
Software

WSIC: a Python package and command-line interface for

fast whole slide image conversion

Johnathan Pocock 1,*, Shan E Ahmed Raza 1, Fayyaz Minhas 1, Nasir Rajpoot 1

1Department of Computer Science, University of Warwick, West Midlands CV4 7AL, United Kingdom

*Corresponding author. Department of Computer Science, University of Warwick, Gibbet Hill Road, West Midlands CV4 7AL, United Kingdom.
E-mail: j.c.pocock@warwick.ac.uk

Associate Editor: Alex Bateman

Abstract
Summary: Whole slide images (WSIs) are multi-gigapixel images of tissue sections, which are used in digital and computational pathology work-
flows. WSI datasets are commonly heterogeneous collections of proprietary or niche specialized formats which are challenging to handle. This
note describes an open-source Python application for efficiently converting between WSI formats, including common, open, and emerging
cloud-friendly formats. WSIC is a software tool that can quickly convert WSI files across various formats. It has a high performance and maintains
the resolution metadata of the original images. WSIC is ideal for pre-processing large-scale WSI datasets with different file types.

Availability and implementation: Source code is available on GitHub at https://github.com/John-P/wsic/ under a permissive licence. WSIC is
also available as a package on PyPI at https://pypi.org/project/WSIC/.

1 Introduction

With the advent of digital slide scanning, several different file
formats have been developed to store multi-gigapixel whole
slide images (WSIs) produced by digital slide scanners. These
file formats are often proprietary or require specialized tool-
ing to handle pixel data and metadata. For example, many
WSI formats are a non-standard variant of the Tag
Interchange File Format (TIFF). Tiling is an optional exten-
sion to the TIFF Revision 6.0 specification (Adobe Developers
Association et al. 1992) which many image processing tools
and libraries either do not support at all or only support with
the caveat of decoding all tiles into memory at once.
Converting heterogeneous files into a common format may
provide predictable performance characteristics, introduce
vendor neutrality, and eliminate the need to maintain code de-
pendent on multiple obscure software libraries. However,
converting large WSIs can be time-consuming and memory in-
tensive. This is particularly challenging for large WSIs which
may be too large to fit into memory. A WSI conversion tool
allows interoperability between different vendors’ solutions.

2 Features and implementation

We propose a Python application, ‘WSIC’ (Whole Slide Image
Conversion), for converting WSIs between various formats.
WSIC is designed to be an efficient and scalable tool suitable
for converting single files or large data repositories via a
command-line interface (CLI). It uses a variety of back-end li-
braries for reading and writing WSI formats including
OpenSlide, OpenJPEG (via glymur), pydicom, wsidicom, tif-
file, and zarr/NGFF v0.4 (Moore et al. 2021). The application

is designed to be scalable and has a memory efficient design
and is able to process WSIs in that are too large to fit in mem-
ory in a streaming pipeline, much like some other large image
processing tools such as libvips (Martinez and Cupitt 2007).

When converting, WSIC uses a multiple reader single writer
design pattern. This allows multiple sub-processes to read
regions from a source WSI in parallel, while the main process
writes decoded image data to the output WSI. This enables
the conversion process to scale well on machines with differ-
ent numbers of CPU cores or amounts of memory.

Additionally, WSIC allows for the region size to differ be-
tween the reading and writing processes while handling rear-
ranging the data layout and awaiting required data for
writing the next tile. This is useful when converting from for-
mats which are compute intensive to decode, such as JP2
(JPEG 2000). For many JP2 WSIs, it is more computationally
efficient to decode fewer large regions than many small
regions, thus allowing the read size to be larger than the write
size leading to more efficient conversion.

Lastly, when converting between certain formats, it is possible
to avoid re-encoding image data. For example, a DICOM WSI
may contain many JPEG-encoded tiles which can be directly
copied into a target TIFF layout. WSIC can perform this rapid
repackaging, referred to as the ‘transcode’ mode in the CLI.

