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Abstract

The intention of this thesis is to explore non-compact objects evolving under geometric flows

without any prescribed boundary control. In particular, we focus on Ricci flow and curve

shortening flow defined on open manifolds.

We consider the uniqueness of the Cauchy problem for smooth properly embedded curves

evolving under curve shortening flow. We construct an example to show that the class of

smooth properly embedded solutions is too large to expect uniqueness, and in turn introduce

a new suitable subclass for which we conjecture uniqueness when our ambient space is flat.

We then show that even within this subclass of solutions, we can have non-uniqueness of the

Cauchy problem in general ambient surfaces. Finally, we give a partial characterisation of those

ambient surfaces which exhibit this non-uniqueness.

To complement these results, we also consider low dimensional Ricci flow spacetimes. We prove

that, for a complete (2 + 1)-dimensional Ricci flow spacetime, the spatial-slice at any later

time must contain (under the flow of the time vector field) the spatial-slice at any earlier time.

We then prove, after imposing a necessary regularity condition on such a complete Ricci flow

spacetime, that all of its spatial-slices must agree with one another, and our Ricci flow spacetime

is isomorphic to a classical Ricci flow on a fixed ambient surface.
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Chapter 1

Introduction

As the title of the thesis suggests, we will be investigating properties of geometric flows. As far

as the author is aware, there is currently no formal definition of a geometric flow; we instead

motivate geometric flows via the following example, which can be considered as the first formally

defined geometric flow, and which commenced this field of research.

In their groundbreaking work [ES64], James Eels and Joseph Sampson introduced the har-

monic map heat flow. Given a continuously differentiable map between smooth Riemannian

manifolds (M, g)
f−→ (X, g), we can define its Dirichlet energy

E(f) :=

∫
M

|df |2dµg,

where dµg denotes the volume form of the metric g, and df ∈ Γ(T ∗M ⊗ f∗(TX)), so that in

local coordinates

|df |2 = gij
∂fα

∂xi
∂fβ

∂xj
(gαβ ◦ f).

Critical points of this functional are known as harmonic maps, which solve the Euler-Lagrange

equation

τ(f) := Tr(∇df) = 0 ∈ Γ(f∗(TX)),

where τ(f) is known as the tension field, which can be represented in local coordinates by

τ(f) = gij
(
∂2fα

∂xi∂xj
− Γk

ij

∂fα

∂xk
+ Γ

α
βγ

∂fβ

∂xi
∂fγ

∂xj

)
∂

∂yα
.

In order to construct solutions to such an elliptic problem, Eels and Sampson studied the

corresponding parabolic problem, whereby they searched instead for a family of maps evolving

in time under the gradient flow of this functional.

Given a smooth map f : M × (0,∞) → X, we say it is a solution to the harmonic map heat
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flow if
∂f

∂t
(x, t) = τ(f)(x, t), ∀(x, t) ∈M × (0,∞). (1.0.1)

The work of Eels and Sampson, in combination with a later refinement of Philip Hartman1,

shows that, under reasonable hypotheses on these manifolds, there exists a solution to harmonic

map heat flow starting from any continuously differentiable initial data.

Theorem 1.0.1 (Eels-Sampson-Hartman, [ES64], [Har67]). Suppose (M, g) is a closed Rieman-

nian manifold and (X, g) is a closed Riemannian manifold with non-positive sectional curvature.

Then for any continuously differentiable map (M, g)
f−→ (X, g), there exists a solution f :

M × (0,∞) → X to (1.0.1) such that f(·, t) converges in C1-norm to f as t↘ 0. Furthermore,

f(·, t) converges smoothly on M to a harmonic function (M, g)
f∞−−→ (X, g) as t↗ ∞.

With this example in mind, one may describe a geometric flow as the gradient flow associated

to a functional whose critical points have some geometric interpretation. The primary focus of

this thesis will be two different geometric flows, namely mean curvature flow and Ricci flow.

We begin with an overview of mean curvature flow.

1.0.1 Mean curvature flow

Given a smooth embedding of a topological manifold within a Riemannian manifold Mk f
↪−→

(Xn+k, g), consider the k-dimensional volume of M under this embedding

Ak(f) :=

∫
M
dµf∗(g).

Critical points of this functional are known as minimal surfaces, and solve the Euler-Lagrange

equation

H⃗ = Tr(II) = 0 ∈ Γ(νM),

where H⃗ denotes the mean curvature vector, and II ∈ Γ(Sym2(T ∗M) ⊗ νM) is the second

fundamental form, given by

II(v, w) = (∇vw)
⊥ , ∀v, w ∈ Γ(T ∗M).

In his doctoral thesis [Bra78], Kenneth Brakke introduced the geometric flow corresponding

to the gradient flow of this functional, now known as mean curvature flow2. Given a smooth

map f :M × (0, T ) → X, for some T > 0, we say that f is a solution to mean curvature flow if

1The original work of Eels and Sampson showed that along a divergent sequence of times you could extract a
harmonic limit. As well showing uniform convergence in time, Hartman also removed the need for an embedding
assumption on the target manifold.

2Due to finite time singularities forming, Brakke wanted to allow the topology of the underlying space M to
change under the flow. Instead, he considered a weak formulation of this flow where now our objects are given
by Radon measures on the corresponding Grassmanian bundle of the ambient space, now known as Brakke flow
(see §2).
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f satisfies
∂f

∂t
(x, t) = H⃗(x, t), ∀(x, t) ∈M × (0, T ), (1.0.2)

where H⃗(x, t) denotes the mean curvature vector of the image of f(·, t) : M → X at the point

f(x, t) ∈ X.

Much like harmonic map heat flow, this equation depends on an embedding of M within an

ambient space X. Such a flow is referred to as an extrinsic geometric flow.

Although one can consider mean curvature flow for manifolds of any dimension and co-

dimension, we restrict our attention in this thesis to the case M is one dimensional, with

co-dimension 1. In this setting, our mean curvature vector can be written as κν, where ν is a

choice of unit normal, and κ is the geodesic curvature of the curve with respect to this choice

of unit normal.

In the case M is closed (M ∼= S1), we have the following long-time existence and uniqueness

result of Matthew Grayson, which extends the work of Michael Gage and Richard

Hamilton on convex curves in the plane.

Theorem 1.0.2 (Gage-Hamilton-Grayson, [GH86], [Gra89]). Let (X2, g) be a smooth Rieman-

nian surface which is convex at infinity3. Given a smooth curve η0 : S1 → X, there exists

T > 0, and a unique continuous function η : S1 × [0, T ) → X with initial data η(·, 0) = η0 such

that

(i) η is a solution to (1.0.2) on S1 × (0, T );

(ii) If T <∞, η(·, t) converges uniformly to a point in X as t↗ T ;

(iii) If T = ∞, then the curvature of η(·, t) converges smoothly to zero as t↗ ∞.

1.0.2 Ricci flow

Ricci flow was first introduced by Richard Hamilton in his influential paper [Ham82] as a

way of deforming positively curved metrics on 3-manifolds to ones of constant curvature.

Given a smooth manifold Mn equipped with a smooth family of Riemannian metrics g(t) for

t ∈ (0, T ), we say that g(t) is a Ricci flow on M × (0, T ), if the metrics solve the equation

∂g

∂t
(t) = −2Ric g(t), (1.0.3)

at every point in M × (0, T ).

Unlike for the case of harmonic map heat flow or mean curvature flow, Ricci flow depends only

on intrinsic geometric properties of the metric without reference to an ambient space X. We

refer to such a flow as an intrinsic geometric flow.

3X is convex at infinity if the convex hull of any compact set is compact
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Although Hamilton’s original inspiration for Ricci flow was from the gradient flow of the total

scalar curvature functional4

Y (g) :=

∫
M
Rgdµg,

Ricci flow was not initially known upon its conception to be a gradient flow. It was only much

later in the seminal paper [Per02] of Grisha Perelman that Ricci flow was shown to be (in

the case M is closed) the gradient flow of the F-functional

F(g, f) :=

∫
M

(
Rg + |∇f |2

)
e−fdµg, ∀g ∈ Γ(Sym2(T ∗M)), ∀f ∈ C∞(M),

when f evolves via the conjugate heat equation on M with weighted volume form e−fdµg(t)

∂f

∂t
= −∆f + |∇f |2 −Rg(t).

Critical points of this functional are gradient Ricci solitons (g, f, λ) satisfying

Ric(g) +∇2f = λ · g, (1.0.4)

for some λ ∈ R. Setting f ≡ 0 in the above equation (1.0.4), we see that these are a generalisa-

tion of the concept of an Einstein manifold.

For the case of a closed manifold, we have the following existence and uniqueness result from

Hamilton’s original paper, the proof of which was later simplified by Dennis DeTurck.

Theorem 1.0.3 (Hamilton-DeTurck, [Ham82, Theorem 14], [DeT83]). Suppose (Mn, g) is a

closed Riemannian manifold. Then there exists T ∈ (0,∞] and a unique Ricci flow g(t) on

M × (0, T ), such that g(t) converges smoothly to g as t↘ 0. Moreover, if T <∞, then

lim
t↗T

∥Rmg(t)∥L∞(M) = ∞.

1.1 Motivation

For the flows mentioned so far, as they are given by weakly-parabolic equations, we have suit-

able existence & uniqueness theory under the assumption our domain is closed. If we drop

this assumption on our domain, existence and uniqueness questions now become much more

subtle. For example, consider the prototypical parabolic equation: given a Riemannian manifold

(Mn, g), a smooth function u :M × (0, T ) → R solves the heat equation if

∂u

∂t
= ∆u, ∀(x, t) ∈M × (0, T ),

4The flow of this functional is a different geometric flow known as the Yamabe flow.
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where ∆ is the Laplace-Beltrami operator of (M, g). Even for such a simple parabolic equation,

we no longer have uniqueness of the Cauchy problem when M is open. The following result is

due to Andrey Tychonoff.

Theorem 1.1.1 (Tychonoff, [Tyc35]). There exists a continuous non-zero function u : R ×
[0,∞) → R, which is smooth on R× (0,∞), and solves the heat equation

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), ∀(x, t) ∈ R× (0,∞),

with zero initial data u(·, 0) ≡ 0.

This begs the following question which lies at the heart of this thesis:

What can be said about existence and uniqueness of our geometric flows if our domain M is

an open manifold?

Let (Mn, g) be a Riemannian manifold with M open. Under certain restrictions on our initial

data g, we have the following existence result for Ricci flow due to Wan-Xiong Shi.

Theorem 1.1.2 (Shi, [Shi89b, Theorem 1.1]). If (Mn, g) is a complete Riemannian manifold

with bounded curvature tensor

∥Rmg∥L∞(M) ≤ C <∞,

there exists T (n,C) > 0 and a solution to Ricci flow g(t) on M × (0, T ) such that g(t) converges

locally smoothly to g as t↘ 0.

Moreover, due to the work of Bing-Long Chen and Xi-Ping Zhu, such a Ricci flow is unique

within the class of solutions with bounded curvature.

Theorem 1.1.3 (Chen-Zhu, [CZ06, Theorem 1.1]). Let (Mn, g) be a complete Riemannian

manifold with bounded curvature tensor

∥Rmg∥L∞(M) ≤ C <∞,

Suppose g1(t), g2(t) are two solutions to Ricci flow on M × (0, T ) with bounded curvature

∥Rmgi(t)∥L∞(M) ≤ C <∞, ∀t ∈ (0, T ),

and such that gi(t) converges locally smoothly to g as t ↘ 0. Then g1(t) = g2(t), for all

t ∈ (0, T ).

If we drop the bounded curvature restrictions, do we still expect an existence and uniqueness

result for Ricci flow? In the 2-dimensional case, this question has been fully resolved by the

work of Gregor Giesen and Peter Topping.

Theorem 1.1.4 (Giesen-Topping, [GT11], [Top15]). Let (M2, g) be a smooth Riemannian sur-
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face, not necessarily complete. Then there exists T ∈ (0,∞] depending on the volume and

conformal type of the initial data, and a unique instantaneously complete Ricci flow g(t) on

M × (0, T ) such that g(0) converges locally smoothly to g as t↘ 0.

Since the Ricci flow equation (1.0.3) is local, we could instead ask for a family of metrics defined

only on an open subset of M × (0, T ), and which solve equation (1.0.3) on this open subset.

Definition 1.1.5. Given a smooth manifold Mn, we say that M is a spacetime in the ambient

space M × (0, T ) if

• M is an open subset of M × (0, T ) equipped with the product topology.

• The spatial slice of M at time t ∈ (0, T ),

Mt := {x ∈M : (x, t) ∈ M},

is non-empty, for all t ∈ (0, T ).

Definition 1.1.6. Let M be a spacetime in M × (0, T ). A Ricci flow on M is a smooth family

of Riemannian metrics g(t) on Mt, for each t ∈ (0, T ), satisfying equation (1.0.3) at every point

in M. We call such a Ricci flow complete if g(t) is a complete metric on the spatial slice Mt,

for all t ∈ (0, T ).

The following should be considered a simple motivating question:

Which spacetimes M in a given ambient space M × (0, T ) admit complete Ricci flows?

Example 1.1.7. Suppose that M2 is a surface. Let N ⊆ M be a fixed subsurface. If M
is chosen so that Mt = N for every t ∈ (0, T ), then M does admit a complete Ricci flow.

One way to see this would be to fix a metric g on N (with large enough volume depending on

the conformal type of N) and use the existence result of Giesen & Topping [GT11] to find an

instantaneously complete Ricci flow on N × (0, T ) starting from this initial data. Topologically,

these spacetimes looks like a cylinder.

A priori, we may guess that any spacetime that admits a complete Ricci flow should look like

a cylinder. Unlike for closed manifolds however, the topology of open manifolds can change

within a complete Ricci flow without encountering a singularity.

Example 1.1.8. Fix t0 > 0 and a point p ∈ T2 := S1×S1 in the torus. We choose our ambient

space to be T2×(0,∞), and our spacetime to be the open subset M := T2×(0,∞)\{p}×(0, t0].

Our spatial slices are

Mt :=

T2 \ {p} : ∀t ∈ (0, t0]

T2 : ∀t > t0
.

If we take g(t) to be a homothetically expanding complete hyperbolic metric onMt for t ∈ (0, t0],

we can then cap off the hyperbolic cusp at p after time t0, to give the complete contracting cusp

6



Mt = D2 Mt = D2−t Mt = D2+t

Figure 1.1: An illustration of spacetimes within C× (0, 1).

Ricci flow g(t) on Mt, for t ∈ (t0,∞), first constructed in [Top12, Theorem 1.2].

Example 1.1.9. Consider M ⊆ C×(0, 1) to be some subset of the ambient space whose spatial

slice varies in time. For example, we could choose Mt = D2+t, the disk centred at the origin of

radius 2 + t (with respect to the Euclidean metric), for all t ∈ (0, 1). Can we find a complete

Ricci flow on this spacetime M? What about the case that Mt = D2−t, for all t ∈ (0, 1)?

We shall show that the conical spacetimes mentioned in Example 1.1.9 do not admit complete

Ricci flows. See Corollary 1.3.7.

Remark 1.1.10. Unlike what we have considered so far, there are multiple ways in the literature

to formulate a Ricci flow on a changing underlying manifold without reference to an ambient

space. In this thesis, we will use the language of a Ricci flow spacetime. By using this formu-

lation, it provides immediate context for our results. However, when working with this more

general definition, one should always keep in mind the easy to visualise examples discussed

above, where our spacetime is an open subset of a larger ambient space. Nothing is lost by

doing so, as we will ultimately reduce our more general Ricci flow spacetime to one within an

ambient space by virtue of an embedding lemma (see §5.2).

Results in Ricci flow usually have analogues in mean curvature flow and visa versa. Let us

analyse the results of Giesen & Topping in Ricci flow mentioned in Theorem 1.1.4 more closely.

Given any smooth connected Riemannian surface, we can always find a Ricci flow starting from

this initial data [GT11]. If the surface is open, there can be multiple Ricci flows starting from

the same initial data. In order for the problem to be well-posed, Topping imposes a geometric

hypothesis (completeness) on the solutions at each time. That is, if we restrict ourselves to the

class of instantaneously complete Ricci flows, there now exists a unique Ricci flow starting from

any initial data [Top15].

Due to this result in low dimensional Ricci Flow, we may search for the corresponding result in

7



low dimensional mean curvature flow, prompting the following question:

What are the correct geometric hypotheses to impose on open solutions to curve shortening

flow so that the initial-value problem is well-posed?

1.2 Set-up

In contrast to the 2-dimensional case (Theorem 1.1.4), in higher dimensions there are smooth

manifolds equipped with smooth metrics from which we do not expect to be able to start the

Ricci flow.5 However, imposing curvature bounds on our initial metric leads to the following

well-known short-time existence conjecture in 3-dimensions.

Remark 1.2.1. It is unclear who the conjecture is originally attributed to, although the conjec-

ture arises naturally from the work of Shi in [Shi89a].

Conjecture 1.2.2. Let (M3, g0) be a 3-dimensional complete Riemannian manifold with non-

negative Ricci curvature Ric(g0) ≥ 0. Then there exists T > 0 and a smooth family of complete

metrics g(t) on M × (0, T ) such that g(t) converges to g0 locally smoothly as t↘ 0 and g(t) is

a solution to the Ricci flow equation (1.0.3) on M × (0, T ).

A partial resolution to this conjecture was given by Yi Lai in [Lai20] using the language of

Ricci flow spacetimes. The following definition was first introduced by Bruce Kleiner &

John Lott in [KL17].

Definition 1.2.3 (Kleiner-Lott, [KL17, Definition 1.2]). A Ricci flow spacetime is a tuple

(Mn+1, t, ∂t, g) where

• M is a smooth and connected (n+ 1)-manifold (without boundary).

• The time function t is a smooth submersion t : M ↠ I, for some open interval I ⊆ R.

• ∂t is a smooth vector field on M satisfying ∂t(t) ≡ 1.

• g is a smooth inner product on the bundle TMspat := ker(dt), such that its restriction

g(t) to the time slice Mt = t−1(t) is a Riemannian metric, for all t ∈ I.

• g and ∂t satisfy the Ricci flow spacetime equation L∂tg = −2Ric(g).

A Ricci flow spacetime is said to be complete if g(t) is a complete Riemannian metric on Mt,

for every t ∈ I.

Example 1.2.4. Suppose Mn is a connected smooth manifold. An important class of easy to

visualise examples of Ricci flow spacetimes are ones lying inside the cylinderMn×R, mentioned

above in §1.1. More precisely, suppose Mn+1 is an open subset of Mn × I (equipped with the

product topology), t is the restriction of the standard projection t : Mn × I → I, and ∂t is

5For example, consider S2×R equipped with a metric so that it looks geometrically like a countable collection
of 3-spheres connected by thinner and thinner necks of increasing length [Top20].
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the restriction of ∂
∂t . Since we specify that the time function is a submersion, each spatial slice

Mt ⊆ M is a non-empty open subset of M , for t ∈ I. The Ricci flow spacetime equation then

corresponds to the metrics g(t) locally satisfy the usual Ricci flow equation (1.0.3). We say that

we have a Ricci flow spacetime (Mn+1, g) in the ambient space Mn × I. If Mn+1 is equal to

the entire ambient space, then we say it is a cylindrical spacetime and denote it by (Mn× I, g).

Definition 1.2.5. A pair of Ricci flow spacetimes (Mn+1, t, ∂t, g), (N n+1, s, ∂s, G) are iso-

morphic if t(M) = I = s(N ), and there exists a smooth diffeomorphism Φ : M → N , such

that

(i) For each t ∈ I, the restriction Φ : Mt → Nt is a diffeomorphism;

(ii) t = s ◦ Φ;

(iii) Φ∗(∂t) = ∂s;

(iv) g(t) = Φ∗(G(t)).

In this case, we write (Mn+1, t, ∂t, g) ∼= (N n+1, s, ∂s, G).

Returning to the conjecture, in [Lai20], Lai constructed a Ricci flow spacetime (M3+1, t, ∂t, g)

containing within it a Ricci flow on M × (0, T ). That is, after restricting to a suitable subset

of M, the corresponding Ricci flow spacetime is isomorphic to a cylindrical spacetime (M3 ×
(0, T ), g). Moreover, g(t) converges locally smoothly to g0 as t↘ 0.

Although this Ricci flow g(t) on M × (0, T ) may not necessarily be complete, it lies within the

larger Ricci flow spacetime (M3+1, t, ∂t, g) which does satisfy a completeness like property.6 We

are therefore motivated to ask what the structure of such a Ricci flow spacetime can be. For

example, if one could show that the Ricci flow spacetime (M3+1, t, ∂t, g) constructed by Lai was

in fact a complete and cylindrical spacetime itself, this would lead to a full resolution of the

short-time existence conjecture stated above, motivating the question:

When is a complete Ricci flow spacetime necessarily cylindrical?

In order to say something about the structure of M, we need to look at how points inside

different time-slices are associated to one another under the flow of the vector field ∂t. Recall

the following definition also taken from [KL17].

Definition 1.2.6 (Kleiner-Lott, [KL17, Definition 1.11]). Let (M, t, ∂t, g) be a Ricci flow space-

time. The worldline of a point x ∈ M is the maximal integral curve Ix → M, t 7→ x(t) of ∂t

that passes through x at time t(x) ∈ Ix.

More generally, for a subset U ⊆ Ms of some time-slice (s ∈ I), for each t ∈ I we set

U(t) := {x(t) ∈ Mt : x ∈ U, t ∈ Ix},
6More precisely, the spacetime is forward 0-complete and weakly backward 0-complete. See [Lai20] for the

precise definitions.
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Figure 1.2: An illustration of Definition 1.2.6

and denote those times where the flow lines exist for all points in U by IU :=
⋂

x∈U Ix.

Example 1.2.7. Suppose (Mn+1, g) is a Ricci flow spacetime in the ambient space Mn × I.

Then, for any point (x0, t0) ∈ M ⊆ M × I, the interval I(x0,t0) is the connected component of

M∩ ({x0} × I) containing t0, and x0(t) = (x0, t) for each t ∈ I(x0,t0). Similarly, given a subset

U ⊆ M , we have that U(t) = M∩ (U × {t}), for any t ∈ I. In the special case (Mn × I, g) is

cylindrical, I(x0,t0) = I for every (x0, t0) ∈M × I, and U(t) = U × {t} for every U ⊆M .

Given a complete Riemannian surface (X2, g) and a smooth map γ : R× (0, T ) → X such that

γ(·, t) is a smoothly embedded curve at each time t ∈ (0, T ), we say that the family of curves

γ(·, t) evolves under curve shortening flow (CSF) if

⟨∂tγ, ν⟩g = κ, (1.2.1)

at every point in R×(0, T ), where ν is a choice of unit normal vector to the curve, κ := ⟨∇ττ, ν⟩g
is the geodesic curvature of the curve with respect to ν, and τ is the unit tangent vector to the

curve.

If there exists a continuous extension γ : R × [0, T ) → X of our map, we say that γ(·, t) is a

solution to CSF with initial data γ(·, 0).

Remark 1.2.8. Instead of defining CSF via equation (1.2.1), we could instead require γ to move

only in the normal direction, and solve the equation

∂tγ = κν, (1.2.2)

at each point of R× (0, T ). Note that every solution to (1.2.2) is a solution to (1.2.1). However,

unlike equation (1.2.1), equation (1.2.2) does not allow any tangential component of the vector

∂tγ. In many applications, such as when discussing graphical solutions, it is useful to allow our

solution to have tangential motion. As such, we make the choice of using equation (1.2.1). In

the case of closed curves η : S1×(0, T ) → X, if η solves (1.2.1) at every point in S1×(0, T ), then

we can always find a suitable time-dependent family of diffeomorphisms {ϕt : S1 → S1}t∈(0,T ),
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such that the new map η̃ : S1 × (0, T ) → X, defined by

η̃(x, t) := η(ϕt(x), t), ∀(x, t) ∈ S1 × (0, T ),

is a solution to (1.2.2). To see this, consider the unique time-dependent vector field Yt on S
1,

so that (η(·, t))∗(Yt) = −(∂tη)
⊤, the negative of the tangential projection of ∂tη. Let ϕt be the

flow of Yt with ϕt0 = idS1 , for some arbitrarily chosen t0 ∈ (0, T ). Then

∂tη̃(x, t) = ∂tη(ϕt(x), t) +∇η(ϕt(x), t) ◦ ϕ̇t(x)

= κν + (∂tη(ϕt(x), t))
⊤ + [(η(·, t))∗(Yt)](ϕt(x), t) = κν.

Since each ϕt : S
1 → S1 is a diffeomorphism, Im (η(·, t)) = Im (η̃(·, t)) for every t ∈ (0, T ), and it

is therefore unnecessary to distinguish between these two equations in the closed case. However,

returning to the case of proper curves γ : R × [0, T ] → X, it is no longer true that solutions

to (1.2.1) can be re-parameterised to solutions of (1.2.2) without changing their image. It is

therefore important to distinguish these two equations from one another.

We have already seen existence and uniqueness in the case our curve is closed (Theorem 1.0.2).

In fact, in the plane, the following existence and uniqueness result was shown by Joseph Lauer

after dropping the regularity of the initial data to a finite length Jordan curve.

Theorem 1.2.9 (Lauer, [Lau13, Theorem 11.1]). Let J ⊆ R2 be a finite length Jordan curve.

Then there exists a continuous parameterisation η0 : S
1 → R2 of J so that the following is true:

there exists T > 0, and a unique continuous function η : S1 × [0, T ) → R2 with initial data

η(·, 0) = η0 such that

(i) η is a solution to CSF on S1 × (0, T );

(ii) the length of Im (η(·, t)) converges to the length of J as t↘ 0.

Despite these results in the closed case, similar fundamental questions regarding existence and

uniqueness in the non-closed case remain open.

Given any properly embedded Lipschitz curve in the plane, a result due to Kai-Seng Chou &

Xi-Ping Zhu shows that there always exists a properly embedded solution to curve shortening

flow starting from this initial data.

Theorem 1.2.10 (Chou-Zhu, [CZ98]). Let γ0 : R → R2 be a properly embedded, locally Lipschitz

curve. Then there exists T ∈ (0,∞] and a continuous map γ : R× [0, T ) → R2 such that

(i) γ is smooth and solves (1.2.1) on R× (0, T );

(ii) γ(·, t) is a smooth properly embedded curve at each time t ∈ (0, T );

(iii) γ(·, 0) = γ0.
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Suppose the initial data γ0 : R → R2 is a properly embedded, locally Lipschitz curve with a

graphical representation. That is, there exists u0 : R → R such that, in Cartesian coordinates

on R2,

γ0(x) = (x, u0(x)), ∀x ∈ R.

Due to earlier work of Klaus Ecker & Gerhard Huisken, we know the existence of a

solution which is also an entire graph at every time.

Theorem 1.2.11 (Ecker-Huisken, [EH89], [EH91]). Given any locally Lipschitz entire graph

u0 : R → R, there exists a continuous function u : R× [0,∞) → R with initial data u(·, 0) = u0

such that

(i) The graph of u(·, t) is an entire locally Lipschitz graph;

(ii) The map R× (0,∞) ∋ (x, t) 7→ (x, u(x, t)) is smooth and solves equation (1.2.1).

Moreover, within the class of entire graphical solutions, Panagiota Daskalopoulos and

Mariel Saez proved uniqueness.

Theorem 1.2.12 (Daskalopoulos-Saez, [DS21, Theorem 1.1]). Fix T > 0 and let ui : R ×
[0, T ) → R be two continuous functions such that

(i) u1(·, 0) = u2(·, 0), with image a locally Lipschitz graph.

(ii) The maps R× (0, T ) ∋ (x, t) 7→ (x, ui(x, t)) are smooth and solve equation (1.2.1).

Then u1 ≡ u2 on R× [0, T ).

Given some smooth, properly embedded curve γ(·, 0) in X, it is natural to ask whether solutions

to (1.2.1) starting from this initial data exist and if they are unique within a particular class.

1.3 Main results

Although we were motivated by (3+1)-dimensional Ricci flow spacetimes, we shall consider the

(2 + 1)-dimensional case as a concrete starting point. The following theorem shows that, for a

complete (2+1)-dimensional Ricci flow spacetime, worldlines always persist until the final time.

Theorem 1.3.1. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Then

M is expanding. That is, the vanishing times

Tx := sup Ix = T, ∀x ∈ M.

As seen in Example 1.1.8, we cannot expect a general complete Ricci flow spacetime to be

cylindrical. This leads us to formulate the following regularity hypotheses that we shall impose

on our spacetimes.
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Definition 1.3.2. Let (Mn+1, t, ∂t, g) be a Ricci flow spacetime. For any s, t ∈ I, define the

temporal closure of the time slice Ms at time t to be

Ms(t) := {x ∈ Mt : s ∈ Ix} ⊇ Ms(t).

We say that the Ricci flow spacetime is continuous if

(Ms(t))
◦ = Ms(t), ∀s, t ∈ I.

This condition prevents cusps from being capped off as in Example 1.1.8 (see Lemma 5.2.5).

For the next condition, we need the definition of a time-preserving path from [KL17].

Definition 1.3.3 (Kleiner-Lott, [KL17, Definition 1.11]). Let (M, t, ∂t, g) be a Ricci flow space-

time. Suppose J ⊆ I is an interval and let η : J → M be a smooth path. We say that η is

time-preserving if

t ◦ η(t) = t, ∀t ∈ J.

Given a point in spacetime, we may ask how far backwards in time we can see from that point.

More precisely, consider every time-preserving path ending at this point, and then take the

infimum of their starting times.

Definition 1.3.4. Let (M, t, ∂t, g) be a Ricci flow spacetime. Define the hindsight function

h : M → I by

h(x) := inf{s ∈ I : there exists a time-preserving path η : [s, t(x)] → M with η ◦ t(x) = x}.

The following condition, in conjunction with continuity, rules out any auxiliary data from being

added at positive time.

Definition 1.3.5. Let (M, t, ∂t, g) be a Ricci flow spacetime with inf I = 0. M is said to be

initially determined if h ≡ 0, where h denotes the hindsight function (see Definition 1.3.4).

With these extra hypotheses, complete (2 + 1)-dimensional spacetimes are in fact cylindrical.

Theorem 1.3.6. Let (M2+1, t, ∂t, g) be a complete, continuous and initially determined Ricci

flow spacetime with I = (0, T ). Then Ix = (0, T ), for every x ∈ M.

Corollary 1.3.7. Let (M2+1, t, ∂t, g) be a complete, continuous and initially determined Ricci

flow spacetime with I = (0, T ). Then there exists a connected smooth surface M2 such that

(M2+1, t, ∂t, g) is isomorphic to a complete Ricci flow on M × (0, T ). That is, there exists a

smooth diffeomorphism Φ : M →M × (0, T ) such that

(i) For each t ∈ (0, T ), the restriction Φ : Mt →M × {t} is a diffeomorphism;

(ii) t = t ◦ Φ, where t :M × (0, T ) → (0, T ) denotes the standard projection map;
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(iii) Φ∗(∂t) =
∂
∂t ;

(iv) Φ∗(g(t)) is a complete Ricci flow on M × (0, T ).

Although we have an existence theorem for solutions to curve shortening flow within the class

of properly embedded solutions, it turns out that this class is too large to expect a uniqueness

theorem to hold.

Example 1.3.8. There exists a continuous map γ : R× [0,∞) → R2 such that

• γ is smooth and solves (1.2.1) on R× (0,∞).

• γ(·, t) : R → R2 is a proper embedding, for every t ≥ 0.

• Im (γ(·, 0)) is an entire locally Lipschitz graph over the x-axis, but Im (γ(·, t)) is not a

graph over the x-axis, for any t > 0.

In conjunction with the existence result of Ecker-Huisken (Theorem 1.2.11), this example shows

that the Cauchy problem for properly embedded curves is ill-posed. In light of this, we introduce

the following sub-class of solutions.

Definition 1.3.9. Let (X, g) be a complete Riemannian surface and T ∈ (0,∞). We say that

γ : R× [0, T ] → X is a uniformly proper solution to CSF (in X) if

i) γ : R× [0, T ] → X is a continuous proper map.

ii) γ(·, t) : R → X is a smooth proper embedding ∀t ∈ (0, T ].

iii) γ is smooth and solves (1.2.1) on R× (0, T ).

Remark 1.3.10. We restrict ourselves to solutions that are proper as a map on space-time to

avoid tangential re-parameterisations which get arbitrarily bad as t goes to zero. We shall see

that Example 1.3.8 is not a uniformly proper solution, which shows that the family of curves

being uniformly proper (in time) is a necessary condition to impose on a class of solutions in

which you expect uniqueness. Moreover, requiring our solution to be uniformly proper is also

sufficient for the usual avoidance principle with closed curves to hold (see Theorem 4.2.4).

Within the class of uniformly proper solutions to CSF, the only solution starting from a properly

embedded geodesic in the plane is the static solution.

