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Kalman Filter Based Channel Tracking for
RIS-Assisted Multi-User Networks
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Abstract—In this paper, we investigate channel estimation
in a reconfigurable intelligent surface (RIS) assisted multi-user
network while considering the mobility of users. Based on a
time-varying channel model, we utilize the Kalman filter (KF)
that is able to exploit temporal correlation to track cascaded
channels. In order to maintain a relatively low pilot overhead, we
present a multiple sub-phases based transmission protocol where
the number of pilot sequences in each sub-phase is less than the
number of users, i.e., pilot contamination exists. For the sake
of practicality, we directly utilize the discrete Fourier transform
matrix as the RIS phase shift matrix during the training process.
We analyze normalized mean square error and provide some
asymptotic results. A more practical scenario with hardware
impairments (HWI) at the transceiver and the RIS is considered.
Since HWI is also part of the measurement matrix and is
unknown to the base station, we propose a joint estimation of the
channel and HWI. Under this joint estimation framework, the
underlying state space model becomes nonlinear. We develop an
extended KF (EKF) algorithm to tackle the nonlinearity through
which the model can be linearized. Numerical results show that
the proposed algorithms outperform benchmarks under various
scenarios.

Index Terms—Reconfigurable intelligent surface, channel pre-
diction, pilot contamination, Kalman filter, extended Kalman
filter, hardware impairments.

I. INTRODUCTION

The rapid development of the fifth generation (5G) wireless
network was underpinned by a variety of new techniques,
including massive multiple-input multiple-output (MIMO) [1]
and millimeter wave (mmWave) communication [2], with the
aim of providing ultra-reliable low latency and high data rate
communications to massive number of users [3]. However, due
to high frequency bands, the transmission range of mmWave is
limited due to the short wavelength and high path loss [4]. In
addition, in massive MIMO systems, the pilot contamination
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problem arises due to the limited orthogonal pilot sequences
[5]. Moreover, manufacturing small-size mmWave equipments
and large-scale antenna arrays in massive MIMO systems
incurs high costs.

Recent works have reported that reconfigurable intelligent
surface (RIS) is able to reconfigure wireless propagation
environment by careful selection of the phase shifts of a large
number of passive reflecting elements with low cost and power
consumption [6], [7]. Specifically, RIS is controlled by a smart
controller which is able to tune the phase shifts of the incident
waves before reflecting them out. Since RIS can strengthen the
signal power of intended users and suppress the interference
from unintended users, it achieves the reconfiguration of
wireless channels. Moreover, different from conventional full-
duplex (FD) relays, RIS can achieve passive beamforming in
FD mode without processing delay, self-interference, and noise
amplification [8]. With all the advantages mentioned above,
RIS has attracted significant interest as a means of enhancing
network capacity with lower implementation.

Achieving reflecting beamforming gain of RIS highly relies
on obtaining accurate channel state information (CSI) [8].
Otherwise, the estimated channel would be outdated for the
passive beamformer design. Generally, reflecting elements are
passive and there is no active radio-frequency (RF) transceiver
at the RIS, which makes channel estimation very challenging.
Furthermore, with a large number of passive elements, the
pilot overhead can be extremely high. Recently, numerous
works have been devoted to the study of channel estimation
in RIS systems [9]–[12]. Some prior works propose to equip
the passive RIS with active antennas or RF chains to enable
active channel estimation [9], but the potential advantages of
RIS would be impaired. Since users can send pilot sequences,
the CSI can also be obtained at the base station (BS) by
analyzing the received pilot signal that is reflected by RIS. In
this way, the cascaded BS-RIS-user channel can be obtained
with the fully passive RIS, instead of estimating the BS-RIS
and RIS-user channels separately. A simple ON/OFF method
is developed to sequentially estimate the cascaded channel
related to each element by switching on only one element
of RIS and turning off all the other elements at a time [10].
However, the full RIS aperture gain is not exploited to improve
estimation accuracy. In order to fully exploit the RIS aperture
gain, the authors of [11], [12] designed the phase shift matrix
based on the discrete Fourier transform (DFT) matrix. With the
DFT-based reflection pattern, minimum estimation error can
be achieved. On the other hand, there are some other works
aiming to reduce pilot overhead [13], [14].
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Nonetheless, none of the works above have considered the
mobility of users. When the users are mobile, the channel
between RIS and users is time-varying. It is more challenging
to accurately track the cascaded channel. Kalman filter (KF)
is a useful tool to track unknown states based on a state
space model. In a wireless communication system, the prior
information of channels and observed measurements can be
exploited by KF to improve estimation accuracy [15]. Several
recent works have investigated channel estimation in RIS
networks by utilizing KF [16]–[19]. However, all the works
in [16]–[19] consider estimation in the case of a single user.
When considering multiple users and pilot contamination, the
estimation method derived from the single-user case cannot be
directly applied. Moreover, the authors of [16], [17] assume
Rayleigh fading for the BS-RIS and RIS-user channels, how-
ever, Rician fading is more relevant due to the ability of RIS
to provide line-of-sight (LoS) links.

In addition, the aforementioned works are under the as-
sumption of perfect hardware. While in practical systems, the
inherent hardware impairments, e.g., phase noise, distortion
noise, and phase drift at various kinds of devices, are not
negligible, and they could significantly degrade the system
performance [20], [21]. The authors of [22]–[24] have studied
the channel estimation in RIS networks, taking hardware
impairments into consideration. In [22]–[24], the impairments
at transceiver and RIS are modeled as distortion noise and
phase error, respectively. The authors of [22] adopted the linear
minimum mean square error (LMMSE) method to estimate
the overall channel which is the sum of the direct channel and
the aggregate channel embedded with phase shift. Similarly,
the authors of [23] proposed a deep-learning-based estimator
to estimate the overall channel. However, the overall channel
that is integrated with the fixed phase shift matrix cannot be
utilized when the phase shift is changed. An ON/OFF protocol
is adopted in [24] and the LMMSE estimation method is
utilized to estimate the direct and the cascaded channels.

For non-RIS systems with hardware impairments (HWI),
some works have investigated joint estimation of channel and
HWI to improve estimation accuracy. For example, an earlier
work proposed an approximate maximum-likelihood estimator
for frequency offset and channel parameters [25], [26]. A joint
estimation of frequency offset and channel is proposed in [27],
where the frequency offset and channel are stacked into one
vector to be estimated. A KF-based algorithm is proposed
to jointly estimate carrier frequency offset (CFO) and time-
varying channel in a MIMO system without RIS [15]. Since
the CFO and channel are jointly estimated, the measurement
equation is nonlinear, and thus the extended KF (EKF) that
deals with the nonlinear case is adopted. The first-order Taylor
approximation needs to be applied to linearize the nonlinear
function and then the standard KF can be adopted. However,
the joint estimation of channel and HWI has never been studied
in RIS systems.

In order to fill the gaps mentioned above, in this paper,
we investigate channel estimation in an RIS-assisted multi-
user network where pilot contamination and HWI are taken
into account. Specifically, considering the mobility of users,
we use KF to track the time-varying cascaded channel. We

consider a pilot contamination situation where the number
of orthogonal pilot sequences is less than the number of
users. Furthermore, we assume Rician fading for BS-RIS and
RIS-user channels. We adopt the DFT matrix as the phase
shift and provide some asymptotic results of normalized mean
square error (NMSE). We then extend the work to the case
where various kinds of HWI at transceiver and RIS exist.
We adopt EKF to jointly estimate the HWI and the cascaded
channel. The main contributions of this paper are summarized
as follows.

• In the RIS system with mobile users, it is extremely
challenging to acquire accurate channel state informa-
tion of the cascaded channel. We propose a KF-based
algorithm to track the time-varying cascaded channel for
its simplicity and efficiency. To cater for the practical
situation, we assume Rician fading for the BS-RIS and
RIS-user channels in the considered RIS network. To
reduce the pilot overhead, we present a transmission
protocol through which less frequent pilots are used to
complete the estimation of cascaded channels.

