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Abstract

Despite the recent rise of RNA-seq datasets combining single-cell
(sc) resolution with 4-thiouridine (4sU) labelling, analytical meth-
ods exploiting their power to dissect transcriptional bursting are
lacking. Presented here is a mathematical model and Bayesian in-
ference implementation to facilitate joint estimation and confidence
quantification of the parameters governing transcriptional bursting
dynamics on a genome-wide scale. It is demonstrated that, unlike
conventional scRNA-seq, 4sU scRNA-seq resolves temporal param-
eters and furthermore boosts inference of dimensionless parameters
via a synergy between single-cell resolution and 4sU labelling. Ac-
counting for various sources of both biological and technical noise,
the observed cell-specific transcript turnovers and abundances are
naturally integrated, thus reducing the error across all parameters
of interest; both dimensionless and temporal. Applying the method
to published 4sU scRNA-seq data indicated that large bursts are
required for genes with very high expression levels, such as mito-
chondrial genes. Linking with published ChIP-seq data uncovered
otherwise obscured associations between different parameters and
histone modifications, agreeing with but advancing upon previously
reported results. Evidence is provided for a link between histone
modifications and modulation of bursting dynamics through, for
example, effects on transcript stability, with these effects being de-
pendent upon the location of the modification throughout the gene.
Algorithm performance was validated using simulated datasets with
ground truth target parameter values, both with a detailed analysis
at a single-gene scale and with a high level analysis at a genome-
wide scale.
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1 Introduction

1.1 Transcription overview

Eukaryotic transcription is the process by which RNA polymerase
(RNAP) enzymes generate RNA "transcripts" by processing along
the DNA sequence of a gene. RNA nucleotides complementary to
the template DNA sequence that the RNAP is passing over are
added to a nascent transcript [1]. This process is known as elonga-
tion and is preceded and succeeded by initiation and termination,
respectively. Initiation involves the recruitment of RNAP to the
transcription start site (TSS) via the pre-initiation complex (PIC),
which is made up of various transcription factors (TFs), including
those which bind to regulatory DNA sequence motifs at the pro-
moter [2]. The DNA double helix is then unwound to expose the
template strand before the RNAP is loaded and the first few bases
are synthesised, providing the DNA-RNA hybrid needed for elon-
gation to proceed. Termination involves the release of both the
nascent transcript and RNAP from the DNA followed by RNAP
disassembly, usually upon reaching the transcription end site (TES)
[3]. Various processing steps take place at different points during
transcription to allow for a mature transcript to be produced. These
include, in the case of protein-coding transcripts, 5’ capping dur-
ing initiation, splicing to remove intronic (non-coding) sequences
during elongation, and polyadenylation and cleavage during termi-
nation [2, 1, 3, 4]. Mature messenger RNA (mRNA) is shuttled to
the cytoplasm to undergo translation. Mature transcripts of RNA
genes, on the other hand, may remain in the nucleus or be trans-
ported to the cytoplasm to fulfil their function without being trans-
lated. In eukaryotes, ribosomal RNA (rRNA) other than 5S rRNA
is transcribed by RNAP I [5], the mRNA of protein-coding genes,
along with various non-coding RNAs, are transcribed by RNAP II
[2] and 5S rRNA, transport RNA (tRNA) and other small RNAs
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are transcribed by RNAP III [6].

1.2 Chromatin and nucleosomes

Since the process of transcription depends on recruitment of vari-
ous proteins and factors to the DNA sequence which is being tran-
scribed, it depends crucially upon the accessibility of the DNA to
these factors. In eukaryotes, the structure of chromatin is governed
primarily by the packaging of the DNA by nucleosomes [7]. The
DNA is wound around nucleosomes, which are complexes composed
of several protein subunits called histones, with the level of pack-
aging of chromatin across different regions of the genome broadly
classifying them into either heterochromatin or euchromatin if the
DNA is more tightly or loosely packaged, respectively (figure 1).
Each nucleosome is a histone octamer, with each of the core his-
tone proteins (H2A, H2B, H3 and H4) being found with two copies,
comprising a H3-H4 tetramer and two H2A-H2B dimers [8]. Each
histone protein is made up of a globular domain, which resides in
the nucleosome core and is able to non-specifically bind to DNA
through electrostatic interactions, and an unstructured N-terminal
tail domain which extends out from the nucleosome and is subject to
various covalent post-translational modifications at many residues.
These are known as histone marks or histone modifications (HMs)
and modulate the interaction strength of the modified histone with
the DNA [9, 10]. HMs can drastically alter the chromatin landscape
and therefore, the transcriptional dynamics of proximal genes via
the accessibility of the DNA for transcriptionally-relevant proteins
and factors. If the DNA is too tightly packaged then transcription
is prevented since the TFs required to recruit RNAP and the PIC
in general are not able to interact with their DNA binding sites.

So-called pioneer TFs are able to open silent regions of chro-
matin at which active histone marks are not present and the DNA
is too tightly wound around nucleosomes for other TFs to access
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[11, 12, 13]. Unlike other TFs and transcriptionally-relevant DNA-
binding proteins, pioneer TFs are capable of recognising, targeting
and binding partially accessible nucleosomal DNA sequence motifs
found in regions of otherwise inaccessible, non-active chromatin, al-
though this is not possible at strongly repressed heterochromatin
with repressive HMs, which is too tightly packaged for even pioneer
TFs to access. One example is FOXA, which has been shown to dis-
place linker histone proteins from the nucleosome it binds to [14],
thereby directly disrupting the nucleosome structure and making
the chromatin accessible to other TFs, histone modifiers and nu-
cleosome remodelling complexes. Pioneer TFs may then recruit
other TFs and even RNAP to the regulatory site. This mechanism
can lead to the transformation of silent, unmarked chromatin into
either active (enhancers and promoters) or repressive (silencers)
regulatory sites by inducing euchromatin formation, with the out-
come depending upon the site being targeted as well as the other
factors, proteins and complexes available. Silent regions may also
become repressed regions through the action of pioneer TFs by
making chromatin accessible for the deposition of repressive HMs,
which results in tighter packaging of nucleosomes and subsequent
heterochromatin formation at the site. In this manner, pioneer TFs
cause changes to gene regulatory networks which shift the transcrip-
tomic landscape of the cell and ultimately result in, for example,
cell fate determination during development [12, 13]. Mis-regulation
of pioneer TFs, particularly their up-regulation, is also associated
with cancer, such as SOX2 up-regulation in skin cancer, with SOX2
deletion being found to strongly reduce tumour formation [15].
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Figure 1: Schematic adapted from [16] illustrating the nucleosome-
mediated assembly of chromatin by winding ∼ 147bp of DNA
around each histone octamer, resulting in either loosely packaged
euchromatin or tightly packaged heterochromatin.
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1.3 Histone modifications

Two of the most important types of HM for transcriptional regu-
lation are acetylation and methylation, although many others ex-
ist including phosphorylation, ubiquitylation and sumoylation [17].
Acetylation and deacetylation of histone tail residues is carried
out by histone acetyl-transferases (HATs) and histone deacetylases
(HDACs), respectively, while methylation and demethylation of
residues relies on histone methyl-transferases (HMTs) and histone
demethylases (KDMs, with the K referring to lysine, the methy-
lated/demethylated residue although arginines may also be methy-
lated). During acetylation, a single acetyl group will be transferred
to the lysine residue, while a lysine may have one to three methyl
groups as a result of methylation. Histone acetylation weakens
the histone-DNA interaction due to the removal of positive histone
charge with which to attract the negative DNA phosphate groups,
which means that histone acetylation is generally associated with
looser packaging of the DNA, greater accessibility and therefore ac-
tive transcription [18]. The effects of histone methylation on DNA
interaction strength vary based on the position of the residue be-
ing methylated and the number of methyl groups which are trans-
ferred, meaning that histone methylation may be linked with either
active or repressed transcription. Regarding the issue of causality,
there are actually suggestions that in some cases HMs simply re-
flect and are a result of changes in the chromatin rather than being
the driving force. For example, HAT complexes may not be able to
penetrate tightly closed chromatin without some initial remodelling
to open it [19], although there is also clear evidence of acetylation
driving chromatin remodelling based on the order of events, with
acetylation occurring before any remodelling [20].

Out of the histone methylation marks associated with active
transcription, some such as H3K4me3 are primarily localised to the
TSS, while others like H3K36me3 and H3K79me2 are primarily lo-
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calised to the gene body (GB) [21]. Others, such as H3K4me1, have
been strongly linked to transcription via active enhancer in multi-
ple studies [22, 23, 24, 25]. The active histone acetylation mark
H3K27ac is often found at active enhancers and TSSs and is asso-
ciated with enhancer-mediated gene activation [26]. However, an
important study in mESCs in which the lysine at the 27th residue
of the H3 protein was mutated to arginine, thereby strongly di-
minishing H3K27 acetylation, recently found only a modest effect
on the binding of RNAP II and MED1 (a transcriptional coacti-
vator) in mutant cells [27]. Indeed there were no major changes
to core transcriptional regulator binding to chromatin or to tran-
scription itself, indicating that H3K27ac is not essential for mESC
transcription. Instead, it is hypothesised that acetylation of al-
ternative lysine residues, for example, may compensate for its at
H3K27 [27], suggesting that although H3K27ac is clearly an impor-
tant active enhancer mark, it may not be crucial for transcription
in many cases.

Further studies have characterised other marks and their re-
lationships with transcription, many of which mark enhancers in
addition to those found at gene promoters/GBs. For example, an
AI-based approach was used in conjunction with ChIP-seq (and
other) datasets to predict enhancers in different cell lines and found
H3K18ac, H4K16ac and H3K79me3 to all be strongly enriched at
enhancers, which were generally marked by high levels of H3K4me1
along with high levels of either H3K18ac or H4K16ac [22]. H3K4me2,
H3K4me3, H3K79me2, and H3K9ac appeared to be associated with
housekeeping enhancers whereas H3K4me1, H4K16ac and H3K27ac
more so predicted developmental enhancers. One study investi-
gated the Notch signalling pathway, which is very important for de-
velopment in Drosophila, and found that Notch activation resulted
in a rapid increase in H3K56 acetylation at Notch-regulated en-
hancers, causing elevated transcription levels, with this effect being
conserved since it was observed both in Drosophila and mammalian
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systems [23]. H3K56ac directly alters chromatin accessibility by in-
creasing the rate with which DNA unwraps from nucleosomes, thus
increasing TF occupancy. The increase in H3K56ac occurs before
transcription elongation, reinforcing the idea that it facilitates ini-
tiation by inducing euchromatin formation. Deposition of H3K56ac
occurs primarily at enhancer loci already marked by H3K4me1, in-
dicating that H3K4me1 is a pre-requisite for H3K56ac-mediated
gene activation and may even facilitate the spread of H3K56ac,
with H3K4me1 mutation resulting in reduced H3K56ac levels [28].

Another study on H3 acetylation of the globular domain (H3K64ac
and H3K122ac) in mESCs in comparison to the more studied tail
domain acetylation HMs, such as H3K27ac, showed that while
H3K27ac has traditionally been used to identify enhancers, there
is a class of enhancers marked by H3K122ac but lacking H3K27ac,
in addition to the more well-known class of enhancers (marked by
H3K64ac, H3K122ac and H3K27ac) [24]. Promoters were shown
to be marked by both H3K64ac and H3K122ac, with further data
from K562 cells indicating that H3K122ac was enriched at both
active and poised promoters as well as strong enhancers. Globular
acetylation HMs such as H3K64ac and H3K122ac exert an affect by
perturbing the inter-nucleosomal interactions to alter nucleosome
stability and turnover and also by directly facilitating activator
binding [24]. Previous work on mESCs also investigated the lesser
studied HMs found on H4, as opposed to H3, showing that loss
of acetylation at H4K16 did not cause compaction of higher-order
chromatin, although it likely involved smaller-scale chromatin re-
modelling since H4K16 facilitates neighbouring nucleosome interac-
tions, with acetylation likely to disrupt this [25]. Again, this study
showed that a subset of active enhancers are marked by H3K4me1
and H4K16ac but not H3K27ac, with expressed genes also hav-
ing H4K16 around their TSS. Whereas H3K4me3, which is the the
classic TSS-associated HM, occurs much more strongly on the +1
nucleosome, the presence of H4K16ac is equally strong on the +1
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and -1 nucleosomes (which flank the TSS). Although it is not found
around the TES, H4K16ac is also present in the GB, pointing to a
potential role in elongation [25].

1.4 Initiation and pausing

Once heterochromatin is cleared from the promoter region of a
gene by the modification of histones weakening interactions between
DNA and nucleosomes, RNAP can be recruited to the TSS/promoter
region. Initiation factors, such as the TATA box-binding protein,
may bind in a sequence-specific manner at active promoters up-
stream of the TSS which can then recruit further proteins including
TFs and RNAP to form the PIC, as well as HATs/HMTs for fur-
ther chromatin remodelling. DNA-binding TFs often associate with
specific sequence motifs at the promoter (or enhancer) region and
may find their target site via 3d diffusion through the cytoplasm.
However, TFs have been shown to locate targets up to two orders
of magnitude faster than 3d diffusion alone would allow and that
this is achieved through a combination of 1d diffusion, in which
the TF slides along the DNA, intersegmental transfer, in which the
sliding TF may "hop" between two proximal DNA strands, and
standard 3d cytoplasmic/nucleoplasmic diffusion [29, 30] (figure 2).
This occurs through the non-specific binding of the TF to segments
of open euchromatin away from the target site through electrostatic
interactions, which while tethered to the DNA filament, is bound
weakly enough to enable free and rapid sliding of the TF along the
DNA. The TF may hop between proximal DNA segments either by
directly transferring between them during a brief period in which
the TF is non-specifically associated with both segments, or alter-
natively by dissociating with the current segment, diffusing a short
distance through the nucleoplasm to the new segment and associ-
ating with it [30]. Facilitated diffusion allows more rapid target
finding, with the TF becoming strongly and specifically bound to
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the target sequence motif once it slides over it while diffusing in 1d
along the DNA, subsequently contributing to transcriptional acti-
vation of the gene. Additionally, the TF may dissociate from the
target site but remain tethered to the DNA, sliding back and forth
and then pass over the target site to become specifically bound
again before fully unbinding from the DNA, resulting in multiple
gene activation events in quick succession [29]. In promoters which
lack binding sequences on the DNA, initiation factors may instead
anchor themselves directly to nucleosomes, as has been reported
in the case of TFIID becoming anchored to TSS-flanking nucleo-
somes via the H3K4me3 modification, thus facilitating transcrip-
tional activation [31]. The PIC is responsible for the opening of
DNA at the promoter by denaturing it from the double-stranded
to single-stranded state, which is achieved for the RNAP I and III
PICs simply by binding which melts and breaks the hydrophobic
base-base interactions, whereas the RNAP II PIC depends on the
action of the XPB DNA translocase to unwind the DNA and make
it accessible to RNAP [32, 33].

Turning specifically to RNAP II, its C-terminal domain (CTD)
is central to the regulation of all phases of the transcription pro-
cess. After unwinding of the DNA at the promoter, in order to
initiate transcription the fifth and seventh serine (Ser5 and Ser7)
residues of the RNAP II CTD is phosphorylated by CDK7 in a
process facilitated by the Mediator coactivator (figure 3). This re-
leases RNAP II from the PIC, allowing it to synthesise the first
few bases of the nascent RNA transcript by proceeding over the
template DNA strand [1, 34, 35]. Certain DNA sequences may
interrupt the procession of RNAP II along the DNA, resulting in
pausing which often occurs ∼ 50 bps downstream of the TSS (fig-
ure 3), just before the +1 TSS-flanking downstream nucleosome.
Pausing is stabilised by the DSIF and NELF factors, which bind
to either end of the RNAP II, and this can lead to backtracking
or premature termination. While paused, the phosphorylated Ser5
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residue of the RNAP II CTD recruits factors responsible for 5’
capping of the nascent transcript, protecting it from degradation.
TFIIS to required for the release of promoter-proximal pausing into
the productive elongation phase, but is inhibited from binding to
RNAP II by NELF. Pausing release is automatically achieved by
a TFIIS-like subunit of RNAP I and III but depends upon phos-
phorylation of NELF, DSIF and the second serine (Ser2) residue of
the CTD by P-TEFb (CDK9). This causes disassociation of NEFL
from the chromatin, allowing binding of TFIIS, and converts DSIF
into a positive elongation factor, forming an important part of the
elongation complex and playing a role in co-transcriptional pro-
cesses. The Ser2-phosphorylated CTD not only recruits elongation
factors but also other factors needed for co-transcriptional processes
like modification of histones to continue clearing nucleosomes and
RNA splicing to remove intronic sections of the nascent transcript
and stitch together exonic regions ready for translation, while the
CTD Ser5 becomes increasingly dephosphorylated by phosphatases
as elongation progresses [1, 33, 35, 36].
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Figure 2: Figure taken from [30] showing how TFs move through
the genome and nucleus towards their target sites. A Schematic
showing how the TFs may be transported throughout a complex
chromatin structure by 3d diffusion of the TF through the nucle-
oplasm (a), 1d sliding of the TF along the DNA segment when
non-specifically bound (b), direct intersegmental transfer of the TF
between proximal DNA segments without becoming fully unteth-
ered from the DNA (c) and hopping between segments or along the
same segment, in which the TF alternates between 1d sliding and
short excursions out away form the segment to diffuse in 3d before
becoming non-specifically bound again (d). B Schematic showing
the aforementioned modes of motion of a TF specifically in relation
to two local DNA segments.
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1.5 Elongation and splicing

There are several important co-transcriptional processes influencing
the nascent transcript (like 5’ capping during initiation/pausing) or
chromatin which occur during the elongation phase of transcription
or during the subsequent termination. This includes chromatin re-
modelling, RNA splicing, cleavage and polyadenylation (figure 3).
During elongation the nucleosomes exhibit a dynamic turnover in
which they are temporarily disassembled to facilitate movement
of RNAP II through the chromatin and then reassembled in a pro-
cess mediated by histone chaperones and chromatin remodellers [1].
The disassembly is induced by RNAP II and involves the removal of
one of the H2A-H2B dimers from the octamer nucleosome, leaving
a hexasome behind and facilitating passage of RNAP II. As pre-
viously mentioned, while some HMs are primarily localised to the
promoter/TSS regions, such as H3K4me2, H3K4me3 and H3K27ac,
others are found in the GB instead like H3K36me3 and H3K79me2.
Although the exact action/regulation of H3K79me2 during elon-
gation is unclear, H3K36me3 is transferred by the KMT SETD2,
which is recruited to the chromatin during elongation by its as-
sociation with the phosphorylated RNAP II CTD. This results in
proper regulation of chromatin remodelling, such as deacetylation
of coding regions to prevent initiation of intragenic transcription
[37].

Splicing is another co-transcriptional process occurring during
elongation in which the large ribonucleoprotein complex known as
the spliceosome mediates removal of intronic sequences from the
nascent transcript (or precursor mRNA, pre-mRNA) by cleaving
the transcript at conserved splice sites. There is evidence that the
elongation speed of RNAP II is lower at exons due to sequence
and chromatin features such as increased H3K79me2 at introns
as well as preferential binding of H3K36me3-modified nucleosomes
at exons, resulting in reduced nucleosome density in introns com-
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pared to exons [38, 39, 40]. This, along with exon-binding pro-
teins and the aforementioned exonic deposits of H3K36me3, may
aid the spliceosome in distinguishing between exons and introns to
facilitate proper splicing [2, 41]. Indeed, proximity to the chro-
matin has been shown to be important for splicing efficiency even
when the transcript has undergone cleavage and polyadenylation
[42]. Furthermore, there is strong evidence based on nucleoplasmic
RNA measurements that constitutive introns (which are spliced
in all isoforms of the gene) may be spliced almost entirely co-
transcriptionally whereas alternative introns may frequently un-
dergo post-transcriptional splicing [42]. H3K36me3 has also been
shown to directly recruit splicing machinery to the DNA, such as
providing a docking site for MRG15 which binds the splice factor
PTB to recruit the nucleosome [43].

Additionally, there is evidence of a reverse interaction, with the
intronic H3K36me3 density increasing further downstream in the
GB specifically in a stepwise fashion after each subsequent exon, in-
dicating that splicing also recruits SETD2 and enhances H3K36me3
deposition, especially considering that splicing inhibition has been
directly shown to reduce SETD2 recruitment [38, 43]. Preferential
assembly of nucleosomes and deposition of H3K36me3 at exons has
also been linked to differential GC content which distinguishes ex-
ons and introns in addition to the presence of splicing sites [39].
H3K36me3, elongation and splicing are closely intertwined and the
hypothesis that increased H3K36me3-modified nucleosome density
in exons enhances splicing is supported by the finding that exons
with weak splice sites, which are less efficiently targeted by the
spliceosome than exons with strong splice sites, have higher levels
of nucleosomes and H3K36me3 to compensate [39]. On the other
hand, alternatively spliced exons have lower H3K36me3 levels than
constitutively spliced exons, correlating H3K36me3 with the prob-
ability of the exon being spliced out of the flanking introns and in-
cluded in the mature transcript [40], reinforcing its role as a splicing
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marker. The differences between introns and various types of ex-
ons in terms of both H3K36me3 levels and the nucleosome density
is conserved, being previously observed in humans, mice, flies and
worms [38, 39, 40].

Taken together, this evidence and previous work points to a
mechanism whereby high exonic H3K36me3-modified nucleosome
density is established by GC content, elongating RNAP and splic-
ing factors, which then interacts with the spliceosome more strongly
than introns, with their lower density of H3K36me3-modified nu-
cleosomes, helping guide the splicing machinery towards the splice
sites which border the exonic and intronic transcript sequences.
While elongation in exons is maintained by H3K36me3-mediated
recruitment of elongation factors, the higher nucleosome density
reduces RNAP elongation speed, allowing time both for proper fold-
ing of the nascent transcript and for the spliceosome, which may
be attached to the chromatin through splicing factors like PTB, to
remain in proximity of the splice site for longer. This increases the
chance of cleavage before further elongation may cause the splice
site to become less closely tethered to the DNA/chromatin and,
therefore, more distal to the spliceosome.
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Figure 3: Diagram of the transcription cycle for RNAP II-mediated
transcription taken from [33]. The different phases require the asso-
ciation of different sets of protein factors with RNAP II, as denoted
by colour (purple for initiation and red/orange for elongation). Dif-
ferent sets of proteins are bound to RNAP II during pausing and
elongation based on the phosphorylation state of the CTD. Splicing,
polyadenylation and cleavage require transfer of proteins bound to
the RNAP II directly onto the nascent pre-mRNA transcript.

1.6 Termination and transcript release

The final step of transcription sees RNAP II transition from the
elongation to termination phase at the TES, although this is not
necessarily the end of the line for RNAP II due to the phenomenon
of transcription reinitiation through polymerase recycling. Cleav-
age and polyadenylation of the nascent transcript are key pro-
cesses immediately preceding transcription termination, which oc-
curs when RNAP II transcribes the polyadenylation signal sequence
at the TES (figure 3). This triggers the cleavage and polyadenyla-
tion specificity factor (CPSF) to transfer from the RNAP II CTD to

26



the polyadenylation signal site of the pre-mRNA, which along with
other factors such as the Ser2-phosphorylated CTD-binding cleav-
age factor Pcf11, leads to cleavage of the 3’ end of the transcript
and subsequent polyadenylation catalysed by polyadenylate poly-
merase (PAP). Once PAP has extended the polyA tail of the tran-
script to about 200-250 nucleotides, its contact with CPSF weakens
to breaking point, causing cessation of polyadenylation. As with 5’
capping and the appropriate splicing of introns, the polyA tail is
critical in determining the stability of the transcript, as well as ex-
portation from the nucleus [1, 35, 44, 45, 46]. Even after cleaveage,
polyadenylation and release of the transcript from the transcrip-
tion complex and chromatin, RNAP II continues to transcribe for
several thousand bp on average beyond the TES. There are two
main mechanistic models explaining the eventual termination of
transcription and disassociation of RNAP II; the allosteric model
and the torpedo model. The allosteric model states that the loss
of several important proteins from the transcription complex after
the polyA signal results in a reduced efficiency of elongation due to
a conformational change, which makes dissociation from the DNA
at each subsequently transcribed base more likely, until eventually
termination occurs. The alternative, ’torpedo’ model instead posits
that termination relies on degradation of the remaining uncapped
RNA after cleavage by the XRN2 exonuclease, which degrades the
RNA faster than RNAP II processes over the DNA until eventually
XRN2 catches up and torpedos into RNAP II, thereby displacing
it and resulting in termination [1, 2, 4, 35, 47].

1.7 Stochastic transcription, noise and bursting

Beyond the biochemical description outlined above, transcription is
also a stochastic process subject to intrinsic noise through its fun-
damental dependence on probabilistic collisions between molecules
[48, 49, 50]. These molecules are often present at relatively low
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counts, resulting in relatively larger fluctuations associated with
each integer-valued change in copy number, which corresponds to
poissonian noise and a poisson distribution of transcripts across
cells in the regime of constant transcript synthesis and degrada-
tion. On top of this, in many cases, transcription occurs in bursts
of higher activity followed by periods of lower activity or inactiv-
ity, which may greatly enhance the cell-cell variability in transcript
counts and enable super-poissonian noise levels [51, 52]. Indeed,
studies have identified a broad spectrum of genes, from those that
are transcribed in a Poissonian fashion, such as housekeeping genes,
to those which are very bursty in nature and expressed only in rel-
atively short, intense windows of activity [53, 54]. Variation in
gene expression between cells may arise not only due to the intrin-
sic noise associated with each gene copy, but may also have a an
extrinsic noise component, in which heterogeneity may arise due
to to global variation between cells such as cell-cycle phase and
varying numbers of cellular components (e.g. enzymes or metabo-
lites) which affect gene copies within a cell in a correlated manner
[55, 56, 57, 58]. Gene expression noise is not only restricted to tran-
scription, but also to protein copy numbers, with translational noise
having been a heavily-studied topic for many years, although the
same fundamental principles underly noise intrinsic to transcription
and translation; discrete molecule numbers magnifying fluctuations
at low molecule numbers and the production of molecules in bursts
due to switches between states with different production rates (gene
on/off, mRNA present/absent). Large protein fluctuations are ob-
served when transcription rates are slow and translation rates are
fast, whereas small fluctuations are seen with slow transcription
and fast translation, because the protein numbers are more or less
sensitive to the instantaneous mRNA state of the cell, respectively
[59]. This logic is also applicable to transcriptional noise since as
proteins are produced from a mRNA copy during translation, tran-
scripts are produced from a gene copy during transcription, with
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relatively slow and fast promoter (gene state) switching leading to
large or small transcript fluctuations, respectively. The gene expres-
sion noise is generally viewed as the size of the fluctuations in copy
numbers relative to the average copy number, such that although
the absolute variance for a high expression gene may be larger than
for a low expression gene, the fold-difference in copy numbers be-
tween any given pair of cells may be lower on average than for a low
expression gene that experiences larger fluctuations as a proportion
of its mean expression level. Therefore, transcriptional noise across
a cell population is often quantified as the coefficient of variation
(CV, standard deviation over mean), the Fano factor (variance over
mean) or even the variance over the square of the mean [56, 57, 58].

