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Introspection of DNN-based Perception Functions
in Automated Driving Systems: State-of-the-Art and

Open Research Challenges
Hakan Yekta Yatbaz, Student Member, IEEE, Mehrdad Dianati, Senior Member, IEEE, and Roger Woodman

Abstract

Automated driving systems (ADSs) aim to improve the safety, efficiency and comfort of future vehicles. To achieve this,
ADSs use sensors to collect raw data from their environment. This data is then processed by a perception subsystem to create
semantic knowledge of the world around the vehicle. State-of-the-art ADSs’ perception systems often use deep neural networks
for object detection and classification, thanks to their superior performance compared to classical computer vision techniques.
However, deep neural network-based perception systems are susceptible to errors, e.g., failing to correctly detect other road users
such as pedestrians. For a safety-critical system such as ADS, these errors can result in accidents leading to injury or even death
to occupants and road users. Introspection of perception systems in ADS refers to detecting such perception errors to avoid system
failures and accidents. Such safety mechanisms are crucial for ensuring the trustworthiness of ADSs. Motivated by the growing
importance of the subject in the field of autonomous and automated vehicles, this paper provides a comprehensive review of the
techniques that have been proposed in the literature as potential solutions for the introspection of perception errors in ADSs. We
classify such techniques based on their main focus, e.g., on object detection, classification and localisation problems. Furthermore,
this paper discusses the pros and cons of existing methods while identifying the research gaps and potential future research
directions.

Index Terms

introspection, automated driving systems, perception errors, safety, deep learning.

I. INTRODUCTION

BETWEEN 2019 and 2020, 115,584 road casualties were reported in the UK by the Department of Transport. Overall,
23,529 of these resulted in death or serious injuries [1]. Automated driving systems (ADSs) promise to mitigate these

casualties by significantly improving the safety and efficiency of future transport systems, such as passenger cars. To fulfil this
promise, an ADS must understand its environment correctly, which is achieved by the perception subsystem in an ADS. This
subsystem is responsible for detecting and classifying relevant objects in the environment, e.g., other vehicles or pedestrians.
Perception is safety-critical because serious implications can occur in the case of a fault in perception. For example, in 2018,
an automated vehicle belonging to Uber was unable to detect and track a pedestrian with a bicycle correctly, which resulted in
the pedestrian being killed [2]. Similarly, Tesla’s Autopilot deployed on an SUV failed to detect lane markings momentarily,
resulting in a crash and the death of its owner [3]. Due to the safety-critical nature of the application, any such system must
be designed to be safe and resilient against any fault/error that may occur despite the designers’ best efforts. This expectation
is also known as the fail-safe property of the system and requires an underlying mechanism to detect such failures and errors,
a.k.a. fault detection.

The most promising way of realising the perception systems in ADSs is through the use of deep neural networks (DNN),
such as Tesla Autopilot’s HydraNet for visual perception [4]. Despite their popularity and performance, DNN-based perception
models require training data to learn from, which is unlikely to cover all cases in the operation environment [5], [6]. Also,
they have not reached the cognition capacity of a human, which constantly operates, consciously and unconsciously, using a
multitude of senses. Hence, they cannot guarantee safety in operation time and require an additional monitoring mechanism for
safe operation [7]. Furthermore, detecting faults in such systems is fundamentally different from those in traditional systems.
Perception can fail if a similar input is not seen during training, i.e., novel input or out-of-distribution (OOD), while faults
in other components, such as sensors, are caused by a hardware malfunction or external conditions such as weather. For this
reason, fault-detection in DNN-based systems is often defined by a different term, introspection, which is the main focus of
this paper.
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Fig. 1. Logical functional architecture for automated driving systems

Introspection is a mechanism for ADS perception that continuously monitors the system to detect erroneous decisions in
run-time in order to provide operational safety. Despite significant advancements in ADS safety through methods such as
verification [8], testing [9], and incorporating additional datasets and mechanisms [10], [11], as well as addressing corner
cases [12], [13], [14], introspection has received limited attention. However, it is crucial for ensuring the reliable operation
of machine learning-based systems, and as such, it warrants further investigation in the field [15]. In the context of ADS,
various review studies are available for ADS perception. To illustrate, [10] and [11] review the dataset and methods available
for semantic segmentation and object detection for better perception. In [16], [17], the advancements in panoramic imaging
for better scene understanding and applications of fish-eye cameras in the ADS domain are reviewed. Introspection, however,
is not reviewed as thoroughly as other safety approaches in the literature and is fragmented under different titles and fields. In
the literature, the safety and trustworthiness of deep learning models from various perspectives such as verification, testing and
interpretability are reviewed in [18]. In [19], methods for finding anomalous samples, i.e., unknown or adversarial samples,
for DNN-based systems are summarised. Authors categorised the methods based on the availability of ground truth labels
for the anomaly cases. Rahman et al. [20] reviewed the available introspection methods for machine learning (ML) for robot
perception. They categorise the literature by how introspection is performed and where it operates in the perception pipeline.
Similarly, a survey on anomaly detection methods for ADS perception is presented in [21]. They presented a categorisation
centred around sensor modalities and also presented available datasets and simulations. Alternatively, the factors, metrics, and
datasets are reviewed for their effect on drivability in [22]. The authors highlighted that DNN-based state-of-the-art methods
are supervised models that require sufficient training data and provide a comparison among datasets for this purpose.

In recent studies, there has been an interest in reviewing the introspection of deep neural networks (DNNs) for the purpose
of safety. However, these studies have tended to focus on introspection methods without considering the specific perception
functions that are being monitored. This approach is problematic as different perception functions, such as semantic segmentation
and object detection, aim to solve different problems and require different DNN-related operations or functions to improve their
performance. For instance, a DNN-based model for semantic segmentation classifies each pixel in an image without taking into
account the objects present in the input [23], whereas an object detector aims to locate and categorise each object. Similarly,
an object detector such as Faster R-CNN [24] uses a region proposal network structure along with non-maximum suppression
to handle multiple objects, while a segmentation model such as DeepLabV3+ [25] uses upsampling and skip connections to
preserve spatial information. This difference in the nature of the tasks has led to the development of different techniques to
enhance the performance of each model. Hence, it is essential to examine introspection methods in the context of their main
focus rather than treating them as a general concept.

This paper provides a more focused and in-depth review of introspection methods suitable for ADSs by analysing them in the
context of their target perception functions. It is also important to highlight that this paper includes introspection mechanisms
from different domains. These studies were included for their relevance and applicability to ADSs, their importance in the
literature and their enhancement or modification to provide ADS solutions. For the perception functions, we have selected
three fundamental perception functions utilised in ADS perception. These are classification, object detection, and semantic
segmentation. To avoid confusion, it is worth mentioning that the object detection function covered in this paper includes both
localisation and classification of the objects, unlike its definition in the ADSs domain, which includes only the localisation of
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the objects. Introspection of other functions, such as localisation or pose estimation, is also presented in this paper. Since the
study focuses on the perception subsystem of ADSs, this article considers the studies where the modular ADS architecture
is utilised in studies [26]. Introspection of end-to-end ADS [27], therefore, is not considered in this paper. Similarly, as the
focus is on run-time error detection of DNN-based perception functions, detecting hazardous events that can cause perception
errors, such as unexpected obstacles, is not considered in the scope of this study. It shall be noted that we also categorise
the state-of-the-art introspection methods based on how the introspection system operates. The proposed categorisation in
this review is necessary since the design parameters and architectures change significantly between the models for different
perception functions, as well as the introspection system design parameters. To the best of our knowledge, this article is the
first systematic review of state-of-the-art introspection methods’ from the perspective of the perception functions monitored
by introspection. Additionally, although all the studies presented in this paper are related to introspection, it is important to
emphasise again that some of these studies focus more on the introspection of DNNs regardless of their application domain.
However, it is still possible to utilise them for ADS applications.

The rest of this paper is organised as follows. Section II provides an overview of the related background knowledge. Analysis
of various introspection methods in the context of the specific perception tasks is given in Section III. Open research challenges
and gaps are identified and discussed in Section IV. Finally, concluding remarks are provided in Section V.

