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Several modern textbooks report that, thanks to the availability of heteroskedasticity robust standard

errors, one observes the near-death of Weighted Least Squares (WLS) in cross-sectional applied work. We

argue in this paper that it is actually possible to estimate regression parameters at least as precisely as

Ordinary Least Squares (OLS) and WLS, even when using a misspecified parametric model for condi-

tional heteroskedasticity. Our analysis is valid for a general regression framework (including Instrumental

Variables and Nonlinear Regression) as long as the regression is defined by a conditional expectation

condition. The key is to acknowledge, as first pointed out by Cragg (1992) that, when the user-specific

heteroskedasticity model is misspecified, WLS has to be modified depending on a choice of some uni-

variate target for estimation. Moreover, targeted WLS can be improved by properly combining moment

equations for OLS and WLS respectively. Efficient GMM must be regularized to take into account the

possible multicollinearity of estimating equations when errors terms are actually nearly homoscedastic.
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1 Introduction

It has been widely accepted since the seminal work of White (1980) that, as bluntly announced by

Stock and Watson (2011)’s popular textbook of econometrics, “despite the theoretical appeal of Weighted

Least Squares (WLS), heteroskedasticity robust standard errors provide a better way to handle potential

heteroskedasticity in most applications”. Angrist and Pischke (2010) go as far as reporting the “near-death

of generalized least squares in cross sectional applied work”. The maintained point of view of our paper

is that “White-washing” as coined by Leamer (2010) is misleadingly overlooking the need of “doing the

hard work of modelling the heteroskedasticity (. . . ) to determine if sensible reweighting of observations

materially changes the locations of the estimator of interest” (and not only “the widths of the confidence

intervals”) (Leamer (2010)).

The “hard work of modelling the heteroskedasticity” by the practitioner is arguably the main reason

why Eicker-White robust inference is so popular. The main contribution of this paper is to document that,

irrespective of the user-specified parametric model for heteroskedasticity, we always have a well-defined

optimal weighting strategy that dominates OLS. Up to regularity conditions, the only constraint on the

specification of the parametric heteroskedasticity model is that it must contain conditional homoskedas-

ticity as a particular case. In other words, even though we agree with Stock and Watson (2011) that

the functional form of conditional variance is rarely ever known, it is not a sufficient reason to throw out

the baby with the bath water and to overlook the improvements in accuracy brought by proper reweight-

ing of the observations. Even though we could put forward a broader scope for validity (see Section 3),

our analysis is valid with a general regression framework (including instrumental variables or nonlinear

regressions) as soon as the regression is defined by a conditional expectation condition.

By referring to regression defined by a conditional expectation with a conditional heteroskedasticity

model that nests the conditional homoskedasticity case, we remain true to the new research agenda of

“resurrecting weighted least squares” as put forward by Romano and Wolf (2017).

Romano and Wolf (2017) propose an adaptive estimator such that one relies on WLS only if a test

of conditional homoskedasticity based on the same conditional variance model is able to reject the null

of homoskedasticity. By doing so, one will use WLS only when it is worthwhile doing so, while, for sake

of finite-sample performance, avoiding (by using OLS) a noisy estimation of the variance function when

homoskedasticity is not rejected. The resulting new estimator, dubbed adaptive least squares (ALS),

can provide finite sample improvements over both OLS and WLS. However, the asymptotic variance of

the ALS estimator can still exceed that of the OLS estimator when the regression error is conditionally

heteroskedastic and the parametric model used to capture conditional variance is misspecified. This is

because the ALS estimator is not designed for any kind of asymptotic optimality in such cases. DiCiccio

et al. (2019) address this issue of lack of optimality by setting the focus on asymptotic variance of estimator

of a given component of the parameter vector and choosing accordingly between OLS and WLS or some
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optimal linear combination of these two.

In our paper, we wish to further advance the dissenting view of Romano and Wolf (2017) and others

on the neglect of WLS by proposing a Targeted parametric WLS (TWLS) estimator that takes a direct

route to optimality. The key idea is twofold:

On the one hand, we follow DiCiccio et al. (2019) to acknowledge the need of targeting a univariate

function of the unknown parameters to define our optimality criterion.

On the other hand, by contrast with DiCiccio et al. (2019), we do not limit the search for optimality

to a choice between OLS and WLS. Since there is in general no strong argument to assume that the

parametric heteroskedasticity model is well-specified, observations reweighting should be given by an

estimated skedastic function that is simply chosen for the sake of minimization of the asymptotic variance

of the estimator of the target. The goal is accurate estimation of the target and not necessarily optimal

approximation of the true skedastic function. It is worth noting that we are not the first to follow this

route. In an important but unfortunately overlooked in the empirical literature paper, Cragg (1992)

proposed to minimize over the heteroskedasticity parameters the trace or determinant of the asymptotic

variance of the corresponding version of the weighted least squares estimator (different from standard

WLS) of the regression parameters.

While Cragg (1992) does not discuss it, his minimization strategies of trace or determinant correspond

respectively to the well-known notions of A and D optimality in the Design of Experiments literature.

More generally, several concepts of optimality including E-optimality, L-optimality, etc. are compared

in Kiefer (1974) who states a “General Equivalence Theory for Optimum Designs”. Resorting to such

targets in our context is a possibly appealing compromise due to the fact that, unless the parametric

heteroskedasticity model is well-specified, there is no guarantee of existence of a minimized asymptotic

variance matrix for the full vector of regression parameters. However, without that existence, for some

of the regression coefficients, the standard errors from using Cragg (1992) may exceed that from using

standard WLS, and it is evident in hindsight that A-optimality, D-optimality and other similar notions

may not be attractive in empirical work. This is the reason why, while we remain true to Cragg’s idea to

optimize over heteroskedasticity parameters the estimation accuracy of a one-dimensional target, we argue

that this target must be suggested by structural ideas (like estimation of a slope coefficient or others)

rather than from the optimum designs literature.

It is worth noting that our concept of targeted estimation is germane with the strategy put forward

by van der Laan and Rubin (2006) for “Targeted Maximum Likelihood Learning”. While they stress that

“the density estimator was targeted to be a good estimator of the density and might therefore result in

a poor estimator of a particular smooth function of the density”, we echo their remark in the case of

WLS. While WLS was targeted to a be a good estimator of the vector of regression parameters in case

of a well-specified parametric model of the skedastic function, it might result in a poor estimator of a

particular smooth function of the regression parameters when the heteroskedasticity model is misspecified.
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We address this issue of optimizing the asymptotic variance of the estimator of a scalar target in three

ways that are, roughly speaking, in increasing order of efficiency but also of computational complexity.

A common feature of all the estimators we consider is to refer to some given user-specified parametric

model for heteroskedasticity, where the skedastic function is a known function of observations and of a

vector γ ∈ Γ ⊂ Rdγ of unknown parameters. To fix ideas without introducing too many notation at this

point, for any generic parameter let us denote by WLS(γ) generically the weighted least squares estimator

computed with weights defined by the value γ of heteroskedasticity parameters. By this notation, the

standard/naive WLS will be WLS(γWLS) where γWLS is the value of γ that makes the user-specified

skedastic function the closest in terms of mean squared error to the true unknown skedastic function.

The first strategy is simply plugging in a Targeted WLS (TWLS) estimator, the term “Targeted”being

used to stress the fact that the choice of weights is target-driven by contrast with a naive use of WLS

that is based on matching with the observed heteroskedasticity.

The second strategy improves upon plug in estimators by considering all convex (or more generally

affine) combinations of plug in OLS and plug in alternative estimators WLS(γ). The idea of convex

combination (CC) of estimators has already been pushed forward by DiCiccio et al. (2019) who characterize

the most efficient CC of OLS and the naive WLS estimators. By contrast, as in the case of TWLS, here

also we do not limit ourselves to naive WLS. Our preferred TCC (Targeted CC) is obtained as a result of a

double optimization of asymptotic variance detailed in Section 4. The key idea is first, for given WLS(γ),

to define an optimal convex combination with OLS, and second to choose optimally the heteroskedasticity

parameters γ entering this CC. By definition, our estimator must be not only at least as accurate in terms

of asymptotic variance as OLS (since OLS is one of the two inputs of the convex combination) but also

at least as accurate as naive WLS and also DiCiccio et al. (2019)’s CC estimator (since those estimators

correspond to one particular value γWLS).

It is worth acknowledging that, even though we improve upon DiCiccio et al. (2019) by considering as

one of the two inputs of the convex combination any estimator WLS(γ) (and not only naive WLS(γWLS)),

our estimator may still be suboptimal by remaining true to OLS as the second input of the combinaion. The

conditional moment restrictions that define the regression function allow one to define nonparametrically

optimal instruments that may be more closely proxied by convex combinations of estimators WLS(γ1)

and WLS(γ2) which do not include OLS. In this respect, this paper sets the focus on an approach that

may be suboptimal but always user-friendly since it is a direct correction to OLS.

Finally, following Chen et al. (2016), we also consider matrix extensions of convex/affine combinations

of estimators by considering matrix weights that sum to identity matrix.

Revisiting one of the main results of Chen et al. (2016) (see their Proposition 1, page 49), we show that

efficient matrix combinations is tantamount to efficient use by GMM of the complete set of valid moment

conditions at hands. As for previous estimators TWLS and TCC, the parameters γ for our WLS(γ) to

combine with OLS through GMM are chosen by minimization of the asymptotic variance of the GMM
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estimator of the target. Defined in this way, the efficient use of the complete set of moment conditions

delivers what we call TGMM (Targeted GMM) estimator. Our TGMM is shown to be asymptotically

the most efficient estimator but is flawed by some finite sample issues that may warrant a maintained

interest in TCC. In particular, our TGMM can be seen as a corrected version (and with modifications

delivering additional improvements) of an estimator recently proposed by Lu and Wooldridge (2020).

We put forward a necessary regularization to take into account the possibility of near-multicollinearity

between moment conditions when the data generating process is only slightly heteroskedastic.

Our three categories of estimators do not encompass the methodologies devised in papers like Gourier-

oux et al. (1996), Spady and Stouli (2019), Papadopoulosa and Tsionas (2021) and others who impose

some additional structure, like additional moment conditions, to propose alternative efficient estimators

in presence of heteroskedasticity of unknown form.

Our paper is organized as follows.

We define in Section 2 the concept of targeted estimation in the context of a regression model. We make

explicit the need of setting the focus on a given target parameter that we take as a smooth scalar function

of the regression coefficients. We characterize our TWLS, its feasible version and its asymptotic variance.

While the general simulation evidence and empirical illustrations for all estimators proposed in this paper

and their main contenders are presented in Appendix A, we present in Section 2 a small scale Monte

Carlo work to compare the finite sample performance of our TWLS with Cragg’s D-optimal estimator.

We run this comparison in the context of DGP 2 of Romano and Wolf (2017) while the user-specified

heteroskedasticity model is given by a standard exponential affine skedastic function.

Section 3 follows Chen et al. (2016)’s general idea of estimating the parameters from just-identifying

subsets of the available moment conditions and then combining the resulting estimators in a linear fash-

ion. However, we address more thoroughly the comparison between affine combinations (with scalar

coefficients) and combinations with matrix coefficients. The analysis is provided in a general context of

moment estimation and illustrated with the case of weighted least square estimators.

We characterize in Section 4 our TCC estimator, its feasible version and its asymptotic variance. In

the same Monte Carlo setting as in Section 2, we compare the finite sample performance of our TCC with

two alternative CC estimators: ALS (Adaptive Least Squares) of Romano and Wolf (2017) and the MIN

estimator proposed by DiCiccio et al. (2019). We also compare with two machine learning estimators,

Support Vector Regression (SVR) and LASSO, that have been recently studied with the same DGP 2 of

Romano and Wolf (2017) by Gonzales Coya and Perron (2022).

Besides the general comparison between TCC and TGMM provided in Section 3, we show in Section

5 that the framework of efficient GMM is convenient to provide a practical way to get our TGMM

estimator. It also allows us to address several issues that appear to be important in practice (see also Lu

and Wooldridge (2020)). The efficient weighting matrix for GMM must be regularized to avoid asymptotic

explosion in case of near-homoskedasticity, that is due to near-singularity of the variance matrix of the

5



moment conditions. In addition, the lack of convexity of the objective function is addressed by bounding

the set of possible values of heteroskedastic parameters. We keep these parameters in a convenient ball

around the naive value γ̄ estimated by standard WLS. This provides a useful hedge against non-convexity

and in particular the perverse behaviour of weights that, as inversely related to conditional variance, may

be pushed to infinity for a spurious minimization of sum of weighted squared residuals.

Section 6 concludes. Appendix A provides an extensive numerical study of all the estimators using the

simulation designs and empirical examples from Romano and Wolf (2017) and Lu and Wooldridge (2020).

Technical discussions and proofs of results are collected in Appendix B.

2 Targeted estimation

2.1 The basic regression model

The linear model is of the form:

yi = x′iβ + ui (β) , i = 1, ..., n (1)

where β ∈ Rp is the vector of unknown parameters, the observed sample (yi, x
′
i)
n
i=1 is independent and

identically distributed, and the p explanatory variables components of xi are not redundant:

E [xix
′
i] is nonsingular.

As a result, the true unknown value β0 of regression parameters is well-defined by the conditional expec-

tation condition:

E[ui
(
β0
)
|xi] = 0. (2)

Remark 1: The asymptotic theory devised in this paper could be easily extended to the case of serial

dependence in the sequence ui
(
β0
)

= ui, i = 1, . . . , n. However, this possible extension is not very useful

since, in the case of serial dependence, it would be worthwhile to study not only the optimal re-weighting of

observations (as in this paper) but also to discuss improvements of estimators that take serial correlation

into account which is beyond the scope of this paper.

Remark 2: The various strategies of improvement of estimators accuracy based on a user-specified

parametric model for heteroskesdasticity apply not only to the linear regression model:

E[yi − x′iβ |xi] = 0

but also to the nonlinear regression model:

E[yi −m(xi, β) |xi] = 0
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where m (., .) is a known scalar function and to the IV regression model:

E[yi − x′iβ |zi] = 0

where zi is a vector of instrumental variables able to identify the IV regression parameters β. Of course,

in this latter case, conditional heteroskedasticity of the error term ui
(
β0
)

= yi−x′iβ0 must be understood

given zi. We will consider in Section 3 an even more general framework of averaging a number of moment

conditions estimators as in Chen et al. (2016).

While setting the focus on the regression model (1), we define the true skedastic function as the

non-random function:

E
[
u2
i (β

0)|xi
]

= ω2
0 (xi) > 0.

On the other hand, the user’s model of the true skedastic function ω2
0 (xi) is given by a parametric

family:

ω2 (xi, γ) > 0, γ ∈ Γ ⊂ Rdγ . (3)

As is standard, we will always assume that this family nests the case of conditional homoskedasticity;

e.g., the parameter γ satisfies this condition if all entries except for the first one are equal to zero, i.e.,

there exist γhom =
(
γhom

1 , 0, ..., 0
)′ ∈ Γ such that ω2

(
xi, γ

hom
)
≡ ω2

hom.

Examples: Following the extant literature, Romano and Wolf (2017) point out the three parametric

families below (Ex 1, 2 and 3) that can be seen as the user’s model of conditional heteroskedasticity. It

is important to keep in mind that none of these families is assumed to contain the true Data Generating

Process (DGP). Let xi = (xi,1, . . . , xi,p)
′ with xi,1 = 1.