Fluctuations in transcript levels can reduce the signal to noise
ratio of information propagation through a gene regulatory net-
work (GRN), which can be a harmful result for the cell [60]. On
the other hand, gene expression noise and cell-cell variance can
be utilised as a means of inducing diversity within a cell popula-
tion. For example, in eukaryotic, a genetically identical stem cell
population may achieve alternative cell fates during differentiation
without requiring explicit control by genetic programming or exter-
nal signals through the probabilistic switching in expression level
of genes key for different cell fates [60, 61, 62]. It has also been hy-
pothesised as an effective bet-hedging mechanism in prokaryotes to
enable rapid adaption of a colony to stress and changing conditions
by endowing different subpopulations of the colony with diverse
phenotypes without requiring genetic mutations, such that at least
one subpopulation may be able to survive and adapt to sudden
environmental stresses. One example is that of persistent bacte-
rial infections, in which the quickly growing bacteria are killed by
antibiotic treatment but a handful of dormant, slow-growing bacte-
ria, which exhibit this alternative phenotype due to gene expression
noise, survive extended periods before later switching back into the
fast-growth phenotype, resulting in the infection once again taking
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hold. Indeed gene-intrinsic noise is subject to natural selection in
both prokaryotes and eukaryotes by modulating the level of burst-
ing, while the observation of bursting across different domains of
life demonstrates that transcriptional bursting and stochastic noise
in gene expression are fundamental phenomena [60, 62]. Taking
a classical view of transcriptional bursting, in which transcription
occurs only during active periods which are separated by periods
of inactivity, one may understand it in terms of several key param-
eters (figure 4) which govern the transcriptional dynamics. These
include the burst size (transcripts produced per burst, b), burst fre-
quency (bursts per unit time, κ), decay rate (transcripts degraded
per unit time, δ), transcript lifetime (average transcript survival
time, γ = 1/δ), burst rate (bursts per transcript lifetime, a = κ/δ)
and expression level (mean transcripts per cell, µ = b× a).
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Figure 4: Simulation demonstrating transcriptional bursting for a
single gene in a single cell, indicating burst size (red), burst interval
(blue, reciprocal of burst frequency), and decay rate (orange, recip-
rocal of transcript lifetime), while the thickness of the pink shaded
regions indicate burst durations.
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1.7.1 Biological origins

As previously mentioned, intrinsic transcriptional noise arises as a
result of random encounters of molecules which results in molecule-
level noise since the biochemical processes themselves are inher-
ently stochastic, as well as through the process of transcriptional
bursting, which may push intrinsic noise to super-poissonian levels.
Transcriptional bursting and the switching between gene states with
differing activity levels is associated with a wide variety of underly-
ing mechanisms, which may vary depending on the gene, cell type
and organism, including TFs, chromatin, nucleosomes, enhancers,
and chromosome topology [63]. Transcriptional bursts may be regu-
lated at/before the time of initiation by factors which are proximal
to the promoter or gene or by distal factors, and may be modu-
lated by events occurring after initiation has taken place. Bursts
are initiated through occupation of cis-regulatory elements (DNA
sequences at/around the promoter) by TFs, which is primarily re-
lated to modulation of burst frequency. The capacity of TFs to bind
at the promoter is crucial in determining the burst frequency, with
the loss of binding motifs resulting in less frequent bursting, while
depletion of nucleosomes from the promoter strongly increases burst
frequency, since nucleosome packaging reduces promoter accessibil-
ity to TFs [64]. Single molecule fluorescence in situ hybridisation
(smFISH) data on the c-Fos gene also showed that higher TF con-
centration resulted more frequent bursts, whereas the burst size
is related to the lifetime of the TF on the promoter with longer
TF occupation times resulting in longer bursts, while burst size is
also increased for TFs with a stronger transactivation domain, in-
stead through increased RNAP initiation rate which increases the
number of transcripts produced during a give active window [65].
The c-Fos gene is enriched for paused RNAP at/near the TSS,
which may strengthen the relationship between TF binding dura-
tion and burst size, since keeping the active state maintained for
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longer only produces a longer burst if there are enough RNAP to
continue transcribing throughout the window. TF binding proxi-
mal to the TSS immediately preceding transcriptional bursts has
also been observed, providing supporting evidence that TF binding
initiates bursts. Studies have also observed the co-condensation of
TFs with transcriptional coactivators such as p300, which mediates
cooperative activation of genes by clusters of TFs [66]. This cooper-
ative activation results in non-linear gene regulation and increased
burst frequency and burst size for genes enriched in coactivators.
The promoter-proximal sequence architecture also influences burst-
ing, with increased burst frequency being achieved by having more
and/or higher affinity cis-regulatory elements, although mutation
of certain TF binding sites has also been shown to reduce burst
size [63]. Recent works directly observing live-cell nascent RNA
have found very short burst durations from seconds to minutes,
with multiple rounds of transcriptional initiation. Large bursts ob-
served with smFISH, for example, are actually likely a series of
small bursts in quick succession, which links to ideas that TFs bind
DNA both specifically (at the target site) and non-specifically, able
to slide back and forth across the DNA, resulting in multiple tiny
rapid bursts each time the TF passes over the target site, until the
TF fully dissociates from the DNA, at which point no transcrip-
tion occurs for a while [29]. From a physical perspective, these are
in fact multiple successive small bursts during the tethered period
in which the TF remains at least non-specifically bound with in-
termittent specific binding/unbinding events. However, since these
sliding kinetics and small bursts occur on a much shorter timescale
than transcript degradation or TF-DNA dissociation/association
events they could be considered collectively as a single, large burst,
with a duration corresponding to the total time the TF spends teth-
ered to the DNA proximal to the target site before fully dissociating
from the DNA back into the cytoplasm/nucleoplasm. Reducing TF
binding affinity through mutation of the binding site may, therefore,
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result in reduced burst duration and burst size due to a lower frac-
tion of tethered time being spent specifically bound at the target
site and relatively more time spent non-specifically bound to the
surrounding sequences, during which there is greater probability to
become fully dissociated [63].

Enhancers, although potentially very distal to their target genes,
are key for transcriptional activation in many cases and have the ca-
pacity to recruit TFs and chromatin remodelling factors and may ei-
ther silence or activate target genes. Enhancers which are proximal
to the promoter in 3d space may increase local TF concentration by
having multiple TF binding sites, which in turn recruit RNAP and
other cofactors. This proximity may be achieved through the tran-
sient looping of chromatin to bring enhancer and promoter close
together and deposit the recruited factors from the enhancer to the
TSS. If the enhancer interacting with the promoter enables tran-
scription, then longer, more stable interactions increase the du-
ration of the active transcription window, thereby increasing the
burst size [63]. Loss of enhancers has also been shown to result
in the reduction of burst frequency as well as a weaker reduction
in burst size, which is hypothesised to occur through transcrip-
tional activation instead being mediated by alternative/redundant
enhancers which have less frequent and lower stability interactions
with the promoter [63]. Increased looping of the chromatin be-
tween enhancer and promoter has been shown to increase burst
frequency through higher probability of the enhancer-promoter in-
teraction occurring. Topological regulation in general is also cru-
cial for bursting regulation. The accessibility for factors binding to
trans-regulatory elements, such as enhancers, or to cis-regulatory
elements at the promoter, as well as recruitment of factors to the
GB, depends upon the structure of the DNA helix. This is strongly
linked to the level of supercoiling of the DNA, with supercoiling
being caused by transcription in both prokaryotes and eukaryotes
[63]. As RNAP processes through the gene, it leaves positive su-
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per coiling behind it and induces negative supercoiling in front of
it. Successive RNAPs result in a greater accumulation of super-
coiling, which can eventually cause structural inhibition of further
transcription, thereby potentially acting as an inherent constraint
on burst size and leading to a refractory period. Supercoiling has
indeed been shown to negatively impact transcription mediated by
both RNAP I and II. Topoisomerase enzymes can relieve super-
coiling in a concentration-dependent fashion, with bursting hav-
ing been shown to rely upon expression levels of such supercoiling-
relieving enzymes in prokaryotes. The proposed mechanism is the
accumulation of positive supercoiling caused by the RNAP pro-
ceeding through the gene, until it reduces the rate of elongation
to the point that it prevents further transcription. Intermittent
clearing of supercoiling followed by rapid transcription, and subse-
quent re-accumulation of supercoiling, results in bursty prokaryotic
transcription [67]. In eukaryotes, supercoiling has been shown to
facilitate spacing between RNAPs during a transcriptional burst to
avoid them crashing into each other. The pausing of RNAP af-
ter initiation may also be important in regulating transcriptional
bursting [63]. Genome-wide enrichment of RNAP II 50-100 bps
downstream of the TSS indicates polymerase pausing proximal to
the TSS, with the transition from pausing to elongation involving
phosphorylation of the C-terminal domain of RNAP II, as previ-
ously mentioned. Pause times of roughly 40 seconds have previ-
ously been inferred mathematically, with up to 90% of RNAP II
undergoing abortive transcription rather than entering productive
elongation. Cells may be able to modulate the number of RNAP II
released from pausing during an active window to regulate the burst
size as an alternative to modulating the total number of RNAP II
recruited and initiated. Promoter-proximal pausing dynamics could
also influence the frequency of bursts in conjunction with initiation
rate [68]. RNAP may also undergo the process of reinitiation, in
which after transcribing a gene the RNAP is immediately recycled
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to the TSS instead of simply terminating and disengaging [69]. This
requires looping of the gene to bring the TSS and TES into physi-
cal proximity [70], and the link between TSS-TES interactions and
bursting has been explored recently, pointing to increased burst
size by facilitating a larger number of total RNAP initiation (and
reinitiation) events during a given active period [71].

In eukaryotes, the nucleosome packaging of chromatin plays
a central role in transcriptional bursting, with peak nucleosome
turnover in flies is found to be located immediately downstream of
the TSS, coinciding with the locus of maximal RNAP II enrichment
[63]. Nucleosome turnover also occurs at enhancers, and expression
level of a gene is directly proportional to the level of nucleosome
turnover at its promoter, while histone turnover time is similar to
the time between transcriptional bursts. Different HMs may result
in looser or tighter packing of the chromatin, with the chromatin
density around the TSS being correlated with transcriptional noise
[72]. Having active HMs at the TSS results in an increased probabil-
ity of open chromatin, which facilitates initiation. This is proposed
to reduce burstiness, possibly by reducing the duration between ac-
tive periods [72, 73]. Histone acetylation is important for control-
ling burst frequency over circadian rhythms, and in mouse cells is
known to modulate both burst frequency and size [74]. H3K4me3
has also been indicated to play a role in determination of burst
duration. Histone acetylation turnover occurs on short timescales
similar to burst durations, but histone methylation turnover occurs
over much longer timescales, noting that daughter cells have been
shown to have inherited burst frequencies close to the mother cells,
with the inheritance being dependent upon H3K4 methylation, a
known active transcription histone mark [63]. Histone acetyla-
tion may be more important for regulating transcriptional bursting
dynamics occurring on short timescales, whereas histone methyla-
tion may play a more important role in determining transcriptional
bursting dynamics over long timescales. Strongly repressed chro-
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matin, which can also be achieved through histone methylations like
H3K27me3, in which transcription is inhibited for large periods of
time, is associated with increased transcriptional noise, where oc-
casional bursts cause a small handful of cells to express the gene
while the rest of the population is silent [63]. Proximity of nucle-
osomes to TF binding sites have also been shown to increase the
dissociation rate by up to 1000-fold, resulting in reduced occupa-
tion time, burst duration and burst size. Although TF binding is
the rate-limiting step in transcriptional bursting, it can only occur
when permitted by brief periods of nucleosome remodelling, when
nucleosomes are cleared from the TSS area to facilitate TF bind-
ing, leading to a transcriptional burst. Nucleosomes with different
HMs may have different propensities to be cleared and for different
durations. Recent studies have also reported genome-wide direct
correlations between the presence of specific HMs at gene promot-
ers and general transcriptional noise [75, 76], while further studies
have even linked HMs with the underlying bursting dynamics, both
at the individual gene level [74] and genome-wide [77].

The higher order chromosomal architecture, such as that mea-
sured by HiC, also has an impact on transcriptional bursting. Eu-
karyotic genomes are organised in 3d into topologically associated
domains (TADs), which may form via loop extrusion. Enhancers
and promoters within the same TAD are assumed to interact more
frequently and strongly than those located in different TADs, which
would mean that TADs are important for facilitating or preventing
regulation of target genes by enhancers. This would result in in-
creased burst frequency and sizes for genes located within the same
TAD as their regulating enhancer compared with those located in
separate TADs [63]. However, the difference is not extreme, with
those within the same TAD twice as likely to interact as those
in adjacent TADs. Different chromosomal configurations have been
observed across a cell population, indicating that the TAD organisa-
tion is dynamic, changing over time, such that genes could interact
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with different sets of enhancers at different times depending on the
TADs they inhabit, resulting in shifts in their transcriptional burst-
ing dynamics and changes in transcriptional noise. CTCF as well
as cohesin are important for TAD establishment, with enhancer-
proximal CTCF sites acting to strengthen enhancer-promoter in-
teractions. Deletion of such sites resulted in a minimal change in
expression level despite reduced enhancer-promoter interaction fre-
quency, whereas noise levels were increased, indicating that burst
frequency was reduced but was compensated by increased burst size
[63].

Extrinsic noise is also crucial for determining the total transcrip-
tional noise alongside intrinsic noise, and has a wide array of biolog-
ical sources. Such extrinsic noise sources may be entirely stochastic
and unpredictable or can have a deterministic component, in which
they vary periodically, and are therefore more predictable, with
stochastic fluctuations about the deterministic mean, such as the
cell cycle phase and circadian rhythm [55]. Fully stochastic extrin-
sic noise sources may include historical events in the cells history,
such as the activation of a gene whose product is related to tran-
scription, such as a TF, with a positive feedback loop magnifying
the effect, resulting in a long-term accumulation of the TF in that
cell, causing a global increase in the burst frequency in that cell
until TF levels become depleted to levels more comparable with
its neighbour cells [55]. Asynchronised cell populations also have
a non-uniform distribution of cells over the cell cycle because new
daughter cells are more abundant than those on the cusp of division
since each dividing cell produces two new ones.

1.7.2 Data generation

Early studies of stochastic gene expression focussed on translational
noise due to the greater ease of quantifying protein than transcript
abundances with previously available technology, since protein copy
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numbers are generally higher and more easily detectable. A com-
mon theme was the decomposition of noise into intrinsic vs extrin-
sic and the quantification of each component. Such analyses relied
on dual reporter systems, with two differently coloured fluorescent
reporter proteins controlled by identical regulatory sequences or
promoters, which in previous studies have been inserted into both
prokaryotic and eukaryotic genomes, specifically at the same lo-
cus in homologous chromosomes in the eukaryotic case [78, 56].
This aimed to ensure that the two reporters were under identical
intrinsic noise conditions, with measurement of total noise levels
being achieved through quantification of the fluorescent intensities
observed in each cell across a population upon imaging. The pro-
portion of noise originating from extrinsic sources was obtained by
measuring the correlation between the two reporter levels across
the cell population, with the remaining noise belonging to intrin-
sic, gene copy-specific fluctuations. The total noise was quantified
as the CV, with stronger correlations indicating a larger extrinsic
noise contribution. One eukaryotic study of this nature found the
majority of measured expression noise to be composed of extrin-
sic noise sources [56]. However, control of factors such as cell size,
shape and cell-cycle phase through the use of fluorescence-activated
cell sorting (FACS) reduced but did not eliminate extrinsic noise
despite separate analyses of subpopulations homogenous in these
factors, indicating other sources of heterogeneity within the cells
which are not apparent under the microscope, such as variations in
cellular components.

Due to the importance of small molecule mRNA fluctuations
in stochastic noise, the development of fluorescence imaging tech-
nologies with the capacity to distinguish individual molecules from
background levels was a major breakthrough in directly quantify-
ing transcript copy numbers and thus transcriptional noise, with
transcript levels being more sensitive to the gene state than pro-
teins, which are longer-lived . An early study of this type directly
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showed that transcriptional bursting occurs in prokaryotes by us-
ing the MS2-GFP fusion protein to tag transcripts, causing them
to fluoresce and facilitating their integer-valued detection at single-
molecule resolution [79]. This was contrary to prevailing ideas
that poisson noise dominates bacterial transcription as opposed to
accepted idea of super-poissonian bursty eukaryotic transcription,
with observed super-poissonian protein noise in prokaryotes arising
due to translational not transcriptional bursting. Transcriptional
bursts were directly observed in E. coli using time-series data, with
measurements on burst size and wait times conforming to mathe-
matical predictions made under the assumption of transcriptional
bursting. Observing cells throughout cell division has also indicated
binomial partitioning of transcripts into daughter cells, contributing
to transcriptional noise extrinsically, with higher total transcript
numbers resulting in a smaller injection of noise upon partitioning
[79].

Many modern studies also make use of fluorescence microscopy-
based approaches to interrogate transcriptional bursting dynam-
ics by imaging a cell population and quantifying transcript levels
within individual cells based on the continuous-valued fluorescent
intensity observed within each cell. Single molecule fluorescence
in situ hybridisation (smFISH) is a particularly popular approach
in recent years although the standard procedure, which uses fluo-
rescently tagged RNA probes to target specific mRNA and emit a
signal, offers only a snapshot of transcript counts across a cell popu-
lation, with no time-variant information. Therefore, the timescales
of bursting events may not be discerned [80], allowing estimation
of expression level, burst size and burst rate (µ, b and a) but not
burst frequency or decay rate (κ or δ). Some smFISH-based exper-
imental set-ups have progressed towards a level of understanding
bursting timescales by using hybridisation specific to nascent tran-
scripts [81, 82], although smFISH approaches generally suffer from
scalability. While progress is being made towards multiplexing, it
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can still only analyse a handful of genes at a time compared with
sequencing [83, 84, 85] or requires complex and labourious set-ups
[86]. Sophisticated analysis methods [87] have been developed for
time-lapse single-cell RNA imaging data [88] which allows dissection
of transcription dynamics in great detail, however such approaches
are even more limited scale-wise.

Unlike fluorescence-based techniques, RNA sequencing (RNA-
seq) technologies have long been used to detect transcripts present
in a sample across the entire genome [89]. The procedure begins
with the extraction of the RNA content from a sample of cells of
interest, which is often achieved by lysing the cells and then pre-
cipitating any RNA with a polyA tail out of the lysis by running
it over a column or magnetic beads with oligo-d(T) molecules at-
tached, which selects for polyA RNA through the A-T complimen-
tary interaction [90, 91]. This approach, in which the RNA content
across the entire population of cells is immediately pooled without
regard for which the cell from which each transcript originated, is
known as bulk RNA-seq. Purified RNAs are then fragmented to
a certain size using either chemical (alkaline solutions or solutions
with cations), biological (RNA cleavage enzymes) or physical (son-
ication) methods before carrying out reverse transcription of RNA
fragments to cDNA using random hexamer primers [91]. During the
preparation of the cDNA library after reverse transcription, cDNAs
produced from the fragmented RNAs are ligated to flanking adapter
sequences. These adapters act as primers for the subsequent PCR
amplification of the cDNA, which is carried out to ensure enough
material is present for sequencing, and the adapters also allow the
cDNA to bind to the sequencing flow cell [91]. The sequencing
of cDNA may then be carried out using a variety of technologies,
such as sequence-by-synthesis, in which complementary strand syn-
thesis is carried out and each subsequently incorporated nucleotide
is detected and identified through, for example, pH changes [92]
or via fluorescent signal when using nucleotides modified with fluo-
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rophores [93], such that the original RNA sequence can be discerned
and aligned with a reference genome sequence to find its correspond-
ing gene. Such bulk RNA-seq methods may be used to analyse the
overall expression levels of genes averaged across the cell population
(figure 5) and to look at relative expression levels between different
genes within a sample or between different samples for the same
gene (differential gene expression analysis) [94].

Parameter Bulk RNA-seq scRNA-seq Bulk 4sU RNA-seq 4sU scRNA-seq

Expression level

Burst size

Transcript lifetime

Burst frequency

Figure 5: Table showing the parameters governing transcription
dynamics that can theoretically be obtained using different RNA-
seq approaches with no prior information. Green and red show if a
data type does or does not inform a parameter, respectively.

While bulk RNA-seq neglects the cell-cell variation in tran-
script numbers, single cell RNA-seq (scRNA-seq) experiments tag
sequencing read with cell-unique barcode IDs, and have therefore
been widely used to analyse genome-wide bursting dynamics. How-
ever, scRNA-seq suffers from the same issue as standard smFISH
regarding analysis of bursting timescales because it only provides a
snapshot of the transcriptomes of a population of cells at a single
point in time. Therefore, it has only been possible to obtain burst
sizes (b) and burst rates (a), while burst frequencies (κ) may not
be understood without making assumptions or using prior infor-
mation on decay rates (δ) measured through separate experiments
[54, 95, 96, 97]. On the other hand, bulk RNA-seq-based approaches
have for several years made use of chemically labelled nucleotides,
primarily 4-thiouridine (4sU), to understand RNA synthesis (b×κ)
and degradation (δ) rates, with SLAM-seq being the most well-
known example [98, 99]. The cells are incubated in the presence
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of 4sU for a given duration, prior to RNA extraction. During this
step, 4sU diffuses into the cell nucleus and becomes incorporated
into nascently transcribed RNA. Labelled RNA can be bioinformat-
ically distinguished from non-labelled RNA, previously residing in
the cell, due to the higher rate of chemically-induced cytosine con-
version of 4sU relative to regular uracil. Using mathematical mod-
elling, the ratio of labelled to unlabelled transcripts can be used
to estimate the turnover rate [100]. However, since bulk RNA-seq
neglects the cell-cell variability, it can not be used to study burst-
ing dynamics. Recent advances combine scRNA-seq with 4sU and
such datasets have the potential to fully characterise transcriptional
bursting dynamics and their timescales (figure 5). Thus far, they
have been used for understanding dynamic changes in the transcrip-
tome and/or RNA turnover/splicing rates that occur throughout
the cell cycle and cell state transitions [101, 102, 103, 104, 105].
Studies with data of this type that have looked at bursting have
only done so in a limited manner, using empirically-derived statis-
tics as a proxy for burstiness [106], while bursting timescales have
remained uncharacterised in recent works [107]. Figure 6 provides
a step-by-step diagram as an example of the 4sU scRNA-seq exper-
imental protocol.
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Figure 6: Cells with variable mRNA content (blue lines) shown
for an example gene. Cells are incubated in the presence of the
uracil analogue 4sU for a set amount of time, which is 4 hours
in this example but can vary depending on the desired outcome
of the experiment, such as using a shorter incubation (pulse) to
analyse unstable transcripts. Transcripts that are produced during
that period (red) become labelled with 4sU, which is incorporated
instead of uracil. During the incubation period, natural mRNA
decay also takes place (dashed lines). Following cell barcoding and
RNA extraction, the RNA is chemically treated, resulting in the
modification (alkylation) of the 4sU moieties incorporated into all
labelled transcripts (US). In turn, this introduces T-to-C base flip
mutations at the points of 4sU incorporation during the first stage
of cDNA library preparation (reverse transcription), which are sub-
sequently detected by sequencing.
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1.7.3 Modelling and analysis

Effective modelling of gene expression in biological systems de-
mands the use of stochastic modelling approaches in conjunction
with single-cell measurements of molecule numbers, as opposed to
deterministic models with bulk assays, in order to quantify noise
and how it is linked with cell-cell variability [108]. Deterministic
models simply work with continuous-value concentrations whereas
stochastic models explicitly account for the discrete nature of in-
dividual molecules within the biological system, along with their
random synthesis, degradation and association events. Determinis-
tic results for gene expression dynamics only align with stochastic
models and experimental data when there are very high molecule
numbers (large system size) and where the promoter kinetics (the
switching on and off rates) are much faster than the other reac-
tions that take place in the system (e.g. degradation rate) [60]. In
this often unrealistic scenario, gene state lifetimes must be much
shorter than molecule lifetimes, such that the only thing about the
promoter kinetics that influences the molecule dynamics is the frac-
tion of the time the gene spends in each state. If promoter kinetics
are slow, the molecule numbers become more sensitive to the gene
state. Rather than being unimodally distributed around a mean
with poisson noise, they can become highly skewed, or even bi-
modally distributed with high and low expression state cells being
observed throughout a population. Promoter state transitions, es-
pecially in eukaryotes, can be slow enough to influence the molecule
dynamics, with the activation rate in particular often being compa-
rable to the timescales upon which molecule degrade, for example
[60]. This is due to factors such as nucleosome packaging of the
DNA around promoters making them inaccessible to transcriptional
machinery for extended periods. This increases the heterogeneity
observed in a cell population, potentially even leading to a binary
scenario in the extreme, in which cells either have high expression
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distributed around a value or none, corresponding to cells with
the gene in the on or off states, respectively, with molecule levels
responding rapidly to changes in gene state. The reliance of deter-
ministic models on large populations which approximate concentra-
tions is also broken by the prevalence of low copy numbers inside
the cell of genes, transcripts, proteins and other components. The
gene expression noise level, often quantified as the CV as previously
mentioned, is larger with small molecule numbers, with CV scal-
ing as the reciprocal of the square root of the number of molecules
such that lower copy numbers leads to greater heterogeneity in a
population of cells, which is called the finite-number effect. Noise
may sometimes be alternatively quantified as the Fano factor for
convenience since then it scales with the reciprocal of the number
of molecules. These reasons have cemented stochastic modelling as
the foremost analytical method for understanding transcriptional
dynamics [60].

