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Abstract
Semi-supervised node classification is an important task that aims at classifying nodes based on the graph structure, node
features, and class labels for a subset of nodes. While most graph convolutional networks (GCNs) perform well when an
ample number of labeled nodes are available, they often degenerate when the amount of labeled data is limited. To address
this problem, we propose a scheme, namely, Individuality-enhanced and Multi-granularity Consistency-preserving graph
neural Network (IMCN), which can alleviate the problem of losing individual information within the encoder while providing
a reliable supervised signal for learning purposes. First, one simple encoder based on node features only is integrated to
enhance node individuality and amend node commonality learned by the GCN-based encoder. Then, three constraints are
defined at different levels of granularity, encompassing node embedding agreement, semantic class alignment, and node-to-
class distribution identity. They can maintain the consistency between the individuality and commonality of nodes and be
leveraged as latent supervised signals for learning representative embeddings. Finally, the trade-off between the individuality
and commonality of nodes captured by two encoders is taken into consideration for node classification. Extensive experiments
on six real-world datasets have been conducted to validate the superiority of IMCNagainst state-of-the-art baselines in handling
node classification tasks with scarce labeled data.

Keywords Node classification · Semi-supervised learning · Multi-granularity consistency · Graph neural network

1 Introduction

Graphs are useful data structures for capturing relationships
between entities in various complex interconnected systems,
such as social relationships [1], protein interactions [2],
commodity co-purchasing [3], and co-citations [4]. Many
fundamental tasks on graphs involvemaking predictions over
nodes, such as predicting labels for unlabeled nodes accord-
ing to the graph structure and node attributes. In practical
scenarios, the availability of labeled nodes is often limited
due to the resource-intensive and time-consuming nature of
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the annotation process [5, 6]. Consequently, the scarcity of
labeled examples renders the task of classifying nodes in a
semi-supervised manner both challenging and crucial.

In recent years, deep graph neural networks [7–10]
have garnered considerable attention and witnessed notable
advancements in semi-supervised node classification. Among
them, graph convolutional networks (GCNs) have emerged
as a prominent approach. Early GCNs, such as GCN [11]
and the hierarchical GCN model [12], are based on the
graph convolution process, which focuses on propagat-
ing and aggregating feature information between adjacent
nodes. These models solely learn node embeddings from
the single-view perspective, often adopting a shallow archi-
tecture to mitigate the problem of over-smoothing [13–15]
that may arise when dealing with node feature informa-
tion. These characters often lead to the problem of capturing
only a restricted amount of information by most single-view
GCNs. This is unfavorable for learning discriminative node
embeddings and devising effective classifiers, particularly in
situations where the availability of labeled nodes is scarce in
practical tasks.
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Inspired by the recent success of contrastive learning [16–
18] in computer vision, numerous multi-view GCNs have
been specifically designed to capture node feature infor-
mation from diverse perspectives. There are two primary
approaches for generating node embeddings from multi-
views: one is combining different kinds of information from
the samegraph, such as themodelsCG3 [19] andVCHN[20];
and the other is contrasting the information captured fromone
graph and its corresponding augmented one, such as themod-
els MVGRL [21] and CSGNN [22]. Therefore, information
from different views can be complementary by each other
and provide valuable hints for promoting node embedding
and classification.

Despite the remarkable advancements achieved by single-
view and multi-view GCNs in semi-supervised node classifi-
cation, it remains a daunting challenge to effectively classify
nodes with only a limited number of labeled examples (lack
of supervision). This ismainly attributed to the following two
problems: (1)Graph convolutions focus on information prop-
agations from neighboring nodes to the central node based on
the graph topology, so that the similar features or commonal-
ity shared by connected nodes are learned.However, thismay
result in a loss of the node individuality, the acquisition of
over-smoothed features, and the failure to distinguish nodes
from different classes [13]. Such outcomes are unfavorable
when aiming to learn a discriminative classifier. (2) The class
label information of nodes is scarce and concise but plays a
significant role in supervising model learning. The relation
between nodes and classes should be taken full advantage of
for mining valuable supervised signals and optimizing the
processes of node embedding and classification. However,
only limited useful supervised signals are mined from the
relation by most GCNs [19, 20].

In this paper, we develop an Individuality-enhanced and
Multi-granularity Consistency-preserving graph neural Net-
work (IMCN) for semi-supervised node classification with
scarce labeled data. Specifically, IMCN integrates a simple
two-layer MLP as a supplementary encoder to amend the
individuality of nodes damaged by graph convolutions. Then,
IMCN enriches supervised signals by taking full advantage
of the multi-granularity relations among nodes and classes.
The main contributions are summarized as follows:

1) An individuality-enhanced and multi-granularity
consistency-preserving graph neural Network is built for
semi-supervised node classification, which can maintain the
individuality and commonality of nodes simultaneously dur-
ing the feature extraction process. The proposed method
is highly effective, particularly when there are only a few
labeled nodes available for model training.

2) Three consistency constraints at different granular-
ity are designed to enrich the supervised information for
model learning: the fine-grained one at the node level by
an improved semi-supervised contrastive loss; the coarse-

grained one at the semantic class level by aligning the
prototypes of the same class learned from different encoders;
and the middle-grained one at the node-to-class level by
ensuring the identity of node-to-class relational distributions
learned from two encoders.

3) Extensive experiments on six real-world networks from
different fields verify that IMCN significantly outperforms
the comparison methods for semi-supervised node classifi-
cation with few labeled nodes. Especially, on the three public
benchmark datasets Cora, CiteSeer, and PubMed, the classi-
fication accuracies of IMCN are more than 2.5% higher than
baseline methods when only two or three labeled nodes per
class are available for model training.

The remainder of the paper is structured as follows.
Section 2 introduces some related work. Section 3 presents
the details of the proposed model. Then, the experimental
setup and results are introduced and analyzed in Section 4
and Section 5, respectively. Finally, Section 6 provides the
main conclusions of this paper and gives ideas for further
study.

2 Related work

In this section, some previous work on GCNs for semi-
supervised node classification are briefly reviewed based on
whether the method capture abundant information from dif-
ferent aspects.