Ex1: ω2 (xi, γ) = exp

γ1 +

p∑
j=2

γj log (|xi,j |)

 ,

Ex2: ω2 (xi, γ) = γ1 +

p∑
j=2

γj |xi,j | ,

Ex3: ω2 (xi, γ) = exp

γ1 +

p∑
j=2

γjxi,j

 .

2.2 Weighted Least Squares

For any γ ∈ Γ we define a weighted-by-ω2 (xi, γ) estimator of β as:

β̂ (γ) =

(
n∑
i=1

xix
′
i

ω2 (xi, γ)

)−1 n∑
i=1

xiyi
ω2 (xi, γ)

. (4)
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Under standard regularity conditions,
√
n
(
β̂ (γ)− β0

)
is asymptotically normal with asymptotic vari-

ance matrix Σβ (γ) given by the sandwich formula:

Σ
(
β0, γ

)
=

(
E

[
xix
′
i

ω2 (xi, γ)

])−1

E

[
xix
′
iω

2
0 (xi)

ω4 (xi, γ)

](
E

[
xix
′
i

ω2 (xi, γ)

])−1

. (5)

Remark: The parametric model (3) for conditional heteroskedasticity is defined as well-specified if and

only if for some parameter value γ0 ∈ Γ:

ω2
(
xi, γ

0
)

= ω2
0 (xi) . (6)

In this case:

Σ
(
β0, γ0

)
=

(
E

[
xix
′
i

ω2 (xi, γ0)

])−1

� Σ
(
β0, γ

)
,∀γ ∈ Γ

with the notation A� B for meaning “B−A positive semi-definite”. Note that it is the case in particular

if ui
(
β0
)

is conditionally homoskedastic. In this case, γ0 = γhom and ω2
(
xi, γ

0
)

= ω2
hom = ω2

0(xi).

As already explained, our focus of interest is precisely the case when there is some conditional het-

eroskedaticity and the parametric model for heteroskedasticity is misspecified, meaning that we cannot

define a true unknown value γ0 as the solution of (6). We can only define a pseudo-true value, denoted

by γWLS , as solution of:

γWLS = arg min
γ∈Γ

E
[(
ω2

0 (xi)− ω2 (xi, γ)
)2]

= arg min
γ∈Γ

E
[(
u2
i

(
β0
)
− ω2 (xi, γ)

)2]
. (7)

The notation is motivated by the fact that the standard definition of (infeasible) WLS (see, e.g.,

Romano and Wolf (2017)) corresponds to β̂ (γWLS) while a feasible version is given by β̂ (γ̂WLS) for any

consistent estimator γ̂WLS of γWLS , for instance obtained by a sample counterpart of the minimization

program (7), with ui
(
β0
)

replaced by the OLS residual ûi.

It is however worth keeping in mind than when the first minimization in (7) does not provide a value

function equal to zero (that is when the heteroskedasticity model is misspecified), there is no strong

argument in favor of the choice of the value γWLS of γ. Ideally, one would like to define an optimal value

γ∗ such that:

Σ
(
β0, γ∗

)
≤ Σ

(
β0, γ

)
,∀γ ∈ Γ. (8)

However, except in the well-specified case (then γ∗ = γ0), such an optimal value γ∗ does not exist

in general, and there is no compelling argument to consider that γWLS is “closer to optimality” than

contenders. The only way to escape this deadlock will be to replace the matrix-minimization problem (8)

by a program of minimization of a scalar function. This will be the purpose of the next subsection.

Remark: We keep the terminology WLS for the estimator β̂ (γWLS). An estimator β̂ (γ) for some user-
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specified value of γ, leading to weights ω2 (xi, γ) in (4), will be dubbed “User-specified WLS” (UWLS)

and, when computed with our preferred value of γ (see below) “Targeted WLS” (TWLS).

2.3 Targeted Regression

As explained above, we need to set the focus on estimation of a parameter of interest that is a known and

univariate smooth function of β:

h = h(β), β ∈ Rp.

We consider substitution estimators based on UWLS estimators β̂(γ) of β:

ĥ(γ) = h(β̂(γ)).

All these estimators are consistent for h(β0) and their asymptotic variance is given by:

σ2
h(β0, γ) = δ′

(
β0
)

Σ(β0, γ)δ
(
β0
)
, δ (β) =

∂h(β)

∂β
. (9)

As pointed out by Cragg (1992), the estimator WLS (or a feasible version based on γ̂WLS) “can lead to

larger diagonal elements of Σ(β0, γ) than those of OLS”. In other words, defining as “target of interest”

a specific component of the vector β (i.e., with a vector δ having all its components equal to 0 except one

equal to 1), it is not optimal to use the supposedly optimal estimator h(β̂(γ̂WLS)). This direct plugging

in of the WLS estimator γ̂WLS is actually theoretically inferior to other more targeted estimators of the

parameter of interest. While this concept of targeted estimator had been put forward by van der Laan

and Rubin (2006) in the context of maximum likelihood, because “substitution estimators will often fail

to be asymptotically efficient due to the bias caused by the curse of dimensionality”, misspecification

of the user-specified model of the skedastic function also points out the need of considering alternative

substitution estimators. For example, Cao et al. (2009) take a similar strategy in the context of doubly

robust estimation under the assumption that one set of nuisance parameters is correctly specified.

Surprisingly, while as quoted above, Cragg (1992) was concerned by estimation of specific components

of β, he did not choose to minimize the asymptotic variance of a specific component but rather an aggregate

of the asymptotic variances of all the components of β, aggregate that could be either the determinant or

the trace of the variance matrix Σ(β0, γ).

More generally, our TWLS for a target h(β) will be defined as a feasible version of h(β̂(γ∗h)) with:

γ∗h = arg min
γ∈Γ

σ2
h(β0, γ).

Remark: Formulas (5) and (9) clearly show that TWLS is seeking for an optimal tradeoff between two

objective functions. On the one hand, the first objective function (similar in spirit to WLS, albeit with a
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different loss function) tries to choose γ in order that ω2(xi; γ) tracks as accurately as possible the true

skedastic function ω2
0(xi). This first objective function does not depend on the target, as summarized

by δ. On the other hand, a second objective function heavily depends on the target δ through a norm

of the vector E
[

xix
′
i

ω2(xi;γ)

]−1

δ. While this second objective function does not play any role in the case

of a well-specified heteroskedasticity model (ω2(xi; γ
∗) = ω2

0(xi)), it is more and more at stake when the

heteroskedasticity model becomes more misspecified.

2.4 Feasible TWLS

The first task is to estimate for any (β, γ) ∈ Rp × Γ the asymptotic variance matrix:

Σ(β0, γ) = B−1
2 (γ)V22(β0, γ)B−1

2 (γ)

where:

B2(γ) = E

[
xix
′
i

ω2(xi; γ)

]
and V22(β0, γ) = E

[
xix
′
iω

2
0(xi)

ω4(xi; γ)

]
.

The notations B2(γ) and V22(β0, γ) have been chosen to be consistent with the definition by blocks of the

following two bigger matrices defined in Section 4:

B(γ) = [B1(γ), B1(γ)] and V (β0, γ) =

 V11(β0, γ) V12(β0, γ)

V21(β0, γ) V22(β0, γ)

 .
Under standard regularity conditions, we have consistent estimators (uniformly in γ ∈ Γ):

B̂2,n(γ) =
1

n

n∑
i=1

1

ω2(xi; γ)
xix
′
i
P−→ B2(γ)

V̂22,n(γ) =
1

n

n∑
i=1

(yi − x′iβ̂OLS)2

ω4(xi; γ)
xix
′
i
P−→ V22(β0, γ).

Note that, while the consistency of the estimator B̂2,n(γ) is simply implied by the uniform law of large

numbers, the consistency of V̂22,n(γ) can be seen as a consequence of (uniform) consistency of an Eicker-

White estimator when the vector xi of explanatory variables is replaced by the pseudo-sphericized one

x̃i(γ):

x̃i(γ) =
1

ω2(xi, γ)
xi =⇒ V̂22,n(γ) =

1

n

n∑
i=1

(yi − x′iβ̂OLS)2x̃i(γ)x̃′i(γ).

We can then define:

σ̂2
h(β, γ) =

∂h(β)

∂β′
[B̂2,n(γ)]−1V̂22,n(γ)[B̂2,n(γ)]−1 ∂h(β)

∂β
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and a consistent estimator of the targeted γ:

γ̂h,TWLS = arg min
γ∈Γ

σ̂2
h(β̂OLS , γ).

Thus, we obtain our feasible TWLS estimator:

ĥTWLS ≡ h(β̂(γ̂h,TWLS))

and its estimated standard error:

seh,TWLS,n =

[
1

n
σ̂2
h(β̂OLS , γ̂h,TWLS)

]1/2

.

Remarks: Two important remarks are in order.

First, the calculation of the feasible TWLS implies that we plug in the estimator of γ∗h, denoted by

γ̂h,TWLS . One might be afraid that this additional source of randomness modifies the asymptotic variance

of our estimator, leading to moving target for minimization. However, as explained in more details in

Section 3, the fact that our regression equation (1)/(2) is defined by a conditional expectation (and not

just an L2 projection) ensures that the asymptotic variance of interest, σ2
h(β0, γ∗h), is not modified when

plugging in a consistent estimator of γ∗h for performing our targeted WLS.

Second, one might consider plugging in β̂(γ̂h,TWLS) instead of β̂OLS to compute the estimated standard

error seh,TWLS,n. By doing so, one may even imagine a kind of iterated TWLS. However, it is worth

keeping in mind that there is no reason to believe that β̂(γ̂h,TWLS) is a better estimator than β̂OLS to

estimate functions of β that are not the target h(β).

2.5 The importance of targeting

In accordance to the latter remark above, it is worth keeping in mind that, by definition, the optimal

weights for TWLS depend upon the target of interest. If one is interested in the complete set of regression

parameters β, one must indeed estimate each of them with different optimal weights. The result of the

regression would then come as follows:

yi = β̂1
(seβ1,TWLS,n)

+ β̂2
(seβ2,TWLS,n)

xi,2 + . . .+ β̂p
(seβp,TWLS,n)

xi,p + ûi,n

Of course, this way of presenting regression results overlooks the cross-correlation between estimators of

different components of β. But there is nothing new or restrictive in this respect by comparison with

standard practice of separate check of the Student t-values of each regression parameter. Of course, one

11



might also be interested in some out of sample prediction:

h(β) = β1 + β2xn+1,2 + . . .+ βpxn+1,p.

But, then, it defines a new target for estimation that must itself be treated as a target according to the

TWLS approach. Obviously, in this case, the alleged possible non-zero correlations between estimators of

different components of β will play a role.

We now provide a simple numerical example (inspired by Romano and Wolf (2017)) to display the

quantitative impact of targeting.

Example: Regression model: yi = β1 + β2xi + ui where (xi, ui) is i.i.d. with xi ∼ Uniform(1, 4)

and ui|xi ∼ N(0, ω2
0(xi)) for i = 1, 2, . . . , n. We consider three possible DGPs in increasing order of

magnitude of conditional heteroskedasticity: ω2
0(xi) = (log(xi))

2j
for j = 1, 2, 3, while the user-specified

heteroskedasticity model is misspecified and given by the popular exponential affine form: ω2(xi, γ) =

exp(γ1 + γ2xi). We compare by Monte Carlo (across 10000 trials) the average standard errors (SE) of

three estimators of the intercept parameter β1 and the slope parameter β2:

� the WLS estimator (as a benchmark),

� the D-optimal estimator of Cragg (1992) (ratio of its SE to the one of WLS),

� our TWLS estimator for β1 and β2 (ratio of its SE to the one of WLS).

The results for sample sizes n = 50, 100, 200, 400 respectively are given in Table 1 below.

β1 β2

n ω2
0(x) = (log(x))2 ω2

0(x) = (log(x))4 ω2
0(x) = (log(x))6 ω2

0(x) = (log(x))2 ω2
0(x) = (log(x))4 ω2

0(x) = (log(x))6

Cragg TWLS Cragg TWLS Cragg TWLS Cragg TWLS Cragg TWLS Cragg TWLS
50 .924 .906 .935 .843 .773 .519 1.032 .975 1.076 .921 .826 .594
100 .909 .899 .856 .798 .910 .490 1.017 .980 .961 .914 .933 .566
200 .950 .934 1.008 .783 1.270 .476 1.000 .991 1.006 .909 1.201 .542
400 1.009 .930 1.272 .784 1.767 .493 1.004 .992 1.151 .917 1.533 .563

Table 1: Ratios of the standard errors of Cragg’s estimator and TWLS with respect to that of WLS. A ratio
smaller than one implies the concerned estimator is more precise than WLS. Similar ratios of the means
squared errors have similar values.

Then, three main conclusions are in order.

First, although Cragg’s estimator is targeted, the fact that its target is the determinant of the variance

matrix of the estimator of β = (β1, β2) leads to estimators of the intercept and the slope that are actually

worse than the un-targeted WLS in almost half (5/12) of the cases for both β1 and β2 and in three

quarter (9/12) of the cases for β2 alone. Moreover, it is worrying to notice that it is for the larger sample

sizes (n = 200 or 400) that Cragg’s relative performance with respect to WLS deteriorates a lot when

conditional heteroskedasticity is made more severe.
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Second, the results for TWLS are much more encouraging. It always performs better than both Cragg

and WLS. Moreover, it is compelling to notice that the comparative advantage of TWLS with respect to

WLS increases significantly when conditional heteroskedasticity is made more severe.

Third, for moderate heteroskedasticity, WLS does a job almost as good as TWLS. There is not much

room for improvement on WLS in this case. An interpretation of that result is to remember that the

value γWLS of the parameter γ used for WLS is actually such that ω2(x, γWLS) is the best possible

approximation of the true skedastic function. It is not surprising to find that for smooth enough variations

of the skedastic function, that function can be satisfactorily tracked by the misspecified exponential affine

heteroskedasticity model.

3 Combining Estimators

As discussed in Section 2, for any user-specified value γ of heteroskedasticity parameters, we can define a

UWLS estimator β̂ (γ). This estimator can be interpreted as a GMM estimator provided by the following

just-identified set of moment conditions:

E

[
xi

ω2 (xi, γ)
(yi − x′iβ)

]
= 0.

β̂ (γ) is a consistent estimator of β0 with asymptotic variance Σ
(
β0, γ

)
. Beyond the TWLS estimator

h
(
β̂ (γ∗h)

)
defined in Section 2, it may make sense, for the sake of asymptotic variance minimization, to

build new estimators by convex combinations (CC) of plug-in UWLS estimators h
(
β̂ (γ)

)
for different

values of γ ∈ Γ. As announced in the Introduction, we will consider only CC of two such estimators. We

first discuss such CC of estimators in the general setting of just-identified sets of moment conditions.

3.1 A general framework

We consider two sets of just-identified moment conditions that both identify the true unknown value β0

of a p dimensional parameter vector β.

� A first set of p moments conditions identifies β0:

E[g1(yi, xi;β)] = 0 ⇐⇒ β = β0.

This first set of moments may for instance be orthogonality conditions for OLS, UWLS, two stage

least squares (2SLS) or nonlinear least squares (NLLS). In the UWLS case, for some given value γ1

of the heteroskedasticity parameters:

g1(yi, xi;β) =
xi

ω2 (xi, γ1)
(yi − x′iβ) . (10)
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� A second set of p moments conditions also identifies β0:

E[g2(yi, xi;β)] = 0 ⇐⇒ β = β0.

