
warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/179678

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/179678
mailto:wrap@warwick.ac.uk

Dynamic (1 + ϵ)-Approximate Matching Size
in Truly Sublinear Update Time

Sayan Bhattacharya1

University of Warwick
Coventry, United Kingdom

S.Bhattacharya@warwick.ac.uk

Peter Kiss
University of Warwick

Coventry, United Kingdom
peter.kiss@warwick.ac.uk

Thatchaphol Saranurak2

University of Michighan
Michigan, USA
thsa@umich.edu

Abstract—We show a fully dynamic algorithm for main-
taining (1 + ϵ)-approximate size of maximum matching of
the graph with n vertices and m edges using m0.5−Ωϵ(1)

update time. This is the first polynomial improvement over
the long-standing O(n) update time, which can be trivially
obtained by periodic recomputation. Thus, we resolve the
value version of a major open question of the dynamic
graph algorithms literature (see, e.g., [Gupta and Peng
FOCS’13], [Bernstein and Stein SODA’16], [Behnezhad and
Khanna SODA’22]).

Our key technical component is the first sublinear
algorithm for (1, ϵn)-approximate maximum matching with
sublinear running time on dense graphs. All previous
algorithms suffered a multiplicative approximation factor
of at least 1.499 or assumed that the graph has a very
small maximum degree.

I. INTRODUCTION

We study the dynamic version of the maximum match-
ing problem, a cornerstone of combinatorial optimization
[Kuh55], [Edm65b], [Edm65a]. In the dynamic matching
problem, the task is to build a data structure that, given
a graph G with n vertices and m edges undergoing
both edge insertions and deletions, maintains an (approx-
imate) maximum matching of G or, in the value version,
just the size of the maximum matching, denoted by
µ(G). The goal is to minimize the update time required
to update the solution after each edge change.

The first non-trivial algorithm for this problem was
by Sankowski [San07] 15 years ago, which exactly
maintains the maximum matching size using O(n1.495)
update time, which is recently improved to O(n1.407)
[BNS19]. Unfortunately, this latter bound is tight under
the hinted OMv conjecture [BNS19]. Furthermore, in
sparse graphs, even m1−o(1) update time is required
assuming the k-cycle conjecture [PGVWW20]. These
strong conditional lower bounds have shifted the at-
tention of researchers to approximate matching. An α-
approximate matching is a matching of size at least

1Supported by Engineering and Physical Sciences Research
Council, UK (EPSRC) Grant EP/S03353X/1

2Supported by NSF CAREER grant 2238138.

µ(G)/α. The following has become one of the holy-
grail questions in the dynamic graph algorithms and fine-
grained complexity communities [ARW17]:

Question I.1. Is there a dynamic (1 + ϵ)-approximate
matching algorithm with polylogarithmic update time for
an arbitrarily small constant ϵ?

The current state of the art is, however, still very
far from this goal. A straightforward algorithm with
O(n) amortized update time is to simply recompute a
(1+ϵ)-approximate matching from scratch in O(m) time
[DP14] every after 2ϵm/n edge updates.1 Surprisingly,
this easy O(n) bound already captures the limitation
of all known techniques! An improved algorithm with
O(
√
m) update time was given ten years ago by Gupta

and Peng [GP13], but it still takes O(n) time in dense
graphs. Very recently, Assadi et al. [ABKL23] showed
how to obtain O(n/(log∗ n)Ω(1)) update time, but their
regularity-lemma-based approach inherently cannot give
an improvement larger than a 2Θ(

√
logn) = no(1) factor.

Until now, no dynamic (1 + ϵ)-approximate algorithms
can break through the naive O(n) barrier by a polyno-
mial factor.2

Intensive research during the last decade instead
showed how to speed up update time by relaxing the
approximation factor. The influential work by Onak
and Rubinfeld [OR10] gave the first dynamic matching
algorithm with polylogarithmic update time that main-
tains a large constant approximate maximum match-
ing. Then, Baswana, Gupta and Sen [BGS11] showed
a dynamic maximal matching with logarithmic update
time, which gives 2-approximation. A large body of
work then refined this result in various directions,
including constant update time [Sol16], deamortiza-
tion [CS18], [BFH19], [Kis22], and derandomization
[BHN16], [ACC+18], [BK19], [Waj20], [BK21]. In

1See Appendix A for the proof of this simple algorithm.
2In contrast, in the partially dynamic setting where graphs undergo

edge insertions only or edge deletions only, there are many algorithms
with polylogarithmic amortized update time [GRS14], [GLS+19],
[BGS20], [JJST22], [BKSW23].

2015, Bernstein and Stein [BS15], [BS16] showed a
novel approach for maintaining a (3/2+ ϵ)-approximate
matching using Õ(m1/4) = Õ(

√
n) update time.3 Re-

finement of this approach and new trade-off results with
approximation in the range (3/2, 2) were also inten-
sively studied [BLM20], [GSSU22], [Kis22], [BK22],
[RSW22]. All these techniques, however, seem to get
stuck at (3/2)-approximation.

Very recently, the above long-standing trade-off was
improved by Behnezhad [Beh23] and, independently,
by Bhattacharya et al. [BKSW23] via a new connec-
tion to sublinear and streaming algorithms. To maintain
maximum matching size, they gave 1.973-approximation
algorithms with polylogarithmic update time, and, on
bipartite graphs, Behnezhad [Beh23] pushed it further
to (3/2 − Ω(1))-approximation in Õ(

√
n) update time.

While this new connection is very inspiring, it has
been a key open problem [BRRS23] whether non-trivial
(1+ϵ)-approximate matching algorithms in dense graphs
exist in the sublinear model. Hence, it remains unclear
whether an improved dynamic (1 + ϵ)-approximation
algorithm is possible via this new connection or even
possible at all.

Indeed, in this paper, we give the first dynamic (1+ϵ)-
approximate matching size algorithm that finally im-
proves the O(n) bound by a polynomial factor, formally
stated below.

Theorem I.2. There is a dynamic (1 + ϵ)-approximate
matching size algorithm with m0.5−Ωϵ(1) worst-case
update time.

The algorithm is randomized and works against an
adaptive adversary with high probability. Moreover, the
algorithm maintains (1 + ϵ)-approximate matching M
of G in the sense that, given a vertex v, it can return
a matched edge (v, v′) ∈ M or ⊥ if v /∈ V (M) in
m0.5+f(ϵ) time, where f is an increasing function such
that f(ϵ)→ 0 when ϵ→ 0.

It has been asked repeatedly [GP13], [BS15], [BS16]
whether there exists a dynamic (1 + ϵ)-approximate
matching algorithm with m0.5−Ωϵ(1) update time. The-
orem I.2 thus gives an affirmative answer to the value
version of this open question. Although the matching is
not explicitly maintained in Theorem I.2, it still supports
queries whether a vertex is matched or not. The recent
algorithms that only maintain the estimate of µ(G)
by [Beh23], [BKSW23] inherently cannot support this
query.

We obtain Theorem I.2 by making progress in sub-
linear algorithms: we show the first sublinear (1, ϵn)-
approximate matching algorithm with truly sublinear
time even in dense graphs. Here, an (α, β)-approximate

3We use Õ(·) to hide polylog(n) factor throughout the paper.

matching means a matching of size at least µ(G)/α−β.
Given our new sublinear matching algorithm summa-
rized below, Theorem I.2 follows using known tech-
niques.

Theorem I.3. There is a randomized algorithm that,
given the adjacency matrix of a graph G, in time
n2−Ωϵ(1) computes with high probability a (1, ϵn)-
approximation µ̃ of µ(G).

After that, given a vertex v, the algorithm returns in
n1+f(ϵ) time an edge (v, v′) ∈ M or ⊥ if v /∈ V (M)
where M is a fixed (1, ϵn)-approximate matching, where
f is an increasing function such that f(ϵ) → 0 when
ϵ→ 0.

We note that the additive approximation factor in
Theorem I.3 is unavoidable for sublinear algorithms with
access to only the adjacency matrix: checking whether
there is zero or one edge requires Ω(n2) adjacency
matrix queries.

Behnezhad et al. [BRRS23] posted an open question
about sublinear matching algorithms as follows “ruling
out say a 1.01-approximation in n2−Ω(1) time would also
be extremely interesting.”4. Since the additive approxi-
mation factor is unavoidable for algorithms using the
adjacency matrix only, the analogous question becomes
whether one can rule out a (1, n/100)-approximation
in n2−Ω(1) time. Theorem I.3 answers this question
negatively since we can get arbitrarily good additive
approximation in n2−Ω(1) time.

To put Theorem I.3 into the larger context of sublinear
matching literature, let us discuss its history below. We
use ∆ and d to denote the maximum and average degree
of the graph respectively.

Approximating µ(G). One of the main goals in this
area, initiated by Parnas and Ron [PR07], is to approx-
imate the size of maximum matching µ(G) in sublinear
time when given access to the adjacency list and matrix
of an input graph. Early research on this topic focused on
obtaining O(1) time algorithms when ∆ = O(1). How-
ever, these early work [PR07], [NO08], [YYI12] may
require Ω(n2) time on general graphs. This drawback
was first addressed in [KMNFT20] and [CKK20] (based
on [ORRR12]), both of which were then subsumed by
the algorithms of Behnezhad [Beh22] that compute a
(2, o(n))-approximation in Õ(d+1) time. His algorithms
are near-optimal and settle the problem in the regime of
approximation ratio at least 2.

Subsequent work focuses on optimizing the approx-
imation ratio within n2−Ω(1) time. To compare with
Theorem I.3, let us discuss only algorithms that use
the adjacency matrix. Behnezhad et al. [BRRS23] first

4In [RSW22], they use different notation and write 0.99-
approximation instead of 1.01.

broke the 2-approximation barrier by computing a (2−
Ωγ(1), o(n))-approximate matching in Õ(n1+γ) time.
Then (3/2, ϵn)-approximation algorithms with n2−Θ(ϵ2)

time were shown independently in [BKS23], [BRR23].
Behnezhad et al. [BRR23] improved this further to
(3/2 − Ω(1), o(n))-approximation in n2−Ω(1) time on
bipartite graphs.5 We summarize the previous work in
Appendix A.

By the first part of Theorem I.3, we show that even
(1, ϵn)-approximation is possible in n2−Ωϵ(1) time. As
we mentioned, this result addresses the open question of
[RSW22]. It remains very interesting to see an optimal
approximation-time trade-off for this problem.

Matching Oracles. In the area of local computation al-
gorithms (LCA), initiated by Robinfeld et al. [RTVX11],
[ARVX12], we want a matching oracle for some fixed
approximate matching M such that, given any vertex v,
return (v, v′) ∈ M or ⊥ if v /∈ V (M). The goal is to
optimize the approximation ratio of M and minimize the
worst-case query time over all vertices. Note that, given
a matching oracle for an α-approximate matching, we
can compute (α, ϵn)-approximation of µ(G) by simply
querying the oracle at O(1/ϵ2) random vertices. So this
is stronger than the previous goal.

The worst-case guarantee over all vertices is stronger
than the expected query time for each vertex [NO08] or
for just a random vertex [YYI12], [Beh22], which is even
weaker. This strong guarantee is useful for bounding
the query time of adaptive queries, which depend on
answers of the previous queries, and is crucial in some
applications [LRV22]. Our approach for “boosting” the
approximation ratio also requires adaptive queries and
hence needs worst-case guarantees.