2.1 Single-view GCNs

Single-viewGCNs usually learn node embeddings for classi-
fication by propagating and aggregating feature information
between adjacent nodes in the graph from one aspect only.
The classical and representative model GCN [11], which
derived inspiration primarily from the convolutional oper-
ations on images, learns low-dimensional node embeddings
through propagations and aggregations of nodes’ and their
neighbors’ features. The GraphSAGE (SAmple and aggre-
GatE) model [23], a general inductive framework, generates
node embeddings by sampling and aggregating features from
one node’s local neighborhood and can efficiently gener-
ate node embedding for previously unseen data. The Graph
ATtention network (GAT) [24] employs an attention mecha-
nism to modify the traditional propagation and aggregation
operations between one node and its neighbors in GCN. The
Simple Graph Convolution network (SGC) [25] reduces the
excess complexity in GCN by successively removing nonlin-
earities and collapsing weight matrices between consecutive
layers. The Hierarchical Graph Convolution Network (H-
GCN) [12] enlarges the receptive field of graph convolutional
processes inGCNby fusing nodeswith similar structures into
super-nodes. The simplified multi-layer graph convolutional
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networks with dropout [6] combines SGC and the dropout
regularization in deep learning and extends the shallowGCN
model to the multi-layer GCN model to extract information
from higher-order neighbors. This model can reduce redun-
dant calculation and over-fitting of the multi-layer GCN to
make it simple and efficient.

Despite the noticeable achievements of these single-view
models, the main concern of lacking supervised informa-
tion in semi-supervised node classification is still not well
handled. Most single-view GCNs are usually shallow with
one aspect only taken into consideration, and cannot obtain
adequate information for effective classification when very
limited nodes are labeled.

2.2 Multi-view GCNs

Different from the single-view GCNs, multi-view methods
are specifically designed to capture abundant information
from different aspects for improving learning and classifi-
cation. In recent years, many multi-view GCNs have been
proposed, and are classified into the following two classes.

One captures and combines feature information from two
views of the same graph. The Contrastive GCN with Graph
Generation (CG3) [19] integrates H-GCN and a two-layer
GCN to learn complementary information from local and
global views of nodes and imposes the designed node-level
contrastive and graph-level generative constraints on the
embeddings learned by the above two encoders. The View-
Consistent Heterogeneous Network (VCHN) [20] combines
the classical methods GCN and GAT to learn node embed-
dings from spectral and spatial views and applies constraints
on the predictions between two views to promote the super-
vision from one to the other.

The other captures feature information from one graph
and its corresponding augmented graph and contrasts them
to provide extra useful information for learning. The Deep
Graph Infomaxmodel (DGI) [26] aims at learning patch rep-
resentations and the corresponding high-level summaries of
graphs and related corrupted graphs by GCN, and then maxi-
mizes the mutual information between them. Similar to DGI,
the contrastive Multi-View Graph Representation Learning
model (MVGRL) [21] learns node representations for the
graph and its corresponding corrupted one by two different

GNNs and a sharedMLP and generates corresponding graph
representations from them by shared pooling and MLP lay-
ers. Then, contrastive constraints between node and graph
representations are designed as important parts of the learn-
ing objective. The deep GRAph Contrastive rEpresentation
learning model (GRACE) [27] first generates two correlated
graph views by randomly performing corruption of remov-
ing edges and masking node features, then maximizes the
agreement between node embeddings in these two views
based on the idea of contrastive learning. The Contrastive
Semi-supervised learning model based GNN (CSGNN) [22]
employs a two-layer GCN as a teacher encoder to learn node
representations for one graph and its corrupted graph, and
then contrasts the latent vectors between nodes, edges, and
labels from these two views for improving predictions. In
the final stage, the predictions are distilled into the down-
streaming student module.

The above two branches of multi-view GCNs can learn
complementary information for boosting the discrimination
of node embeddings and classification accuracy. However,
these methods usually rely on the graph convolutional
process, which enforces the encoders focusing on the com-
monality of adjacent nodes and damaging some individuality
of them. In addition, these models do not take full advan-
tage of the complex but valuable relation information among
nodes and classes.

The methods H-GCN, CG3, and VCHN are closely
related to the method proposed in this paper. The constraints
and mechanism used in these four methods are listed in
Table 1.

The following are the differences among the proposed
IMCN method, H-GCN, CG3, and VCHN. Compared with
the multi-view methods CG3 and VCHN, a GCN-based
encoder is coupled with an MLP-based encoder in the pro-
posed IMCN method, which can enhance the node individ-
uality for learning discriminative node embedding vectors.
For the node-level constraints in IMCN and CG3, the calcu-
lation of the former is much simpler than that of the latter
by reducing repeated node-pair contrasts. In addition, IMCN
takes full advantage of the complex relations among nodes
and classes from the views of node-to-class distribution and
class centroid alignment which are ignored by the other three
methods.

Table 1 Differences among
H-GCN, CG3, VCHN, and the
proposed IMCN method

Constraints/Mechanism H-GCN CG3 VCHN IMCN

multi-view encoder —
√ √

Individuality-enhanced

node-level constraint —
√ √

No repeated calculation

node2class-level constraint — — —
√

class-level constraint — — —
√
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3 IMCNmodel

This section first introduces the framework of the proposed
Individuality-enhanced and Multi-granularity Consistency-
preserving graph neuralNetwork (IMCN) for semi-supervised
node classification. Then, the critical components of IMCN
are described in detail.

3.1 Framework overview

We design a novel graph neural network (as shown in Fig. 1)
for semi-supervised node classification, which commits to
taking both the individual- and common-feature informa-
tion of nodes and preserving multi-granularity consistency
between them to learn discriminative node representations
for effective classification. The model learning and classifi-
cation process of IMCN mainly includes the following three
stages:

1) Feature extraction The individual- and common-
feature information for nodes is extracted by two different
encoders according to the graph topology and original node
features.

2)Multi-granularity consistency constrains The multi-
granularity consistency of feature information learned from
the encoders is preserved according to the relations among
nodes and classes.

3) Feature fusion and node classification A trade-off is
made between the constrained individuality and common-
ality of nodes and then a multi-objective loss function is
established to obtain the optimized model for node classi-
fication.

3.2 Feature extraction

Different views contain quite different information to describe
the same object, which can provide complementary infor-

mation to improve model learning. Multi-view learning has
grown in popularity as a result of this concept. Meanwhile,
contrastive learning has received intensive research in recent
years showing that contrasting congruent and incongruent
views of objects can help the algorithms learn expressive
representations [28–32]. Inspired by these ideas, two differ-
ent views are established for a graph and applied to learn
discriminative node representations for classification.

