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1 Introduction

Properties of optimal forecasts under mean squared error (MSE) loss include unbiasedness of the
forecast, lack of serial correlation in one-step-ahead forecast errors, serial correlation of (at most)
order h — 1 at the h-period horizon and non-decreasing forecast error variance as the forecast
horizon grows. Although such properties seem sensible, they are in fact established under a set
of very restrictive assumptions on the decision-maker’s loss function. While bias of the optimal
forecast has been established by Granger (1969, 1999) and characterized analytically for certain
classes of loss functions and forecast error distributions by Christoffersen and Diebold (1997), failure
of the remaining optimality properties has not previously been demonstrated.!

In this paper we provide new analytical results on the violation of the standard optimality
properties of optimal forecasts under linear-exponential (linex) loss and a Markov switching data
generating process. Linex loss is frequently used in the literature on asymmetric loss, c.f. Batchelor
and Peel (1998), Varian (1974), Zellner (1986) and Elliott and Timmermann (2003). Similarly,
following Hamilton (1989), Markov switching processes have been widely used as a way to identify
nonlinear dynamics in macroeconomic and financial time series. We show that not only can the
optimal forecast be biased, but the forecast errors can be serially correlated of arbitrarily high order
and both the unconditional and conditional forecast error variance may be decreasing functions of
the forecast horizon. We thus demonstrate that none of the properties traditionally associated with
tests of optimal forecasts carry over to a more general setting with asymmetric loss and possible
nonlinear dynamics in the data generating process (DGP).2

Our results are of particular interest due to the revived interest in forecasting and econometric
modeling under asymmetric loss, c.f. Christoffersen and Diebold (1996, 1997), Diebold (2004),
Granger and Newbold (1986), Granger and Pesaran (2000) and Skouras (2001). When coupled
with what is now common findings of nonlinearities and dynamics in higher order moments, in the

form of ARCH effects for example, in most macroeconomic and financial time series this means

! Under asymmetric loss functions such as lin-lin and linex and assuming a conditionally Gaussian process, Christof-
fersen and Diebold (1997) characterize the optimal bias analytically. Their study does not, however, consider the

other properties of optimal forecast errors such as lack of serial correlation and non-decreasing variance.
*Hoque, et al. (1988), and Magnus and Pesaran (1989 and 1991) discuss violations of the standard properties of

optimal forecasts caused by estimation error, rather than by a choice of a loss function different from MSE. In this

paper we consider the case of zero estimation error, to rule this out as a cause of apparent violations.



that the typical situation facing an economic forecaster may be well represented by our stylized
example.

The insights provided in the paper also have important empirical implications. For example,
it is common to test for rationality by testing for serial correlation in forecast errors® Our paper
shows that this implication of rationality fails to hold under even minor deviations from symmetric
loss when combined with nonlinear dynamics in the DGP, and that substantial serial correlation
can be expected in the forecast errors from optimal forecasts under very plausible assumptions.
This suggests that many of the conclusions in the empirical literature concerning suboptimality of
forecasts may be premature.

The main contribution of the paper is to provide tractable, analytical results for the multi-step
forecast errors which allows us to address all of the standard properties an optimal forecast has
even under asymmetric loss and nonlinearities in the DGP. Due to difficulties with time-aggregation
of many nonlinear processes, such as GARCH processes, this has not previously been done. We
also demonstrate, again through analytical results, that the “generalized forecast error” (which
is a simple transformation of the forecast error) inherits some of the standard properties such as
lack of bias and serial correlation. Finally, we provide an empirical example that demonstrates the
importance of these effects on stock return data.

The outline of the paper is as follows. Section 2 shows how optimal forecast errors under
asymmetric loss and nonlinearity can have a non-zero bias and a decreasing variance. Section 3
establishes violation of the standard properties on (absence of) serial correlation in forecast errors,
while Section 4 shows which properties actually do hold for some transformation of the forecast
error known as the generalized forecast error. Section 5 provides an empirical illustration and

Section 6 concludes. An appendix contains proofs.