A long line of work [RTVX11], [ARVX12], [RV16],
[LRY15], [Gha16], [GU19], [Gha22] focused on build-
ing an oracle for maximal independent sets (which im-
plies a 2-approximate matching oracle) and culminated
in an oracle by Ghaffari [Gha22] that uses poly(∆ log n)
query time with high probability. Levi et al. [LRY15]
also a showed (1 + ϵ)-approximate matching oracle
with ∆O(1/ϵ2)polylog(n) query complexity. However,
all these algorithms are not sublinear in dense graphs. In
this regime, the only non-trivial matching oracle was by
Kapralov et al. [KMNFT20] and has Õ(∆) query time,
but the approximation ratio is only a large constant and
is in expectation. We summarize the previous work in
Appendix A.

The second part of Theorem I.3 gives the first non-
trivial matching oracle on dense graphs whose multi-
plicative approximation ratio is a small constant, which is

5 [BRR23] also announced a Ω(n1.2)-time lower bound for
(3/2− Ω(1), o(n))-approximation.

1 in our case, but we need to pay additive approximation
factor.

Summary. Our main result, Theorem I.2, is the first
dynamic (1 + ϵ)-approximate matching size algorithm
with m0.5−Ωϵ(1) update time, breaking through the naive
yet long-standing O(n) barrier by a polynomial fac-
tor. Our key technical component, Theorem I.3, makes
progress in the area of sublinear-time matching algo-
rithms on dense graphs. Among algorithms for approx-
imating µ(G) only, we improve the best approximation
ratio from (3/2 − Ω(1), o(n)) by [BRR23] to (1, ϵn).
Among LCAs, it is the first one on dense graphs whose
multiplicative approximation is a small constant.

Organization. First, we give an overview of our algo-
rithms in Section II. Then, we set up notations and give
preliminaries in Section III. In Section IV, we present
a key building block which is a matching oracle for an
induced graph G[A] where A is unknown to us. Using
this, we show in Section V how to boost the approxima-
tion ratio of any matching oracle. By repeatedly boosting
the approximation ratio, we give a (1, ϵn)-approximate
matching oracle (Theorem I.3) in Section VI. Finally, we
combine this oracle with known techniques in dynamic
algorithms to Theorem I.2 in Section VII.

II. TECHNICAL OVERVIEW

Our high-level approach is based on the intercon-
nection between dynamic, sublinear, and streaming al-
gorithms. This connection differs from the ones used
in the recent results of [BKSW23], [Beh23]. For ex-
ample, the dynamic (2− Ω(1))-approximate algorithms
in [BKSW23], [Beh23] are inspired by the two-pass
streaming algorithms (e.g. [KMM12]). Then, they use
sublinear algorithms [Beh22] to implement this stream-
ing algorithm in the dynamic setting efficiently.6 In
contrast, it is our sublinear algorithm, not dynamic
algorithm, that is inspired by the O(1)-pass streaming
algorithm [McG05]. Below, we explain the overview
of our sublinear algorithm, which consists of two key
ingredients, and then explain how our dynamic algorithm
easily follows.

Ingredient I: Reduction from (1, γn)-Approximation to
Arbitrarily Bad Approximation.: An initial observation is
that the streaming algorithm by McGregor [McG05] can
be viewed as the following reduction: one can compute
a (1 + γ)-approximate matching by making Oγ(1) calls
to a subroutine that, given S ⊆ V , returns a O(1)-
approximate matching of the induced subgraph G[S].

We observe that a much weaker subroutine suf-
fices when additive approximation is allowed. Let

6The dynamic (3/2 − Ω(1))-approximate algorithm in [Beh23]
does not have explicit relationship to streaming algorithms. It is ob-
tained using sublinear algorithms to improve the (3/2)-approximation
guarantee of the tight instances of EDCS.

LargeMatching(S, δ) be a subroutine that, given
S ⊆ V and δ, returns a matching M in G[S] such that if
µ(G[S]) ≥ δn, then |M | ≥ Ω(poly(δ)n). Note that the
approximation of M can be arbitrarily bad depending
of δ. By adapting McGregor’s algorithm, we show how
to compute a (1, γn)-approximate matching using only
t = Oγ(1) calls to

LargeMatching(S1, δ1), . . . ,LargeMatching(St, δt)

where each δi is a small constant depending on γ.
This algorithm, denoted by Alg(γ), is our template
algorithm (detailed in Section V-A), which we will try
to implement in the sublinear setting.

Additionally, we observe that each vertex set Si can
be determined in a very local manner. More precisely,
a membership-query of the form “is a vertex v ∈ Si?”
can be answered by making only q = Oγ(1) matching-
queries of the form “is a vertex u ∈ V (Mj)? if so,
return (u, u′) ∈ M” where j < i and Mj is the output
of LargeMatching(Sj , δj) previously computed.

However, the big challenge in the sublinear model,
unlike the streaming model, is that even the weak sub-
routine like LargeMatching(·) is impossible.7 Even
worse, if we could not compute each matching Mj

explicitly for j < i, then how can we answer a
membership-query whether v ∈ Si? Note that known
sublinear algorithms for estimating the matching size of
G[S] are not useful here.

The above obstacle leads us to our second ingre-
dient. We show that at least the oracle version of
LargeMatching(·) can be implemented in the sublin-
ear model. Later, we will explain why it is strong enough
for implementing the template algorithm Alg(γ) in the
sublinear model.

Ingredient II: Large Matching Oracles on Induced
Subgraphs.: Suppose that a vertex set A ⊆ V is un-
known to us but a membership-query of A, i.e., checking
if v ∈ A, can be done in n1+ϵ time. Given access to
the adjacency matrix of G, we show how to construct
an oracle LargeMatchingOracle(A, δ, ϵ) with the
following guarantee:

Using Õδ

(
n2−ϵ

)
preprocessing time, we obtain

an oracle that supports matching-queries for a
matching M in G[A] with Õδ

(
n1+g(ϵ)

)
query time

where ϵ ≤ g(ϵ) = O(ϵ). If µ(G[A]) ≥ δn, then
|M | = Ω(poly(δ)n) whp.

7Think of a n×n bipartite graph which consists only of a perfect
matching. Using o(n2) adjacency-matrix queries, it is not possible
to out Ω(n) matching edges in this input instance. The lower bound
can be extended even if we allow adjacency-list queries by adding ϵn
dummy vertices, each of which connects to every other vertex.

The main challenge of implementing
LargeMatchingOracle(A, δ, ϵ) in the sublinear
model is that we want to find a large matching on the
induced subgraph G[A]. The challenge comes from
possible Ω(n2) edges between A and V \ A, and we
must avoid reading these edges to get sublinear time.
It turns out that this challenge can be overcome. We
use the idea that appeared before in the algorithm
of [BRR23] in a different context of estimating
(3/2 − Ω(1))-approximation µ(G) on bipartite graphs.
See the details in Section IV.

Given the above two ingredients, we can combine
them to get our main results in the sublinear and dynamic
settings, as follows.

Result I: (1, γn)-Approximate Matching Oracles in
n2−Ωγ(1) Time.: Now, we show how to implement
the template algorithm Alg(γ) in n2−Ωγ(1) time. Let
ϵ ∈ (0, 1) be a small constant where limγ→0 ϵ = 0.
Let ϵ0 = ϵ and ϵi = g(ϵi−1) for all i ∈ [1, t] where
g is the function in the guarantee of Ingredient II. So
ϵ = ϵ0 ≤ ϵ1 ≤ · · · ≤ ϵt and limγ→0 ϵt = 0.

We simply replace each call
to LargeMatching(Si, δi) with
LargeMatchingOracle(Si, δi, ϵi−1). Now, by
induction on i ∈ [1, t], we will show that we can
support membership-queries for Si in Õγ

(
n1+ϵi−1

)
time and matching-queries for Mi in Õγ

(
n1+ϵi

)
time.

Let us ignore the base case as it is trivial. For the
induction step, we have the following:

1) To answer a membership-query for Si, the template
algorithm only needs to make q = Oγ(1) matching-
queries to Mj where j < i. So the total query time
is q · Õγ(n

1+ϵi−1) = Õγ(n
1+ϵi−1).

2) To answer a matching-query for Mi, the ora-
cle LargeMatchingOracle(Si, δi, ϵi−1) for the
matching Mi has query time Õγ

(
n1+g(ϵi−1)

)
=

Õγ

(
n1+ϵi

)
.

The total preprocessing time we need for
LargeMatchingOracle(·) to implement all the t
rounds is

∑t
i=1 Õγ

(
n2−ϵi

)
= Õγ

(
n2−ϵ

)
= n2−Ωγ(1).

At the end of the last round, we can support matching-
queries for the (1, γn)-approximate matching M
returned by Alg(γ) in Õγ(n

1+ϵt) time, where
limγ→0 ϵt = 0.

To get a (1, γn)-approximate estimate µ̂ of µ(g), we
sample Õ(1/γ2) vertices and check if they are matched
under M . Whp, this is a (1,Θ(γ)n)-approximation of
µ(G) because M is (1, γn)-approximate.

Result II: Dynamic (1 + γ)-Approximate Matching
Size.: Our dynamic matching size algorithm now follows
from standard techniques. Using the well-known vertex
reduction technique (see, for example, Corollary 4.9
of [Kis22]), we can assume that µ(G) ≥ γn at all
times. We work in phases, where each phase lasts for

γ2n updates. At the start of each phase, we invoke the
sublinear algorithm from Result I above, to obtain a
(1, γ2n)-approximate estimate µ̂ of µ(G), in n2−Ωγ(1)

time. Since µ(G) ≥ γn and since the phase lasts for
only γ2n updates, this µ̂ continues to remain a purely
multiplicative (1+Θ(γ))-approximate estimate of µ(G)
throughout the duration of the phase. This leads to an
amortized update time of n2−Ωγ(1)/(γ2n) = n1−Ωγ(1).
In Section VII, we show how to extend this approach to
prove Theorem I.2.

III. NOTATIONS AND PRELIMINARIES

Unless speficied otherwise, the input graph G =
(V,E) will have n nodes and m edges. A matching
M ⊆ E is a subset of edges that do not share any
common endpoint. We use the symbol µ(G) to denote
the size of a maximum matching in G. We say that a pah
p = (v0, v1, . . . , vi) is an alternating path in G w.r.t. a
matching M ⊆ E iff (vj , vj+1) ∈ E for all j ∈ [0, i−1]
and the edges in the path p alternate between being in
M and in E\M . We say that p is an augmenting path in
G w.r.t. M iff p is an alternating path whose first and the
last edges are both unmatched in M . The length of a path
is the number of edges in it. We let V (M) denote the
set of matched nodes in a matching M ⊆ E. Consider
any node v ∈ V (M) and suppose that (u, v) ∈M . Then
we say that u is the mate of v in M . Given a subset of
nodes S ⊆ V , G[S] denotes the subgraph of G induced
by S. Given any graph G′, the symbol E(G′) denotes
the set of edges in G′.

Throughout the paper, the symbol Θk,γ(1) will denote
any positive constant that depends only on k and γ
(where k and γ are constant parameters whose values
will be chosen later on). We analogously use the notation
Θk(1) to denote a constant that depends only on k.
Finally, the symbol Õ(.) will be used to hide any
polylog(n) factors.

Oracles. We have the adjacency matrix access to the
input graph G. Each query takes O(1) time. We do not
have the adjacency list access to the input graph.

For any vertex set A ⊂ V , an A-membership oracle
memA : V → {0, 1} indicates whether v ∈ A for any
v ∈ V . That is, we have

memA(v) = 1{v ∈ A}.

A matching oracle matchM : V →
(
V
2

)
∪ {⊥} for a

matching M is an oracle that, given a vertex v ∈ V ,
returns

matchM (v) =

{
(v, v′) (v, v′) ∈M
⊥ v /∈ V (M).