Although some augmentation strategies are proposed to
generate related graphs with different views, such as node
dropping and edge perturbation in [21, 22, 33], they may
destroy the original graph topology and degrade the perfor-
mance of graph convolutional networks. Unlike the previous
approaches, in this paper, the node itself is seen as a local
view and the nodes with adjacent neighbor structures as a
global view for a graph. These two views are obviously dif-
ferent from those of node2vec [34] which takes the width
and depth of the deep walks controlled by two parameters as
local and global views.

From the global structure view, many public GCN-based
models can be used to capture common-feature information
among adjacent nodes. Here, the effectiveGCN-basedmodel
H-GCN [12] is adopted as the global encoder in the proposed
IMCNmodel. H-GCN aggregates nodes that have equivalent
or similar structures into hyper-nodes for graph convolution
and then refines the coarsened graphs to the original graphs
for restoring the representation for each node. Therefore, the
receptive field for each node is enlarged, and more global
and common-feature information of nodes can be compre-
hensively captured. The node feature matrix X ∈ R

m×n and
adjacency matrix A ∈ R

m×m are input into the H-GCN
encoder to generate low-dimension global node representa-
tions Hglobal ∈ R

m×c as follows:

Hglobal = φ(A,X), (1)

+

C
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Graph

Global-view
 GCN-based encoder

Local-view
MLP-based encoder

Consistency at 
class level

Consistency at
 node-to-class level

Class prototypes

Consistency at 
node level 

Class prototypes

Node embedding 
representations

Node embedding 
representations

Node features only

Graph structure

Node features

Node-to-class distribution

Node-to-class distribution

Stage 1 Stage 2 Stage 3

Fig. 1 Framework of the proposed IMCN model: feature extraction in Stage 1; multi-granularity consistency constrains in Stage 2; and feature
fusion and node classification in Stage 3
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wherem, n, and c (as the dimension of node embeddings) are
the number of nodes, node features, and classes, respectively;
and φ(·) denotes the processes of generating coarse graphs,
graph convolution, and refining coarsened graphs in H-GCN.

However, those GCN-based encoders mainly focus on
the commonality of linked nodes excessively and may lose
the individuality of nodes in information propagation. This
problem also exists in the local encoder which is designed
by two-layer GCNs in [19]. In practice, the categories of
nodes are mainly determined by their individual-feature
information. Therefore, to compensate for the damaged
individual-feature information learned from the global GCN-
based encoder, the node itself is regarded as a local view and
extract the individual-feature information of nodes by a sim-
ple two-layer MLP encoder with X as the only input. The
local node low-dimension representations Hlocal ∈ R

m×c

can be obtained by IMCN as follows:

Hlocal = σ(XW(0))W(1), (2)

where W(i) and σ(·) denote the trainable weight matrix and
non-linear ReLU activation function [35]. Denote W(0) ∈
R
n×d , andW(1) ∈ R

d×c, where d is the feature dimension in
the hidden layer. Since Hlocal is computed regardless of the
structural information of graphs, the label information can
be effectively propagated without the limitation of distance
between nodes.

In order to make the feature information learned by two
encoders in the same metric, Hlocal and Hglobal are normal-
ized by the L2-norm in the column direction before imposing
the following multi-granularity consistency constraints and
the classification stage.

3.3 Multi-granularity consistency constraints

For the individuality and commonality of nodes captured sep-
arately through the above feature extraction processes, it is
reasonable to preserve the consistency between them for opti-
mizing the encoding process. Inspired by human cognition
and intelligence, data are analyzed from different granulari-
ties in IMCN. This strategy can lead the model to analyze
data more comprehensively, utilize data more efficiently,
and make more accurate decisions. The following part intro-
duces the designed multi-granularity consistency constraints
according to relations among nodes and classes in detail.

3.3.1 Node-level consistency constraint

Data tend to be analyzed intuitively from the node (sample)
level,which can enforce themodel focusing on the features of
representative samples and having good generalization abil-
ity. From this level, some common information shared by

local and global representations of one node is described as
fine-grained node-level consistency.

In the proposed IMCN method, the vector distance of
local and global representations is used to measure this fine-
grained consistency. In detail, this constraint is defined with
unsupervised and supervised parts as follows.

On the one hand, in order to utilize the abundance of unla-
beled information effectively, an unsupervised node-level
loss is defined to maintain the consistency between the local
and global representations of the same node:

Lu
node = − log

∑m
i=1 e

sim(hlocali ,hglobali )

∑n
j,k=1 e

sim(hlocalj ,hglobalk )
, (3)

where hlocali is the i-th row vector inHlocal , and sim(a,b) is
the cosine similarity between a and b: sim(a,b) = a·b

|a|×|b| .
Byminimizing this loss, the representations of the same node
from two views are expected to be similar, while those of
different nodes are expected to be away from each other.

On the other hand, labeled nodes are scarce but canprovide
valuable semantic information for learning expressive node
embeddings for easy classification. The consistency between
local and global representations of labeled nodes belonging
to the same class is maintained by a designed supervised loss
as follows:

Ls
node = − log

∑m
i, j=1;yi=y j

esim(hlocali ,hglobalj )

∑n
k,m=1 e

sim(hlocalk ,hglobalm )
, (4)

where yi is the one-hot coded class vector of the i-th node
and yi ∈ R

1×c. Therefore, each labeled node from one view
is contrasted with the labeled nodes belonging to the same
class from the other view.

Note that in the above two loss terms, we expect node
embeddings of the same node or nodes from the same class
to bemost similar simultaneously in the joint similarity distri-
bution between all nodes, instead of themarginal distribution,
as shown in Fig. 2. This is more reasonable and can avoid
the following time-consuming duplication calculations in
CG3 [19]: (1) reuse negative nodes (blue shaded and checked
ones as shown in Fig. 2(a) and (c)) in contrastive learning;
and (2) repeat calculations of the inner products between row
vectors from Hlocal and Hglobal in each loss term.

Finally, the local-global consistency at the fine-grained
node level is maintained by a node-wise regularization term
defined with both the unsupervised and supervised informa-
tion as the following formula:

Lnode = Ls
node + Lu

node. (5)
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Fig. 2 Differences between the proposed IMCN method and CG3 [19] on calculating unsupervised and supervised node-level loss

Therefore, the learning process of IMCN for local and global
node representations can complement and promote each
other based on node features and semantic information.