This second set may for instance re-weight differently orthogonality conditions through another value

γ2 of the heteroskedasticity parameters:

g2(yi, xi;β) =
xi

ω2 (xi, γ2)
(yi − x′iβ) (11)

Since the two sets of moment conditions are just-identified, each of them defines without ambiguity a

GMM estimator as follows:

β̂(j) = arg min
β
‖ḡj,n(β)‖, j = 1, 2

where:

ḡj,n(β) =
1

n

n∑
i=1

gj(yi, xi;β).

We maintain throughout the standard assumptions for the asymptotic theory of GMM. In particular,

since the two sets of moment conditions are just-identified, we are led to assume that the two Jacobian

matrices:

Gj = Gj(β
0) where Gj(β) = E

[
∂

∂β′
gj(β)

]
, j = 1, 2

are non-singular matrices. As a consequence, we have asymptotically a one-to-one mapping between the

GMM estimators and the corresponding sample moments:

√
n(β̂(j) − β0) = − [Gj ]

−1√
nḡj,n(β0) + op(1). (12)

In all this section, we will run affine regressions based on the joint asymptotic normal distribution of[√
n(β̂(j) − β0)

]
1≤j≤2

implied by the central-limit theorem:

 √nḡ1,n(β0)
√
nḡ2,n(β0)

 d−→ ℵ
(
0,Ω = Ω(β0)

)
where Ω (β) =

 Ω11 (β) Ω12 (β)

Ω21 (β) Ω22 (β)

 .
3.2 Convex combinations of estimators

As already announced, we dub CC estimators all estimators which, extending an initial proposal of

DiCiccio et al. (2019), are based on a convex combination (CC) of the two GMM estimators and thus can

be written as:

ĥλ = (1− λ)h(β̂(1)) + λh(β̂(2))
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for some λ ∈ R. Note that we do not introduce any sign constraint on the scalar weight λ, so that the

terminology “convex combination” is an abuse of language and we should rather say “affine combination”.

Asymptotically:

√
n
(
ĥλ − h(β0)

)
=
√
n
(
h(β̂(1))− h(β0)

)
− λ
√
n
(
h(β̂(1))− h(β̂(2))

)
(13)

=
√
nδ′(β̂(1) − β0)− λ

√
nδ′(β̂(1) − β̂(2)) + op(1)

where:

δ = δ
(
β0
)

and δ(β) =
∂

∂β
h (β) .

Hence, we minimize the asymptotic variance of ĥλ by choosing λ = λ∗(h) that is the asymptotic regression

coefficient in the regression of
√
nδ′(β̂(1) − β0) on

√
nδ′(β̂

(1)
n − β̂(2)

n ):

λ∗(h) = lim
n→∞

δ′Cov
(
β̂(1), β̂(1) − β̂(2)

)
δ

δ′V ar
(
β̂(1) − β̂(2)

)
δ

.

The optimal CC estimator of the target h(β) is thus:

ĥλ∗(δ) = [1− λ∗(h)]h(β̂(1)) + λ∗(h))h(β̂(2)).

It leads us to our first result.

Proposition 1 The optimal TCC (targeted CC) estimator of h(β) based on the couple of estimators(
β̂(1), β̂(2)

)
is given by:

ĥλ∗(h) = [1− λ∗(h)]h(β̂(1)) + λ∗(h)h(β̂(2))

with:

λ∗(h) = lim
n→∞

δ′Cov
(
β̂(1), β̂(1) − β̂(2)

)
δ

δ′V ar
(
β̂(1) − β̂(2)

)
δ

.

Remark 1: The asymptotic expansion in (13) shows that we can also interpret our CC estimators as

follows:

√
n
(
ĥλ − h(β0)

)
=
√
nδ′
[
(1− λ)β̂(1) + λβ̂(2) − β0

]
+ op(1)

=
√
n
{
h
(

(1− λ)β̂(1) + λβ̂(2)
)
− h

(
β0
)}

+ op(1).

In other words, the CC estimator can also be interpreted as a plug-in estimator where it is a convex

combination
[
(1− λ)β̂(1) + λβ̂(2)

]
of the two estimators of β that is plugged in.

Remark 2: The proof of Proposition 1 (see Appendix B) shows that the optimal TCC estimator based
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on
(
β̂(1), β̂(2)

)
is h

(
β̂(1)

)
, for all possible target h (β), if and only if:

Cov
(
β̂(1), β̂(1) − β̂(2)

)
= 0

that is, by virtue of (12) and with obvious simplified notations:

Cov
(
g1, G

−1
1 g1 −G−1

2 g2

)
= 0.

Elementary calculation (see proof of Proposition 1 in Appendix B) shows that this property is tanta-

mount to the identity:

G2 = Ω21Ω−1
11 G1. (14)

Breusch et al. (1999) have shown that the condition (14) characterizes the fact that the set of moment

conditions g2 is “redundant” with respect to g1, meaning that the complete set (g1, g2) of moment con-

ditions does not deliver a GMM estimator (asymptotically) more accurate than β̂(1). It is not surprising

to find that this condition characterizes the case where CC based on the couple of estimators
(
β̂(1), β̂(2)

)
does not deliver better estimators (of any target) than estimators based on β̂(1) only.

Example: In the UWLS (10)/(11) example:

Ω11 = E

[
xix
′
iω

2
0 (xi)

ω4 (xi, γ1)

]
, Ω21 = E

[
xix
′
iω

2
0 (xi)

ω2 (xi, γ1)ω2 (xi, γ2)

]
.

Let us consider the particular case where the user-specified heteroskedasticity model matches perfectly

the true skedastic function for the value γ1 of the heteroskedasticity parameter:

ω2
0 (xi) ≡ ω2

(
xi, γ

1
)
.

In this case:

Ω11 = E

[
xix
′
i

ω2 (xi, γ1)

]
= −G1 and Ω21 = E

[
xix
′
i

ω2 (xi, γ2)

]
= −G2

so that the condition (14) is automatically fulfilled. This is relevant for our study in two cases:

1st case: The user-specified heteroskedasticity model is well–specified so that γWLS = γ1 and β̂(1) =

β̂ (γWLS) is the optimal WLS estimator. In this case, there is no relevant additional information for

estimation of β brought by any other UWLS estimator β̂ (γUWLS).

2nd case: β̂(1) = β̂OLS is the OLS estimator and this estimator is optimal because the DGP is

homoskedastic: ω2
0 (xi) ≡ ω2

hom. In this case, irrespective of the heteroskedasticity model, there is no

relevant additional information for estimation of β brought by any other UWLS estimator β̂ (γUWLS).
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Remark 3: The concept of CC is more obvious when the two estimators β̂(1)and β̂(2) are asymptotically

independent. Then:

λ∗(h) = lim
n→∞

V ar
(
δ′β̂(1)

)
V ar

(
δ′β̂(1)

)
+ V ar

(
δ′β̂(2)

) .
In this case, λ∗(h) is a weight in [0, 1] that gives more weight to β̂(1) (resp. to β̂(2)) if and only if the

plug-in variance V ar
(
δ′β̂(1)

)
is smaller (resp. larger) than V ar

(
δ′β̂(2)

)
.

Note that, by virtue of (12), the asymptotic independence of β̂(1) and β̂(2) is tantamount to the

asymptotic independence of the moment functions
√
nḡ1,n(β0) and

√
nḡ2,n(β0). One may even consider

that this condition can be maintained without loss of generality, since one can replace the second set
√
nḡ2,n(β0) of moment conditions by a set

√
nḡ2/1,n(β0) that has been previously orthogonalized with

respect to
√
nḡ1,n(β0) :

√
nḡ2/1,n(β) =

√
nḡ2,n(β)− Ω21Ω−1

11

√
nḡ1,n(β).

However, for these moment conditions, the Jacobian matrix is:

G2/1 = G2 − Ω21Ω−1
11 G1.

Of course, this Jacobian matrix is nil in the case (14) of redundant moment conditions. By contrast, in

many circumstances (see e.g. the example below), we can assume that the matrix G2/1 is non-singular,

such that our general theory of CC applies to orthogonal moment functions
√
nḡ1,n(β0) and

√
nḡ2/1,n(β0).

Example: Let us consider the UWLS (10)/(11) example in the case of a well-specified heteroskedasticity

model, with γ1 = γhom and γ2 = γWLS . Then:

G2 = −E
[

xix
′
i

ω2 (xi, γWLS)

]
= −E

[
xix
′
i

ω2
0 (xi)

]
.

[−G2]
−1

is the variance matrix of the WLS estimator. On the other hand:

Ω21Ω−1
11 G1 = −E

[
xix
′
iω

2
0 (xi)

ω2 (xi, γWLS)ω2
hom

]{
E

[
xix
′
iω

2
0 (xi)

ω4
hom

]}−1

E

[
xix
′
iω

2
0 (xi)

ω2
hom

]
= −E [xix

′
i]
{
E
[
xix
′
iω

2
0 (xi)

]}−1
E [xix

′
i] .

[
−Ω21Ω−1

11 G1

]−1
is the variance matrix of the OLS estimator. Therefore, the WLS estimator a′β̂ (γWLS)

is strictly more accurate than the OLS estimator a′β̂
(
γhom

)
for any linear combination a′β if and only

if the matrix G2/1 =
[
G2 − Ω21Ω−1

11 G1

]
is negative definite. Hence, it is reasonable to maintain the

assumption that the matrix G2/1 is nonsingular.

Remark 4: As exemplified in Section 3.1, we may be led to consider moment conditions that are indexed

by some nuisance parameters γ ∈ Γ. While the notations did not make explicit the dependence on γ, we
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can for instance revisit the second set of moment functions as:

g2 (yi, xi, β) = g2 (yi, xi, β, γ) .

In particular, for our regression application:

g2 (yi, xi, β, γ) =
xi

ω2 (xi, γ)
(yi − x′iβ) . (15)

We then want to resort to a condition of local robustness: replacing in g2 () a specific value γ̄ of nuisance

parameters by a
√
n-consistent estimator γ̂ (

√
n (γ̂ − γ̄) = OP (1)) has no impact on the asymptotic

distribution of any GMM estimator of β based on moment conditions including:

E [g2 (yi, xi, β)] = 0⇐⇒ β = β0.

This robustness property will be necessary for defining feasible versions of optimal CC estimators by

using a first step consistent estimator of γ that will have no effect.

The standard assumption to ensure this robustness is:

E

[
∂

∂γ′
g2

(
yi, xi, β

0, γ
)]

= 0,∀γ ∈ Γ. (16)

It is the simplest case of Chernozhukov et al. (2022). It is obvious that the robustness condition (16) is valid

for our regression example (15), insofar as we maintain the assumption of zero conditional expectation:

E[yi − x′iβ0 |xi] = 0.

It is also the case if one wants to extend our study to 2SLS or NLLS.

3.3 Matricial Combinations of Estimators

Following Chen et al. (2016), we introduce MCC (Matricial CC) estimators. While Remark 1 above has

shown that our CC estimators can be interpreted as plugging in the target h(β) an estimator of β that is

a convex combination of β̂(1) and β̂(2), we now consider the possibility to plug in a matrix combination

of estimators by considering:

β̂A = (Ip −A)β̂(1) +Aβ̂(2)

for any square matrix A of size p.

Hence, we minimize the asymptotic variance matrix of
√
nβ̂A by choosing A = A∗ that is the matrix

of regression coefficients in the asymptotic regression of
√
n(β̂(1) − β0) on

√
n(β̂

(1)
n − β̂(2)

n ):

A∗ = lim
n→∞

Cov
(
β̂(1), β̂(1) − β̂(2)

) [
V ar

(
β̂(1) − β̂(2)

)]−1

.
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It leads us to our second result.

Proposition 2 The optimal TMCC (targeted matricial CC) estimator of h(β) based on the couple of

estimators
(
β̂(1), β̂(2)

)
is given by:

ĥA∗ = h
(

(Ip −A∗)β̂(1) +A∗β̂(2)
)
.

Remark 5: An asymptotic expansion shows that we can also interpret our TMCC estimator as follows:

√
n
[
ĥA∗ − h

(
β0
)]

=
√
nδ′
(
β0
){

(Ip −A∗)β̂(1) +A∗β̂(2) − β0
}

+ oP (1)

=
√
nδ′
(
β0
)

(Ip −A∗)
(
β̂(1) − β0

)
+
√
nδ′
(
β0
)
A∗
(
β̂(2) − β0

)
+ oP (1) .

This expansion does not allow to interpret the TMCC estimator ĥA∗ as a CC estimator. It is only if the

vector δ
(
β0
)

is an eigenvector of the matrix A∗′ with an eigenvalue λ∗, that we can write:

√
n
[
ĥA∗ − h

(
β0
)]

=
√
nδ′
(
β0
) [

(1− λ∗)β̂(1) + λ∗β̂(2) − β0
]

+ oP (1)

=
√
n
[
h
(

(1− λ∗)β̂(1) + λ∗β̂(2)
)
− h

(
β0
)]

+ op(1).

This result suggests that the set of CC estimators is a strict subset of the set of MCC estimators. Therefore,

we expect in general that no CC estimator of the target h (β) can be asymptotically as accurate as the

TMCC estimator, except when the target is such that its gradient vector (computed at the true value of

β) is an eigenvector of the matrix A∗
′
.

Remark 6: The case (in some sense without loss of generality as explained in Remark 3) of asymptotically

independent estimators β̂(1) and β̂(2) is helpful to figure out the efficiency gain obtained by moving from

TCC to TMCC. In this case:

A∗ = lim
n→∞

V ar
(
β̂(1)

) [
V ar

(
β̂(1)

)
+ V ar

(
β̂(2)

)]−1

.

For the sake of notational simplicity, we will write hereafter in this remark asymptotic (co)variances

without the lim symbol. The asymptotic expansion in Remark 5 shows that asymptotically the TMCC

estimator ĥA∗ depends on the matrix A∗ only through:

A∗′δ =
[
V ar

(
β̂(1)

)
+ V ar

(
β̂(2)

)]−1

V ar
(
β̂(1)

)
δ. (17)

Therefore, the eigenvector condition discussed in Remark 5 to make TCC and TMCC estimators asymp-

totically equivalent is tantamount to imposing that (17) can be rewritten as:

[
V ar

(
β̂(1)

)
+ V ar

(
β̂(2)

)]
λ∗δ = V ar

(
β̂(1)

)
δ. (18)
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When left-multiplying this condition by δ′, we see that λ∗ must be the weight elicited by TCC. However,

this necessary condition is obviously not sufficient in general to ensure the eigenvalue conditions (18).

This simply confirms that, in general, no CC estimator can be asymptotically as accurate as the TMCC.

Remark 7: An alternative estimation strategy would be to estimate β by over-identified GMM based on

the two sets of moment conditions ḡn(β) = [ḡ′1,n(β), ḡ′2,n(β)]′ stacked together. For any given weighting

matrix, we would define a GMM estimator:

β̂ (W ) = arg min
β
ḡn(β)′Wḡn(β).

