}, and by additivity,

it holds that

nαMMSi(n, E) ≥ (n− 1 + α)ci(Ai)− (n− 1)MMSi(n, E). (3.2)

Inequality (3.2) is equivalent to ci(Ai)
MMSi(n,E) ≤

nα+n−1
n−1+α , as required.

As for tightness, consider the following instance with n agents and a set
E = {e1, . . . , en2−n+1} of n2 − n + 1 chores. Agents have an identical cost profile
and for every i ∈ [n], ci(e1) = α + n − 1, ci(ej) = α for any 2 ≤ j ≤ n and
ci(ej) = 1 for j ≥ n + 1. Now, consider an allocation B = {B1, . . . , Bn} with
B1 = {e1, . . . , en} and Bj = {en+(n−1)(j−2)+1, . . . , en+(n−1)(j−1)} for any j ≥ 2.
Then, we have ci(Bj) = n − 1 for any i ∈ [n] and j ≥ 2. Accordingly, except for
agent 1, no one else will violate the condition of α-EF1 and MMS. As for agent 1,
since c1(B1 \ {e1}) = (n− 1)α = αc1(Bj),∀j ≥ 2, then we can claim that allocation
B is α-EF1. To calculate MMS1(n, E), consider an allocation T = (T1, . . . , Tn) with
T1 = {e1} and Tj = {Bj ∪ {ej}} for any 2 ≤ j ≤ n. It is not hard to verify that
c1(Tj) = α + n − 1 for any j ∈ N . Therefore, we have MMS1(n, E) = α + n − 1
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implying the ratio c1(B1)
MMS1(n,E) = nα+n−1

n−1+α , completing the proof. !

We now study α-EFX in terms of its approximation guarantee for MMS and
provide upper and lower bounds for general α ≥ 1 or n ≥ 2.

Proposition 3.3.5. When agents have additive cost functions, for any α ≥ 1 and
n ≥ 2, an α-EFX allocation is min

{
2nα

n−1+2α , nα+n−1
n−1+α

}
-MMS fair, while it is not

guaranteed to be β-MMS fair for any β < max
{

2nα
2α+2n−3 , 2n

n+1

}
.

Proof. We first prove the upper bound. Let A = (A1, . . . , An) be an α-EFX alloca-
tion with α ≥ 1 and the approximation guarantee for MMS is determined by agent i.
The upper bound nα+n−1

n−1+α directly follows from Propositions 3.3.3 and 3.3.4. In what
follows, we prove the upper bound 2nα

n−1+2α . We assume ci(Ai) > 0; otherwise agent
i meets the condition of MMS and we are done. Let e∗ be the chore in bundle Ai

having the minimum non-zero cost for agent i, and the existence of e∗ is guaranteed
by ci(Ai) > 0. Next, we divide the proof into two cases.

Case 1 : |Ai| = 1. Then e∗ is the only item in Ai and thus ci(Ai) = ci(e∗).
By Lemma 3.2.1, ci(e∗) ≤ MMSi(n, E) holds, and thus, ci(Ai) ≤ MMSi(n, E).

Case 2 : |Ai| ≥ 2. By the definition of α-EFX, for any j ∈ N \ {i}, we have

ci(Ai \ {e∗}) ≤ max
e∈Ai

ci(Ai \ {e}) ≤ α · ci(Aj).

If e∗ is the only item with non-zero cost in Ai, then ci(Ai) ≤ MMSi(n, E) based
on Lemma 3.2.1, and we are done. If in Ai, there are at least two items with non-
zero cost for agent i, by the definition of e∗, we have ci(e∗) ≤ 1

2ci(Ai). Then, the
following holds,

α · ci(Aj) ≥ ci(Ai)− ci(e∗) ≥ 1
2ci(Ai), ∀j ∈ N \ {i} . (3.3)

By summing up j over N \{i} and adding a term αci(Ai) on both sides of inequality
(3.3), the following holds

α · ci(E) = α ·
∑

j∈N\{i}
ci(Aj) + α · ci(Ai) ≥

n− 1 + 2α

2 ci(Ai). (3.4)

On the other hand, from Lemma 3.2.1, we know MMSi(n, E) ≥ 1
nci(E), which

together with inequality (3.4) yields the ratio

ci(Ai)
MMSi(n, M) ≤

2nα

n− 1 + 2α
.
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Regarding the lower bound 2n
n+1 , consider an instance with n agents and a set E =

{e1, e2, ..., e2n} of 2n chores. Agents have identical cost profile and ci(ej) = 2 j
23

for any i, j. It is not hard to verify that for any i ∈ [n], MMSi(n, E) = n + 1.
Then, consider the allocation B = (B1, ..., Bn) with B1 = {e2n−1, e2n} and Bi =
{ei−1, e2n−i} for any i ≥ 2. Accordingly, we have ci(Bj) = n for any i ∈ [n] and
j ≥ 2. Thus, except for agent 1, no one else will violate the condition of MMS and
EFX. As for agent 1, since c1(B1 \ {e2n}) = c1(B1 \ {e2n−1}) = n, envy can be
eliminated by removing any single chore . Hence, the allocation B is EFX and its
approximation guarantee for MMS equals to c1(B1)

MMS1(n,E) = 2n
n+1 , as required.

Next, for lower bound 2nα
2α+2n−3 , let us consider an instance with n agents

and a set E = {e1, ..., e2n2−2n} of 2n2 − 2n chores. We focus on agent 1 with cost
function c1(ej) = 2α for 1 ≤ j ≤ n and c1(ej) = 1 for j ≥ n + 1. Consider
the allocation B = (B1, ..., Bn) with B1 = {e1, ..., en}, B2 = {en+1, ..., e3n−2} and
Bj = {e3n−1+(j−3)(2n−1), . . . , e3n−2+(j−2)(2n−1)} for any j ≥ 3. Accordingly, bundle
B2 contains 2n − 2 chores and Bj contains 2n − 1 chores for any j ≥ 3. For
any agent i ≥ 2, her cost functions is ci(e) = 0 for e ∈ Bi and ci(e) = 1 for
e ∈ E \ Bi. Consequently, except for agent 1, no one else violates the condition of
MMS and α-EFX. As for agent 1, his cost on B2 is the smallest over all bundles
and c1(B1 \ {e1}) = 2α(n − 1) = αc1(B2), as a result, the allocation B is α-EFX.
For MMS1(n, E), it happens that E can be evenly divided into n bundles of the
same cost (for agent 1), so we have MMS1(n, E) = 2α + 2n − 3 implying the ratio

c1(B1)
MMS1(n,E) = 2nα

2α+2n−3 , completing the proof. !

The performance bound in Proposition 3.3.5 is almost tight since nα+n−1
n−1+α −

2nα
2α+2n−3 < n−1

n−1+α < 1. In addition, we highlight that the upper and lower bounds
provided in Proposition 3.3.5 are tight in two interesting cases: (i) α = 1 and (ii)
n = 2.

On the approximation of EFX and EF1 for PMMS, we have the following
propositions.

Proposition 3.3.6. When agents have additive cost functions, for any α ≥ 1, an
α-EFX allocation is also 4α

2α+1 -PMMS fair, and this guarantee is tight.

Proof. We first prove the upper bound. Let A = (A1, A2, . . . , An) be an α-EFX
allocation and the approximation guarantee for PMMS is determined by agent i.
We can assume ci(Ai) > 0; otherwise agent i meets the condition of PMMS and
we are done. Let e∗ be the chore in Ai having the minimum cost for agent i, i.e.,
e∗ ∈ arg mine∈Ai ci(e). Then, we divide the proof into two cases.

Case 1 : |Ai| = 1. Then chore e∗ is the unique element in Ai, and thus
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ci(e∗) = ci(Ai). By Lemma 3.2.1, ci(e∗) ≤ MMSi(2, Ai∪Aj) holds for any j ∈ N \{i}.
As a result, we have ci(Ai) ≤ MMSi(2, Ai ∪Aj),∀j ∈ N \ {i}.

Case 2 : |Ai| ≥ 2. Since e∗ ∈ arg mine∈Ai ci(e) and |Ai| ≥ 2, we have
ci(e∗) ≤ 1

2ci(Ai), and equivalently, ci(Ai \ {e∗}) = ci(Ai) − ci(e∗) ≥ 1
2ci(Ai). Then,

based on the definition of α-EFX allocation, for any j ∈ N \ {i}, the following holds

α · ci(Aj) ≥ ci(Ai \ {e∗}) ≥ 1
2 · ci(Ai). (3.5)

Combining Lemma 3.2.1 and Inequality (3.5), for any j ∈ N \ {i}, we have

MMSi(2, Ai ∪Aj) ≥ 1
2(ci(Ai) + ci(Aj)) ≥ 2α + 1

4α
ci(Ai).

Therefore, for any j ∈ N \ {i}, ci(Ai) ≤ 4α
2α+1 · MMSi(2, Ai ∪Aj) holds, as required.

As for the tightness, consider an instance with n agents and a set E =
{e1, . . . , e2n} of 2n chores. Agents have identical cost profile and for every i ∈ [n],
ci(e1) = ci(e2) = 2α and ci(ej) = 1 for 3 ≤ j ≤ 2n. Consider the allocation
B = (B1, . . . , Bn) with Bi = {e2i−1, e2i},∀i ∈ N . It is not hard to verify that,
except for agent 1, no one else would violate the condition of EFX and PMMS. For
agent 1, by removing any single chore from his bundle, the remaining cost is α times
of the cost on others’ bundle. Thus, allocation B is α-EFX. Notice that for any j ≥ 2,
bundle B1 ∪ Bj contains exactly two chores with cost 2α and two chores with cost
1, then MMS1(2, B1 ∪Bj) = 2α + 1, implying for any j ,= 1, c1(B1)

MMS1(2,B1∪Bj) = 4α
2α+1 ,

as required. !

Proposition 3.3.7. When agents have additive cost functions, for any α ≥ 1, an
α-EF1 allocation is also 2α+1

α+1 -PMMS fair, and this guarantee is tight.

Proof. We first prove the upper bound part. Let A = (A1, . . . , An) be an α-EF1
allocation and the approximation guarantee for PMMS is determined by agent i.
We can assume ci(Ai) > 0; otherwise agent i meets the condition of PMMS and we
are done. To study PMMS, we fix another agent j ∈ N \ {i}, and let e∗ ∈ Ai be the
chore such that ci(Ai \ {e∗}) ≤ α · ci(Aj). We divide our proof into two cases.

Case 1 : ci(e∗) > ci(Ai ∪ Aj \ {e∗}). Consider {{e∗} , Ai ∪Aj \ {e∗}}, a 2-
partition of Ai∪Aj . Since ci(e∗) > ci(Ai∪Aj \{e∗}), we can claim that this partition
defining MMSi(2, Ai ∪Aj), and accordingly, MMSi(2, Ai ∪Aj) = ci(e∗) holds. From
Lemma 3.2.1 and the definition of α-EF1, the following holds

ci(e∗) ≥ 1
2(ci(Ai) + ci(Aj)) ≥ 1

2ci(Ai) + 1
2α

· ci(Ai \ {e∗}). (3.6)
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Then, based on (3.6) and the fact MMSi(2, Ai ∪Aj) = ci(e∗), we have

ci(Ai)
MMSi(2, Ai ∪Aj) ≤

2α + 1
α + 1 .

Case 2 : ci(e∗) ≤ ci(Ai ∪ Aj \ {e∗}). By the definition of α-EF1, we have
ci(Ai \ {e∗}) ≤ α · ci(Aj). As a consequence,

ci(Ai) = ci(e∗) + ci(Ai \ {e∗}) ≤ 2ci(Ai \ {e∗}) + ci(Aj) ≤ (2α + 1) · ci(Aj), (3.7)

where the first inequality transition is due to ci(e∗) ≤ ci(Ai ∪ Aj \ {e∗}). Using
Inequality (3.7) and additivity of cost function, we have ci(Ai) ≤ 2α+1

2α+2 · ci(Ai ∪Aj).
By Lemma 3.2.1, we have MMSi(2, Ai ∪Aj) ≥ 1

2ci(Ai ∪Aj) and then, the following
holds,

ci(Ai)
MMSi(2, Ai ∪Aj) ≤

2α + 1
α + 1 .

As for tightness, consider the following instance of n agents and a set E =
{e1, . . . , en+1} of n + 1 chores. Agents have an identical cost profile and for every
i ∈ [n], ci(e1) = α + 1, ci(e2) = α and ci(ej) = 1 for j ≥ 3. Then, consider the
allocation B = (B1, . . . , Bn) with B1 = {e1, e2} and Bj = {ej+1},∀j ≥ 2. It is not
hard to verify that allocation B satisfying α-EF1, and moreover, the guarantee for
PMMS is determined by agent 1. Notice that for any j ≥ 2, the combined bundle
B1∪Bj contains three chores with cost α+1, α, 1, respectively. Thus, for any j ≥ 2,
we have MMS1(2, B1 ∪Bj) = α + 1, implying the ratio c1(B1)

MMS1(2,B1∪Bj) = 2α+1
α+1 . !

In addition to the approximation guarantee for PMMS, Proposition 3.3.7
also has a direct implication in approximating PMMS algorithmically. It is known
that an EF1 allocation can be found efficiently by allocating chores in a round-
robin fashion — each of the agent 1, . . . , n in turn picks her most preferred one
from the remaining items , and repeat until all chores are assigned [13]. Therefore,
Proposition 3.3.7 with α = 1 leads to the following corollary, which is the only
algorithmic result for PMMS (in chores allocation), to the best of our knowledge.

Corollary 3.3.1. When agents have additive cost functions, the round-robin algo-
rithm outputs a 3

2 -PMMS allocation in polynomial time.
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3.4 Guarantees from Share-Based Relaxations

Note that PMMS implies EFX in goods allocation according to Caragiannis et al.
[48]. This implication also holds in allocating chores as stated in our proposition
below.

Proposition 3.4.1. When agents have additive cost functions, a PMMS allocation
is also EFX.

Proof. Let A = (A1, . . . , An) be a PMMS allocation. For the sake of contradiction,
assume A is not EFX and agent i violates the condition of EFX, which implies
ci(Ai) > 0.

As agent i violates the condition of EFX, there must exist an agent j ∈ N

and e∗ ∈ Ai with ci(e∗) > 0 such that ci(Ai \ {e∗}) > ci(Aj). Note chore e∗ is well-
defined owing to ci(Ai) > 0. Now, consider the 2-partition {Ai \ {e∗} , Aj ∪ {e∗}} ∈
Π2(Ai ∪Aj). By ci(Ai \ {e∗}) > ci(Aj), the following holds:

ci(Ai) > max {ci(Ai \ {e∗}), ci(Aj ∪ {e∗})}
≥ min

B∈Π2(Ai∪Aj)
max {ci(B1), ci(B2)} ≥ ci(Ai),

(3.8)

where the last transition is by the definition of PMMS. Inequality (3.8) is a contra-
diction, and therefore, A must be an EFX allocation. !

Since EFX implies EF1, Proposition 3.4.1 directly leads to the following
result.

Proposition 3.4.2. When agents have additive cost functions, a PMMS allocation
is also EF1.

For approximate version of PMMS, when allocating goods it is shown in
Amanatidis et al. [7] that for any α, α-PMMS can imply α

2−α -EF1. However, in
the case of chores, our results indicate that α-PMMS has no bounded guarantee for
EF1.

Proposition 3.4.3. When agents have additive cost functions, an α-PMMS fair
allocation with 1 < α ≤ 2 is not necessarily β-EF1 for any β ≥ 1.

Proof. It suffices to show an α-PMMS allocation with α ∈ (1, 2) can not have a
bounded guarantee for the notion of EF1. Consider an instance with n agents and
n + 1 chores e1 . . . , en+1. Agents have identical cost profile and for any i, we let
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ci(e1) = (α − 1)−1, ci(e2) = 1 and ci(ej) = ε for 3 ≤ j ≤ n + 1 where ε > 0 is
arbitrarily small. Then, consider an allocation B = (B1, . . . , Bn) with B1 = {e1, e2}
and Bj = {ej+1} for 2 ≤ j ≤ n. Consequently, except for agent 1, other agents
violate neither EF1 nor α-PMMS. As for agent 1, notice that (α− 1)−1 > 1 + ε and
thus, for any j ≥ 2, the combined bundle B1 ∪Bj admits MMS1(2, B1 ∪Bj) = 1

α−1
implying c1(B1)

MMS1(2,B1∪Bj) = α. Thus, allocation B is α-PMMS. For the guarantee on
EF1, as c1(Bj) = ε for any j ≥ 2, then removing the chore with the largest cost
from B2 still yields the ratio c1(B1\{e1})

c1(Bj) = 1
ε →∞ as ε→ 0. !

Since for any α ≥ 1, α-EFX is stricter than α-EF1, the impossibility result
on EF1 in Proposition 3.4.3 is also true for EFX.

Proposition 3.4.4. When agents have additive cost functions, an α-PMMS allo-
cation with 1 < α ≤ 2 is not necessarily a β-EFX allocation for any β ≥ 1.

We now study the approximation guarantee of PMMS for MMS. Since these
two notions coincide when there are only two agents, we consider the situation where
n ≥ 3. We first provide a tight bound for n = 3 and then give an almost tight bound
for general n.

Proposition 3.4.5. When agents have additive cost functions, for n = 3, a PMMS
allocation is also 4

3 -MMS, and moreover, this bound is tight.

Proof. We first prove the upper bound. Let A = (A1, A2, A3) be a PMMS alloca-
tion and we focus on agent 1. For the sake of contradiction, we assume c1(A1) >
4
3MMS1(3, E). We can also assume that bundles A1, A2, A3 do not contain chores
with zero cost for agent 1 since the existence of such a chore does not affect approxi-
mation ratio of allocation A on PMMS or MMS. To this end, we let c1(A2) ≤ c1(A3)
(the other case is symmetric).

We first show that A1 must be the bundle yielding the largest cost for
agent 1. Otherwise, if c1(A1) ≤ c1(A2) ≤ c1(A3), then by additivity c1(A1) ≤
3−1c1(E) ≤ MMS1(3, E), contradicting c1(A1) > 4/3MMS1(3, E). Or if c1(A2) <

c1(A1) ≤ c1(A3), since A1 and A2 is a 2-partition of A1 ∪ A2, then c1(A1) is at
least MMS1(2, A1 ∪ A2). On the other hand, since A is a PMMS allocation, we
know c1(A1) ≤ MMS1(2, A1 ∪ A2), and thus, c1(A1) = MMS1(2, A1 ∪ A2) holds.
Based on assumption c1(A1) > 4/3MMS1(3, E) and Lemma 3.2.1, we have c1(A1) >

4/3MMS1(3, E) ≥ 4/9 · c1(E), then c1(A3) ≥ c1(A1) > 4/9 · c1(E) which yields
c1(A2) < 9−1c1(E) owning to the additivity. As a result, the difference between
c1(A1) and c1(A2) is lower bounded c1(A1)− c1(A2) > 3−1c1(E). Due to c1(A1) =
MMS1(2, A1∪A2), we can claim that every single chore in A1 has cost strictly greater
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than 3−1c1(E); otherwise, ∃e ∈ A1 with c1(e) ≤ 3−1c1(E), then reassigning chore e

to A2 yields a 2-partition {A1 \{e} , A2∪{e}} with max{c1(A1 \{e}), c1(A2∪{e})} <

c1(A1) = MMS1(2, A1∪A2), contradicting to the definition of maximin share. Since
every single chore in A1 has cost strictly greater than 1

3c1(E), then A1 can only
contain a single chore; otherwise, c1(A3) ≥ c1(A1) ≥ 3−1|A1|c1(E) ≥ 2/3c1(E),
implying c1(A3 ∪ A1) ≥ 4/3 · c1(E), contradiction. However, if |A1| = 1, ac-
cording to the second point of Lemma 3.2.1, c1(A1) > 4/3MMS1(3, E) can never
hold. Therefore, it must hold that c1(A1) ≥ c1(A3) ≥ c1(A2), which then implies
c1(A1) = MMS1(2, A1 ∪A3) = MMS1(2, A1 ∪A2) as a consequence of PMMS.

Next, we prove our statement by carefully checking the possibilities of |A1|.
According to Lemma 3.2.1, if |A1| = 1, then c1(A1) ≤ MMS1(3, E). Thus, we can
further assume |A1| ≥ 2. We first consider the case |A1| ≥ 3. Since c1(A1) >

4/3MMS1(3, E) ≥ 4/9 · c1(E), by additivity, we have c1(A2) + c1(A3) < 5/9 · c1(E)
and moreover, c1(A2) < 5/18·c1(E) due to c1(A2) ≤ c1(A3). Then the cost difference
between bundle A1 and A2 satisfies c1(A1) − c1(A2) > 6−1c1(E). This allow us to
claim that every single chore in A1 has cost strictly greater than 6−1c1(E); otherwise,
reassigning a chore with cost no larger than 6−1c1(E) to A2 yields another 2-partition
of A1 ∪A2 in which the cost of larger bundle is strictly smaller than MMS1(2, A1 ∪
A2), a contradiction. In addition, since c1(A1) = MMS1(2, A1 ∪ A2), we claim
c1(A2) ≥ c1(A1 \{e}),∀e ∈ A1; otherwise, ∃e′ ∈ A1 such that c1(A2) < c1(A1 \{e′}),
then reassigning e′ to A2 yields another 2-partition of A1 ∪ A2 of which both two
bundles’ cost are strictly smaller than MMS1(2, A1 ∪ A2), a contradiction. Thus,
for any e ∈ A1, we have c1(A2) ≥ c1(A1 \ {e}) ≥ 6−1c1(E) · |A1 \ {e}| ≥ 3−1c1(E),
where the last transition is due to |A1| ≥ 3. However, the cost of bundle A2 is
c1(A2) < 5/18 · c1(E), a contradiction.

The remaining work is to rule out the possibility of |A1| = 2. Let A1 =
{e1

1, e1
2} with c1(e1

1) ≤ c1(e1
2) (the other case is symmetric). Note that c1(A1) >

4/3MMS1(3, E) ≥ 4/9·c1(E), then c1(e1
2) > 2/9·c1(E). Let S∗

2 ∈ arg maxS⊆A2{c1(S) :
c1(S) < c1(e1

1)} (can be empty set) be the largest subset of A2 with cost strictly
smaller than c1(e1

1). Due to c1(A1) = MMS1(2, A1 ∪ A2), then swapping S∗
2 and

e1
1 would not produce a 2-partition in which the cost of both bundles are strictly

smaller than c1(A1), and thus c1(A2 \ S∗
2 ∪ {e1

1}) ≥ c1(A1), equivalent to

c1(A2 \ S∗
2) ≥ c1(e1

2) >
2
9c1(E). (3.9)

Then, by c1(A1) − c1(A2) > 6−1c1(E) and c1(A2 \ S∗
2) ≥ c1(e1

2), we have c1(e1
1) −

c1(S∗
2) > 6−1c1(E), which allows us to claim that every single chore in A2 \ S∗

2
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has cost strictly greater than 6−1c1(E); otherwise, we can find another subset of
A2 whose cost is strictly smaller than e1

1 but larger than c1(S∗
2), contradicting the

definition of S∗
2 . As a result, bundle A2 \ S∗

2 must contain a single chore; if not,
c1(A2) > 6−1c1(E)·|A2\S∗

2 | ≥ 3−1c1(E), which implies c1(A1∪A2∪A3) > 10/9·c1(E)
due to c1(A1) > 4/9 · c1(E) and c1(A3) ≥ c1(A2) > 3−1c1(E). Thus, bundle A2 \ S∗

2
only contains one chore, denoted by e2

1. So we can decompose A2 as A2 = {e2
1}∪S∗

2
where c1(e2

1) ≥ c1(e1
2) > 2/9 · c1(E).

Next, we analyse the possible composition of bundle A3. To have an explicit
discussion, we introduce two more notions ∆1, ∆2 as follows

c1(A1) = 4
9c1(E) + ∆1,

c1(A2) = 2
9c1(E) + c1(S∗

2) + ∆2.
(3.10)

Recall c1(A1) > 4/9 · c1(E) and c1(e2
1) ≥ c1(e1

2) > 2/9 · c1(E), so both ∆1, ∆2 > 0.
Similarly, let S∗

3 ∈ arg minS⊆A3{c1(S) : c1(S) < c1(e1
1)}, then we claim c1(A3 \S∗

3) ≥
c1(e1

2); otherwise, swapping S∗
3 and e1

1 yields a 2-partition of A1 ∪ A3 in which
the cost of both bundles are strictly smaller than c1(A1) = MMS1(2, A1 ∪ A3),
contradicting the definition of maximin share. By additivity of cost functions and
Equation (3.10), we have c1(A3) = 3/9 · c1(E)− c1(S∗

2)−∆1 −∆2, and accordingly
c1(A1)− c1(A3) = 9−1c1(E)+ c1(S∗

2)+2∆1 +∆2. This combing c1(A3 \S∗
3) ≥ c1(e1

2)
yields

c1(e1
1)− c1(S∗

3) ≥ 1
9c1(E) + c1(S∗

2) + 2∆1 + ∆2. (3.11)

Based on Inequality (3.11), we can claim that every single chore in A3 \ S∗
3 has cost

at least 9−1c1(E) + c1(S∗
2) + 2∆1 + ∆2; otherwise, contradicting the definition of S∗

3 .
Recall c1(A3) = 3/9 · c1(E) − c1(S∗

2) −∆1 −∆2, then due to the constraint on the
cost of single chore in A3 \S∗

3 , we have |A3 \S∗
3 | ≤ 2. Meanwhile, c1(A3 \S∗

3) ≥ c1(e1
2)

implying that bundle A3 \ S∗
3 can not be empty. In the following, we separate our

proof by discussing two possible cases: |A3 \ S∗
3 | = 1 and |A3 \ S∗

3 | = 2.
Case 1: |A3 \S∗

3 | = 1. Let A3 \S∗
3 = {e3

1}. Therefore, the whole set E is com-
posed by four single chores and two subsets S∗

2 , S∗
3 , i.e., E = {e1

1, e1
2, e2

1, S∗
2 , e3

1, S∗
3}.

Then, we let T = (T1, T2, T3) be the allocation defining MMS1(3, E) and without
loss of generality, let c1(T1) = MMS1(3, E). Next, to find contradictions, we anal-
yse bounds on both MMS1(3, E) and c1(A1). Since min{c1(e2

1), c1(e3
1)} ≥ c1(e1

2) ≥
2−1c1(A1), we claim that c1(A1) ≤ 2−1c1(E); otherwise c1(A1) + c1(e2

1) + c1(e3
1) >

c1(E). Notice that E contains three chores with the cost at least 2/9 · c1(E) each,
if any two of them are in the same bundle under T, then MMS1(3, E) > 4/9 · c1(E)
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and consequently, c1(A1)
MMS1(3,E) < 9

8 , a contradiction. Or if each of {e1
2, e2

1, e3
1} is con-

tained in a distinct bundle, then the bundle also containing chore e1
1 has cost at

least c1(A1) as a result of min{c1(e2
1), c1(e3

1)} ≥ c1(e1
2) and A1 = {e1

1, e1
2}. Thus,

MMS1(3, E) ≥ c1(A1) holds, contradicting c1(A1) > 4/3MMS1(3, E).
Case 2: |A3 \ S∗

3 | = 2. Let A3 \ S∗
3 = {e3

1, e3
2} and accordingly, the whole set

can be decomposed as E = {e1
1, e1

2, e2
1, S∗

2 , e3
1, e3

2, S∗
3}. Note the upper bound c1(A1) ≤

2−1c1(E) still holds since min{c1(A3 \ S∗
3), c1(e2

1)} ≥ c1(e1
2). Then, we analyse the

possible lower bound of MMS1(3, E). If chores e1
2, e2

1 are in the same bundle of T,
then MMS1(3, E) > 4/9 · c1(E) holds and so c1(A1)

MMS1(3,E) < 9
8 , a contradiction. Thus,

chores e1
2, e2

1 are in different bundles in T. Then, if both chores e3
1, e3

2 are in the
bundle containing e1

2 or e2
1, then we also have MMS1(3, E) > 4/9 · c1(E) implying

c1(A1)
MMS1(3,E) < 9

8 , a contradiction. Therefore, only two possible cases; that is, both
e3

1, e3
2 are in the bundle different from that containing e1

2 or e2
1; or the bundle having

e1
2 or e2

1 contains at most one of e3
1, e3

2.
Subcase 1: both e3

1, e3
2 are in the bundle different from that containing e1

2 or
e2

1; Recall c1(e1
1) > 1/6 ·c1(E)+c1(S∗

2) and the fact min{c1(e1
2), c1(e2

1), c1(e3
1∪e3

2)} >

2/9 · c1(E), the bundle also containing e1
1 has cost strictly greater than 7/18 · c1(E).

Thus, MMS1(3, E) > 7/18 · c1(E), which combines c1(A1) ≤ 2−1c1(E) implying
c1(A1)

MMS1(3,E) < 9
7 < 4

3 , a contradiction.
Subcase 2: bundle having e1

2 or e2
1 contains at most one of e3

1, e3
2. Recall

c1(e2
1) ≥ c1(e1

2) and min{c1(e3
1), c1(e3

2)} ≥ 9−1c1(E) + c1(S∗
2) + 2∆1 + ∆2, thus in

allocation T there always exist a bundle with cost at least 9−1c1(E)+c1(S∗
2)+2∆1 +

∆2 + c1(e1
2) and results in the ratio

c1(A1)
MMS1(3, E) ≤

c1(e1
1) + c1(e1

2)
1
9c1(E) + c1(S∗

2) + 2∆1 + ∆2 + c1(e1
2)

. (3.12)

In order to satisfy our assumption of c1(A1)
MMS1(3,E) > 4

3 , the RHS of Inequality (3.12)
must be strictly greater than 4/3, which implies the following

c1(e1
1) >

2
9c1(E) + 2c1(S∗

1) + 4∆1 + 2∆2. (3.13)

However, based on the first equation of (3.10) and c1(e1
1) ≤ c1(e1

2), we have c1(e1
1) ≤

2/9 · c1(E) + 2−1∆1 < 2/9 · c1(E) + 2c1(S∗
1) + 4∆1 + 2∆2 due to ∆1, ∆2 > 0. This

contradicts Inequality (3.13). Therefore, c1(A1)
MMS1(3,E) > 4

3 can never hold under Case
2. Up to here, we complete the proof of the upper bound.

Next, as for tightness, consider an instance with three agents and a set E =
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{e1, ..., e6} of six chores. Agents have identical cost functions. The cost function
of agent 1 is as follows: c1(ej) = 2,∀j = 1, 2, 3 and c1(ej) = 1,∀j = 4, 5, 6. It is
easy to see that MMS1(3, E) = 3. Then, consider an allocation B = {B1, B2, B3}
with B1 = {e1, e2}, B2 = {e3} and B3 = {e4, e5, e6}. It is not hard to verify that
allocation B is PMMS and due to c1(B1) = 4, we have the ratio c1(B1)

MMS1(3,E) = 4
3 . !

For general n, we use the connections between PMMS, EFX and MMS to find
the approximation guarantee of PMMS for MMS. According to Proposition 3.4.1,
a PMMS allocation is also EFX, and by Proposition 3.3.5, EFX implies 2n

n+1 -MMS.
As a result, we can claim that PMMS also implies 2n

n+1 -MMS. With the following
proposition we show that this guarantee is almost tight.

Proposition 3.4.6. When agents have additive cost functions, for n ≥ 4, a PMMS
allocation is 2n

n+1 -MMS fair but not necessarily β-MMS fair for any β < 2n+2
n+3 .

Proof. The positive part directly follows from Propositions 3.4.1 and 3.3.5. As for the
lower bound, consider an instance with n (odd) agents and a set E = {e1, . . . , e2n}
of 2n chores. We focus on agent 1 and his cost function is c1(ej) = (n + 1)/2
for 1 ≤ j ≤ n and c1(ej) = 1 for n + 1 ≤ j ≤ 2n. Consider the allocation
B = (B1, . . . , Bn) with B1 = {e1, e2}, Bn = {en+1, . . . , e2n} and Bj = {ej+1} for
any j = 2, . . . , n− 1. For agents i ≥ 2, her cost function is ci(e) = 0 for any e ∈ Bi

and ci(e) = 1 for any e ∈ E \ Bi, and thus agent i has zero cost under allocation
B. As a result, except for agent 1, other agents violate neither MMS nor PMMS.
For agent 1, we have c1(B1) ≤ MMS1(2, B1 ∪Bj) holds for any j ≥ 2, which implies
allocation B is PMMS. For MMS1(n, E), it happens that E can be evenly divided
into n bundles of the same cost (for agent 1), so we have MMS1(n, E) = (n + 3)/2
yielding the ratio c1(B1)

MMS1(n,E) = 2n+2
n+3 . !

Next, we investigate the approximation guarantee of approximate PMMS for
MMS. Let us start with an example of six chores E = {e1, . . . , e6} and three agents.
We focus on agent 1 and the cost function of agent 1 is c1(ej) = 1 for j = 1, 2, 3
and c1(ej) = 0 for j = 4, 5, 6, thus clearly, MMS1(3, E) = 1. Consider an allocation
A = (A1, A2, A3) with A1 = {e1, e2, e3}. It is not hard to verify that allocation
A is a 3/2-PMMS allocation and also a 3-MMS allocation. Combining the result
in Lemma 3.2.2, we observe that allocation A only has a trivial guarantee on the
notion of MMS. Motivated by this example, we focus on α-PMMS allocations with
α < 3

2 .

Proposition 3.4.7. When agents have additive cost functions, for n ≥ 3 and
1 < α < 3

2 , an α-PMMS allocation is nα
α+(n−1)(1− α

2 ) -MMS fair, but not necessar-
ily ( nα

α+(n−1)(2−α) − ε)-MMS fair for any ε > 0.
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Before we can prove the above proposition, we need the following two lemmas.

Lemma 3.4.8. For any i ∈ N and S ⊆ E, suppose MMSi(2, S) is defined by a
2-partition T = (T1, T2) with ci(T1) = MMSi(2, S). If the number of chores in T1 is
at least two, then ci(S)

MMSi(2,S) ≥
3
2 .

Proof. For the sake of contradiction, we assume ci(S)
MMSi(2,S) < 3

2 . Since ci(T1) =
MMSi(2, S), we have ci(T1) > 2/3 · ci(S), and accordingly, ci(T2) < 3−1ci(S) due to
additivity. Thus, ci(T1) − ci(T2) > 3−1ci(S) holds, and we claim that each single
chore in T1 has cost strictly larger than 3−1ci(S) for agent i; otherwise, by moving
the chore with the smallest cost in T1 to T2, one can find a 2-partition in which the
cost of larger bundle is smaller than ci(T1), contradiction. Based on our claim, we
have |T1| = 2. Notice that for any e ∈ T1, ci(e) > ci(T2) holds. As a result, moving
one chore from T1 to T2 results in a 2-partition, in which the cost of larger bundle
is strictly smaller than ci(T1), contradicting the construction of allocation T. !

Lemma 3.4.9. For any i ∈ N and S1, S2 ⊆ E, if MMSi(2, S1 ∪S2) > MMSi(2, S1),
then MMSi(2, S1 ∪ S2) ≤ 1

2ci(S1) + ci(S2).

Proof. Suppose MMSi(2, S1) is defined by partition (T1, T2) and we have MMSi(2, S1) =
ci(T1). We distinguish two cases according to the value of ci(T1). If ci(T1) =
2−1ci(S1), then consider (T1∪S2, T2), a 2-partition of S1∪S2. Clearly, MMSi(2, S1∪
S2) ≤ ci(T1 ∪ S2) = 2−1ci(S1) + ci(S2). If ci(T1) > 2−1ci(S1), since MMSi(2, S1 ∪
S2) > MMSi(2, S1), we can claim that ci(T1)−ci(T2) < ci(S2); otherwise, considering
partition {T1, T2 ∪S2}, we have MMSi(2, S1 ∪S2) ≤ ci(T1) = MMSi(2, S1), a contra-
diction. Now let us consider {T2∪S2, T1}, another 2-partition of S1∪S2. According
to our claim, we have ci(T2∪S2) > ci(T1), and thus, MMSi(2, S1∪S2) ≤ ci(T2∪S2) <

2−1ci(S1) + ci(S2), where the last inequality is due to ci(T2) = ci(S1) − ci(T1) <

2−1ci(S1). !

Proof of Proposition 3.4.7. We first prove the upper bound. Let A = (A1, ..., An)
be an α-PMMS allocation and we focus our analysis on agent i. Let

α(i) = max
j +=i

ci(Ai)
MMSi(2, Ai ∪Aj)

and j(i) be the index such that MMSi(2, Ai ∪ Aj(i)) ≤ MMSi(2, Ai ∪ Aj) for any
j ∈ N \{i} (tie breaks arbitrarily). By such a construction, clearly, α = maxi∈N α(i)

and ci(Ai) = α(i) · MMSi(2, Ai ∪ Aj(i)). Then, we split our proof into two different
cases.
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Case 1: ∃j ,= i such that MMSi(2, Ai ∪ Aj) = MMSi(2, Ai). Then α(i) =
ci(Ai)

MMSi(2,Ai) holds. Suppose MMSi(2, Ai) is defined by the 2-partition (T1, T2) with
ci(T1) = MMSi(2, Ai). If |T1| ≥ 2, by Lemma 3.4.8, we have α(i) = ci(Ai)

MMSi(2,Ai) ≥
3
2 ,

contradicting α(i) ≤ α < 3/2. As a result, we can further assume |T1| = 1. Then, by
Lemma 3.2.1, we have MMSi(n, E) ≥ ci(T1) and accordingly, ci(Ai)

MMSi(n,E) ≤
ci(Ai)
ci(T1) =

α(i) ≤ α. For 1 < α < 3/2 and n ≥ 3, it is not hard to verify that α ≤ nα
α+(n−1)(1− α

2 ) ,
completing the proof for this case.

Case 2: ∀j ,= i, MMSi(2, Ai∪Aj) > MMSi(2, Ai) holds. According to Lemma
3.4.9, for any j ,= i, the following holds

MMSi(2, Ai ∪Aj) ≤ 1
2ci(Ai) + ci(Aj). (3.14)

Due to the construction of α(i), for any j ,= i, we have ci(Ai) ≤ α(i) ·MMSi(2, Ai∪Aj).
Combining Inequality (3.14), we have ci(Aj) ≥ 2−α(i)

2α(i) ci(Ai) for any j ,= i. Thus, the
following holds,

ci(Ai)
MMSi(n, E) ≤

nci(Ai)
ci(E) ≤

nci(Ai)
ci(Ai) + (n− 1)2−α(i)

2α(i) ci(Ai)
. (3.15)

The last expression in (3.15) is monotonically increasing in α(i), and accordingly, we
have

ci(Ai)
MMSi(n, E) ≤

nα

α + (n− 1)(1− α
2 ) .