Example 1.3.11. Consider any uniformly proper solution γ : R × [0, T ] → R2 to CSF, with

initial data γ(·, 0) a parameterisation of the x-axis. Closed circles evolve homothetically under

CSF, with radius at time t given by the equation R(t) =
√
R(0)2 − 2t. Fix ϵ > 0 and choose

R(0) sufficiently large so that

R(0)−R(T ) ≤
(
R(T ) +

T

R(T )

)
−R(T ) =

T√
R(0)2 − 2T

< ϵ.
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Consider the family of circles, all of radius R(0), centred at each point along the lines

{y = ±(R(0) + ϵ)}. For any one of these circles, it is initially disjoint from the x-axis, and

by Theorem 4.2.4, our uniformly proper solution γ must avoid these shrinking circle as they

simultaneously evolve under CSF. In particular, for any t ∈ [0, T ], we have trapped the image

of our solution γ(·, t) within the 2ϵ-tubular neighbourhood of the x-axis. Thus, our solution

must coincide with the static solution.

Definition 1.3.12. Let (X2, g) be a complete Riemannian surface. We say that CSF is unique

on (X, g) if, for any pair of uniformly proper solutions γi : R × [0, Ti] → X to CSF (see

Definition 1.3.9) with the same initial data

γ1(x, 0) = γ2(x, 0), ∀x ∈ R,

then their images agree wherever they are both defined

Im(γ1(·, t)) = Im(γ2(·, t)), ∀t ∈ [0, T ],

with T := min{T1, T2}.

Tom Ilmanen remarks that for surfaces with no lower curvature bound, it is possible for curves

to bloom at infinity and rush inwards under CSF [Ilm94, Remark 3.6]. Drawing parallels with

the heat equation, this property is analogous to stochastic incompleteness, whereby heat is

allowed to instantly escape at infinity. Returning our attention to Example 1.3.11, we see that

for surfaces that allow curves to bloom at infinity, our geometric proof of uniqueness now fails.

Example 1.3.13. Let g = dx2 + e2ϕ(x)dy2 be a complete metric on the plane R2. Consider

any uniformly proper solution starting from the x-axis. Since the x-axis is still a geodesic

with respect to this metric, we would like to show our solution is the static solution by the

same reasoning as in Example 1.3.11. However, we suppose that g is chosen in such a way

that vertical lines bloom at infinity. That is, there exists a smooth function x : (0,∞) → R
such that limt↘0 x(t) = ∞, with the property that the vertical lines {x = x(t)} are evolving

under CSF in (R2, g). Since these vertical lines define a uniformly proper solution (see §4.2), by
Theorem 4.2.4, every closed curve moving under CSF is instantly pulled in from infinity, and

we no longer have control of the non-closed solution at infinity. See §4.3 for more details.

We demonstrate non-uniqueness by constructing a geodesic line within such a surface that can

start moving (without any forcing term) under curve shortening flow.

Theorem 1.3.14. There exists a smooth, complete metric g = dx2+e2ϕ(x)dy2 on the plane and

a uniformly proper solution γ : R× [0, 1] → R2 of CSF in (R2, g) with initial condition γ(·, 0) a
parameterisation of the x-axis, such that for all t > 0, the curve Im(γ(·, t)) is not the x-axis.

Corollary 1.3.15. There exists a Riemannian surface (X2, g) on which CSF is not unique (see

Definition 1.3.12).
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Within the class of rotationally symmetric metrics on the plane, we are able to formulate a more

precise notion of what it means for a metric to allow curves to bloom at infinity. Given the

usual action of the orthogonal group O(2) on R2, consider a complete smooth O(2)-invariant

metric g on the plane. In polar coordinates (r, θ), the metric has the form

g = dr2 + e2ϕ(r)dθ2 (1.3.1)

for some smooth warping function ϕ : (0,∞) → R. Under equation (1.2.1), the radii of the

circles ∂BR := {(R, θ) : θ ∈ S1} solve the ODE

∂R

∂t
(t) = −∂ϕ

∂r
(R(t)). (1.3.2)

We characterise such a metric to allow blooming at infinity if solutions to this ODE can come

in from infinity in finite time:

Definition 1.3.16. Consider the plane (R2, g) equipped with a complete smooth O(2)-invariant

metric, so that in polar coordinates it has the form g = dr2 + e2ϕ(r)dθ2 as in (1.3.1). We say

that g allows blooming at infinity if there exists T ∈ (0,∞) and a solution R : (0, T ) → (0,∞)

to the ODE (1.3.2) such that R(t) → ∞ as t↘ 0. If no such solution exists, we say that g does

not allow blooming at infinity.

Within the class of smooth complete O(2)-invariant metrics which have non-positive curvature,

we prove that if a metric does not allow blooming at infinity, then with respect to this metric

we have uniqueness for uniformly proper solutions to CSF which start from a radial geodesic.

Theorem 1.3.17. Consider a complete smooth O(2)-invariant metric g with non-positive

curvature on the plane. Let γ : R× [0, T ] → R2 be a uniformly proper solution to CSF starting

from the x-axis. If g does not allow blooming at infinity then γ is the static solution to CSF.
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Chapter 2

Background

In this chapter, we introduce relevant notation, as well as give a brief overview of many of the

results from the literature we utilise in this thesis.

Notation:

We write a ≲ b if there exists a constant C > 0 such that a ≤ C · b. If the constant C depends

explicity on certain values α1, . . . , αk, we write this as a ≲α1,...,αk
b. We also establish the

following conventions for function spaces. Given a space F (X) of functions u : X → R on some

topological space X, we define the space Floc(X) to be those functions v : X → R satisfying

the following: for every x ∈ X, there is a neighbourhood x ∈ U ⊆ X such that v restricted to

U is in F (U). Moreover, we define the space

Fc(X) := {u ∈ F (X) : supp(u) ⋐ X}.

2.1 Parabolic Hölder spaces

Given a subset Ω ⊆ Rn, let C0(Ω) denote the Banach space of bounded real-valued continuous

functions on Ω. For α ∈ (0, 1], define the α-Hölder semi-norm to be

[u]α,Ω := sup
x ̸=y∈Ω

|u(x)− u(y)|
|x− y|α

,

and hence the space of α-Hölder continuous functions by

C0,α(Ω) := {u ∈ C0(Ω) : ∥u∥C0,α(Ω) <∞},

where

∥u∥C0,α(Ω) := ∥u∥L∞(Ω) + [u]α,Ω.

Remark 2.1.1. In the case Ω ⋐ R is an open interval say, then any α-Hölder continuous function
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has a unique extension to a α-Hölder continuous function on the closure Ω. As such, the space

we call C0,α(Ω) is often denoted by C0,α(Ω) in the literature, and what we call C0,α
loc (Ω) is often

denoted by C0,α(Ω).

Given any multi-index a := (a1, . . . , an) ∈ (N0)
n, we denote the partial derivative of index a by

Dau(x) :=
∂a1

∂xa11
◦ · · · ◦ ∂an

∂xann
u(x).

We call |a| = a1 + · · ·+ an the order of the partial derivative. Given k ∈ N, define the space of

continuously differentiable functions of order k, denoted by Ck(Ω), to be

Ck(Ω) := {u : Ω → R : Dau ∈ C0(Ω), ∀a ∈ (N0)
n with |a| ≤ k}.

This is a Banach space with respect to the norm

∥u∥Ck(Ω) :=
∑
|a|≤k

∥Dau∥L∞(Ω).

Define the Hölder space

Ck,α(Ω) := {u ∈ Ck(Ω) : ∥u∥Ck,α(Ω) <∞},

where

∥u∥Ck,α(Ω) :=
∑
|a|≤k

∥Dau∥C0,α(Ω).

Consider now ΩT := Ω× (0, T ) ⊆ Rn × R. Define the parabolic distance on ΩT to be

dP ((x, t), (y, s)) := max{|x− y|, |t− s|
1
2 }, ∀(x, t), (y, s) ∈ Ω× (0, T ),

and the parabolic α-Hölder semi-norm to be

[u]Pα,ΩT
:= sup

(x,t)̸=(y,s)∈ΩT

|u((x, t))− u((y, s))|
dP ((x, t), (y, s))α

.

Using this semi-norm instead, we can define the space of parabolic α-Hölder continuous functions

P 0,α(ΩT ) := {u ∈ C0(ΩT ) : ∥u∥P 0,α(ΩT ) <∞},

where

∥u∥P 0,α(ΩT ) := ∥u∥L∞(ΩT ) + [u]Pα,ΩT
.

Given a multi-index a = (a0, a1, . . . , an) ∈ (N0)
n+1, we define the parabolic partial derivative of
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index a by

Dau(x, t) :=
∂a0

∂ta0
◦ ∂a1

∂xa11
◦ · · · ◦ ∂an

∂xann
u(x, t).

We call |a|P = 2a0+a1+ · · ·+an the parabolic order of the partial derivative. Define the space

P k(ΩT ) := {u : ΩT → R : Dau ∈ C0(ΩT ), ∀a ∈ (N0)
n+1 with |a|P ≤ k}.

This is a Banach space with respect to the norm

∥u∥Pk(ΩT ) :=
∑

|a|P≤k

∥Dau∥L∞(ΩT ).

Define the parabolic Hölder space

P k,α(ΩT ) := {u ∈ P k(ΩT ) : ∥u∥Pk,α(ΩT ) <∞},

where

∥u∥Pk,α(ΩT ) :=
∑

|a|P≤k

∥Dau∥P 0,α(Ω).

For any X ⊆ Rn, let C∞(X) :=
⋂

k C
k(X) denote the space of smooth functions. Note that, in

the case our domain X = ΩT admits a parabolic distance, then C∞(ΩT ) =
⋂

k P
k(ΩT ) also.

2.2 Monotonicity of zeroes and the intersection principle

Let Ω := (a1, a2) ⋐ R, ΩT := Ω × (0, T ), and ΓT := (Ω× {0}) ∪ (∂Ω× [0, T )). Consider the

linear operator

L(u) := ut −A(x, t)uxx +B(x, t)ux + C(x, t)u, (2.2.1)

with A ∈ P 2(ΩT ), B ∈ C1(ΩT ) C ∈ C0(ΩT ), where A(x, t) ≥ λ > 0, for some λ > 0.

In his 1988 paper [Ang88], Sigurd Angenent describes the zero set of a solution to such a

linear parabolic equation at positive times. In particular, for non-zero solutions on a compact

parabolic rectangle with conducive auxiliary data (see Definition 2.2.1 below), the number of

zeros is finite and decreasing at positive times:

Given α ∈ (0, 1] and a function u ∈ P 2,α(ΩT ), we define its zero set

Z := {(x, t) ∈ Ω× [0, T ) : u(x, t) = 0},

and the zero set at time t ∈ [0, T ) to be

Zt := {x ∈ Ω : (x, t) ∈ Z}.
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For any zero (x, t) ∈ Z, we say it is a simple zero if ux(x, t) ̸= 0, and a multiple zero if

ux(x, t) = 0. We also define a function which counts the number of zeros at each time

z : [0, T ) → N0 ∪ {∞}, z(t) := |Zt|.

The following definition specifies suitable behaviour for solutions on the parabolic walls of our

domain for which the following monotonicity theorem will hold. We thus refer to such behaviour

as being conducive.

Definition 2.2.1 (Conducive auxiliary behaviour, [Ang88]). We say that a function u ∈
P 2,α(ΩT ) is conducive if, for each i ∈ {1, 2}, either:

(i) u(ai, t) ̸= 0 ∀t ∈ [0, T ).

(ii) u(ai, t) = 0 ∀t ∈ [0, T ).

The following theorem is taken directly from Angenent’s paper.

Theorem 2.2.2 ([Ang88, Theorems C & D]). Fix α ∈ (0, 1] and let u ∈ P 2,α(ΩT ) be a non-zero

conducive solution to L(u) ≡ 0 on ΩT . Then for t ∈ (0, T ), z(t) is finite. Moreover, if x ∈ Zt

is a multiple zero of u, then

z(t2) < z(t1), for each t1 < t < t2.

Although Angenent’s original result works for positive times, if all of the initial zeros are simple,

we may extend the monotonicity all the way up to the initial time:

Lemma 2.2.3. Fix α ∈ (0, 1] and let u ∈ P 2,α(ΩT ) be a non-zero conducive solution to L(u) ≡ 0

on ΩT . Suppose that 0 is a regular value of u(·, 0) : Ω → R. Then [0, T ) ∋ t 7→ z(t) is decreasing.

Remark 2.2.4. It is actually possible to drop the assumption that 0 is a regular value of u(·, 0)
in this lemma by modifying Angenent’s original argument. However, it will not be necessary to

do so for our purposes, and so we omit this added complication.

Proof. We first use the Whitney extension theorem (Theorem B.0.4), to extend u ∈ C1(R2). By

our assumptions, we can apply the implicit function theorem at all zeros x ∈ Z0 to deduce that,

for some sufficiently small open neighbourhood U ∋ Z0, and some sufficiently small time t0 > 0,

the number of zeros of u(·, t) : U → R for t ∈ (−t0, t0) is constant. Moreover, on the compact

complement Ω \ U , we have that u0 is non-zero. Therefore, after shrinking t0 possibly, we can

conclude that every zero of u(·, t) is contained in U for t ∈ (−t0, t0), and hence z(t) is constant

for t ∈ [0, t0). This result now follows from Angenent’s original result, Theorem 2.2.2.

This theorem is extremely useful for comparing how many times two solutions intersect one
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another. Consider the quasi-linear parabolic operator

Q(u) := ut −A(x, u, ux)uxx +B(x, u, ux), (2.2.2)

with A(x, z, p), B(x, z, p) ∈ C∞(Ω× R× R) and A(x, z, p) > 0 on Ω× R× R.

Given two solutions u1, u2 ∈ C0(Ω × [0, T )) ∩ C∞(ΩT ) of Q ≡ 0, we define their intersection

number at time t to be

I(t) := |{x ∈ Ω : u1(x, t) = u2(x, t)}|, ∀t > 0.

We now apply Theorem 2.2.2 and Lemma 2.2.3 to the difference u1 − u2.

Theorem 2.2.5 (Graphical intersection principle). Let u1, u2 ∈ C∞(Ω× [0, T )) be two distinct

solutions to Q ≡ 0 on ΩT , where their difference u1 − u2 is conducive. Then I(t) is decreasing

and finite, for all t ∈ (0, T ). Moreover, if u1(x, t) = u2(x, t) and
∂u1
∂x (x, t) = ∂u2

∂x (x, t), then

I(t2) < I(t1), for each t1 < t < t2.

Finally, if 0 is a regular value of u1(·, 0)−u2(·, 0) : Ω → R, then [0, T ) ∋ t 7→ I(t) is decreasing.

Proof. Setting v := u1 − u0 and u(s) := su1 + (1− s)u0, we have the differential equation

vt = A(x, u1, (u1)x)(u1)xx −B(x, u1, (u1)x)−A(x, u0, (u0)x)(u0)xx +B(x, u0, (u0)x)

=

∫ 1

0

∂

∂s
[A(x, u(s), (u(s))x)(u(s))xx −B(x, u(s), (u(s))x)] ds

=

[∫ 1

0
A(x, u(s), (u(s))x)ds

]
vxx

+

[∫ 1

0

(
∂A

∂p
(x, u(s), (u(s))x)(u(s))xx −

∂B

∂p
(x, u(s), (u(s))x)

)
ds

]
vx

+

[∫ 1

0

(
∂A

∂z
(x, u(s), (u(s))x)(u(s))xx −

∂B

∂z
(x, u(s), (u(s))x)

)
ds

]
v

:= Ã(x, t)vxx − B̃(x, t)vx − C̃(x, t)v

In particular, define the linear parabolic operator

L̃(u) := ut − Ã(x, t)uxx + B̃(x, t)ux + C̃(x, t)u.

Note that Ã, B̃, C̃ ∈ C∞(ΩT ) and so there exists some lower bound C̃ ≥ −C0 on ΩT . Moreover,

since our original solutions u1, u2 ∈ C∞(ΩT ), the C
1-norms of u(s) are uniformly bounded for

s ∈ [0, 1]. By compactness, A(x, u(s), (u(s))x) is bounded below by a fixed positive constant
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λ > 0, and hence

Ã(x, t) =

∫ 1

0
A(x, u(s), u(s)x)ds ≥

∫ 1

0
λ ds = λ, ∀(x, t) ∈ ΩT .

This means L̃ is strictly parabolic on ΩT . We can then apply Theorem 2.2.2 and Lemma 2.2.3

to v, which yields the result.

By considering two solutions to CSF, around any intersection point, we can write them locally

as graphs which solve a suitable quasi-linear parabolic equation. Applying the previous theorem

gives the following intersection principle, also originally due to Angenent.

Theorem 2.2.6 (Intersection principle, [Ang91, Theorem 1.3]). Let M1, M2 be a pair of com-

pact (possibly with boundary) 1-dimensional manifolds. Let ηi :Mi× [0, T ] → X be two continu-

ous maps which solve CSF (1.2.1) on Mi
◦ × (0, T ). Suppose we have the boundary conditions

∂(Im (η1(·, t))) ∩ Im (η2(·, t)) = Im (η1(·, t)) ∩ ∂(Im (η2(·, t))) = ∅, ∀t ∈ [0, T ].

Then the intersection number between the solutions

ι(t) := |{(x1, x2) ∈M1 ×M2 : η1(x1, t) = η2(x2, t)}|,

is finite and decreasing for t ∈ (0, T ].

As a corollary to this, we can quickly deduce the following version of the avoidance principle.

Corollary 2.2.7. [Avoidance principle] Let M1, M2 be a pair of compact (possibly with bound-

ary) 1-dimensional manifolds. Let ηi : Mi × [0, T ] → X be two continuous maps which solve

CSF (1.2.1) on Mi
◦ × (0, T ). Suppose we have the boundary conditions

∂(Im (η1(·, t))) ∩ Im (η2(·, t)) = Im (η1(·, t)) ∩ ∂(Im (η2(·, t))) = ∅, ∀t ∈ [0, T ].

Moreover, suppose that the solutions are initially disjoint

Im(η1(·, 0)) ∩ Im(η2(·, 0)) = ∅.

Then the solutions remain disjoint at all later times

Im(η1(·, t)) ∩ Im(η2(·, t)) = ∅, ∀t ∈ [0, T ].

Proof. If d denotes the distance function on (X, g), then the function d : M1 ×M2 × [0, T ] →
[0,∞),

d(x1, x2, t) := d(η1(x1, t), η2(x2, t)),
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is continuous. Since M1 ×M2 is compact, the function D : [0, T ] → [0,∞),

D(t) := inf
(x1,x2)∈M1×M2

D(x1, x2, t), ∀t ∈ [0, T ],

is also continuous. D(0) > 0 since our solutions are initially disjoint. By continuity, D remains

positive for a small time. In particular, ι(t) = 0 for some arbitrarily small positive times, which

by the intersection principle (Theorem 2.2.6), implies ι ≡ 0.

Sometimes, we may want to apply the avoidance principle with one of the solutions replaced

with a subsolution or a supersolution to the equation. In order to do this, we need some ordering

of the solutions that respects this distinction. As such, we state a suitable avoidance principle

for graphical solutions, where this ordering can be stated easily, and then apply this theorem

locally on a case by case basis depending on the geometry of the situation.

Theorem 2.2.8 (Graphical avoidance principle). Let Q be a quasi-linear operator as in (2.2.2),

and fix u0, u1 ∈ P 2,α(ΩT ) for some α ∈ (0, 1]. Suppose Qu0 ≤ 0 and Qu1 ≥ 0 on ΩT . If u0 ≤ u1

on ΓT , then u0 ≤ u1 on ΩT .

Proof. Setting v := u1 − u0 and u(s) := su1 + (1 − s)u0, we repeat the construction of the

strictly linear operator L̃ from the proof of Theorem 2.2.5, and deduce that L̃(v) ≥ 0 on ΩT .

Therefore, by the maximum principle (Theorem A.0.1), we have

v(x, t) ≥ min{0, inf
ΓT

(
veC0(T−t)

)
} ≥ 0, ∀(x, t) ∈ ΩT .

2.3 Ricci flow spacetimes

Let (Mn+1, t, ∂t, g) be a Ricci flow spacetime. Since ∂t is a smooth vector field on M, we can

consider its maximal flow {(x, t) ∈ M× I : t ∈ Ix} → M, mapping (x, t) 7→ x(t). The following

are standard properties of the flow (e.g see [Lee13])

(a) The set of points we can flow for time t, M(t) := {x ∈ M : t(x) + t ∈ Ix}, is an open

subset of M, for every t ∈ R.

(b) The map M(t) → M(−t), sending x 7→ x(t(x) + t), is a smooth diffeomorphism.

For any s, t ∈ I, consider flowing all of the points in the spatial slice at time s into the spatial

slice at time t. This is Ms(t) in the notation from Definition 1.2.6. Similarly, consider Mt(s),

which we get from flowing all of the points in the spatial slice at time t into the spatial slice at

time s. Since Ms(t) = Mt ∩M(s−t), (a) tells us that Ms(t) is open in Mt. Similarly Mt(s)

is open in Ms. Then by (b), we have the smooth diffeomorphism Mt(s) → Ms(t), mapping

x 7→ x(t). In particular, can conclude that the flow of ∂t preserves open subsets within our

spatial slices:
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Lemma 2.3.1. If U ⊆ Ms is open for some s ∈ I, then U(t) ⊆ Mt is open, ∀t ∈ I.

Proof. U ∩ Mt(s) is open in Ms, whose image under the diffeomorphism Mt(s) → Ms(t),

x 7→ x(t), is U(t). Since Ms(t) is open in Mt, the result follows.

Fix an open subset of a time slice, U ⊆ Ms, for some s ∈ I. Given an interval J ⊆ I, we define

the parabolic cylinder

U(J) :=
⋃
t∈J

U(t) ⊆ M. (2.3.1)

For x ∈ M and r > 0, consider the special case where U is the ball centred at x of radius r

B(x, r) := Bg(t(x))(x, r) ⊆ Mt(x).

In the language of equation (2.3.1), we set

C(x, r) := [B(x, r)](t(x)− r2, t(x) + r2),

to be the parabolic cylinder centred at x of radius r.

Given a general parabolic cylinder U(J), we say that it is unscathed if J ⊆ IU (see Defini-

tion 1.2.6). Since t is a smooth submersion, for any x ∈ M, there exists smooth coordinates

(x1, · · · , xn, t) locally around x, so that ∂t · xi ≡ 0 for i ∈ {1, . . . , n}. In particular, we can

choose r > 0 sufficiently small so that the parabolic cylinder C(x, r) is unscathed.

Lemma 2.3.2. Fix s ∈ I. For any open subset U ⊆ Ms, and any open sub-interval J ⊆ I, the

parabolic cylinder U(J) is open in M.

Proof. Fix x ∈ U(J). For r sufficiently small, the parabolic cylinder C(x, r) is unscathed

and open in M. Since U(t(x)) is open in Mt(x) and J is open in I, shrinking r if necessary,

C(x, r) ⊆ U(J).

Lemma 2.3.3. Fix s ∈ I. Suppose K ⋐ Ms. Then there exists an open sub-interval J ⊆ I

containing s, such that K(J) is unscathed.

Proof. Cover K by sufficiently small, unscathed parabolic cylinders centred at points in K, and

use the compactness of K.

Consider now the map Ψ : U(J) ⊆ M → U × J , given by the inverse of the flow lines of ∂t

Ψ(x) := (x(s), t(x)), ∀x ∈ U(J).
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This is a diffeomorphism onto it’s image Ψ(U(J)) = {(x, t) ∈ U × J : t ∈ Ix}. Note that

(Ψ)∗(∂t) =
∂
∂t , and the push forward of the metric satisfies the usual Ricci flow equation

∂

∂t
Ψ∗(g) = Ψ∗(L∂tg) = Ψ∗(−2Ric g) = −2RicΨ∗(g), on Ψ(U(J)).

We call such a map, Ψ : U(J) ⊆ M → U × J , cylindrical coordinates on U(J).

2.4 Brakke flows

The following is a collection of results regarding Brakke flows from the literature that we will

use later. We begin with some standard definitions (e.g see [Ilm94]).

Definition 2.4.1. Given a manifold Xn, let G(k,X)
π−→ X denote the Grassmanian k-plane

bundle over X. A k-dimensional varifold V in X is a Radon measure on G(k,X).

Note that, for a k-dimensional varifold V in X, the push-forward measure µ := π∗(V ) is a

Radon measure on X. Since we want to consider Brakke flows in X, we need to equip it with

a smooth metric (X, g). By Nash’s embedding theorem, we can find an embedding Xn ↪→ RN .

Therefore, for x ∈ X and λ > 0, we can consider the re-scaled Radon measure on X

µx,λ(B) := λ−kµ(λ ·B + x), ∀B ∈ B.

Given P ∈ π−1(x) and m ∈ N, we say that P is the tangent plane of µ at x with multiplicity m

if

µx,λ ⇀m · Hk|P ,

as λ↘ 0, where Hk denotes the k-dimensional Hausdorff measure.

Definition 2.4.2. A Radon measure µ on X is said to be integer k-rectifiable if, for µ almost

every point x ∈ X, there exists a tangent plane P of µ at x, with some multiplicity m ∈ N.
Given a varifold V , if its push-forward π∗(V ) is an integer k-rectifiable Radon measure on X,

then we say that V is a k-dimensional integral varifold.

Definition 2.4.3 (Brakke, [Bra78]). A k-dimensional integral Brakke flow in (Xn, g) is a 1-

parameter family of Radon measures on X, [0, T ] ∋ t 7→ µt, so that

1. For almost every t ∈ [0, T ], there exists a k-dimensional integral varifold V (t) in X, such

that µ(t) = π∗(V (t)). Moreover, the first variation of V (t) satisfies

δVt(Y ) = −
∫
X
⟨Ht, Y ⟩ dµt, ∀Y ∈ Γ0(TX),

for some Ht ∈ L 2
loc(TX, µt).
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2. If f ∈ C1
c (X

n × [0, T ]) with f ≥ 0, then∫
X
f(·, T )dµT −

∫
X
f(·, 0)dµ0 ≤

∫ T

0

∫
X

(
−|Ht|2f +Ht · ∇f + ∂tf

)
dµtdt. (2.4.1)

One major benefit of working with this weaker notion of solution is that they enjoy the following

compactness theorem.

Theorem 2.4.4 (Ilmanen, [Ilm94]). Suppose that [0, T ] ∋ t 7→ µnt is a sequence of integral

Brakke flows in (Xn, g). Assume that we have locally uniform volume bounds:

sup
n∈N

sup
t∈[0,T ]

µnt (K) ≤ CK <∞, ∀K ⋐ X.

Then, after passing to a subsequence, we have

1. µnt ⇀ µt, for every t ∈ [0, T ];

2. [0, T ] ∋ t 7→ µt is an integral Brakke flow;

3. For almost every t ∈ [0, T ], after possibly passing to a further subsequence which depends

on t, the associated varifolds converge weakly V n(t)⇀ V (t).

The following theorem gives a local area bound for Brakke flows in general ambient spaces.

Although the statement and proof of this theorem presented here are original, I believe similar

results are likely to exist in the literature.

Lemma 2.4.5 (Local area bound). Let [0, T ] ∋ t 7→ µt be an k-dimensional Brakke flow in

(Xn, g). Given x0 ∈ X and ρ > 2, choose σ ≥ 0 such that secg ≥ −σ, in Bg(x0, 2ρ). Then, for

any t ∈ [t0, t0 +
ρ2

2(k+1)+4kρ
√
σ
] ⊆ [0, T ] we have

µt (B(x0, ρ)) +

∫ t

t0

∫
B(x0,ρ)

|Hτ |2dµτdτ ≤ 8µt0 (B(x0, 2ρ)) . (2.4.2)

Proof. Consider the metric gσ := dr2 + σ−1 sinh(
√
σr)gSn−1 on [0,∞) × Sn−1, of constant

sectional curvature −σ. If dσ denotes the distance function from {r = 0}, then by a direct

calculation (e.g see [Pet06, Section 2.3]) we have

∇2dσ(r) =
√
σ coth(

√
σr)(gσ − dr2).

In particular

∇2dσ(r)(X,X) ≤
√
σ, ∀r ≥ 1,

where X is any unit tangent vector (with respect to gσ). Let d denote the distance function in

(X, g) from x0. Working within Bg(x0, 2ρ) \ Bg(x0, 1), we can apply the Hessian comparison
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theorem to get a lower bound

□d = −
k∑

i=1

∇2d(ei, ei) ≥ −
k∑

i=1

∇2dσ(ẽi, ẽi) ≥ −k
√
σ,

and hence

□d2 = 2d ·□d− 2k ≥ −(2k + 4kρ
√
σ).

We now smooth out the distance function on B(x0, 1) to get a lower bound within the entire

ball B(x0, 2ρ). Define χ : R → R by

χ(x) :=

1 : x ≤ 1

x : x ≥ 2
,

with χ′ ∈ [0, 1] and χ′′ ∈ [0, 2]. Choosing C := 2(k + 1) + 4kρ
√
σ, we then have

□
(
χ(d2)

)
= χ′(d2) ·□d2 − χ′′(d2) · |∇d|2 ≥ −C,

inside the entire ball B(x0, 2ρ), and hence

□
(
χ(d2) + C · (t− t0)

)
≥ 0.

Therefore, the cut-off function

f(x, t) :=

(
1− χ(d2) + C · (t− t0)

4ρ2

)3

+

,

satisfies □f ≤ 0 in the region B(x0, 2ρ)× (t0, t0 + ρ2/C). By the defining property of a Brakke

flow, we have

∫
f(·, t)dµt −

∫
f(·, t0)dµt0 ≤

t∫
t0

∫ (
−f |Hτ |2 + ⟨Hτ ,∇f⟩+

∂f

∂τ

)
dµτdτ

=

t∫
t0

∫ (
−f |Hτ |2 +

df

dτ

)
dµτdτ

=

t∫
t0

∫
−f |Hτ |2dµτdτ.

For any point (x, t) with χ(d2) ≤ ρ and t ∈ [t0, t0 + ρ2/C], we have

1/8 =

(
1− ρ2 + ρ2

4ρ2

)3

+

≤ f(x, t),
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and hence

µt (B(x0, ρ)) +

∫ t

t0

∫
B(x0,ρ)

|Hτ |2dµτdτ ≤ 8

∫ f(·, t)dµt +
t∫

t0

∫
f |Hτ |2dµτdτ.


≤ 8

∫
f(·, t0)dµt0

≤ 8µt0 (B(x0, 2ρ)) .

Remark 2.4.6. Note that in the special case that (X, g) is Euclidean space, then we can choose

f to be a simpler cut-off function (see equation (2.4.4)) and C = 2k. We then recover the local

area bound in Euclidean space due to Ecker.

Lemma 2.4.7 (Ecker, [Eck12, Proposition 4.9]). Let [0, T ] ∋ t 7→ µt be an k-dimensional

Brakke flow in RN . Given any ρ > 0, for x0 ∈ RN and t ∈ [t0, t0 +
ρ2

2k ] ⊆ [0, T ], we have

µt (B(x0, ρ)) +

∫ t

t0

∫
B(x0,ρ)

|Hτ |2dµτdτ ≤ 8µt0 (B(x0, 2ρ)) . (2.4.3)

For the remainder of this section we restrict ourselves to the case of a Brakke flow in Euclidean

space. Given any point in space-time X0 := (x0, t0) ∈ RN × (0,∞), let ΦX0 : RN × (−∞, t0) →
(0,∞) be a re-scaled (depending on k) solution to the conjugate heat equation on RN starting

from the Dirac measure centred at the point X0:

ΦX0(x, t) := (4π(t0 − t))−k/2 e
− |x−x0|

2

4(t0−t) , ∀(x, t) ∈ RN × (−∞, t0).

The following definition was introduced by Tobias Colding and William Minicozzi.

Definition 2.4.8 (Colding-Minicozzi, [CM12]). Given a Radon measure µ on RN , and a point

in space-time X0 = (x0, t0) ∈ RN × (0,∞), let

λk(µ,X0) :=

∫
ΦX0(x, 0) dµ(x).

Define the k-entropy of µ to be

λk(µ) := sup
X0∈RN×(0,∞)

λk(µ,X0).

A related concept to the entropy of a measure is the area ratio of a measure, which will be used

later in the statement of a pseudolocality result.

Definition 2.4.9. Given a Radon measure µ on RN , a point x ∈ RN and r > 0, let

Λk(µ, x, r) :=
µ(B(x, r))

ωkrk
,
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where ωk denotes the measure of the unit ball in Rk. Define the k-area ratio of µ to be

Λk(µ) := sup
x∈RN ,r>0

Λk(µ, x, r).

Using integration by parts, one can show that the k-entropy and the k-area ratio of a Radon

measure are comparable. A reference for this can be found in recent work of Brian White.

Theorem 2.4.10 (White, [Whi19, Theorem 9.1]). There exists ck > 0 such that, for any Radon

measure µ on RN ,

ck · Λk(µ) ≤ λk(µ) ≤ Λk(µ).

Remark 2.4.11. Of course, these two values could be infinite for a given Radon measure, but the

proof given by White shows that if either one is infinite, then the other must also be infinite,

and the inequality still holds.

For any R > 0, define the cut-off function

fR(x, t) :=

(
1− |x|2 + 2kt

R2

)3

+

, ∀(x, t) ∈ RN × (−∞,∞), (2.4.4)

and for any point X0 := (x0, t0) ∈ RN × (0,∞), the re-centred function fR,X0(x, t) := fR(x −
x0, t− t0).