2 Unbiasedness and non-decreasing forecast error variance

We are interested in studying optimal h—period ahead forecasts of some univariate time-series

process, {Y;}, computed at time ¢ conditional on some information set, F;. Generic forecasts are

3The literature on forecast rationality testing is very extensive. For a list of references to papers that use
the Survey of Professional Forecasters data set maintained by the Federal Reserve Bank of Philadelphia, see

http://www.phil.frb.org/econ/spf/spfbib.html.



denoted by Yt+h7t and forecast errors are e;yp ¢ = Yiyp — YAVt+h’t. In particular, the optimal h—period
forecast computed at time ¢ is denoted by At”_‘km and its forecast error is e hit
2.1 Optimality Properties under mean squared error loss

Under mean squared error (MSE) loss and provided that the target variable and the predictions
are joint covariance stationary, optimal forecasts satisfy the following four properties (c.f. Diebold

and Lopez (1996)):
1. Forecasts are unbiased (so the forecast error (e}, ,) has zero mean).

2. The variance of the forecast error (e, ,) is a non-decreasing function of the forecast horizon,

h.

3. h-period forecast errors (e +h’t) are not correlated with information dated by h periods or

more (F3). Hence the h-period forecast error is at most serially correlated of order h — 1.
4. Single-period forecast errors (ef, ;) are serially uncorrelated.

These properties are easily derived under MSE loss. Suppose that Y; has zero mean and is
covariance stationary. Wold’s representation theorem then establishes that it can be represented

as a linear combination of serially uncorrelated white noise terms:
o0
Yi=> biey, (1)
j=0

where &, = Y; — E(Y|y:—1, Y2, ...) is white noise, WN(0,0?). The optimal h—period forecast thus

becomes .
Vit =Y Onticti, (2)

with associated forecast error ;_j
it = Z Oict+h—i- (3)

=

It follows directly that 0

E [ellh,t] = 0,
Var(e;‘gh’t) = h‘727 (4)

Sl 00, forj <h

Cov(efyp i etah—jit—j) = _
0 for j > h



Which account for properties 1, 2 and 3-4, respectively.

2.2 Asymmetric loss and a nonlinear process

We next provide analytical results with reasonable assumptions about the forecaster’s loss function
and a non-linear data generating process (DGP) which show that each of the properties (1) - (4)
cease to be valid when the assumption of MSE loss is relaxed.

We establish our results in the context of the linear-exponential (linex) loss function, which

allows for asymmetries:

L (Yt+h — Yignt; a) = exp {G(Yt+h - Yt+h,t)} — a(Yern — Yirng) — 1, a #0. (5)

This loss function has been used extensively to demonstrate the effect of asymmetric loss, see e.g.
Varian (1974), Zellner (1986) and Christoffersen and Diebold (1997). An optimal forecast is defined

as the value that, conditional on the information set at time ¢, F;, minimizes the expected loss:

Atj—h,t = arg min £ [L (Yt+h,Yt+h7t> |‘/Tt}

Yitht
= arg min/L <y, YtJrh,t) fent (y) dy,
Yitn,t

where Y;,p|F; has density fi4,:. Assuming that we may interchange the expectation and differen-

A

tiation operators, the first order condition for the optimal forecast, Y,*

bt takes the form

oL (Yﬂh - Yttrh,t? a)
)

E; =a—akb; [exp {a (Yt+h — f/t:_m) H =0. (6)

We derive analytical expressions for the optimal forecast and the expected loss using a popular
nonlinear DGP, namely a regime switching model of the type proposed by Hamilton (1989)* Thus

suppose that {Y;} is generated by a simple Gaussian mixture model driven by some underlying

! Christoffersen and Diebold (1997) characterize analytically the optimal bias under linex loss and a conditionally
Gaussian process with ARCH disturbances. They derive analytically the optimal time-varying bias as a function of
the conditional variance. For our purposes, however, this process is less well-suited to show violation of all standard
properties forecast errors have in the standard setting since this requires characterizing the forecast error distribution
at many different horizons, h. The problem is that while the one-step-ahead forecast error distribution is Gaussian

for a GARCH(1,1) process, this typically does not hold at longer horizons, c.f. Drost and Nijmann (1993).