Similarly, a mate oracle mateM : V → V ∪ {⊥} for
a matching M is an oracle that, given a vertex v ∈ V ,
returns

mateM (v) =

{
v′ v ∈ V (M) and (v, v′) ∈M
⊥ v /∈ V (M).

Concentration Bounds. We need standard concentration
bounds as follows.

Proposition III.1 (Hoeffding bound). Let X1, . . . , Xn

be independent random variables such that a ≤ Xi ≤ b.
Let X =

∑n
i=1Xi. For any t > 0,

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2

n(b− a)2
).

Proposition III.2 (Chernoff bound). Let X1, . . . , Xn

be independent {0, 1}-random variables. Let X =∑n
i=1Xi where E[X] ≤ µ For any t > 0 where t ≤ µ,

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− t
2

3µ
).

Chernoff bound can be much stronger than Hoeffding
bound when E[X] has small upper bound. For exam-
ple, if we applied Proposition III.1 to the setting for
Proposition III.2, we would only get that the bound of
2 exp(− 2t2

3n) which is much weaker than 2 exp(− t2

3µ)
when µ≪ n.

IV. MATCHING ORACLES OF INDUCED SUBGRAPHS

In this section, we present the key subroutine of this
paper. The goal is to construct a matching oracle for an
induced subgraph G[A] but A is unknown to us; we only
have access to an A-membership oracle memA.

Theorem IV.1. Let G = (V,E) be a graph, A ⊆ V be
a vertex set. Suppose that we have access to adjacency
matrix of G and an A-membership oracle memA with tA
query time. We are given as input ϵ > 0 and δin > 0.

We can preprocess G in Õ((tA + n)(n1−ϵ +
n4ϵ)/poly(δin)) time and either return ⊥ or construct a
matching oracle matchM (·) for a matching M ⊂ G[A]
of size at least δoutn where δout = δ5in/10

8 that has
Õ((tA + n)n4ϵ/poly(δin)) worst-case query time. If
µ(G[A]) ≥ δinn, then ⊥ is not returned. The guarantee
holds with high probability.

The very important property of Theorem IV.1 is that
it makes n1−ϵ oracle calls to memA during preprocessing
and only nO(ϵ) calls to memA on each query. The rest of
this section is devoted for proving Theorem IV.1.

To prove Theorem IV.1, we adapt the technique used
inside the algorithm by Behnazhad et al. [BRR23] for
(3/2 − Ω(1))-approximating µ(G) on bipartite graphs.
We observe that the idea there has reach beyond (3/2−
Ω(1))-approximation algorithms. The abstraction of that

idea leads us to Theorem IV.1, the crucial subroutine for
later parts of our paper.

This section is organized as follows. In Section IV-A,
we show a weaker version of Theorem IV.1 that works
well on low degree graphs. We will use this weaker ver-
sion in the preprocessing step, described in Section IV-B.
Then, we complete the query algorithm in Section IV-C.

A. Oracles on Low Degree Graphs

Here, we show a similar result as Theorem IV.1, but it
is efficient only when the maximum degree ∆ is small.
In particular, the query algorithm makes nO(ϵ) calls to
memA only when ∆ = nO(ϵ).

Lemma IV.2. Let G = (V,E) be a graph with maximum
degree ∆ where ∆ is known and A ⊆ V be a vertex set.
Suppose that we have access to adjacency matrix of G
and an A-membership oracle memA with tA query time.
We can construct in Õ((tA∆+ n+ tA/ϵ)∆/ϵ

2) time a
matching oracle matchlowM (·) for a (2, ϵn)-approximate
matching M in G[A] that has Õ(tA∆+n+ tA/ϵ)∆/ϵ)
worst-case query time with high probability.

The proof of Lemma IV.2 is based on the the following
(2, ϵn)-approximate matching oracle given access to
adjacency list.

Lemma IV.3. Given the adjacency lists of a graph G =
(V,E) with average degree d and a parameter d ≥ d,
we can in Õ(d/ϵ2) time construct a matching oracle
matchM (·) for a (2, ϵn)-approximate matching M in G
with Õ(d/ϵ) worst-case query time with high probability.

Lemma IV.3 is proved by combining an improved
analysis of randomized greedy maximal matching of
Behnezhad [Beh22] into a framework for constructing
an LCA by [LRY15]. We do not claim any novel
contribution here and defer the proof to Appendix A.

Now, to prove Lemma IV.2, we need to strengthen
Lemma IV.3 in two ways. First, it must work with the
adjacency matrix, not the adjacency lists. Second, it must
return a large matching of an induced subgraph G[A],
not that of G. However, this can be done using a simple
simulation.

Proof of Lemma IV.2. Let A denote the algorithm of
Lemma IV.3. We simulate A on G[A] with parameter
d← ∆ as follows.

Whenever A needs to sample a vertex, we sample
O(log(n)/ϵ) vertices in G and call memA on each of
them. If one of them is in A, then we get a random
vertex in G[A]. If none of them is in A, then w.h.p. |A| ≤
ϵn. If this ever happens, even an empty matching is a
(2, ϵn)-approximate matching in G[A], and the problem
becomes trivial.

Whenever A needs to make queries to the adjacency
list of any vertex v, we can construct the whole adja-
cency list of v in G[A] by first making n adjacency
matrix queries to learn all neighbors of v in G and then
makes deg(v) ≤ ∆ oracles calls to memA to know which
neighbors are in G[A]. This takes O(tA∆ + n) time.
Every other computation can be simulated without the
overhead.

Therefore, each step of A can be simulated with an
extra (tA ·O(log(n)/ϵ) + tA∆+ n) factor.

B. Preprocessing

We describe the preprocessing algorithm in Algo-
rithm 1 with the guarantees summarized in the lemma
below.

Lemma IV.4. In Õ((tA + n)(n1−ϵ + n4ϵ)/poly(δin))
time, Algorithm 1 outputs either ⊥ (indicating an error)
or the remaining set V ′ ⊆ V of vertices together with
an explicit matching M ′ ⊆ G[V ′] that satisfies one of
the following:

1) |M ′[A]| ≥ 2δoutn, or
2) µ(G[A∩V ′\V (M ′)]) ≥ 4δoutn and G[V ′\V (M ′)]

has maximum degree at most n2ϵ.
The algorithm also reports which properties above M ′

satisfies. If µ(G[A]) ≥ δinn, then ⊥ is not returned with
high probability.

In Algorithm 1, the remaining set V ′ is initialized as V
and only shrinks. For convenience, we let A′ := A∩ V ′

and D′ := D ∩ V ′ denote the remaining alive and dead
vertices.

1) Correctness : In this part, we prove the correctness
of Algorithm 1 assuming that it does not return ⊥.
We first show that µ̃1 and µ̃2 are good approximation
of M i[A] and M̂ i base on basic there definition and
Hoeffding’s bound.

Lemma IV.5. For every i, we have |M i[A]| − δoutn ≤
µ̃1 ≤ |M i[A]| w.h.p.

Proof. The probability that a random edge from M i is
in G[A] is |Mi[A]|

|Mi| . So E[X] = r1
|Mi[A]|
|Mi| and |M i[A]| =

|Mi|E[X]
r1

. By definition of µ̃1 = |Mi|X
r1
− δoutn

2 and by
Hoeffding bound Proposition III.1, we have

Pr[µ̃1 < |M i[A]| − δoutn or µ̃1 > |M i[A]|]

= Pr[
|M i| · (X − E[X])

r1
>
δoutn

2
]

≤ 2 exp(−
2(δoutn2)2

r1(
n
r1
)2

) = 2 exp(−δ2outr1/2)

≤ 1/n10.

Algorithm 1 Preprocess G.
p = 100n2−2ϵ log n, k = nϵ, η = δ2in log(n)/10, T =
100/δ2in, δout = δ3in/10

6T = δ5in/10
8.

r1 = r2 = 1000
δ2out

log n = Θ(logn
δ10in

), r3 = 1000δin
n
k log n.

V ′ ← V .
Repeat the following for T times:

1) Sample kp distinct pairs of vertices from V ′. Par-
tition the sampled pairs into (P 1, . . . , P k) where
each P i is an ordered list containing p pairs of
vertices.

2) For i ∈ [k]

a) Let Ei = {(u, v) ∈ P i | (u, v) ∈ G[V ′]} be an
ordered sublist of P i containing only pairs which
are edges of G[V ′].

b) Let M i be the greedy maximal matching when
scanning Ei in order.
\\Case 1:

c) Sample r1 edges from M i.
d) Let X count the sampled edges that are in G[A]

(using the oracle memA)
e) Set µ̃1 = |Mi|X

r1
− δoutn

2 .
f) If µ̃1 ≥ 2δoutn, then set M ′ ← M i and report

that M ′ satisfies Case 1.
\\Case 2:

g) Let M̂ i be a (2, δoutn)-approximate matching
in G[A′ \ V (M i)] that the matching oracle
matchlow

M̂i
(·) from Lemma IV.2 respects, given

graph G[V ′\V (M i)] with vertex set A′\V (M i)
as input.

h) Sample r2 vertices from V ′ \ V (M i).
i) Let Y count the sampled vertices that are

matched in M̂ i (using the oracle matchlow
M̂i

(·)).
j) Set µ̃2 = |V ′\V (Mi)|Y

2r2
− δoutn

2 .
k) If µ̃2 ≥ 4δoutn, then set M ′ ← M i and report

that M ′ satisfies Case 2.
3) Let A′

sp ⊆ A′ be obtained by sampling r3 vertices
from A′.

4) Let G = (V ′,∪ki=1M
i).

5) Let C = {v ∈ V ′ | NG(v,A
′
sp) ≥ η}, i.e., C

contains remaining vertices that have at least η
neighbors from A′

sp in G.
6) Set V ′ ← V ′ \ C.

Return ⊥ (Error).

Lemma IV.6. For every i, we have |M̂ i|−δoutn ≤ µ̃2 ≤
|M̂ i| w.h.p.

Proof. The probability that a random vertex from
V ′ \ V (M i) is in V (M̂ i) is 2|M̂i|

|V ′\V (Mi)| . So E[Y] =

r2
2|M̂i|

|V ′\V (Mi)| and |M̂ i| = |V ′\V (Mi)|E[Y]
2r2

. By definition

of µ̃2 = |V ′\V (Mi)|Y
2r2

− δoutn
2 and by Hoeffding bound

Proposition III.1, we have

Pr[µ̃2 < |M̂ i| − δoutn or µ̃2 > |M̂ i|]

= Pr[
|V ′ \ V (M i)| · (Y − E[Y])

2r2
>
δoutn

2
]

≤ 2 exp(−
2(δoutn2)2

r2(
n
2r2

)2
) = 2 exp(−2δ2outr2)

≤ 1/n10.

Next, we show the “sparsification” property of ran-
domized greedy maximal matching M i. That is, G[V ′ \
V (M i)] has low degree. The idea is that any high-degree
vertex v in G[V ′ \ V (M i)] should not exist because
it should have been matched by M i via one of the
sampled edges. The proof is similar to Lemma 3.1 of
[BFS12], which considers this sparsification property of
the randomized greedy maximal independent set, instead
of maximal matching.

Lemma IV.7. For every i, the maximum degree of G[V ′\
V (M i)] is at most n2ϵ w.h.p.

Proof. Let us describe an equivalent way to construct
M i. Initialize M i = ∅ and then sample p pairs of
vertices in V ′. For each sampled pair (u, v), if (u, v) ∈
G[V ′] and both u and v are not matched by M i, then
we add (u, v) into M i. At the end of this process, we
will show that, for any vertex v ∈ V ′, the degree of
v in G[V ′ \ V (M i)] is at most n2ϵ w.h.p. (we use the
convention that if v /∈ V ′ \ V (M i), then the degree v is
0.)