The simplest, and most analytically tractable, stochastic models
of gene expression consider expression of a single gene copy, with the
most simple model being the constitutively active gene which tran-
scribes one RNA at a time at a constant rate, in which transcription
events are randomly (uniformly) distributed throughout time inde-
pendent of each other and each RNA is degraded at a constant rate
with exponential survival times, leading to a poisson distribution of
molecule counts throughout time or across cells and therefore pois-
son noise levels. The abundant observations of super-poissonian
gene expression noise have lead to many microscopic mathemati-
cal models of transcription (and translation) capable of generating
additional noise, including a very early study modelling the bino-
mial partitioning of transcripts during cell division as an additional
noise source [109]. In order to account for the observed phenomenon
of transcriptional (and translational) bursting, models of gene ex-
pression with multiple states were required, capable of generating
super-poissonian intrinsic noise. This led to the use of the two-state
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model, or random telegraph model, of gene expression (figure 7) as
the most common and simple model of bursting in gene expression,
in which the gene can switch between a repressed/off state with
no transcription and an active/on state with a higher transcrip-
tion rate, such that there are four possible reactions; activation of
the gene when repressed, repression of the gene when active, RNA
synthesis (transcription) when the gene is active and RNA degra-
dation/decay at all times. The two-state model and variations of it
have been used for decades to model stochastic transcription and
bursting, often in conjunction with computer simulations, to ex-
plore how transcriptional dynamics and noise change with different
parameter settings, such as TF binding affinity as the determinant
of the on and off rates of the gene. One early study modelled the
gene as being on or off depending on whether the transcription
complex (of TFs and RNAP etc) is bound or not, with the switch-
ing between states being determined by the transcription complex
association and dissociation rates, which are controlled by the sta-
bility of the complex on the regulatory region of the gene [110]. The
model used did not account for degradation of transcripts, instead
allowing product to accumulate over a given time interval. Two
different scenarios with higher or lower transcription complex dis-
sociation rates were examined across a range of association rates,
with the transcription rate being fixed. Therefore, the on state
half-life was variable between being either long and short, corre-
sponding to scenarios with larger or smaller bursts, depending on
whether the binding is more or less stable, respectively. The total
accumulation of transcripts over a given time across different asso-
ciation rates, which correspond to burst frequencies, was simulated
for the two dissociation rates (burst durations/sizes) for multiple
independent gene copes to obtain simulated distributions. Gene
induction, defined as the total accumulation of transcripts across
the given timescale, was broadly found to be homogenous or het-
erogeneous across gene copies, with higher affinity resulting in more
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homogenous gene induction in both scenarios, while higher stabil-
ity resulted in more heterogenous gene induction for a given affinity
level. This is one of the earliest examples of theoretical modelling
of stochastic transcription indicating that larger and less frequent
bursts results in noisier transcription [110]. However, the approach
suffers due to transcript degradation being neglected, with more
recent studies showing that mRNA decay has a high contribution
to noise in gene expression [111]. The switching time between high
and low (or zero) expression states is controlled by degradation rate
such that there is a trade-off between high and low degradation in
terms of the gene expression signal-to-noise ratio, with a more clear
signal in cases where the the switching time is fast, although this
corresponds to greater sensitivity to the gene state and therefore
higher total variability and noise in transcript levels [111]. Faster
degradation also corresponds to lower expression levels and lower
copy numbers, such that the transcript count becomes subject to
stronger relative fluctuations [111].

The chemical master equation (CME) of the full two-state model
has been used by previous works to derive discrete-value solutions
to the steady state transcript count distribution across indepen-
dent gene copies (such as those across a cell population), which
takes the form of a poisson-beta compound distribution [112, 113].
This becomes a negative binomial distribution in the limit of in-
stantaneous bursting (with vanishingly small burst durations and
transcription rates approaching infinity, but finite burst size as the
product of the two), which is valid under the assumption that burst
durations are much shorter than transcript lifetimes, with bursts ar-
riving in a poisson fashion with exponential wait times (based on
the on rate, or burst frequency) and geometric burst size distri-
butions (determined by the ratio of the transcription rate and off
rate) [112, 51, 114, 113]. The analysis reported in [112] focussed on
counting transcript numbers in individual cells using FISH, find-
ing large variation between cells due to transcription occurring in
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short, intense bursts of activity, followed by longer periods of in-
activity. Additionally, although the gene state transitions which
cause bursting are themselves intrinsic, bursting in genes within a
nearby genomic region were found to be correlated, pointing to the
action of GRNs and/or local chromatin state as influences on the
underlying bursting rate parameters [112]. Transcripts may pro-
vide a better read-out of gene expression noise and the gene state
than proteins since they are a direct product of the active gene
and are comparatively short-lived, meaning that noise generated
by transcriptional bursts may be buffered downstream by slow pro-
tein degradation rates, with protein levels being more stable than
transcript levels. However, the two-state model in the limit of in-
stantaneous bursts, or the geometric burst model, has also been
applied to the stochastic modelling of protein bursts, in which the
on/off gene state dichotomy maps to the presence/absence of an
individual mRNA copy, while the mRNA count distribution maps
to a protein count distribution, such that the model structure re-
mains unchanged, with activation, repression, transcription and
mRNA decay mapping to (constitutive) transcription, mRNA de-
cay, translation (from a single mRNA) and protein decay, respec-
tively. Translational bursts are assumed to be instant, relying on
transcript lifetimes being much shorter than protein lifetimes, as
with the transcriptional burst model assuming that burst durations
are much shorter than transcript lifetimes. Additionally, only a sin-
gle mRNA copy may exist at any one instant, resulting in random,
uncorrelated translational bursts, as with the transcriptional burst
model, which only allows a single active gene copy at any instant.
Since the two models are mathematically identical, the wealth of
theoretical work on translational bursting is also relevant to un-
derstanding transcriptional bursting dynamics [115, 58, 114, 51].
Studies modelling translational bursting with this approach have
previously treated protein abundances as continuous-valued concen-
trations, as opposed to the aforementioned realistic discrete-value
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transcriptional bursting approach. This was more immediately ap-
plicable to the continuous-value fluorescence imaging data which
was used to quantify protein levels for which discretisation, such
as that carried out in [112], was non-trivial due to higher techni-
cal noise levels at the time and because protein levels may often
be higher than transcript levels, meaning that the proportional in-
crease in fluorescence associated with one additional protein is less
than for one additional transcript [115, 58]. These studies derived a
steady state solution from the continuous-value version of the CME,
again resulting in poisson arrival of bursts but exponential rather
than geometric burst sizes, which is the continuous analogue of the
geometric distribution, and a gamma distribution of molecule copy
numbers rather than a negative binomial, which again is the contin-
uous analogue [115, 58]. [58] used this gamma distribution solution
to model stochastic translation in E. coli, finding that it fits well to
experimental fluorescence-based steady state protein concentration
measurements, even being robust at low expression levels, with an
appropriately inflated peak at zero.

A recent study compared the steady state distributions of dif-
ferent mathematical models of transcription for a single gene copy,
including thermodynamic and discrete-value kinetic models, based
on statistical mechanics and chemical kinetics, respectively, which
include constitutive and bursty promoters with/without repression
[113]. Coarse-graining over different molecular processes of tran-
scription led to indistinguishable results in terms of mean expression
levels but differing results in terms of the higher order moments.
It was found that thermodynamic models are only sufficient for
describing mean expression levels at steady state, whereas kinetic
models can go further in predicting higher order moments of the
distributions, albeit with greater numbers of parameters to poten-
tially complicate inference. Quantifying transcriptional noise with
the Fano factor, it was shown to be < 1 for kinetic models with con-
stitutive, non-bursty promoters, far lower than for experimental E.
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coli data, with Fano factors > 1 nearly always being observed. Out
of all models considered, only the two bursty promoter kinetic mod-
els of transcription fit experimental data in terms of noise levels,
one of which is the standard two-state model (figure 7) and one of
which is the previously mentioned instant geometric burst model.
It is suggested that since both models are capable of explaining ex-
perimental data, the mathematically simpler version with instant
bursts is preferable in practice, which has fewer parameters (3 in-
stead of 4) [113]. Analytical progress has also been made towards
discrete-value time-dependent solutions to the molecule copy num-
ber distribution of the two-state model of transcription (figure 7).
An approximate time-dependent solution of translational bursting
(which also maps to transcriptional bursting) was presented in [114],
which is valid for timescales longer than several molecule lifetimes
and relies on the assumption that proteins are much more stable
than transcripts or that transcripts are much more stable than the
active gene state depending on whether translational or transcrip-
tional bursts are being modelling, eliminating the fast variable from
the master equation which does not influence the dynamics of the
stochastic system. Therefore, bursts are treated as instantaneous
with a geometric size distribution, such that the time-dependent so-
lution becomes the previously mentioned negative binomial steady
steady solution in the limit as time tends towards infinity. A solu-
tion is described for zero initial molecules as well as for arbitrary
initial conditions, also defining a three-stage model which specif-
ically includes both transcriptional and translational bursting si-
multaneously [114].
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transcription

activation

repression

degradation

Figure 7: Schematic representation of the two state model, with
the four reactions (activation, repression, transcription and degra-
dation) acting on the three species (repressed gene, active gene and
transcript). In this model no transcription occurs when the gene is
repressed, while transcript degradation occurs independent of the
gene state.

Further work has also explored how different types of gene ac-
tivation influence transcriptional bursting dynamics and noise, in-
cluding microscopic modelling of TF dynamics [29]. Two models of
gene activation were examined, the first of which has TFs diffusing
through the cytoplasm in 3d in a random walk process, binding
specifically to the target site (at the promoter) when proximal with
an association rate and unbinding from the DNA with a disso-
ciation rate to re-enter the 3d diffusion mode, with transcription
only occurring when the TF is bound, which corresponds to the
standard two-state model of transcription. The other model al-
lows for facilitated diffusion in which, as previously described, TFs
diffuse through the cytoplasm in 3d but may also non-specifically
bind/unbind to any DNA sequence with an association/dissociation
rate, remaining loosely tethered to the DNA. This enables it to
rapidly slide back and forth along the strand in a 1d diffusion
process, becoming specifically bound upon passing over the target
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site to enable transcription, before returning to the non-specifically
tethered state, leading to a more complex model of activation and
transcription. Although facilitated TF diffusion is known to oc-
cur in biological systems, DNA-binding proteins have been shown
to slide rapidly along the DNA, with the modelling carried out
in [29] demonstrating that the kinetics of facilitated diffusion are
fast enough that they do not influence the noise and transcrip-
tional dynamics beyond what can be captured with the two-state
model, serving only to modulate the burst frequency and/or size
rather than changing the shape of the transcript count distribu-
tions. Additional modelling work on gene activation also inves-
tigated the role of promoter leakage on transcriptional noise and
bursting [116], in which the standard two-state model is modified
such that the off state with zero transcription is replaced with a
low activity state with a non-zero transcription rate lower than the
high activity (on) state [117]. Analytical solutions to the steady
state transcript count distribution were derived for the two-state
promoter leakage model of stochastic transcription. It was found in
all cases that greater leakage (smaller relative difference between
the high and low activity states) results in reduced noise for a
given mean expression level, weakening the biomodality exhibited
by genes with similar promoter state switching rates until the distri-
bution becomes unimodal as the lower efficiency transcription rate
approaches the higher efficiency transcription rate. Higher leak-
age also corresponds to shorter bursts for a given expression level.
Therefore, promoter leakage may act as a mechanism of dampen-
ing gene expression noise, with the results holding for both fast and
slow TF binding/unbinding rates [117].

Analyses have also investigated the possibility of avoiding cer-
tain assumptions made by the two-state model (or random tele-
graph model), which is that bursts are geometric and arrive in a
poisson fashion with exponential wait times [64]. The paper fo-
cussed on generalising the model to allow for scenarios with non-
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poissonian burst arrival as well as non-geometric bursting by map-
ping ideas from queuing theory to analytically describe steady state
stochastic gene expression distributions from which noise levels can
be quantified. Stochastic models with a generic burst arrival pro-
cess were represented by multi-step activation process to represent
different initiation factors being recruited to the promoter or al-
ternatively through the use of an arbitrary wait time distribution
function, as opposed to single-step poissonian arrival, with generic
bursting also being represented by an arbitrary burst size distribu-
tion. By mapping the multi-step gene activation process to multi-
person queue times, queuing theory was exploited to derive ana-
lytical solutions to the moments of transcripts counts at steady
state, including higher-order moments such as skewness and kurto-
sis, from which bursting parameters can be inferred, even for models
with non-poissonian burst arrival and/or non-geometric burst size.
Since in some cases, burst waiting time has been indicated to devi-
ate from an exponential distribution, the capacity to infer whether
this is the case for a given set of steady state measurements of
transcript counts is a desirable goal while confirmation that burst
sizes are geometric would also be an advantage. It was found that
the first three measured steady-state transcript count moments are
sufficient to determine whether there is a deviation from poissonian
burst arrival or from geometric burst size [64].

When modelling gene expression noise it is also important to
consider the decomposition of total noise into the intrinsic and ex-
trinsic components, which has been the subject of several previous
works [55, 112, 58, 57]. Importantly, discrete-valued low molecule
number reactions and bursting are associated with intrinsic but
not extrinsic noise, which arises due to cell-specific factors, as pre-
viously mentioned, with extrinsic noise being reported to play a
less important role in eukaryotic systems compared to prokaryotic
systems [112, 58]. One study on protein levels in E. coli quantified
noise as being the variance over the square of the mean, which is
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the inverse to the number of protein bursts occurring per protein
lifetime, with the proportion of that noise arising from extrinsic
sources corresponding to the correlation strength in two fluorescent
protein signals across cells, as previously mentioned [58]. At higher
expression levels, genes exhibited much higher noise than the theo-
retical intrinsic minimum (poissonian) noise level, with a noise floor
being observed below which genes do not drop regardless of expres-
sion level, indicating that extrinsic noise sources play a stronger role
in shaping distributions at higher expression levels in prokaryotes.
This stronger extrinsic protein noise component for higher expres-
sion level genes is hypothesised to be related to cell-cell variation
in copy number of things like ribosomes, enzymes and metabo-
lites, which high expression genes are inherently more sensitive to
as they become rate-limiting steps in gene expression [58]. Many
studies have carried out the statistical decomposition of noise and
quantification of extrinsic noise based on the experimental solution
of embedding identical independent systems within the same envi-
ronment with observed correlations in the variation reflecting the
influence of their common environment (extrinsic noise), whereas
uncorrelated variation corresponds to intrinsic noise arising from
within the system. However, this method only accounts for static
extrinsic noise sources, which is often broken in dynamic biological
systems by time-varying environmental heterogeneity [55, 57].

Such dynamic extrinsic noise sources may exhibit entirely stochas-
tic fluctuations over time and be unpredictable, or may have a de-
terministic component that varies periodically and thus is more pre-
dictable, with stochastic fluctuations of varying magnitude about
the deterministic mean. These types of noise sources, which are
sometimes also referred to as upstream drivers of gene expression,
can be categorised as periodic (with a repeating deterministic com-
ponent), entrained (periodic and synchronised across the cell pop-
ulation) or random (entirely stochastic), with examples including
the cell-cycle (periodic), circadian rhythms (entrained) and histor-
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ical events in the cells life (random) such as a sudden accumula-
tion of a TF due to the action of a GRN with a positive feedback
loop, which could cause a global increase in the burst frequency in
that cell until TF levels become depleted to levels more comparable
with its neighbour cells. Some approaches aim to subtract either
the intrinsic or dynamic extrinsic noise away from the total noise
to allow separate modelling of the remaining component, but it
was found to be easier to model the extrinsic noise by subtracting
out the intrinsic noise than the reverse [55]. Subtracting extrinsic
noise is difficult because of various complications, like asynchro-
nised cell populations having a non-uniform distribution of cells
over the cell cycle which is skewed towards newer cells. Another
factor is that intrinsic noise levels depend upon extrinsic upstream
drivers in a multiplicative manner rather than being additive, with
an example being that the rates of biochemical reactions of tran-
scription, like degradation of transcripts, depends on the product
of the stoichiometries of enzymes and substrates, as well as rate
constants, with the enzyme number being the source of extrinsic
noise in this case. In a microscopic model of transcription this is
generally not accounted for, instead collapsing the rate constant
and enzyme number/concentration into one parameter as, for ex-
ample, the degradation rate, which is multiplied by the transcript
count (the substrate stoichiometry), making it difficult to statisti-
cally subtract away the extrinsic noise and decompose total noise
into intrinsic noise. The impact of environmental variation may
also vary strongly on a gene-by-gene bases. Microscopic models
may resort to taking the average of rate values that fluctuate due
to extrinsic noise, which therefore preserve the average molecule
numbers in the system, however, this may not preserve the intrin-
sic noise and can lead to incorrect inference of parameter values
in the scenario with transcriptional bursting [55]. More recent
studies have developed approaches for modelling both the intrin-
sic noise sources (microscopically) and the time-varying extrinsic
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upstream drivers simultaneously, representing the dynamic extrin-
sic noise as changes in the parameter values of the microscopic
model of transcription, with the specific modelling approaches de-
pending upon the upstream driver being modelled. [57] presented
a modelling framework for cells with time-varying rate parameters
using both the constitutive one-state and bursty two-state models
of transcription. This was an advancement on previous attempts to
model dynamic upstream drives which used rate parameters that
varied entirely deterministic, instead modelling parameters as time-
dependent functions of stochastic variables. Several different mod-
els were developed, which included both an upstream driver ex-
trinsic noise component (account for periodicity, entrainment or
randomness) and a downstream intrinsic noise component (either
poisson or poisson-beta), allowing for CMEs which do not rely on
the assumption that gene expression is uncorrelated between cells.
The solution to the CMEs are composed of a discrete transcrip-
tional noise component and a continuous component corresponding
to the time-evolution of the parameters governing transcriptional
dynamics which varies depending on the upstream variation which
is being modelled. This generalises the classical microscopic repre-
sentations of transcriptional dynamics to systems with time-variant
stochastic rates, thus allowing for both cell-cell variability in tran-
script levels but also in the upstream driver, even if the driver
is correlated across cells. For example, the two-state model was
implemented with a time-varying promoter strength depending on
cyclical upstream drivers (such as cell-cycle), facilitating stochas-
tically time-variable gene activation/repression rates with variable
synchronicity, thus enabling modulation of burst frequencies and/or
burst sizes by extrinsic noise sources [57]. One issue with this kind
of approach is the large numbers of degrees of freedom, such that
the posterior distribution of the parameters, which represents the
probability density of parameters and hyper-parameters given ob-
served data, may be strongly multi-modal, with several different
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combinations of values (points in parameter space) potentially ex-
plaining the given dataset. This could hinder the capacity to make
biologically relevant inferences for all but the most detailed and
information-rich datasets.

In the field of systems/synthetic biology, the theory of GRNs has
been explored using various mathematical approaches from stochas-
tic modelling, including the CME and the chemical Langevin equa-
tion, as well as numerical methods like Gillespie’s stochastic simula-
tion algorithm [118], as opposed to previously utilised deterministic
frameworks like reaction rate equation models [119]. This explicitly
accounts for both the interactions between different genes within a
network as well as the stochastic fluctuations, which, especially at
small molecule numbers, result in the propagation of noise through
the network. This noise may be magnified in systems with positive
feedback and feedforward control loops, while other GRNs may
be robust against noise through their design, exhibiting negative
feedback/forward control loops which dampen fluctuations. Thus,
understanding of transcriptional noise is crucial for the inference
of GRNs from data and for the effective construction and imple-
mentation of artificial gene circuits [119]. Observed correlations
in molecule numbers with single-cell measurements across a popu-
lation at steady stead in conjunction with such stochastic models
can be used to infer GRNs and which genes interact and regulate
each other based on the perturbations to the GRN caused by large
fluctuations in copy numbers due to bursts [108]. A burst of one
gene induces bursts in genes it regulates downstream, for example,
resulting in a positive correlation across cells, demonstrating the
importance of modelling bursting explicitly for such analyses. This
approach may reveal clear gene groups with strongly correlated vari-
ation which often are involved in the same biological function, such
as stress response genes. However, correlations based on steady
state measurements only indicate genes with static relationships
and may miss instances where one gene regulates another but there
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is a lag-time such that the two genes are not expressed simultane-
ously. To understand this, time-series analyses of gene expression
are required in conjunction with cross-correlation statistics, which
quantify the correlation between two gene product numbers at a
given time-separation across the time-series data (such as time-
lapse fluorescence microscopy with dual reporter genes) [108]. This
can indicate both activating and repressive regulatory relationships
depending on whether the cross-correlation score is positive of neg-
ative, respectively.

More recent work has been carried out in the context of a GRN
with two mutually repressive genes which explored alternative mod-
elling approaches and the links between models of gene expression
noise at the microscopic and mesoscopic scales [51]. Microscopic
models describe the processes underlying intrinsic noise in more
detail, whereas mesoscopic models make assumptions about the
finer details to facilitate computational scalability and can be more
easily embedded within models of GRNs, for example. The micro-
scopic model for the aforementioned GRN model explicitly mod-
els genes as being one-state with mRNA transcription and degra-
dation, protein translation and degradation, and protein-mediated
transcriptional repression as a Hill function of the protein number,
modelling the state changes associated with each reaction on the
individual molecule level. This maps to a two-state model of tran-
scription in which the transcripts are mutually repressive agents.
Mesoscopic models are also defined which eliminate the fast vari-
able (the transcript in this case, but also mappable to be the gene
state for the two state model), which model translational bursts,
rather than translation of individual molecules, with either a con-
stant size or with a geometrically distributed size governed by a
mean parameter, with a frequency corresponding to the transcrip-
tion rate. Only degradation is modelled for each protein explic-
itly, while mRNA copy numbers are not explicitly modelled. This
maps to the two-state model of transcription in the limit of instan-
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taneous bursts (geometric burst model of transcription) in which
the transcripts are mutually repressive agents. Comparing simu-
lated molecule count distributions, the geometric burst mesoscopic
model matched well the microscopic model distributions, but the
constant burst model did not. A diffusion approximation was then
used to solve the master equation for the geometric burst model,
in which the discrete-molecule stochastic process is mapped to an
approximate continuous-concentration gaussian process described
by a Fokker-Planck equation, facilitating an analytical solution for
the time-dependent copy number distribution. This was also ap-
plied to the microscopic model, but only works when the molecule
numbers in the system are high enough that a concentration ap-
proximation is appropriate, and thus fails to capture the intrinsic
noise statistics in the microscopic model due to the low mRNA
numbers. While the diffusion approximation of the geometric burst
model performed better than the microscopic model, it was still not
faithful to the simulated statistics and distributions and failed to
capture the intrinsic noise arising from bursting dynamics. There-
fore, an alternative modelling approach which can generate ana-
lytical solutions was proposed called the piecewise deterministic
Markov process (PDMP), which was shown to outperform the dif-
fusion approximation-based solution of the geometric burst model
for biologically relevant regions of parameter space. The PDMP is
a mesoscopic, coarse-grained model describing the time-evolution of
the two mutually repressive protein numbers using different pairs
of deterministic ordinary differential equations (ODEs). There is a
pair corresponding to each of three defined states, in which there
is no mRNA, or one mRNA of either gene (but not both simul-
taneously), with stochastic switching between states, going from
no mRNA to one copy of either based on the Hill function-defined
transcription rate and switching back to no mRNA at the decay
rate for the gene. Molecule abundances are treated as a contin-
uous concentration, modelling bursts as exponentially distributed,
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which is the analogue of discrete-molecule geometric bursting, as
previously mentioned. This approximation matched the simulation
data better than the geometric burst diffusion approximation for
this GRN, which has a pair of mutually repressive genes, in terms
of the steady state distribution and noise statistics when the mean
burst size is ≥ 5. This is because no gaussian noise is introduced
into the system by the PDMP, unlike with diffusion approxima-
tions, but will not perform any better with low burst sizes since the
stochastic fluctuations associated with the degradation of individual
molecules is neglected [51]. This paper demonstrates the develop-
ment of methods for analytical steady state solutions of GRNs with
bursting dynamics which can capture the intrinsic noise faithfully.

Subsequent work has also yielded analytical solutions to time-
dependent transcript count distributions with transcriptional burst-
ing using this PDMP approach, in addition to just stationary dis-
tributions, and this was applied not only to the two-state model but
also to models with > 2 states [120]. Modelling these scenarios with
PDMP involves each individual state being modelled as a poisson
process, with fluctuations about the state-specific mean, stochasti-
cally switching between (gene) states with a PDMP mixing kernel
to result in a dynamic poisson mixture model of transcription. This
approximate approach allowed for much more efficient calculation of
time-dependent mRNA count distributions than standard methods
using numerical forward integration of the CME. This modelling ap-
proach was embedded within the BayFISH framework, which is a
computational pipeline for Bayesian inference of time-resolved tran-
scriptional bursting kinetic parameters designed for smFISH data
with time-dependent gene inductions, which utilises a Markov chain
Monte Carlo (MCMC) algorithm with a Metropolis-Hastings step
to generate posterior distributions to quantify uncertainty in the
parameter estimates [121]. This was applied to simulated smFISH
data with gene induction at different time points, obtaining param-
eter estimates for models with different numbers of states before
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carrying out model selection based on comparison of observed and
theoretically predicted mRNA distributions generated by the pa-
rameter estimates for the given model. The Kullbeck-Leibler diver-
gence between observed and predicted distributions was used to se-
lect optimal models for different datasets, using either the Bayesian
or Akaike information criterion to penalise more complex models,
which may achieve a lower divergence from the data than a sim-
pler model due to overfitting rather than being a more appropriate
model [120, 121]. The development of such modelling and inference
approaches have enabled estimation of the parameters governing
time-resolved transcriptional bursting dynamics for an individual
gene based on smFISH data generated following gene induction at
a specific time-point. However, inference and modelling approaches
to obtain genome-wide time-resolved bursting dynamics from the
wealth of currently available sequencing data are lacking.