state process, Sy:

Yirr, = p+0os,041
Vg1~ d.i.d. N(0,1) (7)
Ste41 = 1,k <oo

We assume that the state indicator function, Sy, 1, is independently distributed of all past, current
and future values of vyy1, and that S; is observable at time t.> The state-specific means and

/ .
2 = [a%, ...,O'z] , where ¢ is a k x 1 vector of

variances can be collected in k x 1 vectors, p = ut, o
ones. Conditional on a given realization of the future state variable, Si11 = s¢y1, Yiq1 is Gaussian
with mean p and variance Ugt 10 but future states are unknown at time ¢ so Y;11 can be strongly
non-Gaussian given current information, F;.

At each point in time the state variable, Sy11, takes an integer value between 1 and k. Following

Hamilton (1989), we assume that the states are generated by a first-order stationary and ergodic

Markov chain with transition probability matrix

p11 P12 D1k
pa1 P22 e :
P(St—l-l’st) =P = . . ) (8)
: : Pk—1k
| Pk1 - Pkk—1  Pkk |

where each row of P sums to one. The vector comprising the probability of being in state s;1, at
time t+h given F; is denoted by s, , 1, i.e. #s,,, 1 = (Pr(Sitp = 1|7), ..., Pr(Sipn = k| 7))’ , while
=/

7 is the vector of unconditional or ergodic state probabilities that solve the equation #'P = &'.

Note that 7, ; will be a vector of ones and zeros, as the variable S; is adapted to F;.

2.3 Unbiasedness

We will consider an idealized h-step-ahead forecasting problem where, in addition to knowing the
form of the DGP, the forecaster is assumed to also know the parameters of the DGP, removing
estimation error from the problem. Forecasts in this example are thus perfectly optimal: neither

estimation error nor irrationality is driving our results.

®In most applications of regime switching models the state is assumed to be unobservable. To eliminate estimation

error from the forecaster’s problem in this example we assume that the state is directly observable.



Using the conditional normality of vy, the expected loss is’

Ey[L(etrnt;a)] = E [GXP {a (Yt+h - YA;SJrh,t) H —aEy [Yiin] + Cﬂ;ﬂh,t -1
k
= Z Tsrpnt Pt {QXP {a (Yt+h - Yt+h,t)} St = St4n
StJrh:].
k
—a Z Tspnt Bt [Yern|Ston = st4n] +aYipne — 1
St+h:1

2
. - a . .
= 7r/3t7tPh exp {au —aYiint + 502} — a7r'ShtPh;L +aYiips — 1. (9)

Differentiating with respect to Y;f+h,t and setting the resulting expression equal to zero gives the

first order condition

2
N - a
1=#,, P"exp {au —aYip, + 70'2} .

Solving for At’iht we get an expression that is easier to interpret:
Or % 1 A/ h
t+ht = KT+ p log <7Tst,tP <P) ) (10)

where ¢ = exp {“—220'2}. The h-step forecast error associated with the optimal forecast, denoted
G;(Jrh,t? is
* 1 ~/ h
€itht = OsyppUtth — - log <7TSt’tP Lp) .
This expression makes it easy for us to establish the violation of property 1 (unbiasedness) in our

setup:

Proposition 1 The unconditional and conditional bias in the optimal forecast error arising under

linex loss (5) for the Markov switching process (7)-(8) is given by:

1 .
E; [e:+h,t] - T log (W;t,tPh‘P> (11)
Eletny] = _é"—"/)\h — —% log (7'¢) as h — oo

where Ap, = log (Phgo). Thus, generically, the optimal forecast is conditionally and unconditionally

biased at all forecast horizons, h, and the bias persists even as h goes to infinity.

