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Molecular simulations discover a new mode of dynamic wetting that manifests itself in the very earliest
stages of spreading, after a droplet contacts a solid. The observed mode is a “rolling” type of motion,
characterized by a contact angle lower than the classically assumed value of 180°, and precedes the
conventional “sliding”mode of spreading. This motivates the development of a novel continuum framework
that captures all modes of motion, allows the dominant physical mechanisms to be understood, and permits
the study of larger droplets.

DOI: 10.1103/PhysRevLett.131.164001

Dynamic wetting governs a wealth of physical systems
ranging from surface coatings [1,2] to the guided folding
of graphene flakes [3]. In recent decades, a drive toward
miniaturization of fluid-based technologies has created a
surge of interest in wetting, initially, at the microscale and,
more recently, at the nanoscale, e.g., for nanoprinting [4] or
3D printed bionic nanodevices [5]. Fluid behavior at these
scales can be nonintuitive and occur in a regime where
experiments are rare, molecular dynamics (MD) simula-
tions can be tractable, and the validity of conventional
theoretical approaches is questionable [6–8].
Motivated by practical applications, much research has

focused on how droplets can be deposited onto solid
surfaces. In particular, the impact phase involving the
displacement of an ambient air cushion has attracted great
interest due to surprising experimental observations [9,10].
In contrast, the initial stages of spreading postcontact have
received far less attention, despite their importance for
understanding spontaneous capillary-driven wetting, rapid
adhesion produced by insects [11], or bioinspired switch-
able capillary-based grips [12].
The initial radial spreading of millimeter-sized droplets on

solids has been probed using high-speed cameras [13–16].
However, side-on imaging cannot visualize the cusplike
geometry created at the early stages, which means that the
liquid-solid-gas contact line (CL) of a millimeter-sized
droplet cannot be observed until it has wet a radius of rCL ∼
100 μm [13]. Viewing from under the substrate significantly
improves matters [14], but measurements are possible only

once rCL ∼ 10 μm. At these microfluidic scales (and above),
conventional theories of wetting are valid and lead to known
scaling laws. However, experimental investigations have yet
to probe the very earliest stages of contact and spreading,
where there is significant debate surrounding the validity of
conventional approaches [6,17].
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FIG. 1. MD close-up snapshots near the CL of a quasi-2D water
droplet (R ¼ 29.8 nm, θe ≈ 63°). (a),(b) Immediately after con-
tact, the CL evolves in a rolling regime, where the (cyan)
interfacial molecules traverse the narrow gap to meet the solid.
Here, θd < 180°. (c),(d) Later, the CL advances via a sliding
regime, where the contribution from interfacial molecules in
driving the CL is minimal. Note that the molecules are recolored
in (c). (e) The extracted droplet profile on top of the corresponding
MD snapshot.
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From a theoretical perspective, when viscous and capil-
lary forces are negligible compared to inertial ones, rolling
motion can be observed in drop impact [18]. However, in
regimes where they are not, the classical fluid dynamics
framework is known to fail for dynamic wetting [19–22],
and solutions are usually sought by assuming either (a) slip
between the liquid and solid [23–25] or (b) perfect rolling
of the CL, with the dynamic contact angle θd fixed at
180° [26–29].
In conventional slip flows, sliding-type dynamics are

usually described by a molecular kinetic theory [30,31]
and/or a Cox-Voinov framework [32,33]; see [34] for details.
In contrast, rolling-type motion with fixed θd ¼ 180° can
be consistently used with a no-slip condition: It has been
studied theoretically by various groups [26–28]. While such
analyses are useful for approximating motion on highly
nonwettable surfaces or for exotic systems, such as
Leidenfrost droplets [29] or liquid marbles [35], this mode
of motion has not been observed for drops spreading
spontaneously on partially wetting solids.
In this Letter, MD will lead to the discovery of a new