3 Conversion benchmarking

To assess performance, we used WSIC 0.8.2 in addition to
other open and freely available CLI tools to convert a set of
WSIs between a variety of formats. The selected open and freely
available CLI tools were: bfconvert 6.12.0 and bioformats2raw

Received: 9 June 2023; Revised: 9 August 2023; Editorial Decision: 10 August 2023; Accepted: 8 September 2023
VC The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2023, 00, vbad122
https://doi.org/10.1093/bioadv/vbad122

Advance Access Publication Date: 9 September 2023

Application Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad122/7265421 by Sno-Isle Libraries user on 02 O
ctober 2023

https://orcid.org/0000-0002-2866-981X
https://orcid.org/0000-0002-1097-1738
https://orcid.org/0000-0001-9129-1189
https://orcid.org/0000-0002-4706-1308
https://github.com/John-P/wsic/
https://pypi.org/project/WSIC/


0.5.0 based on the Bio-Formats (Moore et al. 2015) library
(Java), tiff2jp2 0.1.0 from the glymur (Evans et al. 2023) pack-
age (Python and Cþþ), and vips 8.13.3 included with the
libvips-tools (Martinez and Cupitt 2007) package (C/Cþþ),
and Google’s wsi2dicm 1.0.3 (Cþþ) tool (Google Cloud
Platform 2007). Graphical user interface (GUI) tools, such as
OMERO NGFF-Converter, use the same backend libraries and
therefore were not included in the comparison.

Conversion was measured using a desktop computer with a
six-core 3.00 GHz Intel Core i5-8500 processor, 64 GB of
DDR4 memory, and a solid-state drive. Input formats were
JP2, SVS, TIFF, and DICOM. Output formats were JP2, SVS,
TIFF, DICOM, and NGFF. NGFF was used as output only
because it is a relatively new format where both the format
and tooling are still evolving.

A total of 206 unique conversions are performed using five
tools and five WSIS, utilizing four possible input and output
formats. To account for any potential interference from back-
ground system processes, each conversion is performed three
times, and the minimum time is recorded. The reported con-
version rate in megapixels per second is the average rate
across the five images used for each conversion. This method
ensures a fair comparison, as the input WSI size may vary.

Except for SVS, where a thumbnail must also be generated,
each conversion was performed using only the full high-quality
resolution image. This was to reduce confounding factors from
the generation of downsamples, where implementations may
have involved decisions that trade-off between quality and per-
formance. Furthermore, for most output formats, additional
resolutions may be efficiently appended after initial conversion
using a chosen downsampling method.

When comparing tools, parameters were normalized across
tools where possible. The number of worker sub-processes
was set to six (the number of CPU cores available) and the
output tile size was fixed at 512� 512 pixels.

Lastly, a small batch conversion of 20 TCGA SVS images
(22.8 GiB in total) across ten tissue types was performed using
GNU parallel (Tange 2021) and WSIC ‘transcode’ mode to
estimate the time required to batch convert the whole of
TCGA (11.8 TiB) using this method.

4 Results

Support for reading and writing varied between tools, with
WSIC supporting the writing of all formats tested including
generic tiled TIFF, SVS, JP2, DICOM (.dcm), and NGFF.
BioFormats CLIs, bfconvert and bioformats2raw, also sup-
ported writing all formats tested between them. However,
half of the cases when reading or writing a JP2 file with
bfconvert failed due to an out-of-memory error. The tiff2jp2
tool only supported conversion from TIFF to JP2, while vips
only supported writing to TIFF. Additionally, conversions
with tiff2jp2 exited with a non-zero exit code and missing tiles
were filled by black regions at the bottom and right edges.
WSIC preserved the resolution metadata in all tests where the
output supported standard resolution metadata, whereas
other tools frequently lost this metadata during conversion.