5 All exp {-} and log () operators are applied element-by-element to vector and matrix arguments.



The proof of the proposition is given in the appendix. For purposes of exposition, we present

some results for a specific form of the loss function (a = 1) and regime switching process:

no= [0’0]/
o? = [0.25,2)
0.95 0.05
P = SO
0.1 09
- _ [2 1)
1373

The unconditional mean of Y; is zero, and the unconditional variance is #’o> = 1.5. This para-
meterization is not dissimilar to empirical results frequently obtained when this model is estimated
on financial data, see Section 5 for example. For this particular parameterization the optimal un-
conditional bias in ef; , is —1.17, indicating that it is optimal to over-predict. Figure 1 shows the
unconditional density of ;1 ; and also plots the linex loss function. The density function has been
re-scaled so as to match the range of the loss function. This figure makes it clear why the optimal
bias is negative: the linex loss function with a = 1 penalizes positive errors (under-predictions)
more heavily than negative errors (over-predictions). The optimal forecast is in the tail of the
unconditional distribution of Y;: the probability mass to the right of the optimal forecast is only
10%. Under symmetric loss the optimal forecast is the mean, and so for symmetric distributions
the amount of probability mass either side of the forecast would be 50%. In Figure 2 we plot the
optimal unconditional bias as a function of the forecast horizon (using the steady-state weights
as initial probabilities). The unconditional bias for this case is an increasing (in absolute value)

function of h and asymptotes to —1.17.

2.4 Non-decreasing variance

We next demonstrate the violation of property 2 (non-decreasing variance). Let ® be the Hadamard

(element-by-element) product. The result is as follows:

Proposition 2 The variance of the forecast error arising under linex loss (5) for the Markov

switching process (7)-(8) associated with the optimum forecast is given by

Var (fune) =70+ 25X, (7¢) 01— 77) A, (12)



This variance need not be a decreasing function of the forecast horizon, h. In the limit as h goes

to infinity, the forecast error variance converges to the steady-state variance, 7' o?.

Conversely, under MSE loss, the unconditional forecast error variance is constant across forecast

horizons, h:

X _ 2
Var (et+h,t) = E|:a-3t+hyt+hi|

It is also common to consider the mean squared error of the forecast. This is closely related to
the forecast error variance but differs by the squared bias. The corresponding result for the MSFE

is as follows:

Corollary 1 The mean-square forecast error arising under linex loss (5) for the Markov switching

process (7)-(8) associated with the optimum forecast is given by
1
MSFE (€}.p,) = F'o” + =X, () 0 1) A (13)

The MSFE need not be a decreasing function of the forecast horizon, h. In the limit as h goes to
infinity, the MSFE converges to &' o? + (% log (ﬁ"(p))Q.

A surprising implication of Proposition 2 is that it is not always true that Var <e;f +h’t> will
converge to 'e? from below, that is, Var (e;‘ +h,t> need not be increasing in h. Depending on the
form of P and o2, it is possible that Var (e;“ +h,t> actually decreases towards the unconditional
variance of Y;. Corollary 1 shows that a similar result is true for the mean-square forecast error.

Using the numerical example described above the unconditional variance of the optimal forecast
error as a function of the forecast horizon is shown in Figure 3. It is clearly possible that the
forecast error at the distant future has a lower variance than at the near future.” The reason for
this surprising result lies in the mismatch of the forecast objective function, L, and the variance of

the forecast error, Var(eip,t), which does not occur when using quadratic loss (see next section).

"Using the same numerical example it can be shown that the MSFE decreases when moving from h =1 to h = 2,

but increases with h for h > 2. We do not report this figure in the interests of parsimony.



A similar mismatch of the objective function and the performance metric has been discussed by
Christoffersen and Jacobs (2004), Corradi and Swanson (2002) and Sentana (1998).

Using the expression for Var (e;" +h’t) in Proposition 3, we can consider two interesting special
cases. First, suppose that 1 = 03 = ¢ so the variable of interest is ¢.7.d. normally distributed with

constant mean and variance. In this case we have

Var (ef ;) = 7o? + % log (7'p) ¢/ (7)) ©I—77") tlog (%) = 0.

And so the optimal forecast error variance is constant for all forecast horizons as we would expect.