For t ∈ [1, p], let M i
t denote the matching M i after

we sampled the t-th pair. For convenience, we denote
degt(v) = degG[V ′\V (Mi

t)]
(v) as the degree of v at time

t. We want to show that Pr[degp(v) > n2ϵ] ≤ 1/n10 for
any v ∈ V ′.

Observe that if degp(v) > n2ϵ, then degt(v) > n2ϵ

for all t ≤ p. Now, given that degt−1(v) > n2ϵ, the
probability that v remained at unmatched after time t is

1− degt−1(v)(|V ′|
2

) ≤ 1− n2ϵ

n2
.

In particular, the probability that degt(v) > nϵ is at most
1− n2ϵ

n2 . This implies that the probability that degp(v) >

n2ϵ is at most

(1− n2ϵ

n2
)p ≤ 1

n10

because p = 100n2−2ϵ log n.

From the above lemmas, we can conclude the correct-
ness of the algorithm.

Corollary IV.8. If Algorithm 1 returns a matching M ′,
then M ′ satisfies the guarantees from Lemma IV.4 w.h.p.

Proof. If M ′ is returned under Case 1. Then, by
Lemma IV.5, we have |M ′[A]| ≥ µ̃1 ≥ 2δoutn w.h.p.
Otherwise, in Case 2, we have µ(G[A∩V ′ \V (M ′)]) ≥
|M ′| ≥ µ̃2 ≥ 4δoutn by Lemma IV.6 and also maximum
degree of G[V ′ \V (M ′)] is at most n2ϵ by Lemma IV.7
w.h.p.

2) Termination without Error: In this part, we show
that if µ(G[A]) ≥ δinn, then Algorithm 1 does not return
⊥ w.h.p. For any graph G and U1, U2 ⊆ V (G), we let
G[U1, U2] contains all edges of G whose one endpoint is
in U1 and another in U2. Note that the induced subgraph
G[U1] = G[U1, U1].

Our high-level plan is that we will show that D′ de-
creases its size by Θ(δ2inn) in each iteration in the repeat
loop. So D′ must become very small after T = Θ(1/δ2in)
iterations. But when this happens, we can show that
either Case 1 or Case 2 must happen and so the algorithm
must terminate without error.

To carry out the above plan, we need a helper lemma
(Lemma IV.9) which states that, even if V ′ keeps shrink-
ing, the maximum matching in G[V ′] remains large,
µ(G[A′]) ≥ δinn/2. We will need this fact throughout
the whole argument.

The high-level argument goes as follows. If the algo-
rithm does not return M ′, then M i[A′] is very small for
all i and so G[A′] contains few edges. It follows that the
set C of removed vertices contains only few vertices in
A′ because each vertex v ∈ C ∩ A′ has high degree of
at least η in G[A′]. Thus, we remove only few vertices
from A′ and so the size of µ(G[A′]) cannot decrease too
much. The formal argument below goes through the set
A′

sp and the above paragraph gives the right intuition.

Lemma IV.9. Suppose µ(G[A]) ≥ δinn. For τ ∈ [0, T],
at the end of the τ -th iteration of the repeat loop in Al-
gorithm 1, we have µ(G[A′]) ≥ (1− τ

2T)δinn ≥ δinn/2
w.h.p., if the algorithm does not terminate yet.

Proof. We prove by induction on τ . For τ = 0
(i.e. the beginning the algorithm), the claim holds as
µ(G[A]) ≥ δinn. Next, we consider τ ≥ 1. By induction
hypothesis, at the beginning of the τ -th iteration, we have
µ(G[A′]) ≥ (1− τ−1

2T)δinn ≥ δinn/2.
At the end of the τ -th iteration, since Algorithm 1

did not terminate at Step 2f, by Lemma IV.5, we have,

w.h.p., |M i[A′]| ≤ 2δoutn + δoutn ≤ 3δoutn for all i.
So we have |E(G[A′])| ≤ 3δoutnk and then the average
degree of vertices in G[A′] is at most

2|E(G[A′])|
|A′|

≤ 6δoutk

δin

because |A′| ≥ 2µ(G[A′]) ≥ δinn.
Recall that A′

sp is obtained by sampling r3 vertices
from A′. So

E[volG[A′](A
′
sp)] ≤

6δoutkr3
δin

≤ δ3inn log n

200T

because δout = δ3in/10
6T and kr3

δin
= 1000n log n.

Furthermore, this bound is concentrated. Indeed, since
volG[A′](A

′
sp) is a sum of r3 independent random vari-

able whose range is k (since the maximum degree in G
and G[A′] is k), by Hoeffding bound Proposition III.1,
we have

Pr[volG[A′](A
′
sp)− E[volG[A′](A

′
sp)] >

δ3inn log n

200T
]

≤ 2 exp(
−2(δ

3
inn logn
200T)2

r3k2
)≪ 1/n10.

So volG[A′](A
′
sp) ≤

δ3inn logn
100T w.h.p. Since every vertex

v ∈ C is adjacent to at least η vertices in A′
sp in G, we

have |C ∩A′|η ≤ volG[A′](A
′
sp). Therefore,

|C ∩A′| ≤ δ3inn log n

100Tη
≤ δinn

2T

because η = δ2in log(n)/10. This means that we remove
at most δinn

2T vertices from A′ at the end of the τ -th
iteration. So the size of maximum matching in G[A′]
may decrease by at most δinn

2T . Thus, µ(G[A′]) ≥ (1 −
τ
2T)δinn which completes the induction.

Given Lemma IV.9, we will use the following lemma
to argue that if Algorithm 1 does not return M i, then
then M i must match many vertices between A′ and D′.

Lemma IV.10. Suppose µ(G[A′]) ≥ δinn/2. For any
matching M in G[V ′], if |M [A′]| < 3δoutn and µ(G[A′\
V (M)]) < 16δoutn, then M [A′, D′] ≥ δinn/3.

Proof. Let M∗ be the maximum matching in G[A′] of
size at least δinn/2. We partition edges in M∗ into two
parts: M∗

0 and M∗
1 . For each (u, v) ∈M∗, we add (u, v)

into M∗
0 if both u, v /∈ V (M). Otherwise, either u or v

are matched by M and we add (u, v) into M∗
1 . Note that

M∗
0 is a matching in G[A′ \V (M)]. So |M∗

0 | < 16δoutn
and |M∗

1 | ≥ δinn/2− 16δoutn.
Observe that |V (M∗

1)| ≤ |M [A′, D′]| + 2|M [A′]|
because we can charge vertices of V (M∗

1) to either
matched edges of M [A′, D′] or M [A′] such that each
matched edge in M [A′, D′] is charged once and each
match edges in M [A′] is charged at most twice. Since

|M [A′]| < 3δoutn, we have |M [A′, D′]| ≥ δinn/2 −
16δoutn− 2 · 3δoutn ≥ δinn/3.

Lemma IV.10 also says that once D′ become small
enough, Algorithm 1 will not err w.h.p.

Corollary IV.11. If µ(G[A′]) ≥ δinn/2 and |D′| <
δinn/3, then Algorithm 1 will return a matching M ′

w.h.p.

Proof. For any i, note that |M i[A′, D′]| < |D′| <
δinn/3. So by the contrapositive of Lemma IV.10,
we have that either |M i[A′]| ≥ 3δoutn or µ(G[A′ \
V (M i)]) ≥ 10δoutn. If |M i[A′]| ≥ 3δoutn, then µ̃1 ≥
2δoutn w.h.p. by Lemma IV.5. If µ(G[A′ \ V (M i)]) ≥
10δoutn, then |M̂i| ≥ 16δoutn

2 − δoutn ≥ 7δoutn because
M̂i is (2, δoutn)-approximate matching. So µ̃2 ≥ 6δout
w.h.p. by Lemma IV.6. In either cases, so Algorithm 1
must return a matching M ′ at Line 2f or Line 2k.

Now, we are ready to show that D′ must shrink
significantly after each iteration of the repeat loop, which
means that there cannot be too many iterations before the
algorithm terminate by Corollary IV.11.

Lemma IV.12. Supposeµ(G[A′]) ≥ δinn/2. If Algo-
rithm 1 does not terminate until C is computed, then
|D′ ∩ C| ≥ δ2in

100n.

There are two main claims in the proof of
Lemma IV.12. We suggest the reader to skip the proofs
of these claims and see how they are used to prove
Lemma IV.12 first.

Claim IV.13. |E(G[A′
sp, D

′])| ≥ 100δ2inn log n w.h.p.

Proof. At the end of the τ -th iteration, since Algo-
rithm 1 did not terminate at Step 2f nor Step 2k, we
have, w.h.p., that M [A′] < 3δoutn by Lemma IV.5
and |M̂ i| < 5δoutn by Lemma IV.6. Since M̂ i is a
(2, δoutn)-approximate matching in G[A′ \ V (M)], we
have µ(G[A′ \ V (M)]) < 16δoutn. By Lemma IV.10,
we have |M i[A′, D′]| ≥ δinn/3.

Observe that |E(G[A′, D′])| =
∑

i |M i[A′, D′]| ≥
δinnk/3 because all M i are mutually disjoint. Note that
G[A′, D′] is a bipartite graph. So the average degree of
vertices in A′ in G[A′, D′] is

|E(G[A′, D′])|
|A′|

≥ δink/3

and we have that

E[|E(G[A′
sp, D

′])|] ≥ δinkr3/3 ≥ 200δ2inn log n.

because r3 = 1000δin
n
k log n. Furthermore, this is con-

centrated. Indeed, since |E(G[A′
sp, D

′])| is a sum of r3
independent random variable whose range is k (since the

maximum degree in G and G[A′] is k), by Hoeffding
bound Proposition III.1, we have

Pr[
∣∣|E(G[A′

sp, D
′])| − E[|E(G[A′

sp, D
′])]|]

∣∣
> 100δ2inn log n]

≤ 2 exp(
−2(100δ2inn log n)2

r3k2
)≪ 1/n10.

So |E(G[A′
sp, D

′])| ≥ 100δ2inn log n w.h.p.

Claim IV.14. For each v ∈ D′, the number of neighbor
of v from A′

sp in G is at most 2000 log n w.h.p. That is,
|NG(v,A

′
sp)| ≤ 2000 log n.

Proof. We have

E[NG(v,A
′
sp)] =

∑
u∈NG(v,A′)

Pr[u ∈ A′
sp]

≤ k · r3
|A′|
≤ 1000 log n

because r3k = 1000δinn log n and |A′| ≥ δinn since
we assume µ(G[A′]) ≥ δinn/2. Moreover, applying by
Chernoff bound Proposition III.2 where t = 1000 log n
and µ = 1000 log n8, we have

Pr[|NG(v,A
′
sp)− E[NG(v,A

′
sp)| > 1000 log n]

≤ 2 exp(− (1000 log n)2

3 · 1000 log n
)≪ 1/n10.

So |NG(v,A
′
sp)| ≤ 2000 log n w.h.p.

Now, let us prove Lemma IV.12 using the above
claims.

Proof of Lemma IV.12. Observe that

|E(G[A′
sp, D

′])| =
∑
v∈D′

|NG(v,A
′
sp)|

≤ |D′ ∩ C| · 2000 log n+ |D′ \ C|η

where the inequality holds w.h.p. by Claim IV.14. Since
|D′ \ C| ≤ n and η = δ2in log(n)/10, we have by
Claim IV.13 that

100δ2inn log n ≤ |D′ ∩ C| · 2000 log n+ nδ2in log(n)/10

and so |D′ ∩ C| ≥ δ2in
100n as desired. □

Finally, we give the conclusion of this part.