• In order to improve the estimation accuracy, the phase
shift should be well designed. However, the mean square
error (MSE) minimization problem is highly nonconvex
due to the unit-modulus constraint. To avoid high com-
putational complexity, we adopt the DFT matrix as the
phase shift matrix. We analyze the NMSE and provide
some asymptotic results under the DFT phase shift. We
also prove that the optimal phase shift under Rayleigh
fading and orthogonal pilot allocation can be reduced to
any unitary matrix.

• We extend the channel estimation to the case of HWI.
To the best of our knowledge, this is the first time
that additive distortion noise and phase noise as well
as multiplicative phase drift are taken into consideration
simultaneously in an RIS system. The phase drift is part
of the measurement matrix which is unknown to the BS,
making the tracking process difficult. Fortunately, the
phase drift can be modeled as a discrete-time Wiener
process. Therefore, we propose to consider the phase drift
as part of the state vector and jointly estimate the phase
drift and cascaded channel. The measurement equation is
nonlinear due to the HWI. We propose EKF to solve this
problem by applying the first-order Taylor approximation
to linearize it and then applying the standard KF.

• Finally, we validate the effectiveness of the proposed KF
and EKF algorithms. The NMSE achieved by the pro-
posed algorithms is superior to the benchmark schemes
under various scenarios. Numerical results demonstrate
that when there is no HWI, the NMSE performance can
be improved by creating a stronger LoS link, improving
the transmit power of pilot sequences, and increasing the
number of RIS elements. When the HWI at transceiver
and RIS is considered, the estimation accuracy is degrad-
ed particularly as the number of BS antennas and RIS
elements increases.

The rest of this paper is organized as follows. In Section
II, we present a system model. In Section III, a KF-based
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Fig. 1. System model of an RIS-assisted multi-user network.

algorithm is proposed to track the cascaded channel. The
DFT matrix is adopted as the phase shift matrix during the
estimation process and the NMSE analysis is presented. We
extend the channel estimation to the case of various kinds
of HWI and present an EKF-based algorithm in Section
IV. Numerical results are shown in Section V followed by
conclusions in Section VI.

Notations: Cx×y denotes the space of x × y complex-
valued matrices. For a complex-valued vector x, diag(x)
denotes a diagonal matrix with each diagonal element being
the corresponding element in x. For a matrix M, [M]i,j
denotes the (i, j)th element and tr{M} is the trace operator.
The superscripts (·)T and (·)H stand for transpose and con-
jugate transpose, respectively. The distribution of a circularly
symmetric complex Gaussian (CSCG) random variable with
mean x and covariance σ is denoted by CN (x, σ), and ∼
stands for distributed as. U(·) stands for uniform distribution.
‘s.t.’ denotes ‘subject to’. � denotes Hadamard product. ⊗
denotes the Kronecker product. <{·} stands for taking the real
part. E{·} and V{·} denote the expectation and variance of a
matrix, respectively.

II. SYSTEM MODEL

In this paper, we investigate an RIS-assisted multi-user
network, where K single-antenna users communicate with a
BS with the aid of an RIS, as shown in Fig. 1. The BS is
equipped with M antennas and the RIS consists of S passive
reflecting elements. The RIS is connected to a smart controller
that dynamically configures the phase shift of RIS by the BS.
We assume that the direct link between the BS and users is
blocked by obstacles, and the users move with low to medium
speed.

A. Channel Model

We denote Hn
1 ∈ CM×S and hn2,k ∈ CS×1 as the channel

from the RIS to the BS as well as the channel from the kth
user to the RIS at the nth time slot, respectively. We consider
a time-varying channel model that remains constant within its
coherence time. In Fig. 2, TH and T kh denote the coherence
time of Hn

1 and hn2,k, respectively. Since the BS and RIS have
fixed locations, we assume that the BS-RIS channel changes
slower than the RIS-user channel, i.e., TH > T kh . Specifically,
we assume TH = NT kh , where N is an integer. For simplicity,
we assume H1

1 = H2
1 = · · ·HN
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Fig. 2. Coherence time illustration and pilot transmission protocol.

We assume Rician fading for the BS-RIS and RIS-user
channels. Within the coherence time TH , the BS-RIS and RIS-
user channels can be modeled as

H1 =
√
βBR

√
κ

κ+ 1
H̄1 +

√
βBR

√
1

κ+ 1
Ĥ1, (1)

hn2,k =
√
βRu(k)

√
κ

κ+ 1
h̄2,k +

√
βRu(k)

√
1

κ+ 1
ĥn2,k,

(2)

where κ denotes the Rician factor. βBR and βRu(k) are
the large-scale fading coefficients of the BS-RIS and RIS-
user channels. Ĥ1 and ĥn2,k represent the normalized non-
LoS (NLoS) components, with elements independently and
identically distributed according to CN (0, 1). H̄1 and h̄2,k

represent the normalized LoS components. Here, we drop
the time index n of Hn

1 since H1 does not change within
its coherence time. Moreover, we assume the LoS compo-
nent h̄n2,k does not change within the coherence time TH
and drop the time index n, because it is more reasonable
to assume a stable LoS component1. The LoS components
are given by H̄1 = ar

(
ωAoA

)
aHt
(
ϑAoD,a, ϑAoD,e

)
and

h̄2,k = ar

(
ϑAoA,ak , ϑAoA,ek

)
, respectively. We assume a

uniform linear array and a uniform planar array (UPA) for the
BS and the RIS, respectively. The steering vectors ar

(
ωAoA

)
and at

(
ϑAoD,a, ϑAoD,e

)
are given by

ar
(
ωAoA

)
=
[
1, ej

2πd
λ sinωAoA , · · · , ej 2πd

λ (M−1) sinωAoA
]T
, (3)

at
(
ϑAoD,a, ϑAoD,e

)
=

[
1, ej

2πd
λ sinϑAoD,a sinϑAoD,e , · · · , ej

2πd(SH−1)
λ sinϑAoD,a sinϑAoD,e

]T
⊗
[
1, ej

2πd
λ cosϑAoD,e , · · · , ej

2πd(SV −1)
λ cosϑAoD,e

]T
, (4)

where d denotes the antenna or element separation distance
and λ denotes the wavelength. For simplicity, we assume
d = λ/2. SH and SV denote the number of elements in the

1The NLoS component ĥn
2,k changes between different time slots. There-

fore, the channel hn
2,k consisting of a LoS component and a NLoS component

changes with n.
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horizontal and vertical directions, respectively. The number of
RIS elements is equal to S = SH × SV . ωAoA denotes the
angle of arrival from the RIS to the BS. ϑAoD,a and ϑAoD,e

are the azimuth and elevation angles of departure from the RIS
to the BS. ϑAoA,ak and ϑAoA,ek are the azimuth and elevation
angles of arrival from the kth user to the RIS. We can use (4) to
calculate ar

(
ϑAoA,ak , ϑAoA,ek

)
by replacing (ϑAoD,a, ϑAoD,e)

with (ϑAoA,ak , ϑAoA,ek ).
Considering possible different velocities of different users,

the channel from the RIS to the kth user hn2,k can be modeled
by the first-order auto-regressive (AR) model as follows [17],
[28]:

hn2,k = An
khn−1

2,k + unk , (5)

where An
k = diag(ank,1, a

n
k,2, · · · , ank,S) ∈ CS×S represents

the AR parameter matrix of the kth user and unk denotes the
innovation process. Due to that hn2,k is Rician distributed, the
elements of unk are complex Gaussian distributed with mean
(1− ank )E{hn2,k} and variance (1− (ank )2)V{hn2,k}.

The element in An
k , i.e., ank,s, denotes the time-correlation

coefficient. For simplicity, we assume that different elements
in the same RIS have similar time-correlation characteris-
tics [16], [17], [29], i.e., ank,s = ank . Using the standard
Jakes’ model [17], [30], the time-correlation coefficient is
determined by the symbol interval between the adjacent time
slots, i.e., J0

(
2πfkD|n− (n− 1)|T kh

)
, where J0 (·) denotes

the zero-order Bessel function and fkD denotes the maxi-
mum Doppler shift in frequency of the kth user. There-
fore, the time-correlation coefficient ak can be determined
by ak = J0

(
2πfkDT

k
h

)
. An

k can be simplified as Ak =
diag(ak, ak, · · · , ak).