The second special case arises when the transition matrix takes the form P = ¢7’. That is, the
probability of being in a particular state is independent of past information, so the density of the
variable of interest is a constant mixture of two normal densities and thus is ¢.i.d but may exhibit

arbitrarily high kurtosis. In this case we have A, = tlog (7'¢) for all h, so

Var (¢tae) = 0%+ 2ylog () ¢ () © T — 7) tlog (¥'p)

=/
= 71'0'2.

Thus the optimal forecast error variance is constant for all forecast horizons. This special case
shows that it is not the fat tails of the mixture density that drives the curious result regarding
decreasing forecast error variance in our example. Rather, it is the combination of asymmetric loss

and persistence in the conditional variance.

3 Serial Correlation in Optimal Forecast Errors

In the standard linear, quadratic loss framework an optimal h-step forecast is an M A process of
order no greater than (h — 1). This implies that all autocovariances beyond the (h — 1) lag are
zero. This particular property of an optimal forecast is usually tested by regressing the observed
forecast error on its own lagged values of order h and higher:

n

€t+ht = 00 + Z/Biet—i,t—i—h + Utth,t-

i=0
Here it is assumed that w15 has mean zero and is serially uncorrelated. Under MSE loss and
forecast rationality, ag = By = ... = 3,, = 0.

Outside the standard setting with MSE loss this property need no longer hold. In particular,

we have

10



Proposition 3 The h-step-ahead forecast error arising under linex loss (5) for the Markov switch-

ing process (7)-(8) is serially correlated with autocovariance
1 .
—/ 2 _ — —
Cov [€fypp>iinjij] = T oLy + ﬁ)\ﬁl (7)) © P? — &%) Ap. (14)
Although this converges to zero as j goes to infinity, it can be non-zero at lags larger than h.

Using the same parameterization as in the earlier example, the autocorrelation function for
various forecast horizons is presented in Figure 4. Notice the strong autocorrelation even at lags
much longer than the forecast horizon, h. Thus the optimal forecast error in our set-up need not
follow an M A (h — 1) process and the one-step-ahead forecast error need not be serially uncorrelated
(property 3).8

It is easily verified that, under MSE loss, the autocovariance of the optimal forecast errors under

the regime switching process is zero:
* * _ )
Cov (et+h,t7 et+hfj,tfj) = F |:O—st+h—j0—3t+hyt+h*.7yt+h:|

k k
- Z Z T (se4n—y) Tsntltth—iTsipn—; Tsipn =
St+h—j=1 St+h=1

E [Vt+h—th+h|St+h—j = St1h—jsSt+h = St+h)

= 0forj#0.

Thus optimal forecast errors under MSE loss are conditionally and unconditionally unbiased,
have constant unconditional variance as a function of the forecast horizon, and are serially uncor-
related at all lags. This is because under MSE loss the optimal forecast error in this example is

simply the term o, , V445, which is (heteroskedastic) white noise.

4 Properties of a “generalized forecast error”

We demonstrated in the previous sections that all the properties of optimal forecasts established
under MSE loss can be violated under asymmetric loss and a nonlinear DGP. In this section we
establish the properties that a simple transformation of the optimal forecast error—known as the

generalized forecast error—must have.

¥We can again consider the two special cases: #d Normal (01 = 02 = ), and 4id mixture of normals (P = +7’).
Following the same logic as for the analysis of forecast error variance, it can be shown that in both of these cases the

autocorrelation function equals zero for all lags greater than zero.

11



Following Granger (1999) and Patton and Timmermann (2004), the generalized forecast error,

Yiint, is defined from the first-order condition of the loss function, (6)

oL (Yt-ﬁ-h - f/tih,t; a>

¢%k+h,t =

)
which in our case simplifies to
Yiiht =@ — aexp {a03t+th+h — log (ﬁ;htPhcp) } . (16)

It is easy to establish that, although the forecast error, e, ;, ;, need not be mean zero, the generalized

3 * N .
forecast error, 1y}, ;, has mean zero:

-1
Ei [V = a—a(#,P')  Bilexp{ao,,,vin}]
-1 2
= a—a(fr;tjtPhcp) ﬁghtPheXp{%a’Q}
= 0,

and F [@ZJ;‘ +h,t] = 0 by the law of iterated expectations. Thus the generalized forecast error has

conditional and unconditional mean zero for all forecast horizons.