3.3.2 Class-level consistency constraint

Theperformanceof themodel tends to bebiasedwhen trained
only at the sample level. The reason is that different sam-
ples can share some common features and belong to the
same class, and it is necessary for the model to distinguish
between samples of different classes. Despite a small num-
ber of labeled nodes, their semantic category information
is an important supplement for feature embedding. This is
not taken into consideration in [19]. From the perspective
of semantic category, the common information between the
local and global views of nodes is named after coarse-grained
class-level consistency.

Following but different from the idea in [36], prototypes
for each class from local and global views are generated
using the learned embeddings of the labeled nodes, then the
distance between them are expected to be minimized. The
following constraint is designed:

Lclass = 1

c

c∑

i=1

∥
∥
∥clocali − cglobali

∥
∥
∥
2

2
, (6)

where clocali ∈ R
c and cglobali ∈ R

c are the prototypes of the
i-th class calculated by average aggregation of the learned
local and global embeddings of the labeled nodes belonging
to this class respectively, ‖·‖2 is the L2-norm operator, and
Lclass is the mean-squared Euclidean distance of the corre-
sponding class prototypes. Note that it is different from the
magnet loss [37] which uses the k-means method to compute
cluster centers for each class.

The representations of class prototypes are not stable dur-
ing the model learning process and may forget valuable
information learned before. Therefore, in the t-th iteration,
we compute the class prototypes clocali and cglobali in the way

mentioned above, then add them to the prototype represen-
tations calculated after the last iteration for updating class
prototype representations and suppressing the instability:

clocal(t)i = (1 − μ)clocal(t−1)
i + μclocali ,

cglobal(t)i = (1 − μ)cglobal(t−1)
i + μcglobali , (7)

where μ is the balance weight for updating the class
prototypes in the t-th iteration based on the prototype repre-
sentation after t − 1 iterations, and μ ∈ [0, 1).

3.3.3 Consistency constraint at the node-to-class level

Assume that the distribution around each prototype is
isotropic Gaussian and that the distributions around the same
class in the local and global views should be similar. There-
fore, in addition to the consistencies at node and class levels,
there must be some indispensable consistent information
in the node-to-class relationship between local and global
views. This is also not taken into consideration in [19].

To make the best use of unlabeled nodes, sim(hi , c j )
is used to calculate the similarities between each node
embedding and the obtained class prototypes, and then node-
to-class relational distributions are generated for unlabeled
nodes in local and global views according to the following
expressions:

plocali j = esim(hlocali ,clocalj )/τ

∑c
k=1 e

sim(hlocali ,clocalk )/τ
,

pglobali j = esim(hglobali ,cglobalj )/τ

∑c
k=1 e

sim(hglobali ,cglobalk )/τ
, (8)

where τ > 0 is a temperature hyper-parameter denoting the
concentration of node embeddings around class prototypes,
and a smaller τ indicates a larger concentration.

Then, the distribution of the relation of one node to
all classes can be represented as pi = [pi1, pi2, ..., pic].
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The node-to-class relational consistency between plocali and

pglobali is kept by minimizing the Kullback-Leibler diver-
gence [38] between them as follows:

Lnode2class =
m−l∑

i=1

DKL(plocali ‖ pglobali )

=
m−l∑

i=1

g(plocali ,pglobali ) − g(plocali ),

g(plocali ,pglobali ) = −
c∑

j=1

so f tmax(plocali )

× ln(so f tmax(pglobali )), (9)

where g(plocali ) is omitted, so f tmax(·) is the softmax

function, and g(plocali ,pglobali ) is implemented by the cross-
entropy function according to [39]. In the proposed IMCN
model, Lnode2class is regarded as a middle-grained consis-
tency constraint.

3.4 Feature fusion and node classification

Node representations with the individuality and commonal-
ity of nodes are generated by the designed encoders under
the defined multi-granularity consistency constraints. That
important information is integrated and complements each
other to obtain the final node representations as follows:

H = λHlocal + (1 − λ)Hglobal , (10)

where λ is a trade-off hyper-parameter between the individ-
uality and commonality of nodes, and λ ∈ (0, 1).

Then, the embedding vectors of l labeled nodes can be
noted as H

′ ∈ R
l×c from H, and the cross-entropy classifi-

cation loss is calculated to penalize the differences between
the predicted labels Ŷ = so f tmax(H

′
) and the ground truth

Y ∈ R
l×c of the labeled nodes as follows:

Lcross = −
l∑

i=1

c∑

j=1

Yi j ln Ŷi j . (11)

Finally, the proposed semi-supervised classificationmodel
IMCN is trained with the overall loss function expressed as
follows:

L = Lcross + αLnode + βLclass + γ Lnode2class, (12)

where α, β, and γ are three adjustable hyper-parameters to
measure the importance of multi-granularity consistencies
respectively. The training process of IMCN is sketched in
Algorithm 1.

Algorithm 1 Individuality-enhanced and Multi-granularity
Consistency-preserving graph neural Network (IMCN).
Require: Graph with adjacency matrix A, node feature matrix X

and one-hot label matrix Y of labeled nodes, hyper-parameters
μ, τ, λ, α, β, γ , and the number of iterations T ;

Ensure: Predicted labels for unlabeled nodes;
1: for t = 1 : T do
2: Extract individual and common feature of nodes by (1) and (2);
3: Calculate the node-level consistency loss by (3), (4), and (5);
4: Generate class prototypes for global and local labeled nodes by

average aggregation;
5: Compute and update class prototypes from two views by (7),

respectively;
6: Calculate the class-level consistency loss with (6);
7: Compute the node-to-class consistency loss for unlabeled nodes

from two views by (8) and (9);
8: Calculate the final node representations according to (10);
9: Compute the cross-entropy classification loss for labeled training

nodes by (11);
10: Update parameters in the network byminimizing the overall loss

function in (12);
11: end for
12: Conduct category prediction for unlabeled nodes based on the

trained IMCN model;

4 Experimental setup

This section presents the experimental setup from the fol-
lowing three perspectives: (1) benchmark datasets used for
training and testing themodel; (2) baselinemodels compared
with the proposed model; and (3) parameter settings for the
proposed model in the series of experiments.