B. Signal Model
In the RIS-assisted network, we estimate the BS-RIS-user

cascaded channel. The estimated CSI can be obtained by
allowing users to send pilots to BS. To begin with, we should
figure out how many training symbols are needed to complete
the estimation of the cascaded channel in a multi-user network.
Assume that there is only one element in the RIS and each user
needs to send a pilot with length τ . If τ = K and all the pilots
are orthogonal to each other, there is no pilot contamination. If
τ < K, the pilot contamination exists. Since each RIS has S
elements, in order to estimate the channel accurately, we need
to either consecutively estimate the cascaded channel of each
element by the ON/OFF method, or turn on all the elements
but extend the training period to obtain more observations [31].
In this case, the total length of the pilot should be τ × S.
From [8], we know that the benefit brought by RIS could
be deteriorated by using the first method while the full RIS
aperture can be fully utilized by using the second method. As
a result, we present a pilot transmission protocol as depicted
in Fig. 2, where the pilot transmission period of each time
slot is further divided into multiple sub-phases. Specifically,
each time slot is separated into J = S sub-phases and each
sub-phase consists of τ training symbols2.

2According to [32], the least square (LS) estimator requires J ≥ S. We
adopt J = S to maintain a relatively low training overhead.

Considering the large number of elements in an RIS, a large
amount of pilots is needed to estimate the cascaded channel.
In order to reduce pilot overhead, we assume that in each sub-
phase the length of pilots τ is shorter than the number of users,
i.e., pilot contamination exists. In this case, it is possible that
multiple users transmit the same pilot sequence to the BS.
Define snk,j = [snk,j,1, s

n
k,j,2, · · · , snk,j,τ ] ∈ C1×τ as the pilot

sequence used by the kth user at the jth sub-phase. In each
sub-phase, snk,j is randomly selected from the set of orthogonal
pilots. We define the set Ck,j = {i|sni,j = snk,j ,∀i 6= k} as the
set of indices of the users that have the same pilot sequence
as the kth user. Therefore, we have

snk′,j(s
n
k,j)

H =

{
1, if k′ ∈ Ck,j ,
0, if k′ /∈ Ck,j .

(6)

When the kth user sends the pilot sequence snk,j to the BS,
the received signal at the BS at the jth sub-phase of the nth
time slot is given by

ynj =
√
p

K∑
k=1

H1Φ
n
j hn2,ks

n
k,j + wn

j

=
√
p

K∑
k=1

H1 diag(hn2,k)φnj snk,j + wn
j , (7)

where Φn
j = diag(

[
φnj,1, φ

n
j,2, · · · , φnj,S

]
) represents the phase

shift matrix of the RIS at the jth sub-phase in the nth slot. φnj,s
denotes the phase shift of the sth element at the jth sub-phase
in the nth slot. p represents the transmit power of training
sequences. wn

j ∈ CM×τ denotes the Gaussian noise with zero
mean and variance σ2. Define φnj ,

[
φnj,1, φ

n
j,2, · · · , φnj,S

]T ∈
CS×1.

By defining Gn
k , H1 diag(hn2,k) ∈ CM×S as the cascaded

channel, (7) can be rewritten as

ynj =
√
p

K∑
k=1

Gn
kφ

n
j snk,j + wn

j . (8)

In order to estimate the cascaded channel of the kth user,
the LS estimation is performed and we have

ynj

(
snk,j

)H
√
p

= Gn
kφ

n
j +

∑
i∈Ck,j

Gn
i φ

n
j +

wn
j

(
snk,j

)H
√
p

, (9)

where the second term on the right side is the contaminated
signal of the kth user.

By defining vnk,j ,
∑
i∈Ck,j Gn

i φ
n
j + wn

j (snk,j)
H/
√
p and

applying transpose to (9), we haveynj

(
snk,j

)H
√
p


T

= (φnj )T (Gn
k )T + (vnk,j)

T . (10)

By stacking the received signal in (10) for all sub-phases,
we have

Yn
k = Fn(Gn

k )T + Vn
k , (11)
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where

Yn
k =

yn1

(
snk,1

)H
√
p

,
yn2

(
snk,2

)H
√
p

, · · · ,
ynJ

(
snk,J

)H
√
p


T

,

(12)

Fn = [φn1 ,φ
n
2 , · · · ,φnJ ]

T
, (13)

Vn
k =

[
vnk,1,v

n
k,2, · · · ,vnk,J

]T
. (14)

Finally, by stacking the received signal in (11) for all the
users, we have

Yn = F̄nGn + Vn, (15)

where Yn = [(Yn
1 )T , (Yn

2 )T , · · · , (Yn
K)T ]T ∈ CKJ×M ,

F̄n = diag(Fn,Fn, · · · ,Fn) ∈ CKJ×KS ,
Gn = [Gn

1 ,G
n
2 , · · · ,Gn

K ]T ∈ CKS×M , and
Vn = [(Vn

1 )T , (Vn
2 )T , · · · , (Vn

K)T ]T ∈ CKJ×M .

III. KALMAN FILTER BASED CHANNEL PREDICTION

A. Kalman Filter Based Tracking

Considering the mobility of users and the dynamic char-
acteristic of channels, the required time for the channel es-
timation might exceed the coherence time of channels and
thus the obtained CSI might be outdated. This will hinder
the beamforming design that is based on the estimated CSI.
One simple method to mitigate this issue is to transmit pilot
sequences more frequently. However, the pilot overhead could
be overwhelming since RIS has a large number of passive
elements. Therefore, performing channel estimation only with-
out consideration of its evolution over time is inefficient.
Kalman filter is the Bayesian solution to the problem of
sequentially estimating the states of a dynamical system. It
can provide predictions of unknown states. Meanwhile, the
estimation accuracy can be improved given the measurements
observed over time. Therefore, it is appropriate for us to adopt
the Kalman filter to track the cascaded channel. In the previous
section, we have already obtained the dynamic model of the
channel between RIS and users. Next, we need to obtain the
dynamic model of the cascaded channel.

By applying diagonalization to both sides of (5) and multi-
plying it with H1, we have3

H1 diag(hn2,k) = H1Ak diag(hn−1
2,k ) + H1 diag(unk )

= akH1 diag(hn−1
2,k ) + H1 diag(unk ). (16)

According to the definition of the cascaded channel, (16)
can be reexpressed as

(Gn
k )T = ak(Gn−1

k )T + Un
k , (17)

where Un
k = [diag(unk )]THT

1 .
By stacking the state equation (17) for all the users, we have

Gn = AGn−1 + Un, (18)

3If H1 changes when one coherence time TH ends and a new time slot in
the next coherence time begins, (16) is not satisfied. Therefore, we assume
H1 does not change during the estimation process for simplicity.

where A = diag(a1IS , a2IS ,· · ·, aKIS) ∈ CKS×KS . Un =
[H1diag(un1 ),H1diag(un2 ),· · ·,H1diag(unK)]

T ∈ CKS×M .
Based on the measurement equation (15) and the state

equation (18), we obtain the overall state space model as
follows: {

Yn = F̄nGn + Vn, (19a)
Gn = AGn−1 + Un. (19b)

Based on the state space model, we show the procedures
of predicting the cascaded channel in Algorithm 1, where
Pn|n−1 and Pn|n denote the priori and posteriori covariance
matrices, respectively. The superscript notation ‘i|j’ is used to
indicate the association with the probability density function
of the state vector G computed at the ith time slot using the
measurements up to the jth time slot. Qn represents the state
noise covariance matrix Un. Rn is the measurement noise
covariance matrix Vn. The expressions of Qn and Rn are
given in Lemma 1.

Algorithm 1 Channel Prediction Based on Kalman Filter
1: Initialization: G0 = 0KS×M , P0 = MIKS , n = 1, and

the total number of time slots N .
2: repeat
3: Prediction: Gn|n−1 = AGn−1|n−1 and Pn|n−1 =

APn−1|n−1AH + Qn.
4: Kalman Gain: Sn = F̄nPn|n−1(F̄n)H + Rn, Kn =

Pn|n−1(F̄n)H(Sn)
−1.