Turning to the second optimality property, while we saw that the variance of the optimal
forecast error need not be non-decreasing with the forecast horizon, thus violating the second
standard optimality property, the unconditional expected loss will always be non-decreasing in the

forecast horizon:

Proposition 4 Under linex loss (5) and the regime switching process (7)-(8) the unconditional
expected loss is

E [L (Yt+h7fftih,t; a)] =7'A\, — log (7‘1”(,0) as h — oo.

For the numerical example used above, Figure 5 shows the expected loss as a function of the

forecast horizon. As expected it is a non-decreasing function of h.

For the third property, we saw that in a non-linear framework, optimal h—step forecast errors

need not follow an M A(h — 1) process. However, the generalized forecast error will display serial

th

correlation of, at most, (h — 1)"" order:

12



Proposition 5 The generalized forecast error from an optimal h-step forecast made at timet under
the regime switching process (7)-(8) and assuming linex loss (5) has the following autocovariance

function:

—a? 4+ a? Y4 W (¢4, Phe) T (¢, Pt i=0

-1
k _
_a2 + a2 Zst,jzl T‘-(Stfj) <L/St73 Ph(P) X

¢ 7 0<j<h
S s (1, Pe) - (¢ © (e, PM)) Pl

Cov |:¢1T+h7t7 w:‘;hfj,t—j] =

where ¢* = exp {2a20'2} .

Using the numerical example above, Figure 6 presents the autocorrelation function for the
optimal generalized forecast error. As implied by Proposition 5, the autocorrelations are non-zero

for j < h and drop sharply to zero when j > h.

5 Empirical illustration

In this section we present an illustration of the above results for actual financial data. The intention
and results of this empirical illustration is to show that the sample model employed in the paper
was a reasonable case to consider. Further, they emphasize that using the standard properties
of optimal forecast errors (unbiasedness, increasing variance, restricted serial correlation) in the
presence of asymmetric loss and time-varying volatility could lead to the rejection of a perfectly
optimal forecast.

Using maximum likelihood methods we estimated the two-state regime switching model dis-
cussed above on weekly returns for Exxon over the period January 1970 to December 2003, and

obtained the following parameter estimates:

a = [0.1323,0.1323]

Q»
I

[0.9698,1.6711]’
0.9756 0.0244
0.1014 0.8986

N
I

13



Thus the annualized return on Exxon over this period was 6.9%. The steady state probabilities
implied by the estimated transition matrix 7 = [0.8061, 1939]" indicate that returns were in the low
volatility regime four times more often than in the high volatility regime.

If we assume a linex loss function for the forecast user, and again assume that the parameter
of this function is set to a = 1, then Proposition 1 shows that the unconditional mean of the
optimal Exxon return forecast errors is —0.7292. Given the asymmetry of the loss function it is not
surprising that it is optimal to over-predict, leading to forecast errors that are negative on average.

Using the expression given in Proposition 2 we obtain the unconditional variance of the optimal
forecast errors for different horizons, and plot these in Figure 7. We again see, under linex loss and
a regime switching model for Exxon stock returns, that the unconditional variance is a decreasing
function of the forecast horizon. The MSFE of the optimal forecast errors (not shown) is similarly
monotonically downward sloping. Taking the standard properties of optimal forecasts as a guide,
this figure would suggest that it is about 7% easier (variance of 1.31 versus 1.41) to predict the
one-week return on Exxon in the period between nine and ten weeks from today, than the return
on Exxon over the coming week. As we discussed above, this interpretation is misleading when
the forecast user’s loss function is not the MSE loss function. If we instead use expected loss to
measure forecast difficulty, we find that it is about 8% harder (expected loss of 0.72 versus 0.67) to
forecast the 10-step ahead one-week return than it is to forecast the return over the coming week.