4.1 Datasets

Six benchmark datasets are used in the experiments for a
comprehensive comparison between the proposed method
and the state-of-the-art methods, including three undirected
citation networks from [40], two co-purchasing networks
segmented from the Amazon co-purchasing graph [41], and
one co-authorship network [42] from the KDD Cup 2016
challenge.1 Detailed statistics of these datasets are summa-
rized in Table 2, where the density of each dataset is defined
as the ratio between the number of actual edges in the dataset
and the edges in its corresponding fully connected graph.

Following the data preprocessing in [19], each dataset is
split into training, validation, and test sets as follows: (1) For
the first three citation networks, twenty labeled nodes per
class are used as the training set, 500 nodes, and 1,000 nodes
as the validation and test sets, respectively. (2) For the other
three networks, thirty labeled nodes per class are used as the
training set, thirty nodes per class as the validation set, and
the rest as the test set.

1 https://kddcup2016.azurewebsites.net/
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Table 2 Dataset statistics Datasets Type Nodes Features Edges Classes Label rate Density

Cora Citation 2,708 1,433 5,429 7 5.2% 0.148%

CiteSeer Citation 3,327 3,703 4,732 6 3.6% 0.086%

PubMed Citation 19,717 500 44,338 3 0.3% 0.023%

Photo Co-purchasing 7,650 745 119,081 8 3.1% 0.407%

Computer Co-purchasing 13,752 767 245,861 10 2.2% 0.260%

CS Co-authorship 18,333 6,805 81,894 15 2.5% 0.049%

4.2 Comparisonmodels

To verify the effectiveness of the proposedmodel, a compari-
son ismade between the proposed IMCNmodel and ten other
baseline methods, including four basic deep graph models
(GCN [11], GAT [24], SGC [25], and H-GCN [12]), and
six GCN-based contrastive models (DGI [26], GMI [43],
MVGRL [21], GRACE [27], CG3 [19], and VCHN [20]).
The description of the details of these methods is as follows.

1)GCN [11] produces node embedding vectors by a recur-
sive average neighborhood aggregation scheme. It is derived
from the related work of conducting graph convolutions in
the spectral domain [44].

2) GAT [24] generates node embedding vectors by mod-
eling the differences between the node and its one-hop
neighbors.

3) SGC [25] reduces the excess complexity in GCN
by removing nonlinearities and collapsing weight matrices
between consecutive layers.

4) DGI [26] generates node embeddings and graph sum-
mary vector for the original input graph and constructs a
corrupted graph to obtain negative node embeddings with
the same GNN encoder. Then DGI aims at maximizing the
mutual information between positive node embeddings and
the graph summary vector and minimizing it between nega-
tive node embeddings and the graph summary vector.

5)GMI [43], different from DGI, focuses on maximizing
themutual information of feature and edge between the input
graph and the output graph of the encoder.

6)MVGRL [21] uses graph diffusion to generate an addi-
tional structural view of a graph, then original-view and
diffusion-view graphs are fed to GNNs and shared MLP to
learn node representations. The learned features are then fed
to a graph pooling layer and a sharedMLP to learn graph rep-
resentations. A discriminator contrasts node representations
from one viewwith graph representation of another view and
vice versa and scores the agreement between representations
which is used as the training signal.

7) GRACE [27] jointly corrupts the input graph at both
topology and node attribute levels, such as removing edges
and masking node features, to provide diverse contexts for

nodes in different views. Then contrastive learning is con-
ducted between node embeddings from two views.

8) H-GCN [12] is an improved GCN-based model that
expands the receptive field of graph convolutions in GCN.

9) CG3 [19] employs the H-GCN model and a two-layer
GCNmodule to obtain local and global node embeddings and
designs a semi-supervised node-level contrastive loss and a
graph-level generative loss to optimize the model learning
process.

10)VCHN [20] uses a two-layer GCNmodule and a two-
layer GATmodule to obtain latent features from spectral and
spatial views and designs a strategy to generate confident
pseudo-labels for unsupervised nodes.

Note that, in the last experiment of Section 5, IMCN with
a two-layer GCN as the local encoder is added to illustrate
the effectiveness of the proposed scheme in this paper.

4.3 Experimental settings

The proposed IMCNmodel was trained using theAdam opti-
mizer with 500 epochs and the following settings: (1) The
ReLU function is adopted as the non-linear activation of hid-
den layers. (2) The output dimension of local and global
node representations is fixed to the number of classes. The
dimensions of hidden layers, learning rate, weight decay, and
dropout ratio are searched in {32, 64, 128}, {0.1, 0.05, 0.01},
{0.01, 0.005, 0.001, 0.0005}, and {0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9}, respectively. (3) The hyper-parameters μ,
λ, and τ in the proposed IMCN model are searched in
{0.1, 0.2, 0.3, 0.4, 0.5}. (4) The hyper-parameters α, β, and
γ for the trade-off among three consistencies at different
granularity are tuned in {0.1, 0.5, 1, 1.5, 2}. In each experi-
ment, the proposed IMCNmodel is run 10 random trials and
the mean and standard deviation of the best test classification
accuracy is reported. The results of the comparison methods
are directly excerpted from the original papers. If not, cor-
responding experiments are conducted to obtain the results.
The code and datasets are publicly available at https://github.
com/xinya0817/IMCN.
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5 Experimental results and analysis

This section presents the experimental results and discusses
the performance of IMCN from the following seven aspects:
(1) Performance of IMCN with different weights of the
node-level consistent constraint, the class-level one, and the
one at the node-to-class level; (2) Performance of IMCN
with different updating rates for learning class prototypes,
different temperatures for calculating the node-to-class dis-
tribution, and different weights for the local embedding in
the final embedding; (3) Visualization of the original nodes
and node embeddings learned by IMCN and its part mod-
ules; (4) Ablation study of IMCN with different loss terms;
(5) Performance of IMCN on alleviating over-smoothing; (6)
Performance of IMCN and comparison methods with scarce
labeled training data; and (7) Performance of IMCN and
baselines on common benchmark datasets. In all tables of
experimental results, the highest record on each dataset is
highlighted in bold.