class of rolling-type CL motion, which is crucial for—and
dominant in—the very earliest stages of wetting, with θd <
180° [see Figs. 1(a) and 1(b)]. This new regime of wetting
bridges the first contact with the conventional sliding regime
of CL motion [see Figs. 1(c) and 1(d)]. The key physics
governing this regime is shown to be the long-range
interaction forces between liquid and solid molecules,
and, by incorporating this physics into a novel computa-
tional model, we can efficiently reproduce computationally
expensive MD data, identify governing physical parameters,
and investigate systems at larger scales. In doing so, new
research challenges will be identified and discussed.
MD simulation details.—MD [36] has a long history

of being used as a virtual experiment for small-scale
fluid dynamics, e.g., [37–39]. To permit the simulation
of relatively large water droplets, we use the “mW
model” [40] and primarily investigate the spreading of
quasi-2D cylindrical droplets in pure vapor on a solid that
has an fcc lattice structure. Solid molecules interact with
those in the liquid via the Lennard-Jones (LJ) potential

Ujk ¼ 4ϵSL
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where ϵSL and σ (0.316 nm) are the energy and length
parameters, respectively, and rjk is the distance between
two atoms j and k. A cutoff rc ¼ 1.3 nm is applied, as is
standard practice in MD. As can be seen from Fig. 1, vapor
molecules are so sparse that they have no influence on
the droplet. To access the spontaneous spreading regime,
droplets are pushed toward the solid as slowly as is
computationally feasible (1 m=s), after which the droplet
contacts the solid surface and spreads to an equilibrium
configuration with contact angle θe that depends on ϵSL.

Further details are in Supplemental Material, Sec. I [41]
(within which we also introduce Refs. [42–52]).
First contact.—The shape of the falling droplet can be

assumed to be composed of a mean profile (i.e., a circle for
quasi-2D and a sphere for 3D droplets) and a fluctuating part
that arises from the interfacial thermal fluctuations [53,54].
Consequently, the first contact becomes stochastic, with the
axial location being the most probable but a distribution of
contact positions (see Supplemental Material, Sec. II [41])
and multiple contacts being also possible. Interestingly, the
widths of the distributions are comparable to those for the
coalescence of two droplets [54]. However, as will be shown
later, while fluctuations of the liquid-vapor interface influ-
ence the initial position at contact, they are not dominant
during spreading.
Earliest dynamics of wetting.—After a contact is estab-

lished, the dynamics of wetting are determined by studying
the trajectories of groups of molecules near the three-phase
zone (TPZ), where all three phases meet. Since the TPZ
is not a rigorously defined region, we adopt a sensible
classification for liquid molecules to help distinguish the
mechanisms of CL motion. Following the scheme detailed
in Supplemental Material, Sec. II [41], and referring to
Figs. 1(a) and 1(c), the TPZ molecules are colored brown,
the interfacial molecules are colored cyan, and the mole-
cules located to the left of the interfacial molecules and
above the TPZ molecules are colored purple.
Using our simple tracking algorithm (see Supplemental

Material, Sec. II [41]), we clearly identify two regimes of
wetting. (A) Rolling regime: Immediately after contact, the
attraction from the underlying solid wall causes interfacial
(cyan) molecules to collectively traverse the narrow gap
between the liquid and the solid advancing the CL laterally
in a rolling-type motion [compare Figs. 1(a) and 1(b)].
Notably, in this unconventional wetting mode, the dynamic
contact angle is less than 180°. (B) Sliding regime: At a
later stage, when the gap width between the interfacial
molecules and the solid surface has increased, fewer
interfacial molecules are within the influence of the solid
wall, and the participation of these molecules in driving the
CL reduces. Here, the CL is predominantly driven by the
brown- or purple-colored molecules, and it resembles a
conventional sliding-type CL motion [compare Figs. 1(c)
and 1(d)]. While MD led us to this discovery, to further
probe the underlying physics and analyze quantitative data
that is difficult to extract from MD (e.g., the velocity field),
we develop a macroscopic model of this phenomenon.
A novel continuum model of wetting.—The computa-