II. BACKGROUND

This section presents an overview of ADSs and the basics of introspection. It first presents a logical functional model for
ADS architecture and discusses how the overall system works. Then, it focuses on the integration of introspection into the
perception subsystem. Additionally, two critical design choices while developing an introspection mechanism are described in
this section.

A. Automated Driving Systems

ADSs perform three main functions called sensing, perception, and control, as presented in Figure 1. In sensing, ADSs
collect raw sensor data from their various sensors, such as cameras, LIDARs, and IMUs. It can also obtain data from offboard
sources, such as cloud services. This raw sensor data is then fed into the perception subsystem, where it is transformed into
meaningful semantic information to answer two questions: “what is the position of the ego vehicle?” and “what are the other
objects around the ego vehicle, including their location?”. For this purpose, the perception subsystem should: 1) detect the
surrounding objects 2) determine their type, i.e., object classification, 3) find its position in the environment using absolute or
relative localisation techniques. To achieve perception and answer the relevant questions, ADS perception utilises three basic
perception functions presented in Figure 2. The first function is classification, which aims to assign a category to the object
in the environment. In semantic segmentation, however, each pixel is classified rather than the given input as a whole. Lastly,
in object detection, the aim is to localise and classify the objects. The semantic information extracted is then passed to the
control subsystem, which implements key functions such as, mission and path planning, tactical decision-making, trajectory
planning and computation of the reference signals for the low-level controllers of the vehicle. The reference signals are fed
into the vehicle system through a drive-by-wire system. We don’t consider the driver-by-wire or the rest of the vehicle system
in this paper, as those are not considered to be conceptually related to the implementation of the ADS.

B. Introspection

Introspection in the human mind refers to paying attention to and examining one’s own thoughts. As highlighted in [15],
introspection encapsulates the run-time monitoring of both out-of-distribution detection and errors generated due to the model’s
uncertainty. This differs from traditional fault detection approaches, which are often used in automated systems, for several
reasons. Firstly, many intelligent transportation systems are based on deep neural networks (DNNs) that are trained using
supervised learning techniques. As a result, their performance in run-time may be limited by the quality and diversity of
the training data. In addition, DNN-based perception systems may be subject to errors caused by factors such as malformed
input or the inherent limitations of the learning-based model. Furthermore, certain hardware components within intelligent
transportation systems may have constraints on their output or behaviour, which can also lead to errors. Therefore, the faults
that may occur in DNN-based perception systems are fundamentally different from those in other automotive components in
ADSs. The concept of an introspection system is depicted in Figure 3.

In ADSs, introspection models can be developed in different ways by considering two main design choices. One of these
choices is the input source for the introspection system. There are four options for input sources: (1) raw sensor data, (2)
intermediate outputs from the main perception function, (3) the output of the perception function, or (4) a combination of the
first three sources. These input sources can be used to identify potential perception errors in ADSs, such as those that may
occur due to the input quality changes between day and night or in adverse weather conditions [28], [29], [30]. Additionally,
the presence of transparent objects in the scene can also lead to errors, and can be monitored for error detection [31].

The second design choice is to select how the introspection will operate on the selected input source. Once the input and how
introspection will process the input are defined, it is possible to develop various introspection models to detect and generate



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

Fig. 2. Examples for each perception function considered in this study. The colours indicate the segmented regions, or predicted bounding box (best viewed
in color).

alerts in case of fault. Once perception errors are detected by the introspection system, it can be used in various ways by the
system designers. For example, the introspection system can generate an alert which can be used to trigger a minimum risk
manoeuvre in Level 4 Automation, or it can be used to hand over the control of the system back to a human operator in Level
3 Automation [32] as presented in Figure 3.

Fig. 3. Actor-critic architecture for introspecting DNN-based ADS perception: Introspection can monitor perception input, intermediate model outputs, or the
final output of the main system (or combinations of them). In case of a fault, it should provide an alert to take further action such as handover or minimum
risk manoeuvre. [7]

III. STATE-OF-THE-ART OF INTROSPECTION METHODS

In this review article, we presented a two-level classification of the literature using the target perception task and how the
introspection system operates. We first consider three perception functions for categorising: classification, object detection,
and semantic segmentation. Additionally, we have included introspection of other perception functions, such as localisation.
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To analyse the introspection model design trends, studies are further categorised based on how they perform introspection on
their corresponding perception function. This two-level categorisation provides a deeper understanding of how introspection
is designed and performed for task-specific DNN architectures, such as object detectors. By categorising the literature based
on the target perception task, the classification allows for a more targeted and specific analysis of the introspection methods
used for each task. In addition, further categorising the studies based on how the introspection system operates allows for a
deeper understanding of the different design trends and approaches used for introspection. The proposed categorisation in this
study allows for a more detailed analysis of the specific methods and techniques used for introspection in each task and how
they are implemented in different DNN architectures, such as object detectors. This can provide insights into the strengths and
weaknesses of different introspection methods and how they perform on specific perception functions.

For the second level categorisation, four approaches are used. These approaches are confidence/uncertainty value-based [33],
performance metric-based [34], inconsistency-based [35] and past experience-based introspection [36].

Confidence is a value generated by the DNN model, indicating how confident the model is about its decision. Similarly,
uncertainty is another way to represent the model’s confidence. The more uncertain the model is, the less confidence it has
in its decision. These confidence values provide a probabilistic idea for the model’s decision. Therefore, it is possible to use
them to infer if the decision is good or bad.

Although using confidence/uncertainty values to detect faults appears to be convenient, the value generated may not be
realistic [33]. To tackle this issue, researchers focus more on how to provide realistic confidence representations rather than
developing introspection. By achieving this, they simply aim to monitor these realistic confidence/uncertainty values to detect
errors.

The studies classified under this category can perform introspection in one of three ways. The first way is to calibrate the
confidence scores, i.e., the “confidence calibration,” [37], provided by the model, so that these scores can represent confidence
realistically. This entails adding additional processing to the output without changing the DNN architecture. Alternatively, other
studies use an ensemble of models [38] or run the same model multiple times to sample a set of predictions for generating
realistic confidence values [39]. Lastly, the model’s input, states, or output to estimate realistic confidence or uncertainty values
is used as another approach in the literature [33]. Having generated realistic confidence values, such systems can monitor the
confidence values using a threshold to generate alert messages. In our review article, studies are put into this category if they
use one of the given methods by itself or in combination with another method.

Depending on the target perception tasks, the most commonly used perception models in ADSs are mostly tested using
performance metrics such as mean average precision, accuracy, and F1 score. As a result, developing mechanisms that can
detect specific patterns indicating a drop in the selected performance metric is another way to look for faults in perception
systems. However, because there is no ground truth data available at run-time, performance metrics or drops must be estimated
[34], [40], [41], [42], [43]. Such mechanisms can then be integrated into perception to alert the system if a performance drop
is detected or the estimated value falls below a certain threshold. This category includes studies that develop an estimator or
detection system based on the base system’s performance metrics for introspection.

As most humans naturally detect unfamiliar cases around them by recognising the irregularities, looking for inconsistencies
in the scene is another possible way to find unreliable decisions. In the scope of ADSs, this requires monitoring multiple
perception sensors or algorithms to identify inconsistencies. Consequently, there is an effort to detect fault cases based on
inconsistencies, such as when the results of different algorithms, such as object detection and object tracking, don’t match
[35]. However, this method assumes that there will be a sufficient number of correct decisions to detect unreliable ones, which
may not be true all the time.

Similarly, as humans, we have a cumulative knowledge and experience base to reflect on. Inspired by this concept, researchers
try to introspect perception systems using the past experiences of the system under similar, or the same conditions [44]. This
kind of introspection method commonly introduces a way to store certain features or encodings of the percepts as the prior
experience of the system so that, in run-time operation, the decisions or the inputs can be evaluated using this prior knowledge
base. The studies introducing a way to encode, store, and query the system’s observations for introspection are put under this
category in the scope of this review article. Additionally, studies that propose abstraction or encoding over neural network
patterns for querying are also considered under this category [45], [46], [47].