1.8 Aims

Here we construct mathematical models to relate observables from
4sU scRNA-seq data to the underlying bursting dynamics and de-
velop a MCMC approach for Bayesian inference of the parame-
ters governing those dynamics. Applying this method to published
data from [101] demonstrates that we are able to characterise time-
resolved transcriptional bursting dynamics for hundreds of genes in
parallel. The approach generates joint probability distributions of
the parameters of interest from which estimates can be extracted
and confidence in these quantified. This is the first method for
joint inference of time-resolved bursting dynamics on a genome-
wide scale and is generally applicable to 4sU scRNA-seq datasets.
We also show that, even for the dimensionless parameters which
can be obtained with conventional scRNA-seq, the accuracy and
reliability of estimates can be improved by incorporating the addi-
tional information provided by 4sU scRNA-seq. Finally, we build on
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a previous study which interrogated correlations between bursting
parameter estimates and HMs in a genome-wide manner, linking
scRNA-seq with ChIP-seq data [77]. This analysis reveals position-
dependent associations between different parameters and HMs only
apparent with 4sU scRNA-seq.
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2 Methods

2.1 Data processing and analysis

2.1.1 4sU scRNA-seq

The main datasets that were used for parameter inference in this
study were produced in Qiu et al 2020 [101], downloaded from
the GEO series GSE141851. Two datasets from this series were
used, both using K562 cells; a negative control dataset with TFEA
chemical conversion treatment but with no 4sU added, and another
dataset which had 4sU added 4 hours before chemical treatment,
with GEO sample IDs GSM4512696 and GSM4512697, respectively.
K562 cells are a human cancer cell line originally derived from a
patient with chronic myeloid leukimia in the 1970s [122], which in
[101] were cultured under non-stress conditions permissive to indef-
inite cell growth. K562 cells have been shown to have the capac-
ity for spontaneous development of features associated with blood
cells such as erythrocytes, monocytes and granulocytes, includ-
ing the production of proteins related to oxygen transport such as
haemoglobin [123, 124]. Their robust nature and capacity to indef-
initely undergo cell division makes them popular cells lines to work
with in experimental biology. Another key feature of these cells in
their massive overexpression of Aurora kinases, which in healthy
cells are required for mitosis, leading to uncontrolled cell division
in these cancerous cells [125]. The aforementioned Qiu datasets
are Drop-seq datasets [126] and thus were processed according to
the "Drop-seq alignment cookbook" (https://mccarrolllab.org/wp-
content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf).
A custom Python [127] script was used to carry out trimming of
read pairs with any base with phred quality ≤ 10, and to clip adap-
tor and polyA tail sequences (based on detecting at least six con-
secutive As in the transcript sequence read). Barcode reads with a
missing last base in the cell ID sequence were identified by ≥ 80%
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of UMI sequences corresponding to the given cell ID having a T
as the last base due to the polyT segment, and were repaired by
inserting an N at the end of the cell ID before the UMI sequence
and deleting the T at the end of the barcode. Then any cell IDs
with the same base present at the same position in ≥ 80% of the
corresponding UMI sequences were discarded. This deals with the
potential occurrence of known drop-seq barcode synthesis errors
[126].

The trimmed/repaired reads were then aligned to the primary
human genome assembly (GRCh38.p13), the fasta file for which was
obtained from gencode [128] (https://www.gencodegenes.org/human/),
using bwa to build the genome index and for the actual alignment
[129]. Custom Python scripts were then used to map the aligned
reads with mapq score ≥ 10 to their genes according to the gen-
code.v36 primary human genome assembly annotation gtf file, tak-
ing only reads which overlap with exonic regions, before extract-
ing cell-specific (using the cell ID part of the read 1 barcode) UMI
counts and total read counts for each gene, along with gene-specific,
cell-specific information for each read about the number of genomic
T bases (found in the fasta sequence across the aligned read posi-
tions) and the number of those which were converted to C bases in
the read sequence. The gene-specific, cell-specific UMI counts were
calculated after collapsing all UMI barcodes corresponding to the
given cell and gene with a Hamming distance [130] of 1 to account
for sequencing errors in the barcodes, recursively finding the bar-
code with the most other barcodes within 1 Hamming distance and
collapsing those barcodes to it, then repeating until every pair of
barcodes has a Hamming distance ≥ 2.

Cell selection was then carried out to exclude those cell IDs cor-
responding to empty droplets by ordering the cell IDs by descending
total aligned read pairs and then selecting the top 400 or 795 IDs
for the control and 4sU dataset, respectively, as specified in [101]
after confirming that these values correspond to the elbow of the
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cumulative distribution function, thus indicating empty droplets
beyond (figures 8 and 9). Cell IDs with < 25 total UMIs were au-
tomatically discarded. The control dataset was then used to derive
the gene-specific background T>C conversion rates, λs, based on
the proportion of genomic Ts which were converted to Cs across
all reads across all selected cells for the given gene. The code used
for pre-processing this dataset as described is available on GitHub
(https://github.com/hebenstreitLab/burstMCMCpreprocessing).
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Figure 8: Cumulative sum of total read count of cells in descending
order in the Qiu control dataset (no 4sU), with dashed line indicat-
ing the number of non-empty, cell-containing droplets (400). Only
the top 2000 cell IDs are shown.
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Figure 9: Cumulative sum of total read count of cells in descend-
ing order in the Qiu 4sU dataset, with dashed line indicating the
number of non-empty, cell-containing droplets (795). Only the top
2000 cell IDs are shown.

2.1.2 ChIP-seq

Publicly available ChIP-seq datasets for eight active HMs produced
with K562 cells were downloaded for our analysis. A H3K4me3
ChIP-seq dataset was obtained from the GEO series GSE108323
with sample ID GSM2895356, which had already been processed
with alignment to the hg19 human genome build [131]. Seven more
ChIP-seq datasets, which had also been processed with alignment to
the hg19 human genome build, were obtained from the GEO series
GSE29611 with sample IDs GSM733778, GSM733651, GSM733653,
GSM733656, GSM733675, GSM733692 and GSM733714, correspond-
ing to H3K9ac, H3K4me2, H3K79me2, H3K27ac, H4K20me1, H3K4me1
and H3K36me3, respectively [132]. The position and read count in-
formation from these datasets was used to obtain the single-base
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resolution coverage values for each HM. These values were asso-
ciated with their corresponding genes using the information from
the comprehensive gene annotation hg19 gtf downloaded from Gen-
code [133]. Analysis of the correlations between bursting parameter
estimates and HM coverage at different sections of the gene was car-
ried out by taking the average coverage value for all bases across
the specified section (e.g. from 2k bp upstream of the TSS to the
TES) for each gene, so a single value is obtained per gene per HM.
Metagene plots were produced by averaging the coverage values for
each position through/around the gene across all specified genes,
similarly to the metagene analysis described in [134].

The ChIP-seq datasets were aligned to the hg19 reference genome
as opposed to the hg38 reference genome, which the 4sU scRNA-
seq datasets were aligned to. The main difference between the two
references is that hg38 contains alternative sequences for a greater
number of specific genomic regions which exhibit strong variation
across the human population. Other significant differences include
updates to centromeres and the mitochondrial genome. Our anal-
yses focus on genic regions across the genome, which was not the
primary focus of sequence updates, meaning that in general the se-
quences of genes will be a close match from hg19 to hg38, with the
main difference being that the coordinates of the gene within the
two reference genomes is different. Therefore, although a given read
may align to a different position on the two reference genomes, the
shift in coordinates of the corresponding gene it belongs to between
the hg19 and hg38 gtf files will match that of the read, such that
the read maps to the appropriate gene regardless of which reference
is used. Even if there is a mismatch (or a small number) between
the aligned read and the reference sequence due to the hg19 se-
quence being outdated, the mapq score will still be high given that
the rest of the sequence matches, resulting the correct mapping
being retained with high confidence. This is the case for a substitu-
tion mismatch, although an insertion or deletion mismatch would
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prevent proper alignment and mapping. Mitochondrial genes were
excluded from analyses involving ChIP-seq data due the strongly
differing HM landscape in the mitochondria compared to the nu-
clear genome. Therefore, the significant updates to the mitochon-
drial genome in the hg38 reference will not impact the analyses
presented here in any way. The main disadvantage of using hg19-
aligned ChIP-seq data here instead of hg38-aligned is that there
will inevitably be certain outdated genic sequences which deviate
from the read sequences corresponding to that loci to such a de-
gree that alignment will fail, thus reducing the sequencing depth
of the dataset. However, this is not expected to occur with a high
frequency since alignment rates to hg19 and hg38 were found not
to be significantly different across multiple alignment tools [135].

2.2 Mathematical modelling

In general, we model bursty transcription as a stochastic process
closely related to the standard two-state model, as many previous
works have [53, 54, 71]. The two-state model has four possible pro-
cesses of gene activation, gene repression, transcription and degra-
dation, where transcription may only occur with the gene in an ac-
tive state while degradation acts continuously. This is represented
by the following chemical reaction scheme

Goff
kon−−→ Gon

Gon

koff−−→ Goff

Gon
β−→ Gon +RNA

RNA
δ−→ ∅

in which kon, koff , β and δ represent the rate constants for
gene activation, gene repression, transcription and RNA degrada-
tion, respectively, while Goff , Gon and RNA represent the different
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species of repressed gene, active gene and transcript, respectively.
A schematic representation of the system is shown in the introduc-
tion (section 1.7.3, figure 7). In our scheme no transcription may
occur when the gene is in the inactive state, although so-called leak-
age (low level transcription in the inactive state) may in fact occur,
which was shown to result in reduced transcriptional noise, with
lower noise being achieved by higher leakage levels for a given over-
all expression level as previously mentioned (section 1.7) [116, 117].
However, leakage is neglected here in order to make mathematical
progress, with the modelling becoming analytically intractable if
leakage is included.

With this model we have burst frequency, κ = 1
(1/kon)+(1/koff )

and
burst size, b = β

koff
, and we recall the burst rate, a = κ

δ
. Aiming

to understand bursting and its timescales specifically, we make the
assumption that bursts occur instantaneously, arrive according to
a poisson process and burst in a geometric fashion, which is valid
when δ << koff since a transcript produced in a given burst is
unlikely to have degraded before the burst is over [51, 114], and
when kon << koff , which is supported by the parameter estimates
reported in [95]. This model simplifies κ = lim

koff→∞
1

(1/kon)+(1/koff )
=

kon while b remains finite with b = lim
β,koff→∞

β
koff

[113].

As outlined in section 1.7.3, previous studies have shown that
the gamma distribution may be used to effectively model stochas-
tic gene expression and recover bursting kinetic parameters since it
has both a scale and shape parameter, enabling it to capture the
skewness introduced by transcriptional and translational bursts in
transcript and protein amounts, respectively [58, 115]. The gamma
distribution models continuous random variables, making it appro-
priate to model transcripts and proteins as concentrations for deal-
ing with fluorescence microscopy and flow cytometry data, which
produces continuous-valued data. However, our discrete transcript
molecule scheme, while analogous and also capable of fully cap-

69



turing the skew introduced by bursting, is better suited than the
gamma distribution for dealing with sequencing data, which pro-
duces exact discrete UMI and read count values rather than con-
tinuous fluorescence values.

2.2.1 Model 1

The first model aims to model the observed unique molecular iden-
tifier (UMI) counts of a given cell, l, from the estimated capture
efficiency (see section 2.4) of that cell, α, in a similar fashion to
the technical noise model outlined in [136]. The capture efficiency,
α, represents the transcript detection rate for that cell (probabil-
ity of at least one read corresponding to a particular transcript).
Based on the the instantaneous bursting version of the two-state
model described above, the steady state distribution of the tran-
script count, m, can be derived directly from the master equa-
tion and corresponds to a Poisson-Beta distribution, which under
instantaneous bursting becomes a negative binomial distribution
[54, 114, 112, 113]

P (m) = fNBin

(
m|a, b

1 + b

)
(1)

where

fNBin

(
m|a, b

1 + b

)
=

Γ(m+ a)

Γ(m+ 1)Γ(a)

(
1

1 + b

)a(
b

1 + b

)m

The derivation of equation 1 is shown in section 2.6. We may
then model the probability distribution of observing l UMIs given
m transcripts in the cell with a capture efficiency of α, as a poisson
approximation of the true binomial process [136]

P (l|m,α) = fPois(l|mα) (2)
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where

fPois(l|mα) =
(mα)le−mα

l!

which is valid when α is small. We model the observed data,
linked by the unobserved steady state transcript distribution by
compounding equations 1 and 2 across the state space of m and
marginalise

P (l|α) =
M∑

m=0

P (l|m,α)P (m) (3)

where M is an upper bound corresponding to the 0.9999 quantile
of equation 1, which avoids summing to ∞, achieving a finite state
projection (FSP) [137, 138] with an error of 0.0001. This leads
us to the likelihood function of model 1 by taking the product of
equation 3 across all cells in the data

P (L|θ) =
∏
c

P (lc|αc) (4)

where lc and αc represent the observed UMI count (for the
given gene) and capture efficiency for cell c, respectively, and L =

(l1, . . . , lk), with k cells in total in the data and θ = (µ, a, γ). Since
we wish to infer the values of θ for each gene from the data using
this model, we aim to obtain the posterior

P (θ|L) = P (L|θ)P (θ)∫
θ
P (L|θ)P (θ)dθ

(5)

which we achieve through MCMC sampling.

2.2.2 Model 2

We will now construct a model which unifies the UMI and T>C
conversion aspects of the data with the aim of understanding both
bursting dynamics and the timescale upon which they occur. First
of all we define τ = tδ where t is the time before sequencing
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at which the 4sU nucleotides were added to the cells, otherwise
known as the pulse duration. τ therefore represents unitless time
in terms of transcript lifetimes. Next we must obtain the proba-
bility mass function of the number of transcripts surviving to the
sequencing point which were produced before the 4sU was added,
otherwise known as the surviving transcripts, s. This distribu-
tion, P (s), may be understood as the time-decay of the steady
state distribution, P (m), where we have lim

t→∞
P (s = 0) = 1 and

P (s|t = 0) = P (m) when δ > 0. Degradation acts upon each indi-
vidual transcript molecule with rate δ, and therefore the probability
of a given transcript produced before 4sU was added surviving is
1 − FExp(X ≤ t|δ) = fPois(0|τ) since it corresponds to having a
degradation wait time longer than the pulse duration, which is an
exponential random variable. Therefore, the probability of having
s transcripts surviving given m originally is

P (s|m) = fBin(s|m, fPois(0|τ)) (6)

where

fBin(s|m, fPois(0|τ)) =
(
m

s

)
fPois(0|τ)sFExp(X ≤ t|δ)m−s

and
FExp(X ≤ t|δ) = 1− e−τ

giving the conditional distribution of s. Compounding this with
the steady state distribution (equation 1) we obtain the marginal

P (s) =
M∑

m=0

P (s|m)P (m) (7)

We compute this distribution efficiently by using the approxi-
mation

P (s) = fNBin

(
m|a, fPois(0|τ)b

1 + fPois(0|τ)b

)
(8)
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Next we obtain the probability mass function of the newly syn-
thesised transcript count, P (n), for those transcripts that were
produced after the 4sU was added and therefore have a higher
T>C conversion rate than the background. This may be under-
stood in reverse to P (s), as it describes the convergence of the
newly synthesised transcript count from a point mass at zero to the
steady state distribution where we have P (n = 0|t = 0) = 1 and
lim
t→∞

P (n) = P (m) when a, b, δ > 0. An approximate solution to
such a distribution was derived as a model of translation in [114]
though the assumed relationships apply here. The solution is

P (n) =

Γ(a+ n)

Γ(n+ 1)Γ(a)

(
b

1 + b

)n(
1 + be−τ

1 + b

)a

2F1

(
−n,−a, 1− a− n;

1 + b

eτ + b

)
(9)

which is valid when koff >> δ and τ >> δ/koff , where 2F1

refers to the hypergeometric function, defined by a power series
which terminates in our case since we have a non-positive integer,
−n, as the first parameter reducing the series to a polynomial gen-
erally defined as

2F1 (−n, x, y; z) =
n∑

k=0

(−1)k
Γ(n+ 1)

Γ(n− k + 1)

(x)k
(y)k

zk

k!

where (x)k represents the Pochhammer symbol for the rising fac-
torial such that (x)k = Γ(x + k)/Γ(x). The derivation of equation
9 is shown in section 2.6. Next, we obtain the probability distri-
bution of transcripts at steady state conditional on our observed
cell-specific capture efficiency, α, and UMI count, l, by using equa-
tions 1 and 2

P (m|l, α) = P (l|m,α)P (m)∑
m P (l|m,α)P (m)

(10)

Now we describe the probability distribution of n conditional
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on m as the joint distribution of n and s

P (n|m) =
P (n)P (s = m− n)∑m
n=0 P (n)P (s = m− n)

(11)

with the convolution
∑m

n=0 P (n)P (s = m − n) ≈ P (m) being
used as a normalising value in place of P (m) due to the approxi-
mate nature of P (n), ensuring that

∑m
n=0 P (n|m) = 1. It is now

possible to model the number of T>C conversions observed in a
given read conditional on m, where we have expanded and built
upon the poisson mixture model of conversions described in [99]
and compounding with equation 11

P (i|m) =
m∑

n=0

∑
u

P (u)
( n

m
fPois(i|u(λn + λs)) +

(
1− n

m

)
fPois(i|uλs)

)
P (n|m)

(12)
where P (u) is the gene-specific empirical probability mass func-

tion of observing u uracils across the fasta sequence corresponding
to a given read’s mapping position. λs is the gene-specific back-
ground conversion rate observed in the control dataset (without
the addition of 4sU) which represents conversion due to random
mutations or other sources outside of chemical conversion. λn is
the gene-invariant conversion rate due to 4sU incorporation and
conversion which was estimated from the data (see section 2.5).
We may now model the cell-specific T>C conversion rate for the
given gene by compounding equations 10 and 12

P (i|l, α) =
M∑

m=0

P (i|m)P (m|l, α) (13)

where M is an upper bound corresponding to the 0.9999 quan-
tile of equation 1, again giving a FSP with error 0.0001. We are
finally in a position to complete the model and link all our observ-
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ables together. The observed counts of conversions in each cell may
be represented by y, where yi is the number of reads that have
i conversions. Therefore, the cell-specific observed distribution of
conversions per read may be understood as a multinomial distribu-
tion with a probability vector determined by equation 13

P (y|l, α) = (
∑

i yi)!∏
i yi!

∏
i

P (i|l, α)yi (14)

enabling us to model the conversion data conditional on the
UMI data. A likelihood function may now be obtained with

P (Y |L, θ) =
∏
c

P (yc|lc, αc) (15)

where yc is the conversions per read distribution observed in
cell c and Y = (y1, . . . , yk) where yc,i is the number of reads with i

conversions in cell c for the given gene. The final likelihood function
of model 2 is now defined as the product of equations 4 and 15

P (Y, L|θ) = P (Y |L, θ)P (L|θ) (16)

As in equation 5, MCMC sampling was used to obtain

P (θ|Y, L) = P (Y, L|θ)P (θ)∫
θ
P (Y, L|θ)P (θ)dθ

(17)

One thing to note about model 2 is that equation 9 is an ap-
proximate solution and breaks down in certain regions of parameter
space. When a and/or b become too large and/or τ becomes too
small, the function will oscillate around the true probability dis-
tribution function, with these oscillations quickly becoming more
extreme to the point that the approximate solution gives negative
probability values. The solution can be said to become unstable in
these regions of parameter space, and therefore such regions will be
referred to as unstable parameter space. If a gene is found to reside
within an unstable region of parameter space then an alternative
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to model 2 must be used.

2.2.3 Model 3

Our final model acts as an alternative to model 2 when a gene
resides within an unstable region of parameter space. Unlike model
2, this model ignores the cell-specific T>C information in favour
of simply pooling the conversions across all cells. We define the
probability distribution of observing i conversions for a given read

P (i) =∑
u

P (u) (FExp(X ≤ t|δ)fPois(i|u(λn + λs)) + fPois(0|τ)fPois(i|uλs))

(18)
This is similar to equation 12 but is independent of the total

transcript count, m, and is therefore not cell specific. We can ap-
ply equation 18 to the full set of observed conversions across cells,
Y , again using the multinomial distribution to obtain a likelihood
function

P (Y |θ) = (
∑

i yi)!∏
i yi!

∏
i

P (i)yi (19)

where yi represents the number of reads with i conversions
summed across all cells rather than being a cell-specific value as
in equations 14 and 15. We define the final likelihood function of
model 3 as the product of equations 4 and 19.

P (L, Y |θ) = P (L|θ)P (Y |θ) (20)

As in equations 5 and 17, MCMC sampling was used to obtain

P (θ|L, Y ) =
P (L, Y |θ)P (θ)∫

θ
P (L, Y |θ)P (θ)dθ

(21)
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2.3 Markov chain Monte Carlo algorithm

MCMC was employed in order to sample from the posterior dis-
tributions outlined in equations 5, 17 or 21 using a Metropolis-
adjusted Langevin algorithm (MALA) within a Gibbs sampler, which
simulates a Markov chain using Langevin dynamics [139] and cor-
rects the Euler-Maruyama integration error with an accept-reject
step as with the Metropolis-Hastings algorithm [140]. The code for
carrying out bursting parameter inference with this algorithm is
available on GitHub (https://github.com/hebenstreitLab/burstMCMC)
which can be downloaded and installed as an R package (called
"burstMCMC"). The Markov chain is initialised semi-randomly,
setting θ(1) in a manner which takes advantage of the information
immediately available from the data to start the chain relatively
close to the target density. We calculate empirical estimates of the
expression level, µ, and transcript lifetime, γ, as

µ̂ =
1

N

N∑
c=1

lc/αc

where N = 795 is the number of cells in the dataset, and as

γ̂ = −t/ log(max[0.1,min{0.9, (1− ((λ− λs)/λn)}])

where λ is the observed conversion rate for the given gene across
all reads, while λs and λn represent the background conversion rate
measured in the control dataset and the estimated 4sU-mediated
conversion rate (see section 2.5), respectively. We then set µ = µ̂

and draw
a ∼ LUnif(1, 10)

and
γ ∼ N (γ̂, γ̂/5)
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where
fLUnif (x|y, z) =

1

x ln(z/y)

with support [y, z] for y > 0 and

fN (x|M,σ) =
1

σ
√
2π

e−
1
2(

x−M
σ )

2

We repeatedly draw θ(1) with the above sampling approach until
P (X|θ(1))P (θ(1)) > 0 where X is the dataset and P (θ) represents
the prior distribution, which in this case is defined to be an unin-
formative multivariate uniform distribution such that

P (θ = (µ, a, γ)) = fUnif (µ|0, 100000)fUnif (a|0, 100000)fUnif (γ|1, 100000)

where
fUnif (x|y, z) =

1

z − y

with support [y, z]. This approach exploits the easily accessed prior
information to give rough parameter estimates where possible and
initialise the Markov chain closer to the target density than with
random sampling. The expression level estimate, µ̂, is very robust,
which is why it is a fixed value for initialisation. Conversely, the
estimate for transcript lifetime, γ̂, is less robust, particularly for
very high/low values (hence it is truncated at either extreme), so
a normal distribution is chosen to to avoid fixing the initialisation
at implausible values (which would violate the prior distributions).
We have limited prior information with which to estimate burst
rate, a, so the log-uniform distribution from 1 to 10 is chosen for
initialisation to provide unbiased samples across an order of magni-
tude which ranges from high burstiness (but not extreme) to mod-
erate/lower burstiness (but still with super-poissonian noise). If
the burst rate, a, is initialised at too high a value, the likelihood
surface will become flat and the Markov chain will struggle to con-
verge down to the target value. Extremely low (close to zero) burst
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rates correspond to extremely high noise and burst size, making
very high transcript counts possible and causing the state space
being summed over in the likelihood function calculations to ex-
plode, potentially slowing down the algorithm significantly. That
is why only burst rate, a, values between 1 and 10 are accepted for
initialisation, with the Markov chain able to move outside of that
range after the first step.