Definition 2.4.12. Let [0, T ] ∋ t 7→ µt be a k-dimensional Brakke flow in RN . For any point

X0 := (x0, t0) ∈ RN × (0, T ] and R > 0, define the R-local Gaussian density ratios at the point

X0 to be

ΘR(µt, X0, r) :=

∫
RN

ΦX0(x, t0 − r2) · fR,X0(x, t0 − r2)dµt0−r2(x), ∀r ∈ (0,
√
t0 ]. (2.4.5)

Remark 2.4.13. If we knew that µt has finite entropy, we could remove the cut-off function in

equation (2.4.5), and instead define the Gaussian density ratios at the point X0 by

Θ(µt, X0, r) :=

∫
X
ΦX0(x, t0 − r2)dµt0−r2(x), ∀r ∈ (0,

√
t0 ].

However, for a general Brakke flow, we cannot be sure that this integral is well-defined, and so

we consider the local version instead.

The following monotonicity formula was originally discovered by Gerhard Huisken in the

setting of mean curvature flows, before being extended to weak flows by Tom Ilmanen and

localised by Klaus Ecker.

Theorem 2.4.14 (Huisken-Ilmanen-Ecker, [Hui90], [Ilm95], [Eck12]). Let [0, T ] ∋ t 7→ µt be a
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k-dimensional Brakke flow in RN . Fix X0 := (x0, t0) ∈ RN × (0, T ] and R > 0. Then the map

(0,
√
t0 ] ∋ r 7→ ΘR(µt, X0, r),

is increasing in r. Moreover, the limiting value

Θ(µ,X) := lim
r↘0

ΘR(µt, X0, r),

is independent of R, known as the Gaussian density of the Brakke flow at X0.

Corollary 2.4.15. Let [0, T ] ∋ t 7→ µt be a k-dimensional Brakke flow in RN . Then the

k-entropy [0, T ] ∋ t 7→ λk(µt) is a decreasing function. Thus

sup
t∈[0,T ]

Λk(µt) ≲k λk(µ0).

Given a Brakke flow (0, T ) ∋ t 7→ µt in RN , and a point in spacetime X ∈ R2 × (0, T ), we say

that X is a regular point if for some small space-time neighbourhood U ∋ X, the Brakke flow

corresponds to a smooth mean curvature flow inside of U . For the following class of Brakke

flows, we can use the Gaussian density to infer regularity of the flow about a point.

Definition 2.4.16. A k-dimensional Brakke flow [0, T ) ∋ t 7→ µt in RN is unit-regular if, for

every space-time point X ∈ RN ×(0, T ) with unit Gaussian density Θ(µt, X) = 1, X is a regular

point.

This class of Brakke flows is useful due to the following result.

Theorem 2.4.17 (Schulze-White, [SW16]). The class of unit-regular Brakke flows is closed

under weak convergence of Brakke flows. Moreover, there exists ϵgap(k,N) > 0 such that, if

[0, T ) ∋ t 7→ µt is a unit-regular k-dimensional Brakke flow in RN , and θ(µt, X) < 1 + ϵgap for

some space-time point X ∈ RN × (0, T ), then X is a regular point.

Given a point (x0, y0) ∈ Rk × RN−k and r > 0, define the box

Ir(x0, y0) := {(x, y) ∈ RN : |x− x0| < r, |y − y0| < r} = Bk
r (x0)×BN−k

r (y0).

The following pseudolocality result is due to Tom Ilmanen, André Neves & Felix Schulze.

Theorem 2.4.18 (Ilmanen-Neves-Schulze, [INS19, Theorem 1.5, Remarks 1.6]). Let [0, T ) ∋
t 7→ µt be a unit regular k-dimensional Brakke flow in RN , with k-area ratios bounded by D.

Let Mt := supp(µt). Then for any η > 0, there exists ϵ, δ > 0 depending on n, k, η and D such

that, if (x0, y0) ∈M0 and M0∩I1((x0, y0)) can be written as a graph over Bk
1 (x0) with Lipschitz

constant less than ϵ, then for each t ∈ (0, δ2), Mt∩Iδ(x0, y0) can be written as a Lipschitz graph

over Bk
δ (x0), with Lipschitz constant less than η, and height bounded by ηδ.
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Chapter 3

Graphical curve shortening flow

with respect to warped metrics

Here we introduce some results about the long-time existence and regularity of graphical solu-

tions to curve shortening flow with respect to different metrics on the plane. Later, we shall

use these solutions as approximations to proper solutions, as well as solutions to foliate regions

of our space-time with.

3.1 Graphical formulas

We begin by fixing a metric g := dx2 + e2ϕ(x)dy2 on the plane for some smooth ϕ : R → R,
where (x, y) are the standard cartesian coordinates. We will consider graphical solutions to

CSF with respect to this metric. That is, we suppose we have a curve satisfying CSF such

that you can either write x(y, t) as a function of y and t, or y(x, t) as a function of x and t.

Since ϕ is independent of y, a solution to CSF remains a solution after a translation along the

y-axis. In the case x(y, t), translating along the y-axis corresponds to a horizontal translations

of the graph, and in the case y(x, t), a vertical translation. As such, we refer to these cases as

horizontal or vertical graphs respectively. It is a routine calculation to show that the geodesic

curvature κ of our curve is given by

For a horizontal graph x(y, t) : κ =
ϕ′eϕ(e2ϕ + 2x2y)− eϕxyy

(e2ϕ + x2y)
3
2

(3.1.1)

For a vertical graph y(x, t) : κ =
ϕ′eϕyx(y

2
xe

2ϕ + 2) + eϕyxx

(1 + e2ϕy2x)
3
2

(3.1.2)

Substituting into (1.2.1) gives the graphical formulations for CSF on (R2, g)

xt =
xyy

e2ϕ + x2y
− ϕ′(x)

(
1 +

x2y
e2ϕ + x2y

)
, (3.1.3)
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which in divergence form is

xt =
∂

∂y

(
e−ϕ tan−1(xye

−ϕ)
)
+ ϕ′(x)

(
xye

−ϕ tan−1(xye
−ϕ)− 1

)
.

yt =
yxx

1 + e2ϕy2x
+ yxϕ

′(x)

(
1 +

1

1 + e2ϕy2x

)
, (3.1.4)

which in divergence form is

yt =
∂

∂x

(
e−ϕ tan−1(yxe

ϕ)
)
+ ϕ′(x)

(
yx + e−ϕ tan−1(yxe

ϕ)
)
.

Since we refer to these PDEs frequently throughout the rest of the thesis, we introduce the

notation

µ(x, p) :=
1

1 + p2e2ϕ(x)
∈ (0, 1], ν(x, p) :=

1

e2ϕ(x) + p2
∈ (0, e−2ϕ(x)].

With this notation, we have the quasi-linear operators

H(x) := xt − ν(x, xy)xyy + ϕ′(x)(1 + ν(x, xy)x
2
y),

V(y) := yt − µ(x, yx)yxx − ϕ′(x)(1 + µ(x, yx))yx,

so that equations (3.1.3) and (3.1.4) become H = 0 and V = 0 respectively.

We can consider what the geodesics in our space now look like. Since geodesics are invariant

under the flow, they are useful barriers. Setting κ = 0 in equation (3.1.2) yields the first order

ODE

(yxe
ϕ)x + ϕ′(x) · (yxeϕ) · (1 + y2xe

2ϕ) = 0.

Given an interval Ω ∋ 0, we can solve this equation over Ω to give solutions

yx =
m

eϕ
√
e2ϕ −m2

,

for each constant m with |m| < infΩ e
ϕ. Thus, we can parameterise the geodesics with a vertical

graphical representation over Ω, by

{σm,h : R → R | |m| < inf
Ω
eϕ, h ∈ R},

where

σm,h(x) := h+

∫ x

0

m

eϕ(s)
√
e2ϕ(s) −m2

ds, ∀x ∈ Ω.

We note that σ0,h parameterises the horizontal line {y = h}. For m ̸= 0 however, σ′m,h ̸=
0 everywhere and the corresponding geodesic also has a horizontal graphical representation

ηm,h := (σm,h)
−1.
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3.2 Existence and uniqueness for non-strictly parabolic equa-

tions

Recall the quasi-linear parabolic operator we considered in §2, equation (2.2.2)

Q(u) := ut −A(x, u, ux)uxx +B(x, u, ux),

with A(x, z, p), B(x, z, p) ∈ C∞(Ω × R × R) and A(x, z, p) > 0 on Ω × R × R. In one spatial

dimension, we can always write our operator Q in divergence form

Q(u) := ut −
∂

∂x
(a(x, u, ux)) + b(x, u, ux), (3.2.1)

with A(x, z, p) = ∂a
∂p (x, z, p) and b(x, z, p) = B(x, z, p) + ∂a

∂x(x, z, p) +
∂a
∂z (x, z, p) · p.

Fix T < ∞. Given u0 ∈ C2,α(Ω), and ψ ∈ P 2,α(ΩT ) satisfying the compatibility conditions of

order 0 (ψ = u0 on ∂Ω× {0}), we consider the Dirichlet problem
Q(u) = 0 in ΩT

u = u0 on Ω× {0}

u = ψ on {a, b} × [0, T )

(3.2.2)

For each s ∈ (0, T ], we can restrict to the shorter time Dirichlet problem

(Ds) :=


Q(u) = 0 in Ωs

u = u0 on Ω× {0}

u = ψ on {a, b} × [0, s)

The following theorem can be found in [LSU88]. The proof uses the existence theory for linear

operators and the Leray-Schauder principle to interpolate between the quasi-linear operator and

the standard linear heat equation.

Theorem 3.2.1 (Existence and uniqueness for strictly parabolic operators, [LSU88, Chapter

V, Theorem 6.1]). Suppose that for each M > 0 the coefficients of Q from (2.2.2) and (3.2.1)

satisfy

(i) B(x, z, 0) ≥ 0, ∀(x, z) ∈ Ω× R.

(ii) A ≲ 1, |a|, |∂a∂z | ≲ (1 + |p|), |∂a∂x |, |b| ≲ (1 + |p|)2, ∀(x, z, p) ∈ Ω× [−M,M ]× R.

(iii) 1 ≲ A(x, z, p), ∀(x, z, p) ∈ Ω× [−M,M ]× R.

Then there exists a unique solution u ∈ P 2,α(ΩT ) to the Dirichlet problem (DT ).

Unfortunately, our operators H and V are not strictly parabolic (they fail to satisfy (iii)), since

both ν(·, p) and µ(·, p) tend to zero as p gets large. So, suppose now that our operator Q only
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satisifies criteria (i) and (ii). We instead have the following short-time existence and uniqueness

theorem.

Theorem 3.2.2. Suppose that for each M > 0 the coefficients of Q from (2.2.2) and (3.2.1)

satisfy

(i) B(x, z, 0) ≥ 0, ∀(x, z) ∈ Ω× R.

(ii) A ≲ 1, |a|, |∂a∂z | ≲ (1 + |p|),|∂a∂x |, |b| ≲ (1 + |p|)2, ∀(x, z, p) ∈ Ω× [−M,M ]× R.

Then, there exists s ∈ (0, T ] and a unique u ∈ P 2,α(Ωs) such that u solves the Dirichlet problem

(Ds).

Proof. We employ a standard trick of modifying the coefficients of the operator for sufficiently

large values of z and p.

Choose C := 2 · |u0|C1(Ω) < ∞ and let χ be any smooth bump function supported on [−2, 2]

and equal to 1 on [−1, 1]. We define a new coefficient

ã(x, z, p) := a(x, z, 0) +

∫ p

0
χ
( s
C

) ∂a
∂p

(x, z, s) +
(
1− χ

( s
C

))
ds,

a new quasi-linear operator

Q̃(u) := ut −
∂

∂x
(ã(x, u, ux)) + b(x, u, ux),

and a class of new Dirichlet problems

(D̃s) :=


Q̃(u) = 0 in Ωs

u = u0 on Ω× {0}

u = ψ on {a, b} × [0, s]

Observe the following:

• For any p ≤ C, ã(x, z, p) = a(x, z, p), which means B̃(x, z, 0) = B(x, z, 0) and Q̃ satisfies

(i).

• We have that

Ã(x, z, p) =
∂ã

∂p
(x, z, p) = χ

( p
C

) ∂a
∂p

(x, z, p) +
(
1− χ

( p
C

))
> 0,

and so

|Ã| ≤ |∂ã
∂p

|+ 1 ≲ 1.
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• Using that a is smooth, we have that

|ã(x, z, p)| ≤ sup
p∈[−C,C]

|a(x, z, ·)|+
∫ 2C

−2C

(
|∂a
∂p

|(x, z, p)
)
ds+ |p|

= ∥a∥L∞(Ω×[−M,M ]×[−2C,2C]) + ∥∂a
∂p

∥L1(Ω×[−M,M ]×[−2C,2C]) + |p| ≲ (1 + |p|)

• Similarly, from the equations

∂ã

∂z
(x, z, p) =

∂a

∂z
(x, z, 0) +

∫ p

0
χ
( s
C

) ∂2a

∂z∂p
(x, z, s)ds,

∂ã

∂x
(x, z, p) =

∂a

∂x
(x, z, 0) +

∫ p

0
χ
( s
C

) ∂2a

∂x∂p
(x, z, s)ds,

we can use a being smooth to deduce that Q̃ satisfies (ii).

Finally, since Ã ≡ 1 outside of a compact set, Q̃ satisfies (iii). By Theorem 3.2.1, there exists

ũ ∈ P 2,α(ΩT ) solving (D̃T ). Moreover, by the continuity of ũ and ũx, there exists s ∈ (0, T ]

such that

|ũ(·, t)|C1(Ω) ≤ C, ∀t ∈ [0, s].

In particular, since Q̃ = Q on Ω × R × [−C,C], we have that ũ ∈ P 2,α(Ωs) solves (Ds).

Finally, if u1, u2 ∈ P 2,α(Ωs) are solutions to (Ds), then by applying the avoidance principle

(Theorem 2.2.8) to their difference, we have u1 = u2 on Ωs.

Corollary 3.2.3. Suppose that for each M > 0 the coefficients of Q from (2.2.2) and (3.2.1)

satisfy

(i) B(x, z, 0) ≥ 0, ∀(x, z) ∈ Ω× R.

(ii) A ≲ 1, |a|, |∂a∂z | ≲ (1 + |p|),|∂a∂x |, |b| ≲ (1 + |p|)2, ∀(x, z, p) ∈ Ω× [−M,M ]× R.

Then there exists a unique pair τ ∈ (0, T ] and u : Ω× [0, τ) → R such that

(A) u solves (Dτ ).

(B) u ∈ P 2,α(Ωs), ∀s ∈ (0, τ).

(C) If τ < T , then u /∈ P 2,α(Ωτ ) and lim sups→τ |u(·, s)|C1(Ω) = ∞.

Proof. By the previous theorem

τ := sup{s ∈ (0, T ] : ∃u ∈ P 2,α(Ωs) such that u solves (Ds)},

is well defined. By uniqueness the solutions agree on overlaps, and give a well defined, unique

function u : Ω × [0, τ) → R satisfying properties (A) and (B). For τ < T , assume that

u ∈ P 2,α(Ωτ ). Then u(·, τ) ∈ C2,α(Ω) and we can reapply Theorem 3.2.2 to get a solution
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û ∈ P 2,α(Ωτ,τ+ϵ) for some ϵ > 0. By virtue of the PDE that they solve, u and û piece together

to give u ∈ P 2,α(Ωτ+ϵ) solving (Dτ+ϵ), contradicting the definition of τ . So u /∈ P 2,α(Ωτ ).

Finally, assume that lim sups→τ |u(·, s)|C1(Ω) = C
2 < ∞ for some positive constant C > 0.

Consider the Dirichlet problem (D̃τ ) defined in the proof of Thoerem 3.2.2. By Theorem 3.2.1

there exists a unique ũ ∈ P 2,α(Ωτ ) solving (D̃τ ). Since Q̃ = Q on Ω × R × [−C,C], u also

solves (D̃s) for s ∈ (0, τ). Therefore, by the uniqueness of solutions, ũ is an extension of u in

P 2,α(Ωτ ), contradicting what we have just previously shown.

3.3 Curve shortening flow as a Dirichlet problem

We consider the following Dirichlet problems, the first of which is for vertical graphs.

Vertical graphs

Let Ω ⋐ R and choose some initial data Y : Ω → R. We trivially extend Y to a function on

Ω× [0,∞) by making it constant in time, so that using it for auxillary data will correspond to

fixing the endpoints of the arc. For each s ∈ (0,∞), consider the Dirichlet problem for vertical

graphs

V (s) :=

V(y) = 0 in Ωs

y = Y on Γs

(3.3.1)

In order to apply our existence and uniqueness theorem, we must check the following bounds

on the coefficients of the operator V:

• When p = 0, −ϕ′(x)(1 + µ(x, p)) · p = 0, for all (x, y) ∈ Ω× R.

• Given a fixed positive constant M > 0, for any (x, y, p) ∈ Ω× [−M,M ]× R, we have the

inequalities

µ(x, p) ≤ 1,

|e−ϕ(x) arctan(peϕ(x))| ≤ π

2
· |e−ϕ(x)| ≲ 1,

∂

∂y

(
e−ϕ(x) arctan(peϕ(x))

)
= 0,

| ∂
∂x

(
e−ϕ(x) arctan(peϕ(x))

)
| ≤ π

2
· |ϕ′(x)| · |e−ϕ(x)|+ |p| · |ϕ′(x)| · µ(x, p) ≲ (1 + |p|),

|−ϕ′(x)
(
p+ e−ϕ(x) arctan(peϕ(x))

)
| ≤ |ϕ′(x)| · |p|+ |ϕ′(x)| · |e−ϕ(x)| · π

2
≲ (1 + |p|).

Therefore, under the assumption that our initial data Y ∈ P 2,α(Ω) for some α ∈ (0, 1], we can

apply Corollary 3.2.3 to our Dirichlet problem, to deduce that there exists T ∈ (0,∞] and a

unique maximal solution y : Ω× [0, T ) → R satisfying

(A) y ∈ P 2,α(Ωs), ∀s ∈ (0, T ).
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(B) y solves V (s), ∀s ∈ (0, T ).

(C) If T <∞, then lim sups→T |y(·, s)|C1(Ω) = ∞.

After applying interior Schuader estimates (Theorem A.0.4), we also have that y ∈ C∞
loc(Ω ×

(0, T )).

Horizontal graphs

Given c ∈ R, consider the unique maximal solution to equation (3.1.3) starting with constant

initial condition x ≡ c. We note that this solution remains constant in y at all later times, and

so the corresponding curves will always be straight lines parallel to the y-axis. We denote this

solution by c(t). From the equation H = 0, we see that c : [0, T ′) → R is the maximal solution

to the ODE
∂c

∂t
= −ϕ′(c(t)), c(0) ≡ c ∈ R.

Given some initial data c ∈ R, we say that c(t) is immortal if our solution exists for all positive

times c : [0,∞) → R.

Unlike for vertical graphs where we keep the endpoints fixed, we will instead use these solutions

c(t) for the auxiliary data. For each c ∈ R with c(t) immortal, and s ∈ (0,∞), consider the

Dirichlet problem for horizontal graphs

Hc(s) :=


H(x) = 0 in (0, 1)× (0, s)

x = c on [0, 1]× {0}

x(0, t) = c(t), x(1, t) = c ∀t ∈ (0, s).

(3.3.2)

so that on the parabolic wall {y = 1} the endpoint of the curve is fixed, but on the parabolic

wall {y = 0} the endpoint is moving at the same rate as the constant solution with this value.

Again, we must check the following bounds on the coefficients of the operator H:

• When p = 0, ϕ′(x)(1 + ν(x, p)p2) = ϕ′(x), for all (y, x) ∈ [0, 1]× R.

• Given a fixed positive constant M > 0, for any (y, x, p) ∈ [0, 1] × [−M,M ] × R, we have
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the inequalities

ν(x, p) ≤ e−2ϕ(x) ≲ 1,

|e−ϕ(x) arctan(pe−ϕ(x))| ≤ π

2
· |e−ϕ(x)| ≲ 1,

| ∂
∂x

(
e−ϕ(x) arctan(pe−ϕ(x))

)
| = |−e−ϕ(x)ϕ′(x) arctan(pe−ϕ(x)) + ν(x, p)ϕ′(x)p|

≤ |ϕ′(x)| · |e−ϕ(x)| · π
2
+ |e−2ϕ(x)| · |ϕ′(x)| · |p| ≲ (1 + |p|),

∂

∂y

(
e−ϕ(x) arctan(pe−ϕ(x))

)
= 0,

|−ϕ′(x)
(
pe−ϕ(x) arctan(pe−ϕ(x))− 1

)
| ≤ |ϕ′(x)|

(
|p| · |e−ϕ(x)| · π

2
+ 1
)
≲ (1 + |p|).

Therefore, under the assumption that ϕ′ ≥ 0, we can apply Corollary 3.2.3 to our Dirichlet

problem, for any c ∈ R with c(t) immortal, to deduce that there exists Tc ∈ (0,∞] and a unique

maximal solution gc : [0, 1]× [0, Tc) → [0,∞) satisfying,

(A) gc ∈ P 2,1((0, 1)× (0, s)), ∀s ∈ (0, Tc).

(B) gc solves Hc(s), ∀s ∈ (0, Tc).

(C) If Tc <∞ then lim sups→Tc
|gc(·, s)|C1([0,1]) = ∞.

Again, using interior Schuader estimates (Theorem A.0.4), we also have that gc ∈ C∞
loc((0, 1)×

(0, Tc)).

We shall now show that, under reasonable assumptions, each of the maximal solutions we

mentioned above is immortal. This is not obvious a priori; intuitively, solutions to the Dirichlet

problem converge towards a geodesic between the endpoints, which need not be graphical. In

order to show that the solutions are immortal, it suffices to show that the solutions and their

gradients cannot blow up in finite time, as otherwise this would contradict conclusion (C) from

Corollary 3.2.3

3.3.1 Preservation of monotonicity and long-time existence

The following subsection shows that, if our initial data is monotonic, then a solution to the

Dirichlet problems must remain monotonic. Moreover, under additional assumptions on the

parabolic boundary, we can show that our maximal solutions are immortal.

Vertical graphs

Theorem 3.3.1. Let y : Ω× [0, T ) → R be the maximal solution to the Dirichlet problems V (·)
constructed in §3.3. Suppose that we chose increasing initial data Y ∈ C∞(Ω). Then y(·, t) is

increasing for all t ∈ [0, T ). Moreover, if y has bounded gradient on the parabolic boundary ΓT ,

then T = ∞ and y is immortal.
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Proof. Since our solution is smooth on the interior of our domain, we can differentiate (3.1.4)

to get the evolution equation for the gradient v := ∂y
∂x on Ω× (0, T )

vt = µ(x, v)vxx+ϕ
′(x)(1+µ(x, v))vx+ϕ

′′(x)(1+µ(x, v))v−2µ(x, v)2e2ϕ(vx+ϕ
′(x)v)2v. (3.3.3)

By the maximum principle, v ≥ 0 on ΓT . To show that v is non-negative everywhere, we use

the following standard argument. We first note that we can bound the coefficient ϕ′′(x)(1 +

µ(x, v)) < M , for some constant M > 0. Fix ϵ > 0 and consider the function

f(t) := −ϵ · eMt, ∀t ∈ [0, T ).

Choose t0 > 0 maximal such that v(·, t) ≥ f(t), for every t ∈ [0, t0). If t0 < T , then there exists

x0 ∈ Ω such that v(x0, t0) = f(t0), and at this point

vt(x0, t0) ≤ f ′(t0), vx(x0, t0) = 0, vxx(x0, t0) ≥ 0.

In particular, at this point we deduce the contradiction

Mf(t0) = f ′(t0) ≥ vt(x0, t0) ≥ ϕ′′(x)(1 + µ(x, v))f(t0) > Mf(t0).

Therefore, taking ϵ to zero, we have that v ≥ 0 on all of Ω× (0, T ), and y(·, t) is increasing for

each t ∈ [0, T ). Suppose now that T <∞. Using v ≥ 0 in equation (3.3.3), we now that have v

satisfies the differential inequality

vt − µ(x, v)vxx − ϕ′(x)(1 + µ(x, v))vx − ϕ′′(x)(1 + µ(x, v))v ≤ 0. (3.3.4)

By the maximum principle (Lemma A.0.1), we deduce that

0 ≤ v ≲ sup
ΓT

v <∞ (3.3.5)

Since

|y| ≤ sup
ΓT

y = sup
Ω
Y <∞,

we therefore deduce the following contradiction to Corollary 3.2.3

lim sup
s→T

|y(·, s)|C1(Ω) ≲ sup
Ω
Y + sup

ΓT

v <∞.

Horizontal graphs

Recall that, in order to apply Theorem 3.2.2 to our Dirichlet problem, we had to assume that

ϕ′ ≥ 0. Under this assumption, the solutions c(t) are always decreasing in t. We therefore

expect our solution to be increasing at each time.

Theorem 3.3.2. Fix c ∈ R, with the maximal solution c(t) from §3.3 immortal and bounded
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below. Assume that both ϕ′ and ϕ′′ are non-negative, and let gc : [0, 1]× [0, Tc) → [0,∞) be the

maximal solution to the Dirichlet problems Hc(·) constructed in §3.3. Then gc(·, t) is increasing
for all t ∈ [0, Tc). Moreover, if gc has bounded gradient on the parabolic boundary ΓTc, then

Tc = ∞ and gc is immortal.

Proof. Since our solution is smooth on the interior of our domain, we can differentiate (3.1.3)

to get the evolution equation for the gradient w := ∂gc
∂y on (0, 1)× (0, Tc)

wt = ν(x,w)wyy +
(
2ϕ′(x)2e2ϕν(x,w)− ϕ′′(x)(1 + ν(x,w)w2)

)
w−2ν(x,w)2(wy +ϕ

′(x)e2ϕ)2w.

(3.3.6)

By the maximum principle, w ≥ 0 on ΓTc . To show that w is non-negative everywhere, we

repeat the argument from the proof of Theorem 3.3.1. We first note that we can bound the

coefficient 2ϕ′(x)2e2ϕν(x,w) ≤ M , for some constant M > 0. Fix ϵ > 0 and consider the

function

f(t) := −ϵ · eMt, ∀t ∈ [0, T ).

Choose t0 > 0 maximal such that w(·, t) ≥ f(t), for every t ∈ [0, t0). If t0 < Tc, then there

exists y0 ∈ (0, 1) such that w(y0, t0) = f(t0), and at this point

wt(x0, t0) ≤ f ′(t0), wx(x0, t0) = 0, wxx(x0, t0) ≥ 0.

In particular, at this point we deduce the contradiction

Mf(t0) = f ′(t0) ≥ wt(x0, t0) ≥ 2ϕ′(x)2e2ϕν(x,w)f(t0) > Mf(t0).

Therefore, taking ϵ to zero, we have that w ≥ 0 on all of (0, 1) × (0, Tc). Suppose now that

Tc <∞. Substituting this back into equation (3.3.6), we now have that w satisfies the differential

inequality

wt − ν(x,w)wyy − 2ϕ′(x)2e2ϕν(x,w)w ≤ 0. (3.3.7)

We again apply the maximum principle (Lemma A.0.1), to deduce that

w ≲ sup
ΓTc

w, (3.3.8)

and hence arrive at the following contradiction

lim sup
s→Tc

|gc(·, s)|C1([0,1]) ≲ sup
t∈[0,Tc)

|c(t)|+ sup
ΓTc

w <∞.

3.3.2 Strict monotonicity at positive times

By using the intersection principle of Angenent (Theorem 2.2.5), we can show that our immortal

solutions are strictly increasing at any positive time.
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Vertical graphs

Proposition 3.3.3. Let y : Ω × [0, T ) → R be the maximal solution to the Dirichlet problems

V (·) constructed in §3.3, with initial data Y ∈ C∞(Ω) increasing and non-constant. Suppose

y ∈ C∞(Ωs) for all s ∈ (0, T ). Then y(·, t) is strictly increasing for each t ∈ (0, T ). Moreover,

the gradient is strictly positive away from the initial time

∂y

∂x
(x, t) > 0, ∀(x, t) ∈ Ω× (0, T ).

Proof. For any h ∈ Im (Y ), we can apply the the intersection principle (Theorem 2.2.5) to

the function y and the constant solution h, to get that the intersection number between them

is decreasing and finite for positive time. By the intermediate value theorem, there is al-

ways at least one intersection point. Fix t ∈ (0, T ). By Theorem 3.3.1, y(·, t) is increasing.

So, if |y(·, t)−1(h)| > 1, y(·, t)−1(h) has positive measure, contradicting the fact that there

are only finitely many intersections between h and y(·, t) (Theorem 2.2.5). We conclude that

|y(·, t)−1(h)| = 1, and hence this single intersection point between y(·, t) and h is transverse. A

transverse intersection point implies ∂y
∂x is positive at this point.

Horizontal graphs

If we assume that c(t) is in fact strictly decreasing, the following proposition tells us that each

of the maximal solutions gc(·, t) are strictly increasing at positive times. This will be crucial

later when using these solutions are leaves in a foliation.

Proposition 3.3.4. Fix c ∈ R, with the maximal solution c(t) from §3.3 immortal and bounded

below. Assume that ϕ′′ is non-negative and ϕ′ is strictly positive. Let gc : [0, 1]× [0, Tc) → [0,∞)

be the maximal solution to the Dirichlet problems Hc(·) constructed in §3.3. Then gc(·, t) is

strictly increasing for each t ∈ (0, Tc). Moreover, the gradient is strictly positive away from the

initial time
∂gc
∂y

(y, t) > 0, ∀(y, t) ∈ [0, 1)× (0, Tc).

Proof. We repeat the proof of Proposition 3.3.3, but use solutions c(t) in the place of constant

solutions. Fix t0 ∈ (0, Tc). By Theorem 3.3.2, gc(·, t0) is increasing, and so its image is [c(t0), c].

By the strong maximum principle, gc(y, t0) must lie in the region [c(t0), c) for y ∈ [0, 1). Note

that this region [c(t0), c) can be described as {c(s) : s ∈ (0, t0]}. Fix s ∈ (0, t0], and choose

y0 ∈ (0, 1) sufficiently large such that gc(y0, t) > c( s2) for all t ∈ [0, s]. Note that compatibility

conditions of all orders are satisfied at the point {0} × {0}. Therefore, by the global Schauder

estimates (Theorem A.0.3), we have that gc ∈ C∞([0, y0] × [0, t′]), for any t′ < Tc. We can

therefore apply the intersection principle (Theorem 2.2.5) to the solutions c( s2 + t) and gc(y, t+

t0 − s
2) defined for (y, t) ∈ [0, y0] × [0, Tc − (t0 − s

2)), to deduce that the line c(s) and gc(·, t0)
intersect at a single transverse point, and so ∂gc

∂y (·, t0) is positive over [0, 1).
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Chapter 4

The evolution of proper curves

under curve shortening flow

In this next chapter, we utilise the results of the previous chapter to discuss proper solutions

to our flow. The following is a brief outline.

• §4.1 gives a detailed construction of Example 1.3.8. To do so, we utilise ideas originally due

to Tom Ilmanen in [Ilm92], and find a properly embedded solution to CSF converging

backwards in time to a cusp in the plane. We then choose a suitable parameterisation of

this solution so that it remains properly embedded, but ‘loses’ some of its initial data as

in Remark 1.2.8.

• In §4.2 we prove that uniformly proper solutions are Brakke flows all the way up to the

initial time, and hence satisfy the avoidance principle with closed curves.

• In §4.3, we prove Theorem 1.3.14. To do this we use a sequence of solutions to the

Dirichlet problems from §3 defined over an exhaustion of the real line. We then employ a

foliation argument to prove local uniform gradient bounds on this sequence and extract a

smooth proper limit which starts from the x-axis. Finally, we construct a barrier which

moves in from infinity in finite time, and which pushes our solution away from the x-axis

instantaneously.

• In §4.4 we give a proof of Theorem 1.3.17. The idea of the proof is a modified version

of the barrier argument seen in Example 1.3.11. We show that at an arbitrarily large

time and for arbitrarily thin convex neighbourhoods of our geodesic, we can find closed

solutions to CSF which not only exist until this time, but also lies arbitrarily far out. The

result then follows from the avoidance principle proven in §4.2.
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4.1 Non-uniqueness of properly embedded solutions

The aim of this subsection is to construct the following example.

Example 4.1.1. There exists a continuous map γ : R× [0,∞) → R2 such that

• γ is smooth and solves (1.2.1) on R× (0,∞).

• γ(·, t) : R → R2 is a proper embedding, for every t ≥ 0.

• Im (γ(·, 0)) is an entire locally Lipschitz graph over the x-axis, but Im (γ(·, t)) is not a

graph over the x-axis, for any t > 0.

Many of the ideas used in this construction originate from the work of Ilmanen. The following

contains within it a careful exposition of some of the details from the sketch proof in [Ilm92,

Example 7.3].

4.1.1 Constructing compact approximations

Let us define u : R → (0,∞) to be the function

u(x) := min{1, (1 + cx)−2}, ∀x ∈ R,

where c > 0 is some small positive constant to be determined later.

Since the area enclosed within the cusp that forms between the graphs of ±u is finite in a

neighbourhood of spatial infinity, we expect there to be a smooth solution starting from the

graphs of ±u, but which rushes inwards instantaneously from spatial infinity, and hence at each

positive time will be connected.

To construct this solution, we approximate our initial data from the inside by compact curves.