A. Classification Task
Classification is one of the fundamental problems that deep learning tackles. DNN-based classification is well established

in the literature with various models such as ResNets and datasets. These datasets and architectures made introspection of
classification is widely investigated in the literature, which is presented in Table I. It shows that most of the studies in the
introspection of classification utilise confidence values. Among these studies, calibration and estimating confidence values are
preferred more for classification. In performance metric-based introspection studies, estimating accuracy metric or trying to
estimate the hardness of the given input is used to detect faults. Alternatively, reconstructing the input image to calculate a
dissimilarity score as an indicator of inconsistency is performed in this category. To generate a past experience base, abstracting
neural networks or their patterns are also used. Then such methods can query to introspect the decisions of the classification
model.
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TABLE I
SUMMARY OF THE INTROSPECTION METHODS FOR CLASSIFICATION TASK

Intropsection Category Method Studies Method Summary Properties

Confidence / Uncertainty

Confidence
Calibration

[37], [48],
[49], [50],
[51], [52],
[53], [54]

Use of confidence outputs, or logits
from neural network to process

them further.

No change is required for the base
network. Easy to deploy.

Sampling [55], [38],
[39], [56]

Use of a network multiple times or
multiple networks for a single input.
The aim is to calculate the average
confidence with variance to have a

better representation.

Statistically sound. No change is
needed on the base network. Can

be computationally costly.

Confidence
Estimation

[33], [57],
[58], [59],
[60], [61],
[62], [63],

[64]

Use of an auxiliary NN, or
additional output neuron, to

generate, estimate or find drops in
confidence/uncertainty values.

Requires change in the network,
or increases computational

complexity. Can work well with
out-of-distribution samples. Older

studies use certain functions to
generate new values, while recent

ones utilise NNs.

Performance Metric

Accuracy
Monitoring [65], [40]

Training DNN as introspection
model(s) with output of the

perception model, and accuracy of
the prediction. Then, use the model
to estimate or detect the accuracy

drop for each sample.

Easy to deploy, but requires
additional training process and

increases complexity. Can provide
better results when used with

MCD.

Hardness
Prediction [66]

Finding “hard” samples using an
auxiliary network, i.e., hardness

predictor (HP-Net). A base system
should be trained jointly with

HP-Net. To introspect, thresholding
on HP-Net output is used in

inference.

No change in the base network.
Since trained jointly, it also
improves the base classifier.

Introduces complexity.

Inconsistency Dissimilarity [59]

Calculating dissimilarity score using
the input image and a reconstructed
image with generative adversarial
network (GAN). To introspect, the
score is used as an anomaly score.

Introduces new network
architectures, which means

additional complexity.

Past Experience NN Activation
Pattern Monitoring

[46], [47],
[45], [67]

Encoding & storing the neural
network activation patterns, or
calculated quality measures for
known and unknown classes.

Alternatively, [45] defines a region
using activation patterns and checks
if the activation falls into the region

(correct) or not (fault).

Computationally complex. No
change is required in the base

system. Once established, easy to
alter and enhance.

1) Confidence/Uncertainty-based Introspection: Confidence and uncertainty are the common metrics to indicate how confi-
dent is the DNN-based model about its decisions. In classification models, such values are represented by the latent output of
the model, a vector containing confidence values. Since obtaining these values is trivial, introspection of classification includes
a vast number of confidence value-based approaches. These approaches can be categorised under three main categories, which
are confidence value calibration, sampling-based approaches and confidence value estimation.

In [48], confidence score processing methods, non-parametrised sigmoid, Platt scaling [49], isotonic regression, and Gaussian
processes are tested with different classifiers to see their performance on classifying pedestrians in detected objects. The study
aims to compare methods and provide which achieves realistic confidence scores for introspection. Qiu and Miikkulainen [50]
proposed a Gaussian process-based confidence calibration method to detect misclassifications of a classifier. In [51], confidence
calibration and detecting failures combined, and Mahalanobis distance-based confidence score generation is proposed. They
evaluated their proposed solution with both adversarial and out-of-distribution samples to show its efficiency in different
problematic cases. Alternatively, in [54], the softmax function is replaced with maximum likelihood and maximum-a-posteriori
functions for better probabilistic confidence indication. A simple out-of-distribution detection method, ODIN, is proposed in
[52]. The proposed method introduces adversarial cases to improve the model’s robustness by adding small perturbations to
the input. To calibrate the confidence, it uses temperature scaling [37]. In the last stage, a threshold-based out-of-distribution
(OOD) detector decides whether the given image is an OOD sample.

Vyas et al. try to use ensembles of neural networks to enhance the detection of the OOD samples [55]. Their method uses
an ensemble of K classifiers. To train these K classifiers, they first partition their training dataset into K parts. Then, an OOD
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sample set and an in-distribution training set are generated by extracting one part of K parts as an OOD set and the remaining
K-1 parts as training data. Then, they train K different classifiers on these sets, where each classifier sees a different part of the
whole dataset. In inference time, their proposed system calculates an OOD score using softmax vectors from each model to
detect faults. Another ensemble-based confidence value prediction is proposed in [38]. In this study, Lakshminarayanan et al.
used an ensemble of networks and averaged the predicted scores generated by each network to provide better confidence scores.
In addition, they suggested that using adversarial training improves the overall system’s performance. In adversarial training,
perception inputs are augmented with small perturbations, which causes the neural network to fail with high confidence. Similar
to the ensemble of neural networks, Gal and Ghahramani [39] proposed a method using a dropout layer, which randomly masks
some of the neurons with a given ratio multiple times in inference time to create better confidence and uncertainty indicators.
They claim that the dropout operation can be interpreted as a Bayesian approximation of the Gaussian process. Hence, each run
with dropout in inference results in a different set of selected neurons, i.e., a different neural network. Their proposed method,
Monte Carlo Dropout (MCD), is to run the model M times with dropout rate r and use results to produce better uncertainty
and confidence scores. Another well-known confidence-based introspective classification method is presented in [56]. In this
study, a new score, Trust Score, is presented, which considers a set of neighbours with a parameter k and a density α to
calculate a score using the information about the relative positions of the samples. It is also shown that misclassifications can
be found using the Trust Score and a thresholding system.

In a different approach, Corbière et al. [33] focused on predicting the confidence of a classifier model by utilising a novel
neural network to process extracted features by the convolutional neural network part of the classifier. The novel network is
designed and trained for predicting the confidence score, named True Class Probability (TCP), using the extracted features
from the classifier. Additionally, TCP affects the behaviour of the main system, i.e., the classifier model, when used instead
of the common softmax function, i.e., maximum class probability (MCP). Similar to [33], an additional neural network-based
introspection system is developed for both classification and regression tasks in [57]. The proposed model in this work is
integrated and trained with the base classification model to provide a binary output of whether to use (accept) or discard
(reject) the decision. In [68], authors show that softmax activation loses discriminating information from the logits, i.e., the
last layer outputs of the classifier. To avoid this problem, a novel neural network architecture to predict the confidence of the
classification is proposed. Mohseni et al. propose a self-supervised OOD detection algorithm by adding an auxiliary head to
the base classifier [58]. This work introduces a set of reject classes (OOD classes) to the model and performs two-step training
to optimise the overall network and OOD detection head. The base classifier is trained with full-supervised learning in the first
stage with a training set (in-distribution training set). Then, the auxiliary head is trained using a mixture of OOD training and an
in-distribution training set. In the inference time, they take the sum of auxiliary head predictions as the OOD-detection score to
determine if the given input is OOD. In [59], a variational auto-encoder-based verifier network is proposed to find anomalies in
predictions, i.e., OOD and adversarial samples. Alternatively, Nitsch et al. propose a mechanism to find OOD samples without
requiring an additional OOD set during training. They propose a Generative Adversarial Network (GAN)-based mechanism to
create such samples. Their mechanism also estimates a class-conditioned Gaussian distribution over the network’s weights of
the bottleneck layer as post-hoc statistics [64]. Ranjbar et al. use an additional CNN to map the input images into feature space
for estimating von Mises-Fisher Distribution in [62]. Using the distribution, their proposed system first maps the new input
into a feature vector and then calculates the likelihood as an indicator of novelty. They evaluated the system on generic image
classification and driving scenario-based semantic segmentation data. Alternatively, in [63], a method inspired by dual-process
theory for the human mind is proposed for monitoring neural networks. According to this theory, human decision-making
includes two systems, one works unconsciously and fast, while the other works slowly and consciously. The authors proposed
a similar two-level architecture. The first level focuses on the joint distribution of DNN’s input, output and explanation for
outputs, while the second level focuses on a broader context. The authors evaluated the first layer in image classification and
the second layer in object detection. More specifically, the first layer is a Gaussian model estimated using each class’s features.
In the second layer, the authors utilise a graph Markov NN to learn the objects and their relations to detect the OOD ones.