As for the lower bound, consider an instance of n (even) agents and a set
E = {e1, ..., en2} of n2 chores. Agents have identical cost functions and for any i,
we let ci(ej) = α for 1 ≤ j ≤ n and ci(ej) = 2 − α for n + 1 ≤ j ≤ n2. Consider
the allocation B = (B1, ..., Bn) with Bi = {e(i−1)n+1, ..., eni} for any i ∈ [n]. Since
α > 1, it is not hard to verify that, except for agent 1, no one else violates the
condition of PMMS, and accordingly, the approximation guarantee for PMMS is
determined by agent 1. For agent 1, since n is even, MMS1(2, B1∪Bj) = n holds for
any j ≥ 2, and due to c1(B1) = nα, we can claim that the allocation B is α-PMMS.
Moreover, it is not hard to verify that MMS1(n, E) = α + (n − 1)(2 − α) and so

c1(B1)
MMS1(n,E) = nα

α+(n−1)(2−α) , completing the proof. !

The motivating example right before Proposition 3.4.7, unfortunately, only
works for the case of n = 3. When n becomes larger, an α-PMMS allocation with
α ≥ 3

2 is still possible to provide a non-trivial approximation guarantee on the notion
of MMS.
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We remain to consider the approximation guarantee of MMS for other fair-
ness criteria. Notice that all of EFX, EF1 and PMMS can have non-trivial guarantee
for MMS (i.e., better than n-MMS). However, the converse is not true and even the
exact MMS does not provide any substantial guarantee for the other three criteria.

Proposition 3.4.10. When agents have additive cost functions, for any n ≥ 3, an
MMS allocation is not necessarily β-PMMS fair for any 1 ≤ β < 2.

Proof. Consider an instance with n agents and p + 2n − 1 chores denoted as
{e1, . . . , e2n+p−1} where p ∈ N+ and p1 1. We focus on agent 1 and his cost func-
tion is: c1(ej) = 1 for any 1 ≤ j ≤ n+p and c1(ej) = p for any j ≥ n+p+1. Consider
allocation B = (B1, . . . , Bn) with B1 = {e1, . . . , ep+1}, Bi = {ep+i} ,∀i = 2, . . . , n−2,
Bn−1 = {en+p−1, en+p} and Bn = {en+p+1, . . . , e2n+p−1}. For any agent i ≥ 2, her
cost function is ci(e) = 0 for any e ∈ Bi and ci(e) = 1 for any e /∈ Bi. Con-
sequently, except for agent 1, other agents violate neither MMS nor PMMS, and
accordingly the approximation guarantee for PMMS and MMS is determined by
agent 1. For MMS1(n, E), it happens that E can be evenly divided into n bun-
dles of the same cost (for agent 1), so we have MMS1(n, E) = p + 1. Accordingly,
c1(B1) = MMS1(n, E) holds and thus, allocation B is MMS. As for the approxima-
tion guarantee on PMMS, consider the combined bundle B1 ∪B2 and it is not hard
to verify that MMS1(2, B1 ∪ B2) = 2p+2

2 3 implying c1(B1)
MMS1(2,B1∪B2) = p+1

& p+2
2 ' → 2 as

p→∞. !

Proposition 3.4.11. When agents have additive cost functions, an MMS allocation
is not necessarily β-EF1 or β-EFX for any β ≥ 1.

Proof. By Proposition 3.3.3, the notion β-EFX is stricter than β-EF1, and thus,
we only need to show the unbounded guarantee on EF1. Again, we consider the
instance given in the proof of Proposition 3.4.10. As stated in that proof, B is an
MMS allocation, and except for agent 1, no one else will violate the condition of
PMMS. Note that PMMS is stricter than EF1, then no one else will violate the
condition of EF1. As for agent 1, each chore in B1 has the same cost for him, so
we can remove any single chore in B1 and check its performance in terms of EF1.
When comparing to bundle B2, we have c1(B1\{e1})

c1(B2) = p→∞ as p→∞. !

3.5 Guarantees beyond the Additive Setting

The results in previous sections demonstrate the strong connections between the
four (additive) relaxations of envy-freeness in the setting of additive cost functions.
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Under this umbrella, what would also be interesting is that whether there still
exists certain connections when agents’ cost functions are no longer additive. In
this section, we also study the connections among fairness criteria, and instead of
additive cost functions, we assume that agents have submodular and monotone cost
functions, which have also been widely considered in fair division literature [50, 71].

As a starting point, we consider EF, the strongest notion in the setting of
additive, and see whether it can still provide guarantee on other fairness notions.
According to the definitions, the notion of EF is, clearly, still stricter than EFX and
EF1 if cost functions are monotone. Then, we study the approximation guarantee of
EF on MMS and PMMS. As shown by our results below, in contrast to the results
under additive setting, PMMS and MMS are no longer the relaxations of EF, and
even worse, the notion of EF does not provide any substantial guarantee on PMMS
and MMS.

Proposition 3.5.1. When agents have submodular cost functions, an EF allocation
is not necessarily β1-MMS fair or β2-PMMS fair for any 1 ≤ β1 < n, 1 ≤ β2 < 2.

Proof. It suffices to show that there exists an EF allocation with approximation
ratio n and 2 for MMS and PMMS, respectively. Consider an instance with n

(even) agents and a set E of chores with |E| = n2. Chores are placed in the form
of n × n matrix E = (eij). All agents have an identical cost function c(S) =
∑n

i=1 min {|Ei ∩ S| , 1} for any S ⊆ E, where Ei is the set of all elements in the i-th
row of matrix E, i.e., Ei = {ei1, . . . , ein}. Since capped cardinality function |Ei ∩ S|
of S ⊆ E is monotone and submodular for any fixed i (1 ≤ i ≤ n), it follows that
c(·) is also monotone and submodular.4

Next, we prove that this instance permits an EF allocation, with which the
approximation ratio for MMS and PMMS is n and 2, respectively. Consider an
allocation B = (B1, ..., Bn) where for any j, bundle Bj contains all elements in
the j-th column of matrix E, i.e., Bj = (e1j , e2j , ..., enj). One can compute that
c(Bj) = ∑n

i=1 min (|Ei ∩Bj | , 1) = n holds for any j ∈ [n], which implies that
allocation B is EF. Next, we check the approximation guarantee of B on MMS.
With a slight abuse of notation, we let E be the allocation defined by n-partition
E1, ..., En, i.e., E = (E1, ..., En). It is not hard to see that for any i ∈ N, c(Ei) = 1.
Then we claim that allocation E defines MMS for all agents; otherwise, there exists
another allocation in which each bundle has cost strictly smaller than 1, and this

4More generally, if f(·) is submodular, then g(f(·)) is also submodular for any g(·) that is
non-decreasing and concave. Furthermore, conical combination (with sum as a special case) of
submodular functions is also submodular.
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never happens because c(e) = 1 for any e ∈ E and c(·) is monotone. Therefore, for
any i ∈ N, MMSi(n, E) = 1, which implies c(Bi)

MMSi(n,E) = n, as required.
Next, we argue that the allocation B is 2-PMMS. Fix i, j ∈ N and j ,= i.

Notice that the combined bundle Bi ∪Bj contains two columns of chores, so we can
consider another allocation B′ = (B′

i, B′
j) with B′

i =
{

e1i, . . . , e n
2 i, e1j , ..., e n

2 j

}
and

B′
j = {e n

2 +1i, ..., eni, e n
2 +1j , ..., enj}. The idea of B′ is to split each column into two

parts with equal size and one part staring from the first row to (n/2)-th row while the
other one containing the remaining half. By the definition of cost function c(·), we
know c(B′

i) = c(B′
j) = n/2, which implies MMSi(2, Bi ∪Bj) ≤ max{c(B′

i), c(B′
j)} =

2−1ci(Bi). Therefore, B is a 2-PMMS fair allocation. !

In the aspect of worst-case analysis, combining Lemma 3.2.2 and Proposi-
tion 3.5.1, EF can only have a trivial guarantee (n and 2, respectively) on MMS
and PMMS, which is a sharp contrast to the results in additive setting where EF
is strictly stronger than these two notions. As we mentioned above, EF is stricter
than EFX and EF1, then we can directly argue that neither EFX nor EF1 can have
better guarantees than trivial ones, namely, 2-PMMS and n-MMS.

Proposition 3.5.2. When agents have submodular cost functions, an EFX allo-
cation is not necessarily β1-MMS fair or β2-PMMS fair for any 1 ≤ β1 < n,
1 ≤ β2 < 2.

Proposition 3.5.3. When agents have submodular cost functions, an EF1 allo-
cation is not necessarily β1-MMS fair or β2-PMMS fair for any 1 ≤ β1 < n,
1 ≤ β2 < 2.

As for the connections between EFX and EF1, the statement of Proposi-
tion 3.3.3 is still true in the case of submodular cost functions.

Proposition 3.5.4. When agents have submodular cost functions, an α-EFX allo-
cation is also α-EF1 for any α ≥ 1. On the other hand, an EF1 allocation is not
necessarily a β-EFX for any β ≥ 1.

Proof. The positive part follows directly from definitions of EFX and EF1. As for
the impossibility result, the instance in the proof of Proposition 3.3.3 is established
for the additive case. Since an additive function is also submodular, we also have
such an impossibility result here. !

Next, we study the notion of PMMS in terms of its approximation guarantee
on EFX and EF1. Recall the results of Propositions 3.4.1 and 3.4.2, the notion
of PMMS is stricter than EFX and EF1 in the additive setting. However, in the
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submodular case, this relationship does not hold any more, and even worse, PMMS
provides non-trivial guarantee on neither EFX nor EF1.

Proposition 3.5.5. When agents have submodular cost functions, a PMMS alloca-
tion is not necessarily a β-EF1 or β-EFX allocation for any β ≥ 1.

Proof. By Proposition 3.5.4, for any β ≥ 1, β-EFX is stronger than β-EF1, and
thus it suffices to show the approximation guarantee for EF1 is unbounded. In
what follows, we provide an instance that has a PMMS allocation with only trivial
guarantee on EF1.

Consider an instance with two agents and a set E = {e1, e2, e3} of chores.
Agents have identical cost function c(S) = min{|S|, 2}. Since |S| is monotone and
submodular, it follows that c(·) is also monotone and submodular (see Footnote 4).

Next, we prove this instance having a PMMS allocation whose guarantee
for EF1 is unbounded. Since in total, we have three chores, and thus in any 2-
partition there always exists an agent receiving at least two chores. Thus, we can
claim that MMSi(2, E) = 2 for any i ∈ [2]. Then, consider an allocation B =
(B1, B2) with B1 = E and B2 = ∅. Allocation B is PMMS since, for any i ∈ [2],
max {c(B1), c(B2)} = MMSi(2, E) = 2 holds. However, bundle B2 is empty and so
c1(B2) = c(B2) = 0. Then, no matter which chore is removed from bundle B1, agent
1 still has a positive cost, which implies an unbounded approximation guarantee for
the notion of EF1. !

The approximation guarantee of an MMS allocation for EFX, EF1 and
PMMS can be directly derived from the results in the additive setting. Accord-
ing to Propositions 3.4.10 and 3.4.11, in the additive setting, the MMS fairness does
not provide non-trivial guarantee on all other three notions. Since additive func-
tions belong to the class of submodular functions, we directly have the following
two results.

Proposition 3.5.6. When agents have submodular cost functions, an MMS fair
allocation is not necessarily β-PMMS fair for any 1 ≤ β < 2.

Proposition 3.5.7. When agents have submodular cost functions, an MMS fair
allocation is not necessarily a β-EF1 or β-EFX allocation for any β ≥ 1.

At this stage, what remains is the approximation guarantee of PMMS on
MMS. Before presenting the main result, we provide a lemma, which states that
the quantity of MMS is monotonically non-decreasing on the set of chores to be
assigned.
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Lemma 3.5.8. Given a monotone function c(·) defined on ground set E, for any
subsets S ⊆ T ⊆ E and for any k ∈ N+, if quantities MMS(k, S) and MMS(k, T )
are computed based on function c(·), then MMS(k, S) ≤ MMS(k, T ).

Proof. Let {T1, . . . , Tk} be the k-partition of set T that defines MMS(k, T ) = c(T1) ≥
c(Tj) for any j ∈ [k]. We then consider {T1∩S, T2∩S, . . . , Tk ∩S}, which is, clearly,
a k-partition of S due to S ⊆ T . According to the definition of MMS, we have

MMS(k, S) ≤ max
j∈[k]

{c(Tj ∩ S)} ≤ max
j∈[k]

{c(Tj)} = MMS(k, T ),

where the second inequality transition is because c(·) is monotone. !

Proposition 3.5.9. When agents have submodular cost functions, for any 1 ≤ α ≤
2, an α-PMMS allocation is also min{n, α2n

2 3}-MMS fair, and this guarantee is
tight.

Proof. We first prove the upper bound. According to Lemma 3.2.2, any allocation
is n-MMS and so what remains is to prove the upper bound of α2n

2 3. Fix agent
i with cost function ci(·). Suppose n-partition {T1, . . . , Tn} defines MMSi(n, E)
and w.l.o.g, we assume ci(T1) ≥ ci(T2) ≥ · · · ≥ ci(Tn), i.e., ci(T1) = MMSi(n, E).
Then, we let 2-partition {Q1, Q2} defines MMSi(2, E) and ci(Q1) ≥ ci(Q2), i.e.,
ci(Q1) = MMSi(2, E). Let A be an arbitrary α-PMMS allocation, and accordingly,
for any j ,= i, we have ci(Ai) ≤ α · MMSi(2, Ai ∪ Aj). Since Ai ∪ Aj is a subset of
E, according to Lemma 3.5.8, we have MMSi(2, Ai ∪ Aj) ≤ MMSi(2, E). We then
construct an upper bound of MMSi(2, E) through partition {T1, . . . , Tn}.

Let us consider a 2-partition {B1, B2} of E with B1 = {T1, T2, . . . , T& n
2 '},

B2 = {T& n
2 '+1, . . . , Tn}. Then, the following holds:

max{ci(B1), ci(B2)} = max{ci(∪
& n

2 '
j=1Tj), ci(∪n

j=& n
2 '+1Tj)}

≤ max{
& n

2 '∑

j=1
ci(Tj),

n∑

j=& n
2 '+1

ci(Tj)} ≤ 2n2 3 · ci(T1),

where the first inequality transition is due to subadditivity of ci(·) and the sec-
ond inequality transition is because ci(T1) ≥ ci(T2) · · · ≥ ci(Tn). Recall ci(Q1) =
MMSi(2, E) ≤ max{ci(B1), ci(B2)}, and accordingly we have MMSi(2, E) ≤ 2n

2 3 ·
ci(T1) = 2n

2 3 · MMSi(n, E). Therefore, for any j ,= i, the following holds:

ci(Ai)
MMSi(n, E) ≤

α · MMSi(2, Ai ∪Aj)
MMSi(n, E) ≤ α · MMSi(2, E)

MMSi(n, E) ≤ α · 2n2 3.
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As for the lower bound, it suffices to show that for any α ∈ [1, 2], there
exists an α-PMMS allocation with approximation guarantee α2n

2 3 of MMS when
α2n

2 3 ≤ n. Let us consider an instance with n (even) agents and a set E of chores
with |E| = n(n + 1). Since α ≤ 2 and n is even, clearly we have α2n

2 3 ≤ n.
Chores are placed in n × (n + 1) matrix E = (eij). For j ∈ [n + 1], denote by Pj

the j-th column, i.e., Pj = {e1j , e2j , . . . , enj}. We concentrate on allocation A with
A1 = P1∪ · · ·∪P,α n

2 -∪Pn, Aj =
{

ej,,α n
2 -+1, . . . , ej,n−1, ej,n+1

}
for any 2 ≤ j ≤ n−1,

and An =
{

en,,α n
2 -+1, . . . , en,n−1, en,n+1

}
∪

{
e1,,α n

2 -+1, . . . , e1,n−1, e1,n+1
}

. For any
2 ≤ i ≤ n, agent i has additive cost function ci(·) with ci(e) = 0 for any e ∈ Ai, and
ci(e) = 1 for any e ∈ E \ Ai. Then, for every 2 ≤ i ≤ n, agent i has an additive,
clearly monotone and submodular, cost function, and violates neither PMMS nor
MMS due to ci(Ai) = 0. Consequently, the approximation guarantee of A on both
PMMS and MMS are determined by agent 1.

As for the cost function c1(·) of agent 1, for any S ⊆ E, we let

c1(S) =
n−1∑

j=1
min{|S ∩ Pj |, 1} + δ · min{|S ∩ Pn|, 1} + (1− δ) · min{|S ∩ Pn+1|, 1},

where δ = αn
2 − 5α

n
2 6. Function c1(·) is clearly monotone. As in the proof of

Proposition 3.5.1 (see Footnote 4), c1(·) as a conical combination of submodular
functions is also submodular.

We argue A is an α-PMMS allocation with approximation guarantee αn
2 with

respect to MMS. In fact, under allocation A, one can compute c1(A1) = 5αn
2 6+ δ =

αn
2 and c1(A1 ∪ Aj) = c1(E) = n for any 2 ≤ j ≤ n. Then, for any j ≥ 2,

due to Lemma 3.2.1, it holds that MMS1(2, A1 ∪ Aj) ≥ n/2, which then imply
c1(A1) ≤ αMMS1(2, A1 ∪ Aj). Thus, allocation A is α-PMMS. As for the quantity
of MMS1(n, E), consider partition {Bi}n

i=1 with Bi = Pi for 1 ≤ i ≤ n − 1 and
Bn = Pn ∪ Pn+1. It is not hard to verify c1(Bi) = 1 for any i ∈ [n]. According
to Lemma 3.2.1, we have MMS1(n, E) ≥ n−1c1(E) = 1. Hence, partition {Bi}n

i=1
defines MMS1(n, E) = 1, and accordingly, the approximation guarantee of A for
MMS is αn

2 , equivalent to α2n
2 3 since n is even. !

We remark that all statements in this section are still true if agents have
subadditive cost functions. Results in this section show that although PMMS (or
MMS) are relaxations of EF under additive setting, EF allocations do not always
provide non-trivial approximation guarantee for PMMS (or MMS) in the submod-
ular setting. This motivates new submodular fairness notions which is not only a
relaxation of EF but also inherit the spirit of PMMS (or MMS).
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3.6 Price of Fairness under Additive Setting

After having compared the fairness criteria among themselves, in this section we
study the efficiency of these fairness criteria in terms of the price of fairness with
respect to the social cost.

3.6.1 Two Agents

We start with the case of two players. Our first result concerns EF1.

Algorithm 1
Input: An instance I with two agents.
Output: An EF1 allocation of instance I.

1: Partition E = E0 ∪ E1 ∪ E2 where E1 = {e ∈ E | c1(e) < c2(e)} and E2 = {e ∈
E | c1(e) > c2(e)} (assume c1(E1) ≤ c2(E2) and the other case is symmetric).

2: Order chores such that c1(e1)
c2(e1) ≤

c1(e2)
c2(e2) ≤ · · · ≤ c1(em)

c2(em) , tie breaks arbitrarily. For
chore e with c1(e) = 0, put it at the front and chore e with c2(e) = 0 at back.

3: Find index s such that c1(es) < c2(es) and c1(es+1) ≥ c2(es+1).
4: if s = 0 then
5: Run a round-robin algorithm: let each of the agent 1, 2 picks her most pre-

ferred item in that order, and repeat until all chores are assigned.
6: return the output
7: else
8: Let O be the allocation with O1 = L(s) and O2 = R(s + 1).
9: if allocation O is EF1 then

10: return allocation O.
11: else
12: find the maximum index f ≥ s such that c2(R(f + 2)) > c2(L(f)).
13: return allocation A with A1 = L(f + 1) and A2 = R(f + 2).
14: end if
15: end if

Proposition 3.6.1. When n = 2 and agents have additive cost functions, the price
of EF1 is 5/4.

Proof. For the upper bound part, we analyze the allocation returned by Algorithm 1.
In this proof, we denote L(k) = {e1, . . . , ek} and R(k) = {ek, . . . , em}. We first show
that Algorithm 1 is well-defined and can always output an EF1 allocation. Note
that O is the optimal allocation for the underlying instance due to the order of
chores. We consider the possible value of index s. Because of the normalized cost
function, trivially, s < m holds. If s = 0, Algorithm 1 outputs the allocation
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returned by round-robin (Step 6) and clearly, it’s EF1. If the optimal allocation
O is EF1 (Step 9), we are done. Moreover, we claim that if s = m − 1, then O
must be EF1. The reason is that for agent 1, his cost c1(O1) ≤ c2(O2) ≤ c1(O2)
where the first transition is by the assumption in line 1 of Algorithm 1, and thus
he does not envy agent 2. For agent 2, since he only receives a single chore in
optimal allocation due to s = m − 1, clearly, he does not violate the condition of
EF1, either. Thus, allocation O is EF1 in the case of s = m−1. Next, we study the
remaining case (Steps 11–13) that can only happen when 1 ≤ s ≤ m − 2. We first
show that the index f is well-defined. It suffices to show c2(R(s + 2)) > c2(L(s)).
For the sake of contradiction, assume c2(R(s + 2)) ≤ c2(L(s)). This is equivalent to
c2(O2 \ {es+1}) ≤ c2(O1), which means agent 2 satisfying EF1 in allocation O. Due
to the assumption (Step 1), c1(O1) ≤ c2(O2) ≤ c1(O2) holds, and thus, agent 1 is
EF under the allocation O. Consequently, the allocation O is EF1, contradiction.
Then, we prove allocation A (Step 13) is EF1. According to the order of chores, it
holds that

c1 (L(f))
c2(L(f)) ≤

c1(R(f + 2))
c2(R(f + 2)) .

Since c2(R(f + 2)) > c2(L(f)) ≥ 0, this implies,

c1(L(f))
c1(R(f + 2)) ≤

c2(L(f))
c2(R(f + 2)) .

By the definition of index f , we have c2(R(f + 2)) > c2(L(f)) and therefore
c1(L(f)) < c1(R(f +2)) which is equivalent to c1(A1\{ef+1}) < c1(A2). Thus, agent
1 is EF1 under allocation A. As for agent 2, if f = m− 2, then A2 = 1 and clearly,
agent 2 does not violate the condition of EF1. We can further assume f ≤ m − 3.
Since f is the maximum index satisfying f ≥ s and c2(R(f +2)) > c2(L(f)), it must
hold that c2(R(f +3)) ≤ c2(L(f +1)), which is equivalent to c2(A2\{ef+2}) ≤ c2(A1)
and so agent 2 is also EF1 under allocation A.

Next, we show the social cost of the allocation returned by Algorithm 1 is at
most 1.25 times the optimal social cost. If s = 0, both agents have the same cost
profile, then any allocations have the optimal social cost and we are done in this
case. If allocation O is EF1, then clearly, we are done. The remaining case is of
Steps 11–13 of Algorithm 1. Since c1(O1) ≤ c2(O2) ≤ c1(O2), we have c1(O1) ≤ 2−1.
Notice that O is not EF1, then c2(O2) > 2−1 must hold; otherwise, c2(O2) ≤ c2(O1)
and allocation O is EF, contradiction. Therefore, under the case where allocation
O is not EF1, we must have c1(O1) ≤ 2−1 and c2(O2) > 2−1. Due to f + 2 ≥ s + 1
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and the order of chores, it holds that

c1(R(f + 2))
c2(R(f + 2)) ≥

c1(O2)
c2(O2) .

This implies c1(R(f + 2)) ≥ c1(O2)
c2(O2)c2(R(f + 2)), and equivalently,

c1(A1) = c1(L(f + 1)) ≤ 1− c1(O2)
c2(O2)c2(R(f + 2)).

Again, by the construction of f , we have

c2(A2) = c2(R(f + 2)) > c2(L(f)) ≥ c2(L(s)) = c2(O1).

Therefore, we derive the following upper bound,

c1(A1) + c2(A2) ≤ 1−
(

c1(O2)
c2(O2) − 1

)
c2(A2) ≤ 1−

(
c1(O2)
c2(O2) − 1

)
c2(O1)

= 1−
(1− c1(O1)

c2(O2) − 1
)

(1− c2(O2)) ,

(3.16)

where the second inequality is due to c1(O2)
c2(O2) ≥ 1 and c2(A2) ≥ c2(O1). Based on

(3.16), we have an upper bound on the price of EF1 as follows:

Price of EF1 ≤
1−

(
1−c1(O1)

c2(O2) − 1
)

(1− c2(O2))
c1(O1) + c2(O2) . (3.17)

Recall 0 ≤ c1(O1) ≤ 2−1 < c2(O2) ≤ 1. The partial derivative of the fraction in
(3.17) with respect to c1(O1) is equal to the following:

1
(c1(O1) + c2(O2))2

( 1
c2(O2) − 2

)
.

It is not hard to see this derivative has a negative value for any 2−1 < c2(O2) ≤ 1.
Thus, the fraction in (3.17) takes maximum value only when c1(O1) = 0 and hence,

Price of EF1 ≤
3− 1

c2(O2)
c2(O2) − 1.

Similarly, by taking the derivative with respect to c2(O2), the maximum value of this
expression happens only when c2(O2) = 2

3 , then one can easily compute the maxi-
mum value of the RHS of Inequality (3.17) is 1.25. Therefore, the price of EF1 ≤
1.25.
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As for the lower bound, consider an instance with a set E = {e1, e2, e3} of
three chores. The cost function of agent 1 is c1(e1) = 0 and c1(e2) = c1(e3) = 1/2.
For agent 2, his cost is c2(e1) = 1/3 − 2ε and c2(e2) = c2(e3) = 1/3 + ε where
ε > 0 is arbitrarily small. An optimal allocation assigns chore e1 to agent 1 and the
remaining chores to agent 2, which yields the optimal social cost 2/3 + ε. However,
this allocation is not EF1 since agent 2 envies agent 1 even after removing one
chore from his bundle. To achieve EF1, agent 2 can not receive both of chores e2

and e3, and so, agent 1 must receive one of chore e2 and e3. Therefore, the best
EF1 allocation can be assigning chore e1 and e2 to agent 1 and chore e3 to agent 2
resulting in the social cost 5/6 + ε. Thus, the price of EF1 is at least

5
6 +ε

2
3 +2ε

→ 5
4 as

ε→ 0, completing the proof. !

According to Propositions 3.3.4 and 3.3.7, EF1 implies 2-MMS and (3/2)-
PMMS. In the following, we pay special attention to notions of 2-MMS and (3/2)-
PMMS, of which the existence is guaranteed, and provide tight results on the price
of fairness.

Proposition 3.6.2. When n = 2 and agents have additive cost functions, the price
of 2-MMS is 1.

Proof. The proof directly follows from Lemma 3.2.2. !

Proposition 3.6.3. When n = 2 and agents have additive cost functions, the price
of 3

2 -PMMS is 7/6.

Proof. We first prove the upper bound. Given an instance I, let O = (O1, O2) be
an optimal allocation of I. If the allocation O is already 3/2-PMMS, we are done.
For the sake of contradiction, we assume that agent 1 violates the condition of 3/2-
PMMS in allocation O, i.e., c1(O1) > 3/2MMS1(2, E). Suppose O1 = {e1, . . . , eh}
and the index satisfies the following rule; c1(e1)

c2(e1) ≥
c1(e2)
c2(e2) ≥ · · · ≥ c1(eh)

c2(eh) . In this proof,
for simplicity, we write L(k) := {e1, ..., ek} for any 1 ≤ k ≤ h and L(0) = ∅. Then,
let s be the index such that c1(O1 \ L(s)) ≤ 3/2MMS1(2, E) and c1(O1 \ L(s− 1)) >

3/2MMS1(2, E). In the following, we divide our proof into two cases.
Case 1: c1(L(s)) ≤ 1/2 ·c1(O1). Consider allocation A = (A1, A2) with A1 =

O1 \L(s) and A2 = O2∪L(s). We first show allocation A is 3/2-PMMS. For agent 1,
due to the construction of index s, he does not violate the condition of 3/2-PMMS.
As for agent 2, we claim that c2(A2) = 1− c2(O1 \ L(s− 1)) + c2(es) < 1/4 + c2(es)
because c2(O1 \ L(s− 1)) ≥ c1(O1 \ L(s− 1)) > 3/2MMS1(2, E) ≥ 3

4 where the first
inequality transition is due to the fact that O1 is the bundle assigned to agent 1 in
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the optimal allocation. If c2(es) < 1/2, then clearly, c2(A2) < 3/4 ≤ 3/2MMS2(2, E).
If c2(es) ≥ 1/2, then c2(es) = MMS1(2, E) and accordingly, it is not hard to verify
that c2(A2) ≤ 3/2MMS1(2, E). Thus, A is a 3/2-PMMS allocation.

Next, based on allocation A, we derive an upper bound on the price of 3/2-
PMMS. First, by the order of index, c1(L(s))

c2(L(s)) ≥
c1(O1)
c2(O1) holds, implying c2(L(s)) ≤

c2(O1)
c1(O1)c1(L(s)). Since A1 = O1 \ L(s) and A2 = O2 ∪ L(s), we have the following:

Price of 3
2 -PMMS ≤ 1 + c2(L(s))− c1(L(s))

c1(O1) + c2(O2) ≤ 1 +
c1(L(s))( c2(O1)

c1(O1) − 1)
c1(O1) + c2(O2)

= 1 +
c1(L(s))
c1(O1) (1− c2(O2)− c1(O1))

c1(O1) + c2(O2)

≤ 1 +
1
2 −

1
2(c1(O1) + c2(O2))

c1(O1) + c2(O2) ≤ 1− 1
2 + 1

2 ×
4
3 = 7

6 ,

where the second inequality due to c2(L(s)) ≤ c2(O1)
c1(O1)c1(L(s)); the third inequal-

ity due to the condition of Case 1; and the last inequality is because c1(O1) >

3/2MMS1(2, E) ≥ 3/4.
Case 2: c1(L(s)) > 1/2 · c1(O1). We first derive a lower bound on c1(es).

Since c1(es) = c1(O1 \L(s−1))+c1(Ls)−c1(O1), combine which with the condition
of Case 2 implying c1(es) > c1(O1 \ L(s − 1)) − 1/2 · c1(O1), and consequently we
have c1(es) > 3/2MMS1(2, E) − 1/2 · c1(O1) ≥ 1/4 where the last transition is due
to MMS1(2, E) ≥ 1/2 and c1(O1) ≤ 1. Then, we consider two subcases.

If 0 ≤ c2(es) − c1(es) ≤ 1/8, consider an allocation A = (A1, A2) with
A1 = O1 \ {es} and A2 = O2 ∪ {es}. We first show the allocation A is 3/2-PMMS.
For agent 1, since c1(es) > 1/4, c1(A1) = c1(O1) − c1(es) < 3/4 ≤ 3/2MMS1(2, E).
As for agent 2, c2(A2) = c2(O2) + c2(es) ≤ 1 − c1(O1) + c2(es) < 1/4 + c2(es). If
c2(es) < 1/2, then clearly, c2(A2) ≤ 3/4 < 3/2MMS2(2, E) holds. If c2(es) ≥ 1/2,
we have c2(es) = MMS2(2, E) and accordingly, it is not hard to verify that c2(A2) ≤
3/2MMS2(2, E). Thus, the allocation A is 3/2-PMMS. Next, based on the allocation
A, we derive an upper bound regarding the price of 3/2-PMMS,

Price of 3
2 -PMMS ≤ c1(O1)− c1(es) + c2(O2) + c2(es)

c1(O1) + c2(O2) ≤ 1 + 1
8 ×

4
3 = 7

6 ,

where the second inequality due to 0 ≤ c2(es)− c1(es) ≤ 1/8 and c1(O1) > 3/4.
If c2(es)− c1(es) > 1/8, consider an allocation A′ = (A′

1, A′
2) with A′

1 = {es}
and A′

2 = E \ {es}. We first show that the allocation A′ is 3/2-PMMS. For agent
1, due to Lemma 3.2.1, c1(es) ≤ MMS1(2, E) holds. As for agent 2, since c2(es) ≥
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c1(es) > 1/4, we have c2(A′
2) = c2(E) − c2(es) < 3/4 ≤ 3/2MMS2(2, E). Thus, the

allocation A′ is 3/2-PMMS. In the following, we first derive an upper bound for
c2(O1 \ {es})− c1(O1 \ {es}), then based on the bound, we provide the target upper
bound for the price of fairness. Since c1(O1) > 3/4 and c2(es) − c1(es) > 1/8, we
have c2(O1 \ {es})− c1(O1 \ {es}) = c2(O1)− c1(O1)− (c2(es)− c1(es)) < 1/8, and
then, the following holds,

Price of 3
2 -PMMS ≤ 1 + c2(O1 \ {es})− c1(O1 \ {es})

c1(O1) + c2(O2) ≤ 1 + 1
8 ×

4
3 = 7

6 ,

which completes the proof of the upper bound.
Regarding lower bound, consider an instance I with two agents and a set

E = {e1, e2, e3, e4} of four chores. The cost function for agent 1 is: c1(e1) =
3/8, c1(e2) = 3/8 + ε, c1(e3) = 1/8 − ε, c1(e4) = 1/8 where ε > 0 is arbitrarily
small. For agent 2, her cost function is: c2(e1) = c2(e2) = 1/2, c2(e3) = c2(e4) = 0.
It is not hard to verify that MMSi(2, E) = 1

2 for any i = 1, 2. In the utilitarian
welfare-maximizing allocation, the assignment is; e1, e2 to agent 1 and e3, e4 to
agent 2, resulting in OPTU (I) = 3/4 + ε. Observe that to satisfy 3/2-PMMS, agent
1 cannot receive both chores e1, e2, and accordingly, the minimum social cost of a
3/2-PMMS allocation is 7/8 by assigning e1 to agent 1 and the rest chores to agent
2. Based on this instance, when n = 2, the price of 3/2-PMMS is at least

7
8

6
8 +ε
→ 7

6
as ε→ 0. !

The above two propositions confirm an intuition — if one relaxes the fairness
condition, then less efficiency will be sacrificed. We also remark that if we have an
oracle for the maximin share, then our constructive proof of Proposition 3.6.3 can be
transformed into an efficient algorithm for finding a (3/2)-PMMS allocation whose
cost is at most 7/6 times the optimal social cost. Moving to other fairness criteria,
we have the following uniform bound.

Proposition 3.6.4. When n = 2 and agents have additive cost functions, the price
of PMMS, MMS, and EFX are all 2.

Proof. We first show results on the upper bound. When n = 2, PMMS is identical
with MMS and can imply EFX, so it suffices to show that the price of PMMS is at
most 2. Given an instance I, let allocation O = (O1, O2) be the utilitarian welfare-
maximizing allocation and w.l.o.g, we assume c1(O1) ≤ c2(O2). If c2(O2) ≤ 1/2,
then we have c1(O1) ≤ 1 − c1(O1) = c1(O2) and c2(O2) ≤ 1 − c2(O2) = c2(O1).
So allocation O is an EF and accordingly is PMMS, which yields that the price of
PMMS equals to one. Thus, we can further assume c2(O2) > 1/2 and hence the
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optimal social cost is larger than 1
2 .

We next show that there exist a PMMS allocation whose social cost is at most
1. W.l.o.g, we assume MMS1(2, E) ≤ MMS2(2, E) (the other case is symmetric).
Let T = (T1, T2) be the allocation defining MMS1(2, E) and c1(T1) ≤ c1(T2) =
MMS1(2, E). If c2(T2) ≤ c2(T1), then allocation T is EF (also PMMS), and thus it
hold that c1(T1) ≤ 1/2 and c2(T2) ≤ 1/2. Therefore, the social cost of allocation
T is no more than one, which implies that the price of PMMS is at most two.
If c2(T2) > c2(T1), then consider the allocation T′ = (T2, T1). Since c1(T ′

1) =
c1(T2) = MMS1(2, E) and c2(T ′

2) = c2(T1) < c2(T2), then T′ is a PMMS allocation.
Owing to MMS1(2, E) ≤ MMS2(2, E), we claim that c2(T1) ≤ c1(T1); otherwise,
we have MMS1(2, E) = c1(T2) > c2(T2) > c2(T1), and equivalently, allocation T′

is a 2-partition where the cost of both bundles for agent 2 is strictly smaller than
MMS1(2, E), contradicting MMS1(2, E) ≤ MMS2(2, E). By c2(T1) ≤ c1(T1), the
social cost of allocation T′ satisfies c2(T1) + c1(T2) ≤ 1 and so the price of PMMS
is at most two.

Regarding the tightness, consider an instance I with two agents and a set
E = {e1, e2, e3} of three chores. The cost function of agent 1 is : c1(e1) = 1/2,

c1(e2) = 1/2− ε and c1(e3) = ε where ε > 0 is arbitrarily small. For agent 2, his cost
is c2(e1) = 1/2, c2(e2) = ε and c2(e3) = 1/2− ε. An utilitarian welfare-maximizing
allocation assigns chores e1, e2 to agent 2, and e3 to agent 1, and consequently, the
optimal social cost equals to 1/2 + 2ε. We first concern the tightness on the notion
of PMMS (or MMS, these two are identical when n = 2). In any PMMS allocations,
it must be the case that an agent receives chore e1 and the other one receives chores
e2 and e3, and thus the social cost of PMMS allocations is one. Therefore, the price
of PMMS and of MMS are at least 1

1
2 +ε
→ 2 as ε → 0. As for EFX, similarly, it

must be the case that in any EFX allocations, the agent receiving chore e1 cannot
receive any other chores. Thus, it not hard to verify that the social cost of EFX
allocations is also one and the price of EFX is at least 1

1
2 +ε
→ 2 as ε→ 0. !

3.6.2 More than Two Agents

Note that the existence of an MMS allocation is not guaranteed in general, even
when agents have additive valuation functions [19, 83], and the existence of PMMS
or EFX allocation is still open in chores when n ≥ 3. Nonetheless, we are still
interested in the prices of fairness in case such a fair allocation does exist.

Proposition 3.6.5. When agent have additive cost functions, for n ≥ 3, the price
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of EF1, EFX, PMMS and (3/2)-PMMS are all infinity.

Proof. In this proof, ε > 0 is arbitrarily small. Based on our results on the connec-
tions between fairness criteria, we have the relationship: PMMS→EFX→EF1→(3/2)-
PMMS, where A→ B refers to that notion A is stricter than notion B. Therefore,
it suffices to give a proof for (3/2)-PMMS.

Consider an instance with n agents and m ≥ 5 chores. The cost function of
agent 1 is c1(e1) = 1−4ε, c1(ej) = 0 for j = 2, . . . , m−4, and c1(ej) = ε for j ≥ m−3.
For agent 2, his cost is c2(e1) = 1 − 4/m, c2(ej) = 0 for j = 2, . . . , m − 4, and
c2(ej) = 1/m for j ≥ m−3. The cost function of agent 3 is: c3(e1) = ε, c3(ej) = 1/m

for j = 2, . . . , m − 1, and c3(em) = 1/m − ε. For any i ≥ 4, the cost function of
agent i is ci(ej) = 1/m for any j ∈ [m]. An utilitarian welfare-maximizing allocation
assigns em−3, em−2, em−1, em to agent 1 and e1 to agent 3. For each of rest chore, it
is assigned to the agent having zero cost on it. Accordingly, the optimal social cost is
5ε. However, for any optimal allocation O, we have MMS1(2, O1∪O2) = 2ε, implying
c1(O1) > 3/2MMS1(2, O1 ∪ O2). Thus, agent 1 violates (3/2)-PMMS. In order to
achieve (3/2)-PMMS, at least one of em−3, em−2, em−1, em has to be assigned to
someone other than agent 1, and so the social cost of a (3/2)-PMMS allocation is
at least 1/m + 3ε, resulting in an unbounded price of (3/2)-PMMS when ε→ 0. !