The Markov chain proceeds through three dimensional param-
eter space with θ = (µ, a, γ). This parameterisation was chosen
for Markov chain progression to minimise correlations between pa-
rameters and because they generally do not have values << 1,
being > 1 in most cases, which helps avoid potential numerical is-
sues. At each step, j, in the chain, the next step is sampled by
proposing jumps to new positions in parameter space from the cur-
rent position, so choosing a parametrisation which avoids values
<< 1 prevents frequent proposals to negative (unsupported) val-
ues. The classic Metropolis-Hastings algorithm [140] corresponds
to a random walk through parameter space, which converges rel-
atively slowly to the target density, and which samples from the
posterior inefficiently due to slow mixing of the chain, with the
optimal acceptance rate (proportion of accepted proposals) being
only 0.234 [141]. Therefore, we make use of the MALA as a su-
perior alternative, which converges much more efficiently, requiring
only O(d1/3) steps, where d is the dimension of the target density,
whereas the random walk requires O(d) steps, while the higher op-
timal acceptance rate of 0.574 allows for faster mixing and reduced
dependence between samples [139]. The Markov chain is treated as
an itô diffusion and behaves according to Langevin dynamics with
stochastic differential equation

dθt = ∇ log π(θt) +
√
2dWt (22)

evolving θ in imaginary time with a Wiener process (standard Brow-
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nian motion) diffusion term, W , and a drift term determined by
the vector gradient, ∇, of the log-density of the posterior, π(θ) ∝
P (X|θ)P (θ), with respect to θ evaluated at θt. The Fokker-Planck
equation for the time-evolution of the probability density is

∂

∂t
[p(θ, t)] = − ∂

∂θ
[p(θ, t)∇ log π(θ)] +

∂2

∂θ2
[p(θ, t)] (23)

with the diffusion coefficient being independent of θ. Since we do
not have an analytical solution for ∇ log π(θ) in equation 22, we
must estimate this numerically using the change in likelihood ob-
served between the current step, j, and the previous one when
generating a proposal. This leads to an additional complication,
wherein we may not propose a new sample for all parameters simul-
taneously since then the observed change in likelihood would be the
combined effect of the change in each parameter, making the indi-
vidual gradients impossible to estimate. Therefore, we must sequen-
tially update each parameter conditional on the current value of all
other parameters, which are treated as fixed constants. This corre-
sponds to embedding our MALA within a Gibbs sampler [142, 143],
meaning that d sub-steps are required to move from step j to j+1.
At step j, we cycle through each parameter, k, from 1 to d, and
draw a new proposal for parameter k from a proposal distribution
as determined by equation 22

θ
(∗)
k = θ

(j)
k + Sk∇k log π(θ) +

√
2Skξ

where ξ is a standard normal random variable and S is an adaptive
scaling constant such that the proposal is drawn from

θ
(∗)
k ∼ N

(
θ
(j)
k + Sk∇k log π(θ),

√
2Sk

)
This is accepted with a probability given by the likelihood ratio at
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the proposed and current value

A = min

(
1,

π(θ
(j+1)
1 , . . . , θ

(j+1)
k−1 , θ

(∗)
k , θ

(j)
k+1, . . . , θ

(j)
d )

π(θ
(j+1)
1 , . . . , θ

(j+1)
k−1 , θ

(j)
k , . . . , θ

(j)
d )

)
(24)

where substituting π(θ) for P (X|θ)P (θ) gives an equivalent ra-
tio due to the proportionality, which allows us to refer directly to
the target density, π. Note that the intractable integrals in the
denominators of equations 5, 17 and 21 cancel out to allow the
acceptance probability to be calculated with only the likelihood
function and the prior density. In our special case with uniform
priors, these also cancel, only serving to reject proposals outside
of the plausible ranges of parameter space as defined by the prior.
With probability A we set θ(j+1)

k = θ
(∗)
k , otherwise θ

(j+1)
k = θ

(j)
k and

since we treat parameters other than θk as constants, we iteratively
draw θ from the the conditional rather than joint densities as

θ
(j+1)
k ∼ P (θ

(j+1)
k |θ(j+1)

1 , . . . , θ
(j+1)
k−1 , θ

(j)
k+1, . . . , θ

(j)
d )

If the proposal is accepted, we update our estimate of the local
gradient for the parameter k as

∇k =
log π(θ

(j+1)
k )− log π(θ

(j)
k )

θ
(j+1)
k − θ

(j)
k

otherwise we set ∇k = 0. We also recursively update the adap-
tive scaling constant associated with parameter k in the manner
described for the Adaptive Scaling Metropolis algorithm of [141]

Sk = e(log(Sk)+η(A−0.574))

with a recursively updated decay term

η = 0.999η
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which in the long-term results in the MALA mixing close to the
optimal parameter-specific acceptance rate of 0.574 [139]. At step
1, we initialise ∇ = 0, S = θ(1)/100 and η = 0.1.

The process repeats until 5000 steps have been completed (j =
5000) if µ̂ < 1000 or 1500 if µ̂ ≥ 1000, since for these genes with
very high expression level each step takes longer but the stronger
evidence means that less steps are required. Therefore, the Markov
chain converges to the posterior distribution according to its gra-
dient. Posteriors were produced from the sampled chain using the
last 1000 or 2500 steps for high expression or other genes, respec-
tively, with a thinning factor of 2, where only every 2nd point in the
chain is used in order to reduce dependency between points, result-
ing in smoother posterior densities and sample sizes of 500 or 1250.
This allows for a discarded "burn-in" period of 500 or 2500 steps,
which is demonstrated to be sufficient to allow the Markov chain
to reach equilibrium and achieve convergence in the vast majority
of cases. We carried out (model 2) inference on simulated data for
thousands of genes to validate the performance of the algorithm,
as described in section 2.9. By showing the Markov chain traces
for a random sample of 100 simulated genes we demonstrate that
the aforementioned burn-in periods allow convergence to equilib-
rium for all three of the chosen parameters (µ, a and γ) that our
Markov chains move in (figure 10). This is also demonstrated for
23 genes simulated with µ ≥ 1000 (figure 11), which all have the
shorter burn-in period (500 steps). Finally, this was shown for 100
randomly sampled genes for which we have relatively high confi-
dence in their parameter estimates, corresponding to those genes
with coefficient of variation (CV) < 0.45 associated with the pos-
teriors generated for each of the three parameters, which have a
mixture of the longer and shorter burn-in periods (figure 12).

When using model 2, for each step, we check if the proposal for
any sub-step was rejected because of negative probability values
appearing in equation 9 due to the approximate non-equilibrium
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solution failing for an unstable point in parameter space. We set
a rolling window size, w equal to 100 or 500 for high expression
or other genes, respectively. We then check at each step, j, if the
number of steps with a rejection of this nature is ≥ w/20 for steps
[max((w/2) + 1, j −w + 1), j] and if this condition is met then the
Markov chain is restarted using model 3 instead of model 2. The
inference algorithm was computationally implemented using cus-
tom scripts written in the Python [127] and R [144] programming
languages.
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Figure 10: Markov chain traces for 100 randomly sampled genes
with data simulated using known parameter values (red horizontal
lines), with inference being carried out using model 2 (or 3 if re-
quired). Convergence of the Markov chains to equilibrium is shown
to be achieved by the time the end of burn-in (the initial steps
discarded to allow convergence, shown as the red vertical line) is
reached for all three parameters (expression level, burst rate and
transcript lifetime). The Markov chain is run for 1500 total steps
with a 500 step burn-in or 5000 total steps with a 2500 step burn-
in for genes estimated to have an expression level ≥ 1000 or other
genes, respectively, with all shown belonging to the latter. The y-
axes limits are from -2 to 5 (prior upper bound).
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Figure 11: Markov chain traces for 23 genes simulated with high
expression levels (µ ≥ 1000) using known parameter values (red
horizontal lines), with inference being carried out using model 2
(or 3 if required). Convergence of the Markov chains to equilibrium
is shown to be achieved by the time the end of burn-in (the initial
steps discarded to allow convergence, shown as the red vertical line)
is reached for all three parameters (expression level, burst rate and
transcript lifetime). The Markov chain is run for 1500 total steps
with a 500 step burn-in or 5000 total steps with a 2500 step burn-
in for genes estimated to have an expression level ≥ 1000 or other
genes, respectively, with all shown belonging to the former. The
y-axes limits are from -1 to 5 (prior upper bound).
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Figure 12: Markov chain traces for 100 randomly sampled genes
with high confidence parameter estimates (CV < 0.45) with data
simulated using known parameter values (red horizontal lines), with
inference being carried out using model 2 (or 3 if required). Conver-
gence of the Markov chains to equilibrium is shown to be achieved
by the time the end of burn-in (the initial steps discarded to allow
convergence, shown as the red vertical line) is reached for all three
parameters (expression level, burst rate and transcript lifetime).
The Markov chain is run for 1500 total steps with a 500 step burn-
in or 5000 total steps with a 2500 step burn-in for genes estimated
to have an expression level ≥ 1000 or other genes, respectively, with
a variety of the former and latter shown. The y-axes limits are from
-2 to 5 (prior upper bound). 86



2.4 Cell-specific capture efficiencies

Our models require the capture efficiency, α, (proportion of tran-
scripts from each cell with at least 1 corresponding read) of each
cell to be known. This necessitates the use of RNA spike-in probes,
in which a known quantity of material is added to each cell and
the proportion of molecules detected in the sequencing gives α.
Spike-ins were not used in the Qiu datasets, but capture efficien-
cies may be inferred by using data from Klein et al 2015 [145],
which has cell-matched (K562) scRNA-seq data (with GEO sample
ID GSM1599501) which does contain ERCC spike-in probes. We
construct a Bayesian mathematical model to obtain the probabil-
ity distribution of the capture efficiencies in the 4sU Qiu dataset,
αq based on the Klein data, under the assumption that since both
datasets were produced with K562 cells, the underlying probability
distribution of the total transcript count in each cell, m, is the same
for both datasets. According to [136] the true number of spike-in
molecules loaded to each cell, x, may be modelled as a poisson ran-
dom variable with rate based on the expected number of molecules
loaded per cell, λ, (12467.64 in the case of the Klein dataset)

x ∼ Pois(λ)

The capture efficiency of each of the 953 cells in the Klein dataset,
αk, is then

αk ∼ Beta(y, x− y)

where y represents the total number of spike-in molecules detected
in the given cell. The total number of transcripts present in each
cell in Klein is modelled as

m− lk ∼ NBin(lk, 1− αk)
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where lk represents the total UMI counts across all genes in Klein for
the given cell, using the negative binomial parametrisation defined
for equation 1. The capture efficiency of each cell in Qiu, αq, may
then be obtained using the total number of UMIs in the given cell
across all genes, lq,

αq ∼ Beta(lq,m− lq)

The probability density function for each cell in Qiu is then solved
by numerically integrating the above distributions through random
number generation to obtain

P (αq|λ, y, lk, lq) =
∞∑

m=lq

fBeta(αq|lq,m− lq)
1

N

N∑
i=1

∫
fNBin(m− lk,i|lk,i, 1− αk,i)

∞∑
x=yi

[fBeta(αk,i|yi, x− yi)fPois(x|λ)] dαk,i

(25)
where N is the number of cells in Klein, i refers to the ith cell of
Klein and

fbeta(αq|lq,m− lq) =
α
lq
q (1− αq)

m−lq

B(lq,m− lq)

with
B(lq,m− lq) =

Γ(lq)Γ(m− lq)

Γ(m)

Estimates may be derived from P (αq|λ, y, lk, lq) with E[αq] and con-
fidence may be quantified with E[α2

q ]. Figure 13 indicates high con-
fidence in our estimates through the low CV, while the estimated
capture efficiencies for Qiu are lower than for Klein, at around 0.02
on average. A quick, simple method for calculating αq estimates
without quantifying confidence is as follows

αq = lq/m̂
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where

m̂ =
1

N

N∑
i=1

lk,iλ/yi
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Figure 13: Density plots of the capture efficiencies measured for
the Klein dataset, the total transcript content per cell estimated
from Klein based on measured capture efficiencies and total UMI
counts per cell, the capture efficiencies estimated for the Qiu dataset
based on total UMI counts per cell and total transcript content
estimated from Klein, and the confidence in those estimates for
Qiu as represented by the CVs obtained with our Bayesian capture
efficiency model.
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2.5 Conversion rates

Models 2 and 3 also require the gene-specific background and gene-
invariant 4sU-mediated T>C conversion rates to be known, λs and
λn, respectively. As previously mentioned (in section 2.2.2), λs is
defined as the proportion of genomic Ts in all reads and all selected
(see section 2.1.1) cells that appeared as Cs in the control dataset
for the given gene. Therefore, the conversion rate observed in the
4sU dataset corresponds to λs + λn. The conversion rates of all
genes for which we have high confidence in the rate estimate in both
datasets are shown in figure 14, which was 6259 genes. Confidence
is obtained by modelling the T>C rate, λ, as

λ ∼ Beta(C, T − C)

classing those with a resulting CV < 10−0.5 in both datasets as
having high confidence. We expect the rate in the 4sU dataset to
be at least as large as in the control, hence genes tend to appear on
the diagonal or above it. Genes with higher turnover are expected
to appear further above the diagonal while those with low turnover
are expected to appear closer to it. The curve along the top of
the plot represents λs (x-axis) added to our estimate of λn. λn

is estimated by first assuming that all reads correspond to new
transcripts (synthesised during the pulse) and then calculating

p = 1− FBin(C − 1|T, λs + λn) = FBin(T − C|T, 1− λs − λn)

for each gene so that p = (p1, . . . , p6259) where

FBin(C|T, λs + λn) =

⌊C⌋∑
i=0

(
T

i

)
(λs + λn)

i(1− λs − λn)
T−i

The estimate for λn is then the minimum value for which
∑

g[pg <

10/6259] < 10. With this approach, λn ≈ 0.07547.
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Figure 14: Gene-specific T>C conversion rates in the control vs
4sU Qiu datasets for 6259 genes for which we have high confidence
in the observed T>C rate in both datasets. The lower red line
represents the background T>C mutation rate, λs, while the upper
one represents the maximum possible T>C rate in the 4sU dataset,
λs + λn, which is the sum of the observed gene-specific background
rate and the estimated global 4sU-mediated T>C rate.

2.6 Derivations

In this section our mathematical model of transcription will be
formally defined with its chemical master equation (CME), from
which we will derive the partial differential equation (PDE) for the
corresponding probability generating function (PGF). This PDE
will the be solved in order to obtain both the steady state and time-
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dependent transcript count PMFs of equations 1 and 9, respectively.

2.6.1 Chemical master equation

Our biological model corresponds to the infinitesimal limit of the
standard two-state model, converting it into a one-state model
with poissonian arrival of geometric bursts, which is described in
[51, 113]. In this scheme, only two events are possible; the expo-
nential decay of a single transcript at rate δ, or the generation of a
geometrically distributed number of transcripts through an instan-
taneous transcriptional burst at rate κ with average size b. In this
section we derive the CME by following the approach of [113], defin-
ing the probability that the next event during a burst is either the
synthesis of a transcript or the end of the burst as ξ and Θ, respec-
tively, such that ξ = b

1+b
, Θ = 1

1+b
and b = ξ/Θ. For convenience

now we write the geometric PMF as g(m) = ξmΘ = fGeom(m|Θ).
The probability of having m transcripts at time t+∆t, Pm(t+∆t)

is then described by the probability of flowing into state m from
other states or of remaining in state m minus the probability of
flowing out of state m

Pm(t+∆t) =Pm(t) + δ(m+ 1)∆tPm+1(t)− δm∆tPm(t)

+κ∆t

m−1∑
n=0

g(m− n)Pn(t)− κ∆t

∞∑
n=m+1

g(n−m)Pm(t)

(26)
From this we obtain the chemical master equation (CME) de-

scribing the time-evolution of the probability distribution of the
state of the system by subtracting Pm(t) from both sides, dividing
by ∆t and taking lim

∆t→0
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dPm(t)

dt
=δ(m+ 1)Pm+1(t) + κ

m−1∑
n=0

g(m− n)Pn(t)

−δmPm(t)− κ

∞∑
n=m+1

g(n−m)Pm(t) (27)

We can then normalise the timescale of our CME into units of
transcript lifetimes by dividing both sides by δ, since a = κ/δ and
τ = tδ

dPm(τ)

dτ
=(m+ 1)Pm+1(τ) + a

m−1∑
n=0

g(m− n)Pn(τ)

−mPm(τ)− a
∞∑

n=m+1

g(n−m)Pm(τ) (28)

Notice that bursts with size of zero are excluded from the burst
terms in equation 28 as they do not affect the rate of change of
Pm(τ). We can reindex both terms more conveniently to include
burst sizes of zero since the zero instances from the two terms cancel
each other out, in which m = n. Then we have

a
m−1∑
n=0

g(m− n)Pn(τ) → a
m∑

n=0

g(m− n)Pn(τ)

and

a
∞∑

n=m+1

g(n−m)Pm(τ) → a
∞∑

n=m

g(n−m)Pm(τ) = aPm(τ)

since we sum across all possible burst sizes in the second instance
and

∑∞
m=0 g(m) = 1. This leads us to the final form of our CME

dPm(τ)

dτ
= (m+1)Pm+1(τ)−mPm(τ)−aPm(τ)+a

m∑
n=0

g(m−n)Pn(τ)

(29)
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2.6.2 Probability generating function

In order to solve the CME of equation 29 we must first derive
the corresponding probability generating function (PGF), which
we achieve in this section by following the approach of [113]. The
PGF is defined as

G(τ, z) =
∞∑

m=0

zmPm(τ) (30)

such that by multiplying equation 29 by zm and summing over
m with

∑
m ≡

∑∞
m=0 we have

dG(τ, z)

dτ
=
∑
m

zm(m+ 1)Pm+1(τ)−
∑
m

zmmPm(τ)

+a
∑
m

zm
m∑

n=0

g(m− n)Pn(τ)− aG(τ, z) (31)

The aim now is to write this entirely in terms of G(τ, z) and z

rather than Pm(τ) and m. Beginning with the second term, notice
that

zmm = z
dzm

dz

and since Pm(τ) is independent of z we have

∑
m

zmmPm(τ) = z
d

dz

(∑
m

zmPm(τ)

)
= z

dG(τ, z)

dz
(32)

Turning to the first term, we define l = m+ 1 and thus

∑
m

zm(m+ 1)Pm+1(τ) = z−1

∞∑
l=1

zllPl(τ) = z−1

∞∑
l=0

zllPl(τ)
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because we multiply by zero when l = 0. Therefore, due to the
relation shown in equation 32 we have

∑
m

zm(m+ 1)Pm+1(τ) =
dG(τ, z)

dz
(33)

Finally coming to the third term, we first re-order the summa-
tions with

∞∑
m=0

m∑
n=0

=
∞∑
n=0

∞∑
m=n

and substitute ξmΘ for g(m) so that

a
∑
m

zm
m∑

n=0

g(m− n)Pn(τ) = a
∞∑
n=0

∞∑
m=n

zmξm−nΘPn(τ)

which can be rearranged to

aΘ
∞∑
n=0

ξ−nPn(τ)
∞∑

m=n

(zξ)m

Then redefining l = m− n we re-write the last sum

∞∑
m=n

(zξ)m =
∞∑
l=0

(zξ)l+n = (zξ)n
∞∑
l=0

(zξ)l

When solving G(τ, z) to find the PMF of the transcript count
it will be evaluated at z = 0 or z = 1, while 0 < ξ < 1 by defini-
tion, meaning that |zξ| ≤ 1 so the resulting sum is a terminating
geometric series and therefore has a closed form solution

(zξ)n
∞∑
l=0

(zξ)l =
(zξ)n

1− zξ

which upon substituting back in gives
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a
∑
m

zm
m∑

n=0

g(m− n)Pn(τ) =
aΘ

1− zξ

∞∑
n=0

znPn(τ) =
aΘ

1− zξ
G(τ, z)

(34)
Substituting equations 32, 33 and 34 back into equation 31 re-

sults in a PDE for the PGF

∂G(τ, z)

∂τ
=

∂G(τ, z)

∂z
− z

∂G(τ, z)

∂z
+

aΘ

1− zξ
G(τ, z)− aG(τ, z)

which we can rearrange to

(z − 1)ξ

1− zξ
aG(τ, z) =

∂G(τ, z)

∂τ
+ (z − 1)

∂G(τ, z)

∂z
(35)

since

Θ

1− zξ
− 1 =

Θ− 1 + zξ

1− zξ
=

(z − 1)ξ

1− zξ

2.6.3 Steady state solution

Now that we have derived the PDE for the PGF in equation 35, we
can solve it to complete our derivation of the steady state transcript
count PMF described by equation 1 from the CME. We accomplish
this in this section by following the approach of [113]. Under steady
state, we may substitute

∂G(τ, z)

∂τ
= 0

into our PDE, which reduces it to the solvable ordinary differ-
ential equation (ODE) which is no longer time-dependent

ξ

1− zξ
aG(z) =

dG(z)

dz

which can be directly integrated
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∫
dG(z)

G(z)
=

∫
aξdz

1− zξ

giving

logG(z) = −a log(1− zξ) + c

and finally

G(z) = c(1− zξ)−a (36)

Referring back of the definition in equation 30 a normalisation
constraint is apparent

G(z = 1) =
∑
m

Pm = 1

Therefore we may substitute G(z = 1) = z = 1 into equation
36 to find c

c = (1− ξ)a

which leads to our final steady state solution

G(z) =

(
1− ξ

1− zξ

)a

(37)

The PGF has the property that the PMF the system state is
given by the mth coefficient of its Taylor expansion about z = 0,
such that

Pm =
1

m!

dmG(z)

dzm

∣∣∣∣
z=0

(38)

because taking the mth derivative of the PGF at z = 0 results
in

dmG(z)

dzm

∣∣∣∣
z=0

=
∑
n

n!

(n−m)!
zn−mPn

∣∣∣∣∣
z=0
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which is zero for every term except where m = n since 00 =

0! = 1 so that we have

dmG(z)

dzm

∣∣∣∣
z=0

= n!Pn

Differentiating equation 37 in this manner results in

dmG(z)

dzm

∣∣∣∣
z=0

=
Γ(m+ a)

Γ(a)
Θaξm

and substituting this into the Taylor expansion coefficient de-
scribed in equation 38 and expressing in terms of b leads to

Pm =
Γ(m+ a)

Γ(m+ 1)Γ(a)

(
1

1 + b

)a(
b

1 + b

)m

(39)

finally arriving at our negative binomial PMF for the steady
state transcript count used in equation 1.

2.6.4 Time-dependent solution

Returning to equation 35, we can solve for the time-dependent tran-
script count solution of equation 9 as in [114, 146] by keeping the
time-derivative term. We initially make progress towards this so-
lution by following the approach of [146]. First of all we transform
z → z + 1 by redefining a PGF as

G(τ, z) =
∞∑

m=0

(z + 1)mPm(τ) (40)

which also allows us to conveniently express the PDE in terms
of b rather than ξ, remembering that b = ξ/Θ, as

abz

1− bz
G(τ, z) =

∂G(τ, z)

∂τ
+ z

∂G(τ, z)

∂z
(41)

since with our transformation

z − 1 → z

98



and
(z − 1)ξ

1− zξ
→ Θ−1

Θ−1

zξ

Θ− zξ
=

bz

1− bz

Now we define

F (τ, z) = (1− bz)aG(τ, z) (42)

which still satisfies the form of equation 41 [146]

F (τ, z) =
1− bz

abz

(
∂F (τ, z)

∂τ
+ z

∂F (τ, z)

∂z

)
(43)

With a change of variables [146, 147] where ω = log(z)− τ and
ζ = z, equation 43 is converted into a solvable ODE

F (ω, ζ) =
1− bζ

abζ

(
ζ
∂F (ω, ζ)

∂ζ

)
=

1− bζ

ab

∂F (ω, ζ)

∂ζ
(44)

which can be directly integrated∫
dF (ω, ζ)

F (ω, ζ)
=

∫
abdζ

1− bζ

leading to

c+ log(F (ω, ζ)) = −a log(1− bζ)

and finally

cF (ω, ζ) = (1− bζ)−a (45)

where c represents an initial condition at τ = 0, with Pm=0(τ =

0) = 1, which is set as c = (1 − bz0)
−a in order to also convert

back to our original function F → G based on equation 42, with z0

representing the value of z when τ = 0. Before substituting back
in, z0 is transformed to be expressed in terms of our new variables
subject to initial conditions. When τ = 0, ω = log(z) + 0 = log(z),
so that z0 = eω = ze−τ . Finally, we can substitute c back into
equation 45 and write the solution in terms of our original variables,
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τ and z, as

G(τ, z) =

(
1− bze−τ

1− bz

)a

(46)

Remembering that we previously made the transformation z →
z + 1 using the PGF defined in equation 40, we can now apply the
reverse transformation z → z − 1 to convert the solution back in
terms of our original PGF defined in equation 30

G(τ, z) =

(
1− b(z − 1)e−τ

1− bz + b

)a

(47)

Notice that our choice of c has satisfied both our normalisa-
tion and initial condition constraints, F (τ, z = 1) = 1 and F (τ =

0, z = 0) = 1, respectively. We reach our solution by following
the approach of [114] throughout the rest of this section, re-writing
equation 47 as

G(τ, z) =

(
1 + be−τ

1 + b

)a

×
(
1− b

1+b
z
)−a(

1− b
eτ+b

z
)−a (48)

since

1− b

1 + b
z =

1 + b− bz

1 + b
=

1− bz + b

1 + b

with the numerator and denominator corresponding to the de-
nominators of equations 47 and 48, respectively, while

1− b

eτ + b
z =

e−τ

e−τ

eτ + b− bz

eτ + b
=

1− b(z − 1)e−τ

1 + be−τ

with the numerator and denominator corresponding to the nu-
merators of equations 47 and 48, respectively. At this point, it is
possible to apply the Taylor expansion described in equation 38 to
our solved PGF from equation 48 to generate the time-dependent
transcript count PMF with zero initial transcripts using the iden-
tities
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∂m

∂zm
[1− qz]−a

∣∣∣∣
z=0

=
Γ(a+m)

Γ(a)
qm (49)

and

∂m

∂zm
x(z)

y(z)
= m!

m∑
k=0

∂m−k

∂zm−k
x(z)

k∑
j=0

(−1)j(k + 1)y(z)−j−1

(j + 1)!(m− k)!(k − j)!

∂k

∂zk
y(z)j

(50)
wherein we substitute the numerator and denominator of equa-

tion 48 for x(z) and y(z) in equation 50, respectively, so that q in
equation 49 corresponds to either b

1+b
or b

eτ+b
. According to equa-

tions 38, 49 and 50 we obtain

Pm(τ) =

(
1 + be−τ

1 + b

)a m∑
k=0

Γ(a+m− k)

Γ(a)

(
b

1 + b

)m−k

×
k∑

j=0

(−1)j(k + 1)

(j + 1)!(m− k)!(k − j)!