Even though the classification task is used as a part of other computer vision tasks, such as object detection, certain
introspective classification applications focusing specifically on automated systems are also proposed. In one of the early
studies [60], researchers define an introspective capacity for machine learning models where this capacity represents the ability
of the model to provide more realistic confidence scores. In other words, the ability to be less confident about the inputs they
fail. To assess the capacity, they used normalised entropy and best-versus-second-best heuristic [69]. They compare support
vector machines (SVM), Gaussian Process (GPC), and LogistBoost classifiers regarding introspective capacity. For GPC and
SVM models, authors also use different kernel functions to see their effect on introspective capacity. Later, they extended their
work in [61] with a new model called Informative Vector Machine (IVM) and experimented on commonly used classification
frameworks. A simple decision-making mechanism that decides whether to operate or stop based on a loss function is also
introduced. In [70], authors extend the work in [61] to propose a model with life-long active learning and forgetting scheme
on top of IVM. For active learning, the model requests the label from the human operator during training and tries to minimise
the number of questions it asks based on a certain threshold and the calculated performance score. In addition, as the model
asks for a label from an operator, it may ask indefinitely and store the information, which will create a storage problem for the
ADSs. For this purpose, they introduce a forgetting scheme that bounds the memory requirement for the training set to a fixed
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size. Despite its suitability of lifelong learning and introspective capacity with the IVM model, this study still requires a human
operator to decide whether the given state is a failure based on the model’s confidence. Lastly, in [53], Laplace approximation
(LA) is proposed for robotic introspection with Bayesian optimisation. The authors show how Bayesian optimisation can
mitigate the LA method’s under-fitting issue and test some of the well-known deep learning models to show the capability of
the proposed method for providing realistic confidence scores.

2) Performance Metric-based Introspection: Due to the extensive literature available on classification models, and their
performance, there are various metrics to evaluate the performance of a classifier, such as accuracy, f1-score, recall, and
precision. This availability made it possible for introspection to exploit these metrics to detect faults in DNN-based classification.
One of the simplest performance indicators for the classifier is the accuracy score, which is the ratio of correctly classified
samples to all samples in the given set. This indicator is mainly used for introspection. Alternatively, the “hardness” of the
input is also used to detect faults in such models.

In [65], a classifier model is monitored with an additional neural network. This monitoring network is developed in two
phases. In the first phase, the model is pre-trained using a dataset related to the target domain (such as the KITTI Dataset [71]
for ADSs). In this process, the classifier’s last layer output is fed to introspection as input, while the correctness of the prediction
is used as the label for introspection. In the second phase, transfer learning on an annotated subset of the target dataset is
utilised for training. However, only the last two layers of the monitoring network are updated during this process. Lastly, the
final model is deployed to detect the given images’ accuracy to find lower-performance cases. To make the monitoring process
more robust, MCD [39] is also used with the proposed model. In [40], features and perception inputs are utilised to estimate
different performance metrics for object detection and classification. They use a neural network-based model and a gradient
boosting (XGBoost [72]) model to estimate the selected performance metrics. They estimate accuracy, F1-score, recall, and
precision. The authors also show that their method can be used for model selection, device-server offloading, or dataset shift.
Another study emphasises that each classifier and certain inputs have different difficulties in classifying, i.e., hardness [66].
Hence, they propose a model that can learn and estimate the hardness of the selected classifier without explicit supervision. To
do so, they alternately train the base classifier and the proposed hardness detector, HP-Net, so that HP-Net can tune itself with
the low-performing decisions, and the classifier can improve its decisions based on the provided hardness score. In inference,
a hardness score is used to reject decisions for specific samples using thresholding.

3) Inconsistency-based Introspection: Although inconsistencies are not as popular as confidence-based introspection, a deep
verifier network is proposed for introspecting image classification in [59]. The proposed method uses a generative adversarial
(GAN) structure to reconstruct the input image using the character-wise label embedding and features from the encoder. Using
the dissimilarity between the input and reconstructed images, they define an anomaly score for OOD detection.

4) Past Experience-based Introspection: Another method to introspect classification models is to build a knowledge base of
prior experience. Such knowledge bases can then be used to check if the model was successful or not in the past. The main
approach to building the knowledge base is to check neural network activation patterns and encode them for storing in the
system as performance records. Such models, then, query similar scenarios to decide if there is a fault or not.

Cheng et al. introduce a monitoring system for the activation pattern of a classifier [46]. They extract patterns from the
network and create binary codes with training data. In operation time, the Hamming distance is calculated between the binary
code of the classified input and the patterns saved in the system for the assigned class. The prediction is accepted based
on the hamming distance and a threshold. They also indicated that the same system could be directly applied to the YOLO
detector object detection task. In [47], Khalifa et al. introduced a method for introspecting neural networks in safety-critical
applications by extending the work in [46]. Their work employs activations of multiple layers to represent certain training
inputs to enhance the accuracy of the introspection method. Instead of using all the activations, [45] creates a box abstraction
using the activations of the neural network, where “a box” represents the area in feature space for a specific class. Using these
boxes, the introspection system only performs membership tests between the incoming input vector and the box region for the
assigned class. Alternatively, in [67], authors reconstruct images and compute a quality measure using the difference between
the constructed image and the original. They perform this operation for training and storing the values. They claim different
domains will have different distributions on these quality measures. In inference time, they use the stored quality measure and
compare it against the calculated quality measure for the run-time input.

B. Object Detection Task
Object detection in computer vision refers to the task of localising and classifying object(s) in a given scene. Since it consists

of multiple tasks, it is significantly challenging to develop and introspect such perception functions. As presented in Table II,
all four different approaches are used for introspecting object detection. Similar to the classification task, sampling, confidence
calibration and sampling-based methods are modified for object detection function to be able to introspect with confidence
values. In performance metric-based methods, however, studies are split into two categories, focusing on introspecting either
the given input(s) or the individual objects in the given input. To check inconsistencies in object detection, studies focus more
on different sensor modalities and their results. Alternatively, in past experience-based methods, false negative samples and the
performance of the model at the same or visually similar locations are used to build the knowledge base for object detection
[81].
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TABLE II
SUMMARY OF THE INTROSPECTION METHODS FOR OBJECT DETECTION TASK

Intropsection Category Method Studies Method Summary Properties

Confidence / Uncertainty

Sampling [73], [74] Utilising MCD for object detection. No change is required on the base
network. Easy to deploy.

Confidence
Calibration [54]

Use of confidence outputs, or logits
from neural network to process them

further. Maximum likelihood and
maximum-a-posteriori are used in [54].

No change is required in the base
system. Can work faster since the

modified process is within the
main pipeline.

Confidence
Estimation

[75], [76],
[77], [78],
[79], [80],

[81]

Generating and estimating confidence
values to introspect the model.

Examples: Gaussian Mixture Models
(GMM) are used in [75], IoU value is

estimated in [76], [77] outputs a
heatmap for object visibility as

confidence.

Introduces complexity to process,
and estimate. Once setup, it might
be easy to integrate with different

models.

