
 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/179169                                                                                      
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/179169
mailto:wrap@warwick.ac.uk


Introspection of 2D Object Detection using Processed Neural Activation Patterns
in Automated Driving Systems

1Hakan Yekta Yatbaz 1,2Mehrdad Dianati 1Konstantinos Koufos 1Roger Woodman
1WMG, University of Warwick

2School of Electronics, Electrical Engineering and Computer Science (EEECS)
Queen’s University of Belfast

(hakan.yatbaz, m.dianati, konstantinos.koufos, r.woodman)@warwick.ac.uk, m.dianati@qub.ac.uk

Abstract

While deep neural network (DNN) models have become
extremely popular for object detection in automated driv-
ing systems (ADS), the dynamic and varied nature of the
road traffic environment can still lead to model failures. To
address this issue, researchers have recently explored intro-
spection mechanisms, a.k.a, self-assessment, for monitoring
the quality of perception in ADS. Subsequently, depending
on the situation, these mechanisms can either hand over
control to the human driver in SAE Level 3, or initiate a
minimum risk maneuver in SAE Level 4 ADS. State-of-the-
art introspection mechanisms for ADS train a neural net-
work to learn the relationship between the raw neural ac-
tivation patterns of the underlying DNN-based perception
function per frame and the calculated mean average preci-
sion. In this paper, we show that the use of raw activation
patterns may contain misleading information for introspect-
ing 2D object detection in ADS. To this end, we investigate
how to optimally pre-process these patterns for improving
the error detection performance. We evaluate the developed
mechanism with and without pre-processing of the raw neu-
ral activation patterns and compare its performance with
a state-of-the-art algorithm highlighting that for the Berke-
ley Deep Drive (BDD) dataset, pre-processing reduced the
ratio of missed errors by 14% and improved the overall de-
tection performance by 3%.

1. Introduction
The mainstream architecture of automated driving sys-

tems (ADS) consists of separate subsystems for sensing,
understanding, planning and control to facilitate their de-
sign, aiming to enhance passenger comfort, safety, and ef-
ficiency of future transportation. Perception, i.e., sens-
ing and understanding the surrounding road traffic envi-
ronment, is crucial since the rest of the ADS architectural

Figure 1. High-level summary of the proposed introspection mech-
anism.

pipeline heavily depends on it. Object detection, i.e., lo-
calising and classifying objects, is one of the key functions
of the perception subsystem of ADS. Deep neural networks
(DNN) are becoming widely accepted for their improved
object detection performance compared to traditional com-
puter vision techniques. Nevertheless, their reliability and
stability in safety-critical situations such as those encoun-
tered in ADS remain to be a challenge for system devel-
opers [1, 17, 26]. Even the best perception systems are
not bulletproof; perception errors cannot be eliminated de-
spite the rapid advancements in DNNs. To this end, run-
time monitoring is a crucial last line of defense against
such malfunctions. This means that a DNN-based mech-
anism must be able to detect its errors, which is called in-
trospection in this paper. Several introspection approaches
have been proposed so far by considering different learn-
ing (input) representations and error identification methods
in DNN-based systems. In this regard, one approach is
confidence/uncertainty-based introspection, where the con-
fidence or uncertainty of the output is used to detect errors
[14]. Another approach is inconsistency-based introspec-
tion, which involves detecting inconsistencies among two or
more diverse parallel systems, such as detection and track-



ing in [21]. Past experience-based introspection is a promis-
ing approach for ADS operating in controlled environments,
which involves encoding and storing of past experiences
that the system can query for error detection [8]. Lastly,
it is also possible to use estimation of an upper bound of a
given performance metric, such as mean average precision
(mAP) as an indicator for detecting events that the system
performance degrades below a designated threshold [20].

In recent years, performance-based introspection using
raw neural activation patterns has gained interest due to its
flexibility and ease of integration into other systems [20].
However, a recent study on out-of-distribution (OOD) de-
tection has highlighted that raw neural activation patterns
can be confusing when the system needs to identify images
that do not belong to one of the known classes used during
training [4]. This study also showed that simplification of
these activation patterns may help identifying OOD samples
without suffering from significant performance loss for the
in-distribution samples. The OOD detection problem is a
subset of error detection and machine learning safety focus-
ing on errors due to unknown samples [16]. This motivates
the investigation of the effect of pre-processed neural acti-
vation patterns for in-distribution error detection.