Conversion rates for WSIC and other tools are shown in
Fig. 1c. The fastest time for conversion was achieved by
WSIC in all conversions except for DCM to JP2, SVS to
DCM, and TIFF to DCM where bfconvert, wsi2dcm, and
wsi2dcm respectively were faster. However, it should be
noted that bfconvert failed to write larger JP2 files.

Furthermore, WSIC outperformed wsi2dcm in conversion
from SVS/TIFF to DCM when the ‘transcode’ mode is used.

Batch SVS transcode for the sample of 20 slides required
135 s in total. Extrapolating this to all diagnostic FFPE slides
in TCGA (10.8 TiB) would require 23 h, using the same single
desktop computer as in the conversion benchmark.

It’s important to note that the conversion time and resource
usage can vary depending on various factors such as the com-
pression codec, tile size, processor, number of threads, or sub-
processes used, available memory, disk speed, and image
characteristics.

For our test set of typical H&E WSIs and the hardware
setup described in the methods section, the following observa-
tions were made:

• The average conversion time per WSI with WSIC was 20
s, which is equivalent to a rate of 36 megapixels/s.

• The WSIC transcode mode, which enables rapid repackag-
ing without re-encoding, took an average of 1.4 s per WSI
or 445 megapixels/s.

• When using a large read size of 4096 � 4096 pixels, mem-
ory consumption for an SVS and JP2 file ranged between
2 GB and 18 GB, respectively.

• Using a smaller read size of 512 � 512 decreases memory
usage to between 665 MB and 15 GB at the cost of in-
creased conversion time.

• Decreasing the number of subprocesses can dramatically
decrease memory usage. Using only one worker for the
JP2 image decreases usage by 1/6 from 15 GB to just 2.5
GB at the cost of a �6 increase in conversion time.

This profiling was performed with the aforementioned
hardware configuration and are subject to change for differ-
ent hardware configurations.

5 Limitations and future work

It’s important to note that the benchmark data presented is
specifically for a set of typical WSI images and a specific hard-
ware setup. It’s possible that conversion times may differ on
other hardware, datasets, and conversion parameters. For ex-
ample, images that contain a lot of background may convert
more quickly if the codec chosen is sensitive to image entropy.
Additionally, there are many settings that can be adjusted to
strike a balance between conversion time and resource con-
sumption, such as the number of subprocesses or the size of
the region that each subprocess converts at a time.

While this data provides a valuable demonstration of
expected performance, it’s important to keep in mind that in-
dividual results may vary based on a variety of factors.

This initial version of WSIC targets bright-field WSI images
only. This was chosen to limit the initial scope of the project,
thereby preventing feature creep and allowing development to
focus on the dominant modality of visible light. Visible light
or bright-field microscopy such as for Haematoxylin and
Eosin and Immunohistochemical stained samples are rou-
tinely performed on patients and comprise a large volume of
clinical WSI images. Furthermore, standards such as DICOM
currently also currently only support visible light microscopy
for whole slide imaging and would not be able to be included
in this comparison for other modalities.

Future work may expand the range of image formats and
modalities supported, such as adding support for

2 Pocock et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad122/7265421 by Sno-Isle Libraries user on 02 O
ctober 2023



multichannel immunofluorescence imaging. WSIC is an open-
source project, and we welcome contributions and enhance-
ments from the community via the GitHub repository.

WSIC currently does not copy pyramid levels and their re-
spective data from the source image. This also helped to limit
the project scope for version 1.0 and avoid potential issues
with corrupted or low-quality reduced resolutions in the
source image. An output pyramid with the same pyramid
resolutions can be produced by specifying the same down-
sample factors as in the source image when converting.
Planned future work will allow for pyramid levels to be au-
tomatically detected and transferred over from the source
image. Future work may include an option to copy the pyra-
mid level pixel data instead of recreating them during
conversion.