Performance Metric

Input-level
Introspection

[34], [41],
[82], [40]

Extracting and using features from
input instance(s) to detect fault cases

utilising NN architectures.

Can be fine-tuned with different
functions and models.

Object-level
Introspection [83]

Training a DNN using false-negative
objects, i.e., missed objects, of a

detector, to develop a false-negative
detector.

Can work with any object
detector. Requires a false-negative
dataset for training. Compared to

similar systems, introduces
additional complexity, since the
predictor works similarly to an

object detector.

Inconsistency

Inconsistency
Between

Methods or
Sensors

[35], [84],
[85]

Aims to check the output of N similar
methods or sensors, such as object

detection & tracking.

Utilises existing structure to
introspect, which means smaller

overhead. Fails if all the methods
fail to perform the task.

Past Experience

False-Negative
Samples as
Experience

[86]

Extracting and storing false-negative
samples during data collection (where
ground truth is available), and updates

the model using experienced
knowledge.

Provides constant updates.
However, the introspects are not

provided in real-time.

Location-based
Experience [44], [36]

Encodes the performance based on
location and checks the model’s

capability in proximity to the encoded
location.

Requires additional storage.
Location performance might

change based on external
conditions, such as weather,

construction etc., As the
introspection task is querying the
knowledge base, and fast decision

making.

Visual
Similarity-based

Experience
[36]

Encodes visual features to introspect
the performance of visually similar

cases

More robust than location-based
experience. Has similar benefits to

the location-based experience.

1) Confidence/Uncertainty-based Introspection: As mentioned, the output of the object detection task is two-fold, the location
and the class of the objects. For introspecting the classification part, it is possible to use methods presented in Section III-A.
However, evaluating the model’s confidence in locating an object is a more complex task since the detector tries to estimate
multiple values for localising each object.

For this purpose, a Bayesian object detector, BayesOD, is proposed by Harakeh et al. [73]. They use MCD [39] to generate
multiple detections and calculate the per-anchor bounding box mean and covariance matrix to represent uncertainty. The
common post-processing technique, non-maximum suppression, is also replaced with Bayesian inference for more reliable object
detection. Similarly, in [74], Miller et al. extend the work in [39] for 2D object detector and process all the predictions generated
by MCD. They generated uncertainty values for both label and bounding box predictions. They used them to improve an object
detector, SSD [87], by eliminating unreliable predictions in open-set conditions, where the operating environment is not restricted
to the categories presented in the training set. In [54], utilising maximum likelihood and maximum-a-posteriori functions rather
than softmax and sigmoid is introduced. They evaluated the effect of the functions on the confidence representation of object
detection. A new method called GMM-Det [75], which extracts uncertainty of the decisions to establish a find and reject
mechanism for open-set faults is proposed. They use class-specific Gaussian Mixture Models to calculate the uncertainty
measure for deciding whether to reject the sample. In [76], a post-processing algorithm, MetaDetect, is introduced to provide
better uncertainty estimates for object detection. The proposed algorithm uses the output of the object detector and tries to
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solve two tasks, regression and classification. In the regression task, the value of the intersection over union (IoU) metric is
estimated, while in the second one, the correctness of the detection based on IoU is predicted as a binary classification problem.
In other words, for classification, they estimate if the IoU between the predicted box and the ground truth is larger than a
threshold. They use these estimations as an indicator of the quality of the decision. They also introduced metrics for uncertainty
estimation of the predictions along with MCD and showed that the proposed metrics correlate with ground truth IoU. In [77],
authors proposed a model to find areas with undetected objects. They indicate that the object detectors may not recognise
certain regions/pixels due to external effects such as fog and glare. Their method generates a heatmap like a map to indicate
the regions where there is a possibility of missing objects, which can be used as a cost or confidence map. Alternatively, in
[78], a spatio-temporal unknown distillation (STUD) mechanism is proposed. This mechanism extracts unknown objects, such
as billboards, traffic cones etc. from videos and regularises the model’s decision boundary accordingly. In other words, their
aim is to identify OOD samples in object detection. In [79], Wilson et al. propose another mechanism for OOD detection.
Their mechanism leverages activation maps extracted from “OOD sensitive features”, output of the detector, and object level
features and generates a single vector for learning OOD samples.

Although the majority of the work focuses more on 2D object detection, Feng et al. proposes practical mechanisms to identify
misdetections by modelling uncertainty [80]. In [88], a feature extraction mechanism is proposed for 3D object detection using
LIDAR data. The authors adapted five well-known confidence/uncertainty-based mechanisms and tested them with different
datasets. Another work by Cen et al. propose a metric learning and unsupervised clustering on the point cloud data for open-set
3D object detection. They utilise uncertainty values depending on Euclidean distance sum and indicated that it is a better score
compared to the common softmax probability.

2) Performance Metric-based Introspection: Since the object detection task focuses on identifying and localising multiple
objects, different metrics are used to evaluate object detectors. One of the most commonly used metrics is mean average
precision (mAP), which indicates the model’s overall ability to find objects from different classes by calculating average
precision. To determine the quality of each estimated object location and calculate mAP, the intersection over union value
is calculated between the estimated and ground truth bounding boxes. The studies in this category try to find mAP drops in
the given image(s). However, there is an additional effort to make introspection more granular by introspecting each detected
object if there is a missed or incorrectly detected object.

In [34], and [41], object detectors are monitored with neural network-based monitoring systems focusing on detecting
performance drops on mAP. In [34], the output of the backbone CNN is used as input to extract features using mean, max,
and standard deviation functions with global pooling. The resulting vectors of each function are concatenated and fed into a
multi-layer perceptron to decide whether the object detector’s mAP is sufficient or not with the given image. In [41], authors
extend their method in two ways. First, instead of using a single frame for detecting low-performance situations as in [34],
they monitor multiple frames in each iteration. Additionally, they propose a cascaded neural network for extracting features
from the backbone CNN of the object detector and deciding whether the performance is dropping. A monitoring system for
missed objects, i.e., false negatives, is proposed for traffic sign detection in [82]. The proposed method extracts activation
maps from the object detector’s backbone and processes them into a one-dimensional vector for false-negative detection. In
addition to classification, the method proposed in [40] is tested for object detection using the IoU metric. Yang et. al. propose
an introspection model to predict false-negative samples for given images. Their method does not use information from the
base object detector and tries to extract common features for false-negative samples from the perception input during training
[83].

3) Inconsistency-based Introspection: Due to the multi-modality of ADS perception, inconsistency-based failure detection
is a good candidate for introspection. In [35], an inconsistency-based fault is defined using 2D object detector’s and object
tracking algorithm’s decisions. Their motivation is the object tracker’s capability to find objects when object detection fails or
vice versa. They have used stereo, and temporal cues, where the first determines the disparity between two images obtained
from left and right cameras, and temporal cues use object tracker and object detector outputs (see Figure 4). In [84], Antonante
et al. proposed a diagnostic graph which is a directed graph where each vertex represents a processor (RADAR, camera), and
each edge represents a consistency test between the vertices. These consistency tests between processors simultaneously or
at different times enable the system to identify faults with minimum overhead correctly. They have tested their method for
object detection and vehicle localisation. Additionally, in [85], they have extended their idea in [84], and utilise a Graph Neural
Network (GNN) for detecting inconsistencies, i.e. faults.

4) Past Experience: Studies in this category aim to store and query the performance of the perception system under similar
or challenging conditions. For this purpose, these conditions should be identified first.

Hawke et al. introduced an introspection method using past experience-based faults called the experience-based classification
mechanism. The method retrains the network with false-negative samples extracted by using scene filters for better detection
[86]. Similarly, in [44], a location-specific introspection method is proposed to offer autonomy only when the robot is reliable.
They introduced a way to store prior experience, called performance records, where they provide probabilistic performance
values for specific locations. Their system assumes the robot works in a restricted environment. Additionally, they introduce
a decision-making system to offer or deny autonomy for a robot. In [36], they extend their location-based method with visual
similarity-based experience in addition to the performance records in [44].
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Fig. 4. Figure taken from [35]: Top row shows inconsistency checking using object detector and tracker. The bottom row shows inconsistency checking using
left and right camera images.