To this end, this paper explores the impact of pre-
processing neural activation patterns for introspection, orig-
inally introduced in [4] using the term activation shap-
ing, on the performance-based introspection for 2D object
detection in ADS. For this purpose, we utilise the fully-
convolutional one-stage object detection model (FCOS),
and extract neural network activation patterns from the last
layer of its backbone model. The errors are labelled us-
ing a mAP threshold equal to 0.5, and the (binary) la-
bels are paired with the raw neural activation patterns.
Subsequently, an introspector convolutional neural network
(CNN) is trained on the generated pairs, hereafter referred
to as the error dataset, where pre-processing is applied prior
to the introspection model. A high-level summary of our
mechanism is presented in Fig. 1. In summary, the contri-
butions of this paper are:

• Adaptation of a pre-processing technique for OOD de-
tection mechanism for classification to performance-
based introspection for 2D object detection in ADS.

• Evaluation of the effectiveness of the adapted mecha-
nism against the use of raw neural activation patterns,
and a comparison of its performance versus state-of-
the-art (SOTA) methods [20] for error detection in 2D
object detection models in ADS.

• Investigation of the effectiveness of the adapted mech-
anism in terms of error detection capability on two
well-known public driving datasets, KITTI [6] and
Berkeley Deep Drive (BDD) [28].

The structure for the rest of this paper is as follows: In
Section 2, we review the current literature on introspec-
tion of 2D object detection. Section 3 outlines the adapted
mechanism and introspection framework. Experimental set-
tings are presented and discussed in Section 4. Performance
evaluation of the proposed method is displayed in Section 5.
Finally, key takeaways of the papers are given in Section 6.

2. Related Work
While the output of the object detection task should

be the location and class of objects, it is equally im-
portant to evaluate the model’s confidence in doing so.
This is of paramount importance for safety-critical appli-
cations such as accident-prone driving scenarios in ADS.
The existing literature on the introspection of object de-
tection is extensive and multi-disciplinary. In this sec-
tion, we provide a comprehensive overview that can be cat-
egorised into confidence/uncertainty-based, performance-
based, inconsistency-based and experience-based introspec-
tion.

Starting with the first category, the focus is on tech-
niques that model uncertainty in the detection process to
identify misdetections. One approach uses Bayesian infer-
ence and Monte Carlo dropout (MCD) to generate multiple
detections and compute the covariance matrix per-anchor
bounding box to represent uncertainty. Harakeh et al. in [9]
proposed a Bayesian object detector, while Miller et al.
in [14] extended the MCD approach to 2D object detec-
tion and used the uncertainty values to establish a find-and-
reject mechanism for open-set errors. The method named
as GMM-Det in [15] uses class-specific Gaussian mixture
models (GMM) to calculate the uncertainty measure for de-
ciding whether or not to reject a sample. Post-processing
can also be leveraged to improve the uncertainty estimates
of object detection models. In [22], the authors proposed
the MetaDetect algorithm that uses the output of an object
detector (regression and classification) to provide better un-
certainty estimates. In [24], the authors designed a model to
identify areas-of-concern, generating a heatmap to indicate
regions where there is a high probability of missing objects.
Finally, researchers have also focused on identifying OOD
samples in object detection. In [5], the authors implemented
a spatio-temporal unknown distillation (STUD) mechanism
that extracts unknown objects from videos and regularises
the model’s decision boundary accordingly. Wilson et al.
in [25] proposed a mechanism for OOD detection that lever-
ages activation maps extracted from “OOD-sensitive lay-
ers” and aims to identify OOD samples.

The second category of introspection methods for object
detection focuses on utilising performance metrics for iden-
tifying error cases. For instance, object detection is com-
monly evaluated using the mAP for the detection perfor-
mance. Hence, drops in the mAP or mAP regression ei-



ther per-frame or per-window (a sequence of frames) can
be utilised for error detection. Some researchers have also
developed methods to introspect each detected object for
identifying if it is missed or incorrectly detected. These
methods can include monitoring systems such as those pro-
posed in [20] and [19]. In [20], the authors used the output
of the last layer of the backbone CNN to extract features
and determine whether the estimated mAP is sufficient for
the given image, while in [19], they proposed a cascaded
neural network to extract features from multiple layers of
the backbone network and multiple frames. Alternatively,
in [18], the authors designed a monitoring system for false
negatives in traffic sign detection by extracting activation
maps from the object detector’s backbone. Similarly, the
authors in [29] proposed a method for introspection to iden-
tify false-negative samples in object detection, while [27]
used a separate introspection model to extract common fea-
tures for false-negative samples from the perception input
during training.