5: Correction: Gn|n = Gn|n−1 + Kn(Yn − F̄nGn|n−1)
and Pn|n = Pn|n−1 −KnF̄nPn|n−1.

6: Set n = n+ 1.
7: until n = N

Specifically, the overall prediction process consists of four
major steps. At the beginning, the estimates of the channel
matrix and the MSE matrix are initialized. Then, the prediction
results are derived according to step 3. Next, the Kalman
gain is calculated by step 4. Kalman gain matrix is used to
determine how much of a new measurement should be used
for the next update of the cascaded channel. Finally, after
receiving the new measurements, the estimated channel and
MSE matrices can be corrected by utilizing Kalman gain. Steps
3-5 are repeated until the end of transmission.

Lemma 1. Under Rician fading and pilot contamination, the
expression of Qn

k is given as

Qk = Xcov
k − (1− ak)

2

(
κ

κ+ 1

)2

βRu(k)βBR

× diag(h̄2,k)(H̄1)T (H̄1)∗ diagH(h̄2,k), (20)

where Xcov
k is defined in (48). The diagonal elements of the

diagonal matrix Rn
k is given as

[Rn
k ]j,j =

∑
i∈Ck,j

(
φnj
)T

Gcov
i

(
φnj
)∗

+Mσ2/p

−

 ∑
i∈Ck,j

(
φnj
)T κ

κ+ 1

√
βRu(i)

√
βBR diag(h̄2,i)(H̄1)T


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×

 ∑
i∈Ck,j

(
φnj
)T κ

κ+ 1

√
βRu(i)

√
βBR diag(h̄2,i)(H̄1)T

H

,

(21)

where the definition of Gcov
i is given in Appendix A.

Proof: See in Appendix A.

B. Complexity Analysis

Algorithm 1 is an iterative algorithm and the computational
complexity of each iteration is determined by the predic-
tion, update of Kalman gain, and the correction steps. The
prediction step involves three matrix multiplications, and the
number of real-valued multiplications is 8K3S3 + 2K2S2M
[33]. The update of Kalman gain involves four matrix mul-
tiplications and one matrix inverse, and thus the number of
real-valued multiplications is 17K3S3. The correction step
involves three matrix multiplications, and thus the number of
real-valued multiplications is 8K3S3 + 4K2S2M . In step 5,
the computational complexity of the LS method is O(KSMτ).
Overall, the total computational complexity of the Algorithm
1 is O(33K3S3 + 6K2S2M +KSMτ).

We also analyze the complexity of the existing methods
introduced in section I. Since [17] adopts the same LS method
and KF algorithm, the complexity can be obtained by setting
K = 1 as they assume a single user case. In [13], [14], the
LMMSE estimator is adopted. In [13], the main complexity
is the calculation of the second moment of the aggregated
channel and is given by O(12KMS3). The LMMSE estimator
for each user and each time slot in [14] involves seven matrix
multiplications and seven matrix inverse. The number of real-
valued multiplications is approximately O(11S3 + (19M3 +
4M2)(K−1)(

⌈
S
M

⌉
−1) + (12∆M2 + 4∆2M + 2∆3 +M3 +

4∆M)(K − 1)), where ∆ = S− (
⌈
S
M

⌉
− 1)M . Based on the

above analysis, the complexity of the proposed algorithm is
in the same order of S as the benchmarks in [13], [14], [17].

C. Phase Shift Design

From Algorithm 1, we know that the MSE matrix depends
on the phase shift. Therefore, we can optimize the phase shift
during the prediction process to minimize MSE4. Let us first
calculate the MSE of the kth user. According to Algorithm 1,
the value of the prior covariance at the nth time slot is

P
n|n−1
k = a2

kP
n−1|n−1
k + Qk , Q̄n

k . (22)

The posterior covariance at the nth time slot is calculated
as

P
n|n
k =

{
I−

[
Q̄n
kFH

(
FQ̄n

kFH + Rk

)−1
]

F
}

Q̄n
k . (23)

Then the MSE of the kth user can be calculated as

tr{Pn|n
k } = tr{Q̄n

k} − tr
{

Q̄n
kFH

(
FQ̄n

kFH + Rk

)−1
FQ̄n

k

}
.

(24)

By summing the MSE of the kth user for all the users, the
MSE minimization problem at the nth slot can be equivalently

4The BS uses a smart controller to configure the phase shift.

formulated as the following maximization problem.

max
F

K∑
k=1

tr
{

Q̄n
kFH

(
FQ̄n

kFH + Rk

)−1
FQ̄n

k

}
(25a)

s.t. |[F]j,s| = 1, ∀j, s, (25b)

where the constraint (25b) is derived from the unit-modulus
constraint of phase shift φnj and the definition of F in (14).
[F]j,s denotes the element at the jth row and the sth column
of the matrix F.

The problem (25) is difficult to solve directly due to
the nonconvex unit-modulus constraint. From the literature,
we know that a popular method of solving the phase shift
optimization problem is to approximate it into a semidefinite
programming problem and iteratively solve it [34]. However,
it is neither simple nor practical because of its high com-
putational complexity. In order to reduce the computational
complexity, a simple and effective method of designing phase
shift is needed. Another general way to design phase shifts
is to adopt the DFT matrix [35]. The validity of the DFT
matrix has been verified in [11], [12], [16], [36]. The objective
function in (25a) has a similar form to the equation (22) in
[36]. The empirical study in [36] reveals that the DFT matrix
is a stationary point and the MSE of local optima are close
to the DFT-based solution. Although [36] considers a single
user case, the DFT-based phase shift matrix is also a stationary
point of our problem (25) because all the users share the same
RIS. Since the DFT-based phase shift matrix is determined
prior to the channel estimation process, the computational
complexity is largely reduced.

In the following proposition, we show that the optimal phase
shift under Rayleigh fading and orthogonal pilot sequences
could be any unitary matrix that satisfies the unit-modulus
constraint.

Proposition 1. When κ = 0 and τ = K, i.e., in the case of
Rayleigh fading channel and orthogonal pilot allocation, the
optimal phase shift that minimizes MSE is any unitary matrix
that satisfies the unit-modulus constraint [17].

Proof: According to Lemma 1, Qn
k is reduced to

M
(
1− a2

k

)
βBRβRu(k)IS when the Rician factor satisfies

κ = 0. When τ = K, Rn
k is reduced to Mσ2/pIS . That

is, both Qn
k and Rn

k are scaled identity matrices. As a result,
the optimal phase shift is reduced to any unitary matrix that
satisfies the unit-modulus constraint. Detailed derivations can
be found in [17].

D. NMSE Analysis Under DFT Phase Shift

In this subsection, we analyze the NMSE obtained under
the DFT phase shift. The NMSE of the system is defined as

NMSE = E
[
‖Gn|n −Gn‖2F
‖Gn‖2F

]

=
E
[∑K

k=1 ‖G
n|n
k −Gn

k‖2F
]

E
[∑K

k=1 ‖Gn
k‖2F

] . (26)
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The denominator in (26) can be rewritten as∑K
k=1 E

[
tr
{
Gn
k (Gn

k )H
}]

. In Appendix A, Gcov
i is defined

as Gcov
i , E

{
(Gn

i )
T

(Gn
i )
∗
}

. Therefore, the denominator

can be further rewritten as
∑K
k=1 tr {Gcov

k }. Here, we omit
the details and directly present the results in the following.