In the context of goods allocation, Barman et al. [22] present an asymptot-
ically tight price of EF1, O(√n). However, as shown by Proposition 3.6.5, when
allocating chores, the price of EF1 is infinite, which shows a sharp contrast between
goods and chores allocation.

We are now left with MMS fairness. Let us first provide upper and lower
bounds on the price of MMS.

Proposition 3.6.6. When agents have additive cost functions, for n ≥ 3, the price
of MMS is at most n2 and at least n/2.

Proof. We first prove the upper bound part. For any instance I, if the minimum
social cost of I is no more than 1/n, then by Lemma 3.2.1, every optimal allocation
is MMS fair. Thus, we can further assume that the minimum social cost of I is
larger than 1/n. Note that the maximum social cost of an allocation is n and thus
the upper bound of n2 is straightforward.

For the lower bound, consider an instance I with n agents and n + 1 chores
E = {e1, . . . , en+1}. For agent i = 2, . . . , n, ci(e1) = ci(e2) = 1/2 and ci(ej) = 0
for any j ≥ 3. As for agent 1, c1(e1) = 1/n, c1(e2) = ε, c1(e3) = 1/n − ε and
c1(ej) = 1/n for any j ≥ 4 where ε > 0 is arbitrarily small. It is not hard to
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verify that MMS1(n, E) = 1/n and MMSi(n, E) = 1/2 for i ≥ 2. In any optimal
allocation O = (O1, . . . , On), the first two chores are assigned to agent 1 and each
of the remaining chores is assigned to agents having cost zero. Thus, we have
the minimum social cost is equal to 1/n + ε. However, in an utilitarian welfare-
maximizing allocation O, we have c1(O1) > MMS1(n, E) = 1/n. In order to achieve
MMS, agent 1 can not receive both chores e1 and e2, and so at least one of them
has to be assigned to the agent other than agent 1. As a result, the social cost of an
MMS allocation is at least 1/2 + ε, which implies that the price of MMS is at least
n/2 as ε→ 0. !

As mentioned earlier, the existence of MMS fair allocation is not guaran-
teed. So we also provide an asymptotically tight price of 2-MMS, whose existence
is guaranteed for any instance with additive cost functions.

Proposition 3.6.7. When agents have additive cost functions, for n ≥ 3, the price
of 2-MMS is at least (n + 3)/6 and at most n, asymptotically tight Θ(n).

Proof. We first prove the upper bound. By Proposition 3.3.4, we know that an EF1
allocation is also 2n−1

n -MMS (also 2-MMS). As we mentioned earlier, the round-robin
algorithm always output EF1 allocations. Consequently, given any instance I, the
allocation returned by round-robin is also 2-MMS. In the following, we incorporate
the idea of expectation in probability theory and show that there exists an order of
round-robin such that the output allocation has social cost at most 1.

Let σ be a uniformly random permutation of {1, . . . , n} and A(σ) = (A1(σ),
. . . , An(σ)) be the allocation returned by round-robin based on the order σ. Clearly,
each element Ai(σ) is a random variable. Since σ is chosen uniformly random, the
probability of agent i on j-th position is 1/n. Fix an agent i, we assume ci(e1) ≤
ci(e2) ≤ · · · ≤ ci(em). If agent i is in j-th position of the order, then his cost is
at most ci(ej) + ci(en+j) + · · · + ci(e, m−j

n -n+j). Accordingly, his expected cost is

at most ∑n
j=1

1
n

∑, m−j
n -

l=0 ci(eln+j). Thus, we have an upper bound of the expected
social cost,

E[UW(A(σ))] ≤
n∑

i=1

n∑

j=1

1
n

, m−j
n -∑

l=0
ci(eln+j) = 1

n

n∑

i=1
ci(E) = 1.

Therefore, there exists an order such that the social cost of the output is at most
1. Note that for any instance I, if the minimum social cost of I is at most 1/n,
then any optimal allocations are also MMS. Thus, we can further assume that the
minimum social cost of I is larger than 1/n, and accordingly, the price of 2-MMS

51



is at most n.
For the lower bound, consider an instance I with n agents and a set E =

{e1, . . . , en+3} of n + 3 chores. The cost function of agent 1 is: c1(e1) = c1(e2) =
1/n− ε, c1(e3) = 3ε, c1(e4) = c1(e5) = ε, c1(e6) = 1/n− 3ε where ε > 0 is arbitrarily
small, and c1(ej) = 1/n for any j > 6 (if exists). For agent i = 2, . . . , n, his cost is:
ci(ej) = 1/3 for any j ∈ [3] and ci(ej) = 0 for j ≥ 4. It is not hard to verify that
MMS1(n, E) = 1/n and MMSi(n, E) = 1/3 for any i ≥ 2. In a social cost-minimizing
allocation O = (O1, . . . , On), the first three chores are assigned to agent 1 and all rest
chores are assigned to agents having cost zero on them. Thus, we have the minimum
social cost is equal to 2/n + ε. However, note that 2/n + ε = c1(O1) > 2MMS1(n, E)
holds, and so agent 1 violates 2-MMS. In order to achieve a 2-MMS fair allocation,
agent 1 can not receive all first three chores, and so at least one of them has to be
assigned to the agent other than agent 1. As a result, the social cost of a 2-MMS
fair allocation is at least 1/3 + 1/n + 2ε, yielding that the price of 2-MMS is at least
n/6 + 1/2. Combing lower and upper bound, the price of 2-MMS is Θ(n) !

3.7 Price of Fairness beyond Additive Setting

In this section, we study the price of fairness when agents have submodular cost func-
tions. Note that for those fairness notions whose prices of fairness are unbounded in
the additive setting, the efficiency loss would still be unbounded in the submodular
setting. As a consequence, for most notions, it suffices to study its price of fairness
in the case of two agents. Recall that, when studying a specific fairness notion,
we only consider instances for which allocations satisfying the underlying fairness
notion do exist. All results established in this section remain true if agents have
subadditive cost functions.

Proposition 3.7.1. When n = 2 and agents have submodular cost functions, if an
EFX allocation exists, the price of EFX is at least 3 and at most 4.

Proof. We first prove the upper bound. For an instance I, let O = (O1, O2) be
an optimal allocation, and without loss of generality, we assume c1(O1) ≤ c2(O2).
Since c2(·) is submodular and also subadditive, then ci(Oi)+ ci(O3−i) ≥ ci(E) holds
for i ∈ [2]. If c1(O1) ≤ c2(O2) ≤ 1/2, then ci(O3−i) ≥ ci(E)− ci(Oi) ≥ 1/2 ≥ ci(Oi)
holds for i ∈ [2]. Accordingly, allocation O is already EFX and we are done. Thus,
without loss of generality, we can further assume c2(O2) > 1/2. Note that the social
cost of an allocation is at most 2, and so the price of EFX is at most 4.
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As for the lower bound, let us consider an instance with a set E = {e1, e2, e3}
of three chores. The cost function of agent 1 is: c1(e1) = 1/2, c1(e2) = 1/2 −
ε, c1(e3) = ε and for any S ⊆ E, c1(S) = ∑

e∈S c1(e) where ε > 0 is arbitrarily small.
The cost function of agent 2 is: c2(e1) = 1 − ε, c2(e2) = 3ε, c2(e3) = 1 − 2ε and
for any S ⊆ E, c2(S) = min{

∑
e∈S c2(e), 1}. Function c1(·) is additive and hence

clearly monotone and submodular. For function c2(·), since ∑
e∈S c2(e) is additive

(also monotone and submodular) on S, it follows that c2(·) is also monotone and
submodular (see Footnote 4).

For this instance, the social cost-minimizing allocation is O = (O1, O2) with
O1 = {e1, e3} and O2 = {e2}, having a social cost 1/2+4ε. But due to c1(O1\{e3}) =
1/2 > 1/2− ε = c1(O2), agent 1 violates EFX in O. In an EFX allocation, agent 2
can not receive the whole E or {e1, e3} or {e1, e2}. Thus, the EFX allocation with
the smallest social cost is A1 = {e2, e3} and A2 = {e1}, yielding social cost 3/2− ε.
As a consequence, the price of EFX is at least 3/2−ε

1/2+4ε → 3 as ε→ 0. !

Proposition 3.7.2. When n = 2 and agents have submodular cost functions, if an
EF1 allocation exists, the price of EF1 is at least 2 and at most 4.

Proof. For the upper bound part, similar to the proof of Proposition 3.7.1, we can
without loss of generality assume c1(O1) ≤ c2(O2) and c2(O2) > 1/2; otherwise, O
is already EF1. Note that the social cost of an allocation is at most 2, and so the
price of EF1 is at most 4.

As for the lower bound, let us consider an instance I with a set E =
{e1, e2, e3} of three chores. The cost function of agent 1 is: c1(e1) = 1/3 + ε,
c1(e2) = 1/3, c1(e3) = 1/3− ε and for any S ⊆ E, c1(S) = ∑

e∈S c1(e) where ε > 0
is arbitrarily small. The cost function of agent 2 is: c2(e1) = 1 − ε, c2(e2) = 1 − ε,
c2(e3) = ε and for any S ⊆ E, c2(S) = min{

∑
e∈S c2(e), 1}. Function c1(·) is addi-

tive and clearly monotone and submodular. For function c2(·), since ∑
e∈S c2(e) is

additive (also monotone and submodular) on S, it follows that c2(·) is also monotone
and submodular (see Footnote 4).

For this instance, the social cost-minimizing allocation is O = (O1, O2) with
O1 = {e1, e2} and O2 = {e3}, having a social cost 2/3+2ε. But since mine∈O1 c1(O1\
{e}) = 1/3 > 1/3 − ε = c1(O2), agent 1 violates EF1 under allocation O. In an
EF1 allocation, agent 2 can not receive all chores and can not receive both e1, e2,
either. Thus, the EF1 allocation with the minimum social cost is A = (A1, A2) with
A1 = {e2} and A2 = {e1, e3}, and UW(A) = 4/3. As a consequence, the price of
EF1 is at least 4/3

3/2+2ε → 2 as ε→ 0. !
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Proposition 3.7.3. When n = 2 and agents have submodular cost functions, if an
PMMS fair allocation exists, the price of PMMS is 3.

Proof. According to Lemma 3.2.1, MMSi(2, E) ≥ 1/2 holds for any i ∈ [2]. Given
an instance I and an allocation O with minimum social cost, we can assume that
allocation O is not MMS and without loss of generality, agent 2 violates the condition
of MMS. Let A be an MMS fair allocation. Due to c2(A2) ≤ MMS2(2, E) < c2(O2),
we have

c1(A1) + c2(A2)
c1(O1) + c2(O2) <

c1(A1) + MMS2(2, E)
MMS2(2, E) ≤ 3,

where the last inequality transition is due to c1(A1) ≤ 1 and MMS2(2, E) ≥ 1/2.
As for the lower bound, let us consider an instance I with a set E =

{e1, e2, e3} of chores. The cost function of agent 1 is: c1(e1) = 1/2, c1(e2) = 1/2− ε,
c1(e3) = ε and for S ⊆ E, c1(S) = ∑

e∈S c1(e). The cost function of agent 2 is:
c2(e1) = 1 − 2ε, c2(e2) = 10ε, c2(e3) = 1 − 3ε, c2(e1 ∪ e2) = 1, c2(e1 ∪ e3) = 1,
c2(e2 ∪ e3) = 1 − ε, c2(E) = 1 where ε > 0 is arbitrarily small. Function c1(·) is
additive and hence monotone and submodular. It is not hard to verify c2(·) is mono-
tone. Suppose c2(·) is not submodular, and accordingly, there exists S " T ⊆ E

and e ∈ E \ T such that c2(T ∪ {e}) − c2(T ) > c2(S ∪ {e}) − c2(S). Since c2(·) is
monotone, we have c2(S ∪ {e}) − c2(S) ≥ 0 implying c2(T ∪ {e}) − c2(T ) > 0. If
|T | = 2, the only possibility is T = e2 ∪ e3 and adding e1 to T has margin ε. But for
any S " T the margin of adding e1 to S is larger than ε, a contradiction. If |T | = 1,
then c2(S ∪ {e}) − c2(S) = c2(e) that is the largest margin of adding item e to a
subset, a contradiction. Thus, function c2(·) is also submodular.

For this instance, the partition {{e1}, {e2, e3}} defines MMS1(2, E) = 1/2,
and {{e1}, {e2, e3}} defines MMS2(2, E) = 1 − ε. The social cost-minimizing allo-
cation is O = (O1, O2) with O1 = {e1, e3} and O2 = {e2}, and has social cost
UW(O) = 1/2 + 11ε. But c1(O1) = 1/2 + ε > MMS1(2, E), and thus O is not MMS.
Observe that in an MMS allocation, agent 2 can only receive either a single chore
or {e2, e3}. The MMS allocation with minimum social cost is A with A1 = {e2, e3}
and A2 = {e1} whose social cost is equal to 3/2 − 2ε. As a consequence, the price
of MMS is at least 3/2−2ε

1/2+11ε → 3 as ε→ 0. !

Proposition 3.7.4. When n = 2 and agents have submodular cost functions, if a
(3/2)-PMMS fair allocation exists, the price of (3/2)-PMMS is at least 4/3 and at
most 8/3.

Proof. We first prove the upper bound. According to Lemma 3.2.1, MMSi(2, E) ≥
1/2 holds for any i ∈ [2]. Given an instance I, let O = (O1, O2) be an social
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cost-minimizing allocation of I, and without loss of generality, we assume c1(O1) ≤
c2(O2). Moreover, we can assume c2(O2) > 3/4; otherwise O is already a (3/2)-
PMMS fair allocation and we are done. Note that the social cost of an allocation is
at most 2, and so the price of (3/2)-PMMS is at most 8/3.

As for the lower bound, let us consider an instance with a set E = {e1, e2, e3,

e4} of four chores. Throughout this proof, ε > 0 is arbitrarily small. The cost
function of agent 1 is: c1(e1) = 3/8, c1(e2) = 3/8 + ε, c1(e3) = 1/8− ε, c1(e4) = 1/8
and for S ⊆ E, c1(S) = ∑

e∈S c1(e). The cost profile of agent 2 is: c2(e1) = c2(e2) =
1 − ε, c2(e3) = c2(e4) = ε and for S ⊆ E, c2(S) = min{

∑
e∈S c2(e), 1}. Function

c1(·) is additive and hence monotone and submodular. For function c2(·), since
∑

e∈S c2(e) is additive (also monotone and submodular) on S, it follows that c2(·) is
also monotone and submodular (see Footnote 4).

For the quantity of MMS, the partition {{e1, e4}, {e2, e3}} defines MMS1(2, E)
= 1/2, and any allocation defines MMS2(2, E) = 1. The social cost-minimizing al-
location is O with O1 = {e1, e2} and O2 = {e3, e4} whose social cost is equal to
UW(O) = 3/4+3ε. But due to c1(O1) = 3/4+ ε > 3/2MMS1(2, E), agent 1 violates
(3/2)-PMMS fairness under O. Note agent 1 can not receive both e1 and e2, one
can check that the (3/2)-PMMS allocation with minimum social cost assigns all
chores to agent 2, yielding a social cost exactly 1. As a consequence, the price of
(3/2)-PMMS is at least 1

3/4+3ε →
4
3 as ε→ 0. !

Proposition 3.7.5. When n = 2 and agents have submodular cost functions, the
price of 2-MMS is 1.

Proof. According to Lemma 3.2.2, the allocation with minimum social cost is also
2-MMS fairness, completing the proof. !

Proposition 3.7.6. When n ≥ 3 and agents have submodular cost functions, the
price of 2-MMS is at least (n + 3)/6 and at most n2/2.

Proof. The lower bound directly follows from the instance constructed in Propo-
sition 3.6.7. As for the upper bound, given any social cost-minimizing allocation
O, if maxi∈[n] ci(Oi) ≤ 2/n, then due to MMSi(n, E) ≥ 1/n from Lemma 3.2.1, we
have ci(Oi) ≤ 2MMSi(n, E) for any i ∈ [n]. This implies allocation O is 2-MMS
fairness and we are done. Thus, we can without loss of generality assume that
maxi∈[n] ci(Oi) > 2/n. Note the social cost of an allocation is at most n due to the
normalization cost functions, so the price of 2-MMS is at most n2/2. !
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3.8 Conclusions

In this chapter, we are concerned with fair allocations of indivisible chores among
agents under the setting of both additive and submodular (subadditive) cost func-
tions. First, under the additive setting, we have established pairwise connections
between several (additive) relaxations of the envy-free fairness in allocating, which
look at how an allocation under one fairness criterion provides an approximation
guarantee for fairness under another criterion. Some of our results in that part
are in sharp contrast to what is known in allocating indivisible goods, reflecting
the difference between goods and chores allocation. We have also extended to the
submodular setting and investigated the connections between these fairness crite-
ria. Our results have shown that, under the submodular setting, the interesting
connections we have established under the additive setting almost disappear and
few non-trivial approximation guarantees exist. Then we have studied the trade-off
between fairness and efficiency, for which we have established the price of fairness
for all these fairness notions in both additive and submodular settings. We hope our
results have provided an almost complete picture for the connections between these
chores fairness criteria together with their individual efficiencies relative to social
optimum.
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Chapter 4

Equitability and Welfare
Maximization for Allocating
Indivisible Items1

4.1 Introduction

Fairness and efficiency are two fascinating goals in resource allocation problems, and
there exists a subtle competition between them. It is known that there is a trade-off
between fairness and efficiency, i.e., optimization on one notion may lead to bad
performance on the other. The PoF results established in Chapter 3 are evidence
supporting that achieving envy-based and share-based fairness notions inevitably
yields efficiency loss. In this chapter, we carry on this line of research and focus
on another canonical fairness notion, equitability. In an equitable (EQ) allocation,
agents should receive the same level of value. Equitability acts as an interpersonal
fairness criterion, while envy-based fairness criteria considered in Chapter 3 are
proposed in an intrapersonal manner. As shown by experiments, the interpersonal
criterion acts as cognitive fairness more often than the intrapersonal criterion when
facing distribution problems [62, 63, 76]. When assigning indivisible items, the
existence of EQ allocations is not guaranteed, which then motivates us to study two
of its relaxations: EQ1 and EQX. As shown by Freeman et al. [66] and by Freeman
et al. [67], EQ1 and EQX allocations always exist in both settings of goods and
chores if agents’ valuations are additive.

We, in this chapter, care about both utilitarian and egalitarian welfare. More-
1This chapter is based on a research article by Sun et al. [100]
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over, as we have argued in Chapter 3, results established in the case of goods do
not necessarily hold for chores, and vice versa. Accordingly, it is worthwhile to
investigate both cases of goods and chores, and as we will see later on, this chap-
ter’s results reveal both similarities and differences between the allocations of goods
and chores. Besides quantifying efficiency loss under fairness constraints, we also
consider algorithmic problems regarding the relationship between fairness and effi-
ciency. In particular, we are interested in determining whether there exists a fair
allocation that achieves optimal social welfare. On the one hand, a positive answer
dramatically narrows down the search space of desired allocations, making it possi-
ble to compute and choose such an allocation in practice efficiently. On the other
hand, a negative answer implies that some realistic relaxations on one of or both
criteria are needed. The main tasks of this chapter are to establish the prices of EQ1
and of EQX, and to decide whether there exists an EQ1/EQX allocation that also
achieves the maximum utilitarian or egalitarian welfare. Furthermore, we study the
computational complexity of computing a welfare maximizer among all EQ1/EQX
allocations.

The results on the price of fairness are summarized in Table 4.1. We highlight
a subset of these next. In chores allocation, the price of EQX and of EQ1 with
respect to utilitarian and egalitarian welfare are both infinite. In goods allocation,
the price of EQX and of EQ1 with respect to egalitarian welfare are both 1. For
utilitarian welfare, if there are two agents, the price of EQX is 3/2 and the price of
EQ1 is at least 6/5 and at most (

√
2 + 1)/2. For general n agents, the price of EQX

and of EQ1 are both at least n− 1 and at most 3n, asymptotically tight Θ(n).

EQX EQ1

Utilitarian

n = 2: 3
2 (T4.2.4) n = 2:

[
6
5 ,

√
2+1
2

]
(T4.2.5)

Goods
n ≥ 3: [n− 1, 3n] (T4.2.6) n ≥ 3: [n− 1, 3n] (T4.2.6)

∞ (T4.2.3) ∞ (T4.2.3) Chores

Egalitarian
1 (T4.2.1) 1 (T4.2.1) Goods
∞ (T4.2.2) ∞ (T4.2.2) Chores

Note: Interval [a, b] means that the lower bound is equal to a and upper bound is equal to b. Tx.y

points to Theorem x.y.
Table 4.1: Prices of fairness

After quantifying the welfare loss under fair allocations, we investigate re-
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laxed equitability and welfare maximization from the algorithmic perspective. When
concerning egalitarian welfare in goods allocation, results on the price of fairness
show that there exist EQX and EQ1 allocations that achieve optimal egalitarian
welfare. We then prove that, on the contrary, when assigning chores, deciding the
existence of an EQX (resp., EQ1) allocation that also maximizes the egalitarian
welfare is strongly NP-hard for general n and NP-hard for fixed n ≥ 2 (resp., n ≥ 3).
For optimization problems, we show that computing an EQX (or EQ1) allocation
with the maximum egalitarian welfare is strongly NP-hard for general n and NP-
hard for fixed n ≥ 2 in both cases of goods and chores. Moreover, in the case of
fixed n, we design pseudo-polynomial time algorithms that output an EQX or EQ1
allocation with the maximum egalitarian welfare.

On the other hand, when focusing on utilitarian welfare, the computational
complexity in allocating goods and chores is identical. In particular, for general n,
every decision or optimization problem is strongly NP-complete and strongly NP-
hard, respectively. For fixed n, our results are summarized in Table 4.2. The first
column of Table 4.2 contains the (decision/optimization) problem descriptors. We
denote by “E(W×F )” the problem of deciding whether there exists an F allocation
that also maximizes W among all allocations, and denote by “C(W/F )” the problem
of computing an F allocation that maximizes W among all F allocations. The notion
of W refers to the welfare function, and the first row of Table 4.2 introduces the
welfare function under consideration.

UW Goods/Chores EW Goods EW Chores
n = 2 n ≥ 3 n ≥ 2 n = 2 n ≥ 3

E(W×EQ1) P (T4.3.11)
NP-complete (T4.3.9) P (T4.2.1) ? NP-hard (T4.3.14)
pseudo-poly (T4.4.5) pseudo-poly (T4.4.3 & 4.4.6)

C(W/EQ1) NP-hard (T4.3.12) NP-hard (T4.3.15)
pseudo-poly (T4.4.4) pseudo-poly (T4.4.1 & 4.4.4)

E(W×EQX) NP-complete (T4.3.7) P (T4.2.1) NP-hard (T4.3.13)
pseudo-poly (T4.4.5) pseudo-poly (T4.4.3 & 4.4.6)

C(W/EQX) NP-hard (T4.3.8) NP-hard (T4.3.15)
pseudo-poly (T4.4.4) pseudo-poly (T4.4.2 & 4.4.4)

Note: The problem descriptors in the first column are defined in detailed at the beginning of
Section 4.3. Abbreviations “UW” and “EW” refer to utilitarian welfare and egalitarian welfare,
respectively. Abbreviation “Tx.y” points to Theorem x.y. The complexity of E(EW×EQ1) for
allocating chores to two agents is open.

Table 4.2: Computational complexity for fixed n
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4.1.1 Related Works

The notion of equitable allocation is originally studied in the cake-cutting problem
(a divisible item) and its existence has been proved to be guaranteed by Dubins and
Spanier [61]. For indivisible items, Gourvès et al. [73] relax equitability based on
the up to one item scheme and prove the existence of this relaxed equitability in
the matroid context. The notions of EQX and EQ1 are formally defined by Free-
man et al. [66] that study these two fairness criteria together with Pareto efficiency
and envy-freeness. They answer the existence and computational complexity of a
sequence of related problems. In chores allocation, Freeman et al. [67] also consider
EQX and EQ1 together with Pareto efficiency and answer corresponding existence
and computation problems. Additional work on equitable allocations imposes con-
nectivity constraints; each item is placed in a vertex of a graph and the bundle
received by agents must be connected. Bouveret et al. [39] consider assigning chores
in the path, star, and complete graph and establish results on the complexity of the
existence of equitable and other fair allocations. None of the above-mentioned work
studies these two fairness notions together with another important objective, social
welfare.

Study on fairness together with social welfare is considerably intensified re-
cently [30, 31, 47]. To quantify the efficiency loss under fairness requirements, Cara-
giannis et al. [47] introduce the price of fairness and study the notion of envy-freeness,
proportionality, and equitability in divisible and indivisible goods and chores. In the
case of indivisible goods, Bei et al. [28] consider fairness notions whose existences are
guaranteed and provide characterizations on their price of fairness. They present
lower bound Ω(√n) and upper bound O(n) on the price of envy-free up to one
item, and this gap is then closed by Barman et al. [22], who show that the price of
envy-free up to one item and of (1/2)-approximate maximin share are both Θ(√n).
When assigning indivisible chores, Section 3 provides tight results on several fairness
notions that are proposed as relaxation of envy-freeness. The notion of the price of
fairness is also applied to more practical topics such as kidney exchange [59] and
machine scheduling [1, 33]. One of the papers closest to ours is Aziz et al. [17], which
focuses on the notion of (relaxed) envy-freeness and proportionality. The authors
study in the setting of goods the computational complexity of computing fair and
welfare-maximizing allocations. They also briefly discuss the adaptability of their
approach to other notions of fairness. In addition, the relationship between fairness
and social welfare has been recently investigated in the online setting [35, 72, 105].
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4.2 Results on Price of Fairness

We start with studying the price of fairness for every possible pair of welfare function
and fairness criterion, which also answers the question of the existence of a nearly
equitable allocation that approximates a welfare maximizer. Intuitively, if the price
of fairness with respect to fairness criterion F and welfare function W is 1, then in
any instance I, there exists an F allocation that achieves OPTW (I).

4.2.1 With respect to Egalitarian Welfare

First we are concerned with egalitarian welfare in both cases of goods and chores, and
provide tight results that also reveal differences between goods and chores allocation.
Freeman et al. [66] state that leximin implies EQX in allocating goods when agents
have a strictly positive value on every item, while leximin fails to guarantee EQX
when some items are valued at 0. Below, we prove that EQX (or EQ1) is compatible
with optimal egalitarian welfare, even dropping the requirement of strictly positive
values of all items.

Theorem 4.2.1. When allocating goods, the price of EQX and of EQ1 with respect
to egalitarian welfare are both equal to 1.

Proof. Since EQX is stricter than EQ1, it suffices to show the statement holds for
EQX. We explicitly construct such an allocation A = (A1, . . . , An) as follows.

A first maximizes the egalitarian welfare among all allocations. If there is a
tie, A minimizes the number of agents who receive the value EW(A), and
subject to that, maximizes the total number of items assigned to all agents
who receive the value EW(A).

By construction, it is straightforward to see that A is an egalitarian-welfare max-
imizing allocation. If allocation A is EQX, then clearly the theorem statement
holds.

Next, we focus on the case where A is not EQX. Without loss of generality,
assume v1(A1) ≤ · · · ≤ vn(An). Note that if v1(A1) ≥ vj(Aj \ {e}) holds for all j

and e ∈ Aj with vj(e) > 0, then allocation A is EQX, a contradiction. Thus, agent 1
must violate EQX. Let J be the set of agents such that agent 1 violates EQX when
compared to agent j ∈ J . For each j ∈ J , order goods as Aj = {ej1 , . . . , ej|Aj |}
with vj(ejk) ≤ vj(ejk+1). We claim that vj(ej1) > 0 holds; otherwise, reassigning ej1

to agent 1 results in another allocation satisfying one of the following properties: (1)
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the egalitarian welfare is larger than EW(A); (2) the number of agents receiving the
value EW(A) is one less than that of A; (3) the total number of items assigned to all
agents with the value EW(A) is one more than that of A. For each j ∈ J , since agent
1 violates EQX when comparing to agent j, it holds that v1(A1) < vj(Aj \{ej1}), and
accordingly, there exists an index l ≥ 1 such that vj(Aj \ {ej1 ∪ · · · ∪ ejl}) > v1(A1)
and vj(Aj \ {ej1 ∪ · · · ∪ ejl+1}) ≤ v1(A1). We then refer bundle {ej1 , . . . , ejl} as Sj ,
and clearly, for each j ∈ J , one can construct the corresponding non-empty set Sj .
Moreover, we claim that v1(Sj) = 0 for each j ∈ J ; otherwise, reassigning Sj to
agent 1 results in another allocation that either has egalitarian welfare larger than
EW(A) or has one less agent receiving the value EW(A) compared to that of A. We
then consider the allocation A′ with A′

1 = (⋃
j∈J Sj) ∪ A1, A′

j = Aj \ Sj for j ∈ J
and A′

j = Aj for other j. Due to the construction of J and {Sj}j∈J , allocation
A′ achieves the optimal egalitarian welfare, and moreover, the number of agents
receiving the value EW(A) in A′ is the same as that of A. However, in allocation
A′, the total number of items assigned to all agents who receive value EW(A) is
∑

j∈J |Sj | more than that of A, which contradicts the definition of allocation A as
Sj is non-empty for each j ∈ J . Therefore, allocation A must satisfy EQX. !

We remark that the allocation A constructed in the proof of Theorem 4.2.1
is not necessarily leximin. To see this, consider Example 1 in Freeman et al. [66].
There are three agents and a set E = {e1, . . . , e6} of six goods. The goods e1, e2, e3

are valued at 1 by agent 1 and 0 by agents 2 and 3. The goods e4, e5, e6 are valued
at 1 by agents 2 and 3 and at 0 by agent 1. In the constructed allocation, one
of e1, e2, e3 is assigned to agent 2 or agent 3, so that the total number of items
received by the agents with value 1 is maximized. However, in leximin allocations,
all e1, e2, e3 must be assigned to agent 1.

Theorem 4.2.2. When allocating chores, the price of EQX and of EQ1 with respect
to egalitarian welfare are both infinite.

Proof. Note that EQX is stricter than EQ1, and it suffices to prove the statement
for EQ1. Let us consider a fair-chores instance with n ≥ 2 agents and a set E =
{e1, . . . , em+1} of m + 1 chores with m ≥ n. The valuations are shown in Table 4.3,
where V > 0 is arbitrarily large.

Items e1 e2 · · · em em+1
v1(·) − 1

V − 1
V · · · − 1

V −V −m
V

vi(·) for i ≥ 2 −2V −1
2mV −2V −1

2mV · · · −2V −1
2mV − 1

2V

Table 4.3: The fair-chores instance for Theorem 4.2.2
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Since V is arbitrarily large, we have −m/V > −1/m + 1/(2mV ), and so, the
unique EWM assigns the first m items to agent 1 and em+1 to any agent i with
i ≥ 2, yielding the maximum egalitarian welfare −m/V . But in this allocation,
agent 1 violates EQ1 because she still receives less value even eliminating one chore
from her bundle. Then, to achieve EQ1, agent 1 cannot receive all the first m items,
and thus, the egalitarian welfare of an EQ1 allocation is at most −1/m + 1/(2mV ),
based on which the price of EQ1 is at least V/m2 − 1/(2m2) that approaches to
positive infinity as V → +∞. !

According to Theorems 4.2.1 and 4.2.2, in goods allocation, both EQX and
EQ1 are compatible with EWM, while in chores allocation, achieving EQX or EQ1
sacrifices most of the egalitarian welfare.

4.2.2 With respect to Utilitarian Welfare

On utilitarian welfare, we establish the price of fairness for each of EQX and EQ1.
A sharp contrast between goods and chores is also revealed by the results below.
Specifically, EQX/EQ1 allocations can provide a bounded welfare guarantee relative
to the optimal one in goods allocation, while in the case of chores, the price of fairness
is infinite.

Theorem 4.2.3. When allocating chores, the price of EQX and of EQ1 with respect
to utilitarian welfare are both infinite.

Proof. Note that EQX is stricter than EQ1, and so it suffices to prove that the
statement holds for EQ1. Again, we consider the instance constructed in the proof
of Theorem 4.2.2. Since V is arbitrarily large, we have −1/V > −1/m + 1/(2mV )
and −1/(2V ) > −1 + m/V , and as a consequence, in a UWM allocation, the first
m items are assigned to agent 1 and em+1 is assigned to agent i with i ≥ 2, yielding
the maximum utilitarian welfare −(2m + 1)/(2V ). But in such an allocation, agent
1 violates EQ1 because she still receives less value even eliminating one chore from
her bundle. Then, to achieve EQ1, agent 1 cannot receive all the first m items, and
thus, the utilitarian welfare of an EQ1 allocation is at most −1/m+1/(2mV ), based
on which the price of EQ1 is at least (2V − 1)/(2m2 + m)→ +∞ as V → +∞. !

When moving to the case of goods, we distinguish between two cases: n = 2
and general n ≥ 3, and provide (asymptotically) tight results on the price of fairness.

Theorem 4.2.4. When allocating goods to two agents, the price of EQX with re-
spect to utilitarian welfare is equal to 3/2.
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Proof. In the proof of Theorem 4.2.1, we show that, for any instance I, there exists
an EQX allocation achieving the maximum egalitarian welfare. Let A be such an
EQX allocation, and without loss of generality, assume v1(A1) ≤ v2(A2). Thus,
the maximum egalitarian welfare is v1(A1) and the maximum utilitarian welfare
is at most 1 + v1(A1). Consider another allocation A′ with A′

1 = A2 and A′
2 =

A1. Since A achieves the maximum egalitarian welfare, we must have v1(A1) ≥
min{v1(A2), v2(A1)}, and accordingly, v1(A1) ≥ v2(A1) implies v1(A1) + v2(A2) ≥ 1
due to the normalized valuations; v1(A1) ≥ v1(A2) also implies v1(A1) + v2(A2) ≥ 1
due to v1(A1) ≤ v2(A2) and the normalized valuations. Hence, we have UW(A) ≥
max{2v1(A1), 1}. Recall that the maximum utilitarian welfare of I is at most 1 +
v1(A1), then for any 0 ≤ v1(A1) ≤ 1, we have

Price of EQX ≤ 1 + v1(A1)
max{2v1(A1), 1} ≤

3
2 .

For the lower bound, let us consider a fair-goods instance with two agents and
a set E = {e1, e2, e3} of three goods. The valuations are shown in Table 4.4, where
ε > 0 is arbitrarily small. A utilitarian welfare-maximization allocation assigns e1

Items e1 e2 e3
v1(·) 1

2
1
2 − ε ε

v2(·) 1
2 ε 1

2 − ε

Table 4.4: The fair-goods instance for Theorem 4.2.4

to an arbitrary agent and e2, e3 to agent 1 and agent 2, respectively, which leads to
an optimal utilitarian welfare 3/2 − 2ε. But in such an allocation, the agent who
does not receive e1 violates EQX, and so, in any EQX allocations, one agent only
receives e1 and the other agent receives the remaining two goods, yielding utilitarian
welfare exactly 1. Therefore, the price of EQX is at least 3/2− 2ε→ 3/2 as ε→ 0.
!

Before we state our result on the price of EQ1 in Theorem 4.2.5, we first
present Algorithm 2, which uses Algorithm 3 as a subroutine and outputs an EQ1
allocation with utilitarian welfare guarantee at least 2/(

√
2+1) times the maximum

one. Intuitively, given a fair-goods instance I, Algorithm 2 first checks whether a
specific partial allocation, in which some items are assigned to the agent having the
larger value, can be extended to an EQ1 allocation. If yes, it implements Algorithm 3,
a subroutine where in each turn, let the agent with the smallest current value pick
the item of the highest value from the remaining, and makes the partial allocation a
complete EQ1 allocation with the maximum utilitarian welfare. If the answer is no,
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to achieve EQ1, Algorithm 2 orders the items in a way similar to that of Algorithm 1,
and carefully reassigns some items from the bundle of the agent with the larger value
to the other agent, while avoiding as much welfare loss as possible. For simplicity,
in the description of Algorithm 2 and its proof we write L(k) := {e1, . . . , ek} and
R(k) := {ek, . . . , em} for any k ∈ [m].

Algorithm 2
Input: A fair-goods instance I = 〈[2], E, V〉.
Output: Allocation A of instance I.

1: Partition E = E0 ∪ E1 ∪ E2 where E1 = {e ∈ E | v1(e) > v2(e)} and E2 = {e ∈
E | v1(e) < v2(e)} (assume v1(E1) ≤ v2(E2) and the other case is symmetric).

2: if v1(E1 ∪ E0) ≥ min
e∈E2

v2(E2 \ {e}) then
3: A← Greedy((E1, E2), I);
4: else
5: Order goods such that v1(e1)

v2(e1) ≤
v1(e2)
v2(e2) ≤ · · · ≤ v1(em)

v2(em) , break ties arbitrarily.
For good e with v1(e) = 0, put it at the front and good e with v2(e) = 0 at
back;

6: Add two virtual items e0, em+1 with vi(e0) = vi(em+1) = 0,∀i = 1, 2;
7: Let index s be the one such that v2(es) > v1(es) and v2(es+1) ≤ v1(es+1).
8: Find the maximum index f < s such that v2(L(f)) ≤ v1(R(f + 2));
9: A1 ← R(f + 2), A2 ← L(f + 1);

10: end if
11: return A

Algorithm 3 Greedy (A′, I)
Input: An instance I = 〈[n], E, V〉 and a partial allocation A′ of I;
Output: A complete allocation A of instance I;

1: Initialize E ← E \
⋃

i∈[n] A′
i and Ai ← A′

i for i ∈ [n].
2: while E ,= ∅ do
3: i← arg min

i∈[n]
|vi(Ai)|, break ties arbitrarily;

4: e← arg max
e′∈E

vi(e′);
5: Update Ai ← Ai ∪ {e} and E ← E \ {e};
6: end while
7: return allocation A.

Lemma 4.2.1. Algorithm 2 always terminates and returns an EQ1 allocation.

Proof. If the condition of Step 2 in Algorithm 2 holds, then clearly Algorithm 2
terminates and allocation A is returned by Greedy with partial assignment (E1, E2).
For any i ∈ [2], let e(i) be the last good received by agent i in Greedy, and if Ai = Ei,
let e(i) = ∅. The following proof considers two cases. If A2 ∩ E0 = ∅, according to
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Greedy, we have v2(A2) ≥ v1(A1 \ {e(1)}), which implies agent 2 satisfies EQ1.
As for agent 1, from the Step 2 of Algorithm 2, we have v1(A1) = v1(E1 ∪ E0) ≥
mine∈E2 v2(E2 \{e}), and thus agent 1 also meets the condition of EQ1. For the case
of A2 ∩ E0 ,= ∅, we let A(i) be the allocation right after agent i receiving item e(i).
Then, according to Greedy, when agent 1 just receives e(1), it holds that v2(A2) ≥
v2(A(1)

2 ) ≥ v1(A(1)
1 \ {e(1)}) = v1(A1 \ {e(1)}), which implies that agent 2 satisfies

EQ1. Similarly, we have v1(A1) ≥ v1(A(2)
1 ) ≥ v2(A(2)

2 \ {e(2)}) = v2(A2 \ {e(2)}).
Then, agent 1 satisfies EQ1 under allocation A as well.