tional model we discuss and test here is based on the usual
Navier-Stokes equations for the droplet, in which inter-
actions with the solid surface are included via the
disjoining pressure pdðzÞ term in the droplet’s normal
stress boundary condition, which is added to the Laplace
pressure. For two semi-infinite spaces separated by dis-
tance z and filled uniformly by liquid and solid molecules
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(number concentrations nL and nS, respectively) interact-
ing via Eq. (1) with energy ϵSL, we find (see Supplemental
Material, Sec. III [41])

pdðzÞ ¼ −
AH
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where AH ¼ 4π2ϵSLnLnSσ6 is the Hamaker constant. We
assume Eq. (2) remains valid locally even when the droplet
and solid surfaces are not parallel [55,56]. Modeling liquid-
solid interactions via the disjoining pressure instead of the
body force approach not involving such assumptions is
potentially more computationally efficient and produces
numerically identical results (see Supplemental Material,
Sec. III J [41], for details).
The disjoining pressure (2) turns zero at a finite

distance zeq ¼ ð2=15Þ1=6σ ≈ 0.226 nm for our value of σ
and approaches þ∞ as z → 0, so that the surface of the
droplet will settle at the microscopic distance zeq from the
solid surface. No singularities or jumps in any quantities
are encountered in this process or after zeq is reached and
the droplet starts to spread; in particular, the sharp corner at
the CL observed in conventional continuum simulations is
replaced by a region of large but finite curvature (∼σ−1;
see Fig. S9 in Supplemental Material [41]). This approach
to avoiding singularities at the CL is distinct from the
more common diffuse interface approach [57,58] (as the
droplet surface remains sharp) and from precursor film
approaches [59]. While assuming no cutoff in the LJ
potential is more physical, an expression for the disjoining
pressure can also be derived for a finite rc (Supplemental
Material, Sec. III B [41]), and we use it for our compar-
isons to MD below; all the qualitative considerations above
remain valid. At equilibrium, aside from the “rounded
corner,” the droplet assumes the expected truncated sphere
(circle) shape, with a contact angle

cos θe ¼ −1þ eAHγ
−1; ð3Þ

where e is an AH-independent constant, such that eAH is the
interaction energy per unit area obtained by integrating −pd
from zeq to ∞, and γ is the liquid-vapor surface tension. In
our comparisons to MD (here and in Supplemental Material,
Sec. III J [41]), we choose AH to match the observed
equilibrium contact line position instead of calculating
AH using its formula; the discrepancy is typically less than
a factor of 2 and likely due to the nonuniform liquid density
near the solid (see Supplemental Material, Sec. III F [41],
for details).
For quantitative agreement with MD, a simple Navier

slip model is used on the droplet surface:

τ ¼ μl−1ðzÞu; l−1ðzÞ ¼ l−1s exp½−ðz − zeqÞ=zeq�; ð4Þ

where τ is the contribution to the stress component parallel
to the solid, u is the velocity component parallel to the
solid, μ is the liquid viscosity, and lðzÞ is the slip length.
This interaction kicks in smoothly but rapidly as z → zeq.
The values of slip length in contact, ls, are obtained from
independent MD of Couette flow between parallel plates
with the same LJ parameters (see Supplemental Material,
Sec. III C [41]).
As an initial condition, the effects of thermal fluctuations

can be recreated by starting from a random rather than
perfectly spherical or circular droplet shape, either sampled
from the canonical ensemble [54] or taken from an MD run
to compare to that particular run.
The resulting full set of equations of our continuum

model is given in Supplemental Material, Sec. III D [41].
Validation of the continuum model.—The continuum