Researchers have also proposed mechanisms that can
monitor the inconsistency in different perception systems,
such as object detectors and trackers, to identify errors. In
[21], the authors defined an inconsistency-based error using
both 2D object detection and tracking algorithms. Anto-
nante et al. proposed a diagnostic graph in [3] where each
vertex represents a processor, such as RADAR or camera,
and edges represent consistency tests between the vertices.
This formulation enables the system to identify errors in ob-
ject detection and vehicle localisation with minimal over-
head. The idea is extended in [2] where a graph neural net-
work (GNN) detects inconsistencies in the diagnostic graph.

Lastly, creating a knowledge base with environment
characteristics is another method for introspection where
the object detector’s ability is checked using a querying
mechanism. In [8], a location-specific method for intro-
spection grants autonomy to a robot only when its locali-
sation is reliable. The method continuously records its past
performance and offers probabilistic performance values for
specific locations. The decision-making system uses the
performance records to grant or deny autonomy in a limited
environment. Similarly, in [7], the authors extended their
location-based method with visual similarity-based experi-
ence in addition to performance records. In contrast, Hawke
et al. in [10] presented a method for introspection using
experience-based errors to retrain the network with false-
negative samples extracted using scene filters. The devel-
oped experience-based classification mechanism turns out
to improve the error detection performance.

3. Proposed Introspection Method
This section firstly gives a short overview of the acti-

vation pre-processing method proposed in [4]. This is fol-
lowed by a discussion of how these activations are incorpo-

rated within our introspection framework. Next, we outline
the key aspects of the main object detection system used in
this paper and the proposed introspection models. Finally,
we describe the process of training the introspection model,
which is a crucial step for the system’s effectiveness.

3.1. Pre-processing Method: Activation Shaping

In [4], the authors hypothesised that the raw neural ac-
tivation patterns can be overly complicated for the task of
OOD detection, and discussed various methods to simplify
them. To test their hypothesis, they have proposed a two-
stage approach consisting of the following:

1. Set equal to zero the activation elements whose values
are less than the p-th percentile of the sample, i.e.,

x′ = Shape(x) =

{
xi, if xi ≥ F−1(p)

0, otherwise,
(1)

where x is the activation pattern, xi, i = 1, . . . , n is its i-th
element, F−1 is the inverse (empirical) cumulative distribu-
tion function of the activation pattern, and x′ is the shaped
activation pattern.

2. Process the remaining activations using one of the fol-
lowing rules:

• Keep the remaining activations as it is, called activa-
tion shaping with pruning (ASH-P)

• Set all the values to a positive constant β calculated
using the sum of all activations divided by the number
of unpruned activations called ASH by binarisation
(ASH-B).

x′ =

{
β, if xi ≥ F−1(p)

0, otherwise,
(2)

where β = 1
|{i:x′

i ̸=0}|
∑

i xi, and x′
i is an element of

the shaped activation pattern.

• Scale up all the activations by the ratio calculated with
the sum of the activations before and after pruning,
called ASH with scaling (ASH-S).

x′ =

{
β xi, if xi ≥ F−1(p)

0, otherwise,
(3)

where β = exp
(∑

i xi∑
i x

′
i

)
.

An example for all shaping techniques on a simplified
2D activation map is illustrated in Fig. 2. In the following
section, we will compare the above-mentioned processing
techniques to investigate their capability to identify errors
depending on the performance metric of the object detector.



Figure 2. Summary of three pre-processing modes with 80 per-
centile presented in [4].

3.2. Introspection Framework

To assess the effectiveness of the adapted pre-processing
method (activation shaping), we commence by dividing the
driving dataset into three subsets: training, validation, and
testing, in a proportion of 60 − 20 − 20 %, respectively.
Once the dataset is split, we follow the four stage intro-
spection framework illustrated in Fig. 3. In the initial stage,
we train an object detection model for driving-specific sce-
narios. This is necessary because most object detectors are
pre-trained on generic datasets like COCO [12] or Pascal
VOC [12]. In the second stage, we use the trained ob-
ject detector to generate an error dataset for raw activation
patterns. This dataset associates the raw neural activation
patterns with binary labels generated by calculating the se-
lected performance metric(s) and comparing them with pre-
defined threshold(s). In this study, we adopt the mAP since
it is widely used for object detection, and similar to [20],
we set the decision threshold at 0.5 for a fair comparison.
Subsequently, in the third stage, the introspection system is
trained using the error dataset derived from the validation
set, and in the last stage, we evaluate the performance of the
introspection system on the error dataset generated from the
test set. Note that in stages three and four, the raw neural
activation patterns patterns are simplified according to the
pre-processing modes described in Section 3.1.