By standard asymptotic GMM theory:

√
n
[
β̂ (W )− β0

]
= − [G′WG]

−1
G′W

√
nḡn(β0) + oP (1) (19)

with:

G = G
(
β0
)

and G(β0) =

 G1 (β)

G2 (β)

 .
Then, with obvious notations:

G′W
√
nḡn(β0) = [G′1W11 +G′2W21]

√
nḡ1,n(β0) + [G′1W12 +G′2W22]

√
nḡ2,n(β0)

= [G′1W11 +G′2W21]G1

√
n(β̂(1) − β0) + [G′1W12 +G′2W22]G2

√
n(β̂(2) − β0) + op(1).

We define a square matrix A(W ) of dimension p by:

Ip −A(W ) = [G′WG]
−1

[G′1W11 +G′2W21]G1.

With easy calculations, we can check that:

A(W ) = [G′WG]
−1

[G′1W12 +G′2W22]G2

so that the asymptotic expansion (19) of the GMM estimator can be rewritten:

√
n
[
β̂ (W )− β0

]
= [Ip −A(W )]

√
n(β̂(1) − β0) +A(W )

√
n(β̂(2) − β0) + op(1).

Therefore, for any weighting matrix W , the GMM estimator β̂ (W ) associated to this matrix is an

MCC estimator with a matricial weight A defined by A(W ) given above. Hence, the class of MCC

estimators asymptotically encompasses not only the CC estimators but also all GMM estimators based on

the complete set of moment conditions. Not surprisingly though, MCC does not allow us to beat efficient

GMM since we can prove the following result.

Proposition 3 The optimal TMCC estimator ĥA∗ is asymptotically equivalent to the optimal plug in
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GMM estimator h
(
β̂ (W ∗)

)
, that is computed with the optimal weighting matrix W ∗ =

[
Ω
(
β0
)]−1

.

Albeit implicitly contained in the general result of Chen et al. (2016), the result of Proposition 3 is

proved in Appendix B for the sake of self-containedness. While Chen et al. (2016) seem to suggest the

contrary, the proof shows that the validity of this result heavily rests upon the fact that we are combining

only just identified sets of moment conditions.

4 CC Estimators for the Regression Model

4.1 Adaptive convex combinations

Following the general Section 3.2, we revisit in this section all CC ĥλ of two GMM estimators β̂(1) and

β̂(2):

ĥλ = (1− λ)h
(
β̂(1)

)
+ λh

(
β̂(2)

)
. (20)

The focus of our interest is regression estimators:

(i) β̂(1) will always be the OLS estimator β̂OLS defined by the moment functions:

g1 (yi, xi, β) = xi (yi − x′iβ) ;

(ii) β̂(2) = β̂ (γ) is the UWLS estimator defined by the moment functions:

g2,γ (yi, xi, β) =
xi (yi − x′iβ)

ω2 (xi, γ)
.

Two adaptive CC estimators have been proposed in the extant literature. They both use γ = γWLS ,

meaning that they consider CC estimators that are adaptive mixtures of OLS ĥOLS = h
(
β̂OLS

)
and WLS

ĥWLS = h
(
β̂WLS

)
. Another more classical CC estimator has been proposed by DiCiccio et al. (2019),

again based on convex combination of OLS and WLS. We describe below the three existing estimators

in chronological order. To avoid confusion, it is worth stressing a fundamental difference between the

adaptive estimators and the CC and TCC estimators considered hereafter:

On the one hand, strictly speaking, the adaptive estimators do not belong to the category of convex

combination estimators defined by (20). The weight λ for convex combination will not be a given number

but a random variable for sake of adaptiveness.

On the other hand, the CC estimator of DiCiccio et al. (2019) is conformable to (20) with β̂(1) = β̂OLS

and β̂(2) = β̂WLS , but with a choice of weight λ that minimizes the asymptotic variance of ĥλ where

h (β) = βk for one specific component βk of β. This choice is obviously far from optimality in general.

Aiming to a minimum asymptotic variance for some given target h (β), our TCC estimator will be based

on the choice of a targetingly-optimal weight λ∗ (γ) for any given γ and eventually an optimal choice γ∗
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for γ, that does not coincide in general with γWLS .

4.1.1 The ALS estimator of Romano and Wolf (2017)

This estimator is dubbed adaptive least squares (ALS) because the final form of the estimator, OLS (λ = 0)

or WLS (λ = 1) adapts itself to the data at hand. The trick is to choose for λ the value χALSn of the

indicator function of a test of the null hypothesis H0 of conditional homoskedasticity:

χALSn = 1 ⇐⇒ H0 of conditional homoskedasticity is rejected.

We will choose in this paper to apply the Breusch and Pagan (1979) test of homoskedascity with an

user-specified heteroskedasticity model: ω2 (xi, γ) = exp (x′iγ) , xi,1 = 1. Koenker (1981) shows that a

correctly studentized version of the test statistic leads to asymptotically correct significance levels (and

a consistent test) under very general regularity conditions. Consistency of the test even does not require

studentization of the test and is actually sufficient (see Section 4.3 in Romano and Wolf (2017)) to show

that the WLS estimator ĥWLS is asymptotically efficient to the ALS estimator:

ĥALS =
(
1− χALSn

)
ĥOLS + χALSn ĥWLS .

However, since the ALS estimator coincides to simple OLS when the test of homoskedasticity does not

show a significant need to use WLS, one may expect better finite sample behaviour for ĥALS than for

ĥWLS . On the other hand, ALS may be less efficient than OLS under heteroskedasticity since ALS is

asymptotically equivalent to WLS which, when based on an incorrect model for conditional variance, can

be less efficient than OLS under heteroskedasticity.

4.1.2 The MIN estimator of DiCiccio et al. (2019)

Like for the ALS estimator, we can define a Bernoulli variable χMIN
n leading to the MIN estimator:

ĥMIN =
(
1− χMIN

n

)
ĥOLS + χMIN

n ĥWLS .

The binary variable χMn is defined by:

χMIN
n = 1 ⇐⇒ σ2

h

(
β0, γOLS

)
> σ2

h

(
β0, γWLS

)
where, for the sake of feasibility, we must replace asymptotic variances σ2

h

(
β0, γOLS

)
and σ2

h

(
β0, γWLS

)
by their consistent estimators. Note that this estimator generalizes the case of DiCiccio et al. (2019) since

they only consider the case of a target h (β) = βk for some given k = 1, . . . , p.
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4.1.3 The CC estimator of DiCiccio et al. (2019)

This estimator is defined by the CC:

ĥλCC =
(
1− λCC

)
h
(
β̂OLS

)
+ λCCh

(
β̂WLS

)

where the weight λCC is optimally chosen λ to minimize the asymptotic variance of ĥλ. To be more

explicit, we can now give the complete formulas of matrices whose blocks have already been used in

Section 2.4 for feasible TWLS. More precisely, we now consider the joint asymptotic variance of β̂OLS and

any given UWLS estimator β̂ (γ). Since:

√
n

 β̂OLS − β0

β̂ (γ)− β0

 =

 B−1
1,n 0

0 B−1
2,n (γ)

 1√
n


n∑
i=1

xiui

n∑
i=1

xiui
ω2 (xi, γ)


with:

B1,n =
1

n

n∑
i=1

xix
′
i and B2,n (γ) =

1

n

n∑
i=1

xix
′
i

ω2 (xi, γ)
,

the joint asymptotic variance is:

 Σ
(
β0, γhom

)
C12

(
β0, γ

)
C21

(
β0, γ

)
Σ
(
β0, γ

)
 =

 B−1
1 0

0 B−1
2 (γ)

V (β0, γ
) B−1

1 0

0 B−1
2 (γ)

′

with:

B1 = E [xix
′
i] , B2 (γ) = E

[
xix
′
i

ω2 (xi, γ)

]
and:

V
(
β0, γ

)
=

 V11

(
β0
)

= E
[
xix
′
iω

2
0 (xi)

]
V12

(
β0, γ

)
= E

[
xix
′
iω

2
0(xi)

ω2(xi,γ)

]
V21

(
β0, γ

)
= V12

(
β0, γ

)
V22

(
β0, γ

)
= E

[
xix
′
iω

2
0(xi)

ω4(xi,γ)

]
 .

Therefore, following Proposition 1 of Section 3, we get:

λCC =
δ′V ar

(
β̂OLS

)
δ − δ′Cov

(
β̂OLS , β̂WLS

)
δ

δ′V ar
(
β̂OLS

)
δ + δ′V ar

(
β̂WLS

)
δ − 2δ′Cov

(
β̂OLS , β̂WLS

)
δ

with:

V ar
(
β̂OLS

)
= Σ

(
β0, γhom

)
= B−1

1 V11

(
β0
)
B−1′

1

V ar
(
β̂WLS

)
= Σ

(
β0, γWLS

)
= B−1

2 V22

(
β0, γWLS

)
B−1′

2

Cov
(
β̂OLS , β̂WLS

)
= C12

(
β0, γWLS

)
= B−1

1 V12

(
β0, γWLS

)
B−1′

2 .

Following DiCiccio et al. (2019)’ Theorem 4.4 this optimal estimator is feasible in the sense that λCC
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can be replaced by any consistent estimator without modifying the asymptotic distribution of ĥλCC as

characterized above. To see that, we just note that for any consistent estimator λ̂ of any given λ ∈ [0, 1]:

√
n
[
ĥλ̂ − ĥλ

]
= oP (1) since

∂ĥλ
∂λ

= h
(
β̂WLS

)
− h

(
β̂OLS

)
= oP (1).

4.2 Nonparametric approaches

As already announced, we include in this section nonparametric extensions of UWLS, where “User-

specified WLS” is no longer based on a choice γ∗ of the parameter value γ that implies the choice ω2 (x, γ∗)

for the skedastic function but on a nonparametric estimation of the true skedastic function ω2
0(x).

Three preliminary remarks are in order.

First, one important reason why the extant literature has proposed adaptive convex combinations of

OLS and WLS is that the WLS estimator may be less efficient than OLS when the user-specified model of

heteroskedasticity is misspecified. In this respect, the nonparametric approach may be a valid alternative

to CC since it will not depart from OLS when the skedastic function is flat.

Second Gonzales Coya and Perron (2022) argue that machine learning strategies generally outperform

some classical nonparametric methods, applied in this context by Robinson (1987) (with Nearest Neighbor)

or Fan and Yao (1998) (with Local Linear smoothing). A clear advantage of machine learning is that it

does not require a tight pre-specification of the nature and number of covariates. Gonzales Coya and

Perron (2022) compare the performance of Support Vector Regression (SVR) as applied in this context

by Miller and Startz (2019) with Lasso. Gonzales Coya and Perron (2022) conclude that even though the

SVR approach is a close contender to Lasso, the latter is preferred in particular because it provides “a

sparse model with few non zero coefficients, which can inform us about the nature of the true skedastic

function”, while by contrast to the output of SVR lacks economic interpretation.

Third, while this issue is not addressed by Gonzales Coya and Perron (2022), it is worth realizing

that even though the Lasso strategy is popular because it allows as input variables an arbitrary number

of regressors, it may be problematic to include in the machine learning of the skedastic function some

variables z that are not deterministic functions of the explanatory variables x because it would assume

that the IV condition:

E [yi − x′iβ|zi] = 0,

which is a strong condition, is also fulfilled.

Following Gonzales Coya and Perron (2022), Lasso is the nonparametric method on which we set the

focus. Gonzales Coya and Perron (2022) propose an adaptive Lasso estimator of the skedastic function

with candidate inputs zi,j , j = 1, . . . , d, defined by the minimization over the vector γ of coefficients in:

1

2

n∑
i=1

log
(
û2
i

)
− γ0 −

d∑
j=1

γjzi,j

2

+ λA
d∑
j=1

ω̂j |γj | (21)
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where ûi, i = 1, . . . , n are OLS residuals, ω̂j = |γ̂j |−ψ , j = 1, . . . , d are adaptive weights, λA and ψ are two

tuning parameters selected via cross-validation, γ̂j , j = 1, . . . , d are first step
√
n-consistent estimators of

(γj)1≤j≤d. To get these first step estimators, Gonzales Coya and Perron (2022) resort to a first step Ridge

regression. Then, the adaptive Lasso estimator of regression parameters β proposed by Gonzales Coya

and Perron (2022) is the UWLS estimator obtained from the estimation of the skedastic function deduced

from the minimization of (21).

The performance of this adaptive Lasso estimator will be compared with CC estimators in Section 4.4.

We already note that none of these estimators is targeted towards the estimation of a specific function

h(β). For this reason, when the user-specified model for the skedastic function is misspecified, it should

be the case that a targeted CC estimator has a better performance. We note that even for machine

learning methods “the skedastic function is, in general, not consistently estimated” (as acknowledged

by Gonzales Coya and Perron (2022)), so that our TCC may outperform Lasso (see Section 4.4 for a

discussion). By the way, even within the framework of Gonzales Coya and Perron (2022), a more accurate

estimator of the target h(β) may be obtained by choosing tuning parameters λ and ψ according to the

asymptotic variance of the resulting estimator of h(β), instead of the skedastic function fitting (21).

4.3 Our targeted CC (TCC) estimator

By contrast with the CC estimator of DiCiccio et al. (2019), we consider any possible CC of the OLS

estimator and some UWLS estimator:

ĥλ = (1− λ)h
(
β̂OLS

)
+ λh

(
β̂ (γ)

)
.

From Proposition 1 of Section 3, we know that the optimal TCC estimator of h (β) based on the couple

of estimators
(
β̂OLS , β̂ (γ)

)
is ĥλ∗(γ) (note that with this notation, λCC ≡ λ∗(γWLS)) with:

λ∗ (γ) =
δ′V ar

(
β̂OLS

)
δ − δ′Cov

(
β̂OLS , β̂(γ)

)
δ

δ′V ar
(
β̂OLS

)
δ + δ′V ar

(
β̂(γ)

)
δ − 2δ′Cov

(
β̂OLS , β̂ (γ)

)
δ

and:

V ar
(
β̂OLS

)
= Σ

(
β0, γhom

)
= B−1

1 V11

(
β0
)
B−1′

1

V ar
(
β̂ (γ)

)
= Σ

(
β0, γ

)
= B−1

2 V22

(
β0, γ

)
B−1′

2

Cov
(
β̂OLS , β̂ (γ)

)
= C12

(
β0, γ

)
= B−1

1 V12

(
β0, γ

)
B−1′

2 .
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By construction, the variance of the estimator ĥλ∗(γ) is the residual variance:

δ′
{
V ar

(
β̂OLS

)
− (λ∗ (γ))

2
V ar

(
β̂OLS − β̂ (γ)

)}
δ

= δ′Σ
(
β0, γhom

)
δ − (λ∗ (γ))

2
δ′
{

Σ
(
β0, γhom

)
+ Σ

(
β0, γ

)
− 2C12

(
β0, γ

)}
δ.

Therefore, the TCC approach leads to choose γ = γTCC as the solution of:

γTCC = arg max
γ∈Γ

(λ∗ (γ))
2
δ′
{

Σ
(
β0, γhom

)
+ Σ

(
β0, γ

)
− 2C12

(
β0, γ

)}
δ. (22)

We note that to make this estimator feasible, we must get consistent estimators of the matrices B1,

B2 (γ), V11

(
β0
)
,V22

(
β0, γ

)
, and V12

(
β0, γ

)
. As already explained in Section 2.4 (for feasible TWLS), we

estimate:

(i) the matrices B1 and B2 (γ) by sample counterparts B1,n and B2,n (γ),

(ii) the matrices V11

(
β0
)
,V22

(
β0, γ

)
, and V12

(
β0, γ

)
by using in addition the principle of Eicker-White

estimators to prove consistency of estimators V11,n,V22,n (γ), and V12,n (γ).