model (CM) is solved using finite elements in COMSOL
Multiphysics [60], as detailed in Supplemental Material,
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FIG. 2. (a) Droplet profiles from MD (ϵSL ¼ 0.3 kcal=mol ¼ 2.08 × 10−21 J) and the CM (AH ¼ 3.35 × 10−19 J and ls ¼ 0.9 nm).
The initial shape for the CM (obtained from MD) is colored blue; solid black lines are MD profiles 0.02, 0.1, 0.5, 1, and 2 ns later;
dashed red lines are CM profiles at 9 ps later than the MD (see the text). (b) Corresponding CL positions (blue and red lines) compared to
(cyan and orange lines) spreading on a structureless wall in MD and perfect slip in the CM (AH ¼ 3.5 × 10−19 J and ls → ∞, shift
7.25 ps), where the reduction in friction leads to an underdamped motion. Simulations have identical initial conditions, so the earliest
stages of spreading, shown in the inset in (b), are similar.
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Sec. III G [41]. We begin by comparing the droplet shapes
obtained using the 2D CM to those observed in quasi-2D
MD. A profile very close to the initial contact in an MD
realization is used as the initial profile for the CM with an
initial downward speed of 1 m=s, although the MD droplet
will already have acquired a significant velocity at its
bottom (see Supplemental Material, Sec. IVA [41]).
Despite this approximation, the only visible effect of it is
a slight effective “delay” of the spreading process [9 ps in
Fig. 2(a); see Supplemental Material, Sec. III J [41] ]. There
is excellent agreement between the profiles, with the
dynamic contact angle changing gradually from 180° to
θe ≈ 63° (see Supplemental Material, Sec. IV B [41]). Even
the asymmetry of the spreading process resulting from an
off-center first contact is reproduced well.
Figure 2(b) compares the positions of the CL on both

sides obtained with both methods. Again excellent agree-
ment is observed. While there is no sharp CL in either MD
or CM, different reasonable definitions give very similar
results. For MD, we find the positions of the CL as the x
coordinates of the leftmost and rightmost molecules within
0.6 nm of the solid surface, while in the CM they are
simply the x coordinates of the intersection points between
the droplet profile and the z ¼ 0.3 nm line. To isolate the

effects of slip, Fig. 2(b) also presents MD results for a
structureless wall, where the solid wall in MD is replaced
by a mathematical surface with specular reflection result-
ing in infinite slip at the interface (see Supplemental
Material, Sec. I [41]). Compared to the CM results with
perfect slip (ls → ∞), excellent agreement is again
achieved, with the reduced friction resulting in noticeable
inertia-driven oscillations.
Rolling-sliding crossover.—Our CM can now be

exploited to study the spreading dynamics of nanodroplets
in ways that are challenging for MD. First, we can
study 3D spherical droplets where, unlike in MD, axial
symmetry can be assumed (although the effect of thermal
fluctuations cannot then be studied; this is not our
main focus). Second, we can freely adjust the properties
of the liquid—they are chosen to match those of water
(μ ¼ 1 mPa s, γ ¼ 0.07 N=m, ρ ¼ 1000 kg=m3)—and
choose AH ¼ 10−19 J (so that θe ≈ 116°). Third, we study
droplets with radii between 25 and as large as 400 nm,
which are beyond the reach of MD. Fourth, the cutoff in
the LJ potential is eliminated, which is more realistic.
Fifth, we are able to vary the slip length independently of
other parameters. The length parameter σ is unchanged;
the results are only weakly sensitive to its value. Droplets
start at the distance 5 or 10 nm from the solid with
downward speed of 0.1 m=s; the initial interaction and the
effects of nonzero initial speed are negligible.
To study the rolling motion effect more quantitatively, we

now identify an inflection point close to the CL typically
about 0.5–1 nm above the solid surface. Drawing a tangent
line to the droplet’s free surface at this point allows us to
define both the CL position, where this line meets the solid,
and a dynamic contact angle θd; see the inset in Fig. 3(a).
For the CL position, the results match well with the
definition (valid also for fluctuating drops and at arbitrarily
late times when an inflection point is not unique or cannot
be found) based on intersection points between the droplet
profile and the z ¼ 0.3 nm line, used to plot Fig. 2(b),
except when rCL ≲ 1 nm. Data from rCL ≲ 1 nm are
eliminated from the plots in Fig. 3. Neglecting the rotation
of the tangent line as the droplet spreads, the line translates
horizontally and vertically, with the respective speeds vr and
vz being equal to the corresponding components of the
liquid velocity at the inflection point. The CL speed is then