C. Semantic Segmentation Task

TABLE III
SUMMARY OF THE INTROSPECTION METHODS FOR SEMANTIC SEGMENTATION TASK

Introspection Category Method Studies Method Summary Properties

Confidence / Uncertainty

Sampling [89]

An additional segmenter is trained to
segment images for fault and non-fault
cases using MCD. The model aims to

detect which pixels are likely to be
misclassified.

Introduces the complexity of an
additional segmentation model.

Confidence
Estimation

[54], [90],
[91], [92],
[93], [94]

A CNN is utilised to map input to
feature space for estimating von

Mises-Fisher Distribution. In testing,
the likelihood is used as a novelty

score.

Reduces the complexity required
for storing all sample vectors.
Converts past experience-based

introspection to confidence-based.

Performance Metric

Input Validation [95]
Uses the input directly to determine if

the model is capable of segmenting
the given input.

Does not depend on the model.
Cannot detect model’s internal

faults.

Pixel-level
Estimation

[43], [42],
[96]

Using additional model(s) to label
each pixel as fault or non-fault.

Requires additional complex
DNN’s, which can affect the main

perception pipeline.

Inconsistency

Ground Truth
Reconstruction

[97], [96],
[98]

Reconstructs the input image from
segmentation, and calculating

similarity measures for introspection.

Assumes if the image is
reconstructed sufficiently, it is

segmented correctly.

Inconsistency
Between
Methods

[99] Compares segmentation with road
segments extracted via LIDAR sensor.

Similar to other inconsistency
values, assumes the segments

extracted with LIDAR are correct.

Past Experience
Using Past
Predictions [100]

Utilises a classifier trained with prior
predictions of the model, assuming

that the predictions are ground truth.
Then, this classifier is deployed for

introspection.

Not used for ADSs, but in another
safety-critical area. Has strong

assumption on using predictions
as ground truth.

Semantic segmentation is a classification task at the pixel-level, where each pixel is categorised. For this reason, the
approaches selected to introspect segmentation tasks are similar to the ones in classification. However, the approach to
implementing introspection varies depending on changes in the main perception function, specifically in system output and
network architecture. Since the output from the semantic segmentation model is an input-sized mask with classes of each pixel,
the introspection methods in this category commonly aim to generate an error map where each pixel of the map contains either
a probability or a label to indicate fault. The studies on this category are summarised in Table III. The table indicates that
although similar methods are used with confidence-based introspection, in the sampling methods, generating the error map is
preferred over a single output. Similarly, in performance metric-based methods, error map generation is utilised without utilising
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confidence/uncertainty measures, along with input validation, which checks if the given input can be sufficiently classified using
a selected performance metric. In inconsistency-based methods, reconstructing the input image from the prediction is tested.
Similar to the other categories, inconsistency checking between models with different input data is also used for semantic
segmentation. For past experience-based introspection, however, the approaches are similar to the other categories.

1) Confidence/Uncertainty-based Introspection: In addition to detecting the objects in the environment, ADSs aim to classify
regions into specific categories to detect safe paths or non-drivable areas. Like the other tasks, a fault in classifying a region
can make ADSs act irrationally and cause accidents. For introspecting segmentation tasks with confidence, similar approaches
introduced in the classification section can be used due to the nature of the problem. In [89], an encoder-decoder architecture
is used for segmentation with MCD to provide an uncertainty-based error map as well as a better segmentation output.
The authors applied MC Dropout to produce multiple predictions. They use the mean of those predictions as the resulting
segmentation mask and the variance as the error map, where higher variance indicates higher uncertainty. Similarly, in [94],
two common approaches, reconstruction of the image for extracting disparities, and quantifying uncertainty from the network
output, are combined to generate an Error Map-like output for pixel-level error detection. Alternatively, as presented in previous
sections, a CNN-based novelty score estimation model is proposed with von Mises-Fisher Distribution in [62]. They estimate
the distribution to avoid storing each data point in the system, which changes the original past experience-based introspection
into a confidence or quality estimation. They perform pixel-level novelty estimation using Berkeley Deep Drive Dataset (BDD)
[101]. Besnier et al. propose a mechanism that performs pixel-level error detection and filters the generated error map using
instance segmentation [91]. In other words, they focus their pixel-level error detections for each instance (object) for better
OOD detection. In [90], GAN architecture is replaced with a new mechanism called normalising flow for a more robust
training segmentation mechanism. Authors also propose using JS divergence to identify OOD detections and claim the value
they generate can be a competitive replacement for ad-hoc scoring functions. Similarly, in [93], a mechanism to virtually create
outliers in training to enhance the model’s capability is proposed. An energy score-based OOD detection mechanism is also
introduced after the model is trained. Another study [92], proposes a novel re-training approach and a meta-classifier on top
of semantic segmentation with softmax entropy thresholding for OOD detection.

2) Performance Metric-based Introspection: Performance metrics for segmentation are similar to the classification as the
task is a kind of classification task. However, as the task considers pixel-level classification, the metrics are more focused on
the correctly classified areas.

One of the first methods for introspecting segmentation [95] proposes introspecting inputs causing low performance to
detect failures. This study explores different tasks, such as semantic segmentation, vanishing point estimation, and image
memorability. As the proposed system can work only with a given input, no modification is needed for the base system. They
use the base system to predict and label training samples as faults or successes using its performance. In [43], the authors used
the segmentation model itself to propose a model that can predict pixel-wise failure or success for segmentation. They use
state-of-the-art segmentation architecture DeepLabV3+ [25] as both the segmentation and introspection model. In other words,
the proposed model provides a binary output map indicating which pixels are misclassified. Alternatively, in [42], a mechanism
utilising the segmentation input, encoding, and output is proposed. The proposed system takes each fault detection input and
feeds them into different encoder networks. Then, the generated encodings are combined and decoded for pixel-level error
map generation. In [96], the pixel-to-pixel translation conditional GAN model is utilised to reconstruct the original image. A
lightweight Siamese network is utilised to estimate per-class IoU estimation using the generated input.

3) Inconsistency-based Introspection: Although it is not popular to utilise inconsistency for semantic segmentation, there
are few studies that try to develop inconsistency-based introspection for semantic segmentation.

Haldimann et al. proposed a method using a conditional GAN architecture [97] that obtains the semantically segmented
output and generates the original image. The generated image is compared with the original input, and a dissimilarity map
is generated to indicate where the segmentation model failed. Alternatively, in [99], a pipeline is proposed to validate the
segmentation network’s result for an autonomous vehicle. Validation is done using a LIDAR sensor for extracting road segments
and comparing them with the segmentation model’s result. Additionally, the mechanism presented in [96], also utilises the
network they propose as a comparison module to identify failures in the classification along with their IoU estimation. Another
interesting mechanism is presented in [98]. Authors claim that when the base image is reconstructed, the areas with unknown
classes will have poor reconstruction. They utilise this idea to propose a road reconstruction network, and identify unknown
areas, i.e. missed detections using the reconstructed image.

4) Past Experience: Similar to inconsistency-based introspection, past experience is also not as popular as others in the
literature for introspecting segmentation. However, in [100], the quality of the semantic segmentation is evaluated for medical
imaging. Their method introduces a Reverse Classifier, which is trained with predicted segmentation to act as a ground truth.
Then evaluating the trained classifier with a reference database where the ground truth is available, the authors indicated that
it is possible to check whether the provided prediction is reliable or not.

D. Other Tasks
The perception subsystem can also provide functions other than those presented in Figure 2. Some examples of such functions

are ego vehicle localisation, traffic actor pose estimation, and ghost object detection. Although the main scope of this survey
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Fig. 5. Timeline of the ADS-related studies: Each study is categorised with a color and a shape to the trends and the two-level categorisation presented in
the study. (Best viewed in color)

is the introspection of the basic perception functions presented in Figure 2, we have included the introspection of such related
functions, where applicable. It is important to highlight that functions such as radar-based object detection which may focus
more on localisation of objects than classification, or instance-segmentation function which combines semantic segmentation
with object detection are included in this category as they do not directly fall into the basic functionalities provided. All in all,
this section presents the studies do not directly fall into the introspection of basic perception functions provided previously.