That is, for each n ∈ N, consider the Jordan curve given by the union of the curves:

• {(x, u(x)) ∈ R2 : |x| ≤ n}, the graph of u over [−n, n];

• {(x,−u(x)) ∈ R2 : |x| ≤ n}, the graph of −u over [−n, n];

• {(n, y) ∈ R2 : −u(n) ≤ y ≤ u(n)}, the vertical line joining (n, u(n)) and (n, u(−n));

• {(−n, y) ∈ R2 : −1 ≤ y ≤ 1}, the vertical line joining (−n, 1) and (−n,−1).

Since these are finite length Jordan curves, we can flow them under CSF using the existence

result of Lauer (Theorem 1.2.9). That is, for each n ∈ N, there exists Tn > 0 and a continuous

function γn : S1 × [0, Tn) → R2 such that

(i) the image of the curve at time zero, Im (γn(·, 0)), is the Jordan curve given above;

(ii) γn is a smooth solution to CSF (1.2.2) on S1 × (0, Tn);
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u(x)

−u(x)

γn(·, 0)

Figure 4.1: Initial data for our approximations

(iii) if Ln(t) denotes the length of Im (γn(·, t)) for each t ∈ [0, Tn), then lim
t↘0

Ln(t) = Ln(0) > n.

Moreover, Tn ≥ n
π by Gauss-Bonnet [Cha06, Theorem V.2.7]. To begin, we construct suitable

barriers to our approximations as in [Ilm92, Example 7.3].

Define the function q : [−1/(2c),∞) × [0,∞) → (0,∞) by q(x, t) := e24ct

(1+cx)2
. By a direct

calculation, we have that

qt −
qxx

1 + q2x
= q ·

(
24c− 6c(1 + cx)4

(1 + cx)6 + 4c2e48ct

)
≥ q ·

(
24c− 6c

(1 + cx)2

)
≥ 0,

and q(x, t) is a super solution to the graphical CSF equation within the half-plane {(x, y) ∈ R2 :

x > −1/(2c)}. Since the horizontal lines {y = y0} can be parameterised as static uniformly

proper solutions to CSF (see §4.2 for a full justification of this step), we can apply the avoidance

principle with closed curves to deduce that any approximation γn remains disjoint from any

horizontal line with |y0| > 1. We conclude that each of the curves γn(·, t) remains bounded

between the lines {y = ±1}, for all t ≥ 0. Fix n ∈ N. Repeating the same argument but with

horizontal lines, we conclude that γn(·, t) remains bounded between the lines {x = ±n}. For

ϵ > 0, consider now the graph of the function q+ ϵ for (x, t) ∈ [−1/(2c), n+1/2]× [0,∞). Since

Im (γn(·, 0)) is initially disjoint from the graph of q(·, 0) + ϵ, Im (γn(·, t)) can only intersect the

graph at times t > 0. Suppose they do intersect and let t0 be the infimum of those times. By the

continuity of the solutions, we deduce that t0 > 0, and that at t0, the graph and Im (γn(·, t0))
must intersect tangentially. Let x0 ∈ (−1/(2c), n] be a point where q(x0, t0) + ϵ intersects

Im (γn(·, t0)). Note that x0 cannot be equal to −1/(2c), as q(−1/(2c), t0) > 1. By viewing

γn(·, t0) locally as a graph over the x-axis near this intersection point, we get a contradiction to

the avoidance principle (Theorem 2.2.8). Therefore, taking ϵ to zero, we can deduce that our

approximations are contained within the following cusp:

Im (γn(·, t)) ⊆ C(t) := {(x, y) ∈ R2 : |y| ≤ min{1, q(x, t)}}, ∀n ∈ N.

We now use a different barrier to show that at any positive time, all of the approximations have
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2θtC(t)

B(t)

Figure 4.2: The intersection angle θt

been pulled in a uniform amount from the tip of the cusp. For t > 0, consider the balls B(t)

centred at (t−2, 0) of radius t3

4 . We see that for τc > 0 sufficiently small, we have

t3/4

q(t−2, t)
=
e−24ct

4
·
(
t
3
2 + ct

−1
2

)2
>
c2e−24ct

4t
≥

√
2, ∀t ∈ (0, τc].

In particular, we see that C(t) \ B(t) is disconnected, for every t ∈ (0, τc]. As such, define

θt ∈ (0, π2 ) to be the unique value such that

t3

4
· sin θt = q

(
t−2 +

t3

4
· cos θt, t

)
, ∀t ∈ (0, τ0].

Geometrically, θt is half of the angle of the cap C(t) \ B(t), measured from the center of B(t).

As q(·, t) is decreasing, we have

sin θt =
q
(
t−2 + t3/4 · cos θt, t

)
t3/4

≤
q
(
t−2, t

)
t3/4

<
1√
2
,

which implies that θt <
π
4 , or cos θt >

1√
2
for all t ∈ (0, τc]. Consider the moving arc

{(t−2 + t3/4 cos(θ), sin(θ)) : t > 0, θ ∈ [−π/4, π/4]}.

Since

|∂t · t−2| = 2

t3
<

cos(θ)

t3/4
, ∀t ∈ (0, τc], ∀θ ∈ [−π/4, π/4],

we see that, if we consider the moving arc as a graph over the y-axis, it would be a supersolution

to graphical CSF. Since the region of the moving arc that lies within the cusp C(t) is paramet-

erised by θ ∈ [−θt, θt] ⊆ (−π/4, π/4), we can apply the avoidance principle (Theorem 2.2.8) as

we did above for the graph of q, to deduce that our approximations γn(·, t) remain disjoint with

this moving arc, at all positive times. Choosing αc := τ−2
c + τ3c /4, we see that our solutions

now pull in from infinity instantly. That is

Im (γn(·, t)) ⊆ Ω(t) := {(x, y) ∈ C(t) : x ≤ max{αc,
(
1 + t−2

)
}}, ∀n ∈ N.
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Finally, we must find a region laying within Ω(t) that the approximations avoid. For each

n ∈ N, let An be the rectangle [−n, 0]× [−1, 1]. Note that the area enclosed inside of An is 2n.

Therefore, using Lauer’s Theorem 1.2.9 and Hamilton-Gage-Grayson Theorem 1.0.2, we can

flow the boundary of An under CSF, which gives us a continuous function ηn : S1× [0, nπ ) → R2

such that

• ηn(·, 0) is a parameterisation of ∂An,

• ηn is a smooth solution to CSF (1.2.2) on S1 × (0, nπ ),

• ηn(·, t) is a convex curve, for all t ∈ (0, nπ ).

Given any t0 > 0, choose n sufficiently large such that n
π >> t0. Consider the two points

laying in the intersection {x = −n/2}∩ Im (ηn(·, t0)). If one of these point is (−n/2, y) for some

y ∈ (0, 1), by symmetry, the other must be (−n/2,−y). Using convexity of our solution, the

region ([−n, 0]× [y, 1])∪([−n, 0]× [−1,−y]) must be disjoint from the region inside of the curve

Im (ηn(·, t0)). By Gauss-Bonnet Theroem C.0.1, the area lost under the flow is 2πt0. Therefore,

y ≥ 1− πt0
n . Similarly, consider the two points laying in the intersection {y = 0}∩ Im (ηn(·, t0)).

If one of these points is (−x, 0) for some x ∈ (0, n/2), then the other must be (x − n, 0). By

convexity and Gauss-Bonnet, x ≤ πt0
2 .

For each t > 0 and n ∈ N, we choose the four points

• q1(n, t) := (−n/2, 1− πt
n ),

• q2(n, t) := (−n/2, πtn − 1),

• q3(n, t) := (−πt
2 , 0),

• q4(n, t) := (πt2 − n, 0).

It follows from the convexity of ηn(·, t) that the convex hull of the four points

{qi(n, t) : i = 1, . . . , 4},

is contained within the region bounded by the curve ηn(·, t), for every sufficiently large n ∈ N
(n depending on t).

4.1.2 Extracting a limiting Brakke flow

For each of the smooth approximations γn, consider the associated Brakke flow [0, Tn) ∋ t 7→ µnt .

Let M̃0 be the union of the Jordan curves Im (γn(·, 0)) for n ∈ N, and consider µ̃0 the 1-

dimensional Hausdorff measure restricted to M̃0. Note that µn0 ≤ µ̃0, for all n ∈ N.

Fix m ∈ N and choose n sufficiently large so that Tn > m, and hence µnt is defined on the time
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q1

q2

q3q4
pN

1/2

Figure 4.3: The convex hull of the points q1, . . . , q4

interval [0,m]. For such an n, applying the local area bounds from Lemma 2.4.7 we have

µnt (B(x0, ρ)) ≤ 8 · µn0 (B(x0, 2ρ)) ≤ 8 · µ̃0(B(x0, 2ρ)),

for all t ∈ [0,m] and x0 ∈ R2. In particular, we have that

sup
t∈[0,m]

sup
n∈N

µnt (K) <∞, ∀K ⋐ R2.

By the compactness theorem for Brakke flows (Theorem 2.4.4), we can extract a Brakke flow

limit over [0,m]. Repeating for all m ∈ N and using a diagonal argument, we have a eternal

limiting Brakke flow [0,∞) ∋ t 7→ µt, with Mt = supp(µt). This Brakke flow has the following

properties:

• By the weak convergence of the measures µn0 ⇀ µ0, we have that M0 is the union of the

graphs of ±u.

• Since the approximations are smooth, µt is a unit-regular Brakke flow by Theorem 2.4.17.

• µt has finite 1-entropy, and hence bounded 1-area ratios by Corollary 2.4.15.

To see why µt has finite 1-entropy, we only need to check that M0 has finite entropy (Corol-

lary 2.4.15). Recall that the 1-entropy of M0 is

λ1(M0) := sup
r>0,z0∈R2

1√
4πr2

∫
M0

e−
|z−z0|

2

4r2 dH1(z)

= sup
r>0,z0∈R2

1√
4πr2

∫
R

(
e−

|(x,u(x))−z0|
2

4r2 + e−
|(x,−u(x))−z0|

2

4r2

)√
1 + u′(x)2 dx

Choosing z0 = (x0, y0) ∈ R2, we have the primitive upper bound

λ1(M0) ≤ sup
r>0,x0∈R

2√
4πr2

∫
R
e−

(x−x0)
2

4r2
√
1 + u′(x)2 dx.
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Since |u′| ≤ 2c, we deduce that

λ1(M0) ≤ 2
√
1 + 4c2 <∞.

4.1.3 Local uniform gradient bounds

We now want to show regularity of this limit. Much like in [Ilm94, Example 7.3], we want

to show uniform gradient bounds on our sequence of approximations via a foliation argument.

Unlike in the case Ilmanen considers however, our approximations are not contained uniformly

within a compact region. We modify his argument to work here as follows:

Fix K × [τ, T ] ⋐ R× (0,∞). We shall show local C1-bounds for our approximations within this

compact region of space-time. To do this, we first choose N ∈ N sufficiently large to ensure

that, for any n ≥ N :

(i) Tn > 2T .

(ii) If pn := (−n/2, 0) ∈ R2, then

Im (γn(·, t)) ⊆ C(t) \B (pN , 1/2) , ∀t ∈ [0, 2T ].

(iii) K is contained within the horizontal wedge of size π/4 about the point pN :

K ⊆ {pN + (r cos θ, r sin θ) : r > 0, θ ∈ (−π/8, π/8)}.

Note that (i) follows from the fact Tn ≥ n
π . To see (ii), we note that for sufficiently large n,

B(pN , 1/2) is contained within the convex hull of the points {qi(n, t) : i = 1, . . . , 4} for every

t ≤ 2T . Finally, (iii) is a consequence of the fact that the collection ({pn +(r cos θ, r sin θ) : r >

0, θ ∈ (−π/8, π/8)})n∈N, form an open cover of the plane.

If we now restrict our attention to the half space HN := {(x, y) ∈ Rn : x ≥ −N
2 }, the distance

between the point pN and any point in HN ∩ C(t) is bounded above for all t ∈ [τ/3, 2T ].

Therefore, there exists R > 0 such that, for any t ∈ [τ/3, 2T ]

Im (γn(·, t)) ∩HN ⊆ B (pN , R) \B (pN , 1/2) , ∀n ≥ N.

It suffices to show uniform C1-bounds for the approximations with n ≥ N . So, without loss

of generality, lets fix n ≥ N . We first show that the region enclosed by γn(·, t) is star-shaped

about pN for t ∈ [0, 2T ]. To see this, consider all of the half-lines eminating from the point pN .

Since the image of the approximation γn is bounded and avoids the ball of radius 1/2 about

this point, we can apply the intersection principle (Theorem 2.2.6) to deduce that each of these

half-lines intersects Im (γn(·, t)) exactly once, for all t ∈ [0, 2T ], and hence γn(·, t) bounds a

star-shaped region centred at pN .
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pN
1/2

γn(·, t)

Figure 4.4: Star-shaped approximation in HN

Since our approximation is star-shaped about pN , we may parameterise its image within the

half-space HN as a graph in polar coordinates about the point pN . That is, there exists a

smooth function rn : [−π/2, π/2]× [τ/3, 2T ] → [12 , R] such that

Im (γn(·, t)) ∩HN = {pN + (rn(θ, t) cos θ, rn(θ, t) sin θ) : θ ∈ [−π/2, π/2]}, ∀t ∈ [τ/3, 2T ].

Since our approximation solves CSF, we know that rn is a solution to the equation

rt =
rθθ

r2 + r2θ
− 1

r

(
1 +

r2θ
r2 + r2θ

)
. (4.1.1)

(For a derivation of this equation, substitute ϕ(x) = log(x) into equation (3.1.3)). We now use

the same foliation as Ilmanen in [Ilm94, Example 7.3], but centred about the point pN instead

of the origin.

Given our choice of R above, define a function f0 : [1/4, 2R] → R so that

• f ′′0 , f0 < 0 on [1/4, 1/2);

• f ′′0 , f0 > 0 on (R, 2R];

• f0 ≡ 0 on [1/2, R];

• f0(1/4) = −1/4 and f0(2R) = 2R.

Solving the Dirichlet problems V (·) from §3 with the flat metric, we can flow the graph of f

under CSF with fixed endpoints to give an eternal solution f : [1/4, 2R] × [0,∞) → R, with
f(·, 0) = f0. Consider also the linear graphs x 7→ mx, for m ∈ [−1, 1]. These are static

solutions to graphical CSF. Note that for m non-zero, the intersection number between the

graphs of um and f0 is one, and hence by the intersection principle Theorem 2.2.6, there is

always exactly one intersection point at any positive time. For the case m = 0, we see that
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y = f0(x)

y = f(x, t)

1
4

1
2 R 2R

Figure 4.5: The graph of our leaf f(·, t)

there is a single intersection point by the fact that f becomes strictly monotone at positive

times (Proposition 3.3.3). So, for each m ∈ (−1, 1), let xm(t) ∈ (1/4, 2R) denote the unique

input such that m · xm(t) = f(xm(t), t). Since the intersection is transverse, we conclude that

f ′m(xm(t), t) > m, for any m ∈ (−1, 1) and t ∈ (0, T ].

Note that, for any time t, the intersection point xm(t) → 2R as m → 1, and xm(t) → 1/4 as

m → −1. This means we can find m0 ∈ (0, 1) such that, for any t ∈ [0, 2T ], xm(t) ∈ [1/2, R]

only if m ∈ [−m0,m0]. Since the angle between the tangent to the graph of fm and the line

x 7→ mx is given by

v(m, t) := arctan

(
f ′m(xm(t), t)−m

1 +mf ′m(xm(t), t)

)
> 0,

by compactness, there exists v0 > 0 such that v(m, t) ≥ v0 for any (m, t) ∈ [−m0,m0]×[τ/3, 2T ].

Consider the arc in the plane moving under CSF given by the graph of this function f . That

is, let

F (t) := {pN + (x, f(x, t)) ∈ R2 : x ∈ [1/2, R]}, ∀t ≥ 0.

Away from time zero, we can switch gauge and view this arc as a graphical solution in polar

coordinates about pN . That is, there exists a function

ρ : [−π/4, π/4]× (0,∞] → (0,∞),

such that

F (t) = {pN + (ρ(θ, t) sin θ, ρ(θ, t) cos θ) : θ ∈ [−π/4, π/4]}, ∀t > 0.

We can reflect this arc in the x-axis, and then rotate these arcs about the point pN , to give the

family of arcs

F±
α (t) = {pN +(ρ(α±θ, t) sin θ, ρ(α±θ, t) cos θ) : θ ∈ [−π/4, π/4]}, ∀α ∈ [−π/4, π/4], ∀t > 0.
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In particular, the two subfamilies of arcs

F±(t) := {F±
α (t) : α ∈ [−π/4, π/4]},

each foliate the region {pN + (r cos θ, r sin θ) : 1/2 ≤ r ≤ R, |θ| ≤ π/4}, at every time t > 0.

Returning to our approximation, for each θ ∈ [−π/2, π/2], we know that rn(θ, τ/3) ∈ (1/2, R).

Therefore, its image intersects exactly once with each of the arcs F±
α (0). Applying the intersec-

tion principle (Theorem 2.2.6), the functions rn(·, t) and ρ(α ± ·, t − τ/3) intersect at a single

transverse point for all t ∈ [2τ/3, 2T ].

Recall, we showed that at every point in the region

{pN + (r cos θ, r sin θ) : 1/2 ≤ r ≤ R, |θ| ≤ π/4},

each of the arcs in the foliations F±(t) has its tangent vector form an angle of magnitude at

least v0 with the radial vector ∂r = cos θ · ∂x + sin θ · ∂y, for every t ∈ [2τ/3, 2T ]. Therefore,

using that rn is bounded above, we can deduce a uniform gradient bound for the function rn

restricted to [−π/4, π/4] × [2τ/3, 2T ]. To see why, the unit tangent vector of our curve at a

given time is
(rn)θ∂r + ∂θ√
(rn)2θ + r2n

,

where ∂θ = − sin θ · ∂x + cos θ · ∂y. So, if the angle between this and the vectors ±∂r is at least

v0 > 0, we deduce that

|(rn)θ|√
(rn)2θ + (rn)2

≤ cos(v0), or |(rn)θ| ≤ R · cot(v0).

Instead of using the functions rn, consider un := 1/rn, which take values in [1/R, 2]. Since

|(un)θ| =
|(rn)θ|
r2n

≤ R2 · |(rn)θ|,

we also have uniform gradient bounds on the sequence of functions un for n ≥ N , over the

same space-time region. Substituting into equation (4.1.1), we see that each of the un solve the

equation

ut =

(
u4

u2 + u2θ

)
(uθθ + u). (4.1.2)

Using the uniform gradient bounds in equation (4.1.2), we can apply De Giorgi-Nash-Moser

(Theorem A.0.2) to this equation to deduce uniform parabolic Hölder bounds on the space-

time domain [−π/4, π/4] × [2τ/3, 2T ]. Combining this with interior Schauder estimates (The-

orem A.0.4), we have uniform P k,α-bounds on the space-time domain [−π/8, π/8] × [τ, T ], for

every k ∈ N. In particular, by Arzela-Ascoli, we can extract a subsequence which converges

smoothly over this region.
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Returning to our geometric picture, after passing to a subsequence, we have smooth conver-

gence of the approximations γn within the space-time region K × [τ, T ] ⊆ R2 × (0,∞), to a

family of smooth connected embedded arcs. Covering our entire space-time R2 × (0,∞) by a

countable exhaustion of compact regions and applying a diagonal argument, we can deduce that

a subsequence of the approximations converge locally smoothly on all of R2× (0,∞) to a family

of smooth connected and embedded curves. That is, Mt is a smooth embedded copy of R, for
all t > 0.

4.1.4 Parameterising our solution

We now attempt to find a parameterisation of our smooth solution with the desired properties.

To do this, we will show that for arbitrarily small times, our solution can be seen as a Lipschitz

graph over an arbitrarily large region of the x-axis.

Set η = 1 and choose the constant c > 0 used in the definition of u to be sufficiently small such

that u has Lipschitz constant less than the ϵ from the pseudolocality result of Ilmanen-Neves-

Schulze (Theorem 2.4.18). In particular, for every n ∈ N, there exists αn > 0 sufficiently small

such that, for every x ∈ [−n, n], M0 ∩ Iαn((x,−u(x)) is a Lipschitz graph over (x−αn, x+αn),

with Lipschitz constant bounded by ϵ.

Parabolically rescaling our flow, applying the pseudolocality result of Ilmanen-Neves-Schulze

(Theorem 2.4.18), and parabolically rescaling our flow back down, we deduce that, for every

x ∈ [−n, n] and every t ∈ (0, α2
n · δ2), Mt ∩ Iαnδ(x,−u(x)) can be written as a Lipschitz graph

over (x0 − δαn, x0 + δαn), with Lipschitz constant less than 1, and height bounded by αnδ. In

particular, we have a Lipschitz (in space) function vn : (−n− αn, n+ αn)× (0, αnδ
2) → R such

that Mt ∩
(
∪x∈[−n,n]Iαnδ(x,−u(x))

)
is given by the graph of vn(·, t), for all t ∈ (0, α2

nδ
2).

Repeating for all n ∈ N, we can glue all of the functions vn together to give a well-defined

Lipschitz (in space) function v : U → R, where

U :=
⋃
n∈N

(
(−n− αn × n+ αn)× (0, αnδ

2)
)
⊆ R× (0,∞).

Then, for any t > 0,

Mt ∩

 ⋃
n:t<α2

nδ
2

⋃
x∈[−n,n]

Iαnδ(x,−u(x))

 ,

is given by the graph of v(x, t), for all (x, t) ∈ U .

For each t > 0, we choose a parameterisation γ(·, t) : R → R2 ofMt such that, for each (x, t) ∈ U ,

γ(x, t) = (x, v(x, t)). Since our solution is smooth, we can do this in a smooth consistent way as

t varies, giving a smooth map γ : R× (0,∞) → R2 such that Im (γ(·, t)) =Mt, for all t > 0, and

γ(x, t) = (x, v(x, t)), for all (x, t) ∈ U . Moreover, by modifying the parameterisation outside of

a compact region for each t, we can ensure that each γ(·, t) : R → R2 is a proper map.
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Finally, for any x0 ∈ R, we can choose n sufficiently large such that (x, t) ∈ U for all x ∈ (x0 −
αn, x0 +αn) and t ∈ (0, α2

nδ
2). In particular, for any such (x, t), we have that |v(x, t) + u(x)| <

αnδ. Taking n→ ∞, we deduce that γ can be extended continuously up to time zero by setting

γ(x, 0) := (x,−u(x)), for all x ∈ R.

4.1.5 A variation of the previous construction

One could modify the previous construction to get something even more striking. That is, a

continuous map γ : R× [0,∞) → R2 such that

• γ(·, t) : R → R2 is a smooth proper embedding, for every t ≥ 0.

• γ is smooth and solves (1.2.1) on R× (0,∞).

• Im (γ(·, 0)) is the x-axis, but Im (γ(·, t)) isn’t the x-axis, for any t > 0.

Unfortunately, to do this is a substantially more difficult than the previous case. This is because

our approximations are no longer star-shaped, rendering the foliation trick of Angenent to

deduce gradient bounds obsolete. We instead sketch the outline of how one would go about

such a construction.

Define u as before, but now, take our approximations γn to be the closed solutions to CSF,

starting from the Jordan curves given by the union of the arcs

• {(x, 0) ∈ R2 : |x| ≤ n} = [−n, n]× {0},

• {(x, u(x)) ∈ R2 : |x| ≤ n} = graph(u) over [−n, n],

• {(n, y) ∈ R2 : 0 ≤ y ≤ u(n)} = {n} × [0, 1
(1+cn)2

],

• {(−n, y) ∈ R2 : 0 ≤ y ≤ u(−n)} = {−n} × [0, 1].

Extracting a limit of these closed flows, we have a Brakke flow [0,∞) ∋ t 7→ µt, with µ0

corresponding to the varifold given by the union of the graph of u and the x-axis. Using the

exact same barriers, we have that the approximations are contained in the region

Im (γn(·, t)) ⊆ {(x, y) ∈ R2 : x ≤ max{αc,
(
1 + t−2

)
}, 0 ≤ y ≤ min{1, q(x, t)}}, ∀n ∈ N.

As mentioned above, our approximations are not star-shaped. In order to deduce regularity,

we instead use the pseudolocality result of Ilmanen-Neves-Schulze (Theorem 2.4.18) from §2 to

deduce regularity on most of space-time. Applying this result around all points on the x-axis

and graph of u, we have that Mt is smooth in a region of space-time which gets thinner and

thinner in time around t = 0 as the x-coordinate gets larger and larger. To show that the

solution is smooth for uniform time, we use a blow-up argument.

Suppose that, for any t0 > 0, our solution is not a smooth solution in R2 × (0, t0). Then there

exists a sequence (zn, tn) in the support of our Brakke flow with tn ↘ 0, such that our flow is not
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regular at (zn, tn). Let zn = (xn, yn). Due to Theorem 2.4.18, we know that (1 + cxn)
−4 ≲ tn,

and thus xn → ∞ as n → ∞. We perform a blow-up along this sequence of points at scales

λn > 0, which we will later choose depending on the of values of yn.

Consider the Brakke flow [−λ2ntn,∞) ∋ t 7→ µnt defined by

µnt (B) := λn · µtn+λ−2
n t(xn + λ−1

n ·B), ∀B ∈ B.

At time −λ2ntn, the Brakke flow is given by the varifold

{y = −λnyn} ∪ graph(λn · (u(xn + ·)− yn)).

By our barrier q, we see that

0 ≤ yn(1 + cxn)
2 ≤ e24ctn , ∀n ∈ N.

Since the right hand side converges to 1 as n→ ∞, we extract a convergent subsequence

α := lim
n→∞

yn(1 + cxn)
2 ∈ [0, 1].

We split our analysis into three cases:

1. If α = 0, perform our blow-up at scales λn := 1+cxn√
yn

> 0. Note that

λ2n · tn =
tn(1 + cxn)

4

yn(1 + cxn)2
≥ 1

100(yn(1 + cxn)2)
→ ∞,

λn · yn =
√
yn(1 + cxn)2 → 0,

λn · u(xn) =
1√

yn(1 + cxn)2
→ ∞.

Extracting a limit, we show have the eternal unit-regular Brakke flow which is just the

static x-axis, and hence smooth.

2. If α = 1, perform a blow-up at scales λn := 1+cxn√
q(xn,tn)−yn

> 0. We see that

lim sup
n→∞

(q(xn, tn)− yn)(1+ cxn)
2 = lim sup

n→∞
q(xn, tn)(1+ cxn)

2 − 1 = lim sup
n→∞

e24ctn − 1 = 0,

and thus

lim
n→∞

(q(xn, tn)− yn)(1 + cxn)
2 = 0.
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Using this we have that

λ2n · tn =
tn(1 + cxn)

4

(q(xn, tn)− yn)(1 + cxn)2
≥ 1

100((q(xn, tn)− yn)(1 + cxn)2)
→ ∞,

λn · yn =
yn(1 + cxn)

2√
(q(xn, tn)− yn)(1 + cxn)2

→ ∞,

λn · (u(xn)− yn) ≤ λn · (q(xn, tn)− yn) =
√

(q(xn, tn)− yn)(1 + cxn)2 → 0.

Extracting a limit, we should again obtain a Brakke flow which is the static line and so

smooth.

3. If α ∈ (0, 1), we perform a blow-up at scales λn = (1 + cxn)
2 > 0. Note that

λn · yn → α, λn · (u(xn)− yn) → 1− α.

If λ2ntn doesn’t diverge, after passing to a subsequence, it converges to some positive value

T0 > 0. Extracting a limit would give a unit-regular Brakke flow starting from the parallel

lines {y = −α}, {y = 1−α} at time −T0. Hence the Brakke flow has to be two static lines.

But then there is not a point of non-zero density at the origin, which gives a contradiction.

Thus λ2ntn → ∞ and instead we extract a limit which looks, intuitively, like it is coming

from the parallel lines {y = −α, 1 − α} at time −∞. If one could show that this Brakke

flow is the smooth Grim Reaper soliton, this would conclude the argument.

4.2 Uniformly proper solutions

Recall the following subclass of solutions to CSF within the class of properly embedded smooth

solutions.

Definition 4.2.1. Let (X, g) be a complete Riemannian surface and T ∈ (0,∞). We say that

γ : R× [0, T ] → X is a uniformly proper solution to CSF (in X) if

i) γ : R× [0, T ] → X is a continuous proper map.

ii) γ(·, t) : R → X is a smooth proper embedding ∀t ∈ (0, T ].

iii) γ is smooth and solves (1.2.1) on R× (0, T ).

By working within a class of solutions that are proper as maps on space-time, we avoid tangential

re-parameterisations which get arbitrarily bad as t goes to zero. In particular, Example 1.3.8

from the previous subsection is not a uniformly proper solution. To begin, we show that working

within this class of solutions is sufficient to deduce many of the usual properties that closed

solutions to mean curvature flow exhibit, such as the avoidance principle with closed solutions,

as well as the local monotonicity formula (Theorem 2.4.14) when the ambient space is Euclidean.
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4.2.1 Properties of uniformly proper solutions

Given any smooth properly embedded solution γ : R × (0, T ) → X to CSF, we can consider

the associated Brakke flow (0, T ) ∋ t 7→ µt, where the measures µt correspond to the varifolds

Im (γ(·, t)) for each t ∈ (0, T ). Using the local area bounds for Brakke flows (Lemma 2.4.5),

there is a well-defined Radon measure µ− := limt↘0 µt on X.

Recall the smooth properly embedded solution to CSF we constructed in Example 1.3.8. Even

though the convergence backwards in time to the initial data is locally smooth, looking at this

solution as a Brakke flow, the limiting measure µ− at time zero would be given by the Hausdorff

measure restricted to the the graphs of ±u. This means that the Radon measure given by the

initial data µ0 does not agree with the limiting measure µ−. The following lemma shows that

for a uniformly proper solution, if the solution converges to the initial data in a locally smooth

way, then this limiting measure µ− does in fact agree with the measure µ0 given by the initial

data Im (γ(·, 0)), and hence our solution gives a well-defined Brakke flow all the way up to time

zero.

Lemma 4.2.2. Suppose γ : R×[0, T ] → X2 is a uniformly proper solution to CSF with γ(·, t) →
γ(·, 0) in C∞

loc(R, X) as t ↘ 0. For each t ∈ [0, T ], let µt denote the measure corresponding to

γ(·, t). That is

µt(B) = H1(Im (γ(·, t)) ∩B), ∀B ∈ B, ∀t ∈ [0, T ],

where B denotes the Borel sets in X. Then [0, T ] ∋ t 7→ µt is a well-defined Brakke flow in

X2 × [0, T ].

Proof. It is clear that for each t ∈ (0, T ], supp(µt) is smooth, and hence an integral 1-dimensional

varifold in X. Fix f ∈ C0
c (X). As γ is uniformly proper, there exists L > 0 such that

γ−1(supp (f)) ⊆ [−L,L] × [0, T ]. Since γ(·, t) → γ(·, 0) in C∞([−L,L], X) as t ↘ 0, we can

conclude that ∫
fdµt =

∫
γ([−L,L],t)

fdµt →
∫
γ([−L,L],0)

fdµ0 =

∫
fdµ0.

We have shown that µt ⇀ µ0 as t↘ 0. In particular, µ0 is a well-defined radon measure on X.

Fixing f ∈ C1
c (X × [0, T ]) with f ≥ 0, we now need to show that∫

X
f(·, T )dµT −

∫
X
f(·, 0)dµ0 ≤

∫ T

0

∫
X

(
−k2f + kν · ∇f + ∂tf

)
dµtdt. (4.2.1)

To this end, choose x0 ∈ X and ρ > 0 such that supp(f) ⊆ B(x0, ρ) × [0, T ]. Choosing T0

sufficiently small, we can apply the local area bounds (2.4.2) on B2ρ × (0, T0) to give

µt(Bρ) +

∫ t

0

∫
Bρ

k2dµtdt ≤ 8µ0(B2ρ) <∞, ∀t ∈ [0, T0].
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Therefore, we have that

∫ T0

0

∫
k2fdµtdt ≤

(∫ T0

0

∫
Bρ

k2dµtdt

)
∥f∥L∞ ≤ 8µ0(B2ρ)∥f∥L∞ <∞,

∫ T0

0

∫
|kν · ∇f |dµtdt ≤

(∫ T0

0

∫
Bρ

k2dµtdt

) 1
2 (∫ T0

0

∫
|∇f |2dµtdt

) 1
2

<∞,

∫ T0

0

∫
|∂tf |dµtdt ≤

(∫ T0

0

∫
Bρ

dµtdt

)
∥∂tf∥L∞ ≤ 8T0µ0(B2ρ)∥∂tf∥L∞ <∞,

which implies that the function −k2f + kν · ∇f + ∂tf is integrable on X × [0, T ]. By the fact

that the flow is smooth away from time zero, we have that∫
f(·, T )dµT −

∫
f(·, ϵ)dµϵ =

∫ T

ϵ

∫ (
−k2f + kν · ∇f + ∂tf

)
dµtdt,

for any ϵ > 0. Taking ϵ↘ 0, equation (4.2.1) follows from the dominated convergence theorem.