Corollary IV.15. If µ(G[A]) ≥ δinn, then Algorithm 1
does not return ⊥ w.h.p.

Proof. First, µ(G[A]) ≥ δinn implies that µ(G[A′]) ≥
δinn/2 w.h.p. by Lemma IV.9. So, by Lemma IV.12 D′

decreases its size by δ2inn/100 in each iteration in the
repeat loop. Hence, we have that |D′| ≤ δinn/3 before
T = 100/δ2in iterations. Therefore, there is an iteration
τ ∈ [1, T] where Algorithm 1 will return a matching M ′

w.h.p. by Corollary IV.11.
8Note that Hoeffding bound Proposition III.1 is not strong enough

here.

3) Preprocessing Time: Consider the (2, δoutn)-
approximate matching oracle matchlow(·) in Line 2g,
which is given graph G[V ′ \ V (M i)] and vertex set
A′ \ V (M i) as input.

By Lemma IV.7, we can assume w.h.p. that G[V ′ \
V (M i)] has degree at most n2ϵ. Lemma IV.2 implies
the following:

Proposition IV.16. Both preprocessing and query
time of matchlow(·) is at most Õ((tAn

2ϵ + n +
tA/δout)n

2ϵ/δ2out) = Õ((tA + n)n4ϵ/δ3out) with high
probability.

Lemma IV.17. Algorithm 1 takes Õ((tA + n)(n1−ϵ +
n4ϵ)/poly(δin)) total running time.

Proof. We will analyze the total running time for each
iteration of the repeat-loop in Algorithm 1. Since there
are T = O(1/δ2in) iterations and we assume δin ≥
1/poly log n, the running time is the same up to polylog-
arithmic factor. Now, fix one iteration of the repeat-loop.

The total time to compute M i, for all i ≤ k, is
Θ(kp) = Õ(n2−ϵ). For each for-loop iteration, to com-
pute µ̃1, we make Θ(r1) queries to memA taking Θ(r1) ·
tA = Õ(tA/δ

10
in) time. To compute µ̃2, we make r2

queries to matchlow(·). By Proposition IV.16, this takes
time r2 · Õ((tA+n)n4ϵ/δ3out) = Õ((tA+n)n4ϵ/δ25in) by
Lemma IV.2.

Next, we analyze the time to compute A′
sp. Since

|A′| ≥ δinn w.h.p. by Lemma IV.9, we can sample a
random vertex in A′ by sampling at most O(log n/δin)
times in V ′ w.h.p. For each sample, we need to make
a query to memA, so we can compute A′

sp in time
O(r3)·O(tA log n/δin) = Õ(tAn

1−ϵ/poly(δin)) because
r3 = 1000δin

n
k log n and k = nϵ. Once A′

sp is computed,
we can compute C in |E(G)| = Θ(kp) = Õ(n2−ϵ). To
conclude, the total running time in each iteration of the
repeat-loop at most

Õ(n2−ϵ + (tA + n)n4ϵ + tAn
1−ϵ)/poly(δin) =

Õ((tA + n)(n1−ϵ + n4ϵ)/poly(δin)).

The main lemma on preprocessing, Lemma IV.4, is
implied by combining Corollary IV.8, Corollary IV.15
and Lemma IV.17

C. Query Algorithm

We define our matching oracle match depending on
the cases from Lemma IV.4.

Suppose Lemma IV.4 returns M ′ that satisfies Case 1.
Let M1 = M ′[A]. By Lemma IV.4, |M1| ≥ 2δoutn.
The algorithm for outputting match(v) with respect to
M1 is described in Algorithm 2. The correctness is
straightforward and the worst-case query time is clearly
2tA +O(1).

Algorithm 2 Compute match(v) with respect to M1.
1) If v ∈ V (M ′), let v′ be such that (v, v′) ∈ M ′.

Else, return ⊥.
2) If memA(v), memA(v

′) = 1, return (v, v′). Else,
return ⊥.

Next, suppose Lemma IV.4 returns M ′ that satisfies
Case 2. Let M2 be a (2, δoutn)-approximate matching in
G[A ∩ V ′ \ V (M ′)]. By Lemma IV.4, |M2| ≥ µ(G[A ∩
V ′ \ V (M ′)])/2 − δoutn ≥ δoutn.9 The algorithm for
outputting match(v) with respect to M2 is described in
Algorithm 3. The correctness is straightforward. Let us
analyze the query time. Step 1 takes tA + O(1) time.
Step 2 takes Õ((tA + n)n4ϵ/δ3out) following the same
proof as in Proposition IV.16 (the maximum degree of
G[V ′ \ V (M ′)] is at most n2ϵ w.h.p. by Lemma IV.7).

Algorithm 3 Compute match(v) with respect to M2.
Let matchlow be the (2, δoutn)-approximate matching
oracle from Lemma IV.2 when given graph G[V ′ \
V (M i)] with vertex set A ∩ V ′ as input.

1) Check if v ∈ A ∩ V ′ \ V (M ′). If not, return ⊥.
2) Using the oracle matchlow, if v ∈ V (M2), return

(v, v′) ∈M2. Else, return ⊥.

In both cases, the matching oracle match respects a
matching of size at least δoutn and has worst-case query
time at most Õ((tA + n)n4ϵ/poly(δin)) w.h.p.

V. BOOSTING THE APPROXIMATION GUARANTEE OF
A MATCHING ORACLE

Recall the notations from Section III. Throughout this
section, we use the following parameters.

Definition V.1. k ≥ 0 is an integral constant, γ ∈ (0, 1)
is a constant, T = Θk,γ(1) is a sufficiently large integral
constant that depends only on k and γ (see Lemma V.12),
and ϵin > 0 is a sufficiently small constant such that
9T · ϵin < 1/5.

We present an algorithm
Augment(G,Min, k, γ, ϵin), which takes as input: a
graph G = (V,E) with n nodes, the parameters k, γ, ϵin
as in Definition V.1, and an oracle matchMin(.) for a
matching Min in G that has Õk,γ(n

1+ϵin) query time.
The algorithm either returns an oracle matchMout(.) for
a matching Mout in G that is obtained by applying a
sufficiently large number of length (2k+1)-augmenting
paths to Min, or it returns FAILURE. We now state our
main result in this section.

9In fact, if we define M2 as M̂ i from Line 2g in Algorithm 1, we
would even have that |M2| ≥ 4δinn w.h.p. But we did use this bound
just to avoid white-boxing the preprocessing algorithm and make the
presentation of the query algorithm more modular.

Theorem V.2. Set ϵout := 9T · ϵin (see Definition V.1).
Given adjacency-matrix query access to the input graph
G = (V,E), the algorithm Augment(G,Min, k, γ, ϵin)
runs in Õk,γ

(
n2−ϵin

)
time. Further, either it returns an

oracle matchMout(.) with query time Õk,γ(n
1+ϵout), for

some matching Mout in G of size |Mout| ≥ |Min| +
Θk,γ(1) ·n (we say that it “succeeds” in this case), or it
returns FAILURE. Finally, if the matching Min admits
a collection of γ · n many node-disjoint length (2k +
1)-augmenting paths in G, then the algorithm succeeds
whp.

In Section V-A, we present a template algorithm
for the task stated in Theorem V.2. This is inspired
by an algorithm of McGregor [McG05] for computing
a (1 + ϵ)-approximate matching in the semi-streaming
model.While describing the template algorithm, we as-
sume that we are given the matching Min explicitly as
part of the input, and that we need to either construct
the matching Mout or return FAILURE. Note, however,
that in the sublinear setting, we cannot assume this.

Subsequently, in Section V-B, we show how to im-
plement the template algorithm in the sublinear setting
under adjacency-matrix queries, which leads to the proof
of Theorem V.2.

Remark on Oracles: Throughout this section, we will
treat the oracle matchM (.) as a data structure in the
sublinear model, which returns the appropriate answer
upon receiving a query. In contrast, we will treat the
oracle mateM (.) as simply an abstract function, so that
mateM (v) simply denotes the mate of v (if it exists)
under M (see Section III). Note that we can return
the value of mateM (v) by making a single query to
matchM (v), without any additional overhead in time.

A. A Template Algorithm

We denote the template algorithm simply by
Augment-Template(G,Min, k, γ), as we do not
need the parameter ϵin to describe it. The parameter
ϵin will become relevant only in Section V-B, when we
consider implementing this algorithm in the sublinear
setting.

As part of the input to the template algorithm, the n-
node graph G = (V,E) and the matching Min are spec-
ified explicitly. The algorithm either returns an explicit
matching Mout in G of size |Mout| ≥ |Min|+Θk,γ(1)·
n (we say that it “succeeds” in this case), or it returns
FAILURE. If Min admits a collection of γ · n many
node-disjoint length (2k + 1)-augmenting paths in G,
then the template algorithm succeeds whp. This mimics
Theorem V.2. Furthermore, the template algorithm has
access to a subroutine LargeMatching(S, δ), which
takes as input a subset of nodes S ⊆ V and a small
constant δ ∈ (0, 1), and either returns ⊥ or returns a

matching M in G[S] such that |M | ≥ 1
108 · δ

5 · n.
In addition, if µ(G) ≥ δ · n, then it is guaranteed
that LargeMatching(G, δ) does not return ⊥. This
mimics Theorem IV.1, with δin = δ.

1) Algorithm Description: Random partitioning:
We start by partitioning the node-set V into 2k + 2
subsets L0, . . . , L2k+1, as follows. For each v ∈ V , we
place the node v into one of the subsets L0, . . . , L2k+1

chosen uniformly and independently at random. We will
refer to the subset Li as layer i of this partition. If
v ∈ Li, then we will write ℓ(v) = i and simply say
that the node v belongs to layer i.

Let p be an augmenting path of length (2k + 1) in
G w.r.t. Min. Assign an arbitrary direction to this path,
so that we can write p = (v0, v1, . . . , v2k+1) w.l.o.g.
Specifically, we have (v2i, v2i+1) ∈ E \ Min for all
i ∈ [0, k], and (v2i−1, v2i) ∈ Min for all i ∈ [1, k]. We
say that the path p survives the random partitioning iff
vi ∈ Li for all i ∈ [0, 2k + 1].

Lemma V.3. Consider any collection P of node-disjoint
length (2k + 1)-augmenting paths in G w.r.t. Min. Let
P∗ ⊆ P denote the subset of paths in P that survive
the random partitioning. If |P| ≥ γ · n, then |P∗| ≥
Θk,γ(1) · n whp.

Proof. Each path p ∈ P survives the random parti-
tioning with probability (2k + 2)−(2k+2). Since |P| ≥
γ · n, by linearity of expectation, we get: E[|P∗|] ≥(
(2k + 2)−(2k+2)γ

)
· n = Θk,γ(1) · n. Finally, we note

that whether a given path p ∈ P survives the random
partitioning or not is independent of the fate of the other
paths in P . The lemma now follows from a Chernoff
bound.

Motivated by Lemma V.3, the template algorithm will
only attempt to augment Min along those augmenting
paths that survive the random partitioning. This leads
us to introduce the notion of layered subgraphs of G,
as described below. Intuitively, although the template
algorithm does not know the set P∗ in advance, it can be
certain that the sequence of edges in any length (2k+1)-
augmenting path in P∗ appears in successive layered
subgraphs (see Observation V.6).