When Algorithm 2 goes to Step 5, since valuations are normalized and
v2(e0) = 0, the existence of f is guaranteed. According to the order and index
s, we have E2 = L(s) and E0 ∪ E1 = R(s + 1). Moreover, we can assume without
loss of generality s ≥ 2 because the condition of Step 2 would hold if s = 1. For index
f , if f = s−1, then v2(E2 \{es}) = v2(L(s−1)) ≤ v1(R(s+1)) = v1(E1∪E0) holds,
and this relationship satisfies the condition of Step 2, a contradiction. Thus, it must
hold that f ≤ s− 2. We then prove that allocation A constructed by Step 9 is EQ1.
For agent 1, she would not violate EQ1 since v1(A1) = v1(R(f + 2)) ≥ v2(L(f)) =
v2(A2 \ {ef+1}). As for agent 2, since f + 1 ≤ s− 1 and f + 1 is not chosen by Step
8, then we have v2(L(f +1)) > v1(R(f +3)), equivalent to v2(A2) > v1(A1 \{ef+2}).
Thus, agent 2 also satisfies EQ1. !

Theorem 4.2.5. When allocating goods to two agents, the price of EQ1 with respect
to utilitarian welfare is at least 6/5, and at most (

√
2 + 1)/2.

Proof. We start from the upper bound and consider the allocation A returned by
the Algorithm 2. Based on Lemma 4.2.1, it suffices to show that the UW(A) is at
least 2/(

√
2 + 1) times the maximum utilitarian welfare. If allocation A is returned

by Step 3 of Algorithm 2, according to Greedy, we have Ei ⊆ Ai for any i ∈ [2],
which implies UW(A) equals to the optimal utilitarian welfare. We then consider
the case where A is created by Step 9. Denote by O = (O1, O2) an allocation with
maximum utilitarian welfare. Clearly, Ei ⊆ Oi for any i ∈ [2]. Then, due to index
order in Step 5 and f ≤ s− 2, it holds that

v1(A2)
v2(A2) ≤

v1(O2)
v2(O2) ,

which then implies the following

v1(A1) ≥ 1− v2(A2)v1(O2)
v2(O2) .
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Recall f ≤ s−2, then we have O1 ⊆ R(f +3), which leads to v2(A2) = v2(L(f +1)) >

v1(R(f + 3)) ≥ v1(O1). Then, we have the following:

v1(A1) + v2(A2) ≥ 1 + (1− v1(O2)
v2(O2))v2(A2) ≥ 1 + (1− v1(O2)

v2(O2))v1(O1),

and equivalently,

v1(O1) + v2(O2)
v1(A1) + v2(A2) ≤

v1(O1) + v2(O2)
1 + v1(O1)(1− 1−v1(O1)

v2(O2) )
.

We observe that the right hand side is actually a function with two variables
v1(O1), v2(O2), and for simplicity, let v1(O1) = x, v2(O2) = y. As for the domain,
since the condition of Step 2 is not satisfied, then v2(O2) ≥ v2(E2) > v1(E1 ∪E0) ≥
v1(O1), implying y > x. Also, v2(O2) > v1(O2) = 1 − v1(O1) due to normalized
valuations. Therefore, we have y > max{x, 1 − x}. Let f(x, y) corresponds to the
right hand side of the above inequality, then we have its derivatives with respect to
y,

∂f(x, y)
∂y

= (1 + x)y2 + 2(x2 − x)y + x3 − x2

(1 + x(1− 1−x
y ))2y2 .

We then let g(x, y) = (1 + x)y2 + 2(x2 − x)y + x3 − x2, and its partial derivative
with respect to y is

∂g(x, y)
∂y

= 2(1 + x)y + 2x2 − 2x.

The root of equation ∂g/∂y = 0 is y = x−x2
1+x and inequality x−x2

1+x < x consistently
holds for any x ∈ [0, 1). Thus, for any x ∈ [0, 1), function g(x, y) is monotonically
increase in y. Accordingly, we have the following:

min
max{x,1−x}<y≤1

g(x, y) =
{

2x2(2x− 1), if x ≥ 1
2

(2x− 1)(x− 1), if x < 1
2

It is not hard to verify that g(x, y) ≥ 0 consistently holds, which implies that, for
any x ∈ [0, 1), f(x, y) is a monotonically increasing function of y. Then, to find the
maxima of f(x, y), we substitute y = 1, then by simple calculation, the maximum
value of f(x, 1) is equal to (

√
2 + 1)/2 which happens when x =

√
2− 1, completing

the proof for upper bound.
As for the lower bound, let us consider a fair-goods instance with two agents

and a set E = {e1, e2, e3} of three items. The valuations are shown in Table 4.5,
where ε > 0 is arbitrarily small. Suppose O is a UWM, then we have O1 = {e2, e3}
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Items e1 e2 e3
v1(·) 0 1

2
1
2

v2(·) 1
2 − 2ε 1

4 + ε 1
4 + ε

Table 4.5: The fair-goods instance for Theorem 4.2.5

and O2 = {e1} yielding UW(O) = 3/2− 2ε. But agent 2 violates EQ1 in O due to
v2(O2) < v1(O1 \ {e}) for any e ∈ O1. Thus, in any EQ1 allocations, agent 1 can
not receive both e2, e3, which means the welfare loss of EQ1 allocations is at least
1/4 − ε. And one can verify that A′ with A′

1 = {e3} and A′
2 = {e1, e2} is an EQ1

allocation with UW(A′) = 5/4− ε. Therefore, regarding utilitarian welfare, we have

Price of EQ1 ≥
3
2 − 2ε
5
4 − ε

→ 6
5 as ε→ 0,

which completes the proof. !

We now consider the case of general n ≥ 3 and provide asymptotically tight
results. Before stating the main result, we first present several lemmas. The follow-
ing lemma provides a sufficient condition for extending a partial allocation into a
complete EQX allocation.

Lemma 4.2.2. Given a fair-goods instance I and a partial allocation A′ of I, if al-
location A′ is EQX and for any i with A′

i ,= ∅, mine∈A′
i
vi(e) ≥ maxe∈E\

⋃
i∈[n] A′

i
vi(e)

holds, then allocation A returned by Greedy (A′, I) is EQX.

Proof. For the sake of contradiction, we assume that A is not EQX. Without loss
of generality we assume v1(A1) ≤ · · · ≤ vn(An) and agent 1 violates EQX when
comparing to agent k, i.e., maxe∈Ak:vk(e)>0 vk(Ak \ {e}) > v1(A1). Consider two
cases.

Case 1: Ak \ A′
k ,= ∅. Denote by e(k) the last item received by agent k in

Greedy and A(k) the partial allocation right before agent k receiving item e(k), i.e.,
Ak = A(k)

k ∪ {e(k)}. Then, since A(k)
1 ⊆ A1, we have v1(A1) ≥ v1(A(k)

1 ). According
to the choice of Step 3 in Algorithm 3, it holds that v1(A(k)

1 ) ≥ vk(A(k)
k ), and hence

v1(A1) ≥ vk(A(k)
k ). We show that e(k) is the item with the smallest positive value

for agent k in bundle Ak. If A′
k = ∅, since an agent always picks the single item with

largest value, item e(k) chosen the last must have a value no larger than any other
item in Ak. If A′

k ,= ∅, the condition mine∈A′
k

vk(e) ≥ maxe∈E\
⋃

i∈[n] A′
i
vk(e) together

with the way of picking items can also guarantee vk(e(k)) ≤ vk(e) for any e ∈ Ak.
Accordingly, we have maxe∈Ak vk(Ak \ {e}) = vk(A(k)

k ) ≤ v1(A1), contradicting the
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assumption that agent 1 violates EQX when comparing to agent k.
Case 2: Ak \ A′

k = ∅. In this case, we have Ak = A′
k as A′

k ⊆ Ak. Since A′
1 ⊆

A1 and allocation A′ is EQX, it holds that v1(A1) ≥ v1(A′
1) ≥ maxe∈Ak:vk(e)>0 vk(Ak\

{e}), which again contradicts the assumption that agent 1 violates EQX when com-
paring to agent k. !

In the following, we propose algorithm ALG3, which efficiently computes
an EQX allocation that also has an absolute welfare guarantee. The ALG3 first
assigns one large item, with value at least 1/(3n), to as many agents as possible,
and at the same time, maximizes the welfare of the partial allocation. This is
achieved by computing a maximum-weight matching of a bipartite graph. Then, it
carefully assigns a bundle to every unmatched agent so that each of them receives
value at least 1/(3n), while maintaining the partial allocation being EQX. At last,
the remaining goods are assigned to agents by running algorithm Greedy. In what
follows we formally prove that ALG3 can efficiently output an EQX allocation with
the desired utilitarian welfare guarantee.

Lemma 4.2.3. Algorithm 4 returns in polynomial time an EQX allocation A with
utilitarian welfare UW(A) ≥ 1/3.

Proof. We first consider the case where allocation A is returned in Step 4 of ALG3.
For this case, allocation B is the partial allocation established based on match-
ing µ and hence |Bi| ≤ 1 for i ∈ [n]. Observe that allocation A is returned
by Greedy(B, I), and thus, Bi ⊆ Ai for any i ∈ [n]. Consequently, we have
UW(A) ≥ UW(B) ≥ 1/3. What remains to be shown is that allocation A is EQX.
Notice that |Bi| = 1 for each matched agent i ∈ N0 and Bi = ∅ for i ∈ [n]\N0. Thus,
the partial allocation B is EQX. For each matched agent i ∈ N0, if ∃ e ∈ E \ E0

such that vi(e) > vi(Bi) ≥ 1/(3n), then by matching i to the corresponding vertex
of e and keeping other matched pair in µ, one can find another matching µ′ with
a weight larger than that of µ, a contradiction. Thus, for every i with Bi ,= ∅, it
holds that vi(Bi) ≥ maxe∈E\E0 vi(e). According to Lemma 4.2.2 and the fact that
B is EQX, we conclude that allocation A is EQX.

Now consider the case where allocation A is not returned in Step 4 of ALG3

and hence UW(B) < 1/3. Clearly, not all agents are matched in µ. Since µ is a
maximum-weight matching, for any i ∈ [n] \ N0 and e ∈ E \ E0, we have vi(e) <

1/(3n). Moreover, even if vi(e′) ≥ 1/(3n) for some e′ ∈ E0 and e′ = µ(i′), it must
hold that vi(e′) ≤ vi′(e′). Accordingly, for each i ∈ [n]\N0, we have vi(E0) ≤ UW(B)
and thus, vi(E\E0) > 1−UW(B) > 2/3. We then prove that every agent i ∈ [n]\N0

can receive a bundle Si in the while-loop of ALG3, which is equivalent to showing
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Algorithm 4 ALG3

Input: A fair-goods instance I = 〈[n], E, V〉;
Output: An EQX allocation A with UW(A) ≥ 1

3 ;
1: Construct weighted bipartite graph G = ([n] ∪ [m], [n] × [m]) where agents

vertices on one side and goods vertices on the other side. The edge (i, j) from
agent i’s vertex to the vertex of good ej exists only if vi(ej) ≥ 1

3n , and the weight
of (i, j) is vi(ej).

2: Compute the maximum weight matching µ of G and denote by µ(i) the good
matched to agent i. If agent i is unmatched, let µ(i) = ∅. Construct the partial
allocation B with Bi = µ(i) for every i ∈ [n], and let N0 = {i ∈ [n] | Bi ,= ∅} be
the set of matched agents and E0 = ⋃

i∈N0 Bi the set of matched goods.
3: if UW(B) ≥ 1

3 then
4: Compute A← Greedy (B, I).
5: else
6: N1 ← [n] \ N0 and E1 ← E \ E0.
7: while N1 ,= ∅ do
8: For each i ∈ N1, set the subset Si ⊆ E1 as the one with minimum cardinality

such that vi(Si) ≥ 1
3n and vi(Si \ {e}) < 1

3n for any e ∈ Si. If there is a tie,
choose the one with the largest value among all candidates. (We will show
that Si always exists.)

9: Let Φ = {i ∈ N1 | |Si| ≤ |Sj | for any j ∈ N1}. Find i∗ ∈ arg max
i∈Φ

vi(Si)
(break ties arbitrarily) and make the assignment Bi∗ ← Si∗ .

10: Update E1 ← E1 \ Si∗ and N1 ← N1 \ {i∗}.
11: end while
12: Compute A← Greedy (B, I).
13: end if
14: return allocation A.

that the value of the remaining items for agent i is always at least 1/(3n). Consider
an arbitrary point where the while-loop starts with remaining items E′ and agents
N ′. For each j ∈ [n] \ (N0 ∪ N ′) and i ∈ N ′, it must hold that vi(Sj) < 2/(3n);
otherwise, at the time when agent j receives a bundle, there exists a subset S∗ " Sj

such that vi(S∗) > 1/(3n) and vi(S∗ \{e}) < 1/(3n) for all e ∈ S∗, and thus, instead
of agent j, the algorithm assigns a bundle to agent i, a contradiction. Consequently,
for each i ∈ N ′, we have

vi(E′) = vi(E)− vi(E0)− vi(
⋃

j∈[n]\(N0∪N ′)
Sj)

>
2
3 −

2
3n

·
(
n− |N0|− |N ′|

)
>

2
3n

,

where the last transition is due to |N ′| ≥ 1. Thus, every agent i ∈ [n] \ N0 is able
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to receive a bundle that satisfies the conditions described in Step 8.
With a slight abuse of notations, we now let B be the partial allocation when

the while-loop ends. Clearly, we have vi(Bi) ≥ 1/(3n) for every i ∈ [n], which implies
UW(B) ≥ 1/3. Since allocation A is computed by Greedy with input B, it then
holds that UW(A) ≥ UW(B) ≥ 1/3. In order to prove that allocation A is EQX, we
use Lemma 4.2.2. We first claim that allocation B satisfies EQX. For each agent i ∈
[n], when comparing to agent j ∈ N0, it does not violate EQX as |Bj | = 1, and when
comparing to agent j ∈ [n]\N0, agent i also satisfies EQX because vi(Bi) ≥ 1/(3n) >

maxe∈Bj vj(Bj \ {e}). Thus, allocation B is EQX. As for the remaining condition,
for any i ∈ N0, it holds that vi(Bi) = mine∈Bi vi(e) ≥ maxe∈E\

⋃
i∈[n] Bi

vi(e) because
µ computed in Step 2 is the maximum-weight matching. For an agent i ∈ [n] \ N0,
if ∃e′ ∈ E \

⋃
i∈[n] Bi such that vi(e′) > vi(e) for some e ∈ Bi, then at the moment

when agent i is chosen in Step 9 and bundle Si is constructed, bundle Si ∪ {e′} \ {e}
is also a candidate and has the same size as |Si| but with value strictly larger than
vi(Si). Thus, instead of Si, bundle Si ∪ {e′} \ {e} would be assigned to agent i, a
contradiction. Therefore, based on Lemma 4.2.2, we can conclude that allocation A
is EQX and has welfare UW(A) ≥ 1/3.

As for time complexity of ALG3, since the maximum-weight matching can
be computed efficiently, ALG3 clearly finishes in polynomial time. !

Now, we are at the stage to present and prove the main statement on the
price of EQX and of EQ1 with respect to utilitarian welfare.

Theorem 4.2.6. When allocating goods to n agents, the price of EQ1 and of EQX
with respect to utilitarian welfare are at least n− 1 and at most 3n, asymptotically
tight Θ(n).

Proof. We start from the upper bound. According to Lemma 4.2.3, there exists an
EQX allocation with welfare at least 1/3. Due to the normalized valuations, the
optimal utilitarian welfare is at most n, and thus, the price of EQX is at most 3n.
This upper bound also holds for the price of EQ1 as the notion of EQX is stricter
than EQ1.

As for the lower bound, it suffices to prove that the statement holds for EQ1.
Let us consider a fair-goods instance I with n agents and a set E = {e1, . . . , e(n−2)p+1}
of (n − 2)p + 1 goods where p ∈ N+ is arbitrarily large. For agent i ∈ [n − 2], her
valuation function is: vi(ej) = 1/p if (i − 1)p + 1 ≤ j ≤ ip and vi(ej) = 0 for
other j. Both agents n − 1 and n value e(n−2)p+1 at 1 and other items at 0. In
a utilitarian welfare-maximizing allocation O, bundle Oi = {e(i−1)p+1, . . . , eip} is
assigned to agent i for all i ∈ [n− 2]. One of agents n− 1 and n receives e(n−2)p+1,
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which leaves the other receiving an empty set. The optimal utilitarian welfare equals
UW(O) = n−1. Note that the agent receiving an empty set violates EQ1 in O when
comparing to every agent i ∈ [n − 2]. To achieve EQ1, each agent i ∈ [n − 2] can
receive at most one of the goods on which she has non-zero value, and accordingly,
the welfare of an EQ1 allocation is at most 1 + (n − 2)/p. Therefore, regarding
utilitarian welfare, we have

Price of EQ1 ≥ n− 1
1 + n−2

p

→ n− 1 as p→∞,

which completes the proof. !

According to Caragiannis et al. [47], when assigning indivisible goods, the
price of EQ is infinite for general n and two for the case of n = 2. From our results,
the prices of EQX and EQ1 are smaller than that of EQ in both cases of general
n and two agents. Moreover, the price of EQX is greater than that of EQ1 when
n = 2. Such observations confirm an intuition in stating that if one relaxes the
fairness requirement, then less welfare would be sacrificed.

Equitability aims to reduce the difference between agents’ value, while util-
itarianism may lead to unbalanced outcomes. This intuition suggests that approx-
imately equitable allocations may have a poor performance in guaranteeing util-
itarian welfare, and Theorems 4.2.3 and 4.2.6 can be evidence for this intuition.
Egalitarianism also aims for “balancing” agents’ value, and accordingly, equitability
is highly likely to have a considerable guarantee on egalitarian welfare. However,
while Theorem 4.2.1 confirms this guess in goods allocation, Theorem 4.2.2 states
that the price of EQ1 with respect to egalitarian welfare is infinite in the case of
chores. We believe the reason behind is that in the case of chores, agents’ value
are balanced around zero, and the price of fairness as the ratio of two negligible
numbers can be enormous.

4.3 Results on Computational Complexity

Results on the price of fairness not only quantify the efficiency loss under fairness
constraints but also can derive answers to the existence of a welfare maximizer
that is also fair. In particular, our results on the price of fairness suggest that
relaxed equitability is not always compatible with utilitarian welfare in either goods
or chores and not always compatible with egalitarian welfare in chores allocation.
These impossibilities motivate two crucial follow-up algorithmic problems, i.e., given
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an instance, whether one can efficiently determine the existence of fair and welfare-
maximizing allocations and whether one can efficiently compute the allocation with
maximum welfare among the set of fair allocations. In this section, we settle the
computational complexity of these two algorithmic problems.

We introduce some notation for ease of reference to a problem. For a fairness
criterion F ∈ {EQX, EQ1} and welfare objective W ∈ {UW, EW}, denote by “E(W
× F )” the problem of deciding whether there exists an F allocation that also maxi-
mizes W , and denote by “C(W/F )” the problem of computing an F allocation that
maximizes W among all F allocations. For example, E(UW×EQX) refers to the
problem of deciding the existence of an EQX allocation that also maximizes utilitar-
ian welfare, and C(EW/EQ1) denotes the problem of computing an EQ1 allocation
that maximizes the egalitarian welfare among all EQ1 allocations.

To establish (strong) NP-hardness, we provide polynomial time reductions
from two well-known problems; that is, 3-Partition and Partition, described as
below. According to Garey and Johnson [69], the problem 3-Partition is strongly
NP-complete, and the problem Partition is NP-complete.

3-Partition: given a non-empty finite set B = {bi : i ∈ I = {1, . . . , 3m}}
of 3m positive integers and another positive integer T such that T/4 < bi < T/2
for any i ∈ [3m] and ∑

i∈I bi = mT , can I be partitioned into m disjoint subsets
I1, . . . , Im such that ∑

i∈Ik
bi = T for any k ∈ [m]?

Partition: given a non-empty finite set P = {pi : i ∈ I = {1, . . . , m}} of
m positive integers such that ∑

i∈I pi = 2T , can I be partitioned into two disjoint
subsets I1, I2 such that ∑

i∈I1 pi = ∑
i∈I2 pi = T?

4.3.1 Non-equivalence between Goods and Chores

As we already mentioned, the results for goods and chores are not mirror images
of one another, which is supported by our results on the price of fairness. Before
diving deep into studying the complexity, we argue that even being restricted to
the algorithmic problems we are concerned with, the chores problem may not be
equivalent to the corresponding goods version, neither do the other direction.

Proposition 4.3.1. For any fairness criterion F ∈ {EQX, EQ1}, there is no map-
ping f : [−1, 0] → R+ ∪ {0} such that a fair-chores instance Ic = 〈[n], E, V〉 ad-
mits an F and utilitarian welfare-maximizing allocation if and only if the fair-goods
instance Ig = 〈[n], E, f(V)〉 admits an F and utilitarian welfare-maximizing alloca-
tion.
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Proof. For the sake of contradiction, assume such a mapping f exists. We first
consider instance Ic

1 = 〈[2], E1, V1〉 with two agents and three items E1 = {e1
1, e1

2, e1
3}.

The valuation function of agent 1 is: v1
1(e1

1) = v1
1(e1

2) = −1/2 and v1
1(e1

3) = −1 and
of agent 2 is: v1

2(e1
1) = v1

2(e1
2) = −1 and v1

2(e1
3) = 0. It is not hard to verify that Ic

1
admits an unique UWM, in which agent 1 violates fairness criterion F . Accordingly,
no UWM of Ic

1 satisfies F . We then consider the corresponding fair-goods instance
Ig

1 = 〈[2], E1, f(V1)〉, in which the value of agent i on good e ∈ E1 is f(v1
i (e)). Due

to the definition of mapping f , it must hold that instance Ig
1 does not admit F and

utilitarian welfare-maximizing allocations, either. Next, we discuss the several cases
classified by the possible relationship among f(−1), f(−1/2) and f(0).

If f(−1) ≥ max{f(−1/2), f(0)}, then assigning e1
1, e1

2 to agent 2 and e1
3 to

agent 1 results in an F allocation that is also a UWM, a contradiction.
If f(−1/2) > f(−1) ≥ f(0), we consider another fair-chores instance Ic

2 =
〈[2], E2, V2〉 with six items E2 = {e2

1, . . . , e2
6} and its corresponding fair-goods in-

stance Ig
2 = 〈[2], E2, f(V2)〉. Under instance Ic

2, function v2
1(·) is: v2

1(e2
j ) = −1/2 for

j = 1, 2, 3, 6 and v2
1(e2

j ) = −1 for j = 4, 5, and v2
2(·) is: v2

2(e2
j ) = −1 for j ∈ [4] and

v2
2(e2

j ) = 0 for j = 5, 6. Notice Ic
2 admits an F and utilitarian welfare-maximizing

allocation A with A1 = {e2
1, e2

2, e2
3} and A2 = E2 \ A1. Due to the construction of f ,

instance Ig
2 should also admits an F and utilitarian welfare-maximizing allocation.

However, in any UWM of instance Ig
2 , since f(−1/2) > f(−1) ≥ f(0), agent 2

violates fairness criterion F , a contradiction.
If f(−1/2) ≥ f(0) > f(−1), one can verify that Ig

1 does not admit an
allocation that is both F and UWM only if f(−1/2) > f(0) > f(−1) holds. Again,
we consider instances Ic

2 and Ig
2 . Under the relationship of f(−1/2) > f(0) > f(−1),

in any UWM of instance Ig
2 , agent 2 does not satisfy F , while allocation A (defined

above) is a UWM of instance Ic
2 and satisfies F , a contradiction.

If f(0) > f(−1/2) ≥ f(−1), for instance Ig
1 , assigning e1

1, e1
2 to agent 1 and

e1
3 to agent 2 leads to a UWM that also satisfies F . This contradicts the fact that

Ic
1 does not have an F and utilitarian welfare-maximizing allocation.

If f(0) > f(−1) > f(−1/2), we consider another fair-chores instance Ic
3 =

〈[2], E3, V3〉 with five items E3 = {e3
1, . . . , e3

5} and its corresponding fair-goods in-
stance Ig

3 = 〈[2], E3, f(V3)〉. In instance Ic
3, function v3

1(·) is: v3
1(e3

j ) = 0 for j ∈ [3]
and v3

1(e3
j ) = −1 for j = 4, 5 and function v3

2(·) is: v3
2(e3

j ) = −1/2 for j ∈ [4] and
v3

2(e3
5) = 0. It is not hard to verify that any UWM of Ic

3 satisfies fairness criterion F .
But in a UWM of Ig

3 , agent 1 has value 3f(0) + f(−1) and agent 2 has value f(0).
Hence, agent 2 violates F in the unique UWM of Ig

3 , and consequently, instance Ig
3
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does not admit a UWM that also satisfies F , a contradiction.
Overall, no possible relationship among f(−1), f(−1/2) and f(0) can make

such a mapping f exist, completing the proof. !

The above assertion indicates that a fair-chores instance can not be trans-
formed to a fair-goods instance by a unified mapping on valuations so that two
instances admit the same answer to the question of whether there exists a UWM
that also satisfies the notion of F . This statement, together with the price of fair-
ness with respect to egalitarian welfare, motivates us to study the complexity of the
existence and optimization problem from both goods and chores perspectives.

4.3.2 Computational Complexity with Variable Number of Agents

We first consider the case of general n agents and study the utilitarian welfare. For
the problem of deciding the existence of an EQX and utilitarian welfare-maximizing
allocation, we establish the strong NP-hardness in both cases of goods and chores.

Theorem 4.3.1. For both goods and chores, the decision problem E(UW×EQX) is
strongly NP-complete.

Proof of Theorem 4.3.1 for chores. The decision problem is in NP as both utilitarian
welfare maximization and EQX can be examined in polynomial time. We then derive
a reduction from the problem 3-Partition.

Given an arbitrary instance of 3-Partition, we construct a fair-chores in-
stance as follows. There are m + 1 agents and a set E = {e1, . . . , e3m+2} of 3m + 2
items. The valuations are shown in Table 4.6. It is not hard to verify that an allo-

Items e1 e2 · · · e3m−1 e3m e3m+1 e3m+2
vi(·) for i ≤ m −b1 −b2 · · · −b3m−1 −b3m −(m + 1)T −(m + 1)T

vm+1(·) −T −T · · · −T −T −T −T

Table 4.6: The fair-chores instance for Theorem 4.3.1

cation is a UWM if and only if the first 3m chores are assigned to the first m agents
and the last two chores are assigned to agent m + 1.

Suppose we have a “yes” instance of 3-Partition, and let I1, . . . , Im be a
solution. Then, consider the allocation A with Ai = ⋃

j∈Ii
ej for any i ∈ [m] and

Am+1 = {e3m+1, e3m+2}. It is straightforward to see that allocation A has the
maximum utilitarian welfare. As for the fairness requirement, since vi(Ai) = −T for
any i ∈ [m] and vm+1(Am+1) = −2T , none of the first m agents would violate the
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condition of EQX. Moreover, for any e ∈ Am+1, we have vm+1(Am+1 \ {e}) = vi(Ai)
for any i ∈ [m]. Thus, allocation A is a UWM and satisfies EQX.

Now we prove the other direction. Suppose we have a “no” instance of 3-
Partition. Notice that in any UWM, agent m + 1 receives value −2T . Because it
is a “no” 3-Partition instance, assigning the first 3m chores to the first m agents
always results in an allocation in which at least one agent receives value strictly larger
than −T . Through the comparison between agent m+1 and the agent receiving the
largest value, agent m + 1 violates the condition of EQX in any UWM, completing
the proof. !

Proof of Theorem 4.3.1 for goods. The problem is in NP as both utilitarian
welfare maximization and EQX can be tested in polynomial time. We then derive
a reduction from 3-Partition.

Given an arbitrary instance of 3-Partition, we construct a fair-goods in-
stance as follows. There are m + 1 agents and a set E = {e1, . . . , e3m+2} of 3m + 2
goods. The valuation functions are shown in Table 4.7. It is not hard to verify that

Items e1 e2 · · · em em+1 em+2
vi(·) for i ≤ m b1 b2 · · · b3m 0 0

vm+1
(m−2)b1

m
(m−2)b2

m · · · (m−2)b3m

m T T

Table 4.7: The fair-goods instance for Theorem 4.3.1

an allocation is a UWM if and only if the first 3m goods are assigned to the first m

agents and the last two goods are allocated to agent m + 1.
Suppose we have a “yes” instance of 3-Partition, and let I1, . . . , Im be

a solution. Then, consider allocation A with Ai = ⋃
j∈Ii

ej for any i ∈ [m] and
Am+1 = {e3m+1, e3m+2}. Clearly, allocation A is a UWM. For agents’ value, we
have vi(Ai) = T for every i ∈ [m] and vm+1(Am+1) = 2T . Notice that vi(Ai) =
vm+1(Am+1 \ {e}) holds for any i ∈ [m] and e ∈ Am+1, and consequently, A is a
UWM that satisfies EQX.

Now we prove the other direction. Suppose we have a “no” instance of 3-
Partition. Recall that in any UWM, agent m + 1 only receives the last two goods
and has value 2T . Because it is a “no” instance, assigning the first 3m goods to the
first m agents always results in an allocation in which at least one agent receives
value strictly smaller than T . In any UWM, when comparing to agent m + 1, the
agent receiving the least value violates the condition of EQX, completing the proof.
!

For the notion of EQ1, the strong NP-hardness on the decision problem is
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also established for both goods and chores.

Theorem 4.3.2. For both goods and chores, the decision problem E(UW×EQ1) is
strongly NP-complete.

Proof. The arguments in the proof of Theorem 4.3.1 can be carried over to the
decision problem E(UW×EQ1). !

Theorems 4.3.1 and 4.3.2 indicate that although the chores and goods ver-
sions of the decision problem (with respect to utilitarian welfare) are not equivalent
in general, there surprisingly exist some similarities; that is, neither of them has
pseudo-polynomial time algorithms. When concerning egalitarian welfare, results
are different under these two settings. According to Theorem 4.2.1, the price of
EQX and of EQ1 with respect to egalitarian welfare are both 1 in goods alloca-
tions, which implies that the existence of a goods allocation that is an EWM and
also satisfies EQX (or EQ1) is guaranteed. Then, the answer to both problems
E(EW×EQX) and E(EW×EQ1) is “yes” in the case of goods; however, finding
the egalitarian welfare-maximizing allocation that satisfies EQX (or EQ1) is com-
putationally hard as shown in our Theorem 4.3.15 later. On the other hand, when
assigning chores, as shown by the results below, deciding the existence of an EQX
and egalitarian welfare-maximizing allocation is computationally intractable.

Theorem 4.3.3. When allocating chores, the decision problem E(EW×EQX) is
strongly NP-hard.

Proof. Given an arbitrary instance of 3-Partition, we construct a fair-chores in-
stance as follows. There are m + 1 agents and a set E = {e1, . . . , e3m+2} of 3m + 2
chores. The valuation functions are shown in Table 4.8. Consider an allocation

Items e1 e2 · · · e3m e3m+1 e3m+2
vi(·) for i ≤ m −b1 −b2 · · · −b3m − (5m+1)T +1

2 − (5m+1)T +1
2

vm+1(·) −2T −2T · · · −2T −T −1

Table 4.8: The fair-chores instance for Theorem 4.3.3

Â with Âi = {e3i−2, e3i−1, e3i} for i ∈ [m] and Âm+1 = {e3m+1, e3m+2}. Due to
T/4 < bi < T/2, we have EW(Â) > −3T/2, so that the maximum egalitarian wel-
fare of this instance is larger than −3T/2. Thus, in any EWM, agent m + 1 must
receive exactly the last two chores, resulting in value −T − 1 for her.

Suppose we have a “yes” instance of 3-Partition, and let I1, . . . , Im be
a solution. Then, consider allocation A with Ai = ⋃

j∈Ii
ej for i ∈ [m] and
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Am+1 = {e3m+1, e3m+2}. One can compute EW(A) = −T − 1. Since agent m + 1
must receive value −T − 1 in an EWM, allocation A clearly achieves the maximum
egalitarian welfare. As for fairness constraint, since for any i ∈ [m], vi(Ai) = −T

and vm+1(Am+1) = −T −1, none of the first m agents would violate EQX. For agent
m + 1, it holds that vm+1(Am+1 \ {e}) ≥ vi(Ai) = −T,∀i ∈ [m],∀e ∈ Am+1. Thus,
allocation A is an EWM and also satisfies EQX.

We now prove the other direction. Suppose we have a “no” instance of 3-
Partition. Recall that in any EWM, agent m+1 must receive value exactly −T−1.
Because it is a “no” instance, assigning the first 3m items to the first m agents always
results in an allocation in which at least one agent receives value larger than −T .
Through the comparison between agent m + 1 and the agent receiving the largest
value, one can easily verify that no EWM can also be EQX, completing the proof.
!

For the problem in which the quantity of optimal egalitarian welfare is in-
volved, since computing an EWM is NP-hard [32], which is different from the util-
itarian welfare, one may not able to find the maximum egalitarian welfare in poly-
nomial time. As a consequence, we are unclear whether verifying a “yes” instance
of E(EW×EQX) can be done in polynomial time, based on which we only state
hardness in Theorem 4.3.3. For the same reason, we also only state hardness in the
following theorem.

Theorem 4.3.4. When allocating chores, the decision problem E(EW×EQ1) is
strongly NP-hard.

Proof. Given an arbitrary instance of 3-Partition, we construct a fair-chores in-
stance as follows. There are m + 1 agents and a set E = {e1, . . . , e3m+2} of 3m + 2
items. The valuation functions are shown in Table 4.9. We first consider an allo-

Items e1 e2 · · · e3m e3m+1 e3m+2
vi(·) for i ≤ m −b1 −b2 · · · −b3m −4mT −4mT

vm+1(·) −9m−2
3m T −9m−2

3m T · · · −9m−2
3m T −T −T

Table 4.9: The fair-chores instance for Theorem 4.3.4

cation that assigns three of {e1, . . . , e3m} to each agent i ∈ [m], and assigns e3m+1

and e3m+2 to agent m + 1. Due to bj < T/2 for any j ∈ [3m], the value of agent i

is larger than −3T/2 for each i ∈ [m]. The value of agent m + 1 is equal to −2T ,
and hence the egalitarian welfare of this allocation is equal to −2T . Due to the
value of e3m+1 and e3m+2, no allocation can achieve egalitarian welfare larger than
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−2T , which then implies that the maximum egalitarian welfare of the constructed
fair-chores instance is equal to −2T .

Suppose we have a “yes” instance of 3-Partition, and let I1, . . . , In be
the solution. Consider an allocation A with Ai = ⋃

j∈Ii
ej for any i ∈ [m] and

Am+1 = {e3m+1, e3m+2}. It is not hard to see that vi(Ai) = −T for any i ∈ [m],
and vm+1(Am+1) = −2T , then we have EW(A) = −2T , which implies that the
allocation A is an EWM. As for the fairness constraint, none of the first m agents
would violate EQ1, and for agent m + 1, we have vm+1(Am+1 \ {e}) = vi(Ai) = −T

for any i ∈ [m] and e ∈ Am+1. Thus, the allocation A is also EQ1.
We now prove the other direction. Suppose we have a “no” instance of 3-

Partition. Recall that in any EWM, agent m+1 must receive exactly items e3m+1

and e3m+2, and must have value exactly −2T . Due to “no” instance, there exists an
agent receiving a value strictly larger than −T from the assignment of the first 3m

chores. Through the comparison between agent m + 1 and the agent receiving the
largest value, one can verify that no EWM can satisfy EQ1, completing the proof.
!

The above results show that, except for concerning egalitarian welfare in the
allocation of goods, all other decision problems are strongly NP-hard in the case of
general n agents. These results directly imply the NP-hardness of computing the
allocation with maximum utilitarian welfare among all EQX (or EQ1) allocations.
In the following, we use Karp reduction [81], a many-to-one reduction, to give a
relatively simple argument for the hardness of the computation problem. The main
difference between Karp reduction and Turing reduction is that in Turing reduction,
one can use the oracle as many times as needed, while in Karp reduction, the oracle
can be invoked only once at the end. Except for the following one, other reductions
in this thesis are Turing reduction.

Theorem 4.3.5. For both goods and chores, problems C(UW/EQX) and C(UW/EQ1)
are strongly NP-hard.

Proof. To prove the strong NP-hardness of C(UW/EQX), we use the strong NP-
hardness of E(UW×EQX) established by Theorem 4.3.1. For the sake of contra-
diction, if there exists a (pseudo) polynomial time algorithm ALG for problem
C(UW/EQX), then we can compute the maximum UW among all EQX allocations.
Notice that an UWM (without EQX requirement) can be found in polynomial time
by assigning each item to the agent who has the largest value on it, and so, one can
efficiently find the optimal utilitarian welfare. By comparing the optimal utilitarian
welfare with the output from ALG, the problem E(UW×EQX) is then solved in
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(pseudo) polynomial time, a contradiction. Based on Theorem 4.3.2, similar argu-
ments can be applied to prove the strong NP-hardness of C(UW/EQ1). !

Theorem 4.3.6. When allocating goods and chores, problems C(EW/EQX) and
C(EW/EQ1) are strongly NP-hard.

Proof. It suffices to prove strong NP-completeness of the decision version of C(EW/EQ1)
(resp., C(EW/EQX)): given an instance I = 〈[n], E, V〉 and a threshold value W ,
does there exist an EQ1 (resp., EQX) allocation with egalitarian welfare at least
W?

For both goods and chores, we provide a reduction from 3-Partition. Given
an arbitrary instance of 3-Partition, we construct a fair-goods (resp. fair-chores)
instance with m agents and a set E = {e1, . . . , e3m} of 3m goods (resp. chores).
Agents have identical valuation functions and in the fair-goods instance, vi(ej) = bj

for any i ∈ [m] and j ∈ [3m]; in the fair-chores instance, vi(ej) = −bj for any i ∈ [m]
and j ∈ [3m]. The threshold value is defined as: W = T in the fair-goods instance;
W = −T in the fair-chores instance. Then, in the both cases of goods and chores,
there exists an EQ1 (or EQX) allocation with egalitarian welfare at least W if and
only if the 3-Partition instance is a “yes” instance. !

Results of this section completely answer the computational complexity of the
decision and computation problem we are concerned with for general n agents. Most
problems are computationally intractable, which means that one can not efficiently
determine the existence of a fair and welfare-maximizing allocation or compute the
allocation with maximum welfare among all fair allocations. In addition, our results
provide more insights into the similarities between goods and chores. According
to Theorems 4.3.1 and 4.3.2, for both EQX and EQ1, together with utilitarian
welfare, problems for goods and chores share the same complexity. When concerning
egalitarian welfare, we show that decision problems for chores are strongly NP-
hard and one can directly answer “yes” in the case of goods, but this may not
indicate goods and chores have different algorithmic features. Instead of linking to
algorithmic property, such an “inconsistency” is due to distinct structural properties,
i.e., optimal egalitarian welfare is compatible with EQX/EQ1 for goods but not for
chores.

4.3.3 Computational Complexity with Fixed Number of Agents

The above complexity results are for general n, but in practice, the number of
agents is usually fixed. Theoretically, even a system with two agents, n = 2, can
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already yield valuable and non-trivial results, especially in machine scheduling [1, 2],
an application of chores allocation. This observation motivates us to resolve the
complexity for the case where n is fixed.