Γ(aj + k)

Γ(aj)

(
b

eτ + b

)k

(51)

which can be simplified since

k∑
j=1

(−1)jΓ(aj + k)

Γ(aj)(j + 1)!(k − j)!
=

(−1)kΓ(a+ 1)

Γ(a− k + 1)(k + 1)!
(52)

so that we arrive at

Pm(τ) =

(
b

1 + b

)m(
1 + be−τ

1 + b

)a

×
m∑
k=0

(−1)k

k!

Γ(a− k +m)

Γ(m− k + 1)Γ(a− k + 1)

(
1 + b

eτ + b

)k

(53)

Finally, we can write our solution using the hypergeometric
function, 2F1, which terminates when −m is a non-positive inte-
ger such that
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2F1 (−m,x, y; z) =
m∑
k=0

(−1)k
Γ(m+ 1)

Γ(m− k + 1)

(x)k
(y)k

zk

k!

where (x)k represents the Pochhammer symbol for the rising
factorial defined as (x)k = Γ(x+ k)/Γ(x) and which satisfies

Γ(a+ 1) = (−1)k(−a)kΓ(a− k + 1)

Writing

Γ(a− k +m) = Γ(a+m− 1− k + 1)

leads us to the final form of our solution for the time-dependent
transcript count PMF given zero transcripts initially

Pm(τ) =

Γ(a+m)

Γ(m+ 1)Γ(a)

(
b

1 + b

)m(
1 + be−τ

1 + b

)a

2F1

(
−m,−a, 1− a−m;

1 + b

eτ + b

)
(54)

which we used in equation 9.

2.7 Simulations for model comparison

The performance of inference using different likelihood functions
was tested on simulated data. Gillespie’s exact algorithm (stochas-
tic simulation algorithm) [118] was used to simulate data according
to the reactant matrix shown in table 1 and the product matrix
shown in table 2, with the stoichiometry matrix shown in table 3,
using the following chemical reaction scheme which allows for sim-
ulation of the pool of transcripts in the cell that was synthesised
before (RNA0) and after (RNA1) the 4sU pulse started.

Goff
kon−−→ Gon
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Gon

koff−−→ Goff

Gon
β0−→ Gon +RNA0

Gon
β1−→ Gon +RNA1

RNA0
δ0−→ ∅

RNA1
δ1−→ ∅

RNA0 RNA1 Gon Goff

β0 0 0 1 0
β1 0 0 1 0
δ0 1 0 0 0
δ1 0 1 0 0
kon 0 0 0 1
koff 0 0 1 0

Table 1: Reactant matrix for new and surviving transcript count
Gillespie algorithm simulations.

RNA0 RNA1 Gon Goff

β0 1 0 1 0
β1 0 1 1 0
δ0 0 0 0 0
δ1 0 0 0 0
kon 0 0 1 0
koff 0 0 0 1

Table 2: Product matrix for new and surviving transcript count
Gillespie algorithm simulations.
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RNA0 RNA1 Gon Goff

β0 1 0 0 0
β1 0 1 0 0
δ0 -1 0 0 0
δ1 0 -1 0 0
kon 0 0 1 -1
koff 0 0 -1 1

Table 3: Stoichiometry matrix for new and surviving transcript
count Gillespie algorithm simulations.

The simulation is run with initial conditions X0 = (0, 0, 0, 1)

where X = (RNA0, RNA1, Gon, Goff ) and rate constant values are
set for a bursty gene with moderate expression, θ = (β0 = 50, β1 =

0, δ0 = 0.001, δ1 = 0.001, kon = 0.0005, koff = 1), running until
t0 = 200000 to bring the system to steady state. The system state
at the end of this run, Xt0 , is then used as the initial condition for a
second run, where we now set θ = (β0 = 0, β1 = 50, δ0 = 0.001, δ1 =

0.001, kon = 0.0005, koff = 1) to simulate the newly synthesised
transcripts produced during the 4sU pulse along with decay of pre-
existing transcripts. A pulse duration of t1 = 1000 minutes was
used here so that the average transcript lifetime matches the 4sU
pulse duration, ensuring a roughly split between new and surviving
transcripts. This gives the final state of the system Xt1 , and im-
portantly gives the counts for RNA0 and RNA1 in the cell. The
biological parameters used results in an expression level of 25 tran-
scripts per cell, a burst size of 50 and a burst interval and transcript
lifetime of roughly 1000 minutes. The values all fall within the pre-
viously observed ranges [53, 95, 96] and are therefore biophysically
reasonable. Although the given transcript lifetime corresponds to
a biologically plausible value, the exact number used in the sim-
ulations is irrelevant since identical results could be produced by
scaling all parameters with the transcript lifetime, only their values
relative to each other matters from a simulation/modelling perspec-
tive rather than the actual timescales. The simulation was repeated
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to simulate N = 10000 cells and in-silico sequencing data was then
generated based on these simulated transcript count values. Cell-
specific capture efficiencies were drawn

α ∼ Beta(1, 9)

to enable comparison of model performance with highly variable
capture efficiencies, before drawing the cell-specific UMI counts, l,
corresponding to the two pools of transcripts as

lk ∼ Bin(RNAk, α)

for k = 0 and k = 1, so that the total UMI count for the given cell
is l = l0 + l1. The cell-specific total number of reads corresponding
to each UMI in the two pools is then drawn

rk,j ∼ ZTPois(ν)

where ν = 5 represents sequencing depth and reads per UMI is a
zero-truncated poisson random variable with

fZTPois(r|ν, r > 0) =
νr

(eν − 1)r!

using the same logic of poisson assignment of reads to UMIs as in
[148]. Then the cell-specific total number of reads of the given pool
is

rk =

lk∑
j=1

rk,j

The number of uracils across the sequenced part of the transcript
is then drawn for each read

uk,j ∼ Pois(û)

where û = 60 is the average number of uracils per read, which is
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set to ensure sufficient T>C count data to enable clear comparison
of model performance. If the reads are too short there will be fewer
T>Cs per read which will impede the capacity for models which
harness the T>C count data to do so, making the effects/differences
on inference performance weaker. The number of conversions in
each read in the cell is then drawn for the two pools of transcripts
as

i0,j ∼ Bin(u0,j, λs)

and
i1,j ∼ Bin(u1,j, λs + λn)

where we set λs = 0.01 and λn = 0.075, both of which are within
the range of values observed in [99], which used the same chem-
istry for converting incorporated 4sU as the previously mentioned
4sU scRNA-seq dataset that we sourced (section 2.1.1). The λn

value is also close to the one inferred in section 2.5. The over-
all conversion data across all reads in the cell is then i = (i0, i1),
where i0 = (i0,1, . . . , i0,r0) and i1 = (i1,1, . . . , i1,r1), from which we
obtain y, where yi is the number of reads with i conversions in the
given cell. Now we have our simulated dataset which we can use
to demonstrate our capacity to recover known parameter values.
MCMC was carried out with different likelihood functions in the
previously described manner (see section 2.3) to sample posterior
distributions.

2.8 Simulations for validating model predictions

Gillespie algorithm simulations [118] were carried out to generate
in-silico data for a single gene to validate the predictions made by
our mathematical models (see section 2.2). This was performed
using the method described for the model comparison simulations
(see section 2.7) but using different values for some parameters
to allow for the most clear possible visualisation of the various
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distributions, whereas in section 2.7 the aim was just to simu-
late data for a gene with relatively high transcriptional noise to
demonstrate inference capacities. Biological parameters were set to
θ = (β0 = 25, β1 = 0, δ0 = 0.001, δ1 = 0.001, kon = 0.002, koff = 1)

when running to steady state and then θ = (β0 = 0, β1 = 25, δ0 =

0.001, δ1 = 0.001, kon = 0.002, koff = 1) for the post-4sU sim-
ulation, also setting N = 100000 cells and α = 1 for all cells.
Analytical distributions from our models were produced with θ =

(µ = 50, a = 2, γ = 1000) to match the parameter values used in
the simulations, corresponding to a gene with bursty transcription.
The biological parameter values all fall within previously observed
ranges [53, 95, 96]. These settings were used to directly visualise
the agreement between different analytical distributions and their
simulated counterparts. This agreement/difference was quantified
as
∑

x |Pana(x)−Psim(x)|, the sum of the absolute value of the dif-
ference in probability mass between the two distributions across the
state space, x. For several distributions, how the divergence varies
across multiple points in parameter space was tested, simulating
with N = 10000 cells and fixing all parameters at the aforemen-
tioned values other than the on being varied. β0 and β1 were varied
together to achieve a range of expression levels (µ), kon was var-
ied to achieve a range of burst rates (a), and kon, δ0 and δ1 were
varied together to achieve a range of transcript lifetimes (γ) while
maintaining a constant burst rate (a = 2).

Beginning with the steady state transcript count PMF (equation
1), we confirm our analytical results by directly comparing the dis-
tributions generated with our model analytically or via simulations
in the aforementioned manner, seeing a close agreement (figure 15).
Figure 16 also shows how the previously described probability dif-
ference value for the steady state distribution changes when varying
one parameter at a time. The patterns observed in this case, and in-
deed in all subsequent cases, can be explained by how concentrated
or dispersed the probability mass is across state space at different
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parameter values, with a more highly concentrated distribution re-
sulting in a lower difference value. This is because there is a greater
degree of certainty associated with these distributions, whereas dis-
tributions dispersed over a larger state space will require more cells,
N , for the simulated distribution to match the analytical distribu-
tion to the same degree. Therefore, increasing the expression level
(and burst size) while fixing burst rate and transcript lifetime re-
sults in the observed increase in probability difference due to the
distribution being scaled over greater state space. Conversely, in-
creasing burst rate (and burst frequency) while fixing the other two
parameters resulted in reduced probability difference, since at lower
burst rates the distribution is more skewed and therefore more dis-
persed over more state space, whereas at high burst rate the distri-
bution converges to a poisson distribution, becoming concentrated
around the mean value. As expected, varying the transcript lifetime
has no effect on the difference since the steady state distribution is
governed purely by dimensionless parameters. Since the patterns
observed are explained simply by state space variation rather than
biases, this result provides validation of our model.
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Figure 15: The steady state transcript count PMF generated with
simulations or analytically using matching parameter values.

109



−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
00

0.
05

0.
10

0.
15

0.
20

Steady state distribution difference

Log10(expression level)

S
um

 |m
od

el
 −

 s
im

ul
at

ed
|

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Steady state distribution difference

Log10(burst rate)

S
um

 |m
od

el
 −

 s
im

ul
at

ed
|

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Steady state distribution difference

Log10(transcript lifetime)

S
um

 |m
od

el
 −

 s
im

ul
at

ed
|

Figure 16: The sum of the absolute value of the difference in proba-
bility across state space for the steady state transcript count PMF
when generated analytically or with simulations using matching
parameter values, with expression level, burst rate and transcript
lifetime being varied one at a time. Lower y-axis values indicates
closer agreement between the analytical distribution of the model
and the simulated distribution for the given parameter value.

Moving on to our approximation of the surviving transcript
count PMF (equation 8), its accuracy is supported by direct com-
parison to a simulated PMF (figure 17), observing a close agree-
ment as before. Again, figure 18 shows how the probability differ-
ence varies when changing each of our three parameters. Identical
patterns can be observed for expression level and burst rate as in
figure 16 due to increased expression level and reduced burst rate
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causing increased state space. Unlike figure 16 however, the proba-
bility difference now varies with transcript lifetime with longer tran-
script lifetimes resulting in a larger probability difference, whereas
very short transcript lifetimes have almost zero difference. This
is again explained by variation in the concentration of the mass
over state space at different transcript lifetimes. At very short life-
times, there will be few/no transcripts surviving from before the
4sU pulse, such that lim

γ→0
P (s = 0) = 1, which corresponds to the

maximum concentration level for the distribution and therefore the
minimum probability difference. Conversely, at very long lifetimes,
there will be few/no degradation events during the 4sU pulse, such
that lim

γ→∞
P (s) = P (m), which corresponds to maximum dispersion

level for the surviving distribution (the steady state distribution)
and therefore the maximum probability difference.
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Figure 17: The surviving transcript count PMF generated with
simulations or analytically using matching parameter values.
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Figure 18: The sum of the absolute value of the difference in prob-
ability across state space for the surviving transcript count PMF
when generated analytically or with simulations using matching
parameter values, with expression level, burst rate and transcript
lifetime being varied one at a time. Lower y-axis values indicates
closer agreement between the analytical distribution of the model
and the simulated distribution for the given parameter value.

Now turning to our approximation of the new (non-equilibrium)
transcript count PMF (equation 9), we again validate it by directly
comparing to its corresponding simulated PMF (figure 19), observ-
ing a good agreement. Looking once more at the variation in proba-
bility difference associated with the three parameters (figure 20), we
note the previously observed pattern of increased probability differ-
ence with increase expression level due to increase dispersion of the
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distribution over the state space. The reverse relationship between
transcript lifetime and probability difference is observed compared
to figure 18. Since expression level and burst rate are fixed when
varying transcript lifetime, we increase transcript lifetime by reduc-
ing both the decay rate and burst frequency together. Therefore,
very long transcript lifetimes correspond to few/no new transcripts
being produced during the 4sU pulse, such that lim

γ→∞
P (n = 0) = 1,

which corresponds to the maximum concentration level for the dis-
tribution and therefore the minimum probability difference. Con-
versely very short transcript lifetimes correspond to many new tran-
scripts being produced (and degraded) during the 4sU pulse, such
that lim

γ→0
P (n) = P (m), which corresponds to maximum dispersion

level for the new distribution as it settles into equilibrium (steady
state) and therefore the maximum probability difference. For the
new transcript distribution we observe a slightly different relation-
ship between probability difference and burst rate compared with
figures 16 and 18, although this can again be explained by varia-
tion in the distribution of probability mass over the state space. We
see an initial increase in probability difference with increasing burst
rate up to a certain point, followed by a decrease beyond that point.
Lower burst rate does result in increased skew in the distribution, as
with the previous cases, and therefore, one would expect a greater
probability difference with increasingly low burst rate due to the
greater dispersion over state space. However, figure 19 shows that
the new transcript count PMF is heavily zero-inflated to account
for instances in which no bursts occur during the 4sU pulse (or a
small burst occurs but all resulting new transcripts are degraded).
Therefore, the lower the burst rate, the more heavily concentrated
the distribution becomes at zero, leading to reduced probability dif-
ference. At high burst rates the distribution approaches a poisson
distribution and becomes more concentrated about the mean, lead-
ing to reduced probability difference. At intermediate burst rates
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the distribution is not heavily concentrated at zero but still retains
super-poissonian noise, skew and therefore dispersion, leading to
maximal probability difference. Again, being able to explain the
change in agreement between our analytical and simulation results
purely through the dispersion of the distribution over state space
provides confidence that our model is not biased over these regions
on parameter space.
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Figure 19: The non-equilibrium transcript count PMF generated
with simulations or analytically using matching parameter values.
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Figure 20: The sum of the absolute value of the difference in prob-
ability across state space for the new (non-equilibrium) transcript
count PMF when generated analytically or with simulations using
matching parameter values, with expression level, burst rate and
transcript lifetime being varied one at a time. Lower y-axis values
indicates closer agreement between the analytical distribution of
the model and the simulated distribution for the given parameter
value.

Verification of our solution to the PMF for the new transcript
count conditional on total transcript count (equation 11) is achieved
by comparing with simulation results for a given value of m (fig-
ure 21). Further validation is provided by comparing analytical
and simulation-based expected new transcript counts conditional
on total transcripts across different values of m (figure 22).
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Figure 21: The non-equilibrium transcript count PMF conditional
on total transcripts, in which the total transcript count m = 38,
generated with simulations or analytically using matching parame-
ter values.

117



0 100 200 300 400

0
10

0
20

0
30

0
Model vs simulated conditional expected new transcript count

Total transcript count

M
ea

n 
ne

w
 tr

an
sc

rip
t c

ou
nt

Simulated
Model

Figure 22: The expected new transcript count conditional on total
transcript count across different values of m generated with simu-
lations or analytically using matching parameter values.

We can also demonstrate the alignment of our model with sim-
ulation results for the full joint PMF of the new and surviving
transcript counts (figures 23 and 24). Here we show the joint dis-
tribution for s ∈ [0, 70] and n ∈ [1, 170], truncating n = 0 for
visualisation purposes due to the inflated value of P (n = 0) for
the chosen parameter values (figures 19 and 21), with the agree-
ment between the two demonstrated by the probability difference
heatmap (figure 25). Additionally, we examine the dependence on
the probability difference between the analytical and simulated joint
distribution with each of three individually varied parameters (fig-
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ure 26). As in previous cases, the probability difference depends
on how concentrated the probability mass is in state space at each
parameter value, with higher concentration resulting in reduced
probability difference. As in figures 16, 18 and 20, we again ob-
serve an increase in probability difference with increased expres-
sion levels due to increased dispersion over state space. This is a
much stronger effect over the same parameter values than previ-
ously observed because the state space is now 2-dimensional rather
than 1-dimensional, so the total state space covered by the dis-
tribution scales with the square relationship to the expression level
rather than linearly. Therefore, the total state space over which the
probability mass is distributed becomes vast, meaning that a much
larger number of simulated cells, N , would be required to accurately
populate this space, with a very large number of tiny probability
values. The relationship of the probability difference with burst rate
is similar to that observed in figure 20 but the effect is much more
clear and strong. This is because at low burst rates the more heav-
ily skewed individual distributions, and especially the zero-inflated
new transcript distribution, ensures that a significant portion of
the probability mass is concentrated at a small set of joint values
at the lower end of both axes close to zero, restricting the proba-
bility difference. At high burst rates, each individual distribution
approaches poisson, resulting in a concentration of mass at the two
mean values, thereby reducing the probability difference. At inter-
mediate burst rates, the distributions are less heavily skewed but
still with super-poissonian skew and with reduced zero-inflation in
the new distribution, resulting in both the new and surviving distri-
butions having their probability mass dispersed over a large region
of state space, which increases in a square fashion as previously
mentioned, maximising the probability difference and the observed
sharp increase over these burst rates. Finally coming to the tran-
script lifetime, the state space, and therefore the probability dif-
ference is maximised with intermediate transcript lifetimes because
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neither the surviving or new distribution is concentrated towards
zero at these values. Either extreme of the transcript lifetime axis
corresponds to the maximum dispersion of one distribution but the
minimum of the other, such that the total dispersion is maximised
when the transcriptome exhibits a roughly even split between new
and surviving transcripts. Observing that the variation in probabil-
ity difference for the joint PMF follows the patterns expected based
on the distribution of probability mass over the state space provides
confidence in our model, demonstrating that varying different pa-
rameters does not introduce biases into our model predictions that
would be missed when directly comparing analytical vs simulated
distributions at fixed values.
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Simulated joint PMF of new and surviving transcripts
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Figure 23: The joint new and surviving transcript count PMF as
generated by simulations for surviving transcript count values s ∈
[0, 70] and new transcript count values n ∈ [1, 170].
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Analytical joint PMF of new and surviving transcripts
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Figure 24: The analytical joint new and surviving transcript count
PMF for surviving transcript count values s ∈ [0, 70] and new tran-
script count values n ∈ [1, 170].
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|simulated − analytical| joint PMF of new and surviving transcripts
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Figure 25: The absolute value of the difference in probability be-
tween the analytically generated and simulation-based joint new
and surviving transcript count PMFs for surviving transcript count
values s ∈ [0, 70] and new transcript count values n ∈ [1, 170] pro-
duced with matching parameter values.

123



−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

Joint distribution difference

Log10(expression level)

S
um

 |m
od

el
 −

 s
im

ul
at

ed
|

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Joint distribution difference

Log10(burst rate)

S
um

 |m
od

el
 −

 s
im

ul
at

ed
|

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Joint distribution difference

Log10(transcript lifetime)

S
um

 |m
od

el
 −

 s
im

ul
at

ed
|

Figure 26: The sum of the absolute value of the difference in prob-
ability across state space for the joint surviving and new (non-
equilibrium) transcript count PMF when generated analytically or
with simulations using matching parameter values, with expression
level, burst rate and transcript lifetime being varied one at a time.
Lower y-axis values indicates closer agreement between the analyti-
cal distribution of the model and the simulated distribution for the
given parameter value.

The accuracy of our solution for the T>C count PMF condi-
tional on total transcript count (equation 12) is also demonstrated
by comparing with simulations for a given total transcript count, m
(figure 27). This distribution corresponds to the total T>C count
for any given read corresponding to either new or surviving tran-
scripts for a cell with the given total transcript count, m, and is
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already normalised by the summation over the empirically observed
total uracils per read distribution, P (u), in equation 12. Further
verification is once more provided through comparison of analyti-
cal and simulation-based expected T>C counts conditional on total
transcripts across different values of m (figure 28).
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Figure 27: The T>C count PMF conditional on total transcripts,
in which the total transcript count m = 100, generated with simu-
lations or analytically using matching parameter values.

125



0 100 200 300 400

1
2

3
4

5
Model vs simulated conditional expected T>C count

Total transcript count

M
ea

n 
T

>
C

 c
ou

nt

Simulated
Model

Figure 28: The expected T>C count conditional on total transcript
count across different values of m generated with simulations or
analytically using matching parameter values.

Finally, simulation-based verification of our solution to the T>C
count PMF independent of total transcript count (equation 18) is
demonstrated (figure 29). Like figure 27, this distribution repre-
sents the total T>C count for any given read corresponding to
either new or surviving transcripts but in any given cell regardless
of total transcript count, again normalised by the summation over
the empirically observed total uracils per read distribution, P (u),
in equation 12.
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Figure 29: The cell-invariant T>C count PMF, which is not con-
ditional on total transcripts, generated with simulations or analyt-
ically using matching parameter values.

2.9 Simulations for genome-wide inference vali-

dation

In order to assess the performance of the inference algorithm, a
dataset was simulated for each of the genes from the real Qiu
dataset whose bursting dynamics were inferred. The θ estimates
obtained from Qiu were used as the "ground truth" parameter val-
ues to simulate new datasets. A dataset for each gene is simulated
by drawing the steady state transcript counts for N = 795 cells,
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matching the real data, at the start of the pulse

m0 ∼ NBin

(
a,

b

1 + b

)
the surviving transcript counts at the end of the pulse

s ∼ Bin
(
m0, e

−τ
)

the number of bursts occurring during the pulse

β ∼ Pois(κt)

how long before the end of the pulse each burst occurs at

T ∼ Unif(0, 240)

the size of each burst

σ ∼ Geom

(
1

1 + b

)
where

fGeom

(
σ| 1

1 + b

)
=

(
b

1 + b

)σ (
1

1 + b

)
and the number of newly synthesised transcripts from each burst
which survive to the end of the pulse

n ∼ Bin
(
σ, e−δT

)
Then the total transcripts in each simulated cell at the end of the
pulse is m = s + n̂, summing the number of transcripts surviving
from each burst occurring during the pulse as n̂ =

∑
n. The num-

ber of UMIs corresponding to surviving and new transcripts in each
cell is then drawn as

ls ∼ Bin(s, α)

128



and
ln ∼ Bin(n̂, α)

where α is sampled without replacement from the set of estimated
capture efficiencies (see section 2.4). Then we have the total UMI
count for each cell l = ls + ln and L, where Lc is the UMI count of
cell c. For each UMI, we draw the number of corresponding reads,
r, as

r ∼ ZTPois(ρ)

where ρ is the maximum likelihood estimate given the observed
ratio of reads to UMIs, R, across all cells for the given gene in the
real data. ρ is obtained by minimising∣∣∣∣R− ρ

1− e−ρ

∣∣∣∣
From this we have the total number of reads corresponding to sur-
viving, rs and new, rn transcripts for each cell. The number of
uracils, u, in each read is then drawn from the gene-specific empiri-
cal probability mass function, P (u), from equation 12. Finally, the
number of uracils in each read which undergo a T>C conversion, i,
is then drawn for surviving reads as

i ∼ Bin(u, λs)

and for new reads as

i ∼ Bin(u, λs + λn)

Now we have y, where yi represents the number of reads with i total
conversions in the given cell and and Y , where Yc is the the vector
y for cell c. We could then carry out inference with L and Y as
previously described (see section 2.3).
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3 Inferring transcriptional dynamics

Here we outline the results of applying our mathematical mod-
els and Bayesian inference algorithm to both real and simulated
datasets. The improvement in estimation of the parameters govern-
ing transcriptional bursting offered by 4sU scRNA-seq is explored.
This is followed by the extraction of genome-wide joint estimates for
time-resolved bursting dynamics and subsequent simulation-based
validation of algorithm performance.

3.1 Model comparison

We tested the advantages provided by 4sU scRNA-seq data cou-
pled with our inference approach over conventional scRNA-seq by
comparing our recovery of known bursting parameter values from a
simulated dataset using different likelihood functions (see sections
2.2 and 2.7 for details about the likelihood functions and simulation
approach, respectively). The MCMC algorithm was run five times,
using equations 4, 15, 16, 19 and 20 as the likelihood functions,
referred to as L1, L2, L1+L2, L3 and L1+L3, respectively.

• L1: The likelihood function of model 1, equivalent to scRNA-
seq data without 4sU, relying solely on the UMI counts.

• L2: Equivalent to relying only on single cell T>C conversions,
without fully incorporating the UMI counts.

• L1+L2: The likelihood function of model 2, equivalent to 4sU
scRNA-seq data, incorporating all of the available information
together.

• L3: Equivalent to bulk SLAM-seq data without spike-ins, ig-
noring UMI counts and using only cell-summed T>C conver-
sions.
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• L1+L3: The likelihood function of model 3, equivalent to
combining bulk SLAM-seq data without spike-ins and scRNA-
seq data.