Layered subgraphs of G: First, we define a set VH ⊆
V . A node v ∈ V belongs to VH iff either

1) ℓ(v) ∈ {0, 2k + 1} and mateMin(v) =⊥, or
2) ℓ(v) = 2j − 1 for some j ∈ [1, k] and

ℓ (mateMin(v)) = 2j, or
3) ℓ(v) = 2j for some j ∈ [1, k] and

ℓ (mateMin(v)) = 2j − 1.
Given the nodes in VH , the edge-set EH ⊆ E is defined
as follows. An edge (u, v) ∈ E belongs to EH iff u, v ∈
VH , |ℓ(u)− ℓ(v)| = 1, and either

1) min(ℓ(u), ℓ(v)) is even and (u, v) /∈Min, or
2) min(ℓ(u), ℓ(v)) is odd and (u, v) ∈Min

We next define the subgraph H := (VH , EH). Finally,
for each i ∈ [0, 2k], let Gi := (V,Ei) be a bipartite
subgraph of G, where Ei := {(u, v) ∈ EH : ℓ(u) =
i, ℓ(v) = i+1} is the set of edges in EH between layer i
and layer i+1. Note that we have defined the subgraphs
{Gi} over the entire node-set V , although every edge
in these subgraphs has both its endpoints in VH . This
is done to simplify notations, as will become evident
when we describe how to implement our algorithm in
the sublinear setting. For each i ∈ [0, 2k + 1], we refer
to the nodes in Vi := Li ∩ VH as being relevant for the
concerned layer.

We now state some key observations, which immedi-
ately follow from the description above.

Observation V.4. For all i ∈ [1, 2k], we have Vi ⊆
V (Min).

Observation V.5. For all i ∈ [0, k], we have E2i =
E (G[V2i ∪ V2i+1]). Furthermore, for all i ∈ [1, k], we
have E2i−1 = Min ∩ (V2i−1 × V2i). Thus, if i is even,
then Gi consists of all the edges from G that connect two
relevant nodes across the concerned layers. In constrast,
if i is odd, then Gi consists of the edges from Min that
connect two relevant nodes across the concerned layers.

Observation V.6. Consider any augmenting path p =
(v0, v1, . . . , v2k+1) w.r.t. Min in G that survives the
random partitioning. Then we have (vi, vi+1) ∈ Ei for
all i ∈ [0, 2k].

Nested matchings: Fix any j ∈ [0, k], and for each
i ∈ [0, j] consider a matching M2i ⊆ E2i in G2i. We
say that the sequence of matchings M0,M2, . . .M2j is
nested iff for all i ∈ [1, j] and all v ∈ V (M2i)∩V2i, we
have mateMin(v) ∈ V (M2i−2).

Observation V.7. Consider any sequence of nested
matchings M0,M2, . . . ,M2k. Then there exists a collec-
tion of node-disjoint length (2k + 1)-augmenting paths
of size |M2k| w.r.t. Min in G.

Proof. Consider any node v ∈ V (M2k) ∩ V2k+1. Con-
sider the path p(v) = (v0, v1, . . . , v2k+1) in G, which is
constructed according to the following procedure.

• v2k+1 ← v, and i ← 2k. (Note that v2k+1 is at
layer 2k + 1 and is matched under M2k.)

• WHILE i ≥ 0:
– If i is even, then vi ← mateMi

(vi+1).
– If i is odd, then vi ← mateMin(vi+1).
– i← i− 1.

Since the sequence M0,M2, . . . ,M2k is nested, applying
Observation V.4 and Observation V.5, we can show (by

an induction on the number of iterations of the WHILE
loop) that p(v) is a length (2k + 1)-augmenting path
in G w.r.t. Min. Furthermore, it is easy to see that the
paths {p(v)}v∈V (M2k)∩V2k+1

constructed in this manner
are mutually node-disjoint. This implies the observation.

Important parameters: We fix a constant ψ ∈ (0, 1),
which depends on k and γ, i.e., ψ = Θk,γ(1), and
is chosen to be sufficiently small (see Corollary V.16).
Next, for each i ∈ [0, k], we define:

ψi :=
1

108
· ψ54i+3

and δi := ψ54i+1

. (1)

Consider any matching M ′ between the nodes at
layers 2i and 2i + 1, where i ∈ [0, k]. Intuitively, the
parameters ψi and δi will determine how large M ′ needs
to be so as to make us “happy”. Note that the values of
δi and ψi decrease in a doubly exponential manner with
i. This fact will be crucially used during the analysis in
Section V-A2.

A relatively informal summary of the algorithm:
Motivated by Observation V.7, the template algorithm
attempts to find a sequence of nested matchings ending
at layer 2k. Specifically, the algorithm runs in iterations.
At the start of a given iteration, we maintain a sequence
of nested matchings M0,M2, . . . ,M2i up to some layer
2i, such that |M2j | ≥ ψj · n for all j ∈ [0, i]. If
i = k, then by Observation V.7 we can already identify
a collection of ψk · n = Θk,γ(1) · n many node-disjoint
length (2k + 1)-augmenting paths in G w.r.t. Min, and
so we just apply those augmenting paths to Min and
return the resulting matching Mout. Henceforth, assume
that i < k. We classify each node in VH as either alive
or dead (at the start of the first iteration every node
was alive). We also enforce the invariant that all the
nodes currently matched in M0 ∪M2 ∪ · · · ∪M2i are
alive. During the current iteration, we attempt to find a
large matching M ′ between the alive nodes in G2i+2,
while ensuring that the sequence M0,M2, . . . ,M2i,M

′

remains nested. Specifically, we make a call to the sub-
routine LargeMatching(S, δi+1), for an appropriate
S ⊆ V2i+2 ∪ V2i+3. Depending on the outcome of this
call, we now fork into one of the following three cases.

Case (a): The call to LargeMatching(S, δi+1) re-
turns a matching M ′. Thus, we are guaranteed that
|M ′| ≥ 1

108 ·(δi+1)
5 ·n ≥ ψi+1 ·n. We set M2i+2 :=M ′,

i := i+ 1, and proceed to the next iteration.
Case (b): The call to LargeMatching(S, δi+1) re-

turns ⊥, and i = −1 (i.e., the sequence of matchings
M0,M2, . . . ,M2i was empty). Here, we terminate the
template algorithm and return FAILURE.

Case (c): The call to LargeMatching(S, δi+1) re-
turns ⊥, and i ≥ 0. Here, we change the status of all

the nodes in V (M2i) ∩ V2i+1, along with their matched
neighbors under Min (who are at layer 2i+2), from alive
to dead. We then delete the matching M2i, set i := i−1,
and proceed to the next iteration.

We will need some more notations while working
with this algorithm in Section V-B. Accordingly, below
we present a more detailed and technical description
of the template algorithm, along with these additional
notations. While going through the rest of this section,
the reader will find it helpful to refer back to the informal
description above, whenever necessary.

Iterations: In each iteration t ≥ 1, we will compute
a matching M (t) in the subgraph Gσ(t), where σ(t) ∈
{0, 2, 4, . . . , 2k}. The mapping σ : T → {0, 2, . . . , 2k}
will be constructed in an online manner, i.e., we will
assign the value σ(t) only during the tth iteration. We
now describe the state of the algorithm at the end of any
given iteration.

At the end of an iteration t, a subset of past
iterations Λ(t) ⊆ [t] are designated as being ac-
tive w.r.t. t. If Λ(t) ̸= ∅, then we write Λ(t) :={
λ
(t)
0 , λ

(t)
1 , . . . , λ

(t)
stack(t)

}
, where stack(t) :=

∣∣Λ(t)
∣∣−

1 and λ
(t)
0 < λ

(t)
1 < · · · < λ

(t)
stack(t). The sequence

of matchings M
(
λ
(t)
0

)
,M

(
λ
(t)
1

)
, . . . ,M

(
λ
(t)

stack(t)

)
corre-

sponds to the sequence M0,M2, . . . ,M2i in the dis-
cussion immediately after Observation V.7. Thus, the
algorithm satisfies the following invariants.

Invariant V.8. We have stack(t) ≤ k, and σ
(
λ
(t)
j

)
=

2j for all j ∈ [0,stack(t)].

Invariant V.9. The sequence of matchings

M

(
λ
(t)
0

)
,M

(
λ
(t)
1

)
, . . . ,M

(
λ
(t)

stack(t)

)
is nested.

Invariant V.10.
∣∣∣∣M(

λ
(t)
j

)∣∣∣∣ ≥ ψj · n for all j ∈
[0,stack(t)].

For each layer i ∈ [0, 2k+1], the set of relevant nodes
Vi is partitioned into two subsets: Ai and Di. We refer
to the nodes in Ai as alive, and the nodes in Di as dead.
We let A :=

⋃2k+1
i=0 Ai and D :=

⋃2k+1
i=0 Di respectively

denote the set of all alive and dead nodes, across all the
layers. The next invariant states that every matched node
in an active iteration is alive.

Invariant V.11. A ⊇ V

(
M

(
λ
(t)
j

))
for all j ∈

[0,stack(t)].

At the start of the first iteration (when t = 1), every
relevant node is alive (i.e., Ai = Vi and Di = ∅ for all
i ∈ [0, 2k + 1]). Subsequently, over time the status of a
relevant node can only change from being alive to being
dead, but not the other way round. Thus, with time, the

set D keeps growing, where the set A keeps shrinking.
We now explain how to implement a given iteration t.

Implementing iteration t: Let i = stack(t − 1).
If Λ(t−1) = ∅, then we set i = −1. If i = k,
then there will be no more iterations, i.e., the al-
gorithm will last for only t − 1 iterations. In this
scenario, we know that the sequence of matchings

M

(
λ
(t−1)
0

)
,M

(
λ
(t−1)
1

)
, · · · ,M

(
λ
(t−1)
k

)
is nested. Based

on this sequence, we identify a collection of |M
(
λ
(t−1)
k

)
|

many node-disjoint augmenting paths w.r.t. Min in G,
augment Min along those paths (see Observation V.7),
and return the resulting matching Mout. Accordingly,
from now on we assume that i ≤ k − 1.

During iteration t, we will attempt to find a large
matching M ′ in G2i+2 between two sets of nodes: A2i+3

and C2i+2. Recall that A2i+3 denotes the alive nodes at
layer 2i + 3. We refer to C2i+2 as the set of candidate
nodes for iteration t. Intuitively, we pick as many nodes
from V2i+2 into the set C2i+2 as possible, subject to
two constraints: (i) if we append M ′ at the end of
the sequence of matchings from the currently active
iterations, then the resulting sequence will continue to
remain nested, and (ii) the nodes in C2i+2 are currently
alive. This leads us to the following definition: C2i+2

equals A2i+2 if i = −1 and v ∈ A2i+2 : mateMin(v) ∈
V

(
M

(
λ
(t−1)
i

))
} if i ≥ 0.

We now call the subroutine
LargeMatching(C2i+2 ∪ A2i+3, δi+1), in
an attempt to obtain a large matching in
G [C2i+2 ∪A2i+3] = G2i+2 [C2i+2 ∪A2i+3]. The
last equality holds because of Observation V.5, and
since C2i+2 ⊆ V2i+2 and A2i+3 ⊆ V2i+3. We set
σ(t) := 2i+ 2. Now, we fork into one of the following
three cases.