We carry out the analysis for the case of small and fixed n from utilitarian
welfare and EQX, and show NP-completeness for both goods and chores.

Theorem 4.3.7. For both goods and chores, the decision problem E(UW×EQX) is
NP-complete, even for two agents.

Proof of Theorem 4.3.7 for chores. To prove NP-hardness, we derive a reduction
from the problem Partition. Given an arbitrary instance of Partition, we con-
struct a fair-chores instance with two agents and a set E = {e1, . . . , em+4} of m + 4
chores. The valuation functions are shown in Table 4.10, where 0 < ε < 1. It is not

Items e1 e2 · · · em em+1 em+2 em+3 em+4
v1(·) −p1 −p2 · · · −pm −T −T −ε −ε
v2(·) −p1 −p2 · · · −pm −ε −ε −T −T

Table 4.10: The fair-chores instance for Theorem 4.3.7

hard to verify that an allocation is a UWM if and only if chores em+1 and em+2 are
assigned to agent 2 and em+3, em+4 are assigned to agent 1.

Suppose we have a “yes” instance of Partition, and let I1, I2 be a solution.
Then, consider an allocation A in which A1 contains bundle ⋃

j∈I1 ej and em+3, em+4,
and A2 = E \ A1. Clearly, allocation A is a UWM. Moreover, for agents’ value, we
have v1(A1) = v2(A2) = −T − 2ε. Thus, allocation A is also EQX.

We now prove the other direction. Suppose we have a “no” instance of
Partition. Let S = {e1, . . . , em} be the set of first m items, and recall Π2(S) is the
set of 2-partitions of S. We denote by ∆ = minB∈Π2(S)|v1(B1)− v2(B2)|, and claim
that ∆ ≥ 1 because pi ∈ N for any i ∈ [m] and it’s a “no” instance. Notice that any
utilitarian welfare-maximizing allocation O has the form of O1 = B1∪{em+3, em+4}
and O2 = B2 ∪ {em+1, em+2} where {B1, B2} ∈ Π2(S). Without loss of generality
we assume v2(O2) > v1(O1), and accordingly, due to the definition of ∆ and ε, we
have v1(O1 \ {em+3})− v2(O2) ≤ ε−∆ < 0. So agent 1 violates EQX in allocation
O, and therefore, no UWM can satisfy EQX, completing the proof. !

Proof of Theorem 4.3.7 for goods. To prove NP-hardness, we derive a reduction from
the problem Partition. Given an arbitrary instance of Partition, we construct
a fair-goods instance with two agents and a set E = {e1, . . . , em+2} of m + 2 goods.
The valuation functions are shown in Table 4.11, where 0 < ε < 1. Given these
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Items e1 e2 · · · em em+1 em+2
v1(·) p1 p2 · · · pm 0 ε
v2(·) p1 p2 · · · pm ε 0

Table 4.11: The fair-goods instance for Theorem 4.3.7

valuation functions, an allocation is a UWM if and only if em+1 and em+2 are
assigned to agent 2 and agent 1, respectively.

Suppose we have a “yes” instance of Partition, and let I1, I2 be a solution.
Then, consider allocation A in which A1 contains bundle ⋃

j∈Ii
ej and good em+2,

and A2 = E \ A1. Clearly, allocation A is a UWM. Then, since v1(A1) = v2(A2) =
T + ε, allocation A is also EQX.

We now prove the other direction. Suppose we have a “no” instance of
Partition. Then, let S = {e1, . . . , em} be the set of first m goods and Π2(S) be
the set of 2-partition of S. We denote by ∆ = arg minB∈Π2(S)|v1(B1) − v2(B2)|,
and we claim that ∆ ≥ 1 because pi ∈ N,∀i ∈ [m] and it’s a “no” Partition
instance. Let O be an arbitrary UWM, and without loss of generality assume
v1(O1) > v2(O2). According to the construction of ∆, it must hold that 0 < ∆−ε ≤
v1(O1 \ {em+2}) − v2(O2) implying that agent 2 violates the condition of EQX.
Therefore, no UWM can also be EQX, completing the proof. !

The theorem below follows from Theorem 4.3.7.

Theorem 4.3.8. For both goods and chores, the problem C(UW/EQX) is NP-hard,
even with two agents.

We then move to EQ1, a notion weaker than EQX, and show that E(UW×EQ1)
is NP-complete when n ≥ 3, but in P when only two agents are involved.

Theorem 4.3.9. For both goods and chores, the decision problem E(UW×EQ1) is
NP-complete, even for three agents.

Proof of Theorem 4.3.9 for chores. The problem is in NP as both utilitarian
welfare-maximization and EQ1 can be examined in polynomial time. To prove
NP-hardness, we derive a reduction from problem Partition. Given an arbitrary
instance of Partition, we construct a fair-chores instance for three agents with
a set E = {e1, . . . , em+3} of m + 3 chores. The valuation functions are shown in
Table 4.12. An allocation of the constructed instance is a UWM if and only if the
first m + 2 chores are assigned to the first two agents and the last chore is assigned
to agent 3.
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Items e1 e2 · · · em em+1 em+2 em+3
vi(·) for i = 1, 2 −p1 −p2 · · · −pm −5T −5T −2mT − 9T

v3(·) −2T −2T · · · −2T −10T −10T −T

Table 4.12: The fair-chores instance for Theorem 4.3.9

Suppose we have a “yes” instance of Partition, and let I1, I2 be a solution.
Then, consider allocation A, in which A1 contains bundle ⋃

j∈I1 ej and em+1; A2

contains bundle ⋃
j∈I2 ej and em+2; A3 = {em+3}. Clearly, allocation A is a UWM.

As for agents’ value, it holds that v1(A1) = v2(A2) < v3(A3), and moreover, vi(Ai \
{em+i}) = v3(A3) for any i ∈ [2]. Thus, allocation A is a UWM that also satisfies
EQ1.

We now prove the other direction. Suppose we have a “no” instance of Par-
tition. Since for any j ∈ [m], pj < 2T , then agent 3 receives value exactly −T

in any UWM. Based on the assignment of chores em+1 and em+2, we discuss two
cases: (i) allocations with exactly one −5T chore for each i ∈ [2]; (ii) other as-
signments. If case (ii) happens, without loss of generality assume agent 1 receives
two −5T chores. Then, when comparing agent 1 and agent 3, agent 1 still receives
less value no matter which chore is removed from his bundle, violating the con-
dition of EQ1. Consequently, to make an allocation be both EQ1 and utilitarian
welfare-maximizing, case (i) must happen. Moreover, since it is a “no” instance of
Partition, assigning the first m chores to the first two agents always results in
allocations in which there exists one agent with value strictly less than −T . Then,
when comparing to agent 3, the agent receiving the least value violates EQ1. Thus,
no UWM can satisfy EQ1, completing the proof. !

Proof of Theorem 4.3.9 for goods. The problem is in NP as both utilitarian
welfare maximization and EQ1 can be tested in polynomial time. To prove NP-
hardness, we derive a reduction from the problem of Partition. Given an arbitrary
instance of Partition, we construct a fair-goods instance for three agents with a set
E = {e1, . . . , em+2} of m+2 goods. The valuation functions are shown in Table 4.13.
An allocation is a UWM if and only if the first m goods are assigned to the first two

Items e1 e2 · · · em em+1 em+2
vi(·) for i = 1, 2 p1 p2 · · · pm 0 0

v3(·) 0 0 · · · 0 T T

Table 4.13: The fair-goods instance for Theorem 4.3.9

agents and the last two goods are assigned to agent 3.
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Suppose we have a “yes” instance of Partition, and let I1, I2 be a solu-
tion. Then, consider allocation A with A1 = ⋃

j∈I1 ej , A2 = ⋃
j∈I2 ej and A3 =

{em+1, em+2}. It is straightforward to verify that allocation A is a UWM. As for
agents’ value, we have v1(A1) = v2(A2) = T and v3(A3) = 2T , and moreover,
v3(A3 \ {e}) = T holds for any e ∈ A3. Thus, allocation A is also EQ1.

We now prove the other direction. Suppose we have a “no” instance of
Partition. Recall that in any UWM, agent 3 receives value 2T . Since it is a
“no” Partition instance, assigning the first m goods to the first two agents always
results in an allocation in which one agent receives value strictly smaller than T . In
an UWM, when comparing to agent 3, the agent receiving the least value violates
the condition of EQ1. Therefore, no UWM is EQ1, completing the proof. !

The theorem below follows from Theorem 4.3.9.

Theorem 4.3.10. For both goods and chores, problem C(UW/EQ1) is NP-hard,
even for three agents.

Next, we provide a polynomial-time algorithm that can determine the exis-
tence of an EQ1 and utilitarian welfare-maximizing allocation in the case of two
agents. In the algorithm, we first guarantee the allocation achieving maximum util-
itarian welfare by assigning each item to the agent who values it the most, and then
for unassigned items (if exist), in each round, allocate one of them to the agent with
a smaller absolute value via Algorithm 3.

Algorithm 5 Computing the UWM that satisfies EQ1 if one exists
Input: An instance I = 〈[2], E, V〉.

1: Let E = E0 ∪ E1 ∪ E2 with E1 = {e ∈ E | v1(e) > v2(e)} and E2 = {e ∈ E |
v1(e) < v2(e)}.

2: A← Greedy((E1, E2), I);
3: if allocation A = (A1, A2) is EQ1 then
4: return yes and A.
5: else
6: return no.
7: end if

Theorem 4.3.11. For both goods and chores allocation with two agents, there exists
a polynomial time algorithm that solves problem E(UW×EQ1)

Proof of Theorem 4.3.11 for chores. The proof uses Algorithm 5. It is not hard to
verify that assigning Ei to agent i for all i is a necessary and sufficient condition for
the output having maximum utilitarian welfare.
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Denote by A = (A1, A2) with A1 = {e(1)
1 , . . . , e(1)

k1
} and A2 = {e(2)

1 , . . . , e(2)
k2

}.
Clearly, we have k1 + k2 = m. Term e(1)

j refers to the j-th chore assigned by
Algorithm 5 to agent 1 and e(2)

l is the l-th chore assigned to agent 2. If the algorithm
terminates at Step 4, clearly we find a UWM that satisfies EQ1. We now consider
the case where algorithm terminates at Step 6, and show if so, no UWM is EQ1. We
first claim that, in this case, either E0 ⊆ A1 or E0 ⊆ A2 holds. It suffices to show
that if both A1∩E0 and A2∩E0 are non-empty set, Algorithm 5 terminates at Step 4.
To prove this claim, we discuss two cases. If |v1(A1)| > |v2(A2)|, since A1 ∩E0 ,= ∅,
we have e(1)

k1
∈ E0. Then by algorithm, it must hold that |v1(A1 \ {e(1)

k1
})|≤|v2(A2)|;

otherwise, agent 1 would not receive chore e(1)
k1

. Accordingly, allocation A is EQ1,
and Algorithm 5 terminates at Step 4. On the other hand, if |v1(A1)| < |v2(A2)|,
then since A2 ∩ E0 ,= ∅, similarly, |v1(A1)| ≥ |v2(A2 \ {e(2)

k2
})| holds and A is EQ1.

Up to here, the claim is proved.
Next, if E0 ⊆ A1, then either (i) |v1(A1)| < |v2(A2)| or (ii) |v1(A1)| > |v2(A2)|

and |v1(A1) \ {e(1)
k1

}| < |v2(A2)| holds. The latter one indicates that allocation A
is EQ1, a contradiction. As for the first possible case, recall that terminating at
Step 6 implies allocation A is not EQ1, and consequently, even when agent 2 only
receives E2, she still violates the condition of EQ1. Notice that in any UWM, all E2

must be assigned to agent 2, and so, no UWM satisfies EQ1. If E0 ⊆ A2, similarly,
there are two possible cases: (i) |v1(A1)| > |v2(A2)|; (ii) |v1(A1)| < |v2(A2)| but
|v1(A1)| ≥ |v2(A2\{e(2)

k2
})|. If case (ii) happens, allocation A is EQ1, a contradiction.

The only possibility is case (i), which then implies that even when agent 1 only
receives bundle E1, he still violates the condition of EQ1. Therefore, no UWM is
EQ1, completing the proof. !

Proof of Theorem 4.3.11 for goods. The proof uses Algorithm 5. It is not hard to
verify that assigning Ei to agent i for all i is the necessary and sufficient condition
for guaranteeing the output being an UWM.

Denote by A = (A1, A2) the with A1 = {e(1)
1 , . . . , e(1)

k1
} and A2 = {e(2)

1 , . . . , e(2)
k2

}.
Clearly, we have k1 + k2 = m. Term e(i)

j refers to the j-th goods assigned by al-
gorithm to agent i. If Algorithm 5 terminates at Step 4, clearly we find a UWM
that satisfies EQ1. We now consider the case where Algorithm 5 terminates at Step
6, and claim in this case, either E0 ⊆ A1 or E0 ⊆ A2. It suffices to show that if
both A1 ∩ E0 and A2 ∩ E0 are not empty set, then Algorithm 5 terminates at Step
4. To prove this claim, we discuss two cases. If v1(A1) > v2(A2), since A1 ∩E0 ,= ∅,
we have e(1)

k1
∈ E0. Then by algorithm, it mush hold that v1(A1 \ {e(1)

k1
}) ≤ v2(A2);

otherwise, agent 1 would not receive good e(1)
k1

. Accordingly, allocation A is EQ1,
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and Algorithm 5 terminate at Step 4. On the other hand, if v1(A1) < v2(A2), then
since A2∩E0 ,= ∅, similarly, v1(A1) ≥ v2(A2 \ {e(2)

k2
}) holds and allocation A is EQ1.

The claim is proved.
Next, if E0 ⊆ A1, then either (i) v1(A1) < v2(A2) or (ii) v1(A1) > v2(A2)

and v1(A1 \ {e(1)
k1

}) ≤ v2(A2). The latter one indicates that allocation A is EQ1, a
contradiction. As for the first possible case, recall that terminating at Step 6 means
that allocation A is not EQ1, and as a consequence, even when agent 1 receives
all E0, he still violates the condition of EQ1. Notice that in any UWM, agent 1
receives value at most v1(E0 ∪ E1) = v1(A1), and so, no UWM is EQ1. If E0 ⊆ A2,
similarly, there are two possible cases: (i) v1(A1) > v2(A2); (ii) v1(A1) < v2(A2)
and v1(A1) ≥ v2(A2 \ {e(2)

k2
}). If case (ii) happens, then allocation A is EQ1, a

contradiction. The only possibility is case (i), which then implies that even when
agent 2 receives both E0 and E2, she still violates that condition of EQ1. Thus, no
UWM is EQ1, completing the proof. !

We remark that the goods version of Algorithm 5 has been proposed by
Aziz et al. [17] to answer E(UW×EQ1) on allocating goods to two agents. For
completeness, we have presented the algorithm and proof for both cases of chores
and goods.

In the case of two agents, given that E(UW×EQ1) is polynomial-time solv-
able, the remaining question is whether one can solve C(UW/EQ1) in polynomail
time.

Theorem 4.3.12. For both goods and chores, the problem C(UW/EQ1) is NP-hard,
even for two agents.

Proof of Theorem 4.3.12 for chores. It suffices to show prove NP-completeness
of the decision version of C(UW/EQ1): given an instance I = 〈[n], E, V〉 and a
threshold value W , does there exist an EQ1 allocation with utilitarian welfare at
least W? We then derive a reduction from the problem of Partition.

Given an arbitrary instance of Partition, we construct an instance of fair-
chores with two agents and a set E = {e1, . . . , em+1} of m+1 chores. The valuation
functions are shown in Table 4.14, where 0 < ε < 0.1. The thresholds value is

Items e1 e2 · · · em em+1
v1(·) −p1 −p2 · · · −pm −3T − ε
v2(·) −(1− ε)p1 −(1− ε)p2 · · · −(1− ε)pn −(1− ε)(3T + ε)

Table 4.14: The fair-chores instance for Theorem 4.3.12
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defined as W = −5T + (4T − 1)ε + ε2.
Suppose we have a “yes” instance of Partition, and let I1, I2 be a solution.

Then, consider allocation A with A1 = ∪j∈I1ej and A2 = E \ A1. For agents’ value,
we have v1(A1) > v2(A2) and v2(A2 \ {em+1}) > v1(A1), and thus, A is an EQ1
allocation with utilitarian welfare

UW(A) = −T − (1− ε)T − (1− ε)(3T + ε) = −5T + (4T − 1)ε + ε2 = W.

Therefore, we find an EQ1 allocation A with utilitarian welfare W .
We now prove the other direction. Suppose we have a “no” instance of

Partition. Denote by B = (B1, B2) an EQ1 allocation and it must be in the
form of {S1 ∪ {em+1}, S2} where {S1, S2} is a 2-partition of set {e1, . . . , em}. We
highlight that S1 is not necessarily assigned to agent 1. Let −∑

e∈S1 v1(e) = ∆ ≥ 0,
and accordingly, −∑

e∈S2 v1(e) = 2T − ∆ ≥ 0. To meet the condition of EQ1,
chore em+1 has to be eliminated when comparing; otherwise, the agent who receives
bundle S1 ∪ {em+1} would violate the condition of EQ1, even when S1 = ∅. As a
consequence, the condition of EQ1 is equivalent to ∆ ≤ T . Moreover, since it’s a
“no” instance of Partition, we have ∆ < T . Given the form of {S1 ∪ {em+1}, S2},
there are two possible allocations: assigning bundle S1∪{em+1} to agent 1; assigning
bundle S1 ∪ {em+1} to agent 2.

If B1 = S1∪{em+1} and B2 = S2, then such an assignment results in welfare

UW(B) = −∆− 3T − ε− (1− ε)(2T −∆)
= −5T + (2T −∆− 1)ε < W.

If B1 = S2 and B2 = S1 ∪ {em+1}, then allocation B has welfare

UW(B) = −2T + ∆− (1− ε)∆− (1− ε)(3T + ε)
= −5T + (3T + ∆− 1)ε + ε2 < W,

where the last transition is due to ∆ < T . Therefore, in both cases, no EQ1 alloca-
tions can have utilitarian welfare at least W , completing the proof. !

Proof of Theorem 4.3.12 for goods. It suffices to prove that the decision version of
C(UW/EQ1) is NP-complete. We prove it by deriving a reduction from the problem
of Partition.

Given an arbitrary instance of Partition, we construct an instance of the
decision version of C(UW/EQ1) with a set E = {e1, . . . , em+3} goods. The valuation
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functions are shown in Table 4.15, where 0 < ε < 1/T . The threshold value is defined
as W = 5T .

Items e1 e2 · · · em em+1 em+2 em+3
v1(·) p1 p2 . . . pm T 0 0
v2(·) (1 + ε)p1 (1 + ε)p2 . . . (1 + ε)pm 0 (1− ε)T T

Table 4.15: The fair-goods instance for Theorem 4.3.12

We denote by S = {e1, . . . , em}. Suppose we have a “yes” instance of Par-
tition, and let I1, I2 be a solution. Then, consider an allocation A, in which
A1 contains bundles ⋃

j∈I1 ej and good em+1 and A2 = E \ A1. It holds that
v1(A1) = 2T = v2(A2 \ {em+3}), which implies that allocation A is EQ1. Also, we
have UW(A) = 5T implying that A is an EQ1 allocation with utilitarian welfare
5W .

We now prove the other direction. Suppose we have a “no” instance of
Partition. For an arbitrary EQ1 allocation B, its utilitarian welfare is no less
than 5T only if em+1 is assigned to agent 1 and em+2, em+3 are assigned to agent 2.
Moreover, it is not hard to verify that in order to gain utilitarian welfare 5T , agent
2 has to receive value at least (1 + ε)T from bundle S. Then we discuss two cases
according to the largest pi. Let i∗ ∈ arg maxi∈[m] pi.

If pi∗ > T , then due to pi∗ ∈ N+ and it is an “no” instance, we have pi∗−T ≥ 1.
Then, good ei∗ must be assigned to agent 2 so that the utilitarian welfare is no less
than 5T . Then, in such an allocation B, agent 1 has value v1(B1) ≤ 3T − pi∗ ≤
2T − 1 < 2T − εT ≤ mine∈B2 v2(B2 \ {e}). Thus, B is not EQ1, which implies that
the utilitarian welfare of any EQ1 allocation is smaller than 5T .

If pi∗ < T (pi∗ ,= T because of “no” instance), suppose S1, S2 be a 2-partition
of S such that allocation B is composed of B1 = S1 ∪ {em+1} and B2 = S2 ∪
{em+2, em+3} and has utilitarian welfare no less than 5T . Recall that to meet the
requirement on welfare, v2(S2) ≥ (1 + ε)T must hold, and moreover, owing to “no”
Partition instance, it holds that v2(S2) > (1+ε)T . Accordingly, we have v1(S1) <

T , derived by ∑
i∈[m] pi = 2T . As a consequence, v1(B1) < 2T ≤ mine∈B2 v2(B2\{e})

where the last transition is because, in this case, em+3 is the most valuable item
in bundle B2 for agent 2 given pi∗ < T . This inequality contradicts the fact that
allocation B is EQ1, completing the proof. !

We have completely settled the computational complexity of algorithmic de-
cision and optimization problems when utilitarian welfare is concerned. Most of re-
sults are computationally intractable. In addition, the above algorithmic problems
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(regarding utilitarian welfare) on goods and chores have the same computational
complexity, which somewhat reveals similarities between these two settings.

Next, we investigate egalitarian welfare-maximizing allocations and provide
the computational complexity in the case of chores.

Theorem 4.3.13. When allocating chores, the problem E(EW×EQX) is NP-hard,
even for two agents.

Proof. To prove NP-hardness, we derive a reduction from the problem Partition.
Given an arbitrary instance of Partition, we construct a fair-chores instance with
two agents and a set E = {e1, . . . , em+2} of m + 2 items. The valuation functions
are shown in Table 4.16, where 0 < ε < 0.1. Since ∑

i∈[m] pi = 2T , it is not hard

Items e1 e2 · · · em em+1 em+2
v1(·) −p1 −p2 · · · −pm −ε −2T
v2(·) −p1 −p2 · · · −pm −2T −ε

Table 4.16: The fair-chores instance for Theorem 4.3.13

to verify that in an EWM, chores em+1 and em+2 must be assigned to agent 1 and
agent 2, respectively, and moreover, the maximum egalitarian welfare is at most
−T − ε.

Suppose we have a “yes” instance of Partition, and let I1, I2 be a solution.
Then, consider an allocation A, in which A1 contains bundle ⋃

j∈I1 ej and chore
em+1, and A2 = E \ A1. For agents’ value, we have v1(A1) = v2(A2) = −T − ε, and
so allocation A is an EWM that satisfies EQX.

We now prove the other direction. Suppose we have a “no” instance of
Partition. Let S = {e1, . . . , em} be the set of the first m chores, and Π2(S) be
the set of 2-partition of S. We then denote by ∆ = minB∈Π2(S)|v1(B1) − v2(B2)|,
and claim that ∆ ≥ 1 because pi ∈ N,∀i ∈ [m] and it’s a “no” instance. Notice
that every egalitarian welfare-maximizing allocation O is in the form of O1 = B1 ∪
{em+1} and O2 = B2 ∪ {em+2} where {B1, B2} ∈ Π2(S). Without loss of generality
we assume v1(O1) < v2(O2), and based on the definition of ∆ and ε, we have
v1(O1 \ {em+1}) − v2(O2) ≤ ε − ∆ < 0, based on which, agent 1 violates EQX in
allocation O. Therefore, no EWM is EQX, completing the proof. !

Theorem 4.3.14. When allocating chores, the problem E(EW×EQ1) is NP-hard,
even for three agents.

Proof. To prove NP-hardness, we derive a reduction from Partition. Given an
arbitrary instance of Partition, we construct a fair-chores instance with three

89



agents and a set E = {e1, . . . , em+2} of m + 2 items. The valuation functions
are shown in Table 4.17. Consider an allocation of arbitrarily assigning the first

Items e1 e2 · · · em em+1 em+2
vi(·) for i = 1, 2 −p1 −p2 · · · −pm −3m

2 T −3m
2 T

v3(·) −3T −3T · · · −3T −T −T

Table 4.17: The fair-chores instance for Theorem 4.3.14

m chores to the first two agents, and assigning chores em+1 and em+2 to agent 3.
Since ∑m

j=1 pj = 2T , the egalitarian welfare of that allocation is −2T . Due to the
value of em+1 and em+2, no allocation can achieve egalitarian welfare larger than
−2T , which then implies that the maximum egalitarian welfare of the constructed
fair-chores instance is equal to −2T .

Suppose we have a “yes” instance of Partition, and let I1, I2 be a solution.
Consider an allocation A with A1 = ⋃

j∈I1 ej , A2 = ⋃
j∈I2 ej and A3 = {em+1, em+2}.

It is not hard to see that v1(A1) = v2(A2) = −T and v3(A3) = −2T , and accordingly,
the allocation A is an EWM. Since v3(A3 \ {e}) = vi(Ai) holds for any e ∈ A3 and
i = 1, 2, the allocation A is also EQ1.

We now prove the other direction. Suppose we have a “no” instance of
Partition. Recall that in any EWM, agent 3 must receive exactly items em+1 and
em+2 and have value exactly −2T . Due to “no” instance, one of the first two agents
receives a value strictly larger than −T from the assignment of the first m chores.
Through the comparision between agent 3 and the agent receiving the largest value,
one can verify that no EWM can satisfy EQ1, completing the proof. !

Theorem 4.3.15. When allocating goods and chores, problems C(EW/EQ1) and
C(EW/EQX) are NP-hard, even for two agents.

Proof. It suffices to show NP-completeness of the decision version of problems
C(EW/EQ1) and C(EW/EQX) (see the proof of Theorem 4.3.6). For both goods
and chores, we provide a reduction from Partition. Given an arbitrary instance of
Partition, we construct a fair-goods (resp., fair-chores) instance with two agents
and a set E = {e1, . . . , em} of m goods (resp., chores). Agents have identical valua-
tion functions and in the fair-goods instance, vi(ej) = pj for i ∈ [2] and j ∈ [m]; in
the fair-chores instance, vi(ej) = −pj for i ∈ [2] and j ∈ [m]. The threshold value
is defined as W = T in the fair goods instance; W = −T in the fair-chores instance.
Then, in both cases of goods and chores, there exists an EQ1 (or EQX) allocation
with egalitarian welfare at least W if and only if the Partition instance is a “yes”
instance. !
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Concerning all complexity results in Section 4, we remark that, except for
Theorem 4.3.12, the established (strong) NP-hardness still holds even when agents’
valuations are normalized to a constant. The results of this section leaves the fol-
lowing two interesting open questions.

Open question 1: For fixed n, what is the time complexity of computing an EQ1
allocation maximizing UW among all EQ1 allocation when agents’ valuations are
normalized?

Open question 2: For chores and two agents, what is the time complexity of
deciding whether there exists an EWM that is also EQ1?

4.4 Pseudo-Polynomial-Time Algorithms for Fixed Num-
ber of Agents

From the results established in the previous sections, for general n, all decision and
computation problems are strongly NP-hard. And for fixed n, it is still unknown
whether problems are pseudo-polynomial time solvable. In this section, we design
pseudo-polynomial time algorithms that can output the approximately equitable
allocation with the maximum welfare for both goods and chores. Similar to the
algorithms in Aziz et al. [17], our pseudo-polynomial time algorithms mainly rely
on dynamic programming with the subproblem of assigning the first k items. Once
the assignment of k-th item has been settled, we augment k by one and analyse the
assignment of (k + 1)-th item upon the allocation of the first k items. Throughout
this section, we assume agents’ values are integers and V = maxi∈[n]

∑
j∈[m]|vi(ej)|.

When considering utilitarian welfare, Aziz et al. [17] already provide an al-
gorithm to compute an EQ1/EQX allocation with the maximum utilitarian welfare
in the case of goods. For each i ∈ [n], their algorithm uses ti and si to represent the
lower bound of agent i’s value and a specific item in agent i’s bundle, respectively.
In particular, it applies dynamic programming to compute Gk(t1, . . . , tn, s1, . . . , sn)
for all k, ti and si, and sets it as True if there exists an allocation of e1, . . . , ek such
that for all i, the value of agent i is at least ti and item si is in agent i’s bundle;
otherwise, False. The desired EQ1/EQX allocation can be found by visiting all
Gm(t1, . . . , tn, s1, . . . , sn). Since for each i, parameter ti ∈ {0, 1, . . . , V } has V + 1
possible values and parameter si ∈ E has m possible values, the worst-case running
time of their algorithm is at least O(mnV n).

In what follows, we borrow the idea from Aziz et al. [17] and design psuedo-
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polynomial time algorithms for optimization/decision problems regarding egalitarian
welfare. Our algorithms rely on dynamic programmings subroutines, Algorithms 6
and 7, which compute B(k, t, s) for all possible k, t and s. For every B(k, t, s), the
parameter k refers to the number of items; vector t = (t1, . . . , tn) represents agents’
values; vector s = (s1, . . . , sn) represents specific items in bundles of individual
agents. To make the case of k = 0 well-defined, we assume that every agent is
endowed with a dummy item e0 of zero value (in total there are n dummy items) and
moreover, the dummy item of an agent cannot be reassigned to others. We remark
that for all i, si takes value from {e0, e1, . . . , em}. Note that Algorithms 6 and 7
work for both fair-goods and fair-chores instances. After computing B(k, t, s) ∈
{True, False} for every k, t and s, the desired EQ1 or EQX allocations can be found
by visiting all B(m, t, s) and backtracking the specific one.

Algorithm 6 Dynamic programming for C(EW/EQ1)
Input: An instance I = 〈[n], E, V〉.
Output: Tuple B(k, t, s) for all k, t and s.

1: Initialize B(k, t, s) = False for all k, t and s.
2: Let B(0, t, s) = True if si = e0 and ti = 0 for all i.
3: for k = 1, . . . , m do
4: for all t1, . . . , tn and s1, . . . , sn do
5: for i = 1, . . . , n do
6: if si = ek then
7: Set B(k, t1, . . . , ti, . . . , tn, s1, . . . , si, . . . , sn) = True if B(k −

1, t1, . . . , ti − vi(ek), . . . , tn, s1, . . . , s′
i, . . . , sn) = True for some s′

i ∈⋃k−1
r=0 er.

8: end if
9: if si ,= ek then

10: Set B(k, t1, . . . , ti, . . . , tn, s1, . . . , si, . . . , sn) = True if B(k −
1, t1, . . . , ti − vi(ek), . . . , tn, s1, . . . , si, . . . , sn) = True

11: end if
12: end for
13: end for
14: end for

The following lemma holds in both cases of goods and chores.

Lemma 4.4.1. Given a B(k, t, s) returned by Algorithm 6, B(k, t, s) = True if and
only if there exists an allocation of e1, . . . , ek such that for all i, the value of agent
i is equal to ti and si ∈

⋃k−1
r=0 er is in agent i’s bundle.

Proof. We first prove the “only if” part by mathematical induction. In the case of
k = 0, Step 2 of Algorithm 6 sets B(0, t, s) = True if si = e0 and ti = 0 for all i.
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Note that when k = 0, each agent i receives only e0 with value equal to 0. Thus,
the statement holds for the case of k = 0. We now assume that the statement holds
for k = 0, . . . , h and show that it also holds for the case of k = h + 1. Fix t and s
with B(h+1, t, s) = True and suppose that Algorithm 6 makes B(h+1, t, s) = True
when the for-loop in Step 5 being i = i∗.

If si∗ = eh+1, then Step 7 sets B(h+1, t, s) = True and thus B(h, t1, . . . , ti∗−
vi∗(eh+1), . . . , tn, s1, . . . , s′

i∗ , . . . , sn) = True for some s′
i∗ ∈

⋃h
r=0 er. As the state-

ment holds for k = h, there exists an allocation P of e1, . . . , eh such that (i)
vj(Pj) = tj for j ,= i∗ and vi∗(Pi∗) = ti∗−vi∗(eh+1); (ii) sj ∈

⋃h
r=0 er and sj ∈ Pj for

all j ,= i∗; s′
i∗ ∈

⋃h
r=0 er and s′

i∗ ∈ Pi∗ . Then consider allocation P∗ with P ∗
j = Pj for

j ,= i∗ and P ∗
i∗ = Pi∗∪{eh+1}. One can verify that P∗ is an allocation of e1, . . . , eh+1

with vi(P ∗
i ) = ti and si ∈ P ∗

i for all i.
If si∗ ,= eh+1, then Step 10 sets B(h+1, t, s) = True and thus B(h, t1, . . . , ti∗−

vi∗(eh+1), . . . , tn, s1, . . . , si∗ , . . . , sn) = True. As the statement holds for k = h,
there exists an allocation Q of e1, . . . , eh such that (i) vj(Qj) = tj for j ,= i∗ and
vi∗(Qi∗) = ti∗ − vi∗(eh+1); (ii) sj ∈

⋃h
r=0 er and sj ∈ Qj for all j. Then consider

allocation Q∗ with Q∗
j = Qj for j ,= i∗ and Q∗

i∗ = Qi∗ ∪ {eh+1}. One can verify that
Q∗ is an allocation of e1, . . . , eh+1 with vi(Q∗

i ) = ti and si ∈ Q∗
i for all i. Up to here,

the statement also holds when k = h + 1.
Overall, by mathematical induction, the “only if” part is proved.
Now let us prove the “if” part, again with mathematical induction. In the

case of k = 0, Step 2 of Algorithm 6 sets B(0, t, s) = True if si = e0 and ti = 0
for all i. Accordingly, if B(0, t′, s′) = False, then either t′

q ,= 0 or s′
q ,= e0 holds

for some q. Note that in the case of k = 0, no allocation can make agent q receive
non-dummy item s′

q or a non-zero value. Thus, the statement holds for the case of
k = 0. We now assume that the statement holds for k = 0, . . . , h and show that it
also holds for the case of k = h + 1. Fix t and s with B(h + 1, t, s) = False. For a
contradiction, assume that P is an allocation of e1, . . . , eh+1 with vj(Pj) = tj and
sj ∈ Pj for all j. Without loss of generality, we assume eh+1 ∈ Pi∗ . Construct an
allocation P′ of e1, . . . , eh with P ′

j = Pj for j ,= i∗ and P ′
i∗ = Pi∗ \ {eh+1}.

If si∗ = eh+1, due to the construction of P and P′ and the fact that the
statement holds for k = h, one can verify that allocation P′ makes B(h, t1, . . . , ti∗ −
vi∗(eh+1), . . . , tn, s1, . . . , s′

i∗ , . . . , sn}) = True, where s′
i∗ ∈

⋃h
r=0 er. Accordingly,

when the for-loop in Step 5 is i = i∗, Step 7 will set B(h + 1, t, s) = True, a
contradiction.

If si∗ ,= eh+1, since si∗ ∈ Pi∗ and si∗ ,= eh+1, we have si∗ ∈ P ′
i∗ . Due to
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the construction of P and P′ and the fact that the statement holds for k = h, one
can verify that allocation P′ makes B(h, t1, . . . , ti∗ − vi∗(eh+1), . . . , tn, s1, . . . , si∗ ,

. . . , sn) = True. As a result, when the for-loop in Step 5 is i = i∗, Step 10 will set
B(h + 1, t, s) = True, another contradiction. Therefore, the statement also holds
when k = h + 1.

Therefore, with mathematical induction, we have also proved the “if” part
of the lemma. !

Consequently, we have the following theorem.

Theorem 4.4.1. Given an instance I = 〈[n], E, V〉, one can compute an EQ1
allocation with the maximum egalitarian welfare in time O(mn+2V n).

Proof. Note that Algorithm 6 can return B(m, t, s) for all t and s. By visiting the
entire B(m, t, s), we can find the set Γ, of which the construction depends on the
underlying items. The full construction of Γ is presented below, and the second
condition for both goods and chores is to verify the underlying fairness notion.

Γ =
{

{(t, s)|B(m, t, s) = True and ti + vj(sj) ≥ tj for all i, j}, for goods;
{(t, s)|B(m, t, s) = True and ti − vi(si) ≥ tj for all i, j}, for chores.

Given an arbitrary EQ1 allocation A′ = (A′
1, . . . , A′

n), construct (t′, s′) as follows:
for all i, t′

i = vi(A′
i) and s′

i ∈ A′
i is the item with the largest absolute value for

agent i. Then, we have (t′, s′) ∈ Γ due to the property of EQ1 and the construction
of t′ and s′. Accordingly, by visiting all element of Γ, we are able to find the
element (t∗, s∗) ∈ Γ, of which t∗ represents the agents’ values in the EQ1 allocation
maximizing egalitarain welfare over all EQ1 allocations. In particular, one can
pursue the (t∗, s∗) with mini∈[n] t∗

i ≥ mini∈[n] ti for all (t, s) ∈ Γ. The specific EQ1
allocation can be found by backtracking B(m, t∗, s∗) in the following way: assigning
em to agent im if the value of B(m, t∗, s∗) is set to True by B(m− 1, tm−1, sm−1) =
True and at that time the for-loop in Step 5 is i = im; then assigning em−1 to agent
im−1 if the value of B(m− 1, tm−1, sm−1) is set to True by B(m− 2, tm−2, sm−2) =
True and at that time the for-loop in Step 5 is i = im−1; repeat this process until
all items are assigned. If in some step, the choice of B(h, th, sh) is not unique, then
arbitrarily pick one.

As for the time complexity, the running time of Algorithm 6 is O(mn+2V n),
and visiting the entire B(m, t, s) and backtracking takes time O(mnV n). Therefore,
the running time of the algorithm is O(mn+2V n). !

Moving on to our consideration of EQX, the dynamic programming for prob-
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lem C(EW/EQX) is shown as Algorithm 7. Different from Algorithm 6, we now
use si to represent the item with least non-zero absolute value in agent i’s bundle
if agent i receives a non-zero value. We establish that the EQX allocation with
the maximum egalitarian welfare can be found by visiting the entire B(m, t, s) and
backtracking specific ones.

Algorithm 7 Dynamic programming for C(EW/EQX)
Input: An instance I = 〈[n], E, V〉.
Output: Tuple B(k, t, s) for all k, t and s.

1: Initialize B(k, t, s) = False for all k, t and s.
2: Let B(0, t, s) = True if si = e0 and ti = 0 for all i.
3: for k = 1, . . . , m do
4: for all t1, . . . , tn and s1, . . . , sn do
5: for i = 1, . . . , n do
6: if si = ek and ti = vi(ek) ,= 0 then
7: Set B(k, t1, . . . , ti, . . . , tn, s1, . . . , si, . . . , sn) = True if B(k −

1, t1, . . . , ti−1, 0, ti+1 . . . , tn, s1, . . . , si−1, e0, si+1, . . . , sn) = True.
8: end if
9: if si = ek and ti ,= vi(ek) ,= 0 then

10: Set B(k, t1, . . . , ti, . . . , tn, s1, . . . , si, . . . , sn) = True if B(k −
1, t1, . . . , ti − vi(ek), . . . , tn, s1, . . . , s′

i, . . . , sn) = True for some s′
i ∈⋃

r∈[k−1] er with |vi(si)| ≤ |vi(s′
i)|.