3.3. Models & Training

The introspection framework consists of an object de-
tector and an introspection neural network model. For ob-
ject detection we have used a fully-convolutional one-stage
(FCOS) [23] neural network, because one-stage detectors,
due to their simplicity, are preferred in ADS applications
over two-stage detectors, such as the Faster R-CNN. The
selected detector is further trained on the KITTI and BDD

datasets for domain-specific feature extraction.
For the introspection mechanism, we have utilised the

ResNet18 [11] architecture for feature extractor from the
shaped activations for error detection. Then, we coupled
ResNet18 with a fully connected network (FCN) for final
classification and applied hyper-parameter tuning to obtain
optimal results. The summary of the parameters and their
ranges, where applicable, are:

• Optimiser: Stochastic gradient descent (sgd).

• Early Stop Patience: 25 Epochs.

• Loss Function L : Focal loss,

L(q) = −
∑

i
αi(1− qi)

γ log(qi) i = 0, 1, (4)

where log is the natural logarithm, q is the predicted
probability vector for the classes not error (0) and error
(1) with elements (q0 and q1 respectively), αi is a scal-
ing factor (class weights) that balances the contribution
of the positive and negative examples for each class,
and γ ∈ {0, 2, 5} is a focusing parameter that down-
weights easy examples and emphasises hard ones.

• Number of Epochs: 600.

• Batch size: 16, 32, 64, 128.

• Learning Rate: 0.01, 0.001, 0.005.

4. Experimental Setup
This section provides the details of the experimental

setup used for the evaluation of the proposed introspection
mechanism. We first describe the selected datasets and the
pre-processing steps undertaken to adapt them for our inves-
tigation. Then, the metrics used to quantify the efficacy of
the proposed error detection mechanism are described. Fi-
nally, we present the best performing hyperparameter con-
figurations for different pre-processing modes and datasets.

4.1. Datasets

There are various datasets available from companies and
research institutes for training and developing object detec-
tors for ADS. For this study, we have chosen two datasets
that are popular in both introspection and ADS domains,
i.e., KITTI and BDD.

The KITTI dataset comprises over 14,000 images that
are annotated with a camera and a Velodyne LiDAR
mounted on a vehicle driving through urban areas in Karl-
sruhe, Germany. It includes a training set of 7,481 anno-
tated images with various object classes, and a test set of
7,518 images. However, only three classes - car, pedestrian,
and cyclist - are typically used for benchmarking, and the
labels for the test set are not publicly accessible to ensure



Figure 3. Four-stage introspection framework: (1) Train a driving-specific object detection model, moving away from generic datasets
like COCO and Pascal VOC. (2) Generate an error dataset linking neural activations to binary labels using mAP at a 0.5 threshold. (3)
Train the introspection system with error dataset from the validation set. (4) Test the system’s performance using error dataset from the test
set , simplifying neural activations.

fair benchmarking. In contrast, the BDD dataset comprises
100,000 annotated images taken from videos recorded in
different parts of the United States, featuring ten object
classes, including cars, pedestrians, bicycles, and motorcy-
cles, but not cyclists. The dataset is divided into three sets
- train, test, and validation - with 70%, 20%, and 10% pro-
portions, respectively. The test set does not have publicly
available labels.

To ensure compatibility between the two datasets, we
merge the object classes into two categories: “vehicle” and
“people.” All types of vehicles are relabelled as “vehicle,”
and classes for people who are walking or sitting are merged
into the “people” class. This allows for a more direct com-
parison between the datasets in our experiments.

4.2. Metrics

Since the proposed introspection model performs a clas-
sification task, we have utilised two well-known classifica-
tion metrics, namely area under receiver operating charac-
teristic curve (AUROC) and false negative rate (FNR), to
evaluate its performance. The main reason we have selected
the AUROC metric is to highlight the model’s ability to suf-
ficiently identify not only the errors but also the safe sam-
ples, as well as to be able to compare our proposed mech-
anism with SOTA. Furthermore, we have selected the FNR
metric for highlighting the performance in error cases since
they are vital for other traffic actors’ safety.