Case (a): The call to LargeMatching(C2i+2 ∪
A2i+3, δi+1) returns a matching M ′. Thus, we are guar-
anteed that |M ′| ≥ 1

108 · (δi+1)
5 · n ≥ ψi+1 · n. We

set M (t) :=M ′, Λ(t) := Λ(t−1) ∪{t} and stack(t) :=
stack(t−1)+1. This implies that λ(t)j := λ

(t−1)
j for all

j ∈ [0,stack(t− 1)], and λ
(t)
stack(t) := t. Henceforth,

we refer to this iteration t as a forwarding iteration at
layer (2i + 2). We now move on to the next iteration
(t+1). Case (b): The call to LargeMatching(C2i+2∪
A2i+3, δi+1) returns ⊥, and i = −1. Here, the algorithm
terminates and returns FAILURE. Case (c): The call to
LargeMatching(C2i+2∪A2i+3, δi+1) returns ⊥, and
i ≥ 0. Here, we set M (t) := ∅. We also change
the status of all the nodes in C2i+2, along with their
matched neighbors under Min (who are at layer 2i+1),
from alive to dead, and respectively move these nodes
from A2i+1 to D2i+1 and from A2i+2 to D2i+2. Next,
we set Λ(t) := Λ(t−1) \ {λ(t−1)

i } and stack(t) :=

stack(t−1)−1. This implies that λ(t)j := λ
(t−1)
j for all

j ∈ [0,stack(t)]. Henceforth, we refer to this iteration
t as a backtracking iteration for layer 2i. We now move
on to the next iteration (t+ 1).

Remark: From the above description of the tem-
plate algorithm, it immediately follows that Invari-
ants V.8, V.9, V.10 and V.11 continue to hold at the end
of each iteration t.

2) Analysis: In this section, we analyze the template
algorithm, and prove the following lemma.

Lemma V.12. The algorithm
Augment-Template(G,Min, k, γ) runs for at most
T = Θk,γ(1) iterations. It either returns a matching
Mout in G of size |Mout| ≥ |Min|+Θk,γ(1)·n (we say
that the algorithm “succeeds” in this case), or it returns
FAILURE. Furthermore, if Min admits a collection of
γ · n many node-disjoint length (2k + 1)-augmenting
paths in G, then the algorithm succeeds whp.

We start by focusing on bounding the number of
iterations (see Corollary V.14).

Claim V.13. There can be at most 1/(ψi) backtracking
iterations for layer 2i, where i ∈ [0, k − 1].

Proof. Consider any backtracking iteration t for layer 2i.
Then we have σ(t − 1) = i, and Invariant V.10 implies
that∣∣∣∣V (M(

λ
(t−1)
i

))
∩ V2i+1

∣∣∣∣ = ∣∣∣∣M(
λ
(t−1)
i

)∣∣∣∣ ≥ ψi · n.

Thus, during iteration t, at least ψi · n nodes at layer
(2i + 1) change their status from alive to dead. Since
there are at most n nodes at layer (2i + 1), such an
event can occur at most 1/(ψi) times.

Corollary V.14. The algorithm
Augment-Template(G,Min, k, γ) has at most
Θk,γ(1) iterations.

Proof. Let Tf , Tb and T0 respectively denote the total
number of forwarding iterations across all layers, the
total number of backtracking iterations across all layers,
and the total number of iterations across all layers that
are neither forwarding nor backtracking.We have T0 = 1
if the template algorithm returns FAILURE, and T0 = 0
otherwise.

We now observe that: there cannot exist a sequence
of more than (k + 1) consecutive forwarding iterations,
for otherwise, the (k + 2)th forwarding iteration in this
sequence would have to take place at a layer ≥ (2k+2),
which does not exist. Hence, we have: Tf ≤ (k + 1) ·
(Tb + T0) + (k + 1), and the total number of iterations
is bounded by:

T = Tf + Tb + T0 ≤
(k + 1) · (Tb + T0) + (k + 1) + Tb + T0 =

Θ(k) · Tb ≤ Θ(k) ·
k−1∑
i=0

1

ψi
= Θk,γ(1).

The second inequality follows from Claim V.13, and
the last equality follows from (1).

We now move on to showing that if Min admits
a collection γ · n many node-disjoint length (2k +
1)-augmenting paths in G, then the template algo-
rithm succeeds whp. Towards this end, let P denote a
maximum-sized collection of node-disjoint length (2k+
1)-augmenting paths in G w.r.t. Min. Let P∗ ⊆ P be the
subset of paths in P that survive the random partitioning.
If |P| ≥ γ · n, then Lemma V.3 guarantees that whp:

|P∗| ≥ Θk,γ(1) · n. (2)

At any point in time during the execution of the al-
gorithm Augment-Template(G,Min, k, γ), we say
that a path p ∈ P∗ is alive if all the nodes on p are
alive, and we say that the path p is dead otherwise. Let
P∗
A ⊆ P∗ and P∗

D = P∗\P∗
A respectively denote the set

of alive and dead paths at any point in time. Just before
the start of iteration 1, we have P∗

A = P∗ and P∗
D = ∅.

Subsequently, a path p ∈ P∗ can change its status from
alive to dead only during a backtracking iteration (note
that this change occurs in only one direction, i.e., a dead
path will never become alive). The next claim upper
bounds the number of such changes.

Claim V.15. During a backtracking iteration for layer
2i, where i ∈ [0, k − 1], at most δi+1 · n many paths in
P∗ moves from P∗

A to P∗
D.

Proof. Let t ≥ 1 denote a backtracking iteration
for layer 2i. During iteration t, the algorithm calls
LargeMatching(C2i+2 ∪A2i+3, δi+1), which returns
⊥. Consider the subgraph G′ = G[C2i+2 ∪ A2i+3].
We have: µ(G′) < δi+1 · n, for otherwise the call to
LargeMatching(., .) would not have returned ⊥.

Just before iteration t, let P ′ ⊆ P∗
A denote the subset

of paths in P∗
A that pass through some node in C2i+2.

Only the paths in P ′ move from P∗
A to P∗

D at the end
of iteration t. We can, however, form a matching in G′

which contains one edge from each path in P ′. Hence,
we have |P ′| ≤ µ(G′) < δi+1 · n. This concludes the
proof of the claim.

Corollary V.16. Let ψ = Θk,γ(1) be a sufficiently
small constant depending on k and γ, and suppose

that (2) holds. Then throughout the entire duration of
the algorithm, we have:

|P∗
A| ≥ |P∗| −

k−1∑
i=0

δi+1

ψi
· n ≥ δ0 · n.

Proof. From (1), Claim V.13 and Claim V.15, we infer
that:

|P∗
A| ≥ |P∗|−

k−1∑
i=0

δi+1

ψi
·n ≥ |P∗|− k · (108ψ) ·n. (3)

Now, since we can set ψ to be any sufficiently small
constant value depending on k and γ, and since δ0 ≤ ψ
according to (1), from (2) we get: |P∗|−k ·(108ψ) ·n ≥
δ0 · n. This concludes the proof.

Corollary V.17. If (2) holds, then the algorithm does
not return FAILURE.

Proof. For contradiction, suppose that the algorithm
returns FAILURE at the end of an iteration t.

Let i = σ(t−1). Since the algorithm returns FAILURE
after iteration t, we must have i = −1. Furthermore,
during iteration t, the call to LargeMatching(C0 ∪
A1, δ0) must have returned ⊥. Let G′ = G[C0 ∪A1]. It
follows that:

µ(G′) < δ0 · n. (4)

Next, observe that C0 = A0. Hence, just before the
start of iteration t, we could have formed a matching in
G′ by taking the first edge of each path in P∗

A. Thus,
from Corollary V.16, we get:

µ(G′) ≥ |P∗
A| ≥ δ0 · n. (5)

However, both (4) and (5) cannot simultaneously be true.
This leads to a contradiction.

Note that if the template algorithm does not return
FAILURE, then it necessarily returns a matching Mout

of size |Mout| ≥ |Min| + ψk · n (this holds because
of Invariant V.9, Invariant V.10 and Observation V.7).
Finally, recall that ψk = Θk,γ(1) as per (1). Lemma V.12
now follows from Corollary V.14, Lemma V.3 and Corol-
lary V.17.

B. Implementation in Sublinear Models

In this section, we show how to implement the tem-
plate algorithm from Section V-A, when we are allowed
access to the input graph G only via adjacency-matrix
queries. Throughout this section, we use the following
parameters (recall Definition V.1).

ϵ0 := ϵin, and ϵt := 9 · ϵt−1 for all t ∈ [1, T]. (6)

In Section V-A1, the template algorithm starts with
iteration t = 1. Here, we use the phrase “iteration
t = 0” to refer to the scenario just before the start of

the first iteration. Towards this end, for consistency of
notations, we define ϵ−1 := 2, M (0) :=Min, σ(0) :=⊥,
stack(0) := −1 and Λ(0) := ∅. Further, we define an
oracle alive0(v) that is supposed to return YES if v is
alive at the end of iteration 0 (i.e., just before the start
of iteration 1), and return NO otherwise.

The rest of this section is organized as follows.
Lemma V.18 shows how to implement each iteration
of the template algorithm, under adjacency-matrix query
access to the input graph G. Its proof appears at the
end of this section. Theorem V.2 now follows from
Lemma V.12 and Corollary V.19.

Lemma V.18. Suppose that we can access the input
graph G only via adjacency-matrix queries, and we
have an oracle matchMin(.) with Õk,γ(n

1+ϵin) query
time. Then we can implement each iteration t ≥ 0
of the algorithm Augment-Template(G,Min, k, γ),
as described in Section V-A, in Õk,γ(n

2−ϵt−1) time.
Furthermore, if the concerned iteration t does not result
in the algorithm returning FAILURE, then we can ensure
that we have access to the following data structures at
the end of iteration t.

• An oracle matchM(t)(.) for the matching M (t), that
has a query time of Õk,γ(n

1+ϵt).
• An oracle alivet(.) that has a query time of
Õk,γ(n

1+ϵt). When queried with a node v ∈ V ,
this oracle returns YES if v is alive at the end of
iteration t, and returns NO otherwise.

• The values σ(t) and stack(t), and the contents of
the set Λ(t).

Corollary V.19. Let ϵout := 9T ·ϵin, where T = Θk,γ(1)
is the maximum possible number of iterations of the
template algorithm (see Lemma V.12). Then it takes
Õk,γ(n

2−ϵin) time to implement the template algorithm,
under adjacency-matrix query access to G. Further, if
the template algorithm does not return FAILURE, then
at the end of our implementation we have an oracle
matchMout(.) for the matching Mout returned by it, with
query time Õk,γ(n

1+ϵout).

Proof. By Lemma V.18, each iteration t of the template
algorithm can be implemented in time Õk,γ(n

2−ϵt−1) =
Õk,γ(n

2−ϵin), since ϵin ≤ ϵt−1. Thus, the total time
taken to implement the template algorithm is at most
Õk,γ(T · n2−ϵin) = Õk,γ(n

2−ϵin).

Suppose that the template algorithm terminates at the
end of iteration t, and returns a matching Mout. Then,
at the end of iteration t of our sublinear implementation,
the situation is as follows.

σ(t) = k, and Λ(t) =
{
λ
(t)
0 , λ

(t)
1 , · · · , λ(t)k

}
,where

σ
(
λ
(t)
j

)
= 2j for each j ∈ [0, k] (see Invari-

ant V.8). The sequence of matchings in Λ(t) is
nested (see Invariant V.9). Thus, from this se-
quence of nested matchings we can extract a set

of at least
∣∣∣∣M(

λ
(t)
k

)∣∣∣∣ many node-disjoint length

(2k + 1)-augmenting paths w.r.t. Min in G (see
Observation V.7). The template algorithm obtains
the matching Mout by applying these augmenting
paths to Min. In our sublinear implementation of
the template algorithm, however, we can access
each matching M ∈ Λ(t) only via an oracle
matchM (.), which has a query time of at most
Õk,γ(n

1+ϵt) (see (6) and Lemma V.18). Further-
more, we can access the matching Min only via
the oracle matchMin(.), which also has a query
time of at most Õk,γ(n

1+ϵin) = Õk,γ(n
1+ϵt).