Using Proposition 3 we obtain the autocorrelation function of the optimal forecast errors in
this illustration, and plot this in Figure 8 for h = 1,..,5. The one-step ahead weekly return
forecast, for example, has first-order serial correlation of almost 0.07, and even at the twentieth lag
the serial correlation is still greater than zero. This implies that the forecast error is predictable
using lagged forecast errors, albeit only weakly in this case. It does not imply that the forecast
is suboptimal, however: the generalized forecast error exhibits the serial correlation properties

presented in Proposition 5.

6 Conclusion

This paper demonstrated that the properties of optimal forecasts that are almost always tested in
the empirical literature hold only under very restrictive assumptions, and are not generally robust

to even slight departures from these assumptions. We showed analytically how they are violated

14



under more general assumptions about the loss function, extending the seminal work of Granger
(1969) and Christoffersen and Diebold (1997). The properties that optimal forecasts must possess
were generalized to consider situations where the loss function may be asymmetric and the data
generating process may be nonlinear but strictly stationary. A small illustration using weekly stock
return data confirmed that our findings have much empirical relevance. Thus, although our results
were confined to a particular loss function and data generating process, they are powerful as they
rely only on empirically reasonable assumptions.

A number of implications follow from this paper. Most importantly, our results suggest the need
to develop new and more general methods for forecast evaluation that are robust to deviations from
mean squared error loss. Most economic time series have some dynamics in the conditional variance.
This means that even small deviations from mean squared error loss will overturn the standard
properties that an optimal forecast must have. One approach—proposed by Elliott, Komunjer and
Timmermann (2002)—is to assume that the loss function belongs to a family of parsimoniously
parameterized functions that nests mean squared error loss as a special case. This approach can be
used even with the small sample sizes typically obtainable with forecasting data. Furthermore, the
parameters of the loss function can be estimated by GMM and forecast optimality can be tested
by means of a standard J-test when the model is overidentified.

In situations where even the form of the loss function is unknown, a less parametric approach is
required. For this situation Patton and Timmermann (2004) show that if the conditional dynamics
of the data generating process can be restricted to the first and second moments, then it is possible
to develop tests for forecast optimality that hold for a broad range of loss functions and do not

require estimating the shape of the (unknown) loss function.
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Appendix

Proof of Proposition 1. The h-step-ahead forecast error has a conditional expectation of

By [ezﬁ+h,t} = 10g ( tPh<P>

which, since P is a probability matrix with one eigenvalue of unity, is different from zero even when

h — oo. The unconditional expectation of the forecast error is
Elefin] = BB [efing]

= Z T(s)E [—é log (mt tPh‘P) |5 = St]

= —=) @y log( tPhS")
= ——TI',)\h,
a

where A, = log (P"¢) and ¢s, = Pr[9;|S; = s¢] is a k x 1 zero-one selection vector that is unity in
the s;th element and is zero otherwise.

The unconditional bias remains, in general, non-zero for all A. In the limit as h — oo,
* 1 —/ —/ 1 —/ —/ 1 —/
E € ps] — ——7 log (¢ ) = ——7 tlog (7'ep) = —Elog (7o)
which is also, in general, non-zero. m
Proof of Proposition 2. From Proposition 2 we have

* * 1 — —
Var (eHh’t) = F [et?rh,t] — g)\?lﬂ'ﬂ',Ah

<Ust+th+h log< tPh ))2

2 .
= F [J§t+hl/$+h:| - EE |:O-3t+hyt+h 10g <7T;t tPh(p>:|

1 ~/ h 2
+¥E log <7r8t7tP cp) - —>\h71'71'>\

| ==/
= F -3 KT A

k

_ 1 o
- Z W(Swh)E [0§t+hl/?+h|5t+h = St-s—h} — ;)\;{nr’)\h
3t+h:1
1 k
—2 Z [log (fr;mPh(p) log ( s, P (,0) |Sy = St]
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k
= Y 7 02— Lz
- (st+n)% se1n a2 h h

St+h=1
T
+@ Z T(s) log (cp'Ph’) LstLISt log (Phcp)
s¢=1
1 b 1
— #7o? 4+ 9)\% (Zlfr(&)bstbgt> Ap — o ’hﬁ-ﬁ-’)\h
St=

= o’ + %Xh (&) © I —&7") Ap.