K∑
k=1

tr {Gcov
k }

=

K∑
k=1

S∑
i=1

M∑
m=1

(
1

κ+ 1
βRu(k)

1

κ+ 1
βBR

+
1

κ+ 1
βRu(k)

κ

κ+ 1
βBR[H̄1]2m,i

+
1

κ+ 1
βBR

κ

κ+ 1
βRu(k)[h̄2,k]2i

+(
κ

κ+ 1
)2βRu(k)βBR|[h̄2,k]i|2|[H̄1]m,i|2

)
. (27)

From section III-C, the MSE of all the users, i.e.,
the numerator in (26) is given by

∑K
k=1 tr{Q̄n

k} −∑K
k=1 tr

{
Q̄n
kFH

(
FQ̄n

kFH + Rk

)−1
FQ̄n

k

}
. With DFT

phase shift, we have FFH = SIS . MSE can be reduced to
K∑
k=1

tr{Q̄n
k} − S

K∑
k=1

tr
{

(Q̄n
k )2
(
FQ̄n

kFH + Rk

)−1
}
. (28)

Note that in (28), the second term is still difficult to handle
due to the matrices Q̄n

k and Rk. However, we can obtain some
asymptotic results under a special case, i.e., an orthogonal
pilot allocation case. From Proposition 1, Rn

k is reduced to
Mσ2/pIS under orthogonal pilot allocation. The second term
in (28) can be rewritten as

S

K∑
k=1

tr
{

(Q̄n
k )2
(
FQ̄n

kFH +Mσ2/pIS
)−1
}

= S

K∑
k=1

tr

{
(Q̄n

k )2

(
FQ̄n

kFH +
Mσ2

pS
FFH

)−1
}

=

K∑
k=1

tr

{
(Q̄n

k )2

(
Q̄n
k +

Mσ2

pS
IS

)−1
}
. (29)

Remark: When considering orthogonal pilot allocation, we
have NMSE→ 0 in high pilot transmit SNR region and large
S region. This is because (29) is reduced to

∑K
k=1 tr{Q̄n

k}
when σ2

p → 0 or S → ∞. Then the MSE derived in (28) is
equal to zero. Combining (26)-(27), we have zero NMSE.

IV. EXTENDED KALMAN FILTER UNDER HARDWARE
IMPAIRMENTS

A. Hardware Impairments

In practical communication scenarios, the hardware is gen-
erally non-ideal, and therefore the received signal is affected
by the HWI. In this section, we consider three different types
of hardware impairments in the following, including HWI at
transceiver and RIS5.

5In order to focus on the impact of HWI on the estimation accuracy, we
do not consider pilot contamination in this section.

• The distortion noise at each user and the BS: They can be
assumed as Gaussian distributed variables with average
power being proportional to the power of transmit and
received signals.

• The multiplicative phase drifts at each user and the BS:
They are caused by local oscillators and can be modeled
by the Wiener process [21].

• The phase error at RIS: This type of hardware impair-
ment originates from finite precision of configuration of
RIS elements and can be modeled as phase noise. We
assume that the phase noise is uniformly distributed in
[−krπ, krπ), where kr denotes the severity of the residual
impairments6 at the RIS [22]. Since the phase shift could
be interfered by the phase error, the optimization of phase
shift is ineffective. Therefore, we do not consider the
optimization of phase shifts in this section. During the
prediction process, we adopt random phase shift at RIS.

Considering the additive distortion noise and multiplicative
phase drift at the transceiver as well as the phase noise at the
RIS [21], [37], [38], the received pilot signal at the BS can be
written as

ỹnj = Ψn
j

K∑
k=1

H1Φ̃
n
j hn2,k

(√
psnk,j + δnk,j

)
+ Λn

j + wn
j . (30)

In (30), δnk,j ∈ C1×τ denotes the distortion noise at each user
with each element distributed according to CN (0, κUEp).
κUE denotes the proportionality coefficient that characterizes
the level of impairment at each user. The distortion noise at
the BS is denoted as Λn

j ∈ CM×τ with each column
distributed according to λnj ∈ CM×1 ∼ CN (0,Γ)

where Γ = κBSp
∑K
k=1 IM � hck,j,n(hck,j,n)H and

hck,j,n , H1Φ̃
n
j hn2,k [21], [22], [37]. κBS denotes

the proportionality coefficient that characterizes the
level of impairment at the BS. The phase shift matrix
with phase noise at the RIS is given as Φ̃n

j =

diag([ej(θ
n
j,1+∆θnj,1), ej(θ

n
j,2+∆θnj,2), · · · , ej(θ

n
j,S+∆θnj,S)]),

where θnj,s ∈ [0, 2π) denotes the phase shift of the
sth element at the jth sub-phase of the nth time slot.
The phase noise of the sth element at RIS is denoted
as ∆θnj,s. The multiplicative phase drift is defined
as Ψn

j = diag([ejψ
n
j,1 , ejψ

n
j,2 , · · · , ejψ

n
j,M ]), where

ψnj,m = εnj + νnj,m. εnj denotes the phase drift of each
user at the jth sub-phase of the nth time slot. νnj,m denotes
the phase drift of the mth BS antenna at the jth sub-phase
of the nth time slot. From [21], [37], [38], εnj and νnj,m can
be modeled as a discrete-time independent Wiener process as
follows:

εnj = εnj−1 + ∆ε̄nj , νnj,m = νnj−1,m + ∆ν̄nj,m, (31)

where ∆ε̄nj ∼ N (0, σ2
ε ) and ∆ν̄nj,m ∼ N (0, σ2

ν) denote
the random phase increment caused by the imperfect local
oscillator at each user and the mth BS antenna, respectively.
According to [21], [37], [38], the phase drifts at the transceiver

6We assume that the residual impairments here are the hardware impair-
ments that have been partially mitigated by compensation algorithms. Due to
the imprecise estimates of time-variant hardware characteristics and random
noise, residual HWI still exists.
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update every sub-phase.

B. Joint Estimation Based on Extended Kalman Filter

By employing the LS estimation method, we have

ỹnj

(
snk,j

)H
√
p

= Ψn
j H1Φ̃

n
j hn2,k +

Ψn
j√
p

K∑
k=1

H1Φ̃
n
j hn2,kδ

n
k,j

(
snk,j
)H

+
Λn
j

(
snk,j

)H
√
p

+
wn
j

(
snk,j

)H
√
p

, Ψn
j Gn

k φ̃
n
j + dnk,j , (32)

where φ̃nj,[ej(θ
n
j,1+∆θnj,1), ej(θ

n
j,2+∆θnj,2), · · · , ej(θ

n
j,S+∆θnj,S)]T

and dnk,j ,
Ψn
j√
p

∑K
k=1H1Φ̃

n
j hn2,kδ

n
k,j

(
snk,j

)H
+

Λnj (snk,j)
H

√
p +

wn
j (snk,j)

H

√
p .

In order to facilitate the derivations later, we define a
new variable as gnk , vec(Gn

k). vec(·) is the vectoriza-
tion operation. By utilizing gnk , we can rewrite Gn

k φ̃
n
j as

((φ̃nj )T ⊗ IM )gnk . Therefore, (32) can be rewritten as

ỹnj

(
snk,j

)H
√
p

= Ψn
j Fnj gnk + dnk,j , (33)

where Fnj , (φ̃nj )T ⊗ IM .
Following the same procedure in the previous section, we

stack the vectorized signal
ỹnj (snk,j)

H

√
p for all the sub-phases as

follows:

Ỹn
k = Ψ̃nF̃ngnk + Dn

k , (34)

where

Ỹn
k =


 ỹn1

(
snk,1

)H
√
p


T

,

 ỹn2

(
snk,2

)H
√
p


T

, · · · ,

 ỹnJ

(
snk,J

)H
√
p


T

T

, (35)

Ψ̃n = diag (Ψn
1 ,Ψ

n
2 , · · · ,Ψn

J) , (36)

F̃n =
[
(Fn1 )

T
, (Fn2 )

T
, · · · , (FnJ)

T
]T
, (37)

Dn
k =

[(
dnk,1

)T
,
(
dnk,2

)T
, · · · ,

(
dnk,J

)T ]T
. (38)

By stacking (34) for all users into a large vector, we derive
the measurement equation as follows:

Ŷn = Ψ̂nF̂ngn + Dn, (39)

where Ŷn = [(Ỹn
1 )T ,(Ỹn

2 )T , · · · , (Ỹn
K)T ]T ∈ CJMK×1,

Ψ̂n = diag(Ψ̃n, Ψ̃n, · · · ,Ψ̃n) ∈ CJMK×JMK ,
F̂n = diag(F̃n, F̃n, · · · , F̃n) ∈ CJMK×SMK ,

gn = [(gn1 )T , (gn2 )T , · · · , (gnK)T ]T ∈ CSMK×1, and
Dn = [(Dn

1 )T , (Dn
2 )T , · · · , (Dn

K)T ]T ∈ CJMK×1.
From (39), the phase drift is also integrated into the mea-

surement matrix. Normally, the phase drift is unknown to the
BS, which makes the estimation challenging7. Fortunately, we
observe that the phase drift in (31) has a similar update rule
as the cascaded channel. This motivates us to jointly estimate
the cascaded channel and the phase drift. From [39], [40], the
phase drift updates every sub-phase, i.e., every pilot sequence
length. While in state equation (18), the cascaded channel
updates every time slot, which means the phase drift at the
transceiver updates more frequently than the channel. In order
to describe the overall state equation in a unified manner, we
first present the following update equations of the phase drifts
by recursively updating the equations in (31)8.