11: end if
12: if e0 = si ,= ek and ti = vi(ek) = 0 then
13: Set B(k, t1, . . . , ti, . . . , tn, s1, . . . , si, . . . , sn) = True if B(k −

1, t1, . . . , ti−1, 0, ti+1 . . . , tn, s1, . . . , si−1, e0, si+1, . . . , sn) = True.
14: end if
15: if e0 ,= si ,= ek and ti ,= vi(ek) then
16: Set B(k, t1, . . . , ti, . . . , tn, s1, . . . , si, . . . , sn) = True if B(k −

1, t1, . . . , ti − vi(ek), . . . , tn, s1, . . . , si, . . . , sn) = True and either 0 <
|vi(si)| ≤ |vi(ek)| or vi(ek) = 0.

17: end if
18: end for
19: end for
20: end for

The following lemma holds in both cases of goods and chores.

Lemma 4.4.2. Given a B(k, t, s) returned by Algorithm 7, B(k, t, s) = True if and
only if there exists an allocation such that for all i:

(i) the value of agent i is equal to ti;

(ii) if si = e0, then ti = 0; if si ,= e0, item si ∈
⋃

r∈[k] er is in agent i’s bundle and
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moreover, either si is the unique item of non-zero value in agent i’s bundle or
0 < |vi(si)| ≤ |vi(e)| for every item e of non-zero value in agent i’s bundle.

Proof. We first prove the “only if” part with mathematical induction. In the case
of k = 0, Step 2 of Algorithm 7 sets B(0, t, s) = True if si = e0 and ti = 0 for all
i. Note that when k = 0, each agent i receives only e0 with value equal to 0. Thus,
the statement holds for the case of k = 0. We now assume that the statement holds
for k = 0, . . . , h and show that it also holds for the case of k = h + 1. Fix t and s
with B(h+1, t, s) = True and suppose that Algorithm 7 makes B(h+1, t, s) = True
when for-loop in Step 5 is i = i∗.

If si∗ = eh+1 and ti∗ = vi∗(eh+1) ,= 0, then Step 7 sets B(h + 1, t, s) = True
and B(h, t1, . . . , ti∗−1, 0, ti∗+1, . . . , tn, s1, . . . , si∗−1, e0, si∗+1, . . . , sn) = True. As the
statement holds for k = h, there exists an allocation P of e1, . . . , eh such that
vj(Pj) = tj for j ,= i∗ and vi∗(Pi∗) = 0, and moreover, satisfies property (ii) described
in the statement. We now consider P′ with P ′

j = Pj for j ,= i∗ and P ′
i∗ = Pi∗∪{eh+1}.

Since vi∗(P ′
i∗) = vi∗(Pi∗) + vi∗(eh+1) = ti∗ and eh+1 ∈ P ′

i∗ is the unique item of non-
zero value in P ′

i∗ , P′ is an allocation of e1, . . . , eh+1 that satisfies the properties (i)
and (ii) described in the statement regarding t and s.

If si∗ = eh+1 and ti∗ ,= vi∗(eh+1) ,= 0, then Step 10 sets B(k, t, s) = True and
B(h, t1, . . . , ti∗ − vi∗(eh+1), . . . , tn, s1, . . . , s′

i∗ , . . . , sn) = True, where s′
i∗ ∈

⋃
r∈[h] er

satisfies |vi∗(s′
i∗)| ≥ |vi∗(eh+1)|. As the statement holds for k = h, there exists an

allocation Q of e1, . . . , eh such that vj(Qj) = tj for j ,= i∗ and vi∗(Qi∗) = ti∗ −
vi∗(eh+1), and moreover, satisfies property (ii) described in the statement regarding
s1, . . . , s′

i∗ , . . . , sn. We now consider Q′ with Q′
j = Qj for j ,= i∗ and Q′

i∗ = Qi∗ ∪
{eh+1}. Since vi∗(Q′

i∗) = vi∗(Qi∗) + vi∗(eh+1) = ti∗ and Q′
j = Qj for j ,= i∗, then we

have vj(Q′
j) = tj for all j. As for property (ii), note that |vi∗(s′

i∗)| ≥ |vi∗(eh+1)| ,= 0
and s′

i∗ is the item with the least non-zero absolute value for agent i∗ in Qi∗ , thus
eh+1 is the item with the least non-zero absolute value in Q′

i∗ . Then, property (ii)
regarding s described in the statement is also satisfied by Q′.

If e0 = si∗ ,= eh+1 and ti∗ = vi∗(eh+1) = 0, then Step 13 sets B(k, t, s) = True
and also sets B(h, t1, . . . , ti∗−1, 0, ti∗+1, . . . , tn, s1, . . . , si∗−1, e0, si∗+1, . . . , sn) = True.
As the statement holds for k = h, there exists an allocation R of e1, . . . , eh such
that vj(Rj) = tj for j ,= i∗ and vi∗(Ri∗) = 0, and moreover, satisfies property (ii)
described in the statement. We now consider R′ with R′

j = Rj for j ,= i∗ and
R′

i∗ = Ri∗ ∪ {eh+1}. Note that vi∗(R′
i∗) = 0, then one can verify that R′ is an

allocation of e1, . . . , eh+1 that satisfies the properties (i) and (ii) described in the
statement regarding t and s.
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If e0 ,= si∗ ,= eh+1 and ti∗ ,= vi∗(eh+1), then Step 16 sets B(k, t, s) =
True and B(h, t1, . . . , ti∗ − vi∗(eh+1), . . . , tn, s1, . . . , si∗ , . . . , sn) = True and either
0 < |vi∗(si∗)| ≤ |vi∗(eh+1)| or vi∗(eh+1) = 0. As the statement holds for k = h,
there exists an allocation S of e1, . . . , eh such that vj(Sj) = tj for j ,= i∗ and
vi∗(Si∗) = ti∗−vi∗(eh+1), and moreover, satisfies property (ii) described in the state-
ment regarding s. We now consider S′ with S′

j = Sj for j ,= i∗ and S′
i∗ = Si∗∪{eh+1}.

Since vi∗(S′
i∗) = vi∗(Si∗) + vi∗(eh+1) = ti∗ and S′

j = Sj for j ,= i∗, then we have
vj(S′

j) = tj for all j. As for property (ii), note that either |vi∗(si∗)| ≤ |vi∗(eh+1)| or
vi∗(eh+1) = 0 and si∗ is the item with the least non-zero absolute value for agent i∗

in Si∗ , then one can verify that property (ii) regarding s described in the statement
is also satisfied by S′. Up to here, the statement also holds when k = h + 1.

Overall, with mathematical induction, we have proved the “only if” part of
the lemma.

Now let us prove the “if” part, again with mathematical induction. In the
case of k = 0, Step 2 of Algorithm 7 sets B(0, t, s) = True if si = e0 and ti = 0 for all
i. Accordingly, if B(0, t′, s′) = False, then either t′

q ,= 0 or s′
q ,= e0 holds for some q.

Note that in the case of k = 0, no allocation can make agent q receive non-dummy
item s′

q or non-zero value. Thus, the statement holds for the case of k = 0. We
now assume that the statement holds for k = 0, . . . , h and show that the statement
also holds for the case of k = h + 1. Fix t and s with B(h + 1, t, s) = False, and
for a contradiction, assume P is an allocation of e1, . . . , eh+1 satisfying properties
(i) and (ii) described in the statement regarding t and s. Without loss of generality,
we assume eh+1 ∈ Pi∗ . Construct allocation P′ with P ′

j = Pj for j ,= i∗ and
P ′

i∗ = Pi∗ \ {eh+1}. We then split the proof into four cases based on the possibilities
of si∗ and ti∗ .

Case 1 : si∗ = eh+1 and ti∗ = vi∗(eh+1). As si∗ ,= e0, we must have
ti∗ = vi∗(Pi∗) ,= 0, and accordingly, vi∗(eh+1) ,= 0 holds. Note that vi∗(P ′

i∗) = ti∗ −
vi∗(eh+1) = 0. As the statement holds for the case of k = h, it is not hard to verify
that allocation P′ makes B(h, t1, . . . , ti∗−1, 0, ti∗+1, . . . , tn, s1, . . . , si∗−1, e0, si∗+1, . . . ,

sn) = True. Thus, when the for-loop in Step 5 of Algorithm 7 is i = i∗, Step 7 sets
B(h + 1, t, s) = True, a contradiction.

Case 2 : si∗ = eh+1 and ti∗ ,= vi∗(eh+1). For this case, we must have
vi∗(eh+1) ,= 0; otherwise, item si∗ has zero value for agent i∗, contradicting the
property (ii) satisfied by P. Note that vi∗(P ′

i∗) = ti∗ − vi∗(eh+1) ,= 0, and accord-
ingly, bundle P ′

i∗ contains items of non-zero value for agent i∗. Denote by e′ the
item with the least non-zero absolute value in P ′

i∗ . As P satisfies property (ii) re-
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garding s and e′ ∈ P ′
i∗ ⊆ Pi∗ , we have |vi∗(si∗)| ≤ |vi∗(e′)|. As for agent i∗’s value,

we have vi∗(P ′
i∗) = ti∗ − vi∗(eh+1). Consequently, one can verify that allocation P′

makes B(h, t1, . . . , ti∗ − vi∗(eh+1), . . . , tn, s1, . . . , e′, . . . , sn) = True. Thus, when the
for-loop in Step 5 of Algorithm 7 is i = i∗, Step 10 sets B(h + 1, t, s) = True, a
contradiction.

Case 3 : e0 = si∗ ,= eh+1. Note that si∗ = e0 implies ti∗ = vi∗(Pi∗) = 0, and
consequently, vi∗(eh+1) = 0 holds as eh+1 ∈ Pi∗ . Also, it is evident that vi∗(P ′

i∗) = 0.
As the statement holds for the case of k = h, it is not hard to verify that P′ makes
B(h, t1, . . . , ti∗−1, 0, ti∗+1 . . . , tn, s1, . . . , si∗−1, e0, si∗+1, . . . , sn) = True. Thus, when
the for-loop in Step 5 of Algorithm 7 is i = i∗, Step 13 sets B(h + 1, t, s) = True, a
contradiction.

Case 4 : e0 ,= si∗ ,= eh+1. Note that both items si∗ and eh+1 are in Pi∗ ,
then |ti∗ | = |vi∗(Pi∗)| ≥ |vi∗(si∗) + vi∗(eh+1)|. Since agent i∗ has a non-zero value
on item si∗ , it must hold that |ti∗ | ,= |vi∗(eh+1)|. Since si∗ is the item with
the least non-zero absolute value for agent i∗ in Pi∗ , then si∗ is also the item
with the least non-zero absolute value in P ′

i∗ , and moreover, either |vi∗(si∗)| ≤
|vi∗(eh+1)| or vi∗(eh+1) = 0 holds. For agent i’s value, we have vi∗(P ′

i∗) = ti∗ −
vi∗(eh+1). Consequently, one can verify that allocation P′ makes B(h, t1, . . . , ti∗ −
vi∗(eh+1), . . . , tn, s1, . . . , si∗ , . . . , sn) = True with either 0 < |vi∗(si∗)| ≤ |vi∗(eh+1)|
or vi∗(eh+1) = 0. Thus, when the for-loop in Step 5 of Algorithm 7 is i = i∗, Step
16 sets B(h + 1, t, s) = True, another contradiction. Up to here, the statement also
holds when k = h + 1.

Overall, with mathematical induction, we have also proved the “if” part of
the lemma. !

Consequently, we obtain the following theorem.

Theorem 4.4.2. Given an instance I = 〈[n], E, V〉, one can compute an EQX
allocation with the maximum egalitarian welfare in time O(mn+2V n).

Proof. Note that Algorithm 7 can return B(m, t, s) for all t and s. By visiting the
entire B(m, t, s), we can find the set Γ, of which the construction depends on the
underlying items. The full construction of Γ is presented as follows.

Γ =
{

{(t, s)|B(m, t, s) = True and ti + vj(sj) ≥ tj for all i, j}, for goods;
{(t, s)|B(m, t, s) = True and ti − vi(si) ≥ tj for all i, j}, for chores.

Given an arbitrary EQX allocation A′ = (A′
1, . . . , A′

n), construct (t′, s′) as follows:
for all i, t′

i = vi(A′
i) and if vi(A′

i) = 0, then s′
i = e0 and otherwise, s′

i ∈ A′
i is the item
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with the least non-zero absolute value for agent i. Then, we have (t′, s′) ∈ Γ due
to the property of EQX and the construction of t′ and s′. Accordingly, by visiting
all element of Γ, we are able to find the element (t∗, s∗) ∈ Γ, of which t∗ represents
the agents’ value in the EQX allocation maximizing egalitarain welfare over all EQX
allocations. In particular, one can pursue the (t∗, s∗) with mini∈[n] t∗

i ≥ mini∈[n] ti for
all (t, s) ∈ Γ. The specific EQX allocation can be found by backtracking B(m, t∗, s∗)
in the following way: assigning em to agent im if the value of B(m, t∗, s∗) is set to
True by B(m − 1, tm−1, sm−1) = True and at that time the for-loop in Step 5 is
i = im; then assigning em−1 to agent im−1 if the value of B(m − 1, tm−1, sm−1) is
set to True by B(m − 2, tm−2, sm−2) = True and at that time the for-loop in Step
5 is i = im−1; repeat this process until all items are assigned. If in some step, the
choice of B(h, th, sh) is not unique, then arbitrarily pick one.

As for the time complexity, the running time of Algorithm 6 is O(mn+2V n),
and visiting the entire B(m, t, s) and backtracking takes time O(mnV n). Therefore,
the running time of the algorithm is O(mn+2V n). !

Theorems 4.4.1 and 4.4.2 indicate that both problems of C(EW/EQ1) and
C(EW/EQX) can be solved in pseudo-polynomial time. Accordingly, in the case of
fixed n, problems C(EW/EQ1) and C(EW/EQX) are weakly NP-hard. Note that
for goods, optimal egalitarian welfare is compatible with EQX/EQ1. To address the
decision problems of E(EW×EQ1) and E(EW×EQX) for chores, we remark that in
Algorithms 6 and 7, tuples B(m, t, s) actually record all possible values that agents
can receive in nearly equitable allocations. Moreover, by eliminating the conditions
for parameters {si}n

i=1, it is possible to compute the maximum egalitarian welfare
in time O(mV n) via a dynamic program similar to Algorithm 6. Therefore, in the
case of chores, the problems of E(EW×EQ1) and E(EW×EQX) are also weakly
NP-hard.

Theorem 4.4.3. In the allocations of chores, E(EW×EQ1) and E(EW×EQX) can
be answered in time O(mn+2V n).

In some resource allocation scenarios, the number of items m to be allocated
can be larger than V , and allocating items to agents with dichotomous preferences2

is a typical example of m 1 V . We then further explore the possibility of al-
gorithms whose running time is smaller than O(mn+2V n) in the case of m 1 V .
The main strategy is to decrease the running time related to input size m, which

2If agent i has dichotomous preference on the set of goods E, then vi(e) ∈ {0, 1}. For a detailed
discussion of dichotomous preferences, we refer the reader to Bogomolnaia and Moulin [34] and
Bogomolnaia et al. [38].
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may inevitably increase the running time caused by V . Below we design pseudo-
polynomial time algorithms that can compute the EQ1/EQX allocation with the
maximum utilitarian/egalitarian welfare in time O(mV 2n+1). The algorithms rely
on dynamic programming subroutines, Algorithm 8, in which for each i ∈ [n], we
use ti to represent the value of agent i and pi to represent the absolute value of a
special item in agent i’s bundle. The special item is in particular used to examine
whether the underlying fairness notion is satisfied or not. To take an example, when
considering EQ1, pi would represent the absolute value of the item with the largest
absolute value in agent i’s bundle. The dynamic programming subroutines therefore
admit two n-dimensional vectors t = (t1, . . . , tn) with ti ∈ {−V, . . . , 0, . . . , V } and
p = (p1, . . . , pn) with pi ∈ {0, . . . , V }. For any t and p, the dynamic programming
examines that for each k ∈ [m] whether the assignments of the first k items can
satisfy the constraints regarding t and p, and returns a tuple B(k, t, p) that takes
value from {True, False}. Informally, given fixed k, t and p, if there exists an assign-
ment of e1, . . . , ek such that for each i ∈ [n], agent i receives value ti and the value
of the special item in agent i’s bundle is equal to pi, then the dynamic programming
sets B(k, t, p) = True; otherwise, B(k, t, p) = False.

Lemma 4.4.3. Given a B(k, t, p) returned by Algorithm 8, B(k, t, p) = True if
and only if there exists an allocation A = (A1, . . . , An) of e1, . . . , ek such that for
all i:

(i) when considering EQ1, if vi(Ai) = 0 then pi = 0, and otherwise pi = max
e∈Ai

|vi(e)|;
when considering EQX, if vi(Ai) = 0 then pi = 0, and otherwise pi =

min
e∈Ai:vi(e) +=0

|vi(e)|;

(ii) vi(Ai) = ti.

Proof. We first prove the “only if” part by mathematical induction. In the case
of k = 0, Step 2 of Algorithm 8 sets B(0, t, p) = True only if ti = pi = 0 for all
i. Note that when k = 0, each agent receives nothing and has value 0. Thus, the
statement holds for the case of k = 0. We now assume that the statement holds for
k = 0, . . . , h, and show that it also holds for the case of k = h + 1. Fix t and p with
B(h+1, t, p) = True and suppose that Algorithm 8 makes B(h+1, t, p) = True when
the for-loop in Step 5 is i = i∗. By Steps 7 and 10, it holds that B(h, t1, . . . , ti∗ −
vi∗(eh+1), . . . , tn, p1, . . . , p′

i∗ , . . . , pn) = True for some p′
i∗ . As the statement holds

for k = h, there exists an allocation R of e1, . . . , eh satisfying properties (i) and (ii)
regarding (t1, . . . , ti∗ − vi∗(eh+1), . . . , tn) and (p1, . . . , p′

i∗ , . . . , pn). We now consider
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Algorithm 8 Dynamic programming subroutines
Input: An instance I = 〈[n], E, V〉 and a fairness notion F ∈ {EQ1, EQX}.
Output: Tuple B(k, t, p) for all k, t and p.

1: Initialize B(k, t, p) = False for all k, t and p.
2: Let B(0, t, p) = True if ti = 0 and pi = 0 for all i.
3: for k = 1, . . . , m do
4: for all t1, . . . , tn and p1, . . . , pn do
5: for i = 1, . . . , n do
6: if F = EQ1 then
7: Set B(k, t1, . . . , ti, . . . , tn, p1, . . . , pi, . . . , pn) = True if B(k −

1, t1, . . . , ti − vi(ek), . . . , tn, p1, . . . , p′
i, . . . , pn) = True holds for some

p′
i with max{|vi(ek)|, p′

i} = pi.
8: end if
9: if F = EQX then

10: Set B(k, t1, . . . , ti, . . . , tn, p1, . . . , pi, . . . , pn) = True if B(k −
1, t1, . . . , ti − vi(ek), . . . , tn, p1, . . . , p′

i, . . . , pn) = True holds for some
p′

i satisfying the following condition,
{

min{|vi(ek)|, p′
i} = pi, if vi(ek) ,= 0 and p′

i ,= 0;
max{|vi(ek)|, p′

i} = pi, otherwise.

11: end if
12: end for
13: end for
14: end for

the allocation R∗ of e1, . . . , eh+1 with R∗
j = Rj for j ,= i∗ and R∗

i∗ = Ri∗ ∪ {eh+1}.
It is not hard to see that vj(R∗

j ) = tj for any j ∈ [n].
As for property (i), since each agent j ,= i∗ receives an identical bundle in

allocations R and R∗ and the parameter pj is consistent in the two tuples under
consideration, it suffices to prove that property (i) regarding agent i∗ is satisfied by
the allocation R∗. When considering EQ1, we split the proof into two cases:

Case 1: p′
i∗ = 0. As the allocation R satisfies property (i) regarding

(p1, . . . , p′
i∗ , . . . , pn), the equality vi∗(Ri∗) = 0 holds. Based on Step 7, we have

pi∗ = max {|vi∗(eh+1)|, p′
i∗} = |vi∗(eh+1)|. If vi∗(eh+1) = 0, then it holds that

vi∗(R∗
i∗) = 0 and pi∗ = 0, which implies that the allocation R∗ satisfies property

(i). If |vi∗(eh+1)| > 0, we have pi∗ = maxe∈R∗
i∗ |vi∗(e)|, and thus property (i) is also

satisfied by R∗.
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Case 2: p′
i∗ > 0. In this case, the following holds,

pi∗ = max
{
|vi∗(eh+1)|, p′

i∗
}

= max
{

|vi∗(eh+1)|, max
e∈Ri∗

|vi∗(e)|
}

= max
e∈R∗

i∗
|vi∗(e)|,

where the first equality is due to Step 7 and the second equality is owing to the
construction of R. Thus, property (i) regarding p is also satisfied by R∗.

Therefore, R∗ is an allocation of e1, . . . , eh+1 that satisfies properties (i) and
(ii) regarding t and p.

When considering EQX, we also split the proof into two cases.
Case 1: vi∗(eh+1) = 0. According to Step 10, we have p′

i∗ = pi∗ since p′
i∗ ≥ 0

always holds. If p′
i∗ = 0, then we have vi∗(Ri∗) = 0, which implies vi∗(R∗

i∗) = 0 due
to R∗

i∗ = Ri∗ ∪{eh+1} and vi∗(eh+1) = 0. Note that pi∗ = p′
i∗ = 0, and thus property

(i) is satisfied by R∗. If p′
i∗ ,= 0, then we have the following

pi∗ = p′
i∗ = min

e∈Ri∗ :vi∗ (e) +=0
|vi∗(e)| = min

e∈R∗
i∗ :vi∗ (e) +=0

|vi∗(e)|,

where the second equality is due to the construction of R and the third equality is
due to vi∗(eh+1) = 0. Thus, the property (i) is also satisfied.

Case 2: vi∗(eh+1) ,= 0. If p′
i∗ = 0, then according to Step 10, it holds

that pi∗ = |vi∗(eh+1)|. Since p′
i∗ = 0 and R∗

i∗ = Ri∗ ∪ {eh+1}, item eh+1 is the
unique non-zero value item in R∗

i∗ for agent i. Thus, we have pi∗ = |vi∗(eh+1)| =
mine∈R∗

i∗ :vi∗ (e) +=0 |vi∗(e)| and property (i) is satisfied. If p′
i∗ ,= 0, then the following

holds

pi∗ = min{|vi∗(eh+1)|, p′
i∗} = min

{

|vi∗(eh+1)|, min
e∈Ri∗ :vi∗ (e) +=0

|vi∗(e)|
}

= min
e∈R∗

i∗ :vi∗ (e) +=0
|vi∗(e)|,

where the first equality is due to Step 10; the second equality is due to the construc-
tion of R; the third equality is due to vi∗(eh+1) ,= 0 and R∗

i∗ = Ri∗ ∪ {eh+1}. As a
consequence, property (i) is also satisfied. Therefore, when considering EQX, R∗ is
an allocation of e1, . . . , eh+1 that satisfies properties (i) and (ii) regarding t and p.

Overall, by mathematical induction, the “only if” part is proved.
Now let us prove the “if” part, again with mathematical induction. In the

case of k = 0, Step 2 of Algorithm 8 sets B(0, t, p) = True if ti = pi = 0 for all
i. Accordingly, if B(0, t′, p′) = False, then either t′

q ,= 0 or p′
q ,= 0 holds for some

q. Note that the value of an agent can only be zero in the case of k = 0. Thus,

102



the statement holds for the case of k = 0. We now assume the statement holds for
k = 0, . . . , h and show that it also holds for the case of k = h + 1. Fix t and p
with B(h + 1, t, p) = False. For a contradiction, assume that S is an allocation of
e1, . . . , eh+1 satisfying the properties (i) and (ii) regarding t and p. Without loss
of generality, we assume eh+1 ∈ Si∗ . Construct an allocation S′ of e1, . . . , eh with
S′

j = Sj for j ,= i∗ and S′
i∗ = Si∗ \ {eh+1}. In the following, we show that S′ is an

allocation that makes B(h, t1, . . . , ti∗ − vi∗(eh+1), . . . , tn, p1, . . . , p̃i∗ , . . . , pn) = True
for some p̃i∗ (will be specified later on) satisfying the condition in Steps 7 and 10,
which then results in B(h + 1, t, p) = True, a desired contradiction. Note that
vj(S′

j) = vj(Sj) = tj for j ,= i∗ and vi∗(S′
i∗) = ti∗ − vi∗(eh+1), then the property (ii)

regarding (t1, . . . , ti∗ − vi∗(eh+1), . . . , tn) is satisfied by S′.
As for property (i), since each agent j ,= i∗ receives an identical bundle in

allocations S and S′ and the parameter pj is consistent in the two tuples under
consideration, it suffices to prove that property (i) regarding agent i∗ is satisfied by
the allocation S′.

When considering EQ1, if vi∗(S′
i∗) = 0, then let p̃i∗ = 0, and otherwise

p̃i∗ = maxe∈S′
i∗ |vi∗(e)|. It is not hard to verify that the allocation S′ makes

B(h, t1, . . . , ti∗ − vi∗(eh+1), . . . , tn, p1, . . . , p̃i∗ , . . . , tn) = True. If p̃i∗ = 0, we clearly
have max {|vi∗(eh+1)|, p̃i∗} = pi∗ . If p̃i∗ > 0, the following holds,

max {|vi∗(eh+1)|, p̃i∗} = max
{

|vi∗(eh+1)|, max
e∈S′

i∗
|vi∗(e)|

}

= max
e∈Si∗

|vi∗(e)| = pi∗ ,

where the second equality is due to Si∗ = S′
i∗ ∪ {eh+1}. Thus, Step 7 always sets

B(h + 1, t, p) = True when the for-loop in Step 5 is i = i∗, a contradiction.
When considering EQX, we define p̃i∗ as follows,

p̃i∗ =






0, if vi∗(S′
i∗) = 0;

min
e∈S′

i∗ :vi∗ (e) +=0
|vi∗(e)|, otherwise.

Then one can verify that the allocation S′ makes B(h, t1, . . . , ti∗ − vi∗(eh+1), . . . , tn,

p1, . . . , p̃i∗ , . . . , pn) = True because the statement holds for k = h. In the following,
we split the proof into two cases and for each case prove that the condition in Step
10 is satisfied.

Case 1: vi∗(eh+1) = 0. Since Si∗ = S′
i∗ ∪ {eh+1} and vi∗(eh+1) = 0, it holds

that pi∗ = max{|vi∗(eh+1)|, p̃i∗} no matter whether p̃i∗ = 0 or not.
Case 2: vi∗(eh+1) ,= 0. If p̃i∗ = 0, then eh+1 is the unique item in Si∗
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having non-zero value for agent i∗. Accordingly, we have pi∗ = |vi∗(eh+1)| =
max{|vi∗(eh+1)|, p̃i∗}, and thus the condition of Step 10 is satisfied. If p̃i∗ ,= 0,
then the following holds,

pi∗ = min
e∈Si∗ :vi∗ (e) +=0

|vi∗(e)| = min
{

|vi∗(eh+1)|, min
e∈S′

i∗ :vi∗ (e) +=0
|vi∗(e)|

}

= min{|vi∗(eh+1)|, p̃i∗},

where the second equality is due to Si∗ = S′
i∗ ∪ {eh+1}; the third equality comes

from the definition of p̃i∗ . Thus, in both cases, Step 10 sets B(h + 1, t, p) = True
when the for-loop in Step 5 is i = i∗, a contradiction,

Therefore, with mathematical induction, we have also proved the “if” part
of the lemma. !

Theorem 4.4.4. Given an instance I = 〈[n], E, V〉, one can compute an F ∈
{EQ1, EQX} allocation with the maximum W ∈ {EW, UW} welfare in time O(mV 2n+1).

Proof. Note that Algorithm 8 can return B(m, t, p) for all t and p. By visiting
the entire B(m, t, p), we can find the set Γ, of which the construction depends on
the underlying items. The full construction of Γ is presented below, and the second
condition for both goods and chores is to examine whether the underlying fairness
notion is satisfied or not.

Γ =
{

{(t, p)|B(m, t, p) = True and ti + pj ≥ tj for all i, j}, for goods;
{(t, p)|B(m, t, p) = True and ti + pi ≥ tj for all i, j}, for chores.

For an arbitrary F allocation A′ = (A′
1, . . . , A′

n), consider two vectors t′ and p′ with
for all i, t′

i = vi(A′
i), and for p′

i, we distinguish between EQ1 and EQX: for EQ1,
if vi(A′

i) = 0 then let p′
i = 0, and otherwise let p′

i = maxe∈A′
i
|vi(e)|; for EQX, if

vi(A′
i) = 0, then let p′

i = 0 and otherwise let p′
i = mine∈A′

i:vi(e) +=0 |vi(e)|.
We first claim that (t′, p′) ∈ Γ. Based on Lemma 4.4.3, the allocation A′

makes B(m, t′, p′) = True. Moreover, due to the construction of t′ and p′ and
the fact that A′ is an F allocations, the second condition is also satisfied. As a
consequence, it holds that (t′, p′) ∈ Γ. Then, by visiting all elements of Γ, we are
able to find the element (t∗, p∗) ∈ Γ, of which t∗ represents the agents’ values in the
F allocation maximizing W over all F allocations. In particular, when W = UW
(resp., W = EW), one can pursue the (t∗, p∗) with ∑

i∈[n] t∗
i ≥

∑
i∈[n] ti (resp.,

mini∈[n] t∗
i ≥ mini∈[n] ti) for all (t, p) ∈ Γ. The specific F allocation that maximizes

W over all F allocations can be constructed by backtracking B(m, t∗, p∗) in the
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following way: assigning em to agent im if the value of B(m, t∗, p∗) is set to True
by B(m − 1, tm−1, pm−1) = True and at that time the for-loop in Step 5 is i = im;
then assigning em−1 to agent im−1 if the value of B(m − 1, tm−1, pm−1) is set to
True by B(m − 2, tm−2, pm−2) = True and at that time the for-loop in Step 5 is
i = im−1; repeat this process until all items are assigned. If in some step, the choice
of B(h, th, ph) is not unique, then arbitrarily pick one.

As for the time complexity, the running time of Algorithm 8 is O(mV 2n+1),
and visiting all B(m, t, p) and backtracking the specific one takes time O(mV 2n).
Therefore, the running time of the algorithm is O(mV 2n+1). !

For the decision problems, note that the maximum utilitarian welfare can be
computed in linear time, and accordingly, problems E(UW×EQ1) and E(UW×EQX)
can be answered in time O(mV 2n+1).

Theorem 4.4.5. When allocating goods and chores, problems E(UW×EQ1) and
E(UW×EQX) can be answered in time O(mV 2n+1).

When considering egalitarian welfare, recall that for goods, decision problems
E(EW×EQ1) and E(EW×EQX) trivially have answer “yes”. For the allocation of
chores, the maximum egalitarian welfare can be computed in time O(mV n) via a
dynamic program similar to Algorithm 8 (eliminating p and the corresponding con-
ditions). Consequently, for chores, the problems of E(EW×EQ1) and E(EW×EQX)
can also be answered in time O(mV 2n+1).

Theorem 4.4.6. When allocating chores, problems E(EW×EQ1) and E(EW×EQX)
can be answered in time O(mV 2n+1).

We remark that, when considering egalitarian welfare, we have presented two
pseudo-polynomial algorithms, one using Algorithms 6 and 7 as subroutines, and the
other using Algorithm 8 as subroutines. The two types of algorithms are mutually
non-dominating in terms of running time. Specific resource allocation problems
determine which one is more efficient.

4.5 Conclusions

In this chapter, we have conducted an analysis on both indivisible goods and indivis-
ible chores and studied two notions of relaxed equitability, namely EQX and EQ1,
together with efficiency measured by two welfare allocations, utilitarian and egalitar-
ian welfare. On every pairwise fairness and welfare combination, we have provided
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(almost) tight results on the price of fairness. In the case of chores, to achieve relaxed
equitability, almost all efficiency would be sacrificed, while the prices of fairness in
goods allocation are all bounded. Particularly, with two agents, fairness can be
achieved at the cost of at most half of welfare in goods allocations; however, in the
case of chores, fair allocations cannot have a bounded guarantee on welfare. Our
results on the price of fairness somewhat reflect the differences between goods and
chores.

From the results on the price of fairness, relaxed equitability is not always
compatible with optimal social welfare, which motivates us to investigate whether
one can efficiently determine the existence of a fair and welfare-maximizing alloca-
tion and compute the one with maximum welfare among fair allocations. We have
depicted a complete picture of the computational complexity of all decision and
optimization problems. In particular, when utilitarian welfare is concerned, all deci-
sion and optimization problems are strongly NP-complete or strongly NP-hard for
general n agents. For the case of fixed n, except for E(UW×EQ1) with two agents,
other problems are still intractable in polynomial time. On the positive side, we are
able to propose a pseudo-polynomial time algorithm that output the fair allocation
with the maximum utilitarian welfare. For problem E(UW×EQ1) with two agents,
a polynomial time algorithm exists. When focusing on egalitarian welfare, EQX and
EQ1 are compatible with optimal egalitarian welfare in goods allocations. On the
contrary, in the case of chores, deciding the existence of EQX (resp., EQ1) and egal-
itarian welfare-maximizing allocation is strongly NP-hard for general n and weakly
NP-complete for fixed n ≥ 2 (resp., n ≥ 3). Both goods and chores versions for
optimization problems are strongly NP-hard for general n and weakly NP-hard for
fixed n. Our results indicate that although goods and chores yield different results
in the problem where the numerical value of input matters, for example, price of
fairness, they may have similar features in terms of computational complexity.
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Chapter 5

Allocating Indivisible Items to
Strategic Agents

5.1 Introduction

Chapters 3 and 4 are concerned with questions of fairly dividing indivisible items
in the environment of complete information, i.e., agents’ valuation functions are
publicly known. Whereas in practice, this kind of information, such as the preference
of each agent, is only known by himself. A canonical example is an auction [53, 89,
103], the problem of deciding how to allocate objects to potential bidders while the
value of objects to a bidder can only be accessed by the bidder himself. Agents
are selfish and will behave untruthfully by reporting the false value if this serves
their own ends, which then deteriorates the auction outcomes. To circumvent the
challenge of incomplete information, it is desirable to have a mechanism that can take
bidders’ self-interest into account so that they can never be better off by behaving
strategically. With the emergence of the Internet as the platform of computation, the
requirement of ensuring truthfulness, also known as strategyproofness, has also drawn
the attention of the computer science community. Computer scientists observe that
with the presence of false information or input, even the most efficient algorithm may
lead to unreasonable solutions unless it is designed to cope with strategic behaviours.
Nisan and Ronen [90] then initiated the study of algorithmic mechanism design,
pursuing the efficient algorithm that provides incentives to agents for being truthful.
Within the scope of algorithmic mechanism design, a line of research [10, 52, 58]
uses the money to give incentives to agents and achieve the expected algorithmic
outcomes. However, in some real-life resource allocation scenarios, such as allocating
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course seats to students in the university, and organs to patients, money transfer is
impossible and sometimes illegal. This then leaves the question of when limiting or
even prohibiting the usage of money, can strategyproofness still be achieved or even
together another (algorithmic) objective?

The study of mechanism design without money is arguably initiated by Pro-
caccia and Tennenholtz [95], which studies how to select the location of a public facil-
ity in a real line. After that, mechanism design without money draws the attention
of the fair division community. In the allocations of divisible items (cake-cutting),
some significant progress has been achieved [26, 29, 55], while in the setting of indi-
visible items, positive results are seldom established, even when agents’ valuations
are assumed to be additive [5, 6]. To escape from the strong impossibility results,
one possible way is to shrink the domain of agents’ valuation functions. In the al-
locations of goods, Halpern et al. [75], Babaioff et al. [21], Barman and Verma [25]
design strategyproof mechanisms achieving envy-based fairness by assuming that
the marginal value of a single item is binary, i.e., either 0 or 1. When allocating
chores, Aziz et al. [18] ask agents to report their ranking, an ordinal preference,
over items and design strategyproof mechanisms that achieve good approximations
of share-based fairness.

Compared to what has been achieved in goods allocation, mechanism design
without money for fair division in the settings of (i) items are all chores, (ii) items
are mixtures of goods and chores, is not well explored. In particular, it is still
unknown whether there exist strategyproof and (approximately) fair mechanisms
that can elicit agents’ cardinal preferences. Note that strategyproofness in itself is
not difficult to achieve, and for instance, one can totally ignore the agents’ reporting
and assign all items to a predetermined agent. However, the outcome of such a
mechanism can be highly unfair and inefficient. This then motivates us to ask the
challenging question:

When items are chores or are mixtures of goods and chores, whether it
is possible to find strategyproof mechanisms (without money) that can
output fair and efficient outcomes?

5.1.1 Related Works

The search for a mechanism that satisfies truthfulness, also known as strategyproof-
ness, efficiency, and other prescribed distributional objectives, dates back to work
by Hylland and Zeckhauser [80]. Then, Gale [68] raises the question of whether
we can find a “nice” mechanism that can satisfy strategyproofness, efficiency, and
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other distributional properties, simultaneously. The follow-up paper by Zhou [106]
answers Gale’s conjecture and proves that in the problem of assigning n objects
to n agents (with von Neumann-Morgenstern utility), no mechanism can be strate-
gyproof, Pareto optimal and symmetric1 when n ≥ 3. Pápai [92] then studies the
problem of allocating a single indivisible item to several agents without the money
transfer, and examines possible extra properties of strategyproof mechanisms can
have. It indicates that along with strategyproofness, three other criteria, namely
Pareto efficiency, non-dictatorship2, and non-bossiness3, can not be satisfied simul-
taneously, while any two of the additional criteria can be satisfied together with
strategyproofness. Pápai [91] considers the case where agents can receive more than
one object. She shows that an allocation rule is strategyproof, non-bossy, and satis-
fies citizen sovereignty if and only if it is a sequential dictatorship.

In recent two decades, a great deal of results has been established by the
computer science community. Bezáková and Dani [32] consider the setting of two
players and indicate that no truthful mechanism can achieve exact max-min fairness.
Markakis and Psomas [86] provide the lower bound of the value of the agent in the
worst-case scenario and also show that no deterministic mechanism can achieve
a (2/3)-approximation of the worst-case bound. For the share-based fairness no-
tions, such as MMS fairness, Amanatidis et al. [6] provide a truthful deterministic
mechanism (on goods) with O(m)-approximation on MMS fairness and complement
their result by showing that no mechanism can achieve better than (1/2)-MMS. In
the case of chores, Aziz et al. [18] assume that agents’ valuations are ordinal and
present deterministic and randomized mechanisms that output O(log(m/n))-MMS
and O(log(√n))-MMS allocations, respectively.

As for envy-based fairness, Amanatidis et al. [5] show that no deterministic
strategyproof mechanism can always achieve envy-free up to one item (EF1), even
with two agents. Thereafter, in order to achieve positive results regarding envy-
based fairness notions, the assumption that the marginal of every single item is
binary for any agent has been incorporated. Halpern et al. [75] show that when
agents’ valuations are binary additive, the rule of maximizing Nash welfare with a
lexicographic tie-breaking is group strategyproofness (a stronger notion requiring no
group of the agent can misreport to increase values), EF1 and PO. Then, Babaioff

1A notion weaker than anonymity. In a symmetry mechanism, agents with same bid should
receive identical (expected) utility.