Convergence to the target distribution is shown (figure 30) for each
likelihood function, confirming that scRNA-seq data cannot resolve
burst frequency or decay rate (κ or δ), but does converge for the
other parameters, while L2 and L1+L2 converge for all parameters,
confirming that 4sU scRNA-seq data can time-resolve bursting. Un-
like L2, L3 is unable to converge for any parameters other than de-
cay rate, δ, further demonstrating the advantage of cell-specific vs
cell-summed T>C conversion data. As expected, L1+L3 converges
for all parameters, with L1 informing burstiness while L3 informs
timescales.
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Figure 30: Convergence of Markov chains to true parameter values
with simulated data for five different likelihood functions. The pa-
rameter values, θ, in the chain are divided by the true value to allow
for joint visualisation, with the black horizontal line representing
the target value. The different likelihood functions use different
parts of the simulated 4sU scRNA-seq data and so Markov chains
are able to converge to the target values for different subsets of pa-
rameters depending on the likelihood function used.
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The resulting posteriors (figure 31) indicate that the accuracy
and precision of estimates for burst rate, burst size and expres-
sion level (a, b and µ) are improved by incorporating the single-cell
4sU conversion data compared to relying solely on scRNA-seq or
scRNA-seq with bulk SLAM-seq data, which is because the cell-cell
variance in the T>C rate is a function of the transcriptional noise
(burstiness) of the gene as well as turnover and, therefore, includ-
ing such information makes the estimation more robust. Likewise,
we see that while conventional scRNA-seq may not resolve burst
frequency or decay rate (κ or δ), including the UMI count infor-
mation with the conversion data also results in more precise and
accurate estimates of these parameters. This is because the set of
T>C conversions is a function of burst rate, burst size and decay
rate (a, b and δ), while the UMI counts are a function of burst
rate and burst size (a and b). Therefore, including the UMI data
improves inference of burst rate and burst size (a and b), which
reduces the uncertainty associated with decay rate (δ) in our joint
inference approach.
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Figure 31: Posterior densities of each parameter obtained using dif-
ferent likelihood functions, with the dashed black lines representing
the true parameter values that were used to simulate the dataset
upon which inference was carried out. The densities for δ obtained
with L3 and L1+L3 are difficult to distinguish because they almost
perfectly overlap. The different likelihood functions use different
parts of the simulated 4sU scRNA-seq data and so Markov chains
are able to generate samples centred about the target value for dif-
ferent subsets of parameters depending on the likelihood function
used. 134



Overall, we see that L1+L2 outperforms all other likelihood
functions for all parameters including L1+L3, demonstrating the
benefits that a fully integrated analysis of time-resolved bursting
dynamics using 4sU scRNA-seq data provides over more limited,
separate treatments of subsets of the parameters by combining
scRNA-seq (burst rate, a, and burst size, b) and bulk SLAM-seq
(decay rate, δ) information. This is apparent in this example of
a gene with moderate expression, high transcriptional noise and a
transcript lifetime equal to the 4sU pulse duration.

3.2 Inference on real data

We next applied our method to 4sU scRNA-seq data published in
2020 by Qiu et al, which used human K562 cells [101]. Inference on
the data from Qiu was carried out for all genes with at least one read
and observed T>C conversion in both the 4sU and control datasets,
running the MCMC algorithm in parallel on each to obtain a pos-
terior from model 2 or, if required, model 3 (see section 2.3). The
final set of genes to be analysed was selected based on those with
sufficient confidence in all parameter estimates. Therefore, a maxi-
mum CV value of 0.45 was imposed for all parameter estimates, so
that only genes with no CV > 0.45 would be included, leaving 584
genes as the final selected set. A CV of 0.45 was chosen in order
to maximise the number of selected genes available for downstream
analysis. The trade-off for increasing the CV (and number of genes)
is that the minimum level of precision in our estimates is also re-
duced. Therefore, the aim was to increase the CV but not beyond
the point that some estimates would be completely uninformative
due to a lack of precision. The exact CV value was also informed
by the diminishing returns in terms of number of genes obtained
by increasing the CV over the informative range. Figure 32 shows
0.45 to coincide with the point at which the relative number of ex-
tra genes obtained with each increase in CV drops off, making it
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less worthwhile to increase the CV beyond 0.45.
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Figure 32: The number of genes selected for different CV values
based on allowing no CV > X for any parameter estimates inferred
from the Qiu data for that gene. The chosen CV cutoff of 0.45 is
shown as the red line, beyond which there are diminishing returns.

For the selected genes we observe that the quality of our es-
timates depends upon the location of the gene within parameter
space, as shown in figure 33, which depicts estimate vs CV for all
parameters. CV (δ) has an optimal (minimum) value for decay rate,
δ, corresponding to an average transcript lifetime equal to the 4sU
pulse duration (4 hours), with confidence decreasing bidirection-
ally and outliers with very low CV (δ) corresponding to genes with
expression level µ ≥ 1000. We also have increased confidence in

136



general for genes with higher expression level, µ, since estimates
for such genes are informed by a greater volume of data. Likewise,
genes with greater burst size, b, have greater confidence because,
firstly, increased burst size, b, results in higher expression level, µ.
Secondly, for a given expression level, µ, having a higher burst size,
b, implies lower burst rate, a, meaning that the transcriptional noise
is higher, resulting in a more heavily skewed transcript count dis-
tribution (across cells) which may be more precisely attributed to a
region of parameter space. We do not see a visually obvious trend
in confidence for burst rate, a. This is because it is associated with
higher expression level but lower transcriptional noise. Therefore, a
gene with higher burst rate, a, has more data points with which to
inform the estimate but a less skewed transcript count distribution,
so that the effects on confidence tend to cancel each other out. The
trend in confidence for burst frequency, κ, is essentially dictated by
the burst rate and decay rate (a and δ) values for the gene.
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Figure 33: Mean value estimates vs corresponding CVs of all pa-
rameters derived from posteriors generated by inference on the Qiu
data for all 584 selected genes (which had CV < 0.45 for all param-
eter estimates), with those obtained using models 2 or 3 displayed
in black or red, respectively. Lower y-axis values indicates lower
CV and, therefore, higher confidence and precision.
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Instead of relying solely on model 2, for some genes we must
switch to an alternative (model 3). This occurs when genes lie
within a region of parameter space such that the solution to equa-
tion 9 becomes unstable. Figure 33 provides evidence supporting
the reliability of our inference approach, since the model 2 and 3
genes generally occupy the same regions of the plot and exhibit the
same relationships between confidence and estimate for each pa-
rameter. This also illustrates the increased probability for a gene
to reside within unstable parameter space, and therefore require
use of model 3, when expression level, µ, and burst rate, a, are
higher and when decay rate, δ, is lower. Additional confidence in
our results is provided by showing the strong correlation about the
diagonal between the decay rate estimates we obtained from Qiu for
our selected high confidence genes and those previously calculated
in [99] for the same cell type (figure 34).
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Figure 34: Decay rate (δ) estimates we obtained from Qiu for our
high confidence gene set (584 genes which had CV < 0.45 for all
parameter estimates) vs those calculated by Scofield for the same
genes, with the Spearman’s rank correlation statistics shown and
the diagonal displayed (red line).

Now that we have estimates for all parameters of interest, it is
possible to demonstrate how the different aspects of the data feed
into informing the joint probability distribution. Figure 35 illus-
trates some expected correlations, showing that expression level,
µ, correlates very strongly with the mean UMI count and that de-
cay rate, δ, correlates very strongly with the 4sU - control T>C
rate, since these values reflect the overall activity and turnover of
the gene, respectively. We see that a correlates strongly against the
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CV of the UMI count, which reflects the relationship between burst-
ing and cell-cell variability. It is also possible to demonstrate the
aforementioned complex relationship between burstiness and the
shape of the single-cell T>C count data, but not in a genome-wide
manner since the effect is masked by variation in expression level
and decay rate (µ and δ). Therefore, we instead compare a pair
of genes (ATF5 and CAP1 ) with very similar estimates for expres-
sion level and decay rate (µ and δ) but very different values of burst
rate, a, (and therefore also burst size, b, and burst frequency, κ),
with ATF5 being expressed in a far more bursty fashion. Only two
genes are analysed due to the scarcity of pairs in our 584 selected
genes which are appropriate for comparison (matching expression
level, µ, and decay rate, δ, but strongly differing burst rate, a).
The estimates for the different parameters of these genes are given
by table 4.
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Figure 35: Correlations between statistics immediately observable
in the Qiu dataset and inferred bursting parameter estimates are
shown in the first three subplots, with Spearman’s rank correlation
strength (rho) and statistical significance (p) displayed. Each point
corresponds to a gene, with the parameter estimate shown on the
y-axis and the x-axis showing the statistic (mean of the UMI counts
across cells, CV of the UMI counts across cells, or the mean T>C
rate across cells in the 4sU dataset minus that in the control dataset,
each for the given gene). Bottom right compares the cell-specific
T>C rates minus gene-specific background for the ATF5 and CAP1
genes, which are expressed with high and low noise (due to having
very different burst rates), respectively, but have closely matching
expression levels and decay rates.
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ATF5 CAP1
b 66.1 10.2
µ 62.5 66.1
κ 0.00426 0.0289
δ 0.00447 0.00409
a 0.957 7.07

Table 4: Parameter estimates for the ATF5 and CAP1 genes.

The density plot in figure 35 compares the distribution of cell-
specific T>C rates (minus gene-specific background) across all reads
in the cell for the aforementioned pair of genes. There is a clear
difference in the shape of the distribution, with the bursty gene
having a greater density at either extreme while the gene with less
noisy expression has a greater intermediate density. This is because
large, infrequent bursting has a binarising effect, meaning that most
cells either have a low or high T>C rate. Those with a low rate
correspond to those which have had no bursts occur during the
4sU pulse, resulting in their entire transcript population compris-
ing those surviving from before the pulse. Those with a high rate
correspond to those which have had at least one burst occur dur-
ing the pulse. Since the bursts tend to be large, this results in the
majority of the transcript pool being comprised of newly synthe-
sised transcripts. On the other hand, smaller, more frequent bursts
causes the surviving transcripts to gradually become replaced by
new transcripts in a more uniform manner across cells. Similarly
to how scRNA-seq reveals differences in cell-cell variation in tran-
script counts for two genes with otherwise equal expression levels,
4sU scRNA-seq also reveals differences in cell-cell variation in new
transcript proportions for two genes with otherwise equal decay
rates.

Despite controlling for expression level and decay rate (µ and δ)
in this pairwise comparison of a high vs low noise gene, the effect
of bursting on cell-specific T>C rates shown in figure 35 is still
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somewhat obscured by the variable cell-specific capture efficiencies,
α, present in the data. Therefore, datasets were simulated in the
same manner as for the model comparison analysis (see section
3.1), except λs = 0.001, and α = 1 to totally control for the effect
of background T>C mutation and capture efficiencies, respectively.
Datasets were simulated for a gene with high noise and another
with low noise with parameter values set as shown in table 5.

High noise Low noise
b 250 25
µ 250 250
κ 0.001 0.01
δ 0.001 0.001
a 1 10

Table 5: Parameter values for simulated high and low noise genes.

The differential flow from the surviving to new transcript pool
for high and low noise genes is demonstrated in figures 36 and
37, which shows the cell-specific T>C rate distributions for data
simulated with different pulse durations. This illustrates the previ-
ously discussed effect of bursting on cell-cell turnover variation more
clearly, visualising the bimodal and unimodal transitions occurring
under high and low noise conditions, respectively, and emphasising
the key phenomenon which empowers 4sU scRNA-seq inference.
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Figure 36: The differential transition from surviving to new tran-
script pool for high and low noise genes through the cell-specific
T>C rate distributions for data simulated with different pulse du-
rations, which are normalised to be in units of transcript lifetimes
and displayed in the centre of each subplot. The x-axis values corre-
spond to the T>C rate in the simulated cell minus the background
T>C rate for the simulated gene, with values further on the left
or right indicating a lower or higher proportion of the transcripts
in the cell being new (synthesised after the 4sU pulse started), re-
spectively. This figure shows the simulated transition across lower
pulse durations.
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Figure 37: The differential transition from surviving to new tran-
script pool for high and low noise genes through the cell-specific
T>C rate distributions for data simulated with different pulse du-
rations, which are normalised to be in units of transcript lifetimes
and displayed in the centre of each subplot. The x-axis values corre-
spond to the T>C rate in the simulated cell minus the background
T>C rate for the simulated gene, with values further on the left
or right indicating a lower or higher proportion of the transcripts
in the cell being new (synthesised after the 4sU pulse started), re-
spectively. This figure shows the simulated transition across higher
pulse durations.
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3.3 Inference on simulated data

To validate the performance of our parameter estimation and confi-
dence quantification and facilitate comparisons between our models
on a genome-wide level, in-silico data was generated for each of the
12276 genes from the real Qiu dataset whose bursting dynamics
were inferred (in section 3.2). The θ estimates obtained from Qiu
were used as the "ground truth" parameter values for these simula-
tions (see section 2.9), with inference being carried out both using
model 1 and model 2 (or alternatively model 3). This simulation-
based validation differs from the previously described model com-
parison analysis (figures 30 and 31) in that experimental settings,
such as cell number, cell capture efficiency and sequencing depth,
matched those in the Qiu dataset rather than being idealised, and
the bursting parameter values estimated for each of the 12276 genes
we analysed were used as the true values for each corresponding
simulated gene.

First we turn to our inference of simulated with model 2 in or-
der to confirm algorithm performance. The same selection of genes
that was used for the real data was applied, selecting based on a
maximum CV of 0.45 across all parameters. The correlations be-
tween the ground truth values and the parameter estimates derived
from our sampled posteriors for the 422 selected simulated genes are
shown in figure 38. The strong, tight correlations about the diago-
nal between estimates and true parameter values demonstrate the
successful recovery of ground truths for all parameters. The error
increases for genes with very low burst size or decay rate (b or δ),
which reflects the increased CV for such estimates shown in figure
33. Higher error for burst rate, a, estimates primarily corresponds
to those genes with very low, error-prone burst size, b.
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Figure 38: Correlations between "true" parameter values inferred
from the Qiu dataset for real genes used as ground truth parame-
ters with which to simulate data, and the estimates obtained from
sampled posteriors for those simulated genes. 422 simulated genes
are shown, selecting only those with CV < 0.45 across all five pa-
rameters shown. Red lines represent diagonals and the Pearson
correlation coefficient (r) is indicated.
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Having validated our model and algorithm performance, we can
carry out a genome-wide comparison of models 1 and 2 under re-
alistic conditions to compliment our idealised, single-gene demon-
stration (section 3.1). As before, we begin by selecting genes with
CV < 0.45 but only considering dimensionless parameters, (expres-
sion level, burst rate and burst size), in order to compare model 1
and model 2/3, since model 1 does not converge on temporal pa-
rameters (figure 30). This leads us to select 549 and 584 genes based
on our model 1 and 2 inference, respectively, for which we have suf-
ficient confidence. We observe strong, tight correlations about the
diagonal when plotting estimates vs true values for dimensionless
parameters for both models 1 and 2 (figure 39), with both models
performing equally well.
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Figure 39: Correlations between "true" parameter values inferred
from the Qiu dataset for real genes used as ground truth parame-
ters with which to simulate data, and the estimates obtained from
sampled posteriors for those simulated genes. Estimates for each
simulated gene were inferred using model 1 (left) and then model
2 (right), showing 549 and 584 simulated genes, respectively, se-
lecting only those with CV < 0.45 across the three (dimensionless)
parameters shown. Red lines represent diagonals and the Pearson
correlation coefficient (r) is indicated.
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Taking a measure of the error our selected gene sets as the abso-
lute value of the log fold-change between the true parameter value
and our estimate, we again see no visual or statistical difference
between models 1 and 2 for any of our dimensionless parameters
(figure 40), thus further reinforcing that both approaches perform
equally well for a given CV threshold.
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Figure 40: Comparison of the distribution of absolute value of the
log fold-change between "true" parameter values inferred from the
Qiu dataset for real genes used as ground truth parameters with
which to simulate data, and the estimates obtained from sampled
posteriors for those simulated genes. Estimates for each simulated
gene were inferred using model 1 (left) and then model 2 (right),
showing 549 and 584 simulated genes, respectively, selecting only
those with CV < 0.45 across the three (dimensionless) parameters
shown. There is no statistical difference between any of the three
pairs of distributions based on Wilcoxon test.

This is confirmed by plotting the relationship between CV and
the log fold-change between true parameter value and estimate (fig-
ure 41), indicating that the our quantification of confidence reflects
true certainty in our estimate to the same degree for both models.
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Figure 41: The log fold-change between "true" parameter values
inferred from the Qiu dataset for real genes used as ground truth
parameters with which to simulate data, and the estimates obtained
from sampled posteriors for those simulated genes is shown on the y-
axis. The CV obtained from sampled posteriors for those simulated
genes is shown on the x-axis. Estimates and CVs for each simulated
gene were inferred using model 1 (left) and then model 2 (right),
showing 549 and 584 simulated genes, respectively, selecting only
those with CV < 0.45 across the three (dimensionless) parameters
shown. 153



Noting that despite no differences in performance between our
models for a given CV threshold, there is a greater number of genes
with estimates meeting our confidence criteria with model 2 in-
ference than with model 1. Therefore, instead of selecting based
on CV, we selected simulated genes based on their ground truth
values, accepting those with expression level µ > 60 and burst
rate a < 4. Then comparing the CVs across the dimensionless pa-
rameters, those obtained with model 1 are clearly and statistically
significantly greater than those obtained with model 2 (figure 42),
indicating higher confidence in our model 2 estimates. This demon-
strates that while a given CV threshold reflects equivalent perfor-
mance in model 1 and 2, we obtain accurate and precise estimates
for a greater number of genes when using model 2 in the analysis
of moderately active genes with bursty transcription. Therefore,
we further confirm the advantages of complimenting UMI counts
with single-cell T>C data when inferring bursting dynamics with
a genome-wide analysis using realistic conditions.
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Figure 42: The log-ratio of the CVs obtained from sampled pos-
teriors generated with models 1 and 2 for the three dimensionless
parameters (expression level, burst rate and burst size) for genes
simulated using "true" parameter values that were inferred from
the Qiu dataset for real genes. Only simulated genes with a "true"
expression level µ > 60 and burst rate a < 4 are shown. The sig-
nificant Wilcoxon test p-value (p) indicates asymmetry about zero
(vertical red line).

3.4 Acceptance rates

Density plots of the MCMC acceptance rates (after burn-in re-
moval) for all 12276 genes analysed in the Qiu dataset and the
corresponding simulated genes are shown (figure 43). This diagnos-
tic indicates that overall the desired mixing behaviour is achieved in
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all cases for each of the three parameters in our chosen parametri-
sation, with the ideal acceptance rate being roughly 0.574 [139].
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Figure 43: Markov chain acceptance rates (excluding burn-in) for
inference on the Qiu dataset and the corresponding dataset simu-
lated using ground truth values inferred from Qiu, for each of the
three parameters in our chosen parametrisation, with the vertical
dashed lines indicating the optimal acceptance rate (0.574, the pro-
portion of proposals which accepted).

3.5 Discussion

Thus far we have demonstrated that a fully integrated inference
approach, which maximally exploits the information available in
4sU scRNA-seq data, results in optimal estimation for all parame-
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ters governing the transcriptional bursting dynamics (figures 30 and
31). This stems from the cell-specific T>C counts being shaped by
the transcriptional noise in addition to turnover rate and expression
level (figures 36 and 37), building on previous results which substi-
tuted a measure of the cell-cell variation in T>C rate as a proxy of
burstiness [106]. Running the algorithm in a genome-wide manner
on published data showed that we have highest confidence for noisy,
highly expressed genes with transcript lifetimes similar to the 4sU
pulse duration (figure 33). Genome-wide inference on simulated
data demonstrated the capacity of the algorithm to robustly recover
known parameter values with realistic biological and technical con-
ditions (figure 38). Comparison of inference with models 1 and 2
on realistic simulated data demonstrated that a higher number of
genes with high confidence parameter estimates in dimensionless
parameters may be recovered using 4sU scRNA-seq data than with
conventional scRNA-seq data (figure 42), despite 4sU labelling not
being required for convergence on these parameters, confirming the
advantages provided by synergising 4sU labelling and single-cell res-
olution. The improvement in inference with model 2 over model 1
would likely be stronger for datasets with deeper sequencing, more
cells and higher capture efficiencies.

An important point to note is that the role of extrinsic noise
is neglected when estimating parameters. Our model assumes that
the conditions of the cells are identical, although variation in cel-
lular conditions may be caused by asynchronised cell-cycles. The
expression of certain genes is necessarily highly sensitive to extrin-
sic sources of noise, such as those involved in cell-cycle regulation,
which are required to be more or less expressed at specific stages,
resulting in our parameter estimates for these genes likely being
strongly influenced by extrinsic noise [49, 75]. A related issue is
that of copy number variation of (nuclear) genes between one and
two throughout the cell cycle. Therefore, an unknown portion of
the cells have double the copy number of each gene. Even if the true
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parameter values associated with each copy of a gene remain con-
stant throughout the cell-cycle, the inferred burst frequency would
be increased relative to the true value since the model assumes a
single copy per cell. Finally, the size of cells varies depending on
cell-cycle phase. If the overall concentration of transcripts is to re-
main constant, higher expression levels would be required in larger
cells, leading to variability in the underlying parameter values for
a given gene between cells in order to achieve differing expression
levels. A solution would be to separate the cells by cell-cycle phase
with fluorescence-activated cell sorting before sequencing [96], or to
make use of allele-specific/sensitive scRNA-seq in conjunction with
metabolic labelling [75, 97]. Other sources of extrinsic noise have
also been shown to impact the chromatin landscape and transcrip-
tional bursting, such as cyclical changes in the levels of the H3K27ac
HM at promoters of genes related to the circadian rhythm in mouse
cells, which directly translated to changes in the burst frequencies
of those genes [74].
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4 Biological findings

4.1 High expression level genes

Now we return to the estimates obtained from the real dataset
on which inference was carried out with model 2 (see section 3.2).
Correlating the parameter estimates against each other for our 584
genes reveals that genes with extremely high expression levels, the
majority of which are mitochondrial genes, are able to achieve these
high levels primarily by having very large bursts, rather than very
frequent bursts or very stable transcripts, although the decay rates
are also somewhat constrained (figure 44). There may be biological
upper limits on burst frequency, κ, due to the various factors re-
quired to be in place to prime a gene for activity and, therefore, it
may be preferable to instead increase burst duration (reduce koff ),
and therefore burst size, for very high expression levels [95]. A
similar phenomenon has been observed previously, in which MYC
overexpression lead to increased expression in target genes through
increased burst duration and size, rather than increased burst fre-
quency [149, 150]. Estimates for burst frequency and decay rate
(κ and δ) are also positively correlated, perhaps because the cells
are only able to tolerate a certain degree of noise in the expression
of any given gene, otherwise too small a proportion may express
the gene for the function to be fulfilled. This may manifest as a
correlation between these two parameters to stabilise burst rate, a,
and thus the transcriptional noise.
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Figure 44: Estimates obtained via inference on the Qiu dataset
using model 2 (or 3) for different parameters plotted against each
other. Only our high confidence gene set is shown (584 genes which
had CV < 0.45 for all parameter estimates). Statistical significance
of difference in burst size, burst frequency and decay rate (b, κ and
δ) for genes with very high expression level (µ ≥ 1000) vs other
genes (µ < 1000) is shown, with the p-value calculated using the
Wilcoxon test. Also shown in the bottom right is the Spearman’s
rank correlation strength (rho) and statistical significance (p) of
burst frequency against decay rate (κ against δ).

4.2 Histone modifications and bursting

We next explored the relationship between HMs and transcrip-
tional bursting dynamics with a metagene analysis carried out using
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ChIP-seq data for eight HMs (see section 2.1.2). In this analysis,
we removed mitochondrial genes and genes for which we lacked
HM data from our set with high confidence parameter estimates,
with 505 genes ultimately being included. Of the eight active
HMs analysed, the profiles generally fall into the two previously
described categeories [77], being either predominantly promoter-
localised (H3K4me2, H3K4me3, H3K9ac, H3K27ac) or gene body
(GB)-localised (H3K4me1, H3K36me3, H3K79me2, H4K20me1).
To better understand the association between HM profile and burst-
ing parameters, the genes were split in half, sorted by parameter
estimate for each of the five parameters.

4.2.1 Promoter-localised histone modifications

Metagene comparison reveals position-dependent associations for
promoter-localised HMs, using H3K4me2 as an example (figure
45). It appears that HM presence at the promoter and through
the GB is associated with increased expression level, µ, and also
burst rate, a, while increased burst frequency, κ, is specifically as-
sociated with promoter but not GB presence. Conversely, presence
through the GB excluding the promoter region appears associated
with increased burst size, b, and reduced decay rate, δ.
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Figure 45: Metagene plots of H3k4me2 coverage, comparing profiles
for the top and bottom 50% of selected genes, which had CV < 0.45
for all parameter estimates inferred from Qiu, when split according
to their estimates for each parameter, denoted by high and low, as
indicated.

This analysis builds upon a previous scRNA-seq study which
correlated bursting parameter estimates with HM localisation by
averaging the ChIP-seq coverage from 2000 bp upstream of the TSS
to the TES for each gene [77]. They were unable to obtain estimates
of burst frequency or decay rate (κ or δ) due to a lack of published
data on transcript turnover rates for the cell type (hESCs). Our
results are in agreement with [77] despite having a different cell
type, but additional complexities are revealed which are only ap-
parent with our metagene analysis combined with the capacity to
estimate burst frequency and decay rate (κ and δ) afforded by 4sU
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scRNA-seq. For promoter-localised HMs, they report positive asso-
ciations between HM presence and both burst rate and burst size (a
and b), whilst we demonstrate that the association with burst size,
b, is specific to the GB. We confirm that the association with burst
rate, a, holds throughout both the promoter and GB, but show that
this is a result of a promoter-specific positive burst frequency, κ,
association and a GB-specific negative decay rate, δ, association,
thereby further demonstrating the advantages of 4sU scRNA-seq
inference.