• AUROC: Provides an indicator of how well a clas-
sifier distinguishes between the positive and negative
classes. For introspection systems, the convention is

to associate the positive class with an error in the in-
put.

• FNR: Indicates the ratio of cases where the introspec-
tion system could not detect the error. In other words,
it shows the probability of missing an error in the sys-
tem, which can be read as:

FNR =
False Negatives

False Negatives + True Positives
.

Furthermore, it is essential to highlight that there is a
class imbalance, i.e., for each error sample in KITTI, there
are ten ’not error’ samples, and a low number of error sam-
ples for the experimentation on the KITTI dataset. This is
due to data partitioning prior to the four-stage framework,
and the overall number of samples available in the KITTI
dataset, which is low. Hence, the AUROC metric can pro-
vide high values if the model is able to correctly identify
non-erroneous samples that constitute the majority class. To
better understand the model performance in such cases, we
have also examined the FNR value to ensure that the model
can sufficiently identify both erroneous and safe cases. On
the contrary, due to the diversity and higher number of sam-
ples in the BDD dataset, there is no significant imbalance in
either the training or testing set for introspection.

4.3. Hyperparameter Tuning

To optimise the introspection performance, we have ex-
tensively evaluated the performance for various combina-
tions of hyperparameters, i.e., batch size, learning rate and



Table 1. Best performing hyperparameters for each configuration.

Dataset Method Percentile Batch
Size γ

Learning
Rate

BDD

S

90 16 0 0.005
85 16 5 0.001
80 16 5 0.001
75 16 0 0.005
70 16 0 0.005

P

90 16 5 0.010
85 16 0 0.005
80 16 0 0.001
75 16 0 0.005
70 16 0 0.001

KITTI

S

90 16 0 0.005
85 32 0 0.001
80 64 5 0.010
75 64 5 0.005
70 64 5 0.001

P

90 64 5 0.010
85 128 5 0.010
80 128 5 0.005
75 128 5 0.010
70 128 5 0.005

focusing parameter γ. Their best values for each dataset,
pre-processing mode and removal percentiles ranging from
70% to 90% can be retrieved from Table 1. The above-
mentioned imbalance can also be seen in the parameter se-
tups for best performing models, especially considering the
γ value. Specifically, for the KITTI dataset, better results
are obtained with higher γ values in which the dominance
of the majority samples are reduced.

5. Performance Evaluation
This section presents the evaluation of the developed

introspection system for object detection using the exper-
imental setup presented in Section 4. It is worth noting
that the introspection mechanism trained using the ASH-
B pre-processing mode did not yield promising outcomes,
as it consistently predicted most samples to belong to a sin-
gle class. Consequently, we have excluded the performance
evaluation results of this mode.

5.1. Comparison between Different Pre-processing
Modes

The performance evaluation for both datasets is pre-
sented in Table 2 for the pre-processing modes: only prun-
ing (P), and pruning and scaling (S), where it is demon-
strated that only pruning yields the best overall perfor-

mance. This is in contrast with the outcome of the numer-
ical results obtained in [4] where it is shown that the mode
S outperforms P. This difference may be attributed to the
use of pre-preprocessed activation patterns. In [4], these
patterns are used to calculate an energy score [13], while
our introspection method utilises them for feature extraction
and learning patterns for error detection. Hence, keeping
the original scales of the activation values, i.e., only prun-
ing, provides better results for introspection.

For the BDD dataset, pruning alone produces consistent
results, although the FNR still varies between 0.11 and 0.35.
On the contrary, it is apparent that the FNR significantly
fluctuates when scaling is applied after pruning (S). Over-
all, S achieves an AUROC of 0.76-0.80, indicating good
performance. Nonetheless, considering also the FNR met-
ric, we observe that high AUROC values are accompanied
by higher FNR values such as 33%. This behaviour indi-
cates that the model tends to provide better performance for
the not error cases as compared to the erroneous cases.

In the KITTI dataset, we observe a similar performance
pattern as in the BDD dataset for the S mode, where re-
sults tend to lean towards one of the classes, e.g., on the
one hand, a model with performance AUROC/FNR equal
to 0.8088/0.7144 correctly identifies mostly non-erroneous
cases, while on the other hand, a model with perfor-
mance AUROC/FNR equal to 0.4584/0.0102 correctly de-
tects mainly the error cases. Additionally, due to the limited
number of samples in comparison with the BDD dataset, the
performance inconsistencies between different percentiles
are more pronounced.