2A mechanism is dictatorial if there exists an agent i who receives the item whenever reporting
the item as desirable. Such an agent i is called dictator.

3When the preference of some agent i is changed, if the bundle received by agent i is unchanged,
then nobody else’s assignment should change.
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et al. [21] consider a broader preference domain, submodular, monotone and binary
margin (the matroid rank function), and indicate that the Lorenz dominating4 rule
is strategyproof, EF1 and PO when agents’ valuations are matroid rank functions.
A follow-up paper [25] strengthens those results and shows that the mechanism
proposed by Babaioff et al. [21] is indeed group strategyproof.

5.2 Results under Deterministic Setting

In this section, we are concerned with the allocations of chores and focus on deter-
ministic mechanisms. Recall that the existing works for goods already show strong
impossibility results when agents have additive valuations. We will then start with
the special case, the absolute margin value of an item being either 0 or 1, in which
some positive results have been achieved on the allocations of goods [21, 25, 75].
In particular, we study binary additive valuations, in which vi(e) ∈ {0,−1} for
any i ∈ [n] and e ∈ E, and moreover, for any subset S ⊆ E, agent i has a value
vi(S) = ∑

e∈S vi(e). While the binary additive valuation, at first glance, seems quite
simple, this preference domain already leads to significant and challenging allocation
questions [34, 38, 88].

5.2.1 A Strategyproof and Efficient Mechanism

One important class of existing deterministic mechanisms, sequential picking, orig-
inated by Kohler and Chandrasekaran [82], has already been widely studied and
implemented in the fair division of indivisible items [6, 41, 104]. A crucial subclass
of sequential picking is that; agents are ordered in advance, and each agent i picks
a number ti ≥ 0 items in his turn. With ∑

i∈[n] ti = m, this mechanism is capable
of assigning all items to agents. The advantage of sequential picking is that this
mechanism is strategyproof once {ti}m

i=1 is pre-determined (not related to the bids).
The truthfulness comes from the fact that each agent i only has one chance to pick,
and her optimal strategy is receiving top ti items from the remaining, which leaves
no incentive to misreport. For simplicity, we call this subclass of sequential picking,
SEQ-pick. Although each SEQ-pick mechanism is strategyproof, we then show that
none of them is Pareto optimal.

4For two ascending-ordered vectors a and b, the Lorenz domination partial order is defined as
a "Lorenz b if for every k, the sum of the first k entries of a is at least as large as that of b. A
Lorenz dominating allocation is the allocation whose valuation vector Lorenz dominates the vector
of every other allocation.
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Proposition 5.2.1. In the allocations of chores, no SEQ-pick mechanism is Pareto
optimal, even when agents have binary additive valuation functions.

Proof. Without loss of generality, we assume that agents are ordered 1, . . . , n and
agent 1 is the first to pick. Note that every SEQ-pick mechanism can be charac-
terized by a sequence of number t1, . . . , tn with ∑

i∈[n] ti = m. The sequence is
pre-determined and is not affected by agents’ bids. Fix such an sequence {ti}n

i=1. If
t1 < m, then consider an instance I1 where the type of agent 1 is v1(e) = 0 for all
e ∈ E and the type of agent i ≥ 2 is vi(e) = −1 for all e ∈ E. Instance I1 admits
an allocation in which all agents have value zero. But in the allocation returned by
a SEQ-pick with t1 < m, some agents receive negative value, and consequently, the
returned allocation is not Pareto optimal. Note that the Pareto optimality requires
a1 = m. However, any SEQ-pick mechanism with a1 = m can not output Pareto
optimal allocation for the instance I2 in which the type of agent 1 is v1(e) = −1
for all e ∈ E and the type of agent i ≥ 2 is vi(e) = 0 for all e ∈ E. Therefore, no
SEQ-pick mechanism can always return PO allocations for both I1 and I2. !

Proposition 5.2.1 indicates that the existing approach fails to guarantee
Pareto optimality, even when agents’ valuations are binary additive. Next, we
present a deterministic mechanism (see Algorithm 9) that is both strategyproof
and Pareto optimal. The mechanism assigns the items based on a pre-determined
order of agents. According to the order, the first n − 1 agents, in turn, receive the
set of items for which they bid zero, then the remaining items are assigned to the
last agent.

Algorithm 9 SP-PO(σ)
Input: A fair-chores instance I = 〈[n], E, V〉 with binary additive valuations and a

permutation σ of [n].
1: Every agent i bids bi.
2: for t = σ(1), σ(2), . . . , σ(n− 1) do
3: At ← {e ∈ E | bi(e) = 0} and E ← E \ At.
4: end for
5: Aσ(n) ← E.
6: return Allocation A

Theorem 5.2.1. The mechanism SP-PO is strategyproof and Pareto efficient.

Proof. We first show the strategyproofness of SP-PO. Without loss of generality, we
assume that the permutation σ is defined as σ(k) = k for k ∈ [n]. For an agent
i ≤ n − 1, she has no incentive to misreport as if she reports her type, she would
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receive a value zero, the maximum achievable value. As for agent n, her bundle
is entirely determined by other agents’ bids b−n. In other words, agent n can not
change her bundle by reporting differently once b−n has been fixed, and hence, she
has no incentive to lie. Hence, every SP-PO mechanism is strategyproof.

We now prove that SP-PO can always return Pareto optimal allocations.
Let A be the returned allocation. Given a type profile {vi}n

i=1, we construct the
set Ec = {e ∈ E | vi(e) = −1,∀i ∈ [n]}; that is, each item e ∈ Ec (if Ec ,= ∅)
results in value -1 for all agents. As agents will bid truthfully in SP-PO, according
to Steps 3 and 5, we have vi(Ai) = 0 for all i ∈ [n−1], vn(An) = −|Ec| and moreover
Ec ⊆ An. Suppose A is Pareto-dominated by another allocation B, and accordingly,
vn(Bn) ≥ −|Ec| + 1 must hold. As a consequence, there exists an agent i ,= n with
Bi ∩Ec ,= ∅, which implies vi(Bi) ≤ −1, which together with vi(Ai) = 0 contradicts
the fact that A is Pareto-dominated by the allocation B. !

5.2.2 Incorporate Additional Properties

As we have a positive answer on the existence of SP and PO deterministic mecha-
nisms, we now investigate whether SP and PO mechanisms can additionally satisfy
other distributional properties. For the notion of anonymity, we have a simple ob-
servation; that is, anonymity can not be satisfied by deterministic mechanisms, even
without the strategyproofness requirement. Such an impossibility is due to the na-
ture of indivisibility. One can think of an example: allocating three items e1, e2, e3

to two agents with identical valuation functions vi(ej) = −1 for any i, j. Suppose
that a deterministic mechanism M takes the type profile as input and returns the
allocation A, then it must hold that A1 ,= A2 as there exist only three items. Given
a permutation σ with σ(1) = 2 and σ(2) = 1, implementing σ on the type profile
results in another profile (vσ(1), vσ(2)), identical to (v1, v2), and hence, M should
also return A. However, for any agent i, the bundle she receives in M(v1, v2) is
different from that in M(vσ(1), vσ(2)).

We next examine whether fairness is compatible with SP and PO. Within
this scope, we have an impossibility result on the notion of EQ1.

Theorem 5.2.2. In the allocations of chores, no deterministic mechanism is SP,
PO and EQ1, even when agents have binary additive valuation functions.

Proof. For a contradiction, let M be a deterministic SP, PO and EQ1 mechanism.
Consider an instance I with two agents and a set E of four items e1, e2, e3, e4. For
a reporting profile b = (b1, b2) with bi(ej) = −1 for all i, j, the mechanism M has
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to assign each agent two items so that the final allocation can be EQ1 when agents
bid truthfully. Without loss of generality, we assume M(b) = A with A1 = {e1, e2}
and A2 = {e3, e4}. We now consider another reporting profile b′ = (b′

1, b′
2) where

b′
2 = b2 and b′

1(e1) = b′
1(e2) = 0 and b′

1(ej) = −1 for j = 3, 4. Let M(b′) = A′. Note
that the allocation A′ needs to be Pareto optimal when b′

i is the type of each agent
i, and accordingly, items e1, e2 have to be assigned to agent 1. Since the allocation
A′ also satisfies EQ1, each agent i should be assigned one item from {e3, e4}.

We now assume that for each i ∈ [2], b′
i is the type for agent i, i.e., b′

i = vi.
Then, if both agents report truthfully, M returns the allocation A′ and vi(A′

1) = −1
for all i = 1, 2. However, if agent 1 misreports b1, then the outcome becomes
M(b1, b′

2) = A, and the value of agent 1 in the allocation A is equal to v1(A1) = 0.
Therefore, agent 1 has incentive to lie, contradicting the strategyproofness of M.
!

5.3 Results under randomized Setting

Having provided impossibilities of deterministic mechanisms, we thereafter incorpo-
rate lotteries and study randomized mechanisms. As shown by our results in this
section, implementing lotteries in mechanisms allows us to escape from impossibility
results. Recall that a randomized mechanism M̃ returns a randomized allocation,
which can also be interpreted as a distribution over a set of deterministic allocations.
Before presenting the main results, we formally define the ex-ante and ex-post fair-
ness/efficiency of a randomized allocation.

Definition 5.3.1. (ex-ante and ex-post) Given a fairness or efficiency property P ,
a randomized allocation Ã is ex-ante P if its corresponding fractional allocation is
P , and is ex-post P , if every deterministic allocation in its support is P .

Definition 5.3.2. Given properties P1, P2, a randomized mechanism M̃ is ex-ante
P1 and ex-post P2 if it always returns ex-ante P1 and ex-post P2 randomized alloca-
tions.

Note that SPIE and GSPIE (see Definitions 2.4.2 and 2.4.4) are ex-ante in
the sense that agents may regret behaving truthfully after the realization of the
final assignment. For Pareto optimality, we remark that ex-ante PO allocation is
also ex-post PO5. Instead, differently from Pareto optimality, not every ex-ante fair

5Denote by Ã an ex-ante Pareto optimal randomized allocation with support A1, . . . , Ak and
probability pi on the deterministic allocation Ai. Suppose Ã is not ex-post Pareto optimal, then
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solution can have a good ex-post fairness guarantee. To take an example, consider
a mechanism that picks an agent uniformly at random and assigns all items to that
agent. The returned randomized allocation is ex-ante envy-free and equitable but
has poor performance on ex-post EF and EQ. Whereas we pursue a mechanism
that guarantees both ex-ante and ex-post fairness, so-called “best of both world”
[20, 65]. In summary, our task is to design randomized mechanisms that are (group)
strategyproof, ex-ante Pareto optimal, and can be best of both world from the
perspective of fairness.

5.3.1 A Strategyproof, Efficient, and Fair Randomized Mechanism

The main result of this section is a randomized mechanism for chores when agents
have restricted additive valuation functions that have been studied by both Bezáková
and Dani [32] and Asadpour et al. [11] in designing the approximation algorithm
for maximin fairness. The restricted additive preference domain is slightly larger
than the domain of binary additive. Specifically, a valuation function is said to be
restricted additive if each item ej has an inherent value v(ej) ,= 0 and the value of
item ej for every agent i is either 0 or v(ej), i.e., vi(ej) ∈ {0, v(ej)}. Given a subset
S ⊆ E, the value of agent i on S is equal to vi(S) = ∑

ej∈S vi(ej). We consider
the setting where the inherent value is common knowledge, and hence, the central
decision marker can access the v(ej) for all j ∈ [m]. As a consequence, for any pair
of i, j, the reported value on ej by agent i can only be either 0 or v(ej). Denote
by b = (b1, . . . , bn) a reported profile where bi(·) refers to the valuation function
reported by agent i.

Algorithm 10 M̃∗

Input: A fair-chores instance I with restricted additive valuation functions.
1: Every agent i bids bi(·).
2: Let Q = {q ∈ [m] | ∃i such that bi(eq) = 0} and Q̄ = [m] \ Q.
3: For every q ∈ Q, uniformly randomly assign eq to an agent who reports zero

value on it.
4: Let Q̄ = {l1, l2, . . . , lk} with reporting inherent values b(el1) ≥ · · · ≥ b(elk).
5: Let σ be a uniformly random permutation of {1, 2, . . . , n}. According to σ,

assign the chore with the largest inherent value from the remaining to an agent
each time, until all chores are assigned. If there is a tie on the largest value, pick
elj with the smallest j.

6: return A randomized allocation Ã

assume A1 is Pareto dominated by the deterministic allocation A′, which implies the fractional
allocation p1A′ +

∑k

j=2 pjAj Pareto dominates Ã, a contradiction.
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Intuitively, M̃∗ (see Algorithm 10) first assigns items for which some agent
bids zero, and then allocates the remaining items in a round-robin fashion; that is,
agents, in turn, receive one item. In what follows, we first show that the mechanism
M̃∗ is GSPIE and ex-ante PO, and then present distributional properties, such as
fairness satisfied by M̃∗.

Proposition 5.3.1. The mechanism M̃∗ is GSPIE.

The proof of Proposition 5.3.1 relies on following lemmas.

Lemma 5.3.2. Step 5 of Algorithm 10 assigns the expected value 1
nvi(

⋃
q∈Q̄ eq) to

every agent i ∈ [n].

Proof. Fix i. Since σ is a uniformly random permutation of {1, 2, . . . , n}, for any
pair of i, j, the probability of agent i on position σ(j) is 1/n. And according to
Step 5, if agent i is in position σ(j), then she receives value exactly vi(elj ∪ eln+j ∪
· · · ∪ el

% |Q̄|−j
n &n+j

). Thus, her expected value from the assignment of ∪q∈Q̄eq is

n∑

j=1

1
n

vi(
, |Q̄|−j

n -⋃

p=0
elpn+j ) = 1

n
vi(

n⋃

j=1

, |Q̄|−j
n -⋃

p=0
elpn+j ) = 1

n
vi(

⋃

q∈Q̄

eq),

where the first equation is due to the additivity of vi(·). !

The lemma below states that none of the agents in a coalition S ⊆ N can be
strictly better off by misreporting bi(e) = v(e) ,= 0 for some item e, while her true
value of e is vi(e) = 0.

Lemma 5.3.3. Given a subset S ⊆ N and a reporting profile (bS , b−S), bS ,= vS

implies
EA∼M̃∗(bS ,b−S)[vi(Ai)] ≤ EA∼M̃∗(b′

S ,b−S)[vi(Ai)],

for each i ∈ S where b′
S is defined as: for each i ∈ S, if vi(eq) = 0, then b′

i(eq) = 0;
otherwise, b′

i(eq) = bi(eq).

Proof. Let Q, Q̄ and Q′, Q̄′ be the corresponding index sets constructed in Step 2 of
Algorithm 10 with reporting profiles (bS , b−S) and (b′

S , b−S), respectively. For every
i ∈ S, let Pi = {e ∈ E | bi(e) = 0} and P ′

i = {e ∈ E | b′
i(e) = 0}. For each i ∈ S

and e ∈ Pi, if vi(e) = 0, due to the construction of b′
i, we have b′

i(e) = 0 that implies
e ∈ P ′

i . If vi(e) ,= 0, again from the definition of b′
i, we have b′

i(e) = bi(e) = 0,
implying e ∈ P ′

i . Accordingly, Pi ⊆ P ′
i holds for all i ∈ S, based on which we have

Q ⊆ Q′, equivalent to Q̄′ ⊆ Q̄.
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Note that the expected value received by an agent comes from exactly two
parts, the assignment of Step 3 and 5 of Algorithm 10. Define Ci = {e ∈ E | vi(e) ,=
0}. If Ci ∩ Pi ,= ∅ (resp. Ci ∩ P ′

i ,= ∅), agent i would receive a negative expected
value from the assignment of Ci ∩ Pi (resp. Ci ∩ P ′

i ) under the reporting profile
(bS , b−S) (resp. (b′

S , b−S)). Recall that Pi ⊆ P ′
i and thus Ci ∩ Pi ⊆ Ci ∩ P ′

i . For
each e ∈ Ci ∩ P ′

i , we have b′
i(e) = 0 and due to the construction of b′

i(·), bi(e) = 0
holds, which then implies e ∈ Ci ∩ Pi. Thus, we claim that Ci ∩ Pi = Ci ∩ P ′

i for
each i ∈ S. Then, for each e ∈ Ci∩Pi, as the situation of b′

i(e) = v(ej) but bi(e) = 0
can never happen, the number of agents reporting zero on ej in (bS , b−S) can not
exceed that number under the reporting profile (b′

S , b−S). For each e ∈ Ci ∩ Pi,
mechanism M̃∗ uniformly randomly assigns e to an agent reporting zero on it, then
the probability of assigning e to agent i with input (bS , b−S) is no less than the
probability of assigning e to agent i when agents bid (b′

S , b−S). Consequently, the
expected value received by each agent i ∈ S from the assignment of Step 3 would
not decrease when the set of agents S deviate their bids from bS to b′

S .
According to Lemma 5.3.2, the assignment of Step 5 results in the expected

value 1
nvi(∪q∈Q̄′eq) and 1

nvi(∪q∈Q̄eq) to each agent i ∈ S under the reporting profiles
(b′

S , b−S) and (bS , b−S), respectively. Recall that Q̄′ ⊆ Q̄, we have 1
nvi(∪q∈Q̄′eq) ≥

1
nvi(∪q∈Q̄eq) because the underlying items are chores. Therefore, we can conclude
that the expected value received by each agent i ∈ S under (b′

S , b−S) is no less than
that under the reporting profile (bS , b−S). !

Lemma 5.3.4. Given a subset S ⊆ N and bids b−S, the summation of the expected
value received by agents in S is maximized when every agent i ∈ S reports truthfully.

Proof. For a contradiction, assume that the set of agents S can misreport bS ,= vS

such that ∑

i∈S

EA∼M̃∗(bS ,b−S)[vi(Ai)] >
∑

i∈S

EA∼M̃∗(vS ,b−S)[vi(Ai)].

We then construct another set of bids b′
S as follows: for each i ∈ S, if vi(e) = 0,

then b′
i(e) = 0; otherwise b′

i(e) = bi(e). Then, according to Lemma 5.3.3, we have
EA∼M̃∗(b′

S ,b−S)[vi(Ai)] ≥ EA∼M̃∗(bS ,b−S)[vi(Ai)] for all i ∈ S. Consequently, we can
further assume that for each i ∈ S if vi(e) = 0, then bi(e) = 0. In other words, bids
bS only contain one type of misreporting; that is, some agent i ∈ S bids bi(e) = 0
while the true value is vi(e) = v(e) < 0.

Let Q, Q̄ and Qb, Q̄b be the corresponding index sets constructed in Step 2 of
Algorithm 10 when agents bid (vS , b−S) and (bS , b−S), respectively. For every i ∈ S,
construct Pi = {e ∈ E | vi(e) = 0} and P b

i = {e ∈ E | bi(e) = 0}. Based on what

116



we just assumed, for i ∈ S and e ∈ Pi, we have e ∈ P b
i , which then implies Q ⊆ Qb,

equivalent to Q̄b ⊆ Q̄.
If Q̄b = Q̄, then we have

∑

i∈S

EA∼M̃∗(vS ,b−S)[vi(Ai)] =
∑

i∈S

1
n

vi(
⋃

q∈Q̄

eq) =
∑

i∈S

1
n

vi(
⋃

q∈Q̄b

eq)

≥
∑

i∈S

EA∼M̃∗(bS ,b−S)[vi(Ai)],

where the first equation is due to the fact that the assignment of ⋃
q∈Q eq results in

value zero on every agent i ∈ S under the reporting profile (vS , b−S) and the inequal-
ity is due to that items are chores. The above inequality derives a contradiction.

If Q̄b " Q̄, then item eq with q ∈ Q̄ \ Q̄b must be assigned to some agents in
S under (bS , b−S) because agents in N \S always report b−S and the only possibility
is that some agents in S bid zero on eq in (bS , b−S). Moreover, for every i ∈ S and
e ∈ E, if vi(e) = 0, then bi(e) = 0 and hence, e must be assigned in Step 3. As a
result, for each eq with q ∈ Q̄, every agent i ∈ S has value vi(eq) = v(eq) < 0. When
agents in S report truthfully, the assignment of Step 3 results in the value zero for
all i ∈ S and accordingly, in this case, the expected value received by agent i ∈ S

entirely comes from the assignment of Step 5. Then, we have the following

∑

i∈S

EA∼M̃∗(vS ,b−S)[vi(Ai)] =
∑

i∈S

1
n

vi(
⋃

q∈Q̄b

eq) +
∑

i∈S

1
n

vi(
⋃

q∈Q̄\Q̄b

eq)

=
∑

i∈S

1
n

vi(
⋃

q∈Q̄b

eq) +
∑

i∈S

1
n

vi(
⋃

q∈Q̄\Q̄b

eq)

=
∑

i∈S

1
n

vi(
⋃

q∈Q̄b

eq) +
∑

i∈S

1
n

v(
⋃

q∈Q̄\Q̄b

eq)

≥
∑

i∈S

1
n

vi(
⋃

q∈Q̄b

eq) +
∑

q∈Q̄\Q̄b

v(eq)

≥
∑

i∈S

EA∼M∗(bS ,b−S)[vi(Ai)],

where the first inequality is due to |S| ≤ n; the second inequality is due to the fact
that eq with q ∈ Q̄\Q̄b must be assigned to the agent in S under the reporting profile
(bS , b−S). The above inequality leads to a contradiction, completing the proof. !

Proof of Proposition 5.3.1. For a contradiction, assume there exists a coalition
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S ⊆ N and a reporting profile (bS , b−S) ∈ V such that for all i ∈ S, it holds that

EA∼M̃∗(bS ,b−S)[vi(Ai)] ≥ EA∼M̃∗(vS ,b−S)[vi(Ai)],

and at least one of agents in S is strictly better off under (bS , b−S). As a result, we
have the following,

∑

i∈S

EA∼M̃∗(bS ,b−S)[vi(Ai)] >
∑

i∈S

EA∼M̃∗(vS ,b−S)[vi(Ai)],

which contradicts Lemma 5.3.4. !

After establishing the group strategyproofness, we now prove that M̃∗ can
always output a Pareto optimal allocation.

Proposition 5.3.5. The mechanism M̃∗ is ex-ante PO.

Proof. Denote by A the fractional allocation matrix returned by M̃∗. It suffices
to show that allocation A achieves the maximum utilitarian welfare among all frac-
tional allocations. Under allocation A, each agent i receives the expected value
1
n

∑
q∈Q̄ v(eq) and accordingly, the utilitarian welfare of A is equal to ∑

q∈Q̄ v(eq).
Since all items must be assigned, the utilitarian welfare of any (fractional) alloca-
tions is at most ∑

q∈Q̄ v(eq). Therefore, we conclude that M̃∗ is ex-ante PO. !

Next, we present other distributional properties satisfied by the allocation
returned by M̃∗.

Proposition 5.3.6. The mechanism M̃∗ is non-bossy and anonymous.

Proof. We start with non-bossiness. Fix i and consider two different reporting
profiles (bi, b−i) and (b′

i, b−i) with outputs M̃∗(bi, b−i) = A and M̃∗(b′
i, b−i) = A′.

Denote by Q, Q̄ the index sets constructed in Step 2 of Algorithm 10 with the
reporting profile (bS , b−S). For a contradiction, assume Ai = A′

i but Aj ,= A′
j for

some j ,= i. Suppose the probability of assigning an item eq to agent j differs in A
and A′. If q ∈ Q, then either bi(eq) = 0 and b′

i(eq) = v(eq) or bi(eq) = v(eq) and
b′

i(eq) = 0 holds, which then implies that the probability of assigning eq to agent i

in A is not identical to that in A′, i.e., Ai ,= A′
i, a contradiction. If q ∈ Q̄, then it

must be the case that bi(eq) = v(eq) and b′
i(eq) = 0. The probability of assigning

eq to agent i varies from 1/n to 1 by deviating from (bS , b−S) to (b′
S , b−S), which

implies Ai ,= A′
i. Therefore, we can conclude that M̃∗ is non-bossy.

As for the anonymity, let σ∗ be a permutation of {1, 2, . . . , n}. Denote by
v = (v1, v2, . . . , vn) the original type profile and v∗ = (vσ∗(1), vσ∗(2), . . . , vσ∗(n)) the
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type profile after permutation. Then we have two allocation matrices M̃∗(v) = A =
(aji)j∈[m],i∈[n] and M̃∗(v∗) = A′ = (a′

ji)j∈[m],i∈[n]. Then, it suffices to show that
A′

i = Aσ∗(i), which is then equivalent to show a′
ji = ajσ∗(i) for all j ∈ [m]. Denote

by Q∗, Q̄∗ the index sets constructed by Step 2 of Algorithm 10 under reporting v∗.
Without loss of generality, fix a pair i, j. If j ∈ Q∗ and a′

ji = 0, then we clearly
have ajσ∗(i) = 0. If j ∈ Q and a′

ji > 0, we have aji = ajσ∗(i) as the number of agent
reporting zero on ej in v is same as that in v∗. If j ∈ Q̄∗, then a′

ji = ajσ∗(i) = 1/n

holds. Therefore, we can conclude that A′
i = Aσ∗(i) holds for any i ∈ [n], completing

the proof. !

In what follows, we examine the fairness guarantee of allocations returned
by M̃∗. In particular, we show that the mechanism M̃∗ achieves ex-ante EF, EQ,
and PROP as well as ex-post EF1, EQ1, and PROP1, i.e., best of the both world.

Proposition 5.3.7. The mechanism M̃∗ is ex-ante EF, EQ and PROP, and ex-
post EF1, EQ1 and PROP1.

Proof. Denote by Q, Q̄ the index sets constructed by Step 2 of Algorithm 10 under v
and A = (A1, . . . , An) the returned allocation (matrix). Note that agents can receive
negative expected value from the assignment of ⋃

q∈Q̄ eq and the expected value is
determined by the probability of assigning each item to that agent. According to
M̃∗, the probability of assigning eq with q ∈ Q̄ to each agent i is 1/n. Thus, for any
i, j, we have vi(Ai) = vi(Aj) = 1/n ·

∑
q∈Q̄ v(eq) = vj(Aj). As a consequence, the

fractional allocation implemented by A is EF and EQ, and therefore, the mechanism
M̃∗ is ex-ante EF and EQ. According to Definitions 2.2.1 and 2.2.7, it is not hard
to verify that ex-ante EF allocations are also ex-ante PROP.

As for the ex-post fairness guarantee, let A∗ = (A∗
1, . . . , A∗

n) be a determin-
istic allocation in the support of M̃∗(v). Since only eq with q ∈ Q̄ can result in
non-zero value to agents, we have vi(A∗

i ) = vi(
⋃

q∈Q̄ eq ∩ A∗
i ) for any i ∈ [n]. More-

over, as the assignment of ⋃
q∈Q eq does not affect values, we can further assume

Q = ∅. Then, it sufficient to consider the reduced instance with the set of items
E = ⋃

q∈Q̄ eq and valuation functions vi(e) = v(e) < 0 for every i ∈ [n] and e ∈ E.
Suppose A∗ is returned by M∗ with a permutation σ∗ in Step 5. Let the number of
items be m = kn + d with k, d ∈ N and 0 < d ≤ n, and so the assignment in Step 5
has k + 1 rounds. Given two agents i, j ∈ [n], without loss of generality, we assume
σ∗(i) < σ∗(j). If agents i, j receive same amount of items, then in every single
round, agent i receives value no less than that of agent j, implying vi(A∗

i ) ≥ vj(A∗
j ).

As for agent j, her value in round l ≤ k − 1 is no less than the value received by
agent i in round l + 1. So by eliminating the last chore received by agent j, the
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value of agent j is no less than that of agent i. If agent i receives one more item,
then still the value received by agent j in round l is no less than the value received
by agent i in round l + 1 and so vj(A∗

j ) ≥ vi(A∗
i ). As for agent i, if the last item she

receives is removed, she would have value no less than that of agent j. Therefore,
the allocation A∗ is EQ1. Recall that vi(·) = vj(·) for any i, j ∈ [n], so an EQ1
allocation is clearly also EF1. Therefore, M̃∗ is ex-post EF1 and EQ1. According
to Definitions 2.2.2 and 2.2.8, it is not hard to verify that ex-post EF1 allocations
are also ex-post PROP1. !

The notions of (relaxed) envy-freeness, equitability, and proportionality are
proposed more from the individual perspective, and it may have a bad performance
regarding fairness from the system level. To take an example, Theorem 4.2.2 in-
dicates that when assigning chores, EQ1 allocations can not provide a bounded
guarantee of egalitarian welfare. Below we show that M̃∗ is capable of providing a
good approximation on ex-post maximin fairness.

Proposition 5.3.8. The mechanism M̃∗ is ex-post 2-approximation of max-min
fairness.

Proof. Let the allocation A∗ = (A∗
1, . . . , A∗

n) be a deterministic allocation in the
support of M̃∗(v), and A∗ is returned by M̃∗ with the permutation σ∗ in Step 5.
Without loss of generality, assume σ∗(i) = i for all i ∈ [n]. Similar to the proof
of Proposition 5.3.7, we can further assume E = ∪q∈Q̄eq and agents have identical
valuation functions: vi(e) = v(e) < 0 for every i ∈ [n] and e ∈ E. Denote by OPTE

the maximum egalitarian welfare of all deterministic allocations. Let m = kn + d

with k, d ∈ N and 0 < d ≤ n, then each agent i ∈ [d] receives k + 1 items and each
agent i ≥ d + 1 receives k items. Moreover, agent d receives the last item in Step 5.
In the following, we first show agent d receiving the minimum value in allocation
A∗.

It is equivalent to show vd(A∗
d) ≤ vi(A∗

i ) for any i ∈ [n]. For i < d, both
agents d and i receive k + 1 items and, in each round, agent d receives value at most
the value of agent i, which implies vd(A∗

d) ≤ vi(A∗
i ). As for i > d, agent i receives k

items and the value received by agent i in round l is no less than the value of agent
d in round l + 1. Since items are chores, we also have vd(A∗

d) ≤ vi(A∗
i ).

We then show vd(A∗
d \ {em}) ≥ OPTE where em is the last item received by

agent d. For a contradiction, assume vd(A∗
d \ {em}) < OPTE . Since A∗ is EQ1, we

have vi(A∗
i ) ≤ maxe∈A∗

d
vd(A∗

d \ {e}) = vd(A∗
d \ {em}), then by summing up i ∈ [n],
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we have an upper bound of the utilitarian welfare,
∑

i∈[n]
vi(A∗

i ) ≤ n · vd(A∗
d \ {em}) + vd(em) < n · OPTE ,

where the last inequality is due to our assumption vd(A∗
d \ {em}) < OPTE and

vd(em) ≤ 0. However, since agents have identical valuation functions, the utilitarian
welfare of A∗ should be at least n · OPTE , implying a contradiction. Thus, we have
vd(A∗

d \ {em}) ≥ OPTE . Since agents have identical valuations and items are chores,
we then have vi(em) ≥ OPTE . Therefore, the following holds,

vd(A∗
d) = vd(A∗

d \ {em}) + vd(em) ≥ 2 · OPTE ,

which completes the proof. !

We remark that the 2-approximation of maximin fairness is actually the
limitation of mechanism M̃∗ when the number of agents is large.

Proposition 5.3.9. The mechanism M̃∗ is not ex-post (2 − 1
n)-approximation of

max-min fairness.

Proof. Let us consider the instance with n agents and a set E = {e1, . . . , e(n−1)n+1}
of (n − 1)n + 1 chores. Agents have identical valuation functions: vi(ej) = v(ej)
for any i, j ∈ [n]. The inherent values are: v(ej) = −1 for j ≤ (n − 1)n and
v(en(n−1)+1) = −n. We say an item e an β-chore if its inherent value is equal to
v(e) = −β. Thus, there are a number n(n− 1) of 1-chore and one n-chore. Denote
by OPTE the maximum egalitarian welfare of all deterministic allocations. It is easy
to see that OPTE ≤ −n as there must be an agent receiving the n-chore. Consider
the allocation B in which every agent i ≤ n− 1 receives a number n of 1-chore and
agent n receives the unique n-chore. One can verify that mini∈[n] vi(Bi) = −n and
thus OPTE = −n.

Let A∗ = (A∗
1, . . . , A∗

n) be a deterministic allocation in the support of M̃∗(v),
and A∗ is returned by M̃∗ with the permutation σ∗ in Step 5. Without loss of
generality, assume σ∗(i) = i for any i ∈ [n]. Then, for each 2 ≤ i ≤ n, agent i

receives a number n− 1 of 1-chore, while agent 1 receives a number n− 1 of 1-chore
and also the unique n-chore. Thus, we have v1(A∗

1) = −2n + 1 that is equal to
the egalitarian welfare of A∗. Therefore, the approximation of A∗ on the max-min
fairness is at least 2 − 1/n that approaches to 2 as the number of agents becomes
large. !
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Theorem 5.3.1. The mechanism M̃∗ is GSPIE, anonymous and non-bossy mecha-
nism and also satisfies ex-ante PO, EF, PROP, EQ and ex-post EF1, PROP1, EQ1
and 2-approximation of max-min fairness.

5.3.2 A Strategyproof, Efficient, and Fair Randomized Mechanism
for Allocating Mixed Items to Two Agents

In this section, we extend to the scenario where an item can be a good for one
agent and a chore for another, i.e., the setting of mixed items or instances. We
are also interested in the restricted additive valuation functions. In the setting of
mixed items, a valuation function vi(·) is called an M-restricted additive function if
vi(ej) ∈ {−c(ej), 0, v(ej)} with c(ej), v(ej) > 0 for any i, j. Specifically, for an agent
i and an item ej , there are three possible situations: (i) ej is a chore for agent i and
vi(ej) = −c(ej) with c(ej) > 0; (ii) ej is a good for agent i and vi(ej) = v(ej) > 0;
(iii) ej is valued at zero by agent i. We remark that c(ej) and v(ej) are not required
to be identical. Similarly, to the previous section, we also assume that c(·) and v(·)
are common knowledge, available to the central decision maker, which then makes
the bid of each agent i be bi(ej) ∈ {−c(ej), 0, v(ej)} for all j ∈ [m].

Note that in the mixed setting, the fairness criteria, particularly those with
an “up to one item” scheme, such as EF1 and PROP1, are slightly different from
the definition in the case where all items are goods or all items are chores. The
formal definitions of PROP1 and EF1 in the mixed setting are presented below.

Definition 5.3.3. Given an allocation A, we say agent i envies agent j by more
than one item if agent i envies agent j and vi(Ai \ {e}) < vi(Aj \ {e}) for any
e ∈ Ai ∪Aj. An allocation A of a mixed instance is EF1 if for any i, j ∈ [n], agent
i does not envy agent j by more than one item.

Intuitively, an agent satisfies EF1 if, from her perspective, envy can be elim-
inated by either removing a chore from her bundle or removing a good from the
bundle of another agent. Similarly, this idea is also applied to the notion of PROP1
in the mixed setting.

Definition 5.3.4. An allocation A of a mixed instance is PROP1 if for each agent
i ∈ [n], at least one of the following three situations happen: (i) vi(Ai) ≥ n−1vi(E);
(ii) vi(Ai ∪ {e}) ≥ n−1vi(E) for some e ∈ E \ Ai; (iii) vi(Ai \ {e}) ≥ n−1vi(E) for
some e ∈ Ai.

It has been proved that, in the setting of (additive) mixed items, an EF1
allocation is also PROP1.
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Proposition 5.3.10 (Proposition 2 in [13]). For additive valuation functions, an
EF1 allocation of a mixed instance satisfies PROP1.

In what follows, we first present a randomized mechanism (see Algorithm 11)
for allocating mixed items to two agents with M-restricted additive valuations, and
then prove that the proposed mechanism achieves strategyproofness, PO, and both
ex-ante and ex-post fairness. The high-level idea of M̃2 is to partition, according
to the bids, the items into four subsets. The set of items with non-identical bids is
assigned to the agent with higher bids. For the items with identical bids, if both
agents bid zero, then this part of items are uniformly randomly assigned to agents,
and the remaining items are assigned in a round-robin way.

Algorithm 11 M̃2

Input: A mixed instance I = 〈[2], E, V〉 with M-restricted additive valuation func-
tions.

1: Every agent i bids bi(·).
2: Partition E = E0 ∪ E1 ∪ E2 ∪ E3 where E0 = {e ∈ E | b1(e) = b2(e) = 0}, E1 =

{e ∈ E | b1(e) > b2(e)}, E2 = {e ∈ E | b1(e) < b2(e)} and E3 = {e ∈ E | b1(e) =
b2(e) ,= 0}.

3: For every e ∈ E0, uniformly randomly pick an agent to whom assign e.
4: For each i ∈ [2], assign Ai ← Ei.
5: Let σ be a uniformly random permutation of {1, 2} and σ(j) be its j-th element.

Run Round-robin on remaining items E3 based on σ.
6: return Allocation A

Proposition 5.3.11. With the reported profile (b1, b2), for any i ∈ [2], agent i

receives expected value 1
2vi(E0) +vi(Ei) + 1

2vi(E3) in M̃2.

Proof. Fix i. As the entire bundle E3−i is assigned to agent 3−i, the value of agent i

comes from the assignment of E0, Ei and E3. Note that the probability of assigning
E0 to agent i is 1/2, the assignment of E0 results in expected value 2−1vi(E0) for
agent i. The whole bundle Ei is assigned to agent i with probability 1, which leads
to (expected) value vi(Ei) for agent i. As for the bundle E3, it is assigned by Round-
robin based on an uniformly random permutation, and according to Lemma 5.3.2,
this part results in the expected value 2−1vi(E3) for agent i. Therefore, the total
expected value received by agent i is 2−1vi(E0) + vi(Ei) + 2−1vi(E3). !

Lemma 5.3.12. Given an agent i and two bids bi, bk
i ∈ Vi only differing on item

ek, if bi(ek) = vi(ek), then for every b−i that together with bi and bk
i being an M-
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restricted additive profile, the following holds

EA∼M̃2(bi,b−i)
[vi(Ai)] ≥ EA∼M̃2(bk

i ,b−i)
[vi(Ai)].

Proof. We remark that the reporting space of agent 3 − i can be simplified to
{−c(ek), 0, v(ek)}; Other bids result in either “Error” (if (b1, b2) is not M-restricted
additive) or the same outcome as reporting from {−c(ek), 0, v(ek)}. Denote by
{Ei}3

i=0 and {Ek
i }3

i=0 the corresponding sets constructed by M̃2 with the reporting
profiles bi, b−i and bk

i , b−i, respectively. We let ∆ be the difference between expected
value of agent i when reporting bi and bk

i , and formally,

∆ = EA∼M̃2(bi,b−i)
[vi(Ai)]− EA∼M̃2(bk

i ,b−i)
[vi(Ai)].

Then it suffices to prove ∆ ≥ 0. The remaining proof is given by carefully checking
all possible cases.

Case 1 : bi(ek) = vi(ek) = v(ek).
Subcase 1.1 : bk

i (ek) = 0 and b3−i(ek) = v(ek). For this subcase, we have
Ek

3−i = E3−i ∪ {ek}, Ek
3 ∪ {ek} = E3 and moreover Ek

0 = E0, Ek
i = Ei. According

to Proposition 5.3.11, we have ∆ = 2−1[vi(
⋃

e∈E3 e) − vi(
⋃

e∈Ek
3

e)] = 2−1vi(ek) =
2−1v(ek) > 0.