As a corollary to the previous lemma, we see that in Euclidean space, uniformly proper solutions

satisfy the local monotonicity formula (Theorem 2.4.14) all the way up to the initial time.

Corollary 4.2.3. Suppose γ : R × [0, T ] → R2 is a uniformly proper solution to CSF with

γ(·, t) → γ(·, 0) in C∞
loc(R,R2) as t↘ 0. Then for any point X0 = (x0, t0) ∈ R2× (0, T ] and any

R > 0, the R-local Gaussian density ratio

(0,
√
t0] ∋ r 7→ ΘR(γ,X0, r),

as defined in (2.4.5) is increasing, and therefore we have the upper bound on the Gaussian

density

Θ(γ,X0) ≤ ΘR(γ,X0,
√
t0),

where the right-hand side depends only on the initial data.

Given any smooth properly embedded solution to CSF γ : R × (0, T ) → X, we can ask if

our solution satisfies the avoidance principle with any closed solution to CSF. That is, if η :

S1× [0, T ] → X is any closed solution to CSF, whose image is initially disjoint from Im (γ(·, 0)),
then the image of η at any later time t must remain disjoint from the image of γ at that same

time t. Without the uniformly proper hypothesis on γ, the avoidance principle with closed

curves will not hold in general (consider the curve constructed in Example 1.3.8 and any closed

solution η that is initially disjoint from the graph of −u, but intersects the graph of u at

every time t ∈ [0, 1]). The following lemma shows that for a uniformly proper solution, we can

conclude the avoidance principle with closed curves.

Theorem 4.2.4. Let γ : R × [0, T ] → X be a uniformly proper solution to CSF and η :
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S1 × [0, T ] → X a closed solution to CSF. If the curves are initially disjoint, then they remain

disjoint.

Im(η(·, 0)) ∩ Im(γ(·, 0)) = ∅ =⇒ Im(η(·, t)) ∩ Im(γ(·, t)) = ∅, ∀t ∈ [0, T ].

Proof. Since η is continuous, Im (η) ⋐ X. Since γ is uniformly proper, there exists K ⋐ R such

that γ−1(Im (η)) ⊆ K × [0, T ]. Choose n ∈ N such that K ⋐ [−n, n]. We only need to check

that the restriction of our uniformly proper solution γ : [−n, n] × [0, T ] → X remains disjoint

from the solution η. By our choice of n, we have that

γ(±n, t) ∩ Im (η) = ∅, ∀t ∈ [0, T ].

Therefore, the result follows from the usual avoidance principle, Corollary 2.2.7.

We may ask if there are any conditions under which a properly embedded solution can be seen

to be uniformly proper. One possible answer to this question is if our solution can be expressed

with respect to some time-independent gauge:

Suppose we have a smooth proper map F : R2 → X from the plane to our surface. Let

γ : R × [0, T ] → X be a smooth properly embedded solution to CSF. We say that γ has

time-independent gauge F if these exists a continuous function u : R× [0, T ] → R such that

γ(x, t) = F(x, u(x, t)), ∀(x, t) ∈ R× [0, T ].

Lemma 4.2.5. Let F : R2 → X be a smooth proper map and γ : R × [0, T ] → X a prop-

erly embedded solution to CSF with time-independent gauge F . Then γ is a uniformly proper

solution.

Proof. For any K ⋐ X, there exists I ⋐ R such that

F−1(K) ⊆ I × R.

It is then easy to see that

γ−1(K) = {(x, t) ∈ R× [0, T ] : F(x, u(x, t)) ∈ K}

⊆ {x ∈ R : ∃y ∈ R, with F(x, y) ∈ K} × [0, T ]

⊆ I × [0, T ].

Example 4.2.6. In the case that X = R2 and F : R2 → R2 is just the identity function,

solutions with time-independent gauge F are just graphical solutions over the x-axis.
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4.2.2 A uniqueness conjecture

We discussed the result of Daskalopoulos & Saez in §1 that showed uniqueness within the class

of entire graphical solutions in the plane (Theorem 1.2.12). Due to Lemma 4.2.5, we could view

the following conjecture as one way to extend their uniqueness result.

Conjecture 4.2.7. CSF is unique on the flat plane (see Definition 1.3.12).

Despite this conjecture potentially ruling out non-uniqueness in the flat plane, we show that for

other ambient surfaces, CSF can be non-unique.

4.3 Non-uniqueness of curve shortening flow

The aim of this subsection is to construct a uniformly proper solution to CSF (with respect

to a suitably metric on the plane) starting from the x-axis, which moves away from the x-axis

instantaneously under CSF. If we choose our metric to be of the form g := dx2 + e2ϕ(x)dy2 as

in §3, then the x-axis is a geodesic, and so there is also the uniformly proper solution starting

from the x-axis which remains static.

4.3.1 Choosing our ambient metric

Lemma 4.3.1. There exists a smooth function ϕ : R → R such that

1. ϕ is an even function, which is increasing on (0,∞).

2. ϕ(x) = 0 for all x ∈ [0, 1].

3. ϕ′(x) > 0 and ϕ′ is strictly increasing on (1,∞).

4. ϕ′(x) < 1
2 for all x ∈ (1, 32).

5. ϕ′(x) = x2 for all x ≥ 2.

The construction of ϕ, and hence our metric, is just an exercise in choosing suitable bump

functions.

Proof. For x ∈ R, define the following smooth bump functions

f1(x) :=

0 : x ≤ 0

e−
1
x : x > 0

, f2(x) :=
f1(x)

f1(x) + f1(
1
4 − x)

, f3(x) :=
f2(x− 1) + 8f2

(
x− 7

4

)
9

.

For all x > 0, we then define

ϕ(x) :=

∫ x

0
y2 · f3(y) dy.

Since f3(y) = 0 for any y ≤ 1, ϕ(x) = 0 for any x ∈ (0, 1], and hence we can extend ϕ to a

smooth even function on all of R. For any x > 0, ϕ′(x) = x2 · f3(x). Therefore
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• As f3(x) > 0 for x > 1, ϕ′(x) > 0 for any x > 1.

• As f3(x) = 1 for x ≥ 2, ϕ′(x) = x2 for any x ≥ 2.

• As f3(x) ≤ 1
9 for x ≤ 3

2 , ϕ
′(x) ≤ x2

9 < 1
2 for any x ∈ (1, 32).

Other than the growth rate at infinity, our choices for ϕ are not crucial, but instead help reduce

the technicality of our arguments. The last condition however is essential. The rapid growth of

ϕ for large x is what allows curves to bloom at infinity as discussed in Example 1.3.13. Given

c ∈ R, consider the unique maximal solution to H = 0 with initial condition c, denoted c(t),

that we defined in §3. Recall, c(t) solves the ODE

∂c

∂t
= −ϕ′(c(t)), c(0) ≡ c ∈ R.

Suppose our initial condition c > 0. By our choice of ϕ, c(t) is decreasing and immortal.

Moreover, for large c and small t, the ODE that c(t) solves is

∂c

∂t
= −c(t)2,

with explicit solution c(t) = (c−1 + t)−1. Taking c → ∞, for small positive times t ∈ (0, ϵ],

we have the solution ζ(t) = t−1 to the equation H(ζ) = 0. Geometrically, this means that

lines parallel to the y-axis fly in from infinity in finite time under CSF. In particular, consider

any closed solution η : S1 × [0, T ] → R2 to CSF with respect to this ambient metric. Since

Im (η(·, 0)) ⋐ R2, we can find t0 ∈ (0, ϵ] sufficiently small, such that the line {y = ζ(t0)} lies

to the right of Im (η(·, 0)). Note that, the solution x : R × [t0, ϵ] → R2, with x(y, t) ≡ ζ(t) is a

graphical solution to CSF with respect to the metric g, and hence a uniformly proper solution.

Therefore, by Theorem 4.2.4, we deduce that Im (η(·, ϵ)) lies to the left of the vertical line

{y = ζ(ϵ− t0)}, and hence to the left of the vertical line {y = ζ(ϵ)}. Consider the level set flow

starting from the x-axis: the maximal region in plane that avoids all closed solutions which are

initially disjoint from the x-axis. Repeating the above argument for all η, we have that, for

all ϵ > 0 arbitrarily small, the region {x ≥ ζ(ϵ)} is contained within this level set flow at time

ϵ, and the level set flow starting from the x-axis instantly fattens. We now show that within

this fattening, there does exist a smooth non-zero graphical solution to CSF with the x-axis as

initial data.

Theorem 4.3.2. With respect to this choice of ϕ : R → R, there exists a continuous function

y : R× [0,∞) → [−1, 1] such that

(i) y(·, 0) ≡ 0 on R.

(ii) y(·, t) is an increasing odd function, ∀t ∈ (0,∞).

(iii) y is smooth and satisfies V(y) = 0 on R× (0,∞).
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(iv) y(·, t) instantly peels away at infinity:

∀ϵ, t > 0, ∃x0 > 0 such that y(x, t) > 1− ϵ, ∀x > x0.

4.3.2 Constructing compact graphical approximations

Lets find a sequence of solutions to the Dirichlet problems V (·) from §3 on larger and larger

compact subsets of the real line. We start by defining our initial data.

Fix χ : [0, 1] → [0, 1] a smooth, decreasing cut off function such that χ ≡ 1 on [0, 14), χ ≡ 0 on

(34 , 1] and χ
′ > −4 on [0, 1]. For each n ∈ N, define the function Yn : [−n, n] → [−1, 1] to be the

unique odd function such that

Yn(x) :=

0 : x ∈ [0, n− 1]

χ(x+ 1− n)) : x ∈ [n− 1, n].

For each n ∈ N and s ∈ (0,∞), use Yn as the auxiliary data in the Dirichlet problem V (s) from

§3. Then there exists Tn ∈ (0,∞] and a continuous function yn : [−n, n]× [0, Tn) → R with the

following properties:

(i) yn solves the Dirichlet problem V (s), with auxiliary data Yn, ∀s ∈ (0, Tn);

(ii) yn ∈ P 2,1([−n, n]× [0, s]), ∀s ∈ (0, Tn);

(iii) yn ∈ C∞
loc((−n, n)× (0, Tn)).

Note that Yn vanishes identically in a neighbourhood of the parabolic walls, and so the com-

patibility conditions of all orders are satisfied. Therefore, using the global Schauder estimates

(Theorem A.0.3) and bootstrapping, we can improve (ii) to

(ii’) yn ∈ C∞([−n, n]× [0, s]), ∀s ∈ (0, Tn).

Moreover, Proposition 3.3.3 then also applies, and for every t > 0, yn(·, t) is strictly increasing.

Finally, by the symmetries of Yn, ϕ and V, yn(·, t) is an odd function for all t ∈ (0, Tn).

Lemma 4.3.3. For each n ∈ N, let yn : [−n, n] × [0, Tn) → R be the solution to the Dirichlet

problem mentioned above. Then for each t ∈ [0, Tn), the graph of x 7→ yn(x, t) is contained in

the parallelogram

{(x, y) ∈ [−n, n]× [−1, 1] : 1 + 4(x− n) ≤ y ≤ −1 + 4(x+ n)}}. (4.3.1)

Proof. By the maximum principle, we have the upper and lower barriers ±1. Using that ϕ′(x) ≥
0 for x ≥ 0 and µ(x, p) > 0 for any p ∈ R, we have that

V(4x) = −4ϕ′(x)(1 + µ(4)) ≤ 0.
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Since 0 ≤ ∂yn
∂x (·, 0) ≤ 4, we have that

1 + 4(x− n) ≤ yn(x, 0), ∀x ∈ [0, n].

As yn(·, t) is an odd function for each t ≥ 0, we have that

1 + 4(0− n) ≤ 0 = yn(0, ·)

1 + 4(n− n) = 1 = yn(n, ·).

Hence 1 + 4(x− n) is a lower barrier to yn over [0, n]. By symmetry, −1+ 4(x+ n) is an upper

barrier over [−n, 0].

Note that, Lemma 4.3.3 implies yn has gradient bounded by 4 on the parabolic boundary ΓTn .

Therefore, the 2nd part of Theorem 3.3.1 applies and each yn is immortal.

Recall from the discussion in §4.3.1, that for any c > 1, we have the immortal, strictly decreasing

solution c(t) to H = 0 starting from the constant initial condition c. Note that c(t) is bounded

below by 1. Since ϕ′(x) ≥ 0 whenever x > 0, for any c > 1 and s ∈ (0,∞), we can solve the

Dirichlet problem Hc(s) from §3, and hence there exists a Tc ∈ (0,∞] and a continuous function

gc : [0, 1]× [0, Tc) → [0,∞) satisfying,

(i) gc solves Hc(s), ∀s ∈ (0, Tc);

(ii) gc ∈ P 2,1((0, 1)× (0, s)), ∀s ∈ (0, Tc);

(iii) gc ∈ C∞
loc((0, 1)× (0, Tc).

Lemma 4.3.4. For each c > 1, let gc : [0, 1]× [0, Tc) → [0,∞) be the solution to the Dirichlet

problem mentioned above. Then there exists a constant m ∈ (0, 1) depending on c such that, for

each t ∈ [0, Tc), the graph of y 7→ gc(y, t) is contained in the region

{(x, y) ∈ [c(t), c]× [0, 1] : ηm,0(y) ≤ x ≤ c(t)(1− y) + cy}, (4.3.2)

where ηm,0 refers to the horizontal geodesic constructed in §3.

Proof. Using that ϕ′(x) ≥ 0 is increasing for x > 0, c(t) > 0 is decreasing, and ν(x, p) > 0 for

any p ∈ R, we have that

H(c(t)(1− y) + cy) ≥ c′(t)(1− y) + ϕ′(c(t)(1− y) + cy)

≥ ϕ′(c(t))(y − 1) + ϕ′(c(t)) ≥ 0.

So c(t)(1− y) + cy is a supersolution. Moreover

c(0)(1− y) + cy = c, c(t)(1− 0) + c · 0 = c(t), c(t)(1− 1) + c · 1 = c.
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Hence c(t)(1 − y) + cy is an upper barrier to gc. For a lower barrier to gc, choose m ∈ (0, 1)

such that σm,0(c) = 1. Since m ̸= 0, σm,0 is invertible, and we have the horizontal graph ηm,0

which is an increasing geodesic with ηm,0(0) = 0 and ηm,0(1) = c.

Note that, Lemma 4.3.4 implies gc has gradient bounded by the maximum of c−1 and η′m,0(1) on

the parabolic boundary ΓTc . Therefore, Theorem 3.3.2 applies and each gc is immortal. Further-

more, Lemma 4.3.4 implies ∂gc
∂y (1, t) > 0 for every t > 0. In combination with Proposition 3.3.4,

gc(·, t) is has strictly positive gradient for every t > 0.

4.3.3 Extracting an entire solution

We currently have a sequence of continuous functions

yn : [−n, n]× [0,∞) → [−1, 1], ∀n ∈ N,

such that

(i) yn is smooth on (−n, n)× (0,∞), with V(yn) ≡ 0 over this region.

(ii) yn(·, t) is a strictly increasing odd function with positive gradient for any t > 0.

(iii) yn(x, 0) = 0 for x ∈ [1− n, n− 1], and yn(±n, t) = ±n for t ≥ 0.

(iv) yn(x, t) is a decreasing sequence in n for any (x, t) ∈ [0, n]× [0,∞).

To see (iv) we note that, for m ≤ n

yn(x, 0) ≤ ym(x, 0), ∀x ∈ [0,m],

yn(0, t) = 0 = ym(0, t), ∀t > 0,

yn(m, t) ≤ 1 = ym(m, t), ∀t > 0.

Monotonicity then follows from the avoidance principle (Theorem 2.2.8).

These properties allow us to do several things:

• By (ii), yn(·, t) is invertible for each n ∈ N and t > 0. Thus, we can change gauge and

consider the curves as horizontal graphs

xn : [−1, 1]× (0,∞) → [0, n], xn(·, t) := yn(·, t)−1, ∀n ∈ N.

Moreover, by (i), the horizontal graphs xn are smooth and satisfy H(xn) ≡ 0 on (−1, 1)×
(0,∞).

• (iv) allows us to take a limit of this sequence to get a function y : R× [0,∞) → [−1, 1],

y(x, t) := lim
n→∞

yn(x, t), ∀(x, t) ∈ R× [0,∞).
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Moreover, by (iii), y(·, 0) ≡ 0 on R, and by (ii), y(·, t) is an increasing odd function for

any t > 0.

We want to show that y is smooth and solves V(y) = 0 on R × (0,∞). This will follow if we

can show that the convergence of the sequence yn to y is locally smooth on R× (0,∞). We also

want to show that y is continuous on R × [0,∞). However, once we have shown local smooth

convergence on R× (0,∞), continuity on R× [0,∞) follows from the monotonicity of each term

in the sequence and the monotonicity of the limit.

Lemma 4.3.5. If yn converges to y locally smoothly on R× (0,∞), then y ∈ C(R× [0,∞)).

Proof. Since y(·, 0) is an odd function, it suffices to show that y is continuous at any point

(x0, 0) with x0 > 0. Fix ϵ > 0 and choose n large enough so that yn(x0, 0) = 0. Since yn is

continuous at (x0, 0), there exists some δ ∈ (0, x0) such that

|yn(x, t)|≤ ϵ, ∀(x, t) ∈ (x0 − δ, x0 + δ)× [0, δ).

As yn(x, t) is an increasing function in x for any fixed t

0 = yn(0, t) ≤ yn(x, t) < ϵ ∀(x, t) ∈ (x0 − δ, x0 + δ)× [0, δ).

Finally, as yn(x, t) is a decreasing sequence in n

0 ≤ y(x, t) < ϵ ∀(x, t) ∈ (x0 − δ, x0 + δ)× [0, δ).

4.3.4 Local regularity

The goal of this next section is to show the following theorem.

Theorem 4.3.6 (Local gradient bounds). Fix k, T > 0. Then there exists M1(k, T ) > 0 such

that

|yn(·, t)|C1([−k,k]) ≤M1, ∀t ∈ [0, T ], ∀n > k + 1.

That is, on any compact region of space time, our sequence has a uniform spatial C1-bound.

The strategy we employ to achieve this is to foliate our region of space-time with curves of

controlled gradient, and then show that at any time, each solution yn intersects each foliating

curve only once. To begin, we shall show a uniform gradient bound at all times for our solutions

over some compact subset of space strictly containing [−1, 1].

Lemma 4.3.7 (Local gradient bounds on a small spatial neighbourhood). There exists a > 1

and M1 > 0 such that

0 ≤ ∂yn
∂x

(x, t) ≤M1 ∀x ∈ [0, a], ∀t ∈ [0, T ], ∀n > 2.
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In particular

|yn(·, t)|C1([−a,a]) ≤M1, ∀t ∈ [0, T ], ∀n > 2.

The last line of this lemma rephrases it as the special case of Theorem 4.3.6 for k ≤ a. To prove

Lemma 4.3.7, we shall foliate [−2, 2] × R with the geodesics mentioned in §3.1. As such, the

proof will require the following property of the geodesics.

Claim. For each m ∈ (0, 1), let σm,0 denote the graphical geodesic constructed in §3.1. For m

sufficiently close to 1

σm,0(2) > σm,0(1) + 1 > 2.

Proof of claim. Since ϕ′(x) < 1
2 for x ∈ (1, 32), we note that ϕ(1 + s) ≤ s

2 for s ∈ (0, 12). For

each m ∈ (0, 1)

σm,0(2) = σm,0(1) +

2∫
1

m

eϕ(s)
√
e2ϕ(s) −m2

ds > σm,0(1) +

1
2∫

0

m

e
s
2

√
es −m2

ds

Since
∫ 1

2
0

1

e
s
2
√
es−1

ds > 1, for m sufficiently close to 1, σm,0(2) > σm,0(1) + 1. We get the last

inequality for free as the gradient of σm,0 is decreasing.

Proof of Lemma 4.3.7. By the previous claim there exists m ∈ (0, 1) and ϵ > 0 such that

σm,0(2) = σm,0(1) + 1 + 2ϵ. Fix a > 1 such that σm,0(a) = σm,0(1) + ϵ. We consider the

geodesics σm,h : R → R for |h| ≤ σm,0(1) + ϵ. Note that, for any such h, it is a regular value of

(yn(·, 0)− σm,h(·)) over [−2, 2]. In particular, since

σm,h(2) ≥ 1 + ϵ > 1 ≥ yn(2, t),

σm,h(−2) ≤ −1− ϵ < −1 ≤ yn(−2, t),

by intersection principle (Lemma 2.2.5), at each time t ∈ [0, T ], the curves σm,h(·) and yn(·, t)
intersect at a single point over [−2, 2].

Finally, as the region [0, a] × [0, 1] is entirely foliated by the curves σm,h for |h| ≤ σm,0(1) + ϵ,

we have

0 ≤ ∂yn
∂x

(x, t) ≤ σ′m,h(x) ≤ sup
[−2,2]

σ′m,0, ∀(x, t) ∈ [0, a]× [0, T ].

Next we shall show a uniform gradient bound over [−k, k] for a short amount of time.

Lemma 4.3.8 (Local gradient bounds for a short time). Fix k > 0. Then there exists τ > 0

and M1(k) > 0 such that

0 ≤ ∂yn
∂x

(x, t) ≤M1, ∀x ∈ [0, k], ∀t ∈ [0, τ ], ∀n > k + 1.
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In particular

|yn(·, t)|C1([−k,k]) ≤M1, ∀t ∈ [0, τ ], ∀n > k + 1.

The last line of this lemma again rephrases it as the special case of Theorem 4.3.6 for for T ≤ τ .

To prove Lemma 4.3.8 we foliate [−k, k] × R for a short amount of time. We will not use

geodesics to foliate, as their gradient becomes too shallow far out. Instead, we use the Dirichlet

problems V (·) from §3.1 to construct an immortal, smooth solution to V ≡ 0 from a suitable

initial condition, and use vertical translations of this solution as a foliation. To be more precise,

lets solve the Dirichlet problems V (·) with initial data given by the map x 7→ 4x on the slightly

larger domain [−(k+1), k+1]. By the same reasoning as in §3.1, we have a continuous function

F : [0, k + 1]× [0,∞) → R such that

• F is smooth and solves V(F ) = 0 on (0, k + 1)× (0,∞);

• F (x, 0) = 4x, F (k + 1, t) = 4(k + 1), F (0, t) = 0;

• F (·, t) is increasing for each t > 0.

By the vertical translation invariance of (3.1.4), for each time t > 0, we can foliate with the

solutions

F(t) := {F (·, t)− h : h ∈ R}.

We are concerned with which curves in our foliation F(t) intersect with our solution yn(·, t).
Define

H(x, t) := Im
(
F (·, t)− yn(·, t)|[0,x]

)
, ∀x ∈ [0, k + 1],

so that a curve F (·, t) − h ∈ F(t) intersects yn(·, t) over [0, x] if and only if h ∈ H(x, t). The

following proposition bounds the size of H(x, t).

Proposition 4.3.9. For each k > 0, there exists a constant Ak > 0 such that

H(x, t) ⊆
[
0, 4xeAkt

]
, ∀(x, t) ∈ [0, k + 1]× (0,∞). (4.3.3)

Proof. Fix Ak > 0 to be determined later. We showed in §3.1 that V(4x) ≤ 0. By a similar

calculation

V(4xeAkt) = 4eAkt
(
Akx− ϕ′(x)(1 + µ(x, 4eAkt))

)
≥ 4eAkt

(
Akx− 2ϕ′(x)

)
.

Note, for x ∈ [0, 1], ϕ′(x) = 0 so Akx − 2ϕ′(x) ≥ 0, and for x ∈ [1, k + 1], if we choose

Ak := 2(k + 1)2 = 2ϕ′(k + 1), then Akx − 2ϕ′(x) ≥ Ak − 2ϕ′(x) ≥ 0. So V(4xeAkt) ≥ 0 over

[0, k + 1] and by the avoidance principle (Lemma 2.2.8)

4x ≤ F (x, t) ≤ 4xeAkt, ∀(x, t) ∈ [0, k + 1]× (0,∞).
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So for any t ∈ [0, T ], over [0, x] we have

−1 ≤ F (·, t)− yn(·, t) ≤ 4xeAkt

To finish the lemma, we note that for h < 0

F (x, 0)− h > 4x ≥ yn(x, 0), F (0, t)− h > 0 = yn(0, t), F (k + 1, t)− h > 1 = yn(k + 1, t).

So by the avoidance principle (Lemma 2.2.8), h /∈ H(x, t).

Proof of Lemma 4.3.8. Choose τ := 1
Ak

log(1 + 1
4k ) > 0 so that equation (4.3.3) becomes

H(k, t) ⊆ [0, 4k + 1], ∀t ∈ [0, τ ]. (4.3.4)

Fix (x0, t0) ∈ [0, k]× [0, τ ]. Since F(t0) is a foliation, ∃ h0 ∈ H(k, t0) such that

F (x0, t0)− h0 = yn(x0, t0).

Since ∂F
∂x (x, 0) = 4 > ∂yn

∂x (x, 0), There is a single zero of F − h0 − yn at time t = 0. By equation

(4.3.3), for any t ∈ [0, τ ]

F (0, t)− h0 = −h0 ≤ 0 = yn(0, t),

F (k + 1, t)− h0 = 4(k + 1)− h0 ≥ 3 > yn(k + 1, t).

Therefore, at time t0 the curves intersect transversely at x0 by the intersection principle

(Lemma 2.2.5), giving

0 ≤ ∂yn
∂x

(x0, t0) ≤
∂F

∂x
(x0, t0) ≤ sup

[0,k]×[0,τ ]

(
∂F

∂x

)

We are now ready to prove Theorem 4.3.6. Here we shall use the family of curves gc that we

constructed in § 3.1 to foliate our space. Although this foliation doesn’t cover all of space-time,

the regions it misses are covered by Lemma 4.3.7 and Lemma 4.3.8.

Proof of Theorem 4.3.6. Take a > 1 and τ > 0 as in Lemma 4.3.8 and Lemma 4.3.7. To prove

the theorem, it suffices to show that for any (x∗, t∗) ∈ [a, k] × [τ, T ], we can find a gradient

bound for yn at (x∗, t∗).

We begin by switching gauge for our solutions. View the vertical graphs yn as the horizontal

graphs xn : [0, 1] × (0,∞) → [0, n]. By the intermediate value theorem and the monotonicity

of xn(·, t∗), ∃ y∗ ∈ (0, 1) such that xn(y
∗, t∗) = x∗. Choose τ̃ > 0 sufficiently small so that it

is both less than τ and so that gk+1(τ̃) ≥ ck+1(τ̃) ≥ k. This implies that the region {(x, y) ∈
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[a, k]× [0, 1]} is folliated by the curves

G := {(gc(y, τ̃), y) : y ∈ [0, 1], c ∈ [a, k + 1]}.

In particular, there exists c∗ ∈ [a, k + 1] such that

gc∗(y
∗, τ̃) = x∗ = xn(y

∗, t∗).

Consider the intersection number of the curves gc∗(·, t) and xn(·, t + (t∗ − τ̃)). As yn(0, ·) = 0

and yn(n, ·) = 1, we have

xn(0, t) = 0, xn(1, t) = n, ∀t > 0.

In particular, as gc∗(·, 0) = c∗ ∈ (0, n) and xn(·, t∗ − τ̃) is strictly increasing, the curves initially

intersect only once at a transverse point. Moreover, for any t ≥ 0

gc∗(0, t) = c∗(t) > 0 = xn(0, t+ (t∗ − τ̃)),

gc∗(1, t) = c∗ < n = xn(1, t+ (t∗ − τ̃)),

and by the intersection principle (Lemma 2.2.5), the curves always intersect exactly once. There-

fore
∂xn
∂y

(y∗, t∗) ≥ ∂gc∗

∂y
(y∗, τ̃).

By the smooth dependence on auxiliary conditions for solutions to the Dirichlet problems Hc(·),
the map

G : [0, 1]× (1,∞)× (0,∞) → (0,∞), G(y, c, t) :=
∂gc
∂y

(y, t),

is continuous. Hence for any X ⋐ (1,∞)× (0,∞), there exists ϵ(X) > 0 such that

G([0, 1]×X) ≥ ϵ > 0. (4.3.5)

In particular, choosing X := [a, k + 1]× [τ, T ] in equation (4.3.5), there exists ϵ > 0 such that

∂xn
∂y

(y∗, t∗) ≥ ∂gc∗

∂y
(y∗, τ̃) = G(y∗, c∗, τ̃) ≥ ϵ.

That is

0 ≤ ∂yn
∂x

(x∗, t∗) ≤ 1

ϵ
.

We can now bootstrap to get uniform higher order bounds locally on our sequence.

Theorem 4.3.10 (Local bounds). Fix j ∈ N and K ⋐ R × (0,∞). Then there exists Mj > 0

such that

|yn|P j(K) ≤Mj , ∀n ∈ N.
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Proof. There exists some ϵ > 0 such that K2ϵ ⊆ R× (0,∞), where K2ϵ denotes the 2ϵ-fattening

of K. We begin by substituting yn into the coefficients of V. By Theorem 4.3.6, our operator Ln

is then a strictly parabolic linear operator. Moreover, on K2ϵ, these coefficients are uniformly

bounded in L∞(K2ϵ). Thus, we can apply De Giorgi-Nash-Moser (Theorem A.0.2) to conclude

that our sequence of solutions yn are uniformly bounded in P 0,α(Kϵ) for some α ∈ (0, 1). Using

interior Schauder estimates (Theorem A.0.4) the result follows.

As a consequence of Theorem 4.3.10, we now have local uniform P j-bounds for our sequence

yn. Using Arzela-Ascoli and monotonicity, the sequence yn converges to y in C∞
loc(R× (0,∞)).

Hence y is smooth with V(y) = limn→∞ V(yn) = 0 on R× (0,∞).

4.3.5 Long term behaviour

We currently have a continuous function y : R× [0,∞) → [−1, 1] such that

(i) y(·, 0) ≡ 0 on R.

(ii) y(·, t) is an increasing odd function ∀t ∈ (0,∞).

(iii) y is smooth and satisfies V(y) = 0 on R× (0,∞).

The final step in the proof of Theorem 4.3.2 is to show that our solution does not remain equal

to zero as we flow forwards in time. To do this we construct a suitable barrier. In particular,

we find a graphical solution that acts as a barrier to our sequence of solutions yn.

Let ζ : (0,∞) → (1,∞) be the solution to the ODE

∂

∂t
ζ(t) = −ϕ′(ζ(t)), (4.3.6)

such that ζ(t) → ∞ as t↘ 0. As discussed earlier in §4.3.1, ζ(t) = t−1 for small t > 0. Consider

the barrier function b : (0,∞)× (0,∞) → (0,∞) given by b(y, t) := t+ ζ(t) + 1
log(1+y) . We shall

show that as a horizontal graph, this is a supersolution to equation (3.1.3). Since ϕ(b(y, t)) > 0,

we have the upperbound

byy

b2y + e2ϕ(b)
=

2 log(1 + y) + log(1 + y)2

1 + e2ϕ(b)(1 + y)2
≤ 1.

Moreover, since ϕ′(x) is increasing, we have that ϕ′(b(y, t)) + ζ̇(t) = ϕ′(b(y, t)) − ϕ′(ζ(t)) ≥ 0.

Using the above inequalities and substituting b into H gives

H(b) = 1 + ζ̇(t)− byy
b2y + e2ϕ

+ ϕ′(b(y, t))

(
1 +

b2y
b2y + e2ϕ

)
≥ 0.

So b is a supersolution to (3.1.3). Switching gauge, (x, t) 7→ exp
(

1
x−(t+ζ(t))

)
−1 is a supersolution

to (3.1.4) in the region U := {(x, t) ∈ (t + ζ(t),∞) × (0,∞)}. In particular, using V(−y) =
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−V(y) and the vertical translation invariance of V, we have that the graph of the function

u(x, t) := 2− exp
(

1
x−(t+ζ(t))

)
is a subsolution to (3.1.4) in the region U . We can then modify

u to get a subsolution u in the barrier sense, defined on all of (0,∞)× (0,∞), by setting

u(x, t) :=

−1 : (x, t) /∈ U

max{−1, u(x, t)} : (x, t) ∈ U

This u is our barrier. The following lemma shows that this barrier does indeed push our solution

y away from zero.

Lemma 4.3.11.

u(x, t) ≤ y(x, t), ∀(x, t) ∈ R× [0,∞).

Proof. Fix n ∈ N. On the parabolic boundary of the region where yn is defined

u(·, 0) = −1 ≤ yn(·, 0), u(−n, ·) = −1 = yn(0, ·), u(n, ·) < 1 = yn(n, ·).

By the avoidance principle (Lemma 2.2.8)

u(x, t) ≤ yn(x, t), ∀(x, t) ∈ [−n, n]× [0,∞), ∀n ∈ N.

The result follows from the convergence of yn to y.

For any t > 0 and ϵ ∈ (0, 1), setting x0 := t+ ζ(t) + 1
log(1+ϵ) , we have

1− ϵ ≤ u(x, t) ≤ y(x, t), ∀x > x0.

This concludes the proof of Theorem 4.3.2.