εnj = εn−1
j + ∆εnj , νnj,m = νn−1

j,m + ∆νnj,m, (40)

where ∆εnj ∼ N (0, Jσ2
ε ) and ∆νnj,m ∼ N (0, Jσ2

ν) [39], [40].
Define εn , [εn1 , ε

n
2 , · · · , εnJ ]T and νn ,

[νn1,1, · · · , νnJ,1, · · · , νn1,M · · · , νnJ,M ]T . We obtain the update
equation of the phase drift in a vector form as follows:

εn = εn−1 + ∆ε, νn = νn−1 + ∆ν, (41)

where ∆ε , [∆ε1,∆ε2, · · · ,∆εJ ]T and ∆ν =
[∆ν1,1, · · · ,∆νJ,1, · · · ,∆ν1,M , · · · ,∆νJ,M ]T .

Next, we present the new state equation of the vectorized
channel vector gnk as follows:

gnk = Ãkg
n
k + znk , (42)

where Ãk , akISM and znk , rvec(Un
k). rvec(·) denotes the

row vectorization of a matrix.
Combining (41)-(42), we rearrange the overall state equa-

tion as Υn = ÃΥn−1 + Zn, where the new state vector Υn

is defined by stacking the phase drift and channel variables
into one vector as follows:

Υn ,
[
(gn1 )T , (gn2 )T , · · · , (gnK)T , (εn)T , (νn)T

]T
, (43)

Ã = diag
(
Ã1, Ã2, · · · , ÃK , IJ , IJM

)
, (44)

Zn =
[
(zn1 )T , (zn2 )T , · · · , (znK)T , (∆ε)T , (∆ν)T

]T
. (45)

By utilizing the new state vector Υn and defining ϕ (Υn) =
Ψ̂nF̂ngn, the measurement equation (39) can be rewritten as
Ŷn = ϕ (Υn) +Dn. Since the phase drifts need to be jointly
estimated with the cascaded channel, ϕ (Υn) is a nonlinear
function of the state vector Υn. The nonlinearity of the mea-
surement equation is caused by the multiplicative phase shift
matrix Ψ̂n. Specifically, the overall state vector Υn in (43)
consists of the channel vector gn and the phase drift vector

7Note that in (39) the phase noise vector is integrated into the matrix F̂n,
which is part of the measurement matrix. Generally, the phase noise at RIS
is modeled as a random variable following a uniform distribution [22], [23].
The BS only has the information of phase shift but not the information of
phase noise because the phase noise is a random variable. Therefore, when
applying the Kalman filter to estimate the channel, the BS uses the designed
phase shift without phase noise to estimate the cascaded channel although
there will be NMSE performance degradation.

8Since each time slot is divided into J sub-phases, the new update equations
in (40) are derived recursively by means of (31) with J times.
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[(εn)T , (νn)T ]T . While the function ϕ (Υn) = Ψ̂nF̂ngn is
the product of the channel vector gn and the phase drift matrix
Ψ̂n. Since the measurement equation is nonlinear, the Kalman
filter cannot be directly applied. One approach to solve the
nonlinear problem is the extended Kalman filter. Through this
approach, we first need to linearize the nonlinear equation by
applying the first-Taylor approximation. Then we can apply
KF to the linearized model.

The linearization requires computing a Jacobian matrix.
Since the new state vector can be rewritten as Υn =
[(gn)T , (εn)T , (νn)T ]T , the Jacobian matrix of the nonlinear
function ϕ with respect to Υn and evaluated at Υn|n−1 can
be computed as

Ωn =
∂ϕ (Υn)

∂Υn

∣∣∣
Υn=Υn|n−1

=

[
∂ϕ (Υn)

∂gn
,
∂ϕ (Υn)

∂εn
,
∂ϕ (Υn)

∂νn

]
=

[
Ψ̂nF̂n,

∂ϕ (Υn)

∂εn
,
∂ϕ (Υn)

∂νn

]
. (46)

With the derived Jacobian matrix, we can apply extended
Kalman filter to jointly estimate the phase drift and the
cascaded channel, as shown in Algorithm 2 below, where Q̃n

and R̃n denote the covariance matrices of the state noise Zn

and the measurement noise Dn, respectively. The expressions
of Q̃n and R̃n can be derived following a similar method as
in Appendix A.

Algorithm 2 Joint Channel and HWI Prediction Based on
Extended Kalman Filter

1: Initialization: g0 = 0SMK×1, ε0, ν0, Υ0 =
[(g0)T , (ε0)T , (ν0)T ]T , P0 = ISMK+J+JM , n = 1, and
the total number of time slots N .

2: repeat
3: Prediction: Υn|n−1 = Ã ×Υn−1|n−1 and Pn|n−1 =

ÃPn−1|n−1ÃH + Q̃n.
4: Kalman Gain: Sn = ΩnPn|n−1(Ωn)H + R̃n, Kn =

Pn|n−1(Ωn)H(Sn)
−1.

5: Correction: Υn|n = Υn|n−1 +Kn(Ŷn−ϕ
(
Υn|n−1

)
)

and Pn|n = Pn|n−1 −KnΩnPn|n−1.
6: Set n = n+ 1.
7: until n = N

V. SIMULATION RESULTS

In this section, we evaluate the NMSE performance of the
proposed algorithms through simulations. Numerical results
are obtained using MATLAB, and the results are averaged
over 100 independent channel realizations. The total number
of time slots is N = 200. We consider a two-dimensional (2D)
plane network where the BS and RIS are located at (−10, 0)
and (0, 10), respectively. In addition, K single-antenna users
are uniformly distributed in a 20m × 10m rectangle area.
The path loss models from the BS to RIS and from RIS to
users are 30 + 22 log10(d(m)), where d denotes the distance.
The AoAs/AoDs are uniformly distributed within [0, 1

2π] for
the elevation angle and within [0, 2π] for the azimuth angle.

The Rician factor is 10 dB. The coherence time of the BS-
RIS channel is 10 times that of the RIS-user channel, i.e.,
TH = 10Th. The Doppler shift for different users is uniformly
distributed as 0.01 + 0.001× U(0, 1). The noise power is set
as σ2 = −120 dBm. The number of users K, the number
of BS antennas M , the number of RIS elements S, and the
severity of different types of HWI will be specified in each
experiment. The NMSE of KF and EKF algorithms can be
computed as NMSEKF = E

[
‖Gn|n−Gn‖2F
‖Gn‖2F

]
and NMSEEKF =

E
[
‖gn|n−gn‖2
‖gn‖2

]
, where ‖ · ‖F and ‖ · ‖ represent the Frobenius

norm and the l2 norm, respectively.
We denote the proposed Algorithm 1 and Algorithm 2 as

“Proposed KF algorithm” and “Proposed EKF algorithm”,
respectively. The “Proposed KF algorithm” adopts the DFT
matrix as the phase shift. We evaluate the performance of the
proposed algorithms by comparing them with the following
benchmark schemes:
• Unitary phase [17]: In this scheme, the authors consider a

single-user case and do not consider pilot contamination.
Kalman filter is used to estimate the cascaded channel.
Therefore, we iteratively estimate the cascaded channel
for each user. Also, Rayleigh fading is considered in this
paper. The optimal phase shift in this case is any unitary
matrix that satisfies the power constraint.