When resorting to such consistent estimators, we eventually get consistent counterparts of the two key

quantities of TCC: (i) the maximization (22) leads to an estimated value γ̂TCC of γTCC ; and (ii) the

function λ∗ (γ) is consistently estimated by a function λ̂∗ (γ).

Then our final TCC estimator is:

ĥTCC =
[
1− λ̂∗ (γ̂TCC)

]
h
(
β̂OLS

)
+ λ̂∗ (γ̂TCC)h

(
β̂ (γ̂TCC)

)
.

This feasible version ĥTCC is asymptotically equivalent to the oracle estimator:

hTCC = [1− λ∗ (γTCC)] + λ∗ (γTCC)h
(
β̂ (γTCC)

)
.

To see that, we resort to: (i) the robustness to consistent estimation λ̂∗ (γ) of the optimal weight λ∗ (γ) as

already discussed in Section 4.1.3 for the CC estimator of DiCiccio et al. (2019); and (ii) the robustness

to consistent estimation of γTCC . We can then apply the general discussion in Remark 4 of Section 3.2.

Thus, the asymptotic distribution of
√
n
[
ĥTCC − h

(
β0
)]

is normal, with mean zero and variance:

δ′Σ
(
β0, γhom

)
δ − (λ∗ (γTCC))

2
δ′
{

Σ
(
β0, γhom

)
+ Σ

(
β0, γTCC

)
− 2C12

(
β0, γTCC

)}
δ.

4.4 A first small scale Monte Carlo experiment

We consider the same regression model as in Section 2.5. We study the finite sample MSE of different

estimators for two possible DGPs ω2
0 (xi) = [log (xi)]

2j
, j = 1, 2, 3, while the user-specified regression

model is ω2(xi, γ) = exp(γ1 + γ2xi). We compare by Monte Carlo (across 10000 trials) the ratio of MSE
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of estimators of the slope β2 with respect to MSE of OLS for four estimators of the slope coefficient β2:

� the WLS estimator,

� our TWLS estimator with target β2,

� DiCiccio et al. (2019)’s CC estimator with target β2,

� our TCC estimator with target β2.

We recall that the difference between the CC and the TCC estimator is as follows: while the CC estimator

is an optimal (for target β2) convex combination between the OLS and the WLS estimators, the TCC

estimator is optimal (for the same target) convex combination between the OLS and the UWLS (User-

Specified WLS) for an optimal value of the nuisance parameters γ.

The results for sample sizes n = 50, 100, 200, 400 respectively are given in Table 2 below.

n ω2
0(x) = (log(x))2 ω2

0(x) = (log(x))4 ω2
0(x) = (log(x))6

WLS TWLS CC TCC WLS TWLS CC TCC WLS TWLS CC TCC

50 .618 .615 .620 .547 .409 .417 .416 .335 .274 .101 .278 .060
100 .594 .579 .594 .483 .357 .336 .360 .249 .197 .060 .198 .036
200 .589 .588 .588 .491 .333 .300 .334 .203 .170 .048 .170 .026
400 .569 .563 .567 .461 .315 .282 .315 .201 .153 .048 .153 .028

Table 2: Ratios of the MSEs of WLS, TWLS, CC and TCC estimators with respect to that of OLS.

Then, two main conclusions are in order:

First, although the CC estimator is computed with the right target β2, it does not outperform our

TWLS estimator. In fact there is almost no difference in the performance of CC and naive WLS and

that, in turn, highlights the importance of not stopping at the CC strategy but to further exploit the

availability of the γ parameters in attaining further precision for the estimates for targets of interest.

Second, and even more importantly, our TCC estimator largely outperforms both the CC and our

TWLS estimators. This dominance is even more striking in case of large samples and severe heteroskedas-

ticity. It is worth noting that this better performance is all the more significant that our target is based

on asymptotic variance, while the above Monte Carlo results are about MSE.

It is worth knowing that the DGP ω2
0 (xi) = [log (xi)]

2
has also been used for Monte Carlo experiments

by Gonzales Coya and Perron (2022) to assess the performance of machine learning techniques. These

authors revisit the performance of the SVR method due to Miller and Startz (2019) and propose an

adaptive Lasso estimator. Their Monte Carlo MSE results (ratio with respect to MSE of OLS) are

as follows for n = 100, 200, 400 respectively: .54, .46 and .46 for Lasso, .56, .48 and .46 for SVR. By

comparison, the performance of TCC for the sample sizes n = 100, 200, 400 (ratio of MSE with respect to

OLS: .48, .49, .46) is actually better which is arguably compelling since the results of Gonzales Coya and

Perron (2022) are somewhat biased in favor of machine learning techniques as they assume that the true

skedastic function belongs to the space of functions considered for learning.
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5 Targeted GMM Estimator

5.1 GMM estimation of the regression model:

As in Section 4, we set the focus on the following two sets of moment conditions.

On the one hand, the just identified moment conditions that define the OLS estimator β̂OLS :

g1 (yi, xi, β) = xi (yi − x′iβ) .

On the other hand, for any given value of the nuisance parameters γ, the weighted moment conditions

that define the UWLS estimator β̂ (γ):

g2,γ (yi, xi, β) =
xi (yi − x′iβ)

ω2 (xi, γ)
.

By application of Proposition 3, one may consider that the optimal MCC estimator is asymptotically

equivalent to efficient GMM:

β̂ (W ∗) = arg min
β
ḡn(β)′W ∗ḡn(β) (23)

computed with the optimal weighting matrix:

W ∗ =
[
Ω
(
β0
)]−1

where Ω
(
β0
)

= V ar
[√
nḡn(β0)

]
.

This is the approach followed by Lu and Wooldridge (2020) who make it feasible by using a consistent

estimator Wn of W ∗ based on OLS residuals and a consistent estimator γn of some pseudo-true value γ∗

of nuisance parameters:

W−1
n =

1

n

n∑
i=1

û2
i ziz

′
i where ûi = yi − x′iβ̂OLS and zi =

[
x′i

x′i
ω2(xi,γn)

]′
.

However, this approach may be flawed in our case since, as already mentioned, we follow Romano and

Wolf (2017) to consider only user-specified models of conditional heteroskedasticity that contain the ho-

moskedastic setting as a particular case:

γ = γhom =⇒ ω2 (xi, γ) = ω2
hom =⇒ g2,γ (yi, xi, β) =

1

ω2
hom

g1 (yi, xi, β) .

Therefore, when γ = γhom, the two sets of moment functions are proportional and the variance matrix is

singular. In other words, there is no such thing as the inverse of the variance matrix Ω
(
β0
)

to define an

optimal variance matrix as above. Fortunately, we can easily prove the following.

Proposition 4 For a given pseudo-true γ∗ ∈ Γ, under the maintained assumption that for γ∗ 6= γhom,
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the variance matrix Ωγ∗
(
β0
)

of:

gγ∗
(
yi, xi, β

0
)

=

 g1

(
yi, xi, β

0
)

g2,γ∗
(
yi, xi, β

0
)


is non-singular, then, an optimal weighting matrix W ∗ for the GMM problem (23) is given by:

[W ∗]
−1

=

 Ω11

(
β0
)

1[γ∗ 6=γhom]Ω12,γ∗
(
β0
)

1[γ∗ 6=γhom]Ω21,γ∗
(
β0
)

Ω22,γ∗
(
β0
)

 . (24)

Remark 1: The proof of Proposition 4 is straightforward. When γ∗ 6= γhom, then W ∗ =
[
Ωγ∗

(
β0
)]−1

is the weighting matrix for efficient GMM based on moment functions gγ∗ (yi, xi, β). On the other hand,

when γ∗ = γhom :

Ω22,γ∗
(
β0
)

= E

[
xix
′
iu

2
i

(
β0
)

ω4
hom

]
=

1

ω4
hom

Ω11

(
β0
)

so that:

ḡn(β)′W ∗ḡn(β) =

[
ḡ1n(β)′,

ḡ1n(β)′

ω2
hom

] Ω−1
11

(
β0
)

0

0 ω4
homΩ−1

11

(
β0
)
 ḡ1n(β)

ḡ1n(β)
ω2

hom


= 2ḡ1n(β)′Ω−1

11

(
β0
)
ḡ1n(β)

which leads to efficient GMM based on the moment function g1 (yi, xi, β) or equivalently on the moment

functions g2,γ∗ (yi, xi, β).

Remark 2: So far, for convex combination of estimators, we have maintained the assumption that the

two matrices Ω11

(
β0
)

= V ar
[
g1

(
yi, xi, β

0
)]

and Ω22,γ∗
(
β0
)

= V ar
[
g2,γ∗

(
yi, xi, β

0
)]

are non-singular.

:This means that the p components of the random vector (xiui) are linearly independent, and also the p

components of the random vector (xiui/ω
2 (xi, γ

∗)) are linearly independent.

We now assume that when ω2 (xi, γ
∗) is not degenerate (γ∗ 6= γhom), the matrix Ωγ∗

(
β0
)

is non-

singular, meaning that the 2p components of the vector
[
x′iui,

x′iui
ω2(xi,γ∗)

]′
are linearly independent.

Of course, Proposition 4 will deliver a feasible estimator only if we can build a consistent estimator of

the optimal weighting matrix W ∗. The various blocks of the variance matrix Ωγ∗
(
β0
)

can be estimated

by sample counterparts computed by plugging in the OLS estimator β̂OLS :

Ω̂hk,γ∗ =
1

n

n∑
i=1

û2
i zihz

′
ik for h, k = 1, 2 where ûi = yi − x′iβ̂OLS , zi1 = xi, zi2 =

xi
ω2 (xi, γn)

.

The estimation issue of the indicator term 1[γ∗ 6=γhom] is tightly related to a test of conditional ho-

moskedasticity, since in the context of Proposition 4, ω2 (xi, γ
∗) is degenerate if and only if γ∗ = γhom.

Similarly to the ALS estimator of Romano and Wolf (2017), we consider the indicator function χn of a
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test of the null hypothesis H0 of conditional homoskedasticity:

χn = 1⇐⇒ H0 of conditional homoskedasticity is rejected.

Let us first assume that the test is consistent with asymptotic size α:

γ∗ 6= γhom =⇒ lim
n−→∞

Pr [χn = 1] = 1

γ∗ = γhom =⇒ lim
n−→∞

Pr [χn = 0] = 1− α.
(25)

Following Proposition 4, we would be led to consider the following estimator Ŵ for the optimal

weighting matrix W ∗:

Ŵ−1 =

 Ω̂11,γ∗ χnΩ̂12,γ∗

χnΩ̂21,γ∗ Ω̂22,γ∗

 . (26)

However, under the null hypothesis H0 of conditional homoskedasticity, Ŵ would be block-diagonal

only with asymptotic probability (1− α) instead of the requested unit probability. A solution is to consider

a drifting test size α = α (n) that goes to zero with the sample size n.

Proposition 5 Under the conditions of Proposition 4, the optimal weighting matrix W ∗ (24) is consis-

tently estimated by Ŵ defined in (26), when we use a test for conditional homoskedasticity, whose indicator

function χn is conformable with (25) with a drifting size α = αn → 0 when n→∞. Therefore, we get an

efficient GMM estimator β̂MCC(γ∗) as:

β̂MCC(γ∗) = arg min
β
ḡ′γ∗,n(β)′Ŵ ḡγ∗,n(β)

that is asymptotically efficient for the set ḡγ∗,n(β) of moment conditions.

Remark 1: Proposition 5 defines an MCC estimator β̂MCC(γ∗) that shares some similarities with the ALS

estimator β̂ALS of Romano and Wolf (2017). When the null hypothesis of conditional homoskedasticity is

not rejected, both estimators coincide with OLS. When the null hypothesis of conditional homoskedasticity

is rejected, the ALS estimator β̂ALS of Romano and Wolf (2017) coincides with WLS. It is worth comparing

it with β̂MCC(γWLS) that combines efficiently (by virtue of semiparametric efficiency of efficient GMM)

the informational content of OLS moment conditions and WLS moment conditions. We stress that, except

in the case where the user’s model of heteroskedasticity is well-specified (ω2 (xi, γWLS) = ω2
0 (xi)), it is

not optimal in general to overlook the informational content of the OLS moment conditions. The rare

case of redundancy of the OLS conditions is described in the example of UWLS (10)/(11) in Section 3.2.

Remark 2: For the purpose of consistent estimation of the optimal weighting matrix, we need to introduce

the test indicator function χn for an empirical version of the population indicator of
[
γ∗ 6= γhom

]
. It is the

simplest way to circumvent the issue of possible (asymptotic) singularity of the variance matrix Ωγ∗
(
β0
)
.
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We note that the use of a generalized inverse of the empirical variance matrix would not do the job,

because, when the rank is not constant along the sequence, the limit of the generalized inverses sequence

may not coincide with the generalized inverse of the limit.

Remark 3: Our Monte Carlo experiments suggest that, even in the case of tiny conditional heteroskedas-

ticity, the regularization of the sequence of weighting matrices that we propose in Proposition 5 could

be useful in finite samples due to near-singularity. A comprehensive theory of efficient GMM in case of

near-singularity is beyond the scope of this paper. It is germane with the issue of efficient estimation in

case of nearly weak identification; see Dovonon et al. (2022).

Remark 4: The result of Proposition 5 can also be interpreted through the lenses of the general Section

3.3 about matrical combination of estimators. We know that any GMM estimator (23) can be seen as a

matricial combination of OLS and UWLS estimators:

β̂MCC(γ∗) = (Ip −A) β̂OLS +Aβ̂ (γ∗)

with:

A = [G′WG]
−1

[G′1W12 +G′2W22]G2.

When the weighting matrix W is block-diagonal, then:

A = [G′1W11G1 +G′2W22G2]
−1
G′2W22G2 and Ip −A = [G′1W11G1 +G′2W22G2]

−1
G′1W11G1,

that is:

A =
[
Σ−1

1 + Σ−1
2

]−1
Σ−1

2 and Ip −A =
[
Σ−1

1 + Σ−1
2

]−1
Σ−1

1

where Σ1 and Σ2 stand for the asymtotic variances of β̂OLS and β̂ (γ∗) respectively, so that the matricial

weights are completely defined by the relative variances of the two estimators. In this case, the covariances

between estimators are not taken into account. Proposition 5 shows that this case may be relevant for

efficient GMM even when the two estimators (or the corresponding moment conditions) are correlated.

Remark 5: The generic MCC estimator of our target of interest will be ĥMCC(γ) = h
(
β̂MCC(γ)

)
. We

will refer to the specific MCC estimator ĥMCC(γ̂WLS) evaluated at γ = γ̂WLS (and its
√
n-asymptotically

equivalent counterpart ĥMCC(γWLS) by the argument of local robustness in Section 3.2.) as the GMM

estimator, ĥGMM , adopting the terminology from Lu and Wooldridge (2020). We should note that apart

from the regularization of the weighting matrix, as described above, there is another difference with

Lu and Wooldridge (2020) — instead of γ̂WLS these authors used a Gamma quasi maximum likelihood

estimator γ̂QML of γ as in Section 18.4, Wooldridge (2010). As we have argued in our paper, there is no

compelling reason to choose either γ̂WLS or γ̂QML for plug-in except in the unlikely scenario where the

user’s model for conditional heteroskedasticity is known to be correct. In our simulations ĥMCC(γ̂WLS)
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performs somewhat better than ĥMCC(γ̂QML), and hence we focus on the former MCC estimator dubbing

it as GMM. The MCC estimator that chooses the plug-in γ by the optimal targeting principle of our paper,

as described in the next subsection, will be referred to as the targeted GMM (TGMM) estimator.