4.4 Rotationally symmetric Hadamard surfaces

For the final section, we consider metrics of the form g = dr2 + e2ϕ(r)dθ2 as in (1.3.1) which

are complete smooth O(2)-invariant metrics on the plane with non-positive curvature. As any

such g is complete, smooth and O(2)-invariant, we have the previous analytic definition of g

blooming at infinity (see Definition 1.3.16). Moreover, under the additional assumption that the

curvature is non-positive, we can show that an equivalent geometric formulation for g blooming

at infinity is that all closed solutions to CSF become extinct within a finite uniform time. We

shall first make this statement precise, before using it to prove Theorem 1.3.17.

Given a region U ⊆M within our surface, we want to quantify the maximal existence time for

closed solutions to CSF which initially lie within U .

Definition 4.4.1. For any subset U ⊆M , let C(U) denote the class of smooth closed solutions
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to equation (1.2.1)

η : S1 × [0, T ) →M,

such that η(·, 0) ⊆ U . For such a solution η, we say that its existence time is T . Define the

existence time of the subset U to be the supremum of all such existence times

τ(U) = sup{T ∈ (0,∞) : T is the existence time for some η ∈ C(U)}.

The following lemma provides an upperbound for the existence time of a closed solution to CSF

inside a simply connected negatively curved space. It is a simple application of Gauss-Bonnet,

Theorem C.0.1.

Lemma 4.4.2. Let (R2, g) be a Hadamard surface (non-positive curvature) and ηi : S1 ×
[0, Ti) → R2 be a family of closed disjoint solutions to CSF for i ∈ {1, . . . , k}. Suppose η :

S1×[0, T ) → R2 is a maximal closed solution to CSF such that the region enclosed by Im (η(·, 0))
contains all of the other curves

⋃k
i=1 Im (ηi(·, 0)). Then

T ≤ α

2π
+

k∑
i=1

Ti,

where α ≥ 0 is the initial area discrepancy.

Proof. Let Γ(t), Γi(t) denote the regions enclosed by the curves Im (η(·, t)) and Im (ηi(·, t))
respectively. Without loss of generality 0 =: Tk+1 < Tk ≤ · · · ≤ T1. Then by the avoidance

principle for closed curves, for each m ∈ {1, . . . , k} we have

m⋃
i=1

Γi(t) ⊆ Γ(t), ∀t ∈ (Tm+1, Tm).

Let A(t), Ai(t) denote the areas of Γ(t), Γi(t) respectively, so that the initial area discrepancy

α := A(0)−
k∑

i=1
Ai(0). For t ∈ (Tm+1, Tm) we apply Gauss-Bonnet to give

∂A

∂t
= −2π +

∫
Γ(t)

KdA ≤ −2π +

m∑
i=1

∫
Γi(t)

KdA =

m∑
i=1

∂Ai

∂t
+ 2π(m− 1).

Integrating, we have for each m ∈ {1, . . . , k}

A(Tm)−A(Tm+1) ≤
m∑
i=1

(Ai(Tm)−Ai(Tm+1)) + 2π(m− 1)(Tm − Tm+1). (4.4.1)
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Summing (4.4.1) over m ∈ {1, . . . , k}

A(T1) ≤ A(0)−
k∑

i=1

Ai(0) + 2π

k∑
i=2

Ti = α+ 2π

k∑
i=2

Ti.

Applying Gauss-Bonnet once more

T ≤ T1 +
A(T1)

2π
=

α

2π
+

k∑
i=1

Ti.

The following lemma shows equivalent formulations for such a metric to allow blooming at

infinity.

Lemma 4.4.3. Let g = dr2 + e2ϕ(r)dθ2 as in (1.3.1) be a complete smooth O(2)-invariant

metric on the plane with non-positive curvature. For each m ∈ N, let Sm := {(r, θ) : r ≥ 0, θ ∈
[0, 2πm ]} ⊂ R2. The following conditions are equivalent.

1. g allows blooming at infinity. That is, there exists T ∈ (0,∞) and a solution R : (0, T ) →
(0,∞) to the ODE (1.3.2) such that R(t) → ∞ as t↘ 0.

2. For any t > 0, there exists R(t) ∈ (0,∞) such that, for any m ∈ N and η ∈ C(Sm), we

have that η(·, t) ⊆ BR(t).

3. For any m ∈ N, the existence time τ(Sm) <∞ (see Definition 4.4.1).

Proof. We shall show 1 =⇒ 2 =⇒ 3 =⇒ 1.

(1 =⇒ 2) Let η ∈ C(Sm). By compactness, for any ϵ > 0, there exists some δ ∈ (0, ϵ) such that

η(·, ϵ) ⊆ BR(δ). By the avoidance principle for closed curves, η(·, t) ⊆ BR(t−ϵ+δ). Letting

ϵ↘ 0 yields the result.

(2 =⇒ 3) Fix η ∈ C(Sm). Either the existence time of η is less than 1, or by our assumption, there

exists some R > 0 independent of η such that η(·, 1) ⊆ BR. Using that the curvature is

non-positive and Gauss-Bonnet, we have that T ≤ 1+ |BR|
2πm and hence τ(Sm) ≤ 1+ |BR|

2πm <

∞.

(3 =⇒ 1) Fix r > 0 and consider the region Br ∩ Sm. We can flow the boundary of this region

under CSF to get a solution η : S1 × [0, T ) → Sm with existence time T ≤ τ(Sm). Also

consider the maximal solution r(t) : (0, T0) → (0,∞) to the ODE (1.3.2), starting from

r(0) = r. We note that under the usual O(2)-action on the plane, the rotated curves

(2πjm ·η) for j ∈ {0, 1, . . . ,m−1} are disjoint, and completely fill the region Br. Therefore,

by Lemma 4.4.2

T0 ≤ m · T ≤ m · τ(Sm).

In particular, taking r ↗ ∞ gives τ(R2) ≤ m · τ(Sm) < ∞. Now consider the sequence

72



of maximal solutions Rn : [−Tn, 0) → (0,∞) to the ODE (1.3.2) with Rn(−Tn) = n,

for all n ∈ N. Note that the Tn are strictly increasing and bounded above by τ(R2),

so they converge to some finite limit T . Taking the limit of the sequence Rn in n and

reparametrising gives a solution R : (0, T ) → (0,∞) to the ODE (1.3.2), with R(t) → ∞
as t↘ 0.

Proof of Theorem 1.3.17

Theorem 1.3.17. Consider a complete smooth O(2)-invariant metric g with non-positive

curvature on the plane. Let γ : R× [0, T ] → R2 be a uniformly proper solution to CSF starting

from the x-axis. If g does not allow blooming at infinity then γ is the static solution to CSF.

Proof of Theorem 1.3.17. Let γ : R × [0, T ] → R2 be any uniformly proper solution to CSF

starting from the x-axis. Fix m ∈ N and r > 0. Using Lemma 4.4.3 there exists ηr ∈ C(Sm)

with existence time greater than T and a point x ∈ S1 such that ηr(x, T ) lies outside the ball

Br centred at the origin radius r. Consider now the rotated slice (π − 2π
m ) · Sm = {(r, θ) : r ≥

0, θ ∈ [π− 2π
m , π]}, and the convex region Ωm := Sm ∪ (π− 2π

m ) ·Sm ∪B 1
m
. We currently have a

smooth closed curve ηr(·, 0) ⊆ Sm. We choose η̂r ∈ C(Ωm) such that η̂r(·, 0) is a smooth closed

curve in Ωm enclosing both ηr(·, 0) and its rotated image (π − 2π
m ) · ηr(·, 0) ⊆ (π − 2π

m ) · Sm.

By the avoidance principle for closed curves, the existence time T̂ of η̂r is greater than T and

there exists points x, y ∈ S1 such that both η̂r(x, T ) and η̂r(y, T ) lie outside of Br, but with

η̂r(x, T ) ∈ Sm and η̂r(y, T ) ∈ (π − 2π
m ) · Sm.

For each r > 0, we now apply the avoidance principle (Theorem 4.2.4) to the closed curve η̂r

and the uniformly proper solution γ, as well as to the rotated closed curve π · η̂r ∈ C(π · Ωm)

and γ to deduce that

Im γ(·, t) ⊆ Ωm ∪ π · Ωm, ∀m ∈ N, ∀t ∈ [0, T ].

Taking m→ ∞ gives

Im γ(·, t) ⊆
⋂
m∈N

(Ωm ∪ π · Ωm) = {(r, θ) : r ≥ 0, θ ∈ {0, π}}, ∀t ∈ [0, T ].

We have shown that Im γ(·, t) is the x-axis for each t ∈ [0, T ].

In light of the previous theorems, we tentatively make the following uniqueness conjecture,

claiming that within our special class of metrics, the only obstruction to uniqueness under

curve shortening flow starting from any initial data is precisely blooming at infinity.

Conjecture 4.4.4. Let (R2, g) be the plane equipped with a complete smooth O(2)-invariant

metric with non-positive curvature. Then CSF is unique on (R2, g) (see Definition 1.3.12) iff g

does not allow blooming at infinity (see Definition 1.3.16).
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Chapter 5

Complete (2+1)-dimensional Ricci

flow spacetimes

For the final chapter of this thesis, we return our attention to Ricci flow. The following is a

brief outline of its content.

• In §5.1, we extend a lower scalar curvature bound originally due to Bing-long Chen in

[Che09] to Ricci flow spacetimes, which allows us, via a Harnack estimate, to show that

Ricci flow spacetimes with connected spatial slices are expanding. We then decompose

any Ricci flow spacetime into the union of such spacetimes to show Theorem 1.3.1.

• In §5.2, we show that expanding Ricci flow spacetimes can be embedded within a larger

ambient space. With the use of the ambient space, we can now define a global conformal

structure on our spacetime, allowing us to significantly simplify Theorem 1.3.6.

• In §5.3, we further reduce Theorem 1.3.6 to complete and conformal Ricci flows on space-

times within the unit disk. We then formulate a geometric condition equivalent to con-

tinuity, which we use to then prove a comparison principle for Ricci flows on such a

spacetime.

• Taking any non-atomic Radon measure on a Riemann surface, a recent result of Peter

Topping & Hao Yin [TY21] allows us to start the Ricci flow from this measure. In §5.4,
we show that the converse is true, and that any complete conformal Ricci flow on a surface

must start weakly from such a measure.

• In §5.5, we introduce the idea of an initial time blow-up. Taking any Ricci flow starting

from a Radon measure, by looking at larger and larger parabolic rescalings of such a

flow away from the support of the initial measure, in the limit at time zero, we have a

hyperbolic metric. Finally, we combine this with the comparison principle from §5.3 to

show Theorem 1.3.6.
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5.1 Complete Ricci flow spacetimes are expanding

The aim of this section is to prove Theorem 1.3.1. The key idea in the proof is Lemma 5.1.7,

which states that the vanishing times of points is locally constant within each spatial slice of

our spacetime. To show Lemma 5.1.7 we require bounds on our metric along the worldlines.

This takes the form of a Harnack estimate.

5.1.1 A simple Harnack estimate for spacetimes

This short subsection introduces a simple Harnack estimate for complete Ricci flow spacetimes.

Recall that if inf I = 0 and the hindsight function h ≡ 0, then we say that the spacetime M is

initially determined.

The following is Chen’s lower scalar curvature bound adapted to Ricci flow spacetimes. The

proof of Lemma 5.1.1 presented here is a modification of the original proof given by Chen, where

now the basepoint of the balls is allowed to vary smoothly in time.

Lemma 5.1.1 (Variation of Chen, [Che09, Proposition 2.1]). ∀δ ∈ (0, 2n), ∃ C(δ) > 0 with

the following property. Let (Mn+1, t, ∂t, g) be a Ricci flow spacetime. Fix [t1, t2] ⊆ I and

η : [t1, t2] → M a time-preserving path. Let π : TM → TMspat denote the spatial projection,

and suppose there are constants r0,K > 0 and A ≥ 2 + 24(n− 1)r−2
0 t2 such that

• Bg(t)(η(t), Ar0) ⋐ Mt, for every t ∈ [t1, t2];

• Ric(g(t)) ≤ (n− 1)r−2
0 on Bg(t)(η(t), r0), for every t ∈ [t1, t2];

• Rg(t1) ≥ −K on Bg(t1)(η(t1), Ar0);

• |π ◦ η′(t)|g(t)≤ r−1
0 , for every t ∈ [t1, t2].

Then for each t ∈ [t1, t2] and x ∈ Bg(t)(η(t),
3Ar0
4 ), we have

Rg(t)(x) ≥ min{− 1

( 2n − δ)(t− t1) +
1
K

,− C

A2r20
}.

Proof. Fix a smooth decreasing function ϕ : R → R with ϕ ≡ 1 on (−∞, 78 ] and ϕ ≡ 0 on [1,∞).

For points x, y ∈ M in the same time slice s = t(x) = t(y), let dg(x, y) := dg(s)(x, y) denote the

distance between x and y in (Ms, g(s)). Define u : M[t1,t2] → R by

u(x) := ϕ

(
dg(x, η ◦ t(x)) + 3(n− 1)r−1

0 t(x)

Ar0

)
·Rg(t(x))(x)

In the region where dg is smooth, a direct calculation yields

□u =
Rϕ′

Ar0
·
(
□dg + π ◦ η′ · ∇dg + 3(n− 1)r−1

0

)
− 2∇ϕ · ∇R− Rϕ′′

A2r20
+ 2ϕ|Ric|2, (5.1.1)
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where □ := ∂t − ∆g denotes the heat operator on M, and ∇dg denotes the gradient of the

function Mt(x) → R, y 7→ dg(x, y), evaluated at the point y = η ◦ t(x).

Fix x ∈ M(t1,t2). If the distance dg(x, η ◦ t(x)) ≤ r0, then
dg(x,η◦t(x))+3(n−1)r−1

0 t(x)
Ar0

≤ 5
8 , and

hence ϕ′
(
dg(x,η◦t(x))+3(n−1)r−1

0 t(x)
Ar0

)
·Rg(t(x))(x) = 0. Otherwise, the distance dg(x, η ◦ t(x)) > r0,

and we have the lower bound (in the barrier sense) from [Per02, Lemma 8.3]

□dg(x, η ◦ t(x)) + π ◦ η′(t(x)) · ∇dg(x, η ◦ t(x)) ≥ −8(n− 1)

3r0
.

In particular, on all of M(t1,t2) we have the lower bound (in the barrier sense)

□dg + π ◦ η′ · ∇dg + 3(n− 1)r−1
0 ≥ 0. (5.1.2)

For each s ∈ [t1, t2] define

u0(s) := inf
x∈Ms

u(x).

Assume for some fixed t0 ∈ (t1, t2) that u0(t0) < 0. Then, since u is continuous on the compact

set Bg(t0)(η(t0), Ar0) and vanishes outside of it, the minimum is attained at some point x0 ∈
Mt0 . By continuity, for any point y in a sufficiently small neighbourhood of x0, Rg(t(y))(y) < 0,

and so ϕ′
(
dg(y,η◦t(y))+3(n−1)r−1

0 t(y)
Ar0

)
·Rg(t(y))(y) ≥ 0. Combining this with (5.1.2), we have

Rϕ′ ·
(
□dg + π ◦ η′ · ∇dg + 3(n− 1)r−1

0

)
≥ 0,

in a neighbourhood x0. Therefore, in a spacetime neighbourhood of x0, equation (5.1.1) implies

□u ≥ −2∇ϕ · ∇R− Rϕ′′

A2r20
+

2

n
ϕR2, (5.1.3)

in the barrier sense. Moreover, using that ϕ > 0 near x0, within a possibly smaller neighbour-

hood of x0, at smooth points of dg, we have

∇R =
∇u
ϕ

− R

ϕ
∇ϕ, |∇ϕ|2 = (ϕ′)2

(Ar0)2
.

Therefore, on this small neighbourhood of x0, the differential inequality

□u ≥ − 2

ϕ
∇ϕ · ∇u+

1

(Ar0)2

(
2(ϕ′)2

ϕ
− ϕ′′

)
R+

2

n
ϕR2, (5.1.4)

holds in the barrier sense. With our choice of ϕ, we can ensure that we have the bound

|2(ϕ
′)2

ϕ − ϕ′′| ≤ C ′ϕ
1
2 , for some C ′ > 0 depending only on ϕ. Using Peter-Paul, we also have the

inequality

C ′Rϕ
1
2

(Ar0)2
≤ 2

δ

(
C ′

(Ar0)2

)2

+
δ

2
ϕR2 =

δ

2

((
C

(Ar0)2

)2

+ ϕR2

)
,

where C now depends on δ. Therefore, we can simplify equation (5.1.4) to the differential
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inequality

□u ≥ − 2

ϕ
∇ϕ · ∇u+

(
2

n
− δ

2

)
ϕR2 − δ

2

(
C

(Ar0)2

)2

. (5.1.5)

Applying the maximum principle, we conclude that

lim inf
h↘0

u0(s+ h)− u0(s)

h
≥
(
2

n
− δ

2

)
ϕR2 − δ

2

(
C

(Ar0)2

)2

≥
(
2

n
− δ

)
u20(s) +

δ

2

(
u0(s)

2 −
(

C

(Ar0)2

)2
)
.

Integrating this up, we have the desired inequality.

As a corollary to Lemma 5.1.1, we also have a lower scalar curvature bound for complete Ricci

flow spacetimes (see [Che09, Corollary 2.3] for the comparable result on cylindrical spacetimes).

Corollary 5.1.2. Let (Mn+1, t, ∂t, g) be a complete Ricci flow spacetime. Then for any x ∈ M
we have

Rg(t(x))(x) ≥
−n

2(t(x)− h(x))
.

If M is initially determined, this simplifies to

Rg(t(x))(x) ≥
−n
2t(x)

.

Proof. Fix x ∈ M and choose s ∈ (h(x), t(x)). Then by the definition of h we can find a

time-preserving path η : [s, t(x)] → M such that η ◦ t(x) = x. For r0 sufficiently small,

Ric(g(t)) ≤ (n− 1)r−2
0 on Bg(t)(η(t), r0) for every t ∈ [s, t(x)], and |π ◦ η′(t)|g(t)≤ r−1

0 for every

t ∈ [s, t(x)]. For any A > 0, and any t ∈ [s, t(x)], Bg(t)(η(t), Ar0) ⋐ Mt follows from the

completeness of the metric g(t). By compactness, there exists some lower bound Rg(s) ≥ −K
on Bg(s)(η(s), Ar0). So, for each δ ∈ (0, 2n), choosing A sufficiently large, Lemma 5.1.1 implies

the existence of C > 0 such that

Rg(t(x))(x) ≥ min{− 1

( 2n − δ)(t(x)− s) + 1
K

,− C

Ar20
} ≥ min{− 1

( 2n − δ)(t(x)− s)
,− C

Ar20
}.

(5.1.6)

Taking A sufficiently large, we conclude that Rg(t(x))(x) ≥ − 1
( 2
n
−δ)(t(x)−s)

. The corollary is

finished by taking δ ↘ 0 and s↘ h(x).

Recall that in dimension n = 2, Ricci flow preserves the conformal class of the metric. Within

a Ricci flow spacetime (M2+1, t, ∂t, g), consider cylindrical coordinates Ψ : U(I) ⊆ M → U × I,
for some open set U ⊆ Ms, s ∈ I.

Shrinking U if necessary, we can assume that U , equipped with the metric Ψ∗(g(s)), admits

isothermal coordinates (x, y), so that Ψ∗(g(s)) is conformally equivalent to (dx2 + dy2) on
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U × {s}. Since Ψ∗(g) solves the usual Ricci flow equation on Ψ(U(I)) ⊆ U × I, we see that

Ψ∗(g) = u(dx2 + dy2) on Ψ(U(I)), (5.1.7)

where u : Ψ(U(I)) → (0,∞) is a smooth function satisfying the logarithmic fast diffusion

equation (LFDE)
∂u

∂t
= ∆ log u. (5.1.8)

Working locally, we can combine the lower scalar curvature bound with the LFDE to give the

following simple Harnack estimate.

Definition 5.1.3. Given a smooth manifold M , a subset Γ ⊆M is a smooth arc in M if it has

a smooth and regular parameterisation γ : J →M , for some interval J ⊆ R.

Γ = {γ(s) : s ∈ J}.

If we can take J = [0, 1], we say that Γ is a compact smooth arc.

Lemma 5.1.4. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). For

any x0 ∈ Mt0, choose r > 0 sufficiently small such that the ball B := B(x0, r) ⋐ Mt0 admits

isothermal coordinates. Let Γ be a smooth arc in B. Then

ℓg(Γ(t)) ≤

√
t− h(x0)

t0 − h(x0)
· ℓg(Γ), ∀t ∈ [t0, T ),

where ℓg(Γ(t)) denotes the length of Γ(t) ⊆ Mt with respect to the metric g(t). If M is initially

determined, this simplifies to

ℓg(Γ(t)) ≤
√

t

t0
· ℓg(Γ), ∀t ∈ [t0, T ).

Proof. As we did above, there exist cylindrical coordinates Ψ : B(I) ⊆ M → B × I, so that

Ψ∗(g) satisfies (5.1.7) for some u : Ψ(B(I)) → (0,∞) solving the LFDE (5.1.8). Since

∆ log u = −u ·RΨ∗g = −u ·Ψ∗(Rg),

we can use Corollary 5.1.2 to bound the time derivative of our conformal factor

∂u

∂t
(z, t) = −u(z, t) ·Rg(Ψ

−1(z, t)) ≤ u(z, t)

t− h ◦Ψ−1(z, t)
=

u(z, t)

t− h(x0)
, ∀(z, t) ∈ Ψ(B(I)).

Note that (z, t) ∈ Ψ(B(I)) iff [t0, t] ⊆ Iz. So we can integrate the above to get

u(z, t) ≤
(
t− h(x0)

t0 − h(x0)

)
u(z, t0), ∀(z, t) ∈ Ψ(B(I)).

Let Γ be the image of the smooth map γ : J → B. Recall, the set Γ(t) denotes the collection
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of points {x(t) ∈ Mt : x ∈ Γ, t ∈ Ix} (see Definition 1.2.6). We shall consider those points in Γ

which persist until time t,

[Γ(t)](s) = {x ∈ Γ : t ∈ Ix} ⊆ Γ,

and let

Jt := γ−1([Γ(t)](s)) ⊆ J.

As [Γ(t)](s) is open in Γ, Jt is open in J . Since Ψ(Γ(t)) = [Γ(t)](s)× {t}, we have

ℓg(Γ(t)) = ℓΨ∗(g)([Γ(t)](s)× {t}) =
∫
Jt

u(γ(s), t)
1
2 |γ′(s)| ds,

where |·| is the size of a vector with respect to our local isothermal coordinates. In particular

ℓg(Γ(t)) =

∫
Jt

u(γ(s), t)
1
2 |γ′(s)| ds

≤

√
t− h(x0)

t0 − h(x0)
·
∫
Jt

u(γ(s), t0)
1
2 |γ′(s)| ds

≤

√
t− h(x0)

t0 − h(x0)
·
∫
J
u(γ(s), t0)

1
2 |γ′(s)| ds

=

√
t− h(x0)

t0 − h(x0)
· ℓg(Γ).

Remark 5.1.5. In higher dimensions, the same reasoning applied to the evolution equation for

the volume form

L∂tdVg = −RgdVg,

gives an analogous inequality, and hence a local upper bound on volume growth.

By piecing together the above lemma locally, we have the same result for any smooth arc within

a spatial slice.

Lemma 5.1.6. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Suppose

Γ is a smooth arc in Mt0. Then

ℓg(Γ(t)) ≤

√
t− h(x0)

t0 − h(x0)
· ℓg(Γ), ∀t ∈ [t0, T ).

where ℓg(Γ(t)) denotes the length of Γ(t) with respect to the metric g(t). If M is initially

determined, this simplifies to

ℓg(Γ(t)) ≤
√

t

t0
· ℓg(Γ), ∀t ∈ [t0, T ).

Proof. We aim to apply the Harnack estimate to small balls covering Γ. Let Γ be the image of
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the smooth map γ : J → B. For each s ∈ J , choose rs > 0 sufficiently small such that the ball

Bs := B(γ(s), rs) satisfies the hypothesis of Lemma 5.1.4. Consider the open cover γ−1(Bs) of

J . As R is locally compact, write J as a union of compact intervals Ki for i ∈ N, overlapping
only at their endpoints. Applying the Lebesgue number lemma to each Ki, we can find a finite

number of compact intervals Ji,l such that Ki = ∪lJi,l, with the collection Ji,l overlapping only

at their endpoints, and with the additional property that Ji,l ⊆ γ−1(Bsi,l), for some si,l ∈ J .

Then, applying Lemma 5.1.4 to each of the balls Bsi,l , we conclude that

ℓg(Γ(t1)) =
∑
i,l

ℓg(Γ(t1) ∩ [γ(Ji,l)](t1))

≤

√
t1 − h(x0)

t0 − h(x0)

∑
i,l

ℓg(Γ ∩ γ(Ji,j))

=

√
t1 − h(x0)

t0 − h(x0)
· ℓg(Γ).

5.1.2 Vanishing times are locally constant

Let Γ ⋐ Ms be a compact smooth arc within the spatial slice at time s ∈ I. Recall, in

Definition 1.2.6, we defined the interval IΓ = ∩x∈ΓIx. Since Γ is compactly contained in Ms, s

is in the interior of IΓ by Lemma 2.3.2. Let TΓ = sup IΓ > s, be the vanishing time of the arc.

The following lemma shows that along a compact smooth arc Γ, the vanishing times of all of

the points within the arc are the same.

Lemma 5.1.7. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Fix

s ∈ I and let Γ ⋐ Ms be a compact smooth arc. Then

Tx = TΓ, ∀x ∈ Γ.

Proof. We can assume that TΓ < T , otherwise we would have Tx = TΓ = T , for any x ∈ Γ. Let

Γ be the image of the smooth map γ : [0, 1] → Ms. Consider those points in Γ which persist

past the vanishing time of Γ, [Γ(TΓ)](s) ⊂ Γ. As in Lemma 5.1.4, we look at the preimage of

this subset under our parameterisation

J ′ := γ−1([Γ(TΓ)](s)) ⊆ [0, 1].

We note that J ′ is open in [0, 1]. If J ′ is non-empty, choose J ′′ ⊆ J ′ to be a non-empty connected

component. We use Lemma 5.1.4 to show that J ′′ contains its infimum and supremum.

Claim. inf J ′′, sup J ′′ ∈ J ′′.

Proof of claim. Let s := supJ ′′. Choose an increasing sequence sj ∈ J ′′ such that sj ↗ s, and
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hence γ(sj) → γ(s) in Ms, as j → ∞. Since the metric is smooth,

ℓg(γ([sj , s])) → 0, as j → ∞. (5.1.9)

In particular, by the Harnack estimate from Lemma 5.1.4, the sequence [γ(sj)](TΓ) is Cauchy in

MTΓ
. As g(TΓ) is complete, there exists a limit z ∈ MTΓ

. Choose r > 0 such that the parabolic

cylinder C(z, r) is unscathed. In particular, since g is smooth, for some τ ∈ (TΓ−r2, TΓ)∩(s, TΓ),
we deduce that [γ(sj)](τ) → z(τ) as j → ∞. Finally, applying the Harnack estimate (5.1.4)

again to equation (5.1.9), we see that [γ(sj)](τ) → [γ(s)](τ) as j → ∞. So [γ(s)](τ) = z(τ), or

z = [γ(s)](TΓ), which implies s ∈ J ′′. The argument for inf J ′′ is the same.

By the above claim, J ′′ must be the entire interval [0, 1], and [Γ(TΓ)](s) = Γ. This gives a

contradiction to the value of TΓ as Γ(TΓ) ⋐ MTΓ
. Therefore J ′ is empty, and all points in Γ

vanish at time TΓ.

Corollary 5.1.8. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Sup-

pose U ⊆ Ms is connected. Then Tx = Ty, for all x, y ∈ U .

5.1.3 Spatially-connected spacetimes are expanding

Definition 5.1.9. Let (M, t, ∂t, g) be a connected Ricci flow spacetime. We say that M is

spatially-connected if the time slices Mt are connected, for all t ∈ I.

Under the additional assumption thatM is spatially-connected, we have a well-defined vanishing

time for each spatial slice. If our spacetime was not expanding, then Ms(t) = ∅ for some

s < t ∈ I. We can now use this to contradict our assumption that our spacetime is connected.

Theorem 5.1.10. Let (M2+1, t, ∂t, g) be a complete, spatially-connected Ricci flow spacetime

with I = (0, T ). Then it is expanding. That is, the vanishing times

Tx = T, ∀x ∈ M.

Proof. By Corollary 5.1.8, each spatial slice Ms has extinction time Ts ∈ (s, T ] for each s ∈
(0, T ). That is, Tx = Ts for all x ∈ Ms. If Ts < T for some s ∈ (0, T ), then Tt = Ts for all

t ∈ (s, Ts). Choosing any point x ∈ MTs , we can pick δ > 0 sufficiently small so that Ts±δ ∈ Ix.

This leads to the obvious contradiction

Ts + δ ≤ Tx = Tx(Ts−δ) = Ts.

5.1.4 Decomposing a spacetime

For the final part of this section, we show that any complete Ricci flow spacetime can be

decomposed into a collection of complete and spatially-connected Ricci flow spacetimes.
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Definition 5.1.11. Let (Mn+1, t, ∂t, g) be a Ricci flow spacetime and let η : J → M be a

time-preserving path. Define Mη ⊆ M by setting Mη
t to be the connected component of Mt

containing η(t), for each t ∈ J .

Lemma 5.1.12. Let (Mn+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Fix

(t0, t1) ⊆ (0, T ). If η : (t0, t1) → M a time-preserving path, then the restriction of t, ∂t and g

to Mη is a complete and spatially-connected Ricci flow spacetime.

Proof. In order to show that (Mη, t, ∂t, g) is a Ricci flow spacetime, it suffices to prove thatMη is

an open subset of M. Fix s ∈ (t0, t1) and x ∈ Mη
s . Since g(s) is complete, B := B(x, 1) ⋐ Mη

s .

Since Mη
s is path-connected, there exists a continuous path ρ : [0, 1] → Mη

s from x = ρ(0) to

η(s) = ρ(1). Using the continuity of η, there exists δ > 0 such that (s− δ, s+ δ) ⊆ (t0, t1), with

t0 ∈ Iη(t) for any t ∈ (s− δ, s+ δ). As such, let

K := [η((s− δ, s+ δ))](s) ∪B ∪ ρ([0, 1]) ⋐ Mη
s .

By compactness, after possibly shrinking δ, we can assume that the parabolic cylinder K((s−
δ, s + δ)) is unscathed. In particular, the unscathed parabolic cylinder B((s − δ, s + δ)) lies

within Mη. This shows that Mη is open in M. Finally, we note that Mη
t is a closed subset of

the complete space (Mt, g(t)) for each t ∈ (t0, t1), so the Ricci flow spacetime (Mη, t, ∂t, g) is

also complete.

The following lemma shows that, if we have two time-preserving paths starting from the same

point, then the corresponding spacetimes we construct from them agree.

Lemma 5.1.13. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Let

η′i : [t0, t1) → M, i = 1, 2, be two time-preserving paths such that η′1(t0) = η′2(t0). Consider the

restrictions on the interior ηi := η′i|(t0,t1). Then Mη1 = Mη2.

Proof. Let x0 := η′1(t0) = η′2(t0), and denote the domain of the worldline of x0 within the

spacetime Mηi by I{i} ⊆ (t0, t1), for i = 1, 2.

Choose r > 0 sufficiently small such that the parabolic cylinder C(x0, r) is unscathed. From

this, we can conclude that η1(s) is path-connected to x0(s) in Ms, for any s ∈ (t0, t0 + r2). In

particular, x0(s) ∈ Mη1
s for any s ∈ (t0, t0 + r2). As Mη1 is complete and spatially-connected,

by Theorem 5.1.10, it is expanding. Thus, I{1} = (t0, t1).

Repeating the same argument with i = 2, we have I{2} = (t0, t1) also. So, for any t ∈ (t0, t1),

Mη1
t and Mη2

t are connected components of Mt, both containing x0(t). Hence they agree.

Although our spacetime M is path-connected, it is not necessarily path-connected with time-

preserving paths. The following argument shows that any two points in M can be connected

by a finite number of concatenated time-preserving paths with alternating orientations.
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5.1.5 Topology of spacetimes

Let (M, t, ∂t, g) be a Ricci flow spacetime. Given any point x ∈ M, we define the set U−
x to be

the collection of all points at earlier times which can be connected to x by a time-preserving

path:

U−
x := {y ∈ M : t(y) < t(x), ∃η : [t(y), t(x)] → M, η ◦ t(y) = y, η ◦ t(x) = x, time-preserving}.

Similarily, we define U+
x to be the points at later times connected to x by time preserving paths:

U+
x := {y ∈ M : t(x) < t(y),∃η : [t(x), t(y)] → M, η ◦ t(x) = x, η ◦ t(y) = y, time-preserving}.

Since every point in our spacetime admits a small unscathed parabolic cylinder around it, we

deduce that the sets U±
x are both non-empty and open in M.

Fixing x ∈ M, we can now union open sets of the form defined above in an iterative way to see

which points in M can be joined to x by a string of time-preserving paths. Define U+
1 := U+

x

and U−
1 :=

⋃
y∈U+

1
U−
y . For each m ∈ N, we recursively set

U+
m :=

⋃
y∈U−

m−1

U+
y , U−

m :=
⋃

y∈U+
m

U−
y .