One of the important functionalities in perception is localisation, where the vehicle aims to localise itself in the world. To do
so, it is possible to utilise global navigation satellite system (GNSS). In [102], an extensive review for introspection of GNSS-
based positioning systems is presented. Alternatively, there is significant literature on visual-based localisation. In [103], an
introspection function is proposed to generate an uncertainty map using the input image. This map aims to prevent the feature
extraction module from extracting unreliable features for the visual simultaneous localisation and mapping (V-SLAM) algorithm.
Similarly, in [104], a failure detection mechanism for 2D laser-based SLAM methods is proposed. Their mechanism utilise raw
sensory information and extracts features for failure detection. In addition, the localisation errors due to misalignment between
varying sensor measurements have been investigated in the literature. In [105] authors investigated the effect of geometric
instability on alignment and proposed a novel learning-based approach to predict misalignment. A comparative evaluation
of several misaligned point cloud detection methods for point cloud registration problem, where multiple point clouds need
to be aligned or merged together is presented in [106]. Similarly, in [107], researchers proposed a novel system to detect
alignment errors in point cloud registration. They later extended their work to incorporate RADAR in [108]. Alternatively,
in [109], a scene-aware error model is proposed for LIDAR and visual-based odometry and localisation fusion. Alternatively,
researchers utilised Markov random fields with fully-connected latent variables, highlighting that the connections enable their
model to consider the entire relation, and aim to identify misalignment, and localisation errors due to misalignment in [110].
They later extended and tested their mechanism for 3D LIDAR-based localisation in automated driving systems in [111].
Identifying obstacles and moving objects without focusing on their classes is another functionality provided by perception
subsystem. To this end, introspecting vision-based obstacle avoidance is proposed in [112]. The method first splits the input
image into patches. Then, it tries to estimate whether the region is true-positive (obstacle detected), false-positive (obstacle
but not detected), true-negative (no obstacle), and false-positive (no obstacle but perception indicated there is an obstacle).
They create a dataset using sensors with depth information such as LIDAR to label the region as an obstacle. Alternatively,
for finding ghost-moving objects on RADAR-based object localisation, an encoder-decoder structure using an occupancy grid
map is proposed in [113]. Similarly, a point-based solution is proposed for detecting ghost targets in RADAR-based perception
[114]. In [115], a novel grouping algorithm utilising popular DNN-based feature extraction architecture on points set is also



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 14

proposed for anomaly detection on RADAR-based detection.
Alternatively, creating an experience base is also examined in the scope of instance segmentation where both semantic

segmentation and object detection are performed [116]. In this study, the authors generated a histogram with the number of
instances per class using ground truth data. In inference, they create the instance histograms for the samples and use Earth
Mover’s Distance (EMD) to indicate errors.

Lastly, as other traffic actor’s movements are crucial for understanding the environment for acting accordingly, a perception
subsystem may provide a function to estimate their poses. For such a function, Gupta and Carlone proposed a monitoring
system for pedestrian pose estimation using deep neural networks. The proposed method tries to estimate different types of
errors to decide whether the predicted poses are incorrect or not [117]. For training the model, they use the input image, 2D
projection of the image, extracted 3D Joint information, and camera parameters.

TABLE IV
INTROSPECTION METHOD COMPARISON

Advantages Disadvantages

Confidence
Availability to use model’s confidence scores directly.
Low computational cost if not using sampling-based

mechanism.

Open to adversarial attacks. Depends on the model’s
capability to represent confidence.

Performance Flexible to focus on different aspects of the task. Dependent on selected metric. Higher computational
cost compared to others.

Inconsistency
Uses different sources already available without
adding too much overhead. Robust to bias since

multiple sources are employed.

Assumes there are enough fault-free recordings to
detect inconsistency.

Past Experience Efficient if the operating environment is limited.
Computationally less expensive.

Limits system to a known prior. Requires an efficient
methodology for querying past experiences.

E. Discussion

In this section, we summarise the trends observed in selected perception tasks and introspection mechanisms. Additionally, we
examine the advantages and disadvantages of the presented introspection methods, focusing on their complexity in automated
driving systems. To this end, Figure 5 presents a timeline of studies conducted between 2012 and 2023, specifically developed
for ADS or using ADS-related datasets in experimentation. In addition, the advantages and disadvantages of each introspection
category are presented in Table IV, taking into account the studies reviewed in this paper.

1) Trends on Introspection of ADS Perception Functions: The timeline presented in this study illustrates that, in parallel
with research in the machine learning safety domain, earlier studies focused primarily on classification. However, more recent
research has shifted towards introspection of detection and semantic segmentation tasks, reflecting the increased use of these
tasks in ADSs. Similarly, it highlights that there is an imbalance between methods, such as confidence-based methods, which
are widely used in contrast to past experience-based methods. The reason for this trend is that machine learning safety research
tends to focus more on confidence-based mechanisms. However, past experience and inconsistency-based mechanisms are
better suited for the ADSs domain, as they are both lightweight and directly feasible for ADSs, given the multi-modality of
sensors and perception functions available in the mechanism. Additionally, it is notable that the use of performance metrics
is also gaining attention in the field of introspection for ADSs. The reason for this trend may be that many of the DNN-
based perception mechanisms are developed and evaluated based on performance metrics, which can provide a benchmark for
determining sufficient operation. Furthermore, it is clear that confidence/uncertainty-based mechanisms are a popular choice
across various tasks, as they have been widely studied in various domains and are particularly preferred for specific problems
such as out-of-distribution detection.

2) Advantages and Disadvantages of Different Introspection Methods: Although preferred and applied differently for
changing perception tasks, each method has certain generic benefits and limitations, which are summarised in Table IV. As
given in Table IV and Figure 5, confidence/uncertainty-based introspection is already widely used in various domains, such as
machine learning safety and robotics, due to the availability of such indicators in existing models. However, it has been shown
that confidence values can provide inconsistent results even with small perturbations or in extreme cases. Furthermore, they
allow for the development of introspection without modifying the base system and avoid computational overhead if sampling-
based methods are not used (MCD [39] or deep ensembles[38]). They are also popular for identifying unknown objects or
categories that are not provided in the training set, i.e., out-of-distribution samples, which is a growing research area for ADS
introspection. This is an important area of research for introspection in ADSs, as OOD detection can help identify and prevent
unsafe situations. However, it is important to note that run-time machine learning safety encompasses multiple challenges, and
OOD detection alone may not be sufficient to introspect in the case of misdetected in-distribution samples. Despite ongoing
research, these values alone are not yet sufficient for introspection. Therefore, the main focus of current research in this area
is on estimating, calibrating, or providing more realistic confidence indicators.
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Furthermore, using performance metrics for introspection provides flexibility in monitoring multiple scenarios. As various
metrics assess different aspects of systems, these introspection methods can monitor the system from different perspectives.
Furthermore, because performance mechanisms are commonly used to assess a model’s capability on a given task, they
are intuitive to use. However, they require ground truth information to calculate actual metric values. Without ground truth
information during operation, these systems can only estimate the metric value, which increases complexity and introduces
additional uncertainty. It should also be noted that there is a lack of safety-specific performance metrics for evaluation in the
literature.

It is beneficial and practical to consider inconsistencies within the perception system to detect fault cases since it employs
already available hardware and modules. This enables the system to find inconsistencies in the case of a sensor fault or set
of sensor faults. The main advantage of this method is that it reduces complexity by using existing systems. In addition, it
allows for scaling up the systems with more sensors, more algorithms, or with the new advancements in technology without
changing a great deal in the introspection. However, such introspection systems assume that a sufficient set of fault-free inputs
is available to detect failure, which might not be the case for all operational environments.