5.2 Our targeted MCC estimator: TGMM

For any possible pseudo-true γ, we consider the efficient GMM estimator β̂MCC(γ) defined by Proposition

5 and the resulting estimated target:

ĥMCC (γ) = h
(
β̂MCC(γ)

)
.

For γ 6= γhom, the asymptotic variance of ĥMCC (γ) is, with δ = δ
(
β0
)

and obvious notations,

σ2
MCC (γ) = δ′

[
G′γ(β0)Ω−1

γ

(
β0
)
Gγ(β0)

]−1
δ.

This may be compared with σ2
MCC

(
γhom

)
defined by:

σ2
MCC

(
γhom

)
= δ′

[
G′1(β0)Ω−1

11

(
β0
)
G1(β0)

]−1
δ.

Our choice of the pseudo-true value γ∗ is defined by:

γ∗ =


γhom if σ2

MCC

(
γhom

)
≤ min

{
σ2
MCC (γ) , γ ∈ Γ, γ 6= γhom

}
arg min

γ∈Γ,γ 6=γhom
σ2
MCC (γ) otherwise.

We get a consistent estimator γn of γ∗ by using the sample counterparts of Gγ(β0) and Ω−1
γ

(
β0
)
. Then,

by the argument of local robustness (see Section 3.2.), ĥMCC (γn) has the same asymptotic variance as

the infeasible optimal ĥMCC (γ∗). Therefore, ĥMCC (γn) is our optimal targeted MCC estimator.

However, the minimization is not convex and may lead to spurious results in finite samples. This is

the reason why we will rather define our estimator of γ∗ as follows:

γ̃n (Γn) = arg min
γ∈Γn∪γhom

σ2
MCC (γ)

where Γn is a compact neighborhood of γ̂WLS in Γ. Hence, for all practical purpose, ĥMCC (γ̃n (Γn)) will

be used as our preferred targeted MCC estimator. We will call ĥMCC (γ̃n (Γn)) as our TGMM estimator.

With an increasing sequence Γn of compact sets such that

lim
n−→∞

↑ Γn = Γ,

our TGMM estimator ĥMCC (γ̃n (Γn)) is also (like ĥMCC (γn); see above Proposition 4) a consistent
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version of our optimal MCC estimator. We will denote our TGMM estimator ĥMCC (γ̃n (Γn)) by the

notation ĥTGMM . We do find simulation evidence (available from authors) that ĥMCC (γ̃n (Γn)) provides

valuable hedge against possible instability of the naive estimator ĥMCC (γn) (see above Proposition 4).

Expanding on the little simulation evidence in Sections 2.5 and 4.4, Appendix A will provide extensive

simulation evidence of the benefit of targeting under all ten cases considered in Romano and Wolf (2017),

their empirically relevant DGP, the four cases considered in Lu and Wooldridge (2020), and their empirical

illustration. More results are available from us. For brevity we report the results for the eight estimators:

OLS, WLS, ALS, MIN, TWLS, CC, TCC, GMM and TGMM. The results are all reported in Tables 3-10.

The results corresponding to those presented in Sections 2.5 and 4.4 can be found in Table 3.

The main message of the numerical results in Appendix A is that if the user’s model ω2(x; γ) for V (u|x)

allows for improvement in precision over the existing estimators then our proposed targeted estimators

TWLS, TCC and TGMM achieve it without any major cost in terms of empirical bias, empirical size,

etc. This improvement can be dramatically big, and thus suggests that it will be imprudent to overlook

the benefit of targeting in practice. The improvements over the existing estimators including the recently

proposed ones are even more compelling because we document them under the same setup considered in

the papers that actually proposed these recent estimators.

Comparison among TWLS, TCC and TGMM does not however give a clear winner in terms of empirical

MSE and empirical size across all the numerical results. Based on these observations and the simplicity

of the estimators, we recommend all three proposed estimators in practice.

6 Conclusion

We have shown in this paper that user-specified parametric models for heteroskedasticity can always

allow to improve upon both OLS and WLS irrespective of the amount of misspecification of the unknown

skedastic function. The core idea is to question the two most common practices of either robust OLS-

based inference (Eicker-White approach) or “Resurrecting Weighted Least Squares” to improve estimators

(Romano and Wolf (2017)). We argue that these two practices imply some significant and unfortunate

efficiency loss, because they resort to a suboptimal criterion function:

(i) The heteroskedasticity-robust confidence sets provided by the Eicker-White approach are wider than

necessary since a more efficient estimator would deliver less conservative inference.

(ii) The WLS criterion is based on minimization of the quadratic distance between the true unknown

skedastic function and the set of skedastic functions provided by the user-specified parametric model

for heteroskedasticity. In case of a severely misspecified heteroskedasticity model, this minimization

may have little to do with the relevant criterion of minimization of variance of estimators.

By contrast, when targeting our optimality criterion on the asymptotic variance of estimator of some
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scalar smooth function of the regression parameters, we realize that there are efficiency gains with respect

to both OLS and WLS to be drawn from a proper choice of a weighting function in the user-specified

heteroskedasticity model (UWLS). We illustrate this claim by studying three new estimators:

(i) TWLS: A targeted UWLS.

(ii) TCC: A targeted convex combination between OLS and a properly chosen UWLS.

(iii) TGMM: A targeted matrix combination between OLS and a properly chosen UWLS. We show that it

is equivalent to efficient GMM based on all the moment conditions associated to the two estimators.

Even though these three estimators deliver striking improvements in estimation of parameters of interest

by comparison with the extant contenders with a little less cost of implementation, we acknowledge that

researchers ready to combine even more UWLS estimators could get even more accurate estimators. More

precisely, our current paper paves the way for at least three new research agendas.

First, how to elicit optimally a set of UWLS estimators to combine them for efficient estimation of a

given target. As discussed in Section 5, the computation of an efficient TGMM may be flawed in finite

samples in case of near collinearity between moment conditions corresponding to different values of the

heteroskedasticity parameters γ. Considering the combination of more than two sets of moment conditions,

we will obviously face a trade-off between the minimization of variance of the estimator resulting from

many moment conditions (corresponding to an infinite number of values of γ) and the instability that

their near-multicollinearity may cause. As a result, we expect to have to develop regularization methods

beyond the simplest binary case considered in Section 5 above.

Second, beyond the infinite number of UWLS estimators provided by a user-specified parametric

model for heteroskedasticity, one may even consider nonparametric families of skedastic functions. We

have shown that our (parametrically) targeted estimators are good contenders with respect to machine

learning approaches. Of course, it should be possible to generate even more accurate estimators by taking

advantage of machine learning, but within the methodology of targeting a parameter of interest. While this

implies computational issues due to non-convexity of the corresponding optimization programs, iterative

approaches should be devised to keep the simplicity of TCC estimators at each step of the recursion.

Third, as already explained, the possibility of devising an infinite set of valid UWLS estimators is a

benefit of the maintained assumption of a regression model that is defined by a conditional expectation.

In case of a regression equation that is only defined by linear projection, there is no reason to believe

that moment conditions that are reweighted by nonlinear functions of exogenous variables are still valid.

However, it may intuitively be informative to keep using the UWLS estimators, even though they are

biased, even asymptotically. In this case, optimality must be defined by some minimization of (asymptotic)

mean squared error instead of asymptotic variance. This extension seems important for many applications.

A well-documented example is estimation of weak ARMA-GARCH models (see Francq and Zakoian (2000)

and the references therein) for which strategies to improve upon OLS are still largely missing in the
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literature. More generally, there is room for extension of our targeted approaches to approximately linear

models in the sense of Sacks and Ylvisaker (1978).
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A Appendix A: Simulation evidence and Empirical illustration

We will explore the small-sample performance of the proposed targeted estimators TWLS, TCC and

TGMM using simulation experiments based on 10000 Monte Carlo trials. Results will be reported for the

eight estimators: OLS, WLS, ALS, MIN, TWLS, CC, TCC, GMM and TGMM.1

We omit estimators such as Cragg’s estimator, GMM estimators where γ is estimated by maximum

likelihood, etc. because in results unreported here we find their performance to be relatively poor.

The main message of the numerical results here is that if the user’s model ω2(x; γ) for V (u|x) allows

for improvement in precision over the existing estimators then the proposed targeted estimators achieve

it. Like Romano and Wolf (2017), we report the improvement in the empirical mean squared error (MSE),

and find that its reduction by the proposed estimators can be huge by any conceivable standard. Under all

cases there does not seem to be any major cost in terms of empirical bias, size, etc. to using the proposed

estimators. Comparison among the proposed estimators TWLS, TCC and TGMM does not however give

a clear winner. Based on these observations and the simplicity of the estimators we recommend all three

proposed estimators in practice.

A.1 Simulations under the design in Romano and Wolf (2017):

Romano and Wolf (2017) take the linear model y = x(1)β1 + x(2)β2 + u with x(1) = 1, x(2) ∼ U(1, 4),

x = (x(1), x(2))
′; β = (β1, β2)′, β0 = (0, 0)′; u = s(x)z where z ∼ N(0, 1) is independent of x(2) and thus

E[u|x] = 0 and V (u|x) = s2(x). They consider 10 cases for the skedastic function:

Case 1: (a) s2(x) = 1; (b) s2(x) = x(2); (c) s2(x) = x2
(2); (d) s2(x) = x4

(2).

Case 2: (a) s2(x) =
(
log(x(2))

)2
; (b) s2(x) =

(
log(x(2))

)4
.

Case 3: (a) s2(x) = exp
(
.1(x(2) + x2

(2))
)

; (b) s2(x) = exp
(
.15(x(2) + x2

(2))
)

.

Case 4: (a) s2(x) =


1 if x(2) < 2

2 if 2 ≤ x(2) < 3

3 if x(2) ≥ 3

; (b) s2(x) =


1 if x(2) < 2

22 if 2 ≤ x(2) < 3

32 if x(2) ≥ 3

.

To emphasize the gain in precision, we will add a Case 2(c) with s2(x) =
(
log(x(2))

)6
.

Romano and Wolf (2017) consider two parametric models ω2(x; γ) — Model 1: ω2(x; γ) := exp(γ1 +

γ2 log(x(2))) and Model 2: ω2(x; γ) := exp(γ1 + γ2x(2)) — and like them our results here are also very

similar for both models. However, since there is slightly more action in terms of improved precision in

case of estimators based on Model 2, for brevity we report here the results based on Model 2 only.2

1The extensive simulation study here, of which only a subset of results is presented while the rest are available from us,
complements Rilstone (1991)’s early simulations that focused on OLS, WLS and its semiparametric versions.

2Model 1 is correct for V (u|x) under Cases 1(a)-1(d) with γ0
2 = 0, 1, 2, 4 respectively. Model 2 is correct for V (u|x) only

under Case 1(a) with γ0
2 = 0. So, all estimators are asymptotically efficient under Case 1(a), and all estimators other than OLS

are asymptotically efficient under Cases 1(b)-1(d) when using Model 1.
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Following Romano and Wolf (2017) we will report for h(β) = β2 the empirical MSE’s (their ratios)

of estimators and empirical coverage probability of 95% confidence intervals (1 - empirical size of 5% t

tests). We will consider sample sizes n = 50, 100, 200, 400.

Table 3 presents the ratio of the empirical MSE of each estimator for h(β) = β2 with respect to that of

OLS. Besides Case 1(a) (conditional homoskedasticity), the other estimators lead to smaller, sometimes

much smaller, MSE. (To compare any two non-OLS estimators, say A with respect to B, divide the ratio

under A with that under B.) Importantly, the proposed estimators either performs very similar to the

other estimators that they are supposed to improve upon or leads to really big gain in precision as in

Cases 2 (a), (b) and (c).

Table 4 presents the empirical size (empirical rejection probability of the truth) of 5% Wald tests based

on each estimator for h(β) = β2. The results look reasonable. While the size-corrected empirical power is

not reported here for brevity (but is available from us), we note that the proposed estimators always have

either the same or substantially greater (in Cases 2) empirical size-corrected power than its competitors.

Table 5 presents the average length of each of the non-OLS confidence intervals for h(β) = β2 with

respect that of the OLS intervals. For brevity we report this for Case 2 only where, as noted above, the

benefit of the proposed estimators’ precision is most prominently evident. These are indeed big gains in

precision of confidence intervals by any standard.

A.2 Empirically relevant simulations in Romano and Wolf (2017):

Romano and Wolf (2017)’s simulation based on a real-life example revisits the well-known cross-sectional

data set from 1970 containing n = 506 observations from communities in the Boston area (see, Wooldridge

(2012)). They consider a linear regression with:

E[y|x] = x′β = x(1)β1 + x(2)β2 + x(3)β3 + x(4)β4 + x(5)β5

where y is the log of the median housing price in a community, x(1) = 1, x(2) is the log of nitrogen oxide

in the air (in parts per million), x(3) is the log of weighted distance from five employment centers (in

miles), x(4) is the average number of rooms per house, and x(5) is the average student–teacher ratio in the

community’s schools.

To mimic the true conditional heteroskedasticity in this data, Romano and Wolf (2017): (i) obtain

êi = (yi− x′β̂OLS)/
√

1− qi,i for i = 1, . . . , n where qi,i = x′i(
∑
j xjx

′
j)
−1xi is i-th diagonal element of the

hat-matrix; (ii) generate artificial data (y∗i , x
∗
i ) for i = 1, . . . , n where x∗i = xi and y∗i = x′iβ̂OLS+êivi where

vi ∼ N(0, 1) independently of the system. Thus, the true β in this artificial data is β̂OLS . Romano and

Wolf (2017) then report for each element of β the empirical MSE’s (their ratios) of estimators, empirical

coverage probability of 95% confidence intervals (1 - empirical size of 5% t tests) and ratios of the average

length of these intervals.
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We will do the same, and since the improvement shown by Romano and Wolf (2017) is noticeably

better with their Model 1, i.e., ω2(x; γ) = exp(γ1 +
∑5
k=2 log(x(k))), we will for brevity only report the

further improvement provided by our proposed estimators based on Model 1. These are reported in Tables

6 and 7 respectively for the ratio of the empirical MSE’s with respect to OLS and the empirical size of

5% Wald test with, within parentheses, the ratio of the average length of confidence intervals based on

other estimators to that based on OLS. As is clearly evident, the proposed estimators deliver noticeably

big further gains over its competitors.

A.3 Simulations under the design in Lu and Wooldridge (2020):

Lu and Wooldridge (2020) take the linear model y = x(1)β1 + x(2)β2 + x(3)β3 + x(3)β4 + u with x(1) =

1, x(2) ∼ N(1, 1), x(3) = .8 + .2x(2) + e1, x(4) = 1(x(5) > x(3)), u = s(x)e3 where e1, e2, e3 are independent

N(0, 1), and x(5) = .3 + .1x(2) + .1x(3) + e2. They take x = (x(1), x(2), x(3), x(4))
′, e3 as independent of x

(giving E[u|x] = 0 and V (u|x) = s2(x)), and β = (β1, β2, β3, β4)′ with β0 = (.5, 1, 1, 1)′. They consider 4

cases for the skedastic function:

Case 1: s2(x) = (β1 +β2x(2) +β3x(3)− 3β4x(4) + .1x(2)(x(3) +x(4))− .1x(3)x(4)− .05x2
(2) + .05x2

(3)))
2

Case 2: s2(x) = (β1 + β2|x(2)|+ β3x
2
(3) + β4x(4))

2.