Here 7(;) is the ith element of the vector 7, the outer product ¢g, Ly, is a k x k matrix of all zeros,

except for the (s, st)th element, which equals one. To examine the variance of the optimal h-step

ahead forecast as h — oo, notice that
lim X\j, = tlog (7).
P AR g ( 90)
Furthermore, for any vector & such that &'c = 1,
J((FOD) oI -7 =1 ((7)01) e —dar's =7 — (7)) (7'd) = 0.
So, as h — oo, the variance of the optimal h-step ahead forecast therefore converges to

Var [ef, ] — 7o? + %bg (7o) (7)) © I —77") elog (7'p)

[
Proof of Corollary 1. Follows directly from the proof of Proposition 2. m
Proof of Proposition 3. The autocovariance function for an h-step forecast is:
* * 1 ~/ h
Cov [et+h,t7 6t+h—j7t—j] = FE [(O-StJrhfj Ositn VH-h—jVH-h)] - EE |:0-5t+h—j Vith—j log (Trst,tP 90>]

1 “
_EE |:O—8t+h Vit log (W;t,j,tijhCPﬂ

1 . . Iy, __
+$E [log (ﬂ;t,tPth> log (ﬂ"spjyt,jPhcpﬂ — ;/\ﬁlﬂﬂ"/\h
k k
=t 21 i)\, ——/)\ i —
= T g0y T FATT AT DD M) Tlstlsiy)
s¢—j=1s=1

E [mg (ﬁ;htPhcp) log (ﬁ;t_ﬂ_jp’l@ 1Si_j = 51_3, 51 = st]
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For fixed h, as j — oo, Cov |:6:+h7t,€z<+h_j7t_jj| — =X, () © (o) =77 )X =0. m

Proof of Proposition 4. F [L <Y}+h, Ytiht)}
= F [exp {aUsHhVH—h — log <7‘r'8t’tPh<p> }] +E [log <fr;t7tPhcp)} -1
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As h — oo the expected loss becomes: E [L (Y}Jrh,fftih’t;a)] = 7' log (Phg) — #'log (1) =

7'Llog () =log (). B
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Proof of Proposition 5. Cov [¢I+h’t,¢f+h,j7t,j]

= a’—d’E [exp {aast+hyt+h —log < Ts,, tPh )H
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If 7 = 0 we get the variance of the generalized forecast error: V' [wz‘ +h7t]
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where ¢* = exp {2a202} =pOPOPeOp
For 0 < j < h we get: Cov [¥},p, 1, Vivn_jij]
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The autocovariance is zero for all lags greater than or equal to the forecast horizon. m
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Figure 1: Linear-exponential loss function and unconditional optimal forecast error density, two-
state regime switching example.
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Figure 2: Bias in the optimal forecast for various forecast horizons, two-state regime switching

example.
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Optimal variance for various forecast horizons
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Figure 3: Variance of the optimal h-step forecast error for wvarious forecast horizons, two-state

regime switching example.
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Figure 4: Autocorrelation in the optimal h-step forecast error for various forecast horizons, two-state

regime switching example.
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Expected loss from optimal forecast as a function of forecast horizon
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Figure 5: Ezxpected loss from the optimal forecast for various forecast horizons, two-state regime

switching example.
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Figure 6: Autocorrelation in the optimal generalised forecast error for various forecast horizons,

two-state regime switching example.
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Optimal variance for various forecast horizons
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Figure 7: Variance of the optimal h-step forecast error for various forecast horizons, Exxon stock

returns, Jan 1970 to Dec 2003.
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Figure 8: Autocorrelation in the optimal h-step forecast error for various forecast horizons, Exzon

stock returns, Jan 1970 to Dec 2003.
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