In the field of ADSs, using a prior knowledge base to determine the validity of a decision can introduce inflexibility in
unfamiliar or dynamic operational environments. While this approach may be effective in limited scenarios, it may not be
suitable for more complex or variable conditions. To mitigate this limitation, a system must have a diverse and comprehensive
prior knowledge base to account for a wider range of operational scenarios, which is not realistic and feasible. Despite this
limitation, such systems can make decisions more quickly than those that rely on past failure records, as they primarily rely
on querying and comparing stored data. To optimise performance, these systems must prioritise efficient storage strategies and
fast query processes for effective introspection.

All in all, this section highlights the trends and advantages of selected perception tasks and introspection mechanisms in
the field of automated driving systems. Studies indicate that introspection mechanisms can vary depending on the specific
perception task being performed. This supports the idea that introspection should be approached on a task-by-task basis for
improved fault detection. The timeline of reviewed studies, specifically developed for ADS or using ADS-related datasets in
experimentation, illustrates that research interest has shifted towards introspection of object detection and semantic segmentation
tasks. Additionally, it is clear that the use of performance metrics is gaining attention in the field of introspection for ADSs and
that confidence/uncertainty-based mechanisms are a popular choice across various tasks. Additionally, Although each method
has its specific benefits and limitations, it is important to note that confidence/uncertainty-based introspection is widely used
in various domains due to the availability of such indicators in existing models. However, it is important to note that these
values alone are not yet sufficient for introspection in automated driving systems, and more research is needed to develop more
robust and accurate introspection methods and to achieve higher levels of safety and autonomy.

IV. OPEN RESEARCH CHALLENGES

The run-time safety of DNN-based mechanisms has been investigated under various keywords, such as open-set recognition,
anomaly detection, out-of-distribution detection, and corner case detection. Although studies with these keywords aim to
enhance the safety of machine learning models, they may not specifically target ADSs. However, due to the complexity of the
environment ADSs operate, introspection specific to the ADS domain is crucial for enabling higher levels of automation. In
this section, we highlight the opportunities and open research challenges within the scope of ADSs.

1) Low computational complexity: Unlike introspection of other safety-critical systems, such as medical imaging, the
computational resources and time to act are significantly lower for ADSs. In other words, the introspection system
should not occupy the resources of the main system (see Figure 1), or require too much time to operate. This indicates a
vital limitation on ADSs introspection as some of the approaches introduce significant overhead. However, the reviewed
work shows that only a few studies mention the complexity of their model. Additionally, there is no mentioned key
performance indicator (KPI) or a baseline for the complexity of the methods available. In this regard, investigating the
feasibility in terms of time and memory complexity and developing a standard is needed.

2) Utilisation of diverse algorithms and sensor modalities: ADSs commonly equipped with various mechanisms and
sensor suites to enable them to understand the environment. Although the mentioned inconsistency-based studies try to
utilise them in combination, the use of this diversity in the system is underexplored (see Figure 5). However, the diversity
available in the system may enable introspection to provide a lightweight, efficient and interpretable solution and hence
requires further investigation.

3) Utilisation of different input sources: Another diversity available within ADSs is different input sources available in the
perception pipeline for introspection, as discussed in Section II. Our review shows that most methods utilise a single part
of the perception pipeline. For example, challenging inputs due to the day and night discrepancy [28], [29], unexpected
or small road objects [118], [119], adverse weather conditions [30], or corner cases [14], [116] are investigated to identify
errors related to the input. However, utilising different parts in the pipeline together has not been explored to enrich the
information for introspection.

4) Cooperative introspection: In the field of ADSs, the use of a multi-agent environment has been gaining attention as
a way to improve perception performance. Cooperation between agents has been shown to be a beneficial approach for
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addressing limitations such as occlusion and restricted perception horizon [120]. The idea of cooperation is also another
opportunity for researchers and not investigated thoroughly for ADSs introspection.

5) Multi-class introspection: Errors in DNN-based systems can be caused by varying factors, as mentioned in previous
sections. Although detecting them is within the scope of introspection, it is also important to identify the category of the
faults for interpretability and further diagnosis in such systems. Currently, most of the studies propose an introspection
model to decide whether there is an error or not. However, there might be different levels or types of where, where some
might not require a safety response or be mitigated by other measures. Additionally, in certain situations, perception
quality is of paramount importance for other safety-relate mechanisms, particularly in the event of a potential accident,
hazardous situation [121], [122] or an irregular driver behaviour [123]. These scenarios warrant further examination,
which can be achieved through introspection. One relevant study in this area presents a mechanism, and dataset [124],
that focuses on more stabilised segmentation in accidental scenes.

6) Safety-related evaluation metrics: To assess the introspection models, well-known classification metrics are used in
the literature. However, as introspection is directly related to the safety of the overall system and the actors in the
environment, safety-centred metrics and key performance indicators are needed for better introspection.

7) Benchmark for introspection methods: Studies in the literature employ publicly available datasets or simulation tools
to extract fault cases. However, it may not be possible to reproduce the studies in the literature easily. Thus, the field
of introspection in perception systems would greatly benefit from a comprehensive framework and benchmark that take
into account both methodology and target perception function. This would allow for a fairer comparison and a deeper
understanding of the current state-of-the-art. Recent efforts in this direction include the creation of benchmarks for pixel-
wise uncertainty estimation [125], unknown or unseen object segmentation [126], and out-of-distribution detection [127]
for semantic segmentation tasks. A similar effort is needed for other DNN-based ADSs perception functions to enable
higher levels of autonomy and safety.

8) Introspection of regression: Although a significant proportion of perception functions in ADS involve classification,
some crucial perception functions, such as object localisation, require regression. This suggests that these regression-
oriented functions can be individually analysed and refined. However, despite the potential utilisation of task-agnostic
techniques, such as ensemble methods, uncertainty estimation, or the employment of Bayesian neural networks [128],
there are certain distinctions between regression and classification that can affect their respective introspection processes.
One notable distinction lies in the nature of the outputs: classification results in a discrete class label, whereas regression
produces a continuous value. This difference fundamentally alters the approach to error detection. For regression, defining
specific boundaries becomes essential to recognise errors. Therefore, exploration of alternative methods for regression
introspection could contribute to the introspection of ADS perception functions.

9) Adaptation to new DNN-architectures: The landscape of deep neural network (DNN) architectures is continually
evolving. Recently, a new model, vision-transformer, has shown exceptional results in image recognition task [129]. Since
then, these models have been evolving and continuing to excel in other computer vision tasks [130]. However, although we
expect such models to be adapted and utilised in ADS domain, they have not yet been extensively employed. On the other
hand, introspection on these models have already started gaining interest. To illustrate, in [131], researchers highlighted
that error detection is needed even with the state-of-the-art vision-transformer models for semantic segmentation task in
videos. Hence, it is essential for further research to investigate introspection mechanisms of the new perception functions,
such as vision-transformer-based models, in ADS domain.

V. CONCLUSION

Despite the impressive performance of DNN-based perception models on collected datasets, existing perception models are
insufficient for safety-critical applications. For ADSs, this insufficiency can result in accidents or risk passengers’ safety directly.
Researchers from various fields are tackling the problem of ensuring the safety and reliability of autonomous transportation
systems by approaching it from three main aspects: validation and verification, robustness and enhancement, and run-time
monitoring. Introspection is the mechanism needed to make perception models resilient and find the cases they fail run-time.
It aims to improve safety by enabling the system to take appropriate actions when faults are detected, which is essential
for level four or higher automation. Although introspection can be developed considering only the DNN architecture, it is
important to consider the function that DNNs perform as the task affects how DNN-based systems are designed. This study
reviews the existing introspection methods considering which perception functions they are deployed on and how they perform
introspection. This survey is expected to serve as a starting point for researchers interested in the introspection of different
perception tasks for ADSs. Additionally, although introspection of perception tasks is being investigated, the computational
complexity aspect is often overlooked. For real-time operation, the introspection mechanism must be as lightweight as possible
to minimise the allocation of resources needed for primary ADS functionalities. Therefore, further research is needed to make
introspection more lightweight without losing its performance.
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