vCL ¼ vr − vz= tanðπ − θdÞ: ð5Þ

In Fig. 3(a), we plot the sliding and rolling components
of the CL speed as a function of rCL for a droplet of R ¼
25 nm and three different slip lengths: ls ¼ ∞ (perfect
slip), ls ¼ 3 nm (close to the MD value), and ls ¼ 0.01 nm
(effectively, no slip). The CL speed given by Eq. (5)
matches well with that calculated directly by numerically
differentiating the corresponding CL position (black solid
line). The first term in Eq. (5) corresponds to the droplet
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FIG. 3. Sliding and rolling components of the CL speed for a
water droplet: (a) with radius R ¼ 25 nm, with a moderate
(ls ¼ 3 nm), infinite, and extremely small slip length; (b) with
radii R ¼ 100, 200, and 400 nm and ls ¼ 3 nm. (a) also
compares the sum of the sliding and rolling components to the
CL speed determined by direct differentiation. All results are
obtained from the novel CM simulations.
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sliding horizontally along the solid, while the second is
associated with the vertical bridging motion, as observed in
MD (see Fig. S14 [41] for a color map of vertical speeds
near the CL). Thus, Eq. (5) decomposes the CL motion into
the sliding and rolling components.
For all cases, the rolling speed dominates at early times,

in fact, diverging as r−1CL for small rCL, the same as for a
spherical droplet impact [vCL ¼ 3RV0=ð2rCLÞ [18] ].
Measuring rCLðtÞ, we then find the effective impact speed
V0 ≈ 5.5 m=s, which is the same in all three cases and
considerably exceeds the initial speed of the droplet
(0.1 m=s), as the droplet is accelerated by the disjoining
pressure prior to contact. Notably, in the no-slip case, the
droplet spreads by rolling, and increased rolling speeds are
able to partially compensate for a loss of sliding. Larger ls
give increased sliding speeds that are dominant at larger
rCL—e.g., for ls ¼ 3 nm, the rolling → sliding crossover is
at rcCL ≈ 9 nm (about 38% of the equilibrium radius).
Notably, in the rolling regime, at a given CL position,
the dynamic contact angles θd are similar in the three cases
and very different from 180° (see Supplemental Material,
Sec. IV B [41]), but this does not prevent rolling.
Finally, in Fig. 3(b), we vary the radius of the droplet. In

the main plot, the slip length is kept fixed at 3 nm, and
while the sliding speed is only weakly dependent on R, the
rolling speed increases significantly as the droplet gets
larger so that the crossover CL radius rcCL grows with R.
However, as the inset shows, this growth is sublinear
(roughly ∝ R1=2), and, thus, the stage of the spreading
dynamics where rolling dominates is less significant as the
droplet size increases. For example, for R ¼ 400 nm, rcCL is
about 11% of the equilibrium CL radius so that the rolling
motion is key for the earliest stages.
Discussion.—The evidence for a θd < 180° rolling-type

CL motion driven by disjoining pressure opens up many
opportunities, including (i) developing new theories and
scaling laws for this regime; (ii) investigating similar
mechanisms observed in droplet coalescence [54]; and
(iii) using the new continuum model to better design micro-
and nanotechnologies that exploit wetting. Furthermore,
directions for future analysis (see Supplemental Material,
Sec. V [41]) include (a) complete wetting systems,
(b) smaller droplets, where the continuum model may fail,
(c) more complex slip models, (d) the forming interface
process, and (e) heterogeneous surfaces which induce
contact line pinning.

The data that support the findings of this study are
openly available at [61].
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spreading of a liquid droplet, Phys. Rev. E 69, 016301
(2004).

[17] Y. D. Shikhmurzaev, Reflections on reflections of Dieter
Bothe on the ‘litmus test’ for mathematical models of
dynamic wetting, Eur. Phys. J. Spec. Top. 229, 1989 (2020).