5.1 Performance of IMCNwith different weights
on the consistent constraints

Experiments are carried out to determine the effectiveness of
three local-global consistent constraints in IMCN. To verify
the performance of the proposed IMCN model on very lim-
ited labeled trainingnodes, twocitationnetworks (a small one
and a relatively big one) are used with label rates equal 0.5%
for Cora and 0.03% for PubMed. When different values are

set for one hyper-parameter, the other two hyper-parameters
are fixed.

The classification accuracies of IMCN with different val-
ues for α, β, and γ are shown in Fig. 3, and the following
observations can be obtained:

(1) IMCN obtained the best classification result on Cora
when α = 1.5, β = 1, and γ = 2. This is significantly
superior to the results when α, β, or γ equals 0.1.

(2) IMCN got the best result on PubMed when α = 0.5,
β = 1, and γ = 0.1, which is obviously much better when
these hyper-parameters are set to other values. Therefore, the
impacts of three different granularity consistency levels on
the model are quantified.

(3) The IMCN model demonstrates satisfactory perfor-
mance when the values of α and β are approximately 1,
regardless of whether it is applied to Cora or PubMed
datasets. However, the same level of sensitivity was not
observed in relation to the parameter γ . This indicates that
IMCN is considerably more responsive to the weight of the
node-to-class loss. As a result, it is recommended to set the
parameters α and β to 1, while the parameter γ may require
careful fine-tuning in domain-specific applications.

5.2 Performance of IMCNwith different parameters
�, �, �

This part discusses the impacts of different rates μ for
updating class prototypes, different temperatures τ for the
node-to-class distribution, and differentweightsλ of the local

Fig. 3 Classification accuracies of the proposed IMCN model with different α, β, and γ
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embedding in the final embedding on the performance of the
proposed IMCN model. Classification experiments are con-
ducted on Cora and PubMed with 0.5% and 0.03% labeled
nodes, respectively. From the results shown in Fig. 4, the
following observations can be obtained:

(1) IMCN performs best when μ is set to 0.3 on Cora and
0.4 on PubMed. Smaller or bigger values forμ cannot ensure
IMCN gets the ideal performance, which implies that appro-
priate updating speed for class prototypes is important for
learning stable and expressive node representations. On the
one hand, whenμ is very small, node embeddings are unable
to obtain new useful information in a timely manner. On the
other hand, when μ is very large, however, the important
information learned previously cannot be retained.

(2) In general, a low value for the temperature hyper-
parameter τ ensures that IMCN achieves the best per-
formance, as seen on Cora. This is because that small
temperature hyper-parameter can ensure a high concentration
of node-to-class distribution. However, the superior result on
PubMed obtained when τ = 0.3 in IMCN was used may be
attributed to PubMed’s relatively large scale and sparse struc-
ture.

(3) The best classification accuracy was got when λ = 0.3
for IMCN both on Cora and PubMed. A much smaller or
bigger percentage of local information in the final node rep-
resentations cannot obtain ideal results. This is because the
hierarchicalGCNmodule takes the feature information of the
node into learning, but some are damaged by the propagation
and aggregation operations of GCN layers.

(4) IMCNdemonstrates strong performance when the val-
ues of μ and λ are set to 0.4 and 0.3, respectively, whether
applied to Cora or PubMed datasets. However, the same level
of performance consistency was not observed in relation to
the parameter τ . This indicates that IMCN is highly sensi-
tive to the temperature parameter in the node-to-class loss.
Therefore, it is recommended to set the parametersμ and λ to
0.4 and 0.3, respectively, while the parameter τ may require
fine-tuning in practical tasks.

5.3 Visualization of node embeddings learned
by different models

The t-SNE algorithm [45] is used to visualize the original
nodes of Cora [40] with a label rate of 0.5% and their embed-
ding representations learned by a two-layer MLP (only the
features of node itself are used), the representative model H-
GCN [12] (feature information propagated from multi-hop
neighbors is used), and the proposed IMCN model (which
integrate feature information of node itself and from its
neighbors). All original and embedded nodes are projected
into a two-dimensional space for visualization and shown in
Fig. 5.

From the results, the following observations can be
obtained. After the embedding process of a simple two-layer
MLP model, nodes from different classes are still mixed
and cannot be clearly distinguished. H-GCN can group most
embedded nodes into their classes correctly, however, many
nodes from different classes in the central area of Fig. 5(c)

Fig. 4 Classification accuracies of the proposed IMCN model with different μ, τ and λ
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Fig. 5 Two-dimension visualization of original nodes and node embeddings obtained by MLP, H-GCN, and the proposed IMCN model on Cora

are very close, which can easily lead to misclassification.
Compared with the above two methods, the proposed IMCN
model can push nodes from different classes away while
increasing the distance between these classes, ensuring low
classification errors.

5.4 Ablation study of IMCN

On three citation networks, ablation experiments are carried
out to demonstrate the effectiveness of various local-global
consistent constraints in IMCN. The label rates of Cora, Cite-
Seer, and PubMed are 0.5%, 0.5%, and 0.03%, respectively.
Experimental results are listed in Table 3.

From the results, it can be seen that the designed
multi-granularity constraints (feature embedding agreement,
semantic class alignment, and the identity of node-to-class
relational distribution) make a significant improvement. The
consistency of the local and global perspectives at multi-
ple levels can reveal their complementary features between
the individuality and commonality of nodes. By combining
these constraints, IMCN can make full use of both limited
labeled nodes and abundant unlabeled nodes and integrate
useful information from the two views.

5.5 Performance of IMCN on alleviating
over-smoothing

Through a series of experiments, it was observed that the
nine-layer and twelve-layer GCNs cause all node repre-
sentations to be similar and indistinguishable on Cora and
CiteSeer, respectively, as shown in Fig. 6(a) and (c). Then, the

Table 3 Ablation study of the proposed IMCN method with different
loss terms (%)

Lcross Lnode Lclass Lnode2class Cora CiteSeer PubMed

� 68.7 55.4 69.8

� � 70.0 68.4 70.8

� � � 76.9 70.0 71.1

� � � � 78.0 70.8 71.7

proposed IMCNmodels with corresponding GCNs as global
encoders obtain low-dimensional node representations on
these two datasets respectively, as shown in Fig. 6(b) and (d).
From these figures, it can be seen that the proposed IMCN
method obviously alleviates the over-smoothing problem
resulting from multiple convolution operations.