In order to statistically test these apparent associations, the av-
erage HM coverage values around the promoter and through the
GB excluding the promoter were obtained for each HM (see section
2.1.2), taking the average value from 2000 bp upstream of the TSS
to 5% through the GB (-2000:5%) and from 5% through the gene
body to the TES (5%:100%), respectively. Spearman’s rank cor-
relation of the mean value for each promoter-localised HM against
each parameter across our 505 genes confirmed the direction and
quantified the strength (figure 46), as well as confirmed the statisti-
cal significance of the suspected associations (figure 47). Figure 47
also confirms that there is no statistical evidence of an association
between decay rate or burst size and HM presence around the TSS
or between burst frequency and HM presence throughout the GB
downstream of the TSS, which aligns with our expectations based
on the metagene profile (figure 45).
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Figure 46: Heatmap showing the Spearman’s rank rho as the heat
intensity value for the correlations between bursting parameter es-
timates inferred from Qiu and the mean promoter-localised HM
coverage values across the -2000:5% and 5%:100% regions for se-
lected genes which had CV < 0.45 for all parameter estimates.
More intense red or blue colouration indicates a stronger positive or
negative correlation, respectively, while neutral indicates no/weak
correlation.
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Figure 47: Heatmap showing the Spearman’s rank p-value (ad-
justed for multiple hypothesis testing) as the heat intensity value
for the correlations between bursting parameter estimates inferred
from Qiu and the mean promoter-localised HM coverage values
across the -2000:5% and 5%:100% regions for selected genes which
had CV < 0.45 for all parameter estimates. The heat values are
discretised, corresponding to negative log10 p-value thresholds. For
example, the most intense blue indicates that, for the given corre-
lation, 10−2 < p, meaning no statistical significance, the neutral
colour indicates that 10−4 < p ≤ 10−3, while the most intense red
indicates that p ≤ 10−6.

The association between promoter-localised HM presence and
reduced decay rate is consistent with previous reports of a link
between HMs and pre-RNA processing. The RNAP elongation
speed may be modulated by HMs or they may be responsible for
the recruitment of splicing factors [151, 152]. This could result in
more stable RNA by ensuring correct splicing and/or polyadenyla-
tion. GB presence of promoter-localised HMs could also result in
increased burst size by facilitating TSS-TES contact through the
maintenance of the open chromatin state around the TES. Coupled
with the free movement of RNAP through the GB, this may increase
the burst size by allowing RNAPs to quickly and repeatedly gen-
erate multiple transcripts by promoting polymerase recycling [71].
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Metagene analyses of the other promoter-localised HMs that were
represented by H3K4me2 show the similar profiles of H3K4me3 (fig-
ure 48), H3K9ac (figure 49) and H3K27ac (figure 50).
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Figure 48: Metagene plots of H3K4me3 coverage, comparing pro-
files for the top and bottom 50% of selected genes, which had
CV < 0.45 for all parameter estimates inferred from Qiu, when
split according to their estimates for each parameter, denoted by
high and low, as indicated.
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Figure 49: Metagene plots of H3K9ac coverage, comparing profiles
for the top and bottom 50% of selected genes, which had CV < 0.45
for all parameter estimates inferred from Qiu, when split according
to their estimates for each parameter, denoted by high and low, as
indicated.
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Figure 50: Metagene plots of H3K27ac coverage, comparing profiles
for the top and bottom 50% of selected genes, which had CV < 0.45
for all parameter estimates inferred from Qiu, when split according
to their estimates for each parameter, denoted by high and low, as
indicated.

4.2.2 Gene body-localised histone modifications

A similar analysis of the GB-localised HMs was also carried out,
where we use H3K36me3 as a representative example, although
their metagene profiles and bursting associations are somewhat
more diverse than with the four promoter-localised HMs. H3K4me1
was categeorised as being primarily promoter associated in [77] but
we find its connections to transcriptional dynamics instead to be
contingent upon its presence throughout the GB, and have there-
fore reclassified it for this context. The profiles of H3K36me3 halved
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by the different bursting parameter estimates as before (figure 51)
indicate that presence throughout the GB and around the TES
seems to be associated with increased expression level, burst rate
and burst frequency (µ, a and κ) in a uniform manner. No associ-
ation with burst size or decay rate (b or δ) is apparent, suggesting
that this HM is associated with increased expression level, µ, purely
through increased burst frequency, κ. In this case, we are able to
support the previously reported correlation with burst rate, a, [77],
and confirm that the inability of scRNA-seq data to distinguish
burst rate and burst frequency (a and κ) did not skew the final
conclusions by quantifying the strength (figure 52) and statistical
significance (figure 53) of H3K36me3 and the other GB-localised
HMs which it represents (H3K79me2 and H4K20me1). It should
be noted, however, that based on the metagene analysis, while both
H3K79me2 and H4K20me1 appear to be primarily associated with
increased expression level, burst rate and burst frequency (µ, a and
κ), along with H3K4me1 they look to have a positive and negative
association with burst size and decay rate (b and δ), respectively,
when found throughout the 20%:100% region. However, this is sta-
tistically significant only for H3K4me1 (figure 53), which also has
no association with burst frequency, κ, and no significant corre-
lation with burst rate, a. Therefore, for the GB-localised HMs,
H3K36me3, H3K79me2 and H4K20me1 can be regarded as simi-
lar in their associations with bursting dynamics, while H3K4me1
is an outlier. The regions of association for the GB-localised HMs
vary to a degree, as dictated by the metagene analysis, with the
values used for the correlation analysis shown in figures 52 and 53
being averaged across 0%:2000 (TSS to 2000bp downstream of the
TES) for H3K36me3 and H4K20me1, -2000:100% for H3K79me2
and 20%:100% for H3K4me1. The metagene analyses of H3K79me2
(figure 54), H4K20me1 (figure 55) and H3K4me1 (figure 56) are
shown.
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Figure 51: Metagene plots of H3K36me3 coverage, comparing pro-
files for the top and bottom 50% of selected genes, which had
CV < 0.45 for all parameter estimates inferred from Qiu, when
split according to their estimates for each parameter, denoted by
high and low, as indicated.
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Figure 52: Heatmap showing the Spearman’s rank rho as the heat
intensity value for the correlations between bursting parameter es-
timates inferred from Qiu and the mean GB-localised HM coverage
values across 0%:2000 for H3K36me3 and H4K20me1, -2000:100%
for H3K79me2 and 20%:100% for H3K4me1 for selected genes which
had CV < 0.45 for all parameter estimates. More intense red or
blue colouration indicates a stronger positive or negative correla-
tion, respectively, while neutral indicates no/weak correlation.
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Figure 53: Heatmap showing the Spearman’s rank p-value (ad-
justed for multiple hypothesis testing) as the heat intensity value for
the correlations between bursting parameter estimates inferred from
Qiu and the mean GB-localised HM coverage values across 0%:2000
for H3K36me3 and H4K20me1, -2000:100% for H3K79me2 and
20%:100% for H3K4me1 for selected genes which had CV < 0.45
for all parameter estimates. The heat values are discretised, cor-
responding to negative log10 p-value thresholds. For example, the
most intense blue indicates that, for the given correlation, 10−2 < p,
meaning no statistical significance, the neutral colour indicates
that 10−4 < p ≤ 10−3, while the most intense red indicates that
p ≤ 10−6.
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Figure 54: Metagene plots of H3K79me2 coverage, comparing pro-
files for the top and bottom 50% of selected genes, which had
CV < 0.45 for all parameter estimates inferred from Qiu, when
split according to their estimates for each parameter, denoted by
high and low, as indicated.
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Figure 55: Metagene plots of H4K20me1 coverage, comparing pro-
files for the top and bottom 50% of selected genes, which had
CV < 0.45 for all parameter estimates inferred from Qiu, when
split according to their estimates for each parameter, denoted by
high and low, as indicated.
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Figure 56: Metagene plots of H3K4me1 coverage, comparing pro-
files for the top and bottom 50% of selected genes, which had
CV < 0.45 for all parameter estimates inferred from Qiu, when
split according to their estimates for each parameter, denoted by
high and low, as indicated.

4.3 Discussion

Using the genome-wide transcriptional bursting parameter estimates
obtained in section 3, genes with very high expression levels are re-
vealed to be primarily mitochondrial, as was previously reported
[105]. Furthermore, such genes were shown to achieve high expres-
sion levels through increased burst size rather than burst frequency
(figure 44), potentially due to biophysical limitations on the rates
of switching between active and inactive states, which would make
longer bursts the more favourable option, as was seen with MYC -
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driven transcription [149, 150]. As opposed to previous reports of
mESC cells [95], we found significant variation in transcript decay
rates in K562 cells, emphasising the importance of accounting for
this explicitly, which lead to the perhaps surprising finding of a
positive correlation between burst frequency and decay rate (figure
44). We offer two hypothesis to explain this observation; one evolu-
tionary and one mechanistic. Perhaps there are selection pressures
acting to constrain the transcriptional noise levels, which is deter-
mined by burst rate as the ratio of burst frequency and decay rate,
with extreme high or low values being unfavourable in, for example,
ensuring the correct proportion of cells express a gene stochastically
to induce their differentiation [61, 153]. Alternatively, high burst
frequencies would correspond to RNAP rapidly processing over the
gene, allowing less time to pause for the nascent transcript to be
folded/spliced appropriately than with lower burst frequencies [1],
resulting in reduced transcript stability.

Genome-wide analysis of HMs and transcriptional bursting was
guided by a previous study [77], but revealed many additional com-
plexities by combining metagene analyses with 4sU scRNA-seq in-
ference results rather than conventional scRNA-seq. GB-localised
HMs were generally associated with more frequent bursts (figure
51), thereby reducing transcriptional noise, which aligns with pre-
vious results regarding the HM-mediated recruitment of elongation
factors to the GB leading to increased burst frequency [96]. On
the other hand, promoter-localised HMs only exhibit an associa-
tion with burst frequency when present around the TSS, instead
becoming associated with reduced decay rate when present further
downstream, maintaining the association with burst rate across the
whole gene (figure 45). Since HMs have been shown to be impor-
tant for pre-RNA processing via recruitment of splicing factors and
modulation of RNAP elongation rate [151, 152], this may offer an
explanation to the observed association with reduced decay rate
and promoter-localised HM presence through the GB by enhanc-
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ing the likelihood of correct co-transcriptional 5’ capping, splicing,
polyadenylation and transcript folding to increase transcript stabil-
ity.

Another key observation is the association between promoter-
localised HMs and increased burst size when found throughout the
GB but not the TSS region (figures 46 and 47). One possible
explanation is that their presence further downstream may facil-
itate TSS-TES cross-talk, allowing the same RNAP to repeatedly
transcribe during the active period by being immediately recycled
and reinitiating after termination [71]. Another hypothesis is that
downstream presence of promoter-localised HMs reflects that lo-
cations of alternative TSSs, which are capable of transcribing si-
multaneously when the chromatin landscape of the gene facilitates
active transcription, resulting in increased burst size since bursts
from alternative TSSs would be non-independent. 483 out of the
505 genes used in the metagene analyses had alternative TSSs at
multiple positions based on inspection of the gtf, which reinforces
this as a plausible explanation. An association with increased burst
size is also observed with H3K4me1 presence in the GB (figure 56),
although the profiles observed point to this HM being something
of an outlier in the sense that it’s set of associations don’t conform
to those observed for either the promoter-localised or it’s fellow
GB-localised HMs, which are otherwise consistent within their own
groups. H3K4me1 is known to be strongly associated with en-
hancers [154], indicating that its presence throughout the portion
of the GB downstream of the TSS may signify intronic enhancers
[155], which could result in larger bursts by maintaining the active
state of the gene they are contained within for longer periods. In-
deed, this is a limitation of the metagene analyses presented here,
that no distinction between the exonic and intronic regions of the
gene are made, otherwise we would expect to see the association
of H3K4me1 with burst size being restricted to intronic not exonic
regions. It would be beneficial for future analyses to dissect the
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different regions of genes into separate metagene analysis to check
whether other observed associations are specific to exons or introns,
especially considering that exons and introns are known to exhibit
differing densities of HMs, such as H3K36me3 being relatively en-
riched in exons [40].

One caveat of the analysis presented here is that the relatively
small number of genes available for statistical analysis of their as-
sociation with HMs prevented further subdivision of the gene set.
For example, burst size (b) has been shown in previous papers to
negatively correlate with gene length [95]. Therefore, the position-
specific associations between promoter-localised HMs and burst size
may be stronger for short genes than long genes. Additionally, there
are possible issues introduced by the selection of genes with high
confidence parameter estimates, which biases the selection towards
genes which tend to be more highly expressed in K562 cells. From
a gene ontology perspective, this results in genes with related func-
tions, like haemoglobin and myoglobin synthesis genes and others
related to oxygen transport in the blood being preferentially se-
lected due to K562 cells being bone marrow cancer cells capable
of exhibiting characteristics associated with erythrocytes and other
blood cell types [123, 124]. Therefore, the bursting-HM associations
observed may be specific to genes with certain functions which may
have similar regulatory mechanisms rather than being genome-wide
features and also might not universally apply to alternative cell
types and organisms.
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5 Discussion

5.1 Exploiting the synergy

With the inference approach presented here we demonstrate the
capacity to obtain genome-wide estimates of the parameters gov-
erning transcriptional bursting dynamics and the timescales upon
which they occur from a single dataset with no prior knowledge. By
sampling from the full joint probability distributions of the param-
eter values given the data we are able to quantify confidence in our
estimates and take into account the complex interdependencies be-
tween the different parameters and 4sU scRNA-seq data, revealing
the regions of parameter space for which we have the most accurate
and precise estimates (figure 33). We show that the distribution of
4sU-induced T>C conversions across cells is shaped not only by
the turnover rate and expression level of the gene, but also by the
transcriptional noise, and that this information can therefore be
used to improve estimates of dimensionless parameters beyond the
level obtainable with conventional scRNA-seq and also improves
inference of temporal parameters compared to combined analysis
of scRNA-seq and bulk SLAM-seq data (figures 30 and 31). In this
way, combining metabolic labelling and single cell resolution has
an effect greater than the sum of their parts on inference power.
Previous analysis of transcriptional bursting using 4sU scRNA-seq
data has tapped into this idea by estimating the proportion of new
transcripts (based on T>C conversions) in each cell for a particular
gene and then using the standard deviation of this new to total
ratio as a proxy for burstiness [106]. However, as clearly demon-
strated by simulations showing the flow from the surviving to new
transcript pool (figures 36 and 37), this distribution, and therefore
its standard deviation, is shaped not only by transcriptional noise
but also by RNA turnover, and may be skewed by technical noise
such as variation in capture efficiency. Therefore, along with the
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overall expression level, this needs to be explicitly accounted for
in order to accurately quantify burstiness, as is naturally achieved
with our mathematical model. These benefits are confirmed by
comparison of genome-wide parameter inference with model 1 vs
2 on data simulated under realistic conditions, with the results re-
flecting a reduction in uncertainty achieved when incorporating all
of the available information in the data (figure 42).

5.2 Genome-wide dynamics

Having genome-wide estimates of the parameters governing tran-
scriptional dynamics means that it is possible to use the variation
which naturally exists between genes to examine the relationships
between the different parameters and other features, such as HMs,
instead of having to rely on experiments which artificially perturb
the cells to gain insight via a single gene system. In agreement with
previous reports [105], we find that the genes with very high expres-
sion levels are primarily mitochondrial genes (figure 44). Going
beyond this, we show that such activity levels are achieved by hav-
ing large burst sizes rather than increased RNA stability or burst
frequency, which we hypothesise could be due to biological con-
straints on the rate of switching between active and inactive states
[95], potentially making it favourable to instead increase the dura-
tion of bursts, and therefore the burst size, as has similarly been
observed for MYC -driven transcription [149, 150]. Whereas some
studies have found the variation in decay rates (in mESCs) across
genes to be an order of magnitude lower than for the other param-
eters, and therefore negligible [95], we found significant variation
in K562 cells which was important to account for in order to prop-
erly estimate burst frequencies. Indeed, our analysis revealed an
unexpected positive correlation between burst frequency and decay
rate, resulting in the burst rate, and therefore transcriptional noise,
being constrained (figure 44). One may speculate that only noise
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levels within a certain range are tolerated, with extreme values re-
sulting in too few cells expressing the gene for a given function to be
achieved, such as the appropriate proportion of cells in an isogenic
population undergoing differentiation [61, 153], manifesting as the
observed correlation. A mechanistic, rather than evolutionary, ex-
planation is that high burst frequencies result in rapid flux of RNAP
through the gene, such that less time is allowed for pausing, during
which appropriate folding and/or splicing of the nascent transcript
is facilitated [1]. This would would reduce transcript stability and
cause the observed correlation.

5.3 Histone modifications

Examining the relationship between bursting parameters and HMs
genome-wide produced results consistent with but advancing upon
previous work [77]. Combining our metagene analysis with the ad-
ditional information provided by 4sU scRNA-seq over inference on
conventional scRNA-seq reveals intricacies that were not previously
apparent. The presence of GB-localised HMs throughout the gene
is generally associated with increased burst rate (bursts per tran-
script lifetime) via increased burst frequency (bursts per minute),
while promoter-localised HMs are only associated with increased
burst frequency when found around the TSS (figures 51 and 45,
respectively). Their presence further downstream remains associ-
ated with increased burst rate, and therefore reduced transcrip-
tional noise, but through reduced decay rate rather than increased
burst frequency (figures 46 and 47). The association with reduced
decay rate may be related to the previously documented influence
of HMs on pre-RNA processing, which is achieved, for example, by
modulating RNAP elongation speed and/or by recruiting splicing
factors [151, 152]. This may increase RNA stability by reducing the
probability of incorrect splicing or polyadenylation, and by allowing
time for the nascent transcript to fold properly at the appropriate
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times by polymerase pausing, for example, which is also crucial for
transcript stability by facilitating 5’ capping [1].

Presence of promoter-localised HMs throughout the GB but not
at the TSS is also associated with increased burst size (figures 46
and 47). Downstream presence could facilitate interactions between
the TSS and the TES by maintaining the open chromatin state
around the TES. This, along with maintaining the free movement
of RNAP through the GB, could promote polymerase recycling and
therefore increased burst size by allowing RNAPs to quickly and re-
peatedly fire off multiple transcripts during an active period [71].
Another possible explanation for the association between promoter-
localised HM presence in the GB with burst size is that there are
multiple, alternative TSSs found within genes, all capable of initi-
ating transcription. Indeed, examination of the gtf indicates that
483 out of the 505 genes used in the metagene analyses do have
1 < TSS, which supports this hypothesis. This would result in an
association with burst size rather than burst frequency if bursts
from the different TSSs of a given gene are not independent of each
other, as would be expected since if, for example, heterochromatin
is cleared from across a gene then would permit transcription at all
TSSs simultaneously. If transcription is able to occur from one TSS
at a given moment then it is likely to also be possible at the other
TSSs. This mechanism would allow more total initiation events to
occur in a given time window, until the gene is repressed again by
heterochromatin formation, resulting in increased burst size.

5.4 Future directions and caveats

The inference approach described here is generally applicable to
4sU scRNA-seq datasets which have RNA spike-ins and UMIs for
any organism or cell type. Furthermore, the model could easily
be expanded to integrate an arbitrarily large number of repeat ex-
periments by extending the Markov chain according to the prod-
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uct of the likelihood functions of each dataset. Indeed, such a
scheme which utilised datasets with different 4sU pulse durations
could theoretically characterise the transcriptional dynamics of all
genes genome-wide. For example, inference carried out using two
datasets with longer and shorter pulse durations would facilitate
estimates for genes with long and short transcript lifetimes, re-
spectively, along with everything in between. Data from control
datasets without 4sU could also easily be folded in to improve infer-
ence. Taking the Qiu datasets we analysed as an example, we only
used the negative control scRNA-seq dataset for calculating gene-
specific background T>C rates (figure 14) in order to streamline the
analysis and demonstrate what can be accomplished using a single
dataset/experiment. However, the UMI count information could
have been included via likelihood function 1 relatively straightfor-
wardly to make the inference more robust, under the assumption
that there are no underlying differences between the control and
4sU dataset other than the 4sU pulse. In a similar manner, one
could also include other auxiliary datasets within our framework,
such as incorporating bulk SLAM-seq T>C count data to aid esti-
mation via likelihood function 3. As 4sU scRNA-seq data becomes
more common place and there are improvements in capture effi-
ciencies, sequencing depths and cell numbers, it will be possible to
robustly infer time-resolved transcriptional bursting dynamics for a
far greater number of genes from a single experimental set up. Our
findings on burst dynamics and their associations with HMs could
be a valuable starting point to inform future experimental work
investigating this area, while further application of our method be-
yond what is presented here might hint at other, novel mechanistic
relations.

A caveat of our analysis is the asynchronisation of the cell cycle
phase across the population. This may confound the results in two
ways, firstly because different phases have a different cellular envi-
ronment, influencing the global transcriptional dynamics and caus-
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ing variation in the underlying parameter values for the same gene
between cells in different phases. Secondly, there is variation in the
copy number of genes throughout the cell cycle, with an unknown
proportion of cells having one or two copies of each nuclear gene.
Confounding effects on the inference could be resolved by separa-
tion of the different subpopulations of cells by cell cycle phase using,
for example, fluorescence-activated cell sorting prior to sequencing
[96], and/or by using allele-specific/sensitive scRNA-seq approaches
combined with metabolic labelling [75, 97]. Another point worth
noting is the assumption of instantaneous bursting, which enables
analytical progress towards exploitation of the 4sU-sc synergy via
construction of model 2. This assumes that burst duration has
a negligible effect on the transcriptional dynamics and is support
by previous experimental results across the vast majority of genes
analysed for which the gene spends much more time in the inactive
than active state, koff >> kon [95]. This assumption corresponds
to a three parameter model of transcriptional bursting, unlike the
standard four parameter model (figure 7), collapsing transcription
rate (β) and gene inactivation rate (koff ) into the burst size pa-
rameter (b). However, there is likely a small subset of genes which
spend a similar amount of time in the active and inactive states,
where koff ≈ kon, in which case the burst duration will strongly
influence the transcript count distribution, dynamics and noise. In
these cases, it will be appropriate to switch to an alternative treat-
ment to analyse corresponding 4sU scRNA-seq data, replacing the
negative binomial distribution in equation 1 with a Poisson-Beta
compound distribution [54] which can account for variable time
spent in inactive and active gene states

P (m) =

∫
fPois (m|βp/δ) fBeta(p|kon/δ, koff/δ)dp

This would alter likelihood function 1, which could then be com-
bined with likelihood function 3 (not likelihood function 2 since
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it also assumes instantaneous bursts) essentially giving a modified
version of model 3 capable of estimating transcription rate, decay
rate, activation rate and repression rate (β, δ, kon and koff ) or
some subset depending on the location of the gene within parame-
ter space.

One must also consider both the type of cells and the condi-
tions in which they were cultured, and how these factors influence
the results presented and the generalisability of conclusions drawn.
Being a cancer cell line derived from a patient with chronic myeloid
leukimia [122], K562 cells are capable of exhibiting characteristics
associated with blood cells such as erythrocytes, monocytes and
granulocytes, including the production of proteins related to oxy-
gen transport such as haemoglobin [123, 124]. They also massively
overexpress Aurora kinases relative to non-cancerous cells, which
are required for mitosis in healthy cells, leading to uncontrolled cell
division in K562 cells [125]. Overall, the transcriptome in K562
cells is highly skewed towards genes involved in blood cell functions
as well as those required for cancerous cell divisions, which may
have distinct regulatory programmes, resulting in parameter esti-
mate profiles which may be biased towards genes associated with
these biological functions, with the regulatory patterns for cell di-
vision especially deviating considerably from that of non-cancerous
cells. An additional complication regarding uncontrolled cell divi-
sion is that transcripts of mitosis-related genes must be degraded
at specific points to allow progress from one cell-cycle stage to an-
other, which under a rapid, cancerous cell-cycle regime could alter
our decay rate estimates associated with these genes compared to in
healthy cells [156]. Overall, this means that caution should be used
when generalising to non-blood and especially non-cancer cell types
the biological conclusions drawn regarding correlations of parame-
ter estimates with each other (figure 44) and associations between
HMs and bursting (figures 46, 47, 52 and 53). On the other hand
the more mathematical/fundamental results reported in section 3

185



would not be influenced by these factors.
Regarding the influence of culture conditions, starvation of eu-

karyotic cells has been shown to cause different responses in terms
of transcriptional bursting dynamics across different genes, even
when belonging to closely related families, with both increases and
decreases in expression level being observed through variations in
burst size and frequency [88], making it difficult to predict the ef-
fects of altered culture conditions on genome-wide transcriptional
bursting dynamics. Different culture conditions can also be used to
induce differentiation of K562 cells into erythroid cells, macrophages
and megakaryocytes [157], which would result in a massive shift in
the transcriptome away from rapid cell division and towards the
specific functions/processes associated with those cell types. There-
fore, the biological results and conclusions drawn depend upon cul-
ture conditions that facilitate indefinite growth and do not stress
the cells, or induce differentiation, for example, which is not the
case in many biologically relevant scenarios, such as in the mature
and developing tissues of animals. Again this makes the generalis-
ability of the results reported in section 4 to other cell types and
environmental scenarios more tenuous, although culture conditions
would not be a confounding factor for the more fundamental in-
sights presented in section 3.

5.5 Conclusions

In conclusion, we have developed a mathematical model to max-
imally exploit the power of 4sU scRNA-seq datasets to examine
transcriptional bursting, tapping into the synergy between single-
cell resolution and 4sU labelling which manifests in the cell-specific
T>C rate distributions. The advantages over conventional scRNA-
seq were demonstrated in detail using small-scale simulations and
performance of the algorithm across parameter space was validated
with large-scale simulations. We applied our inference approach
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to published 4sU scRNA-seq data to obtain genome-wide joint pa-
rameter estimates and confidence quantifications, finding an un-
expected correlation between burst frequency and decay rate, and
that genes with extremely high expression levels achieve this pri-
marily through increased burst size. Finally, we linked our esti-
mates with published ChIP-seq data, revealing position-dependent
associations between different histone modifications and parame-
ter estimates which only become apparent with 4sU scRNA-seq as
opposed to conventional scRNA-seq.
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