Finally, let U− := ∪m∈NU
−
m ⊆ M. The following lemma shows that spacetimes are path-

connected by strings of time-preserving paths.

Lemma 5.1.14. Let (M, t, ∂t, g) be a Ricci flow spacetime. Fix x ∈ M and let U− be the open

subset of M defined above. Then M = U−.

Proof. Since U− is open and non-empty, it suffices to show that U− is closed in M. As such,

consider a sequence xn ∈ U− such that xn → x∞ ∈ M. For r > 0 sufficiently small, the

parabolic cylinder C(x∞, r) is unscathed in M. For n sufficiently large, xn lies inside this

parabolic ball. Then, for this large value of n we have that either

t(xn) > t(x∞) =⇒ x∞ ∈ U−
xn
,

t(xn) ≤ t(x∞) =⇒ ∃ y ∈ U+
xn

with x∞ ∈ U−
y .

So, as xn ∈ U−, there is some m ∈ N such that xn ∈ U−
m, and hence by the above, x∞ ∈ U−

m+1 ⊆
U− as required.

Corollary 5.1.15. Let (Mn+1, t, ∂t, g) be a Ricci flow spacetime. Suppose x, x′ ∈ M. Then

there exists m ∈ N, a collection of points x0, . . . , xm, y1, . . . , ym ∈ M, and a collection of time-

dependent paths ηi : [t(xi−1), t(yi)] → M, γi : [t(xi), t(yi)] → M for i = 1, . . . ,m, such that

• x0 = x, and xm = x′.
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• ηi ◦ t(xi−1) = xi−1 and ηi ◦ t(yi) = yi, for each i ∈ {1, . . . ,m}.

• γi ◦ t(xi) = xi and γi ◦ t(yi) = yi, for each i ∈ {1, . . . ,m}.

In light of Lemma 5.1.13 and Theorem 5.1.10, we can immediately improve this corollary for

complete spacetimes.

Lemma 5.1.16. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Suppose

x, x′ ∈ M. Then there exists y ∈ M and time-dependent paths η : [t(x), t(y)] → M, γ :

[t(x′), t(y)] → M such that η(t(x)) = x, γ(t(x′)) = x′, and η(t(y)) = γ(t(y)) = y. That is, in

the language of Corollary 5.1.15, we can always choose m = 1.

Proof. Suppose m ∈ N is chosen to be the smallest possible value so that the paths from

Corollary 5.1.15 exist, and assume m > 1. Without loss of generality, we can assume t(y1) ≤
t(y2). Choose r > 0 sufficiently small so that the parabolic cylinders C(y1, r) and C(η2 ◦
t(y1), r) are unscathed. Since γ1 : [t(x1), t(y1)] → M and η2 : [t(x1), t(y2)] → M are such that

γ1 ◦ t(x1) = η2 ◦ t(x1) = x1, by Lemma 5.1.13, after restricting these paths to (t(x1), t(y1)), we

have Mγ1 = Mη2 . In particular, we can find a time-preserving path from a point in C(y1, r) to

a point in C(η2 ◦ t(y1), r). We then modify the end of the path η1 : [t(x0), t(y1)] → M and the

start of the path η2 : [t(y1), t(y2)] → M to connect up with our time-preserving path between

the parabolic cylinders, to give a new time-preserving path η : [t(x0), t(y2)] → M such that

η(t(x0)) = x0 and η(t(y2) = y2. This shows that we can reduce the value of m by at least one,

which is a contradiction. Therefore m = 1.

Equipped with the above lemma, we can complete the proof that connected spacetimes are

expanding.

Theorem 1.3.1. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Then

M is expanding. That is, the vanishing times

Tx := sup Ix = T, ∀x ∈ M.

Proof of Theorem 1.3.1. Suppose there exists x ∈ M such that its extinction time Tx < T .

Choose any x′ ∈ M such that t(x′) > Tx. Applying Lemma 5.1.16 to the pair of points

x, x′ ∈ M, there exists T ′ ∈ [t(x′), T ) and a time-preserving path η : [t(x), T ′] → M such that

η(t(x)) = x. Restricting η to the interior (t(x), T ′) and applying Lemma 5.1.12, we have that

Mη is a complete and spatially-connected Ricci flow spacetime. Note that for small r > 0, the

parabolic cylinder C(x, r) is unscathed, and hence x(s) ∈ Mη for s ∈ (t(x), t(x)+r2). Applying

Theorem 5.1.10, Mη is expanding. Therefore, inside of Mη, the extinction time of the point

x is T ′, from which we can deduce that inside of the spacetime M, the point x has extinction

time Tx ≥ T ′ > Tx. This is a contradiction.
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5.2 Embedding spacetimes within an ambient space

As we shall see later, an ambient space for a Ricci flow spacetime can be a useful tool. In the

case that our Ricci flow spacetime is expanding, we can define a map which looks like a global

cylindrical coordinate chart. This will give an embedding (up to some non-final time) of our

spacetime into an ambient space.

Lemma 5.2.1. Let (Mn+1, t, ∂t, g) be an expanding Ricci flow spacetime with I = (0, T ). For

each τ ∈ (0, T ), there exists a smooth map

Φ : M(0,τ) → Mτ × (0, τ),

such that

(i) Φ is a diffeomorphism onto its image.

(ii) For each t ∈ (0, τ), restricting to the spatial slice Φ : Mt → Mτ ×{t} is a diffeomorphism

onto its image.

(iii) If t :M × (0, τ) → (0, τ) denotes the standard projection, then t = t ◦ Φ and Φ∗(∂t) =
∂
∂t .

(iv) Φ∗(g) is a solution to the usual Ricci flow equation (1.0.3) on Φ(M(0,τ)).

Proof. Since M is expanding, for any s ∈ (0, τ), we have the smooth embedding

Ms ↪→ Mτ , x 7→ x(τ).

Define the map Φ : M(0,τ) ↪→ Mτ × (0, τ) by

Φ(x) := (x(τ), t(x)).

Φ is smooth, with smooth inverse (p, t) 7→ p(t). In particular, conditions (i) and (ii) are satisfied.

Directly from the definition of Φ, we see that t ◦ Φ = t. Moreover, since worldlines are integral

curves of ∂t, the identity ∂t · t ≡ 1 implies Φ∗∂t =
∂
∂t . Finally we have the equality

∂

∂t
Φ∗(g) = LΦ∗(∂t)Φ∗(g) = Φ∗(L∂tg) = Φ∗(−2Ric(g)) = −2Ric(Φ∗(g)).

5.2.1 Existence of an ambient space for expanding spacetimes

The previous lemma shows that for an expanding Ricci flow spacetime, we have an embedding

locally in time. The following theorem extends this to all times.

Theorem 5.2.2. Let (Mn+1, t, ∂t, g) be an expanding Ricci flow spacetime with I = (0, T ).

Then there exists a smooth connected manifold Mn and a smooth map

Φ : M ↪→M × (0, T ),
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such that

(i) Φ is a diffeomorphism onto its image;

(ii) For each t ∈ (0, T ), restricting to the spatial slice Φ : Mt ↪→M ×{t} is a diffeomorphism

onto its image;

(iii) If t :M × (0, T ) → (0, T ) denotes the standard projection, then t = t ◦Φ and Φ∗(∂t) =
∂
∂t ;

(iv) Φ∗(g) is a solution to the usual Ricci flow equation (1.0.3) on Φ(M).

That is, (Mn+1, t, ∂t, g) is isomorphic to a spacetime inside the ambient space M × (0, T ).

Proof. We first construct M . Choose any increasing sequence ti ↗ T in (0, T ), and for i ≤ j,

consider the embeddings Mti ↪→ Mtj , x 7→ x(tj). Choose M to be the direct limit

M = lim
→

Mti :=

⊔
i∈N

Mti⧸∼ , (5.2.1)

where x ∼ y iff x(t) = y for some t ∈ I, and with canonical maps fi : Mti → M , x 7→ [x]. It

is straight forward to show that M is connected, and can be equipped with a smooth atlas so

that the canonical maps fi : Mti ↪→M are smooth embeddings (see Lemma C.0.4 for details).

For each i ∈ N, we combine the map we get by choosing ti ∈ (0, T ) in Lemma 5.2.1 and the

canonical map fi to get the well-defined map Φi : M(0,ti) →M × (0, ti)

Φi(x) := (fi ◦ x(ti), t(x)).

Suppose i ≤ j and x ∈ M(0,ti). Since x(tj) = (x(ti))(tj), we have that

fj ◦ x(tj) = fi ◦ x(ti),

and Φj is an extension of the function Φi. Therefore, we can piece the functions {Φi : i ∈ N}
together, giving the well-defined function Φ : M →M × (0, T ). The properties of Φ follow from

the properties of the embeddings in Lemma 5.2.1.

Due to Theorem 1.3.1, we can apply Theorem 5.2.2 to any complete (2 + 1)-dimensional Ricci

flow spacetime. The following corollary shall be used implicitly from now on.

Corollary 5.2.3. Let (M2+1, t, ∂t, g) be a complete Ricci flow spacetime with I = (0, T ). Then

there exists a connected smooth ambient surface M2 such that our spacetime is isomorphic to

a complete Ricci flow spacetime (M2+1, g) in M2 × (0, T ). Moreover, M is chosen as small as

possible. That is, up to isomorphism, we can assume that

(i) M is an open subset of M × (0, T ) equipped with the product topology;

(ii) t is the restriction of the standard projection map t :M × (0, T ) → (0, T ) to M;
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(iii) ∂t is the restriction of the vector field ∂
∂t to M;

(iv) g solves the Ricci flow equation (1.0.3) on M;

(v) M =
⋃

t∈(0,T )Mt and M is expanding: Mt1 ⊆ Mt2 for every 0 < t1 ≤ t2 < T .

5.2.2 Continuity within an ambient space

Now that we have an ambient space, we have the following simplification for the definition of a

spacetime being continuous.

Lemma 5.2.4. Let (M2+1, g) be a complete Ricci flow spacetime in M × (0, T ). Then the

spacetime is continuous (see Definition 1.3.2) iff

Ms =

(⋂
t>s

Mt

)◦

⊆M, ∀s ∈ (0, T ). (5.2.2)

Proof. Since M is expanding, for t ≤ s, we have the continuity criteria for free:

Ms(t) = Mt =
(
Ms(t)

)◦
,

and so we only need to consider the case s < t. Using again that M is expanding, as subsets of

M , we see that Ms(t) = Ms, and

Ms(t) = {x ∈M : (s, t] ⊆ Ix} =
⋂
t>s

Mt.

Since each spatial slice is open in M , our original definition of continuity reduces to (5.2.2).

The following lemma shows that for complete and continuous spacetimes, isolated punctures

cannot be added to the spatial slices (see Example 1.1.8).

Lemma 5.2.5. Suppose (M2+1, g) is a complete and continuous Ricci flow spacetime in M ×
(0, T ). Consider a point x ∈ M \ Ms laying outside of the spatial slice of M at some time

s ∈ (0, T ). Suppose x is an isolated point of M \ Ms. Then x is never in M. That is,

(x, t) /∈ M, for all t ∈ (0, T ).

Proof. Since x is an isolated point of the complement, there exists an open neighbourhood

x ∈ U ⊆ M such that the punctured neighbourhood U \ {x} is contained in Ms. As M is

expanding, U \ {x} ⊆ Mt, for all t ∈ [s, T ). If the lemma is false, we have a well defined first

time t0 that x enters our spacetime

t0 := inf{t ∈ (s, T ) : x ∈ Mt} ≥ s.
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Note that U ⊆ Mt for every t ∈ (t0, T ), which by continuity implies

U ⊆

(⋂
t>t0

Mt

)◦

= Mt0 .

In particular, p ∈ Mt0 . This contradicts the definition of t0 as M is open in M × (0, T ).

Corollary 5.2.6. Suppose (M2+1, g) is a complete and continuous spacetime in M × (0, T ).

Then for any times 0 < t1 < t2 < T , Mt2 \Mt1 contains no isolated points.

5.2.3 Lifting a spacetime

Let (M2+1, g) be a complete Ricci flow spacetime inside the ambient spaceM×(0, T ). Suppose

p : X → M is a covering map from a connected surface X. We define the lifted spacetime

(M′, g′) inside of X × (0, T ) via:

M′
t := p−1(Mt), g′(t) := p∗(g(t)), ∀t ∈ (0, T ). (5.2.3)

In the following lemma, we first show that what we constructed above is in fact a well-defined

Ricci flow spacetime. Moreover, we show that the lifted spacetime inherits continuity and being

initially determined from the original spacetime.

Lemma 5.2.7. If (M2+1, g) is a complete Ricci flow spacetime inside the ambient space M ×
(0, T ), and p : X →M is a covering map, with X a connected surface, then (M′, g′) as defined

in equation (5.2.3) is a complete Ricci flow spacetime in X × (0, T ). Furthermore, if (M, g) is

continuous (initially determined), then (M′, g′) is continuous (initially determined).

Proof. We must first show that (M′, g′) is a spacetime in X × (0, T ). For any (x, t) ∈ M′,

since M is open inside M × (0, T ), there exists U ⊆ M open and δ > 0 such that (p(x), t) ∈
U × (t− δ, t+ δ) ⊆ M, and hence (x, t) ∈ p−1(U)× (t− δ, t+ δ) ⊆ M′. Since p is continuous,

this neighbourhood is open in X × (0, T ), and so M′ ⊆ X × (0, T ) is open. It is also clear that

X = p−1(M) = p−1(
⋃

t∈(0,T )

Mt) =
⋃

t∈(0,T )

p−1(Mt) =
⋃

t∈(0,T )

M′
t,

and M′ is expanding: M′
t1 = p−1(Mt1) ⊆ p−1(Mt2) = M′

t2 for every 0 < t1 ≤ t2 < T .

For any (x0, t0), (x1, t1) ∈ M′, there exists a continuous path γ : [0, 1] → X such that γ(0) = x0

and γ(1) = x1. Since γ([0, 1]) ⊆ X is compact and the set {M′
t : t ∈ (0, T )} form a nested

open cover of X, there exists some τ ∈ (0, T ) such that t0, t1 ≤ τ , and γ : [0, 1] → Mτ . By

concatenating γ with the worldlines of x0 and x1, we see that M′ is also connected. Directly

from the definition of g′, we also see that (M′, g′) is complete. This finishes the first part of the

statement.
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If M is continuous, since p is a local homeomorphism, for any s ∈ (0, T ) we have(⋂
t>s

M′
t

)◦

=

(
p−1

(⋂
t>s

Mt

))◦

= p−1

((⋂
t>s

Mt

)◦)
= p−1(Ms) = M′

s,

and M′ is also continuous. Similarly, suppose M is initially determined. For any x ∈ M′ and

ϵ > 0, there exists a smooth time-preserving path η : [ϵ, t(x)] → M, such that η ◦ t(x) = p(x).

As the restriction p : M′ → M is a covering map, there exists a unique lift of η to a smooth

time-preserving path η′ : [ϵ, t(x)] → M′, such that η ◦ t(x) = x. Taking ϵ↘ 0, we conclude that

h(x) = 0 for any x ∈ M′, and M′ is also initially determined.

Recall that we are aiming to show Theorem 1.3.6. Suppose (M2+1, g) is a complete, continuous

and initially determined spacetime inside M × (0, T ). Since M is connected, it has connected

universal cover X → M . Lemma 5.2.7 then tells us that the lifted spacetime is also complete,

continuous and initially determined. Moreover, if the lifted spacetime is cylindrical, M′ =

X × (0, T ), then the original spacetime would also be cylindrical, M = M × (0, T ), since the

covering map is surjective onto M . Therefore, to prove Theorem 1.3.6, it suffices to consider

the case when M is simply connected.

5.2.4 Conformal structures

Let (M2+1, g) be a complete Ricci flow spacetime inside the ambient space M × (0, T ). From

the previous subsection, we may assume that M is simply connected.

Given a conformal structure on M , each spatial slice Mt for t ∈ (0, T ) inherits a conformal

structure as a subset of M . Our Ricci flow g(t) on M is then said to be conformal if this

inherited conformal structure on Mt agrees with g(t) for all t ∈ (0, T ). Fix 0 < t1 < t2 < T and

consider the conformal structures on Mti determined by the metrics g(ti), for i = 1, 2. Recall

that on an orientable surface, a choice of metric and hence its corresponding conformal class

is equivalent to a choice of complex structure on the surface. Since our ambient surface M is

simply connected, it is orientable, and hence each spatial slice Mt is orientable too. As such, the

conformal structure on Mt1 defines a complex structure. Let U be a complex coordinate chart

on Mt1 . Writing our Ricci flow locally as in (5.1.7), we see that U is also a complex chart on

Mt2 , and therefore the complex structure on Mt1 agrees with the complex structure it inherits

when viewed as a subspace of Mt2 . For each t ∈ (0, T ), consider the complex coordinate charts

defined on Mt by the metric g(t). We have shown that taking the union of all such charts

gives a well-defined complex atlas on M , and with respect to this conformal structure, g(t) is a

conformal Ricci flow.

Lemma 5.2.8. Let (M2+1, g) be a complete Ricci flow spacetime in M2 × (0, T ), with M =

∪t∈(0,T )Mt. If M is orientable, then there exists a conformal structure on M such that g(t) is

a conformal Ricci flow.

89



In light of this, we can assume that our ambient space is a Riemann surface whose conformal

structure is compatible with the Ricci flow g(t). Combined with the assumption that M is

simply connected and the uniformisation theorem, we have reduced Theorem 1.3.6 to proving

the following.

Theorem 5.2.9. Suppose (M2+1, g) is a complete, continuous and initially determined space-

time in M2 × (0, T ) with M = ∪t∈(0,T )Mt, and where M2 is either the disk, plane or sphere

equipped with their standard conformal structures. Suppose further that g(t) is a conformal Ricci

flow on M. Then M =M × (0, T ).

5.3 Spacetimes in the disk

In the previous section, we reduced our theorem to the special case that our Ricci flow is

conformal on a spacetime lying in either the disk, plane or sphere. We can simply this further

to the case that the spacetime lies in the disk.

5.3.1 Reduction to spacetimes in the disk

Definition 5.3.1 (Hyperbolic surface). Given any (possibly disconnected) Riemann surface N ,

we say that N is hyperbolic if each of its connected components has universal cover the disk D,

or equivalently, if N admits a smooth conformal complete metric of constant curvature −1.

The following is a simple application of the uniformisation theorem.

Lemma 5.3.2. Let M be the sphere S2 or the complex plane C equipped with its standard

conformal structure. Consider a Riemann surface A ⊊ M given by some open subset. If the

(non-empty) complement of A in M contains no isolated points, then A is hyperbolic.

Proof. Since we can identify the once punctured sphere with the plane, it suffices to consider

the case M = C. Consider a connected component Ã of A. If the complement of A (and hence

Ã) in C has no isolated points, then C \ Ã contains at least 2 points. As a consequence of

the Uniformisation Theorem C.0.2, Ã is covered by either the sphere, plane or disk. Since Ã

is not compact, it cannot be covered by the sphere. Lets suppose it was covered by the plane

for a contradiction. Note that the Deck group of this covering is discrete as a subspace of the

homeomorphism group of C, and acts properly discontinuously. By the Galois correspondence,

Ã is isomorphic to the plane quotiented by these deck transformations. However, the only said

quotients are the plane itself, the punctured plane, or a torus. This is a contradiction.

Theorem 5.3.3. Suppose (M2+1, g) is a complete, continuous and initially determined space-

time in D×(0, T ) with D = ∪t∈(0,T )Mt, and where D is the disk equipped with its hyperbolic con-

formal structure. Suppose further that g is a conformal Ricci flow on M. Then M = D×(0, T ).
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Proof (Theorem 5.3.3 =⇒ Theorem 5.2.9).

Suppose that the theorem fails and there exists 0 < t1 < t2 < T such that Mt1 ⊊ Mt2 . By our

assumption, M is either the plane or the sphere. By Corollary 5.2.6, Mt2 \ Mt1 ⊆ M \ Mt1

contains no isolated points, and so Mt1 must be hyperbolic by Lemma 5.3.2. Mt2 cannot be

hyperbolic, as otherwise we could lift each connected component of the spacetime M(0,t2) into

D × (0, t2) and apply Theorem 5.3.3 to conclude its lift is cylindrical, which would then imply

that M(0,t2) is cylindrical, contradicting our assumption that Mt1 ⊊ Mt2 . Since Mt2 is a

non-hyperbolic subset of M , we can again apply Lemma 5.3.2 and Corollary 5.2.6 to deduce

that Mt2 =M . Consider the first time at which the spatial slices are not hyperbolic:

t0 := inf{t ∈ [t1, t2] : Mt is not hyperbolic}.

Using Corollary 5.2.6 yet again, we have that Mt = M for all t > t0, and hence by continuity,

Mt0 = M . Finally, we note that each connected component of M(0,t0) can be lifted into

D× (0, t0). Applying the same reasoning as before, M(0,t0) must be cylindrical, and Mt = Mt1

for all t ∈ (t1, t0). From this we deduce the contradiction

Mt2 =M = Mt0 =
⋃
t<t0

Mt = Mt1 .

5.3.2 Comparison principle for spacetimes

From now on, we may assume that (M2+1, g) is a complete, connected, continuous and initially

determined spacetime in D × (0, T ) with D = ∪t∈(0,T )Mt, and that the Ricci flow is conformal

with respect to the standard conformal structure on D. In particular, we can write our metrics

g(t) in the form

g(t) = v(z, t)|dz|2,

where |dz|2 denotes the standard flat metric on the disk, and v : M → (0,∞) is some smooth

solution to the LFDE (5.1.8).

Using the conformal structure on each spatial slice, we see that each slice admits a unique

complete hyperbolic metric h(t) (by Lemma 5.3.2). Writing h(t) = H(z, t)|dz|2, since M is

expanding, the Schwarz lemma C.0.3 gives the inequality h(t) ≤ h(s) for any 0 < s < t < T . In

particular, the conformal factors H(·, t) are decreasing in t.

Since the metrics g(t) are complete on Mt and have the lower scalar curvature bound from

Corollary 5.1.2, we can use the Schwarz lemma C.0.3 again to get

v(z, t) ≥ 2t ·H(z, t), ∀(z, t) ∈ M, (5.3.1)

where H : M → (0,∞) is the conformal factor of the complete hyperbolic metrics h(t) on M
defined above.
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We want a comparison principle between our solution v to the LFDE, and any other solution u

to the LFDE on M. In order to do so, we want a lower bound on v that behaves like a proper

function. We define the correct notion of proper in the parabolic setting below.

Definition 5.3.4. Let (M, t, ∂t, g) be a Ricci flow spacetime with I = (0, T ). A function

f : M → R is parabolically proper if

M(ϵ,T−ϵ) ∩ f−1(I) ⋐ M, ∀I ⋐ R, ∀ϵ > 0.

The following lemma shows that, for a complete spacetime in the disk, the conformal factors

H being a parabolically proper map is an equivalent way to characterise our spacetime being

continuous. In particular, due to equation (5.3.1), H is an appropriate lower bound to take.

Lemma 5.3.5. Let (M2+1, g) be a complete Ricci flow spacetime in D × (0, T ), and let H :

M → (0,∞) be the conformal factors of the complete hyperbolic metrics h(t) on M. Then M
is continuous iff H : M → (0,∞) is parabolically proper (see Definition 5.3.4).

Proof. If M is not continuous, there exists s ∈ (0, T ) and a point p ∈
(⋂

t>sMs

)◦ \ Ms. In

particular, with respect to the background metric |dz|2, there exists r > 0 such that the ball

B(p, r) ⊆ Mt, for every t > s. By the Schwarz lemma C.0.3, H(p, t) ≤ 4
r2
, for every t > s. That

is, for any sequence of times tn ↘ s, and for any ϵ > 0 sufficiently small, we have the sequence

of points (p, tn) ∈ M(ϵ,T−ϵ) such that (p, tn) → (p, s) ∈ ∂M, but H(p, tn) is uniformly bounded

for all n. That is, H isn’t parabolically proper.

Conversely, suppose M is continuous and fix ϵ > 0. Let (zn, tn) ∈ M(ϵ,T−ϵ) be any sequence

such that (zn, tn) → (z, s) ∈ ∂M. If we can show that the sequence H(zn, tn) diverges then we

are done. Passing to a subsequence, we may assume that the sequence of times tn is monotone.

Suppose tn ↗ s. As M is expanding, zn ∈ Ms with H(zn, s) ≤ H(zn, tn) for every n. In

particular, zn ∈ Ms with zn → z ∈ ∂Ms. As H(·, s) : Ms → (0,∞) is a proper map, H(zn, s)

is unbounded, and hence so is H(zn, tn). Instead we assume that tn ↘ s. For any fixed m ∈ N,
using that M is expanding, we have that zn ∈ Mtm with H(zn, tm) ≤ H(zn, tn) for any n ≥ m.

So, for each m ∈ N, we have a sequence zn ∈ Mtm with zn → z. If z ∈ ∂Mtm , then using again

that H(·, tm) : Mtm → (0,∞) is a proper map, we would deduce that H(zn, tm) diverges, so

H(zn, tn) diverges. This leads us to assume that z ∈ Mtm for every m ∈ N. By the continuity

of each H(·, tm) : Mtm → (0,∞), we have

H(z, tm) = lim
n→∞

H(zn, tm) ≤ lim sup
n→∞

H(zn, tn),

and hence

lim sup
n→∞

H(z, tn) ≤ lim sup
n→∞

H(zn, tn).

From the above equation, it suffices to show that H(z, tn) ↗ ∞ as n → ∞. Since M is

continuous, z ∈
(⋂

t>sMt

)
\Ms =

(⋂
t>sMt

)
\
(⋂

t>sMt

)◦
. So there exists ϵn ↘ 0 such that
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the ball of radius ϵn centred at z is contained in our spatial slice, B(z, ϵn) ⊆ Mtn , but some

point in the boundary of the ball bn ∈ ∂B(z, ϵn) isn’t in our spatial slice bn /∈ Mtn . Note that

all of the spatial slices are contained within the disk and hence at each time tn, each spatial

slice is contained within the punctured ball of radius 2 centred at bn

Mtn ⊆ B×(bn, 2), ∀n ∈ N.

Consider the complete hyperbolic metric on this punctured ball B×(bn, 2)

h×n (z) :=
1

|z − bn|2(− log(2|z − bn|))2
|dz|2.

By the Schwarz lemma C.0.3, h(tn) ≥ h×n on Mtn . In particular, we have that

H(z, tn) ≥
1

ϵ2n(− log(2ϵn))2
, ∀n ∈ N,

and thus H(z, tn) ↗ ∞ as n→ ∞, concluding the proof.

The follow is a standard comparison principle for solutions to LFDE with regularity up to the

boundary. Note that we must account for the fact our spacetime is not necessarily cylindrical.

Lemma 5.3.6 (Direct comparison principle). Let M be a compactly contained, open subset of

D × (0, T ), and let u, v ∈ C2,1(M) be solutions to the LFDE (5.1.8) with u, v > 0. If v > u on

the parabolic boundary ∂PM, then v ≥ u on M.

Proof. We modify the argument used by Giesen in [Gie12, Theorem 2.3.1].

By compactness, we can choose δ > 0 such that v ≥ u+ δ on ∂PM. For any ϵ > 0, consider

M(ϵ) := {(z, t) ∈ D × (0, T ) : (z, ϵ−1 log(1 + ϵt)) ∈ M},

and the modified function

vϵ(z, t) := (1 + ϵt) · v(z, ϵ−1 log(1 + ϵt)), ∀(z, t) ∈ M(ϵ).

This modification makes vϵ a strict supersolution to the LFDE on M(ϵ):

(∂tvϵ −∆ log(vϵ))(z, t) = ϵ · v(z, ϵ−1 log(1 + ϵt)) > 0, ∀(z, t) ∈ M(ϵ).

Since u and v are continuous on M compact, they are uniformly continuous. In particular,

from the inequality

0 < t− ϵ−1 log(1 + ϵt) ≤ T − ϵ−1 log(1 + ϵT ), ∀t ∈ (0, T ),

we see that |t− ϵ−1 log(1 + ϵt)| converges to zero uniformly in t ∈ (0, T ) as ϵ ↘ 0. Thus, for ϵ
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sufficiently small, |v(z, t)− v(z, ϵ−1 log(1+ ϵt))| < δ/2, and |u(z, t)−u(z, ϵ−1 log(1+ ϵt))| < δ/2,

whenever (z, t), (z, ϵ−1 log(1 + ϵt)) ∈ M.

We now consider those points lying in both M and the shifted spacetime M(ϵ).

Claim. Define M(ϵ) = M∩M(ϵ). For ϵ > 0 sufficiently small, vϵ ≥ u on ∂P (M(ϵ)).

Proof of Claim. Fix (z, t) ∈ ∂P (M(ϵ)). Note that ∂P (M(ϵ)) ⊆ (∂PM) ∪ (∂P (M(ϵ))). This

splits our analysis into two cases:

(I) (z, t) ∈ ∂PM. In this case we have the inequality

vϵ(z, t) ≥ v(z, t)− |vϵ(z, t)− v(z, t)|

≥ u(z, t) + δ − |ϵt| · |v(z, ϵ−1 log(1 + ϵt))| − |v(z, ϵ−1 log(1 + ϵt))− v(z, t)|

≥ u(z, t) + δ − ϵ · T · ∥v∥∞ − δ

2
≥ u(z, t),

for any ϵ sufficiently small.

(II) (z, t) ∈ ∂P (M(ϵ)). Note that, this implies (z, ϵ−1 log(1 + ϵt)) ∈ ∂PM, and therefore we

have the inequality

vϵ(z, t) ≥ v(z, ϵ−1 log(1 + ϵt))

≥ u(z, ϵ−1 log(1 + ϵt)) + δ

≥ u(z, t) + δ − |u(z, ϵ−1 log(1 + ϵt))− u(z, t)|

≥ u(z, t) + δ − δ

2
≥ u(z, t),

for any ϵ sufficiently small.

Claim. vϵ ≥ u on M(ϵ).

Proof of claim. Let Mt denote M(ϵ) ∩ (D × {t}) for each t ∈ (0, T ). If the claim doesn’t hold,

then for n ∈ N sufficiently large, the times

tn := inf{t ∈ (0, T ) : min
Mt

(vϵ − u)(z, t) ≤ −1/n} ∈ (0, T ),

are well-defined. As Mtn is compact, there exists zn ∈ Mtn such that (vϵ − u)(zn, tn) = −1/n.

By the previous claim, (vϵ − u) ≥ 0 on the parabolic boundary ∂P (M(ϵ)), and hence zn ∈Mtn .

Since the point (zn, tn) is in the interior, we have the inequalities

(vϵ − u) = −1/n, ∆(vϵ − u) ≥ 0, ∂t(vϵ − u) ≤ 0,
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and therefore

0 < ϵv(zn, ϵ
−1 log(1 + tnϵ))

≤ (∂tvϵ −∆ log(vϵ))(zn, tn)− (∂tu−∆ log(u))(zn, tn)

≤ ∆ log(u)−∆ log(vϵ)

=

(
∆u

u
− |∇u|2

u2

)
−
(
∆vϵ
vϵ

− |∇vϵ|2

v2ϵ

)
=

1

vϵ
∆(u− vϵ) + (

1

u
− 1

vϵ
)∆u+ |∇u|2

(
1

v2ϵ
− 1

u2

)
≤ 1

n

(
|∆u|
uvϵ

+ |∇u|2
(
(u+ vϵ)

u2v2ϵ

))
.

Since u and v are uniformly bounded away from zero, and u, v ∈ C2,1(M), there exists C <∞,

independent of n, such that

0 < ϵ ≤ 1

v(zn, ϵ−1 log(1 + tnϵ))
·
(
1

n

(
|∆u|
uvϵ

+ |∇u|2
(
(u+ vϵ)

u2v2ϵ

)))
≤ C

n
.

Taking n→ ∞, this is gives a contradiction.

Fix (z, t) ∈ M. Recall that |t−ϵ−1 log(1+ϵt)| converges to zero uniformly in t ∈ (0, T ) as ϵ↘ 0.

Therefore, as M is open, for any ϵ sufficiently small, (z, t) ∈ M(ϵ). Moreover, by continuity,

vϵ(z, t) converges to v(z, t) as ϵ↘ 0, and we can conclude that v ≥ u on all of M.

Using Lemma 5.3.5, we now have a comparison principle for solutions to the LFDE correspond-

ing to complete Ricci flows on spacetimes in the disk.

Lemma 5.3.7 (Comparison principle). Let (M2+1, g) be a complete, continuous and initially

determined spacetime in D × (0, T ). Let u ∈ C2,1(M) be a bounded solution to the LFDE with

u > 0, and v ∈ C2,1(M) be the solution to the LFDE such that g(t) = v(z, t) · |dz|2. If for some

s ∈ (0, T ) we have v > u on M(0,s), then v ≥ u on M.

Proof. Let C := supM u <∞ and ϵ ∈ (0, s). Consider the region

M′ := {(x, t) ∈ M : t ∈ (ϵ, T − ϵ), H(x, t) <
C + 1

2ϵ
}.

Since M is continuous, by Lemma 5.3.5, H is parabolically proper, and hence M′ ⋐ M. We

note that u, v ∈ C2,1(M′). On the region M(ϵ,T−ϵ) \M′, by the Schwarz lemma C.0.3, we have

v(z, t) ≥ 2t ·H(z, t) ≥ 2ϵ ·H(z, t) ≥ C + 1 > u(z, t).