6 Conclusion

WSIC shows competitive conversion speed between many
WSI formats and offers improved handling of large JP2
images in comparison to other tools, as well as preservation
of resolution metadata (microns-per-pixel). In our compre-
hensive conversion benchmarks, it performed fastest, or near
to the fastest performing tool, in every conversion. WSIC also
demonstrated suitable speed for the rapid conversion of large-
scale conversion of datasets. We expect the digital and com-
putational pathology community to take up this tool and con-
tribute to its further development and expand its use cases.

Acknowledgements

The authors thank the anonymous reviewers for their valu-
able suggestions.

Author contributions

Johnathan Pocock (Conceptualization [lead], Data curation
[lead], Methodology [lead], Software [lead], Visualization

[lead], Writing—original draft [lead], Writing—review &
editing [equal]), Shan Ahmed Raza (Project administration
[equal], Visualization [supporting], Writing—review & edit-
ing [equal]), Fayyaz Minhas (Project administration [equal],
Visualization [supporting], Writing—review & editing
[equal]) and Nasir Rajpoot (Project administration [equal],
Visualization [supporting], Writing—review & editing
[equal])

Conflict of interest

None declared.

Funding

This work was supported by funds from the University of
Warwick.

Data availability

The data underlying this application note will be shared on
reasonable request to the corresponding author.

References

Adobe Developers Association et al. TIFF Revision 6.0. 1992. http://
web.archive.org/web/20161015094213/http://partners.adobe.com/
public/developer/en/tiff/TIFF6.pdf (15 May 2023, date last
accessed).

Evans J. glymur: a Python interface for JPEG 2000. 2023. https://github.
com/quintusdias/glymur (15 May 2023, date last accessed).

Google Cloud Platform. WSI to DICOM Converter: Conversion Tool/
Library for Converting Whole Slide Images to DICOM. 2007.
https://github.com/GoogleCloudPlatform/wsi-to-dicom-converter
(15 May 2023, date last accessed).

Martinez K, Cupitt J. libvips: A Fast Image Processing Library With
Low Memory Needs. 2007. https://github.com/libvips/libvips (15
May 2023, date last accessed).

Figure 1. (a) Concept: WSIC can read and write many WSI formats with different codecs and tile sizes. It can convert to cloud-friendly NGFF or the clinical

use DICOM format. (b) Feature comparison table. (c) Bar plot: conversion rate shown in megapixels per second for several open-source tools. The highest

bar (fastest conversion) for each ‘From! To’ format pair is highlighted with a hashed bar.

WSIC 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad122/7265421 by Sno-Isle Libraries user on 02 O
ctober 2023

http://web.archive.org/web/20161015094213/http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
http://web.archive.org/web/20161015094213/http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
http://web.archive.org/web/20161015094213/http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
https://github.com/quintusdias/glymur
https://github.com/quintusdias/glymur
https://github.com/GoogleCloudPlatform/wsi-to-dicom-converter
https://github.com/libvips/libvips


Moore J, Melissa L, Colin B et al. OMERO and Bio-Formats 5: flexible
access to large bioimaging datasets at scale. In: Ourselin S, Styner
MA (eds), Medical Imaging 2015: Image Processing, Vol. 9413,
SPIE. Orlando, Florida, USA: Renaissance Orlando at Sea World,
2015, 37–42.

Moore J, Allan C, Besson S et al. OME-NGFF: a next-generation file for-
mat for expanding bioimaging data-access strategies. Nat Methods
2021;18:1496–8.

Tange O. GNU Parallel 20210822 (‘kabul’). 2021. https://doi.org/10.
5281/zenodo.5233953.

4 Pocock et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad122/7265421 by Sno-Isle Libraries user on 02 O
ctober 2023

https://doi.org/10.5281/zenodo.5233953
https://doi.org/10.5281/zenodo.5233953

	Active Content List
	3 Conversion benchmarking
	5 Limitations and future work
	Acknowledgements
	Data availability
	References