• LMMSE [13]: In [13], the authors consider multiple
users, pilot contamination, and Rayleigh fading. Since the
optimal phase shift design in the scheme is equal phase
shifts, we replace the equal phase shifts with varying
random phase shifts for a fair comparison, and thus
the BS can obtain sufficient observations. Particularly,
instead of estimating the cascaded channel of the BS-
RIS-user link, the authors estimate the aggregate channel
that includes phase shift. The authors adopt the LMMSE
estimator to estimate the aggregate channel.

• Random phase: This scheme adopts the same Kalman
filter as the “Proposed KF algorithm”, but the RIS phase
shifts are randomly generated from [0, 2π] during the
whole estimation process.

• LMMSE, three phase [14]: The authors of [14] proposed
a three-phase channel estimation framework, in which the
direct link and the cascaded channel of a typical user are
estimated in phases I and II, respectively. The cascaded
channels of the rest of users are sequentially estimated
in phase III by utilizing the common BS-RIS channel.
When each user transmits a pilot symbol during phase
III, only selected RIS elements are switched on to reflect
the pilot symbol and thus multiple time slots are needed
to complete the estimation. When comparing with this
framework, the estimation of the direct link is neglected
to ensure consistency.

• LMMSE, ON/OFF [24]: When considering hardware
impairments, we compare our proposed EKF algorithm
with this scheme to show the advantages. In this scheme,
the distortion noise and phase noise are considered
while the phase drift is not considered. We will show
that this benchmark scheme is inferior to the proposed
scheme even though the phase drift is not taken into
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Fig. 3. NMSE versus Rician factor when p = 10 dB, K = 25, τ = 20,
S = 20, M = 8 and no HWI.

consideration. Particularly, the authors use the ON/OFF
switch method and the LMMSE method to consecutively
estimate the cascaded channel of each RIS element.

A. Without HWI

Fig. 3 shows the NMSE performance versus the Rician
factor. The RIS adopts a 5 × 4 UPA. The NMSE of the
proposed KF algorithm and the random phase scheme improve
when the Rician factor increases. This is because when κ
becomes larger, the LoS components of BS-RIS and RIS-user
channels become more dominant, thus enhancing the received
signal power at the BS. The NMSE of the Unitary phase
scheme slightly decreases when the Rician factor increases.
This is because [17] assumes Rayleigh fading, and thus the
Rician factor is not involved in the KF algorithm and its
phase shift design. On the contrary, the NMSE of the LMMSE
scheme and the “LMMSE, three phase” scheme increases with
Rician factor. This can be explained as follows. Both two
schemes adopt the LMMSE estimator in which the covariance
matrices of the BS-RIS and RIS-user channels are utilized
to compute the second moment of the cascaded channel.
To adapt to our scenario, the Rician factor is involved in
the covariance matrices. However, the two schemes consider
Rayleigh fading assumption. The LMMSE estimator obtained
under Rayleigh fading does not work well in the case of Rician
fading. Furthermore, the LMMSE-based schemes are inferior
to all the Kalman-based schemes. This is reasonable because
the LMMSE-based schemes do not have the information on
time correlation that can be exploited to improve the channel
estimation.

Fig. 4 demonstrates the NMSE performance versus the
transmit power of pilot sequences. It can be observed that
the NMSE performance of all the schemes improves with the
increase in p. The proposed KF algorithm achieves a much
better NMSE performance over other benchmark schemes
even when suffering from pilot contamination. This is because
the time-varying characteristic is exploited by the proposed
algorithm. The performance gaps between the proposed al-
gorithm, the benchmark [17], and the random phase scheme

-10 -5 0 5 10
Transmit power (dB)
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100

N
M

S
E

Proposed KF algorithm
LMMSE, three phase
Unitary phase
LMMSE
Random phase

Fig. 4. NMSE versus transmit power of pilots when K = 25, τ = 20,
S = 20, M = 8 and no HWI.
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Fig. 5. NMSE versus the number of elements when p = 10 dB, K = 12,
M = 8, τ =M , and no HWI.

show the superiority of the DFT matrix over unitary phase
shift and random phase shift. The “LMMSE, three phase”
scheme achieves the worst performance. The reason is that
only selected RIS elements are switched on during estimation
and the full RIS aperture gain is not utilized.

In Fig. 5, we compare the NMSE performance in terms
of the number of elements. The RIS is an SH × 10 UPA,
where SH increases from 2 to 6. The proposed KF algorithm
outperforms all the other benchmarks, which indicates the
benefit of the DFT matrix and the utilization of time-varying
characteristics. The NMSE performance of the proposed KF
algorithm, the “Unitary phase”, and the LMMSE scheme
improve with the number of elements, especially for the
proposed KF algorithm. The NMSE performance of the “Ran-
dom phase” scheme degrades when the number of elements
increases. The reason is that the observations obtained with
random phase shift are not sufficient for the estimation, and the
contaminated signal significantly increases when S increases.
It is seen that the NMSE of the “LMMSE, three phase” scheme
first slightly increases, and then varies a little after N > 40.
This is reasonable because when S increases, each user needs



11

TABLE I
PILOT OVERHEAD COMPARISON

Scheme Proposed protocol Protocol in [17] Protocol in [13] Protocol in [14]

Overhead Sτ SK τ K + S + (K − 1)
⌈
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⌉)
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Fig. 6. NMSE versus the number of elements when p = 10 dB, K = 25,
τ = S = 20, M = 8 and no HWI.

more time slots to complete the estimation of the cascaded
channels of all the RIS elements. As the estimation at each
time slot is independent, the total estimation error of each user
accumulates when the number of time slots increases.

Fig. 6 illustrates the NMSE versus the normalized Doppler
shift. A higher Doppler shift means a higher moving speed
of users. When the speed of users increases, as expected,
the channel tracking becomes difficult and the estimation
accuracy decreases. From Fig. 6, the NMSE of all the schemes
except the “LMMSE” scheme increases with the increase in
the normalized Doppler shift. Although both the “LMMSE”
scheme and the “LMMSE, three phase” scheme assume
Rayleigh fading and use the same LMMSE estimator, the
two schemes show different trends. The reason is that the
“LMMSE” scheme only utilizes the variance matrices of the
BS-RIS and RIS-user channels. As a result, the NMSE of the
“LMMSE” scheme does not change with the Doppler shift.
The “LMMSE, three phase” scheme utilizes the covariance
matrix of the RIS-user channel, and thus the channel dynamics
are taken into consideration.

Table I compares the total pilot overhead consumed for
estimating the channel in one round. It can be observed that
the presented protocol consumes fewer pilot symbols than
the protocol proposed in [17] when τ < K. The reduced
pilot overhead is equal to S(K − τ) which is considerable
when the number of elements is large. The protocol in [13]
only consumes τ pilot symbols because the BSs estimate the
aggregate channel integrated with the fixed phase shift matrix.
However, the estimated aggregate channel cannot be utilized
when the phase shift is changing. The protocol in [14] also
consumes fewer pilot symbols than the proposed protocol.
This is because they utilize the strong correlation between
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Fig. 7. NMSE of the proposed EKF algorithm versus the number of users
when M = 8, p = 10 dB and with HWI.

different users due to the common BS-RIS channel. However,
the protocol is developed based on the assumption that the
cascaded channel of the typical user is perfectly estimated,
which is not practical.

B. With HWI

In the following, we compare the NMSE performance in the
presence of HWI. The severity of the residual impairments
at the RIS is fixed to kr = 0.08 [41]. Fig. 7 indicates the
NMSE performance of the proposed EKF algorithm versus
the number of users under different levels of distortion noise
and various numbers of elements. We observe that when the
number of users becomes larger, the NMSE increases under
different values of S and different levels of HWI. This is
because the received pilot signal at the BS is impaired by
the increased phase drift and distortion noise at users when K
increases. The NMSE performance degrades when the severity
of distortion noise at the BS and each user grows. Different
from Fig. 5, a larger number of elements induces performance
degradation due to the increased phase error at RIS.