Subcase 1.2 : bk
i (ek) = 0 and b3−i(ek) = 0. In this subcase, we have Ek

i ∪
{ek} = Ei, Ek

0 = E0 ∪ {ek} and moreover Ek
3 = E3, Ek

3−i = E3−i. Again from
Proposition 5.3.11, we can compute ∆ = 2−1v(ek) > 0.

Subcase 1.3 : bk
i (ek) = 0 and b3−i(ek) = −c(ek). Then, we have Ek

l = El for
all l = 0, 1, 2, 3, and thus, ∆ = 0.

Subcase 1.4 : bk
i (ek) = −c(ek) and b3−i(ek) = v(ek). The composition of

{Ek
i }3

i=0 and of {Ei}3
i=0 are same as that in subcase 1.1, and thus, we also have

∆ > 0.
Subcase 1.5 : bk

i (ek) = −c(ek) and b3−i(ek) = 0. The composition of {Ek
i }3

i=0
and of {Ei}3

i=0 are same as that in subcase 1.1, and thus, we also have ∆ > 0.
Subcase 1.6 : bk

i (ek) = −c(ek) and b3−i(ek) = −c(ek). For this subcase, we
have Ek

i ∪ {ek} = Ei, Ek
3 = E3 ∪ {ek} and Ek

0 = E0, Ek
3−i = E3−i. Then, according

to Proposition 5.3.11, we have ∆ = 2−1vi(ek) = 2−1v(ek) > 0.
Case 2 : bi(ek) = vi(ek) = 0. According to M̃2, different bids on ek only

change the composition of the bundle on whether including ek or not, and in partic-
ular, do not affect the assignment of other items. Based on Proposition 5.3.11 and
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vi(ek) = 0, we have ∆ = 0 for this case.
Case 3 : bi(ek) = vi(ek) = −c(ek).
Subcase 3.1 : bk

i (ek) = v(ek) and b3−i(ek) = v(ek). In this subcase, we have
Ek

3 = E3 ∪ {ek}, Ek
3−i ∪ {ek} = E3−i and Ek

i = Ei, Ek
0 = Ei. Then we compute

∆ = (−2)−1vi(ek) = 2−1c(ek) > 0.
Subcase 3.2 : bk

i (ek) = v(ek) and b3−i(ek) = 0. For this subcase, it holds
that Ek

i = Ei ∪ {ek}, Ek
3−i ∪ {ek} = E3−i and Ek

0 = E0, Ek
3 = E3. Then, we have

∆ = −vi(ek) = c(ek) > 0.
Subcase 3.3 : bk

i (ek) = v(ek) and b3−i(ek) = −c(ek). In this situation, we
have Ek

3 ∪ {ek} = E3, Ek
i = Ei ∪ {ek} and Ek

0 = E0, Ek
3−i = E3−i. Then according

to Proposition 5.3.11, we can compute ∆ = (−2)−1vi(ek) = 2−1c(ek) > 0.
Subcase 3.4 : bk

i (ek) = 0 and b3−i(ek) = v(ek). In this subcase, we have
Ek

l = El for all l = 0, 1, 2, 3, and thus, ∆ = 0.
Subcase 3.5 : bk

i (ek) = 0 and b3−i(ek) = 0. In this situation, we have Ek
0 =

E0 ∪ {ek}, Ek
3−i ∪ {ek} = E3−i and Ek

i = Ei, Ek
3 = E3. Then we compute ∆ =

(−2)−1vi(ek) = 2−1c(ek) > 0.
Subcase 3.6 : bk

i (ek) = 0 and b3−i(ek) = −c(ek). In this subcase, we have
Ek

l = El for any l = 0, 1, 2, 3, and thus, ∆ = 0.
Therefore, for all possible values of vi(ek) and of b3−i(ek), it always holds

that ∆ ≥ 0. !

Lemma 5.3.12 states that every single deviation from the type of the agent
does not bring extra expected value, and hence, a sequence of deviations can never
make the agent better-off. We below establish the strategyproofness of M̃2.

Proposition 5.3.13. The mechanism M̃2 is SPIE.

Proof. Let b1 be an arbitrary bid that differs from v1 on a set {ep1 , . . . , epk} of k > 0
items. We let b0

1 = b1, then for every l ∈ [k] construct bl
1 as follows: bl

1(e) = bl−1
1 (e)

for all e ,= epl and bl
1(epl) = v1(epl). Then it is easy to see bk

1 = v1. According to
Lemma 5.3.12, the following holds,

EA∼M̃2(bk
1 ,b2)[v1(A1)] ≥ EA∼M̃2(bk−1

1 ,b2)[v1(A1)] ≥ · · · ≥ EA∼M̃2(b0
1,b2)[v1(A1)].

By the construction, the above inequality is equivalent to

EA∼M̃2(v1,b2)[v1(A1)] ≥ EA∼M̃2(b1,b2)[v1(A1)],

which completes the proof. !
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We now present the additional properties, such as efficiency and fairness
satisfied by M̃2.

Proposition 5.3.14. The mechanism M̃2 is ex-ante PO.

Proof. Denote by A the fractional allocation (matrix) returned by M̃2. It is suffi-
cient to show that allocation A achieves the maximum utilitarian welfare among all
fractional allocations. As two agents have identical valuations on bundle E0 ∪ E3,
the utilitarian welfare from the assignment of E0 ∪E3 should be identical among all
allocations. For the bundle Ei with i = 1, 2, in allocation A every item of Ei has
been assigned to the agent having a larger value, and therefore, other (fractional)
allocations can never achieve an utilitarian welfare larger than UW(A). !

Proposition 5.3.15. The mechanism M̃2 is ex-ante EF, PROP and ex-post EF1,
PROP1.

Proof. Denote by {Ev
i }3

i=0 the corresponding bundles constructed by M̃2 when
agents’ reporting profile being (v1, v2), and by A = (A1, A2) the returned fractional
allocation. Based on Proposition 5.3.11, we have vi(Ai) = 2−1vi(Ev

0 ) + vi(Ev
i ) +

2−1vi(Ev
3 ). The fractional bundle A3−i contains fractional items from Ev

0∪Ev
3−i∪Ev

3 .
The probability of assigning every e ∈ Ev

0∪Ev
3 to agent 3−i is 1/2 and the probability

of assigning every e ∈ Ev
3−i to agent 3 − i is 1. Therefore, we have vi(A3−i) =

2−1vi(Ev
0 ) + vi(Ev

3−i) + 2−1vi(Ev
3 ). According to Step 2 of M̃2 and the fact that

agents’ valuations are M-restricted additive, it holds that vi(Ev
i ) ≥ 0 ≥ vi(Ev

3−i),
which then implies vi(Ai) ≥ vi(A3−i). The ex-ante PROP follows from ex-ante EF.

As for the ex-post fairness guarantee, since ex-post EF1 implies ex-post
PROP1, it sufficient to show that the mechanism M̃2 is ex-post EF1. Let B =
(B1, B2) be a support of the randomized allocation A with Bi = Ei

0 ∪ Ev
i ∪ Ei

3 for
i = 1, 2, where Ei

0 ⊆ Ev
0 and Ei

3 ⊆ E3. Then, we have vi(Bi) = vi(Ev
i ) + vi(Ei

3) and
vi(B3−i) = vi(Ev

3−i) + vi(Ev
3 \ Ei

3). According to Step 2 of M̃2 and the fact that
agents’ valuations are M-restricted additive, it holds that vi(Ev

i ) ≥ 0 ≥ vi(Ev
3−i). As

a consequence, it suffices to show that the assignment of Ev
3 in Step 5 results in an

EF1 allocation. Without loss of generality, we assume σ(i) = i for i = 1, 2. Suppose
that round-robin executes in total k rounds. If two agents receive the same amount
of items, then in every round, agent 1 receives a value no less than that of agent j,
and thus agent 1 does not violate EF1. As for agent j, her value in round l ≤ k − 1
is no less than the value received by agent i in round l + 1. So by eliminating the
first item received by agent i, agent j does not envy agent i. If agent i receives one
more item, she does not envy agent j if the last item she receives is eliminated. For
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agent j, she does not envy agent i if the first item received by agent i is removed.
Therefore, allocation B is EF1. !

Theorem 5.3.2. M̃2 is SPIE, ex-ante PO, EF, PROP and ex-post EF1 and
PROP1.

The proposed mechanism M̃2 does not provide significant guarantees on
equitability (EQ). One reason can be that (relaxed) EQ is incompatible with Pareto
efficiency in the mixed setting, even without the requirement of strategyproofness.
To take an example, one can consider a mixed instance of two agents and two items.
Agent 1 values each item at 1, and agent 2 values each item at -1. The PO allocation
assigns both items to agent 1, which violates the notion of EQ or EQ1.

5.4 Conclusions

In this chapter, we have studied the model of dividing indivisible items from the
mechanism design perspective. We are particularly interested in the settings where
(i) items are chores; (ii) items are mixtures of goods and chores. When randomness is
not allowed, we have first shown that the (truthful) subclass of picking sequence fails
to guarantee Pareto optimality, even when agents’ valuations are binary additive.
Then, we have provided a truthful and Pareto optimal deterministic mechanism.
When requiring fairness, we end up with an impossibility result; no deterministic
mechanism can achieve SP, PO and EQ1, even when agents’ valuations are binary
additive. Such an impossibility motivates us to incorporate randomness into the
mechanism, which, in the restricted additive setting, leads us to a “nice” mechanism
satisfying truthfulness, Pareto optimality, best-of-both-world fairness, anonymity,
and non-bossiness. The last result of this chapter is a randomized, strategyproof,
Pareto optimal, and fair mechanism for two agents in the setting where items are
mixtures of goods and chores.
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Chapter 6

Conclusion

This thesis is concerned with the problem of allocating indivisible items to a set
of agents, a classical model of resource allocation with a wide range of practical
applications. From the point of view of the central decision maker, the ultimate goal
is to make better use of resources so that the outcome can be as efficient as possible.
When an allocation is to optimize efficiency, it can harm the interests of certain
participants and produce unfair outcomes, not acceptable to the participants. Only
when the result of the allocation is fair, all participants can accept such a result, thus
ensuring a certain degree of sustainability. This makes fairness a necessary factor
that needs to be taken into account when making decisions. Traditionally, system
efficiency and fairness are studied separately, with questions being: how to utilize the
resource in a more efficient way, what is the appropriate definition of fairness, and
how to achieve a fair allocation. As the research progresses, it has been found that
efficiency and fairness are not completely unrelated or independent. In particular,
optimization on one notion may lead to bad performance on the other, i.e., a trade-off
between efficiency and fairness. Although the existing work proposes the framework
of the price of fairness to quantify the efficiency loss due to fairness constraints, in
the problem of allocating indivisible items, the price of fairness regarding envy-based,
share-based, and equitability-based fairness constraints has not been well-studied.

This thesis in Chapter 3 has provided a picture of the PoF ratios regarding
envy-based and share-based fairness notions for chores and also a collection of results
on the connections among these fairness criteria under consideration. Chapter 4 has
presented the PoF ratios with respect to equitability-based fairness and also a se-
quence of algorithmic results on related decision and optimization problems. These
two chapters have addressed two closely related theoretical questions on the alloca-
tion of indivisible items, and contribute to the fair division literature. In addition to
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efficiency and fairness, strategyproofness is another widely-studied notion in various
resource allocation problems. Strategyproofness ensures that participants do not
misreport their valuations to gain additional benefits, and without strategyproof-
ness, the assignment protocol can result in unreasonable solutions. Most existing
works on the strategyproof algorithms provide negative answers on designing a strat-
egyproof, fair, and efficient mechanism under some specific settings. This thesis, in
Chapter 5, suggests the power of randomisation and provides randomised strate-
gyproof mechanisms that can return fair and efficient allocations, which also makes
theoretical contributions to the literature on fairly allocating indivisible items.

The research outcomes presented in this thesis not only provide theoretical
insights to the existing literature but also hold practical significance. One key im-
plication is that understanding the trade-off between efficiency and fairness enables
decision-makers to make informed choices regarding resource allocation. By compre-
hending the price of fairness, decision-makers can evaluate the potential costs and
benefits of incorporating fairness constraints into resource allocation decisions to en-
sure that resources are allocated in a way that promotes fairness while maximizing
overall welfare and efficiency. Moreover, the proposed polynomial time algorithms
for computing the best possible fair solutions in worst-case scenarios can act as
practical guidelines for decision-makers when facing assignment problems. Another
practical implication of the research is related to the machine scheduling problem.
Specifically, the model of indivisible chores analyzed in this study is identical to the
unrelated machine scheduling setting. By treating the items as jobs and the agents
as machines, the non-positive valuations in the assignment model naturally corre-
spond to the processing time of jobs on machines in the machine scheduling model.
Consequently, the algorithms proposed in this research can be directly applied to
machine scheduling scenarios. Finally, it is worth noting that the mechanism design
framework is frequently encountered in real-world scenarios, where individuals may
be reluctant to disclose their true preferences. In the absence of accurate preferences,
the central decision maker would struggle to suggest reasonable solutions, much less
to allocate resources in a fair and effective manner. Therefore, decision-makers must
guarantee that participants report their preferences honestly, enabling the proposal
of a valid and feasible assignment procedure. The mechanisms suggested in this
thesis introduce protocols that discourage participants from providing false infor-
mation, as truthful reporting maximizes their valuations. These mechanisms serve
as valuable guidelines and instructions for decision-makers when faced with such
assignment problems in practice.

The content of this thesis leaves some open questions for future research. For
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the results in Chapter 4, areas that allure immediate exploration include: (a) bound
tightness on the price of EQX in the case of general n and the price of EQ1 with
respect to utilitarian welfare; (b) whether Theorem 4.3.12 still holds when agents’
valuations are normalized to a constant; (c) for the allocations of chores with two
agents, what is the time complexity of deciding the existence of an EQ1 allocation
that also achieves the maximum egalitarian welfare? As for Chapter 5, an immediate
direction for future work is to allow agents to have a broader preference domain, such
as additive. It is unknown whether there exists a randomised mechanism that can
achieve SPIE, ex-ante PO and fairness when the valuations are additive. Another
interesting question is about the deterministic mechanisms. Our results have shown
that one can never find an SP, PO, and EQ1 mechanism for chores with binary
additive valuations. It is still possible, in the setting of chores and binary additive
agents, to achieve deterministic SP and PO mechanisms that are compatible with
other fairness notions, such as EF1. Note that the goods version of the question:
whether SP, PO, and EF1 are compatible in the setting of binary additive valuations,
has been answered by [75], whose mechanisms, however, do not work for chores.

Besides the above-mentioned open question, our results also suggest a di-
rection worthwhile to be explored. Given the unboundedness of the PoF in our
consideration of fair and efficient allocation of chores, it is desirable to improve the
current lens of the PoF to see a refined picture of the efficiency loss of a fair alloca-
tion of chores. One possible way could be to add a positive parameter intrinsic to the
problem instance to both the numerator and denominator of our current definition
of the PoF ratio.

130



Bibliography

[1] Agnetis, A., Chen, B., Nicosia, G. and Pacifici, A. [2019], ‘Price of fairness
in two-agent single-machine scheduling problems’, European Journal of Opera-
tional Research 276(1), 79–87.

[2] Agnetis, A., Mirchandani, P. B., Pacciarelli, D. and Pacifici, A. [2004], ‘Schedul-
ing Problems with Two Competing Agents’, Operations Research 52(2), 229–
242.

[3] Aksin, Z., Armony, M. and Mehrotra, V. [2007], ‘The modern call center: A
multi-disciplinary perspective on operations management research’, Production
and Operations Management 16(6), 665–688.

[4] Al-Yakoob, S. M. and Sherali, H. D. [2007], ‘A mixed-integer programming
approach to a class timetabling problem: A case study with gender policies and
traffic considerations’, European Journal of Operational Research 180(3), 1028–
1044.

[5] Amanatidis, G., Birmpas, G., Christodoulou, G. and Markakis, E. [2017],
Truthful Allocation Mechanisms Without Payments: Characterization and Im-
plications on Fairness, in ‘Proceedings of the 2017 ACM Conference on Eco-
nomics and Computation’, EC ’17, ACM, New York, NY, USA, pp. 545–562.

[6] Amanatidis, G., Birmpas, G. and Markakis, E. [2016], On Truthful Mecha-
nisms for Maximin Share Allocations, in ‘Proceedings of the Twenty-Fifth In-
ternational Joint Conference on Artificial Intelligence’, IJCAI’16, AAAI Press,
pp. 31–37.

[7] Amanatidis, G., Birmpas, G. and Markakis, E. [2018], Comparing approximate
relaxations of envy-freeness, in ‘Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence’, IJCAI’18, AAAI Press, Stockholm, Sweden,
pp. 42–48.

131



[8] Amanatidis, G., Markakis, E., Nikzad, A. and Saberi, A. [2017], ‘Approxi-
mation Algorithms for Computing Maximin Share Allocations’, ACM Trans.
Algorithms 13(4), 52:1–52:28.

[9] Annear, L. M., Akhavan-Tabatabaei, R. and Schmid, V. [2023], ‘Dynamic
assignment of a multi-skilled workforce in job shops: An approximate dy-
namic programming approach’, European Journal of Operational Research
306(3), 1109–1125.

[10] Archer, A. and Tardos, É. [2001], Truthful Mechanisms for One-Parameter
Agents, in ‘Proceedings of the 42Nd IEEE Symposium on Foundations of Com-
puter Science’, FOCS ’01, IEEE Computer Society, Washington, DC, USA,
pp. 482–.

[11] Asadpour, A., Feige, U. and Saberi, A. [2012], ‘Santa Claus Meets Hypergraph
Matchings’, ACM Trans. Algorithms 8(3), 24:1–24:9.

[12] Aumann, Y. and Dombb, Y. [2015], ‘The Efficiency of Fair Division with Con-
nected Pieces’, ACM Transactions on Economics and Computation 3(4), 1–16.

[13] Aziz, H., Caragiannis, I., Igarashi, A. and Walsh, T. [2019], Fair Allocation of
Indivisible Goods and Chores, in ‘Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence’, International Joint Confer-
ences on Artificial Intelligence Organization, Macao, China, pp. 53–59.

[14] Aziz, H., Caragiannis, I., Igarashi, A. and Walsh, T. [2022], ‘Fair allocation
of indivisible goods and chores’, Autonomous Agents and Multi-Agent Systems
36(1), 3.

[15] Aziz, H., Chan, H. and Li, B. [2019], Maxmin Share Fair Allocation of In-
divisible Chores to Asymmetric Agents, in ‘Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems’, AAMAS
’19, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, pp. 1787–1789.

[16] Aziz, H., Gaspers, S., Mackenzie, S. and Walsh, T. [2015], ‘Fair assignment of
indivisible objects under ordinal preferences’, Artificial Intelligence 227, 71–92.

[17] Aziz, H., Huang, X., Mattei, N. and Segal-Halevi, E. [2021], ‘Computing
Welfare-Maximizing Fair Allocations of Indivisible Goods’, arXiv:2012.03979 .

132



[18] Aziz, H., Li, B. and Wu, X. [2022], ‘Approximate and strategyproof maximin
share allocation of chores with ordinal preferences’, Mathematical Programming
.

[19] Aziz, H., Rauchecker, G., Schryen, G. and Walsh, T. [2017], Algorithms for
Max-min Share Fair Allocation of Indivisible Chores, in ‘Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence’, AAAI’17, AAAI Press,
pp. 335–341.

[20] Babaioff, M., Ezra, T. and Feige, U. [2021a], ‘Best-of-Both-Worlds Fair-Share
Allocations’, arXiv:2102.04909 [cs] .

[21] Babaioff, M., Ezra, T. and Feige, U. [2021b], Fair and truthful mechanisms
for dichotomous valuations, in ‘Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021’, AAAI Press, pp. 5119–5126.

[22] Barman, S., Bhaskar, U. and Shah, N. [2020], Optimal Bounds on the Price
of Fairness for Indivisible Goods, in X. Chen, N. Gravin, M. Hoefer and
R. Mehta, eds, ‘Web and Internet Economics’, Lecture Notes in Computer
Science, Springer International Publishing, Cham, pp. 356–369.

[23] Barman, S. and Krishnamurthy, S. K. [2020], ‘Approximation Algorithms for
Maximin Fair Division’, ACM Transactions on Economics and Computation
8(1), 5:1–5:28.

[24] Barman, S. and Verma, P. [2021], Existence and Computation of Maximin Fair
Allocations Under Matroid-Rank Valuations, in ‘Proceedings of the 20th Inter-
national Conference on Autonomous Agents and MultiAgent Systems’, Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, pp. 169–177.

[25] Barman, S. and Verma, P. [2022], Truthful and fair mechanisms for matroid-
rank valuations, in ‘Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022’,
AAAI Press, pp. 4801–4808.

133



[26] Bei, X., Huzhang, G. and Suksompong, W. [2020], ‘Truthful fair division with-
out free disposal’, Social Choice and Welfare 55(3), 523–545.

[27] Bei, X., Lu, X., Manurangsi, P. and Suksompong, W. [2019], The Price of Fair-
ness for Indivisible Goods, in ‘Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence’, International Joint Conferences on
Artificial Intelligence Organization, Macao, China, pp. 81–87.

[28] Bei, X., Lu, X., Manurangsi, P. and Suksompong, W. [2021], ‘The Price of
Fairness for Indivisible Goods’, Theory of Computing Systems 65(7), 1069–
1093.

[29] Bei, X., Lu, X. and Suksompong, W. [2022], Truthful cake sharing, in ‘Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 - March 1, 2022’, AAAI Press, pp. 4809–4817.

[30] Bertsimas, D., Farias, V. F. and Trichakis, N. [2011], ‘The Price of Fairness’,
Operations Research 59(1), 17–31.

[31] Bertsimas, D., Farias, V. F. and Trichakis, N. [2012], ‘On the Efficiency-Fairness
Trade-off’, Management Science 58(12), 2234–2250.

[32] Bezáková, I. and Dani, V. [2005], ‘Allocating Indivisible Goods’, SIGecom Exch.
5(3), 11–18.

[33] Bilò, V., Fanelli, A., Flammini, M., Monaco, G. and Moscardelli, L. [2016], ‘The
price of envy-freeness in machine scheduling’, Theoretical Computer Science
613, 65–78.

[34] Bogomolnaia, A. and Moulin, H. [2004], ‘Random Matching Under Dichoto-
mous Preferences’, Econometrica; Evanston 72(1), 257–279.

[35] Bogomolnaia, A., Moulin, H. and Sandomirskiy, F. [2022], ‘On the Fair Division
of a Random Object’, Management Science 68(2), 1174–1194.

[36] Bogomolnaia, A., Moulin, H., Sandomirskiy, F. and Yanovskaia, E. [2019], ‘Di-
viding bads under additive utilities’, Social Choice and Welfare 52(3), 395–417.

[37] Bogomolnaia, A., Moulin, H., Sandomirskiy, F. and Yanovskaya, E. [2017],
‘Competitive Division of a Mixed Manna’, Econometrica 85(6), 1847–1871.

134



[38] Bogomolnaia, A., Moulin, H. and Stong, R. [2005], ‘Collective choice under
dichotomous preferences’, Journal of Economic Theory 122(2), 165–184.

[39] Bouveret, S., Cechlárová, K. and Lesca, J. [2019], ‘Chore division on a graph’,
Autonomous Agents and Multi-Agent Systems 33(5), 540–563.

[40] Bouveret, S. and Lang, J. [2008], ‘Efficiency and Envy-freeness in Fair Divi-
sion of Indivisible Goods: Logical Representation and Complexity’, Journal of
Artificial Intelligence Research 32, 525–564.

[41] Bouveret, S. and Lang, J. [2014], Manipulating picking sequences, in ‘Pro-
ceedings of the Twenty-first European Conference on Artificial Intelligence’,
ECAI’14, IOS Press, NLD, pp. 141–146.

[42] Brams, S. J. and Taylor, A. D. [1996a], ‘Fair Division by Steven J. Brams’.

[43] Brams, S. J. and Taylor, A. D. [1996b], Fair Division: From Cake-Cutting to
Dispute Resolution, Cambridge University Press, Cambridge.

[44] Brânzei, S. and Sandomirskiy, F. [2019], ‘Algorithms for Competitive Division
of Chores’, arXiv:1907.01766 [cs, econ] .

[45] Budish, E. [2011], ‘The Combinatorial Assignment Problem: Approximate
Competitive Equilibrium from Equal Incomes’, Journal of Political Economy
119(6), 1061–1103.

[46] Cantillon, E. and Pesendorfer, M. [2006], Auctioning bus routes: The London
experience, Technical Report 2013/9003, ULB – Universite Libre de Bruxelles.

[47] Caragiannis, I., Kaklamanis, C., Kanellopoulos, P. and Kyropoulou, M. [2012],
‘The Efficiency of Fair Division’, Theory of Computing Systems 50(4), 589–610.

[48] Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N. and
Wang, J. [2019], ‘The Unreasonable Fairness of Maximum Nash Welfare’, ACM
Transactions on Economics and Computation 7(3), 1–32.

[49] Castelli, L., Pesenti, R. and Ranieri, A. [2011], ‘The design of a market mecha-
nism to allocate Air Traffic Flow Management slots’, Transportation Research
Part C: Emerging Technologies 19(5), 931–943.

[50] Chan, H., Chen, J., Li, B. and Wu, X. [2019], Maximin-Aware Allocations of
Indivisible Goods, in ‘Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems’, AAMAS ’19, International Founda-

135



tion for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1871–
1873.

[51] Chaudhury, B. R., Garg, J. and Mehlhorn, K. [2020], EFX Exists for Three
Agents, in ‘Proceedings of the 21st ACM Conference on Economics and Com-
putation’, ACM, Virtual Event Hungary, pp. 1–19.

[52] Christodoulou, G. and Kovács, A. [2013], ‘A Deterministic Truthful PTAS for
Scheduling Related Machines’, SIAM Journal on Computing 42(4), 1572–1595.

[53] Clarke, E. H. [1971], ‘Multipart pricing of public goods’, Public Choice 11, 17–
33.

[54] Cole, R. and Gkatzelis, V. [2015], Approximating the Nash Social Welfare with
Indivisible Items, in ‘Proceedings of the Forty-Seventh Annual ACM Sympo-
sium on Theory of Computing’, STOC ’15, Association for Computing Machin-
ery, Portland, Oregon, USA, pp. 371–380.

[55] Cole, R., Gkatzelis, V. and Goel, G. [2013], Mechanism design for fair division:
Allocating divisible items without payments, in ‘Proceedings of the Fourteenth
ACM Conference on Electronic Commerce - EC ’13’, ACM Press, Philadelphia,
Pennsylvania, USA, p. 251.

[56] Conitzer, V., Freeman, R. and Shah, N. [2017], Fair Public Decision Making,
in ‘Proceedings of the 2017 ACM Conference on Economics and Computation’,
ACM, Cambridge Massachusetts USA, pp. 629–646.

[57] Demko, S. and Hill, T. [1988], ‘Equitable distribution of indivisible objects’,
Mathematical Social Sciencess 16(2), 145–158.

[58] Dhangwatnotai, P., Dobzinski, S., Dughmi, S. and Roughgarden, T. [2011],
‘Truthful approximation schemes for single-parameter agents’, SIAM Journal
on Computing 40(3), 915–933.

[59] Dickerson, J. P., Procaccia, A. D. and Sandholm, T. [2014], Price of fairness
in kidney exchange, in ‘Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems’, AAMAS ’14, International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,
pp. 1013–1020.

[60] Domenech, B. and Lusa, A. [2016], ‘A milp model for the teacher assignment
problem considering teachers preferences’, European Journal of Operational
Research 249(3), 1153–1160.

136



[61] Dubins, L. E. and Spanier, E. H. [1961], ‘How to Cut A Cake Fairly’, The
American Mathematical Monthly 68(1), 1–17.

[62] Engelmann, D. and Strobel, M. [2004], ‘Inequality Aversion, Efficiency, and
Maximin Preferences in Simple Distribution Experiments’, The American Eco-
nomic Review 94(4), 857–869.

[63] Fehr, E. and Schmidt, K. M. [1999], ‘A Theory of Fairness, Competition, and
Cooperation’, The Quarterly Journal of Economics 114(3), 817–868.

[64] Foley, D. K. [1967], ‘Resource Allocation and the Public Sector.’, Yale Econ.
Essays 7(45-98).

[65] Freeman, R., Shah, N. and Vaish, R. [2020], Best of Both Worlds: Ex-Ante and
Ex-Post Fairness in Resource Allocation, in ‘Proceedings of the 21st ACM Con-
ference on Economics and Computation’, EC ’20, Association for Computing
Machinery, New York, NY, USA, pp. 21–22.

[66] Freeman, R., Sikdar, S., Vaish, R. and Xia, L. [2019], Equitable Allocations
of Indivisible Goods, in ‘Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence’, International Joint Conferences on Arti-
ficial Intelligence Organization, Macao, China, pp. 280–286.

[67] Freeman, R., Sikdar, S., Vaish, R. and Xia, L. [2020], Equitable Allocations
of Indivisible Chores, in ‘Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems’, AAMAS ’20, International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,
pp. 384–392.

[68] Gale, D. [1987], ‘College course assignments and optimal lotteries’, University
of California at Berkely .

[69] Garey, M. R. and Johnson, D. S. [1990], Computers and Intractability; A Guide
to the Theory of NP-Completeness, W. H. Freeman & Co., USA.

[70] Garg, J. and Taki, S. [2020], An Improved Approximation Algorithm for Max-
imin Shares, in ‘Proceedings of the 21st ACM Conference on Economics and
Computation’, ACM, Virtual Event Hungary, pp. 379–380.

[71] Ghodsi, M., Hajiaghayi, M., Seddighin, M., Seddighin, S. and Yami, H. [2018],
Fair Allocation of Indivisible Goods: Improvements and Generalizations, in
‘Proceedings of the 2018 ACM Conference on Economics and Computation -
EC ’18’, ACM Press, Ithaca, NY, USA, pp. 539–556.

137



[72] Gkatzelis, V., Psomas, A. and Tan, X. [2021], ‘Fair and Efficient Online Allo-
cations with Normalized Valuations’, Proceedings of the AAAI Conference on
Artificial Intelligence 35(6), 5440–5447.

[73] Gourvès, L., Monnot, J. and Tlilane, L. [2014], Near Fairness in Matroids, in
‘21st European Conference on Artificial Intelligence (ECAI 2014)’, Vol. 263 of
Frontiers in Artificial Intelligence and Applications, Prague, Czech Republic,
pp. 393–398.

[74] Gunawan, A., Ng, K. M. and Poh, K. L. [2012], ‘A hybridized lagrangian
relaxation and simulated annealing method for the course timetabling problem’,
Computers & Operations Research 39(12), 3074–3088.

[75] Halpern, D., Procaccia, A. D., Psomas, A. and Shah, N. [2020], Fair Division
with Binary Valuations: One Rule to Rule Them All, in X. Chen, N. Gravin,
M. Hoefer and R. Mehta, eds, ‘Web and Internet Economics’, Lecture Notes in
Computer Science, Springer International Publishing, Cham, pp. 370–383.

[76] Herreiner, D. K. and Puppe, C. D. [2009], ‘Envy Freeness in Experimental Fair
Division Problems’, Theory and Decision 67(1), 65–100.

[77] Heydrich, S. and van Stee, R. [2015], ‘Dividing connected chores fairly’, Theo-
retical Computer Science 593, 51–61.

[78] Höhne, F. and van Stee, R. [2021], ‘Allocating contiguous blocks of indivisible
chores fairly’, Information and Computation 281, 104739.

[79] Huang, X. and Lu, P. [2021], An Algorithmic Framework for Approximating
Maximin Share Allocation of Chores, in ‘Proceedings of the 22nd ACM Confer-
ence on Economics and Computation’, Association for Computing Machinery,
New York, NY, USA, pp. 630–631.

[80] Hylland, A. and Zeckhauser, R. [1979], ‘The Efficient Allocation of Individuals
to Positions’, Journal of Political Economy 87(2), 293–314.

[81] Kleinberg, J. M. and Tardos, É. [2006], Algorithm design, Addison-Wesley.

[82] Kohler, D. A. and Chandrasekaran, R. [1971], ‘A Class of Sequential Games’,
Operations Research 19(2), 270–277.

[83] Kurokawa, D., Procaccia, A. D. and Wang, J. [2018], ‘Fair Enough: Guaran-
teeing Approximate Maximin Shares’, Journal of the ACM 65(2), 1–27.

138



[84] Lin, M., Chin, K. S., Wang, X. and Tsui, K. L. [2016], ‘The therapist assign-
ment problem in home healthcare structures’, Expert Systems with Applications
62, 44–62.

[85] Lipton, R. J., Markakis, E., Mossel, E. and Saberi, A. [2004], On approximately
fair allocations of indivisible goods, in ‘Proceedings of the 5th ACM Conference
on Electronic Commerce - EC ’04’, ACM Press, New York, NY, USA, p. 125.

[86] Markakis, E. and Psomas, C. [2011], On worst-case allocations in the presence
of indivisible goods, in N. Chen, E. Elkind and E. Koutsoupias, eds, ‘Internet
and Network Economics - 7th International Workshop, WINE 2011, Singapore,
December 11-14, 2011. Proceedings’, Vol. 7090 of Lecture Notes in Computer
Science, Springer, pp. 278–289.

[87] Min, D. and Yih, Y. [2010], ‘An elective surgery scheduling problem considering
patient priority’, Computers & Operations Research 37(6), 1091–1099.

[88] Moulin, H. [2019], ‘Fair Division in the Internet Age’, Annual Review of Eco-
nomics 11(1), 407–441.

[89] Nisan, N. [2015], Chapter 9 - algorithmic mechanism design: Through the
lens of multiunit auctions, Vol. 4 of Handbook of Game Theory with Economic
Applications, Elsevier, pp. 477–515.

[90] Nisan, N. and Ronen, A. [2001], ‘Algorithmic Mechanism Design’, Games and
Economic Behavior 35(1-2), 166–196.

[91] Pápai, S. [2001a], ‘Strategyproof and Nonbossy Multiple Assignments’, Journal
of Public Economic Theory 3(3), 257–271.

[92] Pápai, S. [2001b], ‘Strategyproof single unit award rules’, Social Choice and
Welfare 18(4), 785–798.

[93] Plaut, B. and Roughgarden, T. [2020], ‘Almost Envy-Freeness with General
Valuations’, SIAM Journal on Discrete Mathematics 34(2), 1039–1068.

[94] Pot, A., Bhulai, S. and Koole, G. [2002], ‘A simple staffing method for multiskill
call centers’, Manufacturing & Service Operations Management 10(3), 421–428.

[95] Procaccia, A. D. and Tennenholtz, M. [2013], ‘Approximate Mechanism Design
Without Money’, ACM Trans. Econ. Comput. 1(4), 18:1–18:26.

139



[96] Rasmussen, M. S., Justesen, T., Dohn, A. and Larsen, J. [2012], ‘The home
care crew scheduling problem: Preference-based visit clustering and tempo-
ral dependencies’, European Journal of Operational Research 219(3), 598–610.
Feature Clusters.

[97] Satterthwaite, M. A. and Sonnenschein, H. [1981], ‘Strategy-Proof Alloca-
tion Mechanisms at Differentiable Points’, The Review of Economic Studies
48(4), 587–597.

[98] Sousa, P., Ramos, C. and Neves, J. [2003], ‘The Fabricare scheduling prototype
suite: Agent interaction and knowledge base’, Journal of Intelligent Manufac-
turing 14(5), 441–455.

[99] Sun, A., Chen, B. and Doan, X. V. [2021], Connections between Fairness Crite-
ria and Efficiency for Allocating Indivisible Chores, in ‘Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems’, In-
ternational Foundation for Autonomous Agents and Multiagent Systems, Rich-
land, SC, pp. 1281–1289.

[100] Sun, A., Chen, B. and Doan, X. V. [2022], ‘Equitability and welfare maxi-
mization for allocating indivisible items’, Autonomous Agents and Multi-Agent
Systems 37(1), 1–45.

[101] Svensson, L.-G. [1999], ‘Strategy-proof allocation of indivisible goods’, Social
Choice and Welfare 16(4), 557–567.

[102] Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, P.
[1998], ‘Reference architecture for holonic manufacturing systems: PROSA’,
Computers in Industry 37(3), 255–274.

[103] Vickrey, W. [1961], ‘Counterspeculation, auctions, and competitive sealed ten-
ders’, The Journal of Finance 16(1), 8–37.

[104] Xiao, M. and Ling, J. [2020], Algorithms for manipulating sequential alloca-
tion, in ‘The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020’,
AAAI Press, pp. 2302–2309.

[105] Zeng, D. and Psomas, A. [2020], Fairness-Efficiency Tradeoffs in Dynamic
Fair Division, in ‘Proceedings of the 21st ACM Conference on Economics and

140



Computation’, EC ’20, Association for Computing Machinery, New York, NY,
USA, pp. 911–912.

[106] Zhou, L. [1990], ‘On a conjecture by gale about one-sided matching problems’,
Journal of Economic Theory 52(1), 123–135.

141


	List of Tables
	List of Key Symbols
	Acknowledgments
	Declarations
	Abstract
	Chapter Introduction
	Introduction
	Thesis Structure and Summary of Results

	Chapter Preliminaries
	Basic Notations
	Fairness Criteria
	Envy-Freeness
	Equitability
	Proportionality and Other Share-Based Fairness

	Economic Efficiency and Social Welfare
	Pareto Optimality and Social Welfare Functions
	Price of Fairness

	Mechanism Design
	Strategyproofness and Other Properties


	Chapter Fairness Criteria for Allocating Indivisible Chores: Connections and EfficienciesThis chapter is based on a research article by sunConnectionsFairnessCriteria2021a
	Introduction
	Related Works
	Preliminaries

	Some Simple Observations
	Guarantees from Envy-Based Relaxations
	Guarantees from Share-Based Relaxations
	Guarantees beyond the Additive Setting
	Price of Fairness under Additive Setting
	Two Agents
	More than Two Agents

	Price of Fairness beyond Additive Setting
	Conclusions

	Chapter Equitability and Welfare Maximization for Allocating Indivisible ItemsThis chapter is based on a research article by sunEquitabilityWelfareMaximization2022a
	Introduction
	Related Works

	Results on Price of Fairness
	With respect to Egalitarian Welfare
	With respect to Utilitarian Welfare

	Results on Computational Complexity
	Non-equivalence between Goods and Chores
	Computational Complexity with Variable Number of Agents
	Computational Complexity with Fixed Number of Agents

	Pseudo-Polynomial-Time Algorithms for Fixed Number of Agents
	Conclusions

	Chapter Allocating Indivisible Items to Strategic Agents
	Introduction
	Related Works

	Results under Deterministic Setting
	A Strategyproof and Efficient Mechanism
	Incorporate Additional Properties

	Results under randomized Setting
	A Strategyproof, Efficient, and Fair Randomized Mechanism
	A Strategyproof, Efficient, and Fair Randomized Mechanism for Allocating Mixed Items to Two Agents

	Conclusions

	Chapter Conclusion
	Insert from: "WRAP_Coversheet_Theses_new3.pdf"
	http://wrap.warwick.ac.uk/178889

	Insert from: "WRAP_Coversheet_Theses_new3.pdf"
	http://wrap.warwick.ac.uk/178986