Since ϵ ∈ (0, s), we conclude that v > u on the parabolic boundary ∂PM′. Applying the usual

comparison principle for the LFDE to u and v on the region M′ (Lemma 5.3.6), we deduce that

v ≥ u on M(0,T−ϵ). To finish the proof take ϵ↘ 0.

95



5.4 Complete conformal Ricci flows start weakly from a Radon

measure

We now aim to find suitable lower barriers for our Ricci flow. In order to do so, we must make

a small diversion into Ricci flows on Riemann surfaces starting from measures.

Given a connected Riemann surfaceM , denote the collection of all non-atomic, non-zero Radon

measures on M by R(M). Due to the work of Topping & Yin in [TY21], these are precisely

those measures which can be smoothed out using Ricci flow.

Theorem 5.4.1 (Topping-Yin, [TY21, Theorem 1.2]). Suppose M is a connected Riemann

surface and µ ∈ R(M) is any non-zero, non-atomic Radon measure on M . Define

T :=


µ(M)
4π : if M = C

µ(M)
8π : if M = S2

∞ : otherwise

(5.4.1)

Then there exists a smooth complete conformal Ricci flow g(t) on M × (0, T ) starting weakly

from µ. That is, the Riemannian volume measure µg(t) ⇀ µ as t↘ 0.

We now present a converse to this theorem, which states that complete conformal Ricci flows

always have some weak limit backwards in time.

Theorem 5.4.2. Let (M2, g(t)t∈(0,T )) be a connected Riemann surface admitting a smooth

complete conformal Ricci flow. Then there exists a radon measure µ on M such that g(t) starts

weakly from µ. That is

dµg(t) ⇀ µ, as t↘ 0.

Proof of Theorem 5.4.2

Given a Riemann surface M , we say that a compactly contained neighbourhood U ⋐ M is a

conformal ball in M if for some p ∈ M and r > 0, there exists a local complex coordinate z

about p such that U = B(p, r), the ball centred at p of radius r with respect to the locally

defined metric |dz|2.

The following is a result of Topping and Yin [TY21, Lemma 3.1] which stops complete Ricci

flows in the plane from losing volume too quickly within a conformal ball. We make minor

adjustments to this argument so that it works in the sphere, and for weak initial data.

Theorem 5.4.3 (Variation of Topping-Yin, [TY21, Lemma 3.1]). Let g(t) be a smooth in-

stantaneously complete conformal Ricci flow on S2 × (0, T ) starting weakly from µ ∈ R(S2).

Fix 0 < r < R <∞ and suppose Br ⊆ BR are concentric conformal balls in the sphere. Then

µ(Br) ≤ Volg(t)(BR) + Ct, ∀t ∈
[
0, T ∧ 1

8π
Volg(0)(Br)

)
,
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where C := 8π
1−( r

R
)2

is the explicit constant depending only on the ratio r/R.

Proof. We first deal with the case g(t) is smooth up to time zero. For each n ∈ N choose

rn ∈ (r,R) such that rn ↘ r and define a new smooth metric gn on S2 such that

• gn ≡ g(0) on Br.

• gn ≤ g(0) on S2.

• gn ≤ 1
nHrn on S2 \Brn .

where Hr denotes the complete hyperbolic metric on S2 \Br. Let gn(t) be the instantaneously

complete Ricci flow on S2 starting from gn. Since Volgn(S
2) ≥ Volg(0)(Br) =: v0, by Gauss-

Bonnet, we have that each of the gn(t) exist for t ∈ (0, v08π ). By the maximum principle, we have

that gn(t) ≤ g(t) on S2 × (0, T ∧ v0
8π ). In particular, we have that for each t ∈ (0, T ∧ v0

8π ),

Volg(t)(BR) ≥ Volgn(t)(BR) = Volgn(t)(S
2)−Volgn(t)(S

2 \BR)

≥ v0 − 8πt− (
1

n
+ 2t)VolHrn

(S2 \BR).

By a direct calculation we have that

VolHr(S
2 \BR) =

4πr2

R2 − r2
,

and so taking n→ ∞ we have that, for each t ∈ (0, v08π ∧ T − t0),

Volg(t)(BR) ≥ Volg(0)(Br)− t(8π + 2VolHr(C \BR) = Volg(0)(Br)−
8πt

1− ( r
R)

2
. (5.4.2)

This deals with the case g is initially smooth. For the general case of weak initial data, fix

ϵ > 0. Since µ is Radon, there exists K ⋐ Br such that µ(K) ≥ µ(Br) − ϵ. Choosing a test

function f with support in Br and equal to 1 on K, we have for δ sufficiently small

Volg(δ)(Br) ≥
∫
fdµg(δ) ≥

∫
fdµ− ϵ ≥ µ(K)− ϵ ≥ µ(Br)− 2ϵ. (5.4.3)

For any fixed t ∈ (0, T ∧ µ(Br)
8π ), we can choose δ ∈ (0, T ) sufficiently small such that equation

(5.4.3) holds as well as t ∈ (δ, T ∧ Volg(δ)(Br)

8π ). Applying (5.4.2) to g(t) on S2 × [δ, T ) gives

µ(Br) ≤ Volg(δ)(Br) + 2ϵ ≤ Volg(t)(BR) + Ct+ 2ϵ.

Taking ϵ↘ 0 finishes the proof.

Although this lemma only deals with Ricci flows on the sphere, it is actually strong enough to

show uniform volume bounds on conformal balls for any smooth complete conformal Ricci flow

on any Riemann surface.
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Lemma 5.4.4. Let (M2, g(t)t∈(0,T )) be a connected Riemann surface admitting a smooth com-

plete conformal Ricci flow with T <∞. Then for any conformal ball B ⋐M , we have that

sup
t∈(0,T )

Volg(t)(B) <∞.

Proof. If the lemma is false then there exists a conformal ball B and a sequence tn ∈ (0, T ) such

that Volg(tn)(B) → ∞ as n→ ∞. Note that by the monotonicity of t 7→ u(·, t)/t we have that

Volg(t)(B) ≤
(
t

s

)
Volg(s)(B),

for any 0 < s < t < T . So without loss of generality, after passing to a subsequence, we

may assume that tn is decreasing and null. Choose a slightly larger concentric conformal

ball B ⊂ B′ ⋐ M . We first show the theorem in the case M is simply connected. By the

uniformisation theorem, M is either the disk, the plane or the sphere. In all of these cases,

we can find a biholomorphic embedding of M into the sphere S2. In particular, we can view

M ⊆ S2, and the conformal balls B and B′ in M remain conformal balls in S2. For each n ∈ N
let Gn be a smooth metric on S2 such that Gn agrees with g(tn) on B and Gn ≤ g(tn) on M .

Fix t0 ∈ (0, T ) such that VolGn(S
2) > 8πt0. Let Gn(t) be the complete conformal Ricci flow

on S2 × [tn, tn + t0] starting from Gn at time tn. By the maximum principle, we have that

Gn(t) ≤ gn(t) onM × [tn, tn+ t0]. Since for sufficiently large n we have that 8πt0 < Volg(tn)(B),

we can apply Lemma 5.4.3 to give

VolGn(B) ≤ VolGn(t0)(B
′) + C(t0 − tn),

for some fixed constant C independent of n. In particular we have that

Volg(tn)(B) = VolGn(B) ≤ VolGn(t0)(B
′) + C(t0 − tn) ≤ Volg(t0)(B

′) + Ct0.

However this yields a contradiction, as taking n→ ∞makes the left hand side diverge to infinity,

whereas the right hand side is a finite constant. This covers the caseM is simply connected. For

the general case, pullback the Ricci flow to the universal cover. Since the covering map is a local

biholomorpism, the pullbacked Ricci flow is smooth, complete and conformal on the universal

cover, and sufficiently small conformal balls in M lift to conformal balls in the universal cover.

Therefore, using the simply connected case, we have the result for sufficiently small conformal

balls in a general surface. The full result follows by covering any conformal ball with sufficiently

small conformal balls and from the fact that conformal balls are compactly contained in the

original surface M .

The local uniform bounds on volume in Lemma 5.4.4 allow the extraction of a convergent

subsequence of the volume forms as time goes to zero.

Lemma 5.4.5. Let (M2, g(t)t∈(0,T )) be a connected Riemann surface admitting a smooth com-
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plete conformal Ricci flow. Then there exists a positive radon measure µ on M and a null

sequence tn ↘ 0 such that

dµg(tn) ⇀ µ, as n→ ∞.

Proof. Let B be a conformal ball in M . Consider the family of radon measures µt := dµg(t)|B
on B. By Riesz-Markov-Kakutani (Theorem B.0.2), the measures µt can be viewed as elements

of C0
c (B)∗, the dual space of the compactly contained continuous functions on B. Choosing any

null sequence tn, Lemma 5.4.4 then implies that the family µtn are bounded in C0
c (B)∗ and so

by Banach-Alaoglu (Theorem B.0.3) there exists a convergent subsequence µtn ⇀ µ to some

positive Radon measure on B. Instead of doing this on a single conformal ball, choose instead

a locally finite cover (Bj)j∈N of M consisting of conformal balls. Combining the above with a

diagonal argument, we deduce that there exists a family of positive radon measures µj on each

of the conformal balls Bj and a null sequence tn ↘ 0 such that µg(tn)|Bj ⇀ µj as n → ∞, for

all j ∈ N. Furthermore, since the cover was chosen to be locally finite, the Radon measures

µj piece together to give a well defined positive radon measure µ on M , with µg(tn) ⇀ µ as

n→ ∞.

Now that we have constructed a candidate for our initial measure, we use another estimate of

Topping and Yin to give an upper bound on volume growth with respect to this measure.

Lemma 5.4.6 (Variation of Topping-Yin, [TY21, Lemma 3.2]). Let M be a Riemann surface

and let g(t) be a smooth complete conformal Ricci flow on M × (0, T ). Fix 0 < r < R <∞ and

suppose Br ⊆ BR are concentric conformal balls in M . Suppose there exists a positive Radon

measure µ on M and a null sequence tn ↘ 0 such that

dµg(tn) ⇀ µ, as n→ ∞.

Then there exists a constant η <∞ depending only on the ratio r/R such that

Volg(t)(Br) ≤ µ(BR) + ηt, ∀t ∈ (0, T ) .

Proof. Fix ϵ > 0. Then since µ is Radon, there exists some open subset U containing BR such

that µ(U) ≤ µ(BR) + ϵ. Choosing a test function f with support in U and equal to 1 on BR,

we have for n sufficiently large

Volg(tn)(BR) ≤
∫
fdµg(tn) ≤

∫
fdµ+ ϵ ≤ µ(B) + ϵ ≤ µ(BR) + 2ϵ.

Applying [TY21, Lemma 3.2] to the Ricci flow on BR × [tn, T ), we have that

Volg(t)(Br) ≤ Volg(tn)(BR) + η(t− tn) ≤ µ(BR) + ηt+ 2ϵ.

Proof of Theorem 5.4.2. Fix a conformal ball B in M and choose some f ∈ C∞
c (B). As in the
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proof of Lemma 5.4.4, choose a slightly larger conformal ball B ⊂ B′ ⋐ M . Our Ricci flow

is given locally by g(t) = u(z, t)|dz|2 on B′ × (0, T ), with u solving the LFDE. Note that, by

the monotonicity of u(·,t)
t , there exists some ϵ > 0 such that u(·, t) ≥ ϵt on B × (0, t1]. Using

Lemma 5.4.6 and the same argument as in [TY21, Lemma 4.5] we have that

|∂t
∫
fdµg(t)| = |

∫
f∆ log(u)dz| = |

∫
∆f log(u)dz|

≤ ∥∆f∥∞
∫
B
|log(u)|dz

≤ ∥∆f∥∞
(
Volg(t)(B) + |log(ϵt)|

)
≤ ∥∆f∥∞

(
µ(B′) + ηt+ |log(ϵt)|

)
,

for some fixed constant η independent of t ∈ (0, t1]. In particular we have

lim sup
t→0

|
∫
fdµg(t) −

∫
fdµ| ≤ lim sup

t→0
lim inf
n→∞

|
∫
fdµg(t) −

∫
fdµg(tn)|

≤ lim sup
t→0

lim inf
n→∞

∫ t

tn

|∂s
∫
fdµg(s)|ds

≤ lim sup
t→0

∫ t

0
∥∆f∥∞

(
µ(B′) + ηs+ |log(ϵs)|

)
ds = 0.

We have shown that, for any conformal ball B in M ,

lim
t↘0

∫
fdµg(t) =

∫
fdµ, ∀f ∈ C∞

c (B). (5.4.4)

If we now take f ∈ C0
c (B), choose B′′ a concentric conformal ball such that B ⊂ B′′ ⊂ B′. Since

f is uniformly continuous, for ϵ > 0 sufficiently small, we can mollify f to give fϵ ∈ C∞
c (B′′)

with ∥f − fϵ∥∞ < ϵ. Using Lemma 5.4.6 again gives

lim sup
t→0

|
∫
fdµg(t) −

∫
fdµ| ≤ lim sup

t→0

(∫
|f − fϵ|dµg(t) +

∫
|f − fϵ|dµ

)
≤ lim sup

t→0
ϵ ·
(
Volg(t)(B

′′) + µ(B′′)
)
≤ 2ϵµ(B′).

Taking ϵ↘ 0, we have improved (5.4.4) to

lim
t↘0

∫
fdµg(t) =

∫
fdµ, ∀f ∈ C0

c (B).

Finally, using a locally finite cover of M by conformal balls and a partition of unity we deduce

lim
t↘0

∫
fdµg(t) =

∫
fdµ, ∀f ∈ C0

c (M).
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5.5 Initial time blow-ups

Let (M, g(t))t∈(0,T ) be a Riemann surface equipped with a complete and conformal Ricci flow.

Since the flow is complete, we have the lower scalar curvature bound Rg(t) ≥ −1
t , and hence

t 7→ g(t)
t is decreasing. It is then immediate that we have a well-defined (potentially infinite)

limiting metric as time approaches zero.

Definition 5.5.1. Let (M, g(t))t∈(0,T ) be a Riemann surface equipped with a complete and

conformal Ricci flow. The initial time blow-up of g(t) is the (possibly infinite) conformal metric

ĝ on M , defined by

ĝ := lim
t↘0

g(t)

2t
.

Remark 5.5.2. Suppose ϕ : N → M is a local biholomorphism. Then if g(t) is a complete and

conformal Ricci flow on M with initial time blow-up ĝ, we have that ϕ∗(g(t)) is a complete and

conformal Ricci flow on N , and its initial time blow-up is (̂ϕ∗g) = ϕ∗(ĝ).

Given a measure µ ∈ R(M), we now investigate what the initial time blow-up of a Ricci flow

starting from this measure looks like. The following theorem shows that, away from the support

of the initial measure, the initial time blow-up is a hyperbolic metric.

Theorem 5.5.3. Let g(t) be a complete and conformal Ricci flow on M× (0, T ) starting weakly

from some µ ∈ R(M). Then the initial time blow-up ĝ of g(t) is a well-defined smooth metric

on M \ supp(µ) with constant Gaussian curvature Kĝ ≡ −1.

Proof of Theorem 5.5.3

One of the important steps to prove this theorem is to show that our initial time blow-up us

finite away from the support of the initial measure µ. To do this, we need the following L1−L∞

smoothing result for solutions to Ricci flow by Topping & Yin [TY21, Theorem 2.1] generalised

slightly for weak initial data.

Theorem 5.5.4 (Variation of Topping-Yin, [TY21, Theorem 2.1]). Suppose g(t) = u(z, t)|dz|2

is a smooth conformal Ricci flow on the ball B3r × (0, T ), for some r > 0. Suppose there exists

a non-atomic, non-zero Radon measure µ ∈ R(B3r) such that g(t) starts weakly from µ. If

t ∈ (0, T ) satisfies t > µ(B2r)
2π then

sup
Br

u(t) ≤ C0r
−2t,

where C0 <∞ is universal.

Proof. Since µ is Radon, for some δ > 0,
µ(B2r+δ)

2π < t. Choose a cut off function f such that
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f ≡ 1 on B2r and supp(f) ⊆ B2r+δ. For ϵ > 0 sufficiently small

Volg(ϵ)(B2r)

2π
≤
∫
fdµg(ϵ)

2π
≤
∫
fdµ

2π
+

(
t− µ(B2r+δ)

2π

)
≤ t.

Therefore applying the estimate in the smooth case [TY21, Theorem 2.1] to the Ricci flow on

B2r × (ϵ, T ) gives

sup
Br

u(ϵ+ t) ≤ C0r
−2t.

Since u is smooth away from zero, taking ϵ to zero gives the result.

The following lemma is a direct consequence of the previous result.

Lemma 5.5.5. Let (M, g(t))t∈(0,T ) be a Riemann surface equipped with a smooth complete

conformal Ricci flow. Suppose there exists a non-atomic, non-zero Radon measure µ ∈ R(M)

such that g(t) starts weakly from µ. Then the initial time blow-up ĝ of g(t) is a well-defined

smooth metric on M \ supp(µ).

Proof. For any point p ∈ M \ supp(µ), choose a complex coordinate z on a neighbourhood of

this point and choose r > 0 sufficiently small such that B3r ⊆M \ supp(µ), where B3r denotes

the ball centred at p radius 3r with respect to the metric |dz|2. Write g(t) = u(t)|dz|2 on B3r.

Since µ(B2r) = 0, the conclusion of Theorem 5.5.4 will apply at all positive times

sup
Br

u(t) ≤ C0r
−2t, ∀t ∈ (0, T ).

Hence

û(p) := lim
t↘0

u(p, t)

2t
≤ C0r

−2 <∞.

Proof of Theorem 5.5.3. Consider the parabolically rescaled Ricci flows (M, gm(t)t∈(0,mT )) given

by

gm(t) := mg(tm−1), ∀m ∈ N,

so that g1(t) ≡ g(t). We note that gm(t) is a complete and conformal Ricci flow starting weakly

from the measure m · µ ∈ R(M). Given a local complex coordinate z on M , our metrics are

given locally by gm(t) = um(z, t)|dz|2 with the conformal factors um satisfying the relation

um(z, t) := mu1(z, tm
−1).

By the monotonicity of t 7→ t−1u1(·, t), we have that um(z, t) is an increasing sequence in m,

for any fixed (z, t). In particular, we have the uniform lower bound u1(z, t) on our sequence

of conformal factors. Moreover, we have local uniform upper bounds on our sequence um in

M \ supp(µ) by Lemma 5.5.5. Combining the lower and upper bounds with standard parabolic

theory, we deduce local Ck-bounds on our sequence of conformal factors, for any k ∈ N. Finally,
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by Arzela-Ascoli, our sequence of Ricci flows gm(t) converges locally smoothly to some limiting

eternal Ricci flow (M \ suppµ, g∞(t)t∈(0,∞)). For any fixed t > 0, we note that

g∞(t) := lim
m→∞

gm(t) = lim
m→∞

2t · g(tm
−1)

2tm−1
= 2t · ĝ,

and so g∞(t) = 2t · ĝ. Substituting this into the Ricci flow equation

2 · ĝ =
∂g∞
∂t

= −2Ric(g∞) = −2Kĝ · ĝ,

and hence Kĝ ≡ −1.

Example 5.5.6. In [TY21] the following expanding, non-gradient soliton (C, 2
1+x2 |dz|2, x∂x +

y∂y) was constructed. The complete conformal Ricci flow associated to this soliton is g(t) :=
2t

t2+x2 |dz|2. As such, the initial time blow-up of this soliton is

ĝ =

 1
x2 |dz|2 : x ̸= 0

∞ : x = 0

We note that the soliton has weak initial data

µg(t) ⇀ µ := 2πH1⌞{x = 0}, t↘ 0.

In particular, ĝ is the complete hyperbolic metric on the complement of the support of µ.

Example 5.5.7. Consider the expanding soliton g(t) = u(z, t)|dz|2 on C starting weakly from

the measure µ given by the Lebesgue measure restricted to the half space {x = Re(z) ≥ 0}. By
Lemma 5.5.3 we know that ĝ is a hyperbolic metric on {x < 0}. By symmetry u depends only

on the x-coordinate. Let ϕλ : C → C denote the dilation z 7→ λ · z, for any λ > 0. Note that

both ϕ∗λ(g(t)) and λ
2g( t

λ2 ) are complete conformal Ricci flows, starting weakly from λ ·µ. As µ
is given by L1

loc-data, a result of Topping and Yin [TY21, Theorem 1.4] implies that these two

flows are the same. Setting λ = t−1/2 and rearranging, we deduce that

g(t) = tϕ∗1√
t

g(1), ∀t > 0.

As such, we know that the conformal factor satisfies

u(x, t) = u(x · t−
1
2 , 1), ∀(x, t) ∈ R× (0,∞).

In particular, we have the lower bound

û(x) ≥ u(x, |x|2)
2|x|2

=
u(−1, 1)

2|x|2
, ∀x < 0,

and hence ĝ is the complete hyperbolic metric on the complement of the supp(µ).
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Proof of Theorem 5.3.3

We now have all of the necessary ingredients to prove Theorem 5.3.3, and hence Theorem 1.3.6.

Theorem 5.3.3. Suppose (M2+1, g) is a complete, continuous and initially determined space-

time in D×(0, T ) with D = ∪t∈(0,T )Mt, and where D is the disk equipped with its hyperbolic con-

formal structure. Suppose further that g is a conformal Ricci flow on M. Then M = D×(0, T ).

Proof. Fix t1 ∈ (0, T ). By the Cantor-Bendixson theorem [Kec95], we can partition the set

D \ Mt1 = P ⊔ X into a perfect set P and a scattered set X. In particular we have the

inclusions:

Mt1 ⊆ Mt2 ⊆ Mt1 ⊔ P ⊔X, ∀t2 ∈ (t1, T ). (5.5.1)

Due to a result of Hebert & Lacey ([HL68], Lemma B.0.1), as P is a compact perfect subset

of the plane, there exists a Radon measure µ ∈ R(C) such that supp(µ) = P . Let G(t) =

u(z, t) · |dz|2 be a complete conformal Ricci flow on C× (0, T ) starting weakly from µ ∈ R(C)
with initial time blow-up Ĝ. For any λ > 0, we note that the parabolically rescaled Ricci flow

Gλ(t) := λG( t
λ) = λu(z, t

λ)|dz|
2 is a complete conformal Ricci flow on C × (0, λT ) starting

weakly from λµ ∈ R(C), with the same initial time blow-up Ĝ.

Fix t ∈ (0, t1). By the monotonicity of t 7→ Gλ(t)/t, Gλ(t) ≤ 2t · Ĝ within C \ P . Since M is

expanding, Mt ⊆ Mt1 ⊆ C \ P , and Ĝ is defined on all of Mt. Applying Lemma 5.5.3 and the

Schwarz Lemma C.0.3, we deduce that Ĝ ≤ h(t) on Mt. Note that, if we had equality between

the metrics Ĝ and h(t) at any point inside of Mt, then this would imply that the subharmonic

function log(h(t)/Ĝ) has a minimum in its interior, and hence by the elliptic maximum principle,

Ĝ ≡ h(t) in Mt. This would contradict the fact that Ĝ is defined on a larger domain. Therefore,

we have the strict inequality Ĝ < h(t) on Mt. Finally, we can use equation (5.3.1) together

with the previous inequalities to deduce that

Gλ(t)

2t
≤ Ĝ < h(t) ≤ g(t)

2t
, ∀t ∈ (0, t1).

Therefore, g > Gλ on M(0,t1). As Gλ is bounded on M, we can then apply Lemma 5.3.7 to

conclude that g ≥ Gλ on all of M, for any λ > 0. Suppose at some later time t2 ∈ (t1, T )

we have that Mt2 ∩ P ̸= ∅. That is, there exists some point p ∈ P such that (p, t2) ∈ M.

Since M is open, there exists some small r > 0 such that the conformal ball B(p, r) ⋐ Mt2 .

By compactness, Volg(t2)(B(p, r)) < ∞. We now derive a contradiction by showing that the

volume of this ball with respect to the metric Gλ(t2) blows up to infinity as λ → ∞. Indeed,

µ(B(p, r)) > 0 by the definition of p ∈ P = supp(µ). Using that the volume of a ball can’t

decrease too rapidly in a Ricci flow (see Lemma 5.4.3), we have that

VolG(t)(B(p, r)) ≥ µ(B(p, r))− Ct, ∀t ∈
(
0, T ∧ µ(B(p, r))

8π

)
,
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which means for λ sufficiently large

VolGλ(t2)(B(p, r)) = λ ·Vol
G( t2

λ )
(B(p, r)) ≥ λ ·

(
µ(B(p, r))− Ct2

λ

)
≥ λ

2
· µ(B(p, r)).

Taking λ ↗ ∞, this contradicts the volume of the ball with respect to g(t2) being finite.

Therefore, we have shown that Mt2 ∩ P = ∅, which means that (5.5.1) reduces to

Mt1 ⊆ Mt2 ⊆ Mt1 ⊔X, ∀t2 ∈ (t1, T ).

Since ∂D ⊆ C is a perfect subset of the plane, we see that X ⊆ D. If X was non-empty,

then because it is a scattered set, it must contain an isolated point, which would contradict

Corollary 5.2.6. We can therefore conclude that X must be empty, and that Mt1 = Mt2 .
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Appendix A

Parabolic equations

Recall the notation Ω := (a, b) ⋐ R, ΩT := Ω×(0, T ), ΓT := (Ω× {0})∪(∂Ω× [0, T )). Consider

the linear operator

L(u) := ut −A(x, t)uxx +B(x, t)ux + C(x, t)u, (A.0.1)

where A,B,C are bounded functions on ΩT , with A(x, t) > 0, and C(x, t) ≥ −C0.

Theorem A.0.1 (Maximum principle, [LSU88, Chaper II, Theorem 2.1]). Fix (x∗, t∗) ∈ ΩT .

If u ∈ C0(Ω× [0, T )) ∩ P 2
loc(ΩT ) satisfies L(u) ≤ 0 on ΩT , then

u(x∗, t∗) ≤ max{0, sup
Γt∗

(ueC0(t∗−t))}.

Alternatively if L(u) ≥ 0 on ΩT , then

u(x∗, t∗) ≥ min{0, inf
Γt∗

(ueC0(t∗−t))}

Theorem A.0.2 (De Giorgi-Nash-Moser, [LSU88, Chapter III, Theorem 10.1]). Let u ∈
C0(ΩT ) ∩ P 2

loc(ΩT ) be a solution of Lu = 0 on ΩT such that the coefficients of L satisfy

∥A∥L∞(ΩT ), ∥A−1∥L∞(ΩT ), ∥B∥L∞(ΩT ), ∥C∥L∞(ΩT ) ≲ 1.

Fix K ⋐ ΩT . Then there exists

α(∥A∥L∞(ΩT ), ∥A−1∥L∞(ΩT )) ∈ (0, 1),

and a constant

C(K,ΩT , ∥u∥L∞(ΩT ), ∥A∥L∞(ΩT ), ∥A−1∥L∞(ΩT ), ∥B∥L∞(ΩT ), ∥C∥L∞(ΩT )) > 0,
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such that

∥u∥P 0,α(K) ≤ C.

Given u0 ∈ C2,α(Ω), ψ ∈ P 2,α(ΩT ) and f ∈ P 0,α(ΩT ), consider the Dirichlet problem
L(u) = f in ΩT

u = u0 on Ω× {0}

u = ψ on {a, b} × [0, T ]

(A.0.2)

Theorem A.0.3 (Global Schauder estimate, [LSU88, Chapter IV, Theorem 5.2]). Fix α ∈ (0, 1]

and k ∈ N0. Suppose A,B,C, f ∈ P k,α(ΩT ), ψ ∈ P 2+k,α(ΩT ), and u0 ∈ C2+k,α(Ω), with

auxiliary data satisfying the compatibility conditions of orders 0, . . . , k. Then there exists a

unique u ∈ P 2+k,α(ΩT ) solving (A.0.2). Furthermore, there exists a constant C(Ω, λ, k, α) > 0

such that

|u|P 2+k,α(ΩT ) ≤ C
(
|u0|C2+k,α(Ω) + |ψ|Pk+2,α(ΩT ) + |f |Pk,α(ΩT )

)
.

Without the regularity at the boundary, if our coefficients and forcing term are regular, we can

still deduce regularity of our solution on the interior

Theorem A.0.4 (Interior Schauder estimate, [LSU88, Chapter III, Theorem 12.1], [LSU88,

Chapter IV, Theorem 10.1]). Fix α ∈ (0, 1] and k ∈ N0. Suppose A,B,C, f ∈ P k,α(ΩT ) and

u ∈ P 2,α(ΩT ) solving L(u) = f in ΩT . Then u ∈ P 2+k,α
loc (ΩT ). Moreover, for any K ⋐ ΩT ,

there exists a constant C(Ω, λ, k, α,K) > 0 such that

|u|P 2+k,α(K) ≤ C
(
|u|P 2,α(ΩT ) + |f |Pk,α(ΩT )

)
.
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Appendix B

Measure theory and analysis

Lemma B.0.1 (Hebert-Lacey, [HL68, Corollary 2.8]). If X is a perfect and compact subset

of a Riemann surface M , then there exists a non-atomic Radon measure µ ∈ R(M) with

supp(µ) = X.

Theorem B.0.2 (Riesz-Markov-Kakutani, [Hal13, Section 56, Theorem D]). Let X be a locally

compact Hausdorff topological space. For every positive linear functional ψ ∈ C0
c (X)∗, there

exists a unique Radon measure µ on X such that

ψ(f) =

∫
X
fdµ, ∀f ∈ C0

c (X).

Theorem B.0.3 (Banach-Alaoglu, [Kes09, Theorem 5.2.1]). Let X be a Banach space. Then

the closed unit ball in the dual space X∗ is weak*-compact.

Theorem B.0.4 (Whitney, [Ste70, Chapter VI, Theorem 4]). Let F ⊆ Rn be a closed set and

u ∈ Ck,α(F ), for some k ∈ N0 and α ∈ (0, 1]. Then there exists an extension û ∈ Ck,α(Rn) so

that

û(x) = u(x), ∀x ∈ F

∥û∥Ck,α(Rn) ≲k,α ∥u∥Ck,α(F ).
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Appendix C

Geometry

Theorem C.0.1 (Gauss-Bonnet, [Cha06, Theorem V.2.7]). Let (M2, g) be a compact, orient-

able Riemannian surface with smooth boundary ∂M . Then∫
M
Kgdµg +

∫
∂M

κds = 2πχ(M),

where Kg denotes the Gaussian curvature ofM , κ denotes the geodesic curvature of the boundary

of M , dµg is the volume form of g, ds = ινdµg is the arc-length form of the boundary, and χ(M)

is the Euler-characteristic of M .

Theorem C.0.2 (Uniformisation Theorem, [Koe10]). Every connected Riemann surface is con-

formally covered by either the sphere S2, the plane C or the unit disk D.

Lemma C.0.3 (Schwarz Lemma, [Yau73]). Let (M1, g1), (M2, g2) be Riemannian surfaces. If

1. (M1, g1) is complete,

2. the Gaussian curvature K(g1) ≥ −a1, for some a1 ≥ 0,

3. K(g2) ≤ −a2, for some a2 > 0,

then any conformal map f :M1 →M2 satisfies the inequality.

f∗(g2) ≤
a1
a2
g1.

The following lemma is used in Section 5.2 when constructing the ambient space for our space-

time. Although the proof of such an argument is standard, we include the details here.

Lemma C.0.4. Let {Mi}i∈N be a smooth family of manifolds which embed smoothly into one
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another Mi ↪→Mj, for i ≤ j. Then the direct limit:

M = lim
→
Mi :=

⊔
i∈N

Mi⧸∼ , (C.0.1)

where x ∼ y iff x = y within an embedding, can be made into a smooth manifold. Moreover,

the canonical maps fi :Mi ↪→M , x 7→ [x] will be smooth embeddings.

Proof. Equip the set M with the final topology, so that U ⊆M is open iff f−1
i (U) is open, for

all i ∈ N. In particular, each fi is now a continuous injection. Let ψij denote the embedding

Mi ↪→Mj . Note that

fi = fj ◦ ψij , ∀i ≤ j.

In particular, for any open subset U ⊆Mi, we have

f−1
j ◦ fi(U) = ψ−1

ji ◦ f−1
i ◦ fi(U) = ψ−1

ji (U), if j < i

f−1
j ◦ fi(U) = f−1

j ◦ fj ◦ ψij(U) = ψij(U), if j ≥ i.

That is, fi(U) is open in M and fi is an embedding.

Choosing a countable base {Bij : j ∈ N} of Mi for each i ∈ N, the collection

B := {fi(Bij) ⊆M : i, j ∈ N},

is then a countable base of M . M being Hausdorff follows from the embedded subspaces Mi

being Hausdorff. Finally, for each j ∈ N, consider the atlas {cα : Uα ⊂ Mj ↪→ Rn}α∈Aj on Mj .

Define the new collection of charts {c̃α : Ũα ⊂M ↪→ Rn}α∈Aj by

Ũα := fj(Uα), c̃α := cα ◦ f−1
j .

The union over j ∈ N of all such charts gives a well defined smooth atlas on M . With respect

to this smooth structure, the canonical maps are smooth.
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