5.6 Performance of IMCN and comparisonmethods
on datasets with scarce labeled nodes

In this part, some experiments are conducted to verify the
effectiveness of the proposed IMCN method in learning
expressive node embeddings with only a few nodes labeled
in the training process. In the experiments, three benchmark
graph datasets (Cora, CiteSeer, and PubMed) with differ-
ent label rates are used: 0.5%, 1%, 3% labeled nodes for
Cora and CiteSeer; and 0.03%, 0.05%, 0.01% labeled nodes
for PubMed, respectively. The classification accuracies of all
methods are listed in Table 4, and the following three obser-
vations are obtained.

(1) The proposed IMCN method outperforms most base-
lines in terms of different label rates on three datasets,
especially when there are very few labeled nodes. For exam-
ple, on CiteSeer with 0.5% labeled nodes, the classification
accuracy of IMCN is significantly higher than that of other
methods, which is 6.5% higher than the method ranked
second. This mainly attributes that IMCN can capture the
abundant individuality and commonality of nodes with the
consideration of the complex relations among nodes.

(2) On Cora with a label rate of 1% and PubMed with a
label rate of 0.1%, IMCN’s performance is not superior to
VCHN, which is ranked first, but it is clearly better than the
method ranked third. Concretely, the classification accuracy
of the proposed IMCN method is 2.6% and 0.1% lower than
VCHN, but is 3.7% and 0.4% higher than H-GCN on these
two datasets, respectively.

(3) The performance of the proposed IMCNmodel is quite
good when density is high, especially on Cora and CiteSeer.
This is obviously in contrast with that on PubMed which is
much sparser than the first two datasets according to their
density information in Table 2.

123



X. Liu and W. Yu

Fig. 6 Two-dimension
visualization of node
embeddings obtained by
multi-layer GCNs and the
proposed IMCN models with
the corresponding multi-layer
GCNs on Cora and CiteSeer

5.7 Performance of IMCN and baselines on common
benchmark datasets

In this section, classification experiments are conducted on
six various networks with common dissociation to assess the
performance of the proposed IMCN method and compare it
with the baseline methods. Note that IMCN1 and IMCN2 are
the methods proposed in this paper with the H-GCN model
and a two-layer GCN as the global encoder, respectively. In
addition, there are two designed comparison methods corre-
sponding to IMCN1 and IMCN2 without multi-granularity
consistency constraints: IEN1 takes the H-GCNmodel and a
two-layerMLP as encoders; and IEN2 uses a two-layer GCN
and a two-layer MLP as encoders.

First, the classification accuracies of all methods are
shown in Table 5, where the results ranking in the first two
are marked in bold. The following three conclusions can be
drawn:

(1) The performance of IMCN1 and IMCN2 is obviously
better than the first three traditional models, GCN, GAT, and
SGC, which are based on a single view. This is thanks to two
different views of the graph combined in IMCN to capture
both shared and complementary information from them.

(2) The proposed methods IMCN1 and IMCN2 outper-
form the contrastive learning-based comparison methods on
all experimental datasets. Especially, IMCN1 and IMCN2

obtain the best classification accuracies on Photo which are
about 2.9% and 3.3% higher than that of CG3 which ranked
at third and proposed in recent years. This mainly owes to
the individuality of nodes enhanced by the designed sim-
ple local encoder and the multi-granularity relations among
nodes and classes maintained by the designed consistency
constraints.

(3) IMCN1 and IMCN2 are obviously better than the cor-
responding IEN1and IEN2onmost datasets. For example, on
the citation network CiteSeer, the node classification accu-
racies are promoted by 3.7% and 5.7% with the designed
multi-granularity consistency constraints of the proposed
method.

Then, the widely used statistical Nemenyi test [46] is
employed to conduct a comprehensive analysis of the signif-
icant difference among the proposed IMCN methods and 12
comparison methods on six datasets with the classification
accuracies in Table 5. The average ranks of all the meth-
ods with the critical distance (CD) are plotted as shown in
Fig. 7. The following observations are obtained. The classi-
fication accuracies of the proposed IMCN1, IMCN2, IEN1,
IEN2,CG3,H-GCN, andMVGRLare statistically better than
those of other seven comparison methods. There is no con-
sistent evidence to indicate the statistical differences among
IMCN1, IMCN2, IEN1, IEN2, CG3, H-GCN, and MVGRL
on the metric of classification accuracy.

Table 4 Classification
accuracies of the proposed
IMCN method and comparison
methods on Cora, CiteSeer, and
PubMed with very limited
labeled nodes (%)

Dataset Cora CiteSeer PubMed
Label rate 0.5% 1% 3% 0.5% 1% 3% 0.03% 0.05% 0.1%

GCN [11] 42.6 56.9 74.9 33.4 46.5 66.9 61.8 68.8 71.9

GAT [24] 56.4 71.7 78.5 45.7 64.7 69.3 65.7 69.9 72.4

SGC [25] 43.7 64.3 71.0 43.2 50.7 60.9 62.5 69.4 69.9

DGI [26] 67.5 72.4 78.9 60.7 66.9 69.8 60.2 68.4 70.7

GMI [43] 67.1 71.0 78.8 56.2 63.5 68.0 60.1 62.4 71.4

MVGRL [21] 61.6 65.2 79.0 61.7 66.6 70.3 63.3 69.4 72.2

GRACE [27] 60.4 70.2 75.8 55.4 59.3 67.8 64.4 67.5 72.3

H-GCN [12] 70.9 75.0 82.5 56.3 60.3 69.6 68.7 70.3 74.7

CG3 [19] 69.3 74.1 79.9 62.7 70.6 71.3 68.3 70.1 73.2

VCHN [20] 73.9 81.3 82.0 64.3 67.9 69.1 69.2 71.8 75.2

IMCN (our) 78.0 78.7 83.3 70.8 72.9 73.8 71.7 72.4 75.1
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Table 5 Classification
accuracies of the proposed
IMCN method and comparison
methods on six benchmark
datasets (%)