Fig. 8 shows the NMSE versus the number of BS antennas
M under different levels of distortion noise and phase drift.
When M increases, the performance degrades due to the
increased distortion noise at the BS. When the phase drift
is fixed to σ2

ε = σ2
ν = 2.47 × 10−5, the NMSE degrades

when the distortion noises at the BS and users, i.e., κBS and
κUE , increase from 0.052 to 0.092. Similar observations can be
found when σ2

ε = σ2
ν = 4.94× 10−5. Furthermore, the curves

with the same mark, i.e., with the same level of distortion
noise at the BS and users, achieve worse NMSE performance
when the phase drift becomes more severe.
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Fig. 8. NMSE of the proposed EKF algorithm versus number of antennas
when K = 2, p = 10 dB, S = 20 and with HWI.
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Fig. 9. NMSE of the proposed EKF algorithm versus number of elements
when K = 2, p = 10 dB, M = 8 and with HWI.

In Fig. 9, we show the NMSE versus the number of
elements under different levels of distortion noise and phase
drift. Different from the proposed KF algorithm in Fig. 5, the
NMSE of the proposed EKF algorithm increases with S as
HWI becomes more severe. The estimation accuracy is largely
impacted by the phase error at RIS. Similar to Fig. 8, the
NMSE performance further degrades when the phase drift and
distortion noise become more severe.

In Fig. 10, we compare the proposed EKF algorithm with
the scheme proposed in [24] in terms of transmit power. Both
algorithms can achieve a better NMSE performance when the
transmit power increases. Both algorithms reach error floors
around p = 10 dB due to the HWI-induced interference.
The NMSE performance degrades when the severity of the
distortion noise increases. The error floors go higher when in-
creasing the severity of the distortion noise. It is observed that
there is a large performance gap between the two algorithms.
The proposed algorithm achieves a much better performance
under different values of κBS and κUE . This is reasonable
because the “LMMSE, ON/OFF” scheme adopts the ON/OFF
scheme without fully utilizing the RIS aperture. The figures
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Fig. 10. NMSE versus transmit power of pilots when K = 2, M = 8,
S = 20 and with HWI.

above indicate that the RIS-assisted system has poor NMSE
performance under lower hardware quality.

VI. CONCLUSION

In this paper, we have investigated channel estimation in
an RIS-assisted multi-user network. Considering users are
mobile, we utilized KF to track the cascaded channel based
on time correlation. We derived the expressions of state and
measurement covariance matrices in the case of Rician fading
and pilot contamination. We adopted the DFT matrix as the
phase shift matrix for the sake of practicality and presented
NMSE analysis and some asymptotic results. We then ex-
tended the channel estimation problem to a more practical
scenario where three different kinds of hardware impairments
are considered. Due to the non-linearity of HWI, we proposed
to jointly estimate the cascaded channel and HWI by EKF.
Extensive numerical results demonstrated the superiority of the
proposed algorithms over benchmark schemes and provided
valuable insights into the effect of various HWI on estimation
accuracy. Without HWI, it can be observed that the NMSE
can be improved by increasing the transmit power of pilot
sequences and the number of elements. When the LoS of
RIS-BS and RIS-user links are strengthened, the estimation
accuracy can be enhanced. When the moving speed of users
increases, the ability to track the channel deteriorates. The
proposed EKF algorithm is able to track the cascaded channel
well even with severe HWI. When the number of users, RIS
elements, and BS antennas increase, the HWI at the transceiver
and RIS becomes more severe resulting in the degradation of
estimation accuracy.

APPENDIX A
PROOF OF LEMMA 1

Based on the definition of Qn, it can be calculated as Qn =
Cov(Un,Un) and Cov(·) takes the covariance. For simplicity,
we first calculate the covariance matrix for the kth user, i.e.,
Qn
k . Qn can be obtained by stacking the covariance matrices

of all the users. For the kth user, Qn
k can be calculated as

Qn
k = Cov(Un

k,U
n
k)



13

= E
{

diag (unk ) HT
1

[
diag (unk ) HT

1

]H}
− E

{
diag (unk ) HT

1

} [
E
{

diag (unk ) HT
1

}]H
, (47)

where E
{

diag (unk ) HT
1

}
=

(1− ak) κ
κ+1

√
βRu(k)

√
βBR diag(h̄2,k)(H̄1)T .

Define Xk , diag (unk ) HT
1 and Xcov

k , E
{
XkX

H
k

}
. The

element at the ith row and the jth column of the matrix Xcov
k

is given by

[Xcov
k ]i,j

=

{ ∑M
m=1 E{[Xk]i,m}E{[Xk]∗j,m}, i 6= j,∑M
m=1 (V{[Xk]i,m}+ E{[Xk]i,m}E∗{[Xk]i,m}) , i = j.

(48)

By expanding unk and H1 into unk = [unk,1,· · ·, unk,S ]T

and H1 = [H1,1,· · ·, H1,S ;· · ·;HM,1,· · ·, HM,S ], respectively,
we have [Xk]i,m = unk,iHm,i. Particularly, E{[Xk]i,m} and
V{[Xk]i,m} are given by

E{[Xk]i,m}
=E{unk,i}E{Hm,i}

= (1− ak)

√
κ

κ+ 1

√
βRu(k)[h̄2,k]i

√
κ

κ+ 1

√
βBR[H̄1]m,i,

(49)
V{[Xk]i,m}
=V{unk,i}V{Hm,i}+ V{unk,i}E2{Hm,i}+ V{Hm,i}E2{unk,i},

(50)

where V{unk,i} =
(
1− a2

k

)
1

κ+1βRu(k) and V{Hm,i} =
1

κ+1βBR. Therefore, the expression of Qn
k can be proved by

combining (47)-(50).

Rn can be calculated as Rn = Cov(Vn,Vn). Similarly,
we calculate the covariance matrix for the kth user as Rn

k =
Cov(Vn

k ,V
n
k). Apparently, Rn

k ∈ CJ×J is a diagonal matrix.
Considering the same structure of vnk,j ,∀j, we start with the
element at the jth row and the jth column of Rn

k as follows:

[Rn
k ]j,j = E

{(
vnk,j

)T [(
vnk,j

)T ]H}
− E

{(
vnk,j

)T}(
E
{(

vnk,j
)T})H

. (51)

The first term in (51) can be calculated as

E
{(

vnk,j
)T [(

vnk,j
)T ]H}

= E

 ∑
i∈Ck,j

(
φnj
)T

(Gn
i )
T

(Gn
i )
∗ (
φnj
)∗

+ E
{(

snk,j
)∗

(wn
1 )
T

(wn
1 )
∗ (

snk,j
)T
/p
}
, (52)

where E
{(

snk,j

)∗
(wn

1 )
T

(wn
1 )
∗
(
snk,j

)T
/p

}
= Mσ2/p

and E
{∑

i∈Ck,j

(
φnj
)T

(Gn
i )
T

(Gn
i )
∗ (
φnj
)∗}

=∑
i∈Ck,j

(
φnj
)T E

{
(Gn

i )
T

(Gn
i )
∗
}(
φnj
)∗

. The second

term in (51) can be calculated as

E
{(

vnk,j
)T}

= E

 ∑
i∈Ck,j

(
φnj
)T

(Gn
i )
T

+ E
{(

snk,j
)∗ (

wn
j

)T
/
√
p
}

=
∑
i∈Ck,j

(
φnj
)T
E
{

(Gn
i )
T
}

+
(
snk,j
)∗
E
{(

wn
j

)T}
/
√
p.

(53)

As wn has a zero mean, we only need to calculate
E
{

(Gn
i )
T
}

as follows:

E
{

(Gn
i )
T
}

= E
{

diag
(
hn2,i

)}
E
{

(H1)
T
}

=
κ

κ+ 1

√
βRu(i)

√
βBR diag(h̄2,i)(H̄1)T .

(54)

We define Gcov
i , E

{
(Gn

i )
T

(Gn
i )
∗
}

=

E
{

diag
(
hn2,i

)
HT

1

[
diag

(
hn2,i

)
HT

1

]H}
, and it can be

calculated following the similar way as the first term in (47).
Therefore, Rn

k is a diagonal matrix with its diagonal elements
being given by combining (51)-(54).
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