Case 3: s2(x) = exp(β1 + β2|x(2)|+ β4x(4)).

Case 4: s2(x) = exp(β1 + β2x(2) + β3x(3) + β4x(4)).

They consider the parametric model ω2(x; γ) = exp(x′γ), which is correct for V (u|x) with γ0 = β0 in

Case 4.

We take h(β) = β1, β2, β3, β4 respectively and sample size n = 1000, 5000. Lu and Wooldridge (2020)

take n = 1000, 10000 and report Monte Carlo mean and standard deviations in their Table 1. Comparison

of standard deviations of course works in favor of our proposed estimators. Therefore, to put our proposed

estimators to stricter tests, we will instead continue with reporting the empirical MSE’s of estimators and

empirical size of 5% Wald tests.

Table 8 presents the ratio of the empirical MSE of each estimator with respect to that of OLS.3 It is of

interest to note that in our implementation of Cases 1 and 2, WLS based on an incorrect model ω2(x; γ)

can be much less precise than OLS, which is a possibility that DiCiccio et al. (2019) (p.2, paragraph 7)

noted as motivation to their MIN and CC estimators but conjectured as “rare”. ALS also suffers from

the same problem in this case since ALS and WLS are very similar (almost identical) here because of high

level of heteroskedasticity of u.

On the other hand, the MIN, CC and MCC estimators deliver big gains in precision over OLS. Ad-

ditionally, when the parametric model ω2(x; γ) is far from correct for V (u|x), i.e., Cases 1 and 2, we see

3Our results for WLS and GMM are not the same as that in Lu and Wooldridge (2020) because they use Gamma QMLE for
γ whereas we use least squares estimators of γ to maintain uniformity with the rest of the simulations.
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that our proposed estimators deliver further substantial gains in precision. However, when ω2(x; γ) is

correct for V (u|x), i.e., in Case 4, there is no room for improvement since all non-OLS estimators are

then asymptotically efficient (not considering the information that β’s appear in both E[y|x] and V (y|x)).

Then our proposed estimators are less precise than their non-OLS competitors. This problem however

diminishes with larger sample size n = 5000.

Table 9 presents the empirical size of 5% Wald tests based on each estimator. The results for the

proposed estimators look reasonable except for our proposed estimators of β2 and β3 in the case of correct

specification, i.e., Case 4, and for TGMM of β2 and β3 in Case 3. As with the case of MSE, this problem

diminishes with larger sample size n = 5000 and ultimately disappears when, like Lu and Wooldridge

(2020), n = 10000 (not reported).

A.4 Empirical illustration in Lu and Wooldridge (2020):

Lu and Wooldridge (2020) use a subset of the well-known cross-sectional individual-level data set ‘

401ksubs’ (see Wooldridge (2012)) to estimate a linear regression with:

E[y|x] = x′β =

10∑
k=1

x(k)βk

where y is net total financial assets (in $ 1000) and is denoted by “nettfa”; x(1) = 1 and is denoted by

“constant”; x(2) is annual income (in $1000) in excess of population (data) average and is denoted by

“inc0”; x(3) = x2
(2) and is denoted by “inc2

0”; x(4) is age in excess of population (data) average and is

denoted by “age0”; x(5) = x2
(4) and is denoted by “age2

0”; x(6) = x(2)×x(4) and is denoted by “inc0.age0”;

x(7) is a dummy variable for eligibility for a 401k plan and is denoted by “e401k”; x(8) is a dummy variable

for male and is denoted by “male”; x(9) = x(7)×x(2) and is denoted by “e401k.inc0”; and x(10) = x(7)×x(4)

and is denoted by “e401k.age0”.

We use the same data set, matching the descriptive statistics and OLS coefficients in Lu and Wooldridge

(2020)’s Table 2 and 3 respectively (the OLS standard errors don’t match because we report the HC3

version). We report in Table 10 the various estimates and standard errors (in parentheses) for the coeffi-

cients of this regression model. We use Lu and Wooldridge (2020)’s parametric model ω2(x; γ) = exp(x′γ).

Lu and Wooldridge (2020) showed big gains in precision by WLS over OLS, and then further improve-

ment over WLS by their GMM estimator. Our results in Table 10 of course confirm these findings of

Lu and Wooldridge (2020). Additionally, our results also demonstrate that even further gains, and often

substantial ones, in precision over all those estimators can be obtained by our proposed estimators.

40



V (u|x) n WLS ALS MIN TWLS CC TCC GMM TGMM
50 1.037 1.037 1.021 1.064 1.017 1.078 1.081 1.108

Case 100 1.023 1.023 1.016 1.036 1.012 1.057 1.045 1.067
(1a) 200 1.014 1.014 1.008 1.016 1.007 1.034 1.026 1.043

400 1.004 1.004 1.004 1.009 1.003 1.014 1.015 1.023

50 .954 .974 .958 .964 .946 .996 .972 1.001
Case 100 .934 .943 .942 .938 .934 .967 .955 .980
(1b) 200 .921 .922 .926 .922 .922 .934 .930 .951

400 .909 .909 .911 .908 .909 .916 .914 .928

50 .756 .764 .768 .762 .760 .771 .791 .825
Case 100 .729 .729 .733 .731 .732 .739 .744 .768
(1c) 200 .729 .729 .730 .730 .730 .729 .733 .746

400 .715 .715 .715 .715 .715 .710 .711 .717

50 .430 .430 .431 .426 .434 .414 .444 .459
Case 100 .379 .379 .379 .374 .380 .362 .382 .387
(1d) 200 .360 .360 .360 .360 .359 .348 .358 .357

400 .339 .339 .339 .339 .338 .328 .335 .328

50 .618 .618 .622 .615 .620 .547 .605 .584
Case 100 .594 .594 .594 .579 .594 .483 .554 .479
(2a) 200 .589 .589 .589 .588 .588 .491 .552 .450

400 .569 .569 .569 .563 .567 .461 .524 .418

50 .409 .409 .410 .417 .416 .335 .413 .380
Case 100 .357 .357 .357 .336 .360 .249 .340 .277
(2b) 200 .333 .333 .333 .300 .334 .203 .310 .218

400 .315 .315 .315 .282 .315 .201 .286 .187

50 .274 .274 .274 .101 .278 .060 .257 .227
Case 100 .197 .197 .197 .060 .198 .036 .176 .141
(2c) 200 .170 .170 .170 .048 .170 .026 .147 .097

400 .153 .153 .153 .048 .153 .028 .125 .070

50 .860 .890 .872 .877 .866 .896 .896 .942
Case 100 .848 .856 .860 .854 .853 .886 .880 .912
(3a) 200 .827 .828 .829 .830 .829 .840 .844 .859

400 .815 .815 .816 .815 .817 .818 .818 .826

50 .682 .694 .693 .687 .690 .702 .720 .759
Case 100 .673 .675 .674 .672 .677 .682 .688 .711
(3b) 200 .651 .651 .651 .648 .653 .652 .651 .667

400 .634 .634 .634 .632 .635 .634 .633 .638

50 .964 .968 .968 .978 .954 1.009 .979 1.014
Case 100 .959 .959 .967 .958 .953 .996 .970 .989
(4a) 200 .923 .923 .933 .924 .922 .940 .932 .948

400 .922 .922 .926 .921 .920 .924 .926 .932

50 .795 .808 .819 .813 .794 .819 .827 .860
Case 100 .772 .773 .784 .775 .768 .781 .781 .802
(4b) 200 .762 .762 .765 .761 .757 .765 .763 .778

400 .736 .736 .736 .734 .731 .732 .731 .736

Table 3: Ratio of MSE of estimators with respect to MSE of OLS estimator of h(β) := β2 based on 10000
Monte Carlo trials under the design of Romano and Wolf (2017) and using their Model 2.
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V (u|x) n OLS WLS ALS MIN TWLS CC TCC GMM TGMM
50 5.0 5.4 5.4 5.5 6.5 5.5 7.2 7.0 8.5

Case 100 5.3 5.5 5.5 5.6 6.0 5.6 6.5 6.4 7.1
(1a) 200 4.9 5.1 5.1 5.0 5.2 5.0 5.6 5.5 6.1

400 4.8 5.1 5.1 5.1 5.2 5.1 5.4 5.3 5.6

50 4.7 5.1 5.4 5.3 5.8 5.3 7.0 6.1 6.8
Case 100 4.8 5.0 5.1 5.1 5.3 5.0 6.4 5.6 6.5
(1b) 200 5.2 5.2 5.2 5.3 5.3 5.3 5.7 5.6 6.4

400 4.8 4.8 4.8 4.9 4.9 4.9 5.2 5.2 5.4

50 4.9 5.0 5.2 5.2 5.6 5.3 6.5 6.1 7.5
Case 100 5.0 5.0 5.0 5.0 5.4 5.3 5.9 5.8 6.7
(1c) 200 5.2 5.1 5.1 5.1 5.4 5.1 5.6 5.4 6.1

400 5.2 5.2 5.2 5.2 5.2 5.3 5.4 5.3 5.5

50 5.3 5.2 5.2 5.2 5.9 5.7 6.5 6.0 7.2
Case 100 5.5 5.2 5.2 5.2 5.4 5.3 5.8 5.3 5.9
(1d) 200 5.0 4.7 4.7 4.7 5.0 4.8 5.2 4.7 5.3

400 5.1 4.9 4.9 4.9 4.8 4.9 5.3 5.0 5.3

50 4.9 4.9 4.9 5.0 5.5 5.2 5.9 6.0 6.4
Case 100 5.1 5.1 5.1 5.1 5.5 5.3 5.5 5.6 5.3
(2a) 200 5.0 5.0 5.0 5.0 5.2 5.1 5.5 5.3 5.0

400 4.7 4.9 4.9 4.9 5.0 5.0 5.0 5.0 4.6

50 5.3 5.3 5.3 5.4 8.0 5.7 9.4 6.1 6.0
Case 100 5.1 5.4 5.4 5.4 6.7 5.6 7.0 5.3 4.6
(2b) 200 4.8 4.9 4.9 4.9 5.9 5.1 5.8 5.0 4.0

400 5.1 4.7 4.7 4.7 6.0 4.9 5.6 4.6 3.7

50 5.7 5.8 5.8 5.8 6.0 6.0 7.1 5.0 4.6
Case 100 5.0 5.2 5.2 5.2 5.0 5.2 4.8 3.9 3.0
(2c) 200 5.2 4.9 4.9 4.9 4.6 4.9 4.5 3.9 2.2

400 5.3 5.2 5.2 5.2 5.1 5.2 4.9 3.8 2.0

50 4.8 5.2 5.5 5.4 5.9 5.4 6.6 6.2 7.2
Case 100 5.0 5.4 5.6 5.6 5.9 5.7 6.7 6.3 7.0
(3a) 200 4.9 4.8 4.8 4.9 5.0 4.9 5.3 5.3 5.7

400 4.5 4.7 4.7 4.7 4.7 4.7 4.8 4.9 5.2

50 5.4 5.4 5.6 5.5 6.0 5.6 6.6 6.6 7.8
Case 100 4.9 5.6 5.6 5.6 5.8 5.7 6.0 6.3 7.1
(3b) 200 5.2 5.1 5.1 5.1 5.2 5.2 5.4 5.5 6.0

400 5.3 5.4 5.4 5.4 5.5 5.4 5.6 5.6 5.6

50 4.9 5.3 5.4 5.5 5.8 5.6 6.9 6.5 7.6
Case 100 5.3 5.5 5.5 5.8 6.1 5.8 7.0 6.5 7.3
(4a) 200 4.6 4.7 4.7 4.9 4.8 4.8 5.3 5.2 5.7

400 5.1 5.2 5.2 5.3 5.3 5.3 5.4 5.4 5.8

50 5.1 4.9 5.0 5.5 5.8 5.5 6.5 6.3 7.6
Case 100 5.3 5.5 5.5 5.7 6.0 5.7 6.4 6.5 7.3
(4b) 200 5.3 5.2 5.2 5.2 5.2 5.3 5.7 5.6 6.4

400 5.3 5.0 5.0 5.0 5.3 5.2 5.3 5.3 5.6

Table 4: Empirical size (in %) of 5% Wald test for h(β) := β2 based on 10000 Monte Carlo trials under the
simulation design of Romano and Wolf (2017) and using their Model 2.
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V (u|x) n WLS ALS MIN TWLS CC TCC GMM TGMM
50 .77 .77 .77 .75 .76 .70 .74 .71

Case 100 .76 .76 .76 .74 .75 .68 .72 .68
(2a) 200 .76 .76 .76 .76 .76 .69 .73 .67

400 .75 .75 .75 .75 .75 .68 .72 .65

50 .63 .63 .63 .58 .62 .50 .62 .58
Case 100 .58 .58 .58 .53 .58 .46 .57 .52
(2b) 200 .57 .57 .57 .52 .57 .43 .55 .49

400 .56 .56 .56 .51 .55 .43 .53 .45

50 .50 .50 .50 .30 .50 .23 .50 .46
Case 100 .43 .43 .43 .24 .43 .19 .44 .40
(2c) 200 .41 .41 .41 .22 .41 .16 .40 .34

400 .39 .39 .39 .22 .39 .17 .37 .30

Table 5: Ratio of the average length of confidence intervals of h(β) := β2 using each estimators with respect
to the average length of confidence intervals using OLS. Results are based on 10000 Monte Carlo trials under
the design of Romano and Wolf (2017) and using their Model 2.

h(β) WLS ALS MIN TWLS CC TCC GMM TGMM
β1 .607 .607 .502 .607 .505 .487 .468
β2 .667 same .668 .554 .667 .553 .555 .479
β3 .506 as .506 .341 .506 .343 .373 .332
β4 .496 WLS .497 .350 .497 .355 .340 .319
β5 .930 .920 .888 .909 .904 .820 .773

Table 6: Ratio of MSE of estimators with respect to MSE of OLS estimator of coefficients based on 10000
Monte Carlo trials under the empirical design of Romano and Wolf (2017) [c.f. their Table C7] and using
their Model 1 that, in their Table C7, performed noticeably better than Model 2.

h(β) OLS WLS ALS MIN TWLS CC TCC GMM TGMM
β1 4.7 (1) 5.1 (.778) 5.1 (.778) 7.2 (.655) 5.1 (.778) 7.4 (.655) 5.4 (.690) 7.2 (.636)
β2 4.7 (1) 4.8 (.813) same 4.8 (.813) 5.9 (.721) 4.8 (.812) 5.8 (.720) 5.3 (.736) 5.8 (.664)
β3 5.0 (1) 4.9 (.713) as 4.9 (.713) 6.3 (.564) 4.9 (.713) 6.3 (.565) 5.3 (.609) 6.4 (.555)
β4 4.2 (1) 4.7 (.707) WLS 4.7 (.707) 8.2 (.538) 4.7 (.707) 8.9 (.533) 5.0 (.585) 7.5 (.524)
β5 4.9 (1) 5.3 (.952) 5.4 (.944) 5.6 (.920) 5.4 (.939) 5.9 (.927) 5.6 (.882) 6.1 (.838)