Methods Cora CiteSeer PubMed Photo Computer CS

GCN [11] 81.5±0.0 70.3±0.0 79.0±0.0 87.3±1.0 76.3±0.5 91.8±0.1

GAT [24] 83.0±0.7 72.5±0.7 79.0±0.3 86.2±1.5 79.3±1.1 90.5±0.7

SGC [25] 81.0±0.0 71.9±0.1 78.9±0.0 86.4±0.0 74.4±0.1 91.0±0.0

DGI [26] 81.7±0.6 71.5±0.7 77.3±0.6 83.1±0.5 75.9±0.6 90.0±0.3

GMI [43] 82.7±0.2 73.0±0.3 80.1±0.2 85.1±0.1 76.8±0.1 91.0±0.0

MVGRL [21] 82.9±0.7 72.6±0.7 79.4±0.3 87.3±0.3 79.0±0.6 91.3±0.1

GRACE [27] 80.0±0.4 71.7±0.6 79.5±1.1 81.8±1.0 71.8±0.4 90.1±0.8

H-GCN [12] 82.9±0.3 71.1±0.5 79.9±0.4 92.0±0.8 80.4±0.8 92.5±0.1

CG3 [19] 83.4±0.7 73.6±0.8 80.2±0.8 89.4±0.5 79.9±0.6 92.3±0.2

VCHN [20] 81.6±0.5 71.5±0.6 78.7±0.4 89.3±1.2 82.1±0.3 88.4±0.3

IEN1 83.2±0.4 72.8±0.3 79.4±0.4 93.0±0.3 83.1±0.3 93.2±0.2

IMCN1 (our) 84.6±0.4 76.5±0.3 81.2±0.8 93.1±0.5 83.6±0.4 93.3±0.2

IEN2 82.0±0.2 71.2±0.9 79.3±0.5 92.8±0.2 84.1±0.5 93.2±0.2

IMCN2 (our) 85.1±0.2 76.9±0.2 82.2±1.2 93.6±0.2 84.9±0.4 93.7±0.2

Fig. 7 Average ranks of all
methods with the critical
distance (CD) for classification
accuracy according to the
Nemenyi test [46]

Table 6 Macro-F1 results of the
proposed IMCN methods and
comparison methods on six
benchmark datasets (%)

Methods Cora CiteSeer PubMed Photo Computer CS

GCN [11] 76.5±0.5 60.8±1.1 77.1±0.5 84.4±1.3 69.1±6.4 80.2±0.9

H-GCN [12] 81.9±0.3 67.8±0.6 79.2±0.4 90.2±1.0 76.8±1.7 90.7±0.1

CG3 [19] 81.4±0.5 71.3±0.4 80.2±0.2 90.3±1.0 77.0±3.3 90.7±0.1

VCHN [20] 80.7±0.7 67.6±0.6 77.9±0.3 87.3±0.9 82.3±0.3 85.4±0.4

IEN1 82.0±0.5 68.9±0.4 78.9±0.4 91.4±0.4 84.4±0.4 91.5±0.3

IMCN1 (our) 83.6±0.4 71.0±0.4 80.0±0.7 91.2±0.5 81.9±0.8 91.5±0.2

IEN2 80.9±0.3 67.3±0.7 78.9±0.5 91.1±0.2 84.1±0.4 91.5±0.2

IMCN2 (our) 84.0±0.3 71.8±0.4 81.3±0.9 91.9±0.3 84.5±0.4 92.1±0.2
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Table 7 FLOPs, trainable
parameters, test time, and
running memory of GCN,
H-GCN, and the corresponding
IMCNs

Metrics Datasets H-GCN [12] IMCN1 (our) GCN [11] IMCN2 (our)

FLOPs Cora 0.70G 1.09G 0.77G 0.04G

CiteSeer 0.94G 1.47G 0.77G 0.05G

PubMed 4.58G 8.51G 1.17G 1.21G

Parameters Cora 0.49M 0.59M 0.09M 0.18M

CiteSeer 1.07M 0.58M 0.09M 0.47M

PubMed 0.25M 1.31M 0.03M 0.06M

Test time Cora 0.04s 0.04s 0.01s 0.02s

CiteSeer 0.05s 0.07s 0.01s 0.04s

PubMed 0.26s 0.91s 0.40s 0.95s

Memory Cora 1.52G 1.10G 0.11G 0.40G

CiteSeer 1.66G 1.21G 0.11G 0.50G

PubMed 2.97G 3.98G 0.41G 1.63G

According to the ranks of the proposed methods and
12 comparison methods, macro-F1 results of the first six
methods (including IMCN1, IMCN2, IEN1, IEN2, CG3 and
H-GCN), the latestmethodVCHN, and the baselineGCNare
listed and compared in Table 6. The best results aremarked in
bold. It can be seen that, under the macro-F1 metric, IMCNs’
performance is much better than that of their corresponding
IENs, GCN, H-GCN, and VCHN in most cases, especially
obvious on Cora. This is mainly attributed to the specific
designed individuality-enhanced module and three consis-
tency constraints at different levels.

Finally, Table 7 shows the FLOPs, trainable parameters,
test time, and running memory of the proposed methods
IMCN1 and IMCN2 and the corresponding baseline meth-
ods (H-GCN and GCN). It can be seen that the space and
time complexity of the proposed methods is slightly higher
than the corresponding baseline methods while maintaining
competitive performance. This is because of the added two-
layerMLP to enhance individuality and the three consistency
constraints between local and global encoders.

6 Conclusions and future work

In this paper, we proposed a graph neural network called
Individuality-enhanced and Multi-granularity Consistency-
preserving Network (IMCN). IMCN aims to take advantage
of the limited, yet valuable, supervised information avail-
able in labeled data and effectively enhance the classification
capability. On the one hand, a simpleMLPmodule was com-
binedwith the originalGCN-basedmodel to enhance individ-
ual information in learningnode representations.On the other
hand, the complex relations among nodes and classes were
taken full advantage of by the designed three consistency
constraints for optimizing the encoding processes of two

encoders. Extensive experiments were conducted on various
public benchmark datasets, and the results demonstrated the
effectiveness of the proposed IMCNmethod in solving node
classification tasks with extremely limited labeled nodes.

The proposed IMCN model has strict requirements on
the input graph, which assumes that the entire structure
of this graph is available to capture the common-feature
information of nodes. Moreover, IMCN has a considerable
number of hyperparameters that require tuning and can be
inefficient when dealing with very large networks. In the
future, our focus will be on developing scalable and efficient
deep semi-supervised node classification methods specifi-
cally designed for large-scale graph datasets. We also aim to
explore automatic parameter tuning techniques using opti-
mization methods, such as [47].
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