5.2. Comparison between Raw Neural Activation
Patterns and SOTA

In this section, we evaluate the model’s performance
without pre-processing and compare it with the SOTA, i.e.,
the results presented in [20], which follows the same exper-
imental procedure as we do in this paper. This comparison
is required to highlight the efficacy of the proposed mecha-
nism over other baselines.

In [20], the authors proposed extracting statistical fea-
tures from activation maps using mean, maximum and stan-
dard deviation functions, and used these values to train an
artificial neural network for error detection. It should be
noted that they have utilised a two-stage object detector,
but they have used the same pre-trained backbone model
utilised in this paper for extracting the raw neural activation
patterns.

Table 3 provides a comparison between the best perform-
ing pre-processing mode based on AUROC metric, their
no-shaping equivalents and the state-of-the-art model pre-
sented in [20]. The results show that for the BDD dataset,
shaping significantly reduced the FNR by 14%, while also
marginally increasing the overall performance by 3% com-



Table 2. Comparison of the different pre-processing modes (S and
P).

Dataset Type Percentile AUROC FNR

BDD

S

90 0.7994 0.3302
85 0.8057 0.2996
80 0.7612 0.0180
75 0.8021 0.0952
70 0.7971 0.1114

P

90 0.8009 0.2611
85 0.8068 0.3521
80 0.7972 0.2374
75 0.8103 0.1069
70 0.7999 0.2306

KITTI

S

90 0.8088 0.7143
85 0.6759 0.2143
80 0.4584 0.0102
75 0.5362 0.2449
70 0.6102 0.1327

P

90 0.8409 0.4898
85 0.8346 0.4082
80 0.8238 0.4796
75 0.8235 0.4592
70 0.8330 0.4388

pared to raw activation patterns. Similarly, shaping provides
better results than the SOTA method in both metrics. In the
KITTI dataset, the improvement in the overall performance
due to shaping comes at the cost of increased FNR. Despite
the competitive results, pre-processing did not perform bet-
ter than [20]. Additionally, it is important to emphasise that
there are better results in terms of FNR despite the lower
AUROC for the KITTI dataset, which may provide more
competitive results, see Table 2. As previously mentioned,
the discrepancy in results across different datasets may be
due to the reduced sample size resulting from partitioning.
However, it is noteworthy that our findings closely align
with those of [20] for the KITTI dataset.

Table 3. Comparison of pre-processed, raw neural activation pat-
terns and state-of-the-art.

Dataset Method Percentile AUROC FNR

BDD with ASH 75 0.8103 0.1069
w/o ASH - 0.7793 0.2439

[20] - 0.7950 0.4760

KITTI with ASH 90 0.8409 0.4898
w/o ASH - 0.8065 0.3674

[20] - 0.8460 0.3400

6. Summary & Conclusions

In this study, we explored the impact of simplified the
neural activation patterns to enhance the error detection ca-
pability of 2D object detection in automated driving sys-
tems (ADS). This concept has been previously examined
within the context of out-of-distribution detection for clas-
sification problems. In the present work, we utilised a one-
stage object detection model for extracting neural network
activation patterns from its backbone model’s final layer.
An error dataset was generated using the mean average pre-
cision (mAP) with a decision threshold at 0.5 to pair the bi-
nary labels with raw neural activation patterns. A separate
neural network was trained and tested on this error dataset,
employing pre-processing before inference. The modified
approach was assessed using KITTI and BDD datasets.

Our findings indicate that by pre-processing neural ac-
tivation patterns via pruning and scaling, the introspection
model’s capacity to detect erroneous patterns in 2D object
detection is enhanced. Furthermore, our findings under-
score the importance of large and diverse datasets while
also revealing encouraging outcomes for smaller datasets.
As this research constitutes an initial exploration of pre-
processing within the domain of introspection for 2D ob-
ject detection, further, more extensive studies are neces-
sary. These should examine the effects of pre-processing on
larger data samples, employ various state-of-the-art mod-
els, explore alternative pre-processing techniques, and ac-
count for domain-shift. Additionally, investigating other
pre-processing techniques, neural network architectures and
wider hyper-parameter spaces is essential to gain a broader
understanding of the effect of simplified neural activation
patterns on error detection in ADS.
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