Table 7: Empirical size (in %) of 5% Wald test for coefficients based on 10000 Monte Carlo trials under
the empirical design of Romano and Wolf (2017) [c.f. their Table C8] and using their Model 1 that, in
their Table C8, performed noticeably better than Model 2.Withiin parenthesis is presented the ratio of the
average length of confidence interval for each h(β) using each estimators with respect to the average length
of confidence interval of that h(β) using OLS from this same Monte Carlo experiment.
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V (u|x) h(β) WLS ALS MIN TWLS CC TCC GMM TGMM

β1 .812 .812 .796 .559 .787 .512 .637 .433
Case β2 .978 .978 .923 .809 .904 .889 .847 .674
(1) β3 .871 .872 .841 .661 .829 .697 .718 .553

β4 1.551 1.551 1.001 .895 1.001 .989 .845 .790

β1 1.453 1.453 .894 .547 .790 .578 .418 .402
Case β2 1.389 1.389 .954 .730 .849 .746 .807 .796
(2) β3 2.240 2.240 .914 .553 .800 .608 .439 .432

β4 1.329 1.329 .891 .664 .785 .665 .621 .558

β1 .867 .867 .867 .872 .866 .872 .827 .830
Case β2 .796 .796 .792 .773 .789 .794 .763 .716
(3) β3 .807 .807 .809 .804 .806 .861 .793 .880

β4 .963 .963 .963 .950 .959 .964 .875 .799

β1 .169 .169 .169 .179 .169 .179 .177 .211
Case β2 .073 .073 .073 .095 .073 .094 .089 .135
(4) β3 .073 .073 .073 .099 .073 .098 .089 .136

β4 .120 .120 .120 .137 .120 .140 .132 .160

β1 .795 .795 .787 .622 .784 .564 .650 .465
Case β2 .975 .975 .948 .799 .923 .777 .881 .588
(1) β3 .860 .860 .850 .673 .837 .669 .755 .508

β4 1.583 1.583 1.000 .900 1.000 .999 .850 .768

β1 1.713 1.713 .986 .569 .853 .589 .438 .412
Case β2 1.507 1.507 .999 .742 .890 .739 .866 .710
(2) β3 2.880 2.880 .992 .588 .881 .610 .447 .407

β4 1.570 1.570 .979 .685 .832 .685 .631 .559

β1 .875 .875 .875 .873 .874 .875 .831 .784
Case β2 .793 .793 .792 .784 .793 .783 .781 .612
(3) β3 .807 .807 .807 .804 .807 .804 .800 .822

β4 .959 .959 .959 .955 .958 .957 .874 .784

β1 .156 .156 .156 .158 .156 .158 .158 .164
Case β2 .064 .064 .064 .075 .064 .074 .070 .096
(4) β3 .066 .066 .066 .077 .066 .075 .072 .088

β4 .111 .111 .111 .115 .112 .116 .115 .121

Table 8: Ratio of MSE of estimators with respect to MSE of OLS estimator of various h(β)’s based on 10000
Monte Carlo trials under the design of Lu and Wooldridge (2020). The top panel (above the horizontal line)
corresponds to sample size n = 1000, and the bottom panel to n = 5000. The parametric model ω2(x; γ) is
correctly specified for V (u|x) under Case 4.
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V (u|x) h(β) OLS WLS ALS MIN TWLS CC TCC GMM TGMM

β1 4.7 5.0 5.0 5.0 6.3 5.0 5.8 5.3 7.6
Case β2 5.1 5.4 5.4 5.7 7.3 5.6 9.5 5.9 11.8
(1) β3 4.9 5.2 5.2 5.2 6.6 5.2 8.4 5.8 10.4

β4 5.2 4.9 4.9 5.2 5.4 5.3 5.4 5.4 6.4

β1 4.9 5.2 5.2 5.9 6.8 5.4 6.9 5.2 6.7
Case β2 4.7 4.9 4.9 5.2 6.2 5.2 6.7 5.2 11.0
(2) β3 5.4 5.2 5.2 6.1 6.8 5.8 7.5 5.2 8.6

β4 5.1 4.5 4.5 4.7 5.0 5.1 5.0 5.1 5.4

β1 5.1 5.0 5.0 5.0 5.6 5.0 6.1 5.1 8.0
Case β2 5.0 5.1 5.1 5.2 5.7 5.3 6.3 5.5 9.8
(3) β3 5.2 5.0 5.0 5.0 5.5 5.0 6.8 5.1 11.1

β4 5.1 5.0 5.0 5.1 5.2 5.1 5.6 5.3 5.6

β1 4.5 5.2 5.2 5.2 6.8 5.2 6.8 3.8 6.7
Case β2 4.8 5.0 5.0 5.0 12.9 5.0 13.2 3.8 12.2
(4) β3 5.2 5.4 5.4 5.4 13.0 5.4 13.3 3.6 11.6

β4 4.8 5.3 5.3 5.3 9.1 5.3 9.7 3.5 6.8

β1 4.9 5.0 5.0 5.0 5.6 5.0 5.4 4.9 6.0
Case β2 5.0 4.9 4.9 5.1 5.3 5.2 5.8 5.3 7.3
(1) β3 4.9 4.8 4.8 4.8 4.9 4.8 5.4 4.9 6.4

β4 5.2 4.9 4.9 5.2 5.0 5.2 5.2 5.1 5.3

β1 5.0 4.8 4.8 5.5 5.5 5.2 5.7 5.3 5.4
Case β2 5.0 4.3 4.3 5.1 5.5 4.9 5.5 5.1 6.5
(2) β3 5.4 4.4 4.4 5.4 5.1 5.1 5.3 5.0 5.3

β4 5.2 4.9 4.9 5.3 5.4 5.5 5.4 5.3 5.2

β1 5.2 5.0 5.0 5.0 5.2 5.1 5.4 5.2 5.7
Case β2 5.4 5.5 5.5 5.5 5.5 5.6 5.5 5.6 6.1
(3) β3 4.9 4.9 4.9 4.9 5.1 4.9 5.1 5.0 6.7

β4 5.0 5.2 5.2 5.2 5.3 5.2 5.3 5.3 5.1

β1 5.3 5.4 5.4 5.4 5.7 5.4 5.8 4.6 5.3
Case β2 4.9 5.3 5.3 5.3 9.1 5.3 9.2 4.2 8.8
(4) β3 5.6 5.0 5.0 5.0 8.6 5.0 8.5 3.7 7.3

β4 4.9 5.1 5.1 5.1 6.0 5.1 6.2 4.0 5.1

Table 9: Empirical size (in %) of 5% Wald test for h(β) := βj for j = 1, . . . , 4 based on 10000 Monte Carlo
trials under the simulation design of Lu and Wooldridge (2020). The top panel (above the horizontal line)
corresponds to sample size n = 1000, and the bottom panel to n = 5000. The parametric model ω2(x; γ) is
correctly specified for V (u|x) under Case 4.
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h(β) OLS WLS ALS MIN TWLS CC TCC GMM TGMM

constant 5.905 6.393 6.176 6.350 6.074 6.615 6.205
(2.115) (.978) (.911) (.961) (.910) (.922) (.889)

inc0 .633 .463 .472 .482 .473 .502 .458
(.152) (.063) (.055) (.061) (.055) (.056) (.050)

inc2
0 .000 .003 .002 .003 .002 .002 .002

(.005) (.002) (.002) (.002) (.002) (.002) (.002)
age0 .704 .605 .581 .608 .581 .676 .595

(.141) (.087) (.076) (.087) (.076) (.075) (.068)
age2

0 .031 .011 .004 .011 .006 .013 .009
(.014) (.005) same (.004) (.005) (.004) (.004) (.004)

inc0.age0 .044 .026 as .027 .027 .028 .031 .029
(.013) (.006) (.005) (.006) (.005) (.005) (.004)

e401k 6.346 6.770 WLS 5.758 6.647 5.758 7.400 4.762
(2.022) (1.844) (1.432) (1.807) (1.432) (1.540) (1.039)

male 1.799 1.505 1.558 1.517 1.580 1.656 1.131
(1.959) (.756) (.531) (.752) (.523) (.740) (.558)

e401k.inc0 .307 .258 .216 .265 .226 .309 .206
(.216) (.128) (.089) (.125) (.087) (.112) (.081)

e401k.age0 .154 .160 .228 .160 .228 .161 .161
(.262) (.120) (.102) (.118) (.102) (.116) (.101)

Table 10: Estimates and standard errors (in parentheses) of regression coefficients in the financial wealth
equation in Lu and Wooldridge (2020)’s empirical application [c.f. their Table 3].
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B Appendix B: Technical Proofs

B.1 Proof of Propositions 1, 2, and Remarks 1 to 5 in Section 3.2-3.3:

For the sake of notational simplicity, all computations are made in the joint asymptotic Gaussian distri-

bution of estimators of β, without making explicit any notation of limit in distribution. We are interested

in CC and MCC estimators:

ĥλ = h
(

(1− λ) β̂1 + λβ̂2

)
,

ĥA = h
(

(Ip −A) β̂1 +Aβ̂2

)
.

After asymptotic expansion:

ĥλ = δ′U (λ) , U (λ) = β̂1 − λ
(
β̂1 − β̂2

)
ĥA = δ′U (A) , U (A) = β̂1 −A

(
β̂1 − β̂2

)
.

If we find A∗ such that:

V ar (U (A∗))� V ar (U (A)) ∀A

with inequalities in the sense of positive semi-definite matrices, we can be sure to have defined a minimum

for:

V ar
(
ĥA

)
= δ′V ar (U (A)) δ.

Hence, we have an optimal MCC estimator from multivariate regression coefficients:

A∗ = Cov
(
β̂1, β̂1 − β̂2

) [
V ar

(
β̂1 − β̂2

)]−1

, ĥA∗ = δ′
[
β̂1 −A∗

(
β̂1 − β̂2

)]
.

By contrast, there does not exist in general a real number λ∗ such that:

V ar [U (λ∗)]� V ar [U (λ)] ∀λ. (27)

The optimal CC is defined from an optimal number λ∗ that depends on the target δ:

λ∗ = arg min
λ∈R

δ′V ar [U (λ)] δ = arg min
λ∈R

[
δ′β̂1 − λδ′

(
β̂1 − β̂2

)]
.

Hence, we have an optimal CC estimator from univariate regression coefficient of δ′β̂1 on
[
δ′β̂1 − δ′β̂2

]
:

λ∗ = Cov
(
δ′β̂1, δ

′β̂1 − δ′β̂2

) [
V ar

(
δ′β̂1 − δ′β̂2

)]−1

ĥλ∗ = δ′β̂1 − λ∗δ′
(
β̂1 − β̂2

)
.
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While λ∗ does not solve (27) in general, it does solve if:

δ′A∗ = λ∗δ′

meaning that δ is an eigenvector of A∗′ with eigenvalue λ∗. Otherwise, we have in general:

V ar
(
ĥA∗

)
< V ar

(
ĥλ∗
)
.

The optimal TMCC estimator is strictly more accurate than the optimal TCC.

However, if for all δ ∈ Rp, no TCC estimator based on CC of the two estimators
(
β̂1, β̂2

)
can improve

upon h
(
β̂1

)
, it is also the case for TMCC estimators. To see that, note that if ĥA∗ stands for our optimal

TMCC and for all eigenvectors δ of A∗′ if λ∗ (δ) stands for the corresponding eigenvalue, then:

V ar
(
ĥλ∗(δ)

)
= δ′V ar (U (A∗)) δ = δ′

{
V ar

(
β̂1

)
− V ar

(
A∗
(
β̂1 − β̂2

))}
δ

= δ′V ar
(
β̂1

)
δ − δ′A∗V ar

(
β̂1 − β̂2

)
A∗′δ

= δ′V ar
(
β̂1

)
δ − λ∗δ′V ar

(
β̂1 − β̂2

)
λ∗δ.

The fact that no TCC estimator based on CC of the two estimators
(
β̂1, β̂2

)
can improve upon h

(
β̂1

)
means that:

V ar
(
ĥλ∗(δ)

)
= δ′V ar

(
β̂1

)
δ =⇒ λ∗δ′V ar

(
β̂1 − β̂2

)
λ∗δ = 0 =⇒ λ∗δ = 0 =⇒ A∗′δ = 0.

Since this must be true for all eigenvectors δ of A∗′, we conclude:

A∗ = 0.

No TMCC can improve upon h
(
β̂1

)
. In other words, the optimal TCC is h

(
β̂1

)
for all possible target

h (β) if and only if:

Cov
(
β̂1, β̂1 − β̂2

)
= 0.

Since (see Section 3.1.) estimators are one-to-one linear functions of moment conditions, this can be

rewritten with obvious simplified notations:

Cov
(
g1, G

−1
1 g1 −G−1

2 g2

)
= 0.

This can be rewritten:

Ω11G
−1′
1 = Ω12G

−1′
2 ⇐⇒ G−1

2 Ω21 = G−1
1 Ω11 ⇐⇒ Ω21 = G2G

−1
1 Ω11 ⇐⇒ G2 = Ω21Ω−1

11 G1.
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B.2 Proof of Proposition 3:

We first compute the matrix of multivariate regression coefficients:

A∗ = Cov
(
β̂1, β̂1 − β̂2

) [
V ar

(
β̂1 − β̂2

)]−1

= [Σ11 − Σ12] [Σ11 + Σ22 − Σ12 − Σ21]
−1

where Σ stands for the joint asymptotic variance matrix of the couple
(
β̂′1, β̂

′
2

)′
of estimators:

Σ =

 Σ11 Σ12

Σ21 Σ22

 .
For efficient GMM, with weighting matrix W =

[
Ω
(
β0
)]−1

, we have shown that it is an MCC of the two

estimators with a matrix of weights:

∆ = [G′WG]
−1

[G′1W12G2 +G′2W22G2]

=
[
Σ−1

]−1 [
Σ12 + Σ22

]
=

[
Σ11 + Σ21 + Σ12 + Σ22

]−1 [
Σ12 + Σ22

]
with the notations:

Σ−1 =

 Σ11 Σ12

Σ21 Σ22

 = G′WG = G′1W11G1 +G′1W12G2 +G′2W21G1 +G′2W22G2.

Hence, to prove Proposition 3, we need to check that, when W =
[
Ω
(
β0
)]−1

:

[Σ11 − Σ12] [Σ11 + Σ22 − Σ12 − Σ21]
−1

=
[
Σ11 + Σ21 + Σ12 + Σ22

]−1 [
Σ12 + Σ22

]
.

We know (see discussion in Section 3.2.) that we can assume without loss of generality that
√
nḡ1,n

and
√
nḡ2,n are asymptotically independent, or equivalently the estimators β̂1 and β̂2 are asymptotically

independent. In this case, matrices Σ and Σ−1 are block diagonal and, to prove Proposition 3, we only

need to check that:

Σ11 [Σ11 + Σ22]
−1

=
[
Σ11 + Σ22

]−1
Σ22

that is: [
Σ11 + Σ22

]
Σ11 = Σ22 [Σ11 + Σ22]

which is obvious, since in case of block-diagonality:

Σ11 = (Σ11)
−1
, Σ22 = (Σ22)

−1
.
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