PHYSICAL REVIEW LETTERS 131, 164001 (2023)

164001-5

https://doi.org/10.1146/annurev.fluid.36.050802.122049
https://doi.org/10.1146/annurev.fluid.36.050802.122049
https://doi.org/10.1016/S0021-9797(03)00347-3
https://doi.org/10.1021/nl9019616
https://doi.org/10.1021/nl9019616
https://doi.org/10.1103/PhysRevLett.124.224503
https://doi.org/10.1016/j.nantod.2016.04.007
https://doi.org/10.1016/j.nantod.2016.04.007
https://doi.org/10.1146/annurev.matsci.38.060407.132451
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1146/annurev-fluid-071320-095958
https://doi.org/10.1103/PhysRevLett.94.184505
https://doi.org/10.1103/PhysRevLett.94.184505
https://doi.org/10.1209/0295-5075/108/24001
https://doi.org/10.1209/0295-5075/108/24001
https://doi.org/10.1016/j.actbio.2005.08.005
https://doi.org/10.1073/pnas.0914720107
https://doi.org/10.1103/PhysRevLett.100.234501
https://doi.org/10.1103/PhysRevLett.100.234501
https://doi.org/10.1063/1.4788693
https://doi.org/10.1063/1.4788693
https://doi.org/10.1103/PhysRevE.85.055301
https://doi.org/10.1103/PhysRevE.69.016301
https://doi.org/10.1103/PhysRevE.69.016301
https://doi.org/10.1140/epjst/e2020-000148-0


[18] J. Philippi, P.-Y. Lagrée, and A. Antkowiak, Drop impact on
a solid surface: Short-time self-similarity, J. Fluid Mech.
795, 96 (2016).

[19] C. Huh and L. Scriven, Hydrodynamic model of steady
movement of a solid/liquid/fluid contact line, J. Colloid
Interface Sci. 35, 85 (1971).

[20] E. B. Dussan, On the spreading of liquids on solid surfaces:
Static and dynamic contact lines, Annu. Rev. Fluid Mech.
11, 371 (1979).

[21] P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod.
Phys. 57, 827 (1985).

[22] Y. D. Shikhmurzaev, Capillary Flows with Forming Inter-
faces (Chapman and Hall/CRC, London, 2007).

[23] E. B. Dussan V., The moving contact line: The slip boun-
dary condition, J. Fluid Mech. 77, 665 (1976).

[24] L. M. Hocking, A moving fluid interface on a rough surface,
J. Fluid Mech. 76, 801 (1976).

[25] Y. D. Shikhmurzaev, Moving contact lines in liquid/liquid/
solid systems, J. Fluid Mech. 334, 211 (1997).

[26] C. G. Ngan and E. B. Dussan V, The moving contact line
with a 180° advancing contact angle, Phys. Fluids 27, 2785
(1984).

[27] L. Mahadevan and Y. Pomeau, Rolling droplets, Phys.
Fluids 11, 2449 (1999).

[28] E. S. Benilov and M. Vynnycky, Contact lines with a 180°
contact angle, J. Fluid Mech. 718, 481 (2013).

[29] O. Schnitzer, A. M. J. Davis, and E. Yariv, Rolling of non-
wetting droplets down a gently inclined plane, J. Fluid
Mech. 903, A25 (2020).

[30] T. Blake and J. Haynes, Kinetics of liquid-liquid displace-
ment, J. Colloid Interface Sci. 30, 421 (1969).

[31] T. D. Blake, The physics of moving wetting lines, J. Colloid
Interface Sci. 299, 1 (2006).

[32] R. G. Cox, The dynamics of the spreading of liquids on a
solid surface. Part 1. Viscous flow, J. Fluid Mech. 168, 169
(1986).

[33] O. V. Voinov, Hydrodynamics of wetting, Fluid Dyn. 11,
714 (1977).

[34] J. H. Snoeijer and B. Andreotti, Moving contact lines:
Scales, regimes, and dynamical transitions, Annu. Rev.
Fluid Mech. 45, 269 (2013).
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