We now show how to answer a query to the oracle
matchMout(v). The key observation is this:

Let E∗ := (Min ∩ EH)
⋃

M∈Λ(t) M (see the
discussion on layered subgraphs in Section V-A1).
Then the graph G∗ = (V,E∗) consists of a collec-
tion of node-disjoint alternating paths w.r.t. Min.
We say that a path in G∗ is complete iff it has one
endpoint at layer 0 and the other endpoint at layer
(2k+1). Now, a node v ∈ V is matched in Mout

iff: either v ∈ V (Min), or v /∈ V (Min) and v is
the starting/end point of a complete path in G∗.

Using this observation, we now describe how to an-
swer queries of the form: “Is matchMout(v) =⊥ for a
given node v ∈ V ?”. To answer such a query, we apply
the procedure below.

If matchMin(v) ̸=⊥, then we return that
matchMout(v) ̸=⊥. Else if matchMin(v) =⊥
and ℓ(v) /∈ {0, 2k + 1}, then we return that
matchMout(v) =⊥. Finally, if matchMin(v) =⊥
and w.l.o.g. ℓ(v) = 0, then we perform the following
steps.

• v0 ← v.
• For i = 1 to 2k + 1:

– If i is odd, then vi ← mate
M
(λ(t)

(i−1)/2)
(vi−1).

– Else if i is even, then vi ← mateMin(vi−1).
– If vi =⊥, then return that matchMout(v) =⊥.

• Return that matchMout(v) ̸=⊥.
It is easy to verify that the above procedure cor-

rectly returns whether or not matchMout(v) =⊥. We
can extend this procedure in a natural manner, which

would also allow us to answer the query matchMout(v).
To summarize, we can answer a query matchMout(v)
by making at most one call to each of the oracles
matchM (.), for M ∈ Λ(t), and at most Θ(k) calls to
the oracle matchMin(.). Each of these oracle calls take
at most Õk,γ(n

1+ϵt) time, as ϵt′ ≤ ϵt for all t′ ∈ [1, t].
Since

∣∣Λ(t)
∣∣ = k, the oracle matchMout(.) has a query

time of Õk,γ(k ·n1+ϵt) = Õk,γ(n
1+ϵt) = Õk,γ(n

1+ϵout),
where the last equality holds since ϵt ≤ ϵT = ϵout. This
concludes the proof.

Proof of Lemma V.18: We prove the lemma by induc-
tion on t.

Base case (t = 0):

We already have the oracle matchM(0)(.) with query
time Õk,γ(n

1+ϵ0), since ϵ0 = ϵin and M (0) = Min.
We set σ(t) ←⊥, stack(t) ← −1 and Λ(0) ← ∅. We
now claim that we already have the oracle alive0(.).
This is because a node v ∈ V is alive just before the
start of iteration 1 if and only if v ∈ VH . Furthermore,
given a query alive0(v), we can determine whether
v is in VH by checking the value of ℓ(v), setting u ←
mateM(0)(v), and then checking the value of ℓ(u) if
u ̸=⊥. Thus, answering a query to the oracle alive0(.)
takes Õk,γ(n

1+ϵ0) time. So, we can implement iteration
0 in O(1) time, and Lemma V.18 holds for t = 0.

Inductive case (t ≥ 1):

We assume that Lemma V.18 holds for all t′ ∈ [0, t−1],
and that we have access to the data structures constructed
during all these past iterations. We now focus on imple-
menting the current iteration t (see Section V-A1) under
adjacency-matrix query access to G. Let i = stack(t−
1). If i = k, then the algorithm would terminate after
iteration (t−1). Henceforth, we assume that i ∈ [−1, k−
1]. In the current iteration t, the template algorithm
wants to first compute a matching M (t) by calling the
subroutine LargeMatching(C2i+2∪A2i+3, δi+1). We
first show that we can efficiently query whether or not
a given node in V belongs to the set C2i+2 ∪ A2i+3.
Subsequently, we split up our implementation of iteration
t into two steps, as described below.

Claim V.20. Given any node v ∈ V , we can determine
if v ∈ C2i+2 in Õk,γ(n

1+ϵt−1) time.

Proof. We first check the value of ℓ(v) and call
alivet−1(v). Now, we consider the following cases.

(i) ℓ(v) ̸= 2i+ 2. Here, we return that v /∈ C2i+2.
(ii) ℓ(v) = 2i+ 2 and alivet−1(v) = NO. Here, we

also return that v /∈ C2i+2.
(iii) ℓ(v) = 2i+ 2, alivet−1(v) = YES, and i = −1.

Here, we return that v ∈ C2i+2.
(iv) ℓ(v) = 2i + 2, alivet−1(v) = YES and i ≥ 0.

Here, we first set uv ← mateMin(v), which

takes Õk,γ(n
1+ϵin) = Õk,γ(n

1+ϵt−1) time. Next,
we call match

M(λ(t−1)
i)(uv), which also takes at

most Õk,γ(n
1+ϵt−1) time. Finally, we return that

v ∈ C2i+2 iff match
M(λ(t−1)

i)(uv) ̸=⊥.

The correctness of the above procedure follows from the
definition of the set C2i+2. Furthermore, the preceding
discussion implies that this procedure overall takes at
most Õk,γ(n

1+ϵt−1) time.

Corollary V.21. Given any v ∈ V , we can determine if
v ∈ C2i+2 ∪A2i+3 in Õk,γ(n

1+ϵt−1) time.

Proof. We can determine if v ∈ A2i+3 by checking the
value of ℓ(v) and making a query alivet−1(v), which
takes Õk,γ(n

1+ϵt−1) time. The corollary now follows
from Claim V.20.

Step I: Constructing the oracle matchM(t)(.).
Armed with Corollary V.21, we mimic the call to
LargeMatching(C2i+2 ∪ A2i+3, δi+1) in the tem-
plate algorithm, by invoking Theorem IV.1 with A =
C2i+2 ∪ A2i+3, δin = δi+1, ϵ = 2 · ϵt−1 and tA =
Õk,γ(n

1+ϵt−1).10 If Theorem IV.1 returns ⊥, then we
set M (t) := ∅, and the trivial oracle matchM(t)(.)
has O(1) = Õk,γ(n

1+ϵt) query time. Otherwise, The-
orem IV.1 returns an oracle matchM (.) for a matching
M , and we set M (t) := M . By (6) and Theorem IV.1,
this oracle matchM(t)(.) has query time:

Õ

(
(tA + n) · n4ϵ

poly(δi+1)

)
=

Õk,γ

(
(tA + n) · n4ϵ

)
=

Õk,γ

(
n1+ϵt−1+4ϵ

)
=

Õk,γ

(
n1+ϵt

)
.

Finally, from (6) and Theorem IV.1, we infer that overall
Step I takes time:

Õ

(
(tA + n) · (n1−ϵ + n4ϵ)

poly(δi+1)

)
= Õk,γ

(
(tA + n) · (n1−ϵ + n4ϵ)

)
= Õk,γ((tA + n) · n1−ϵ)

= Õk,γ

(
n2+ϵt−1−ϵ

)
= Õk,γ

(
n2−ϵt−1

)
.

In the above derivation, the second equality holds since
ϵ = 2ϵt−1 ≤ 9T ϵin ≤ 1/5 (see (6) and Defini-
tion V.1), whereas the third equality holds since tA =
Õk,γ(n

1+ϵt−1).

10The reader should keep in mind that in the current section
(Section VI), we are using the symbol A to denote the set of alive
nodes across all the layers. This is different from the way the symbol
A is being used in the statement of Theorem IV.1, where it refers to
any arbitrary subset of nodes.

Step II: Determining σ(t),stack(t), Λ(t), and the
oracle alive(t)(.). We set σ(t) ← 2i + 2. We now
fork into one of the following three cases.

Case (a): In Step I, the invocation of Theorem IV.1
returned an oracle matchM (.) for a matching M , and
we set M (t) := M . This will be referred to as a
forwarding iteration at layer 2i + 2. In this case, we
set Λ(t) ← Λ(t−1) ∪ {t} and stack(t) ← stack(t −
1) + 1. Now, we observe that the set of alive nodes
does not change during such a forwarding iteration,
and so we already have the oracle alivet(.), be-
cause alivet(v) = alive(t−1)(v) for all v ∈ V .
Accordingly, the oracle alivet(.) has query time
Õk,γ(n

1+ϵt−1) = Õk,γ(n
1+ϵt). Case (b): In Step I, the

invocation of Theorem IV.1 returned ⊥, and i = −1.
Here, the algorithm terminates and returns FAILURE.
Case (c): In Step I, the invocation of Theorem IV.1
returned ⊥, and i ≥ 0. This will be referred to as a
backtracking iteration at layer 2i. In this case, we set
Λ(t) ← Λ(t−1) \ {λ(t−1)

i } and stack(t)← stack(t−
1) − 1. Now, we observe that due to iteration t, only
the nodes in C2i+2 and their matched neighbors under
Min (who are at layer 2i+1), change their status from
alive to dead. The status of every other node remains
unchanged. Thus, we can answer a query alivet(v),
in Õk,γ(n

1+ϵt) time, as follows.
We first check the value of ℓ(v), query alivet−1(v)

and matchMin(v), and determine whether or not v ∈
C2i+2 by invoking Claim V.20. Overall, this takes
Õk,γ(n

1+ϵt−1) + Õk,γ(n
1+ϵin) = Õk,γ(n

1+ϵt) time.
Next, we consider three cases.

(i) ℓ(v) /∈ {2i + 1, 2i + 2}. Here, we return
alivet(v) = alive(t−1)(v).

(ii) ℓ(v) = 2i + 2. Here, if v ∈ C2i+2 then we
return alivet(v) = NO; otherwise we return
alivet(v) = alivet−1(v).

(iii) ℓ(v) = 2i + 1. Here, we set uv ←
mateMin(v). Now, if uv ∈ C2i+2 then we re-
turn alivet(v) = NO; otherwise we return
alivet(v) = alivet−1(v).

To summarize, Step I takes Õk,γ(n
2−ϵt−1) time,

whereas Step II takes only O(k) = Ok,γ(1) time.
Furthermore, at the end of Step II we have all the desired
data structures for iteration t, and both the oracles
matchM(t)(.) and alivet(.) have a query time of at
most Õ(n1+ϵt). Finally, Theorem IV.1 ensures that whp,
the way we decide whether we are in case (a), case (b)
or case (c) is consistent with the choice made by the
template algorithm in the same scenario (see the discus-
sion on “implementing iteration t” in Section V-A1, and
how the subroutine LargeMatching(S, δ) is defined
in the second paragraph of Section V-A). This concludes
the proof of Lemma V.18.

VI. (1, ϵn)-APPROXIMATE MATCHING ORACLE

In this section, starting from an empty matching, we
repeatedly apply Theorem V.2 to obtain our main results
in the sublinear setting. They are summarized in the
theorem and the corollary below, which are restatements
of Theorem I.3.

Theorem VI.1. Let γ, ϵ′′ ∈ (0, 1) be any two small
constants, and let G be the input graph with n nodes
which we can access via adjacency-matrix queries. Then
for a sufficiently small constant ϵ′ ∈ (0, ϵ′′), there
exists an algorithm which: In Õγ(n

2−ϵ′) time, returns an
oracle matchM (.) for a (1, 3γn)-approximate matching
M in G, where the oracle matchM (.) has Õγ(n

1+ϵ′′)
query time.

Corollary VI.2. Given adjacency-matrix query access
to an n-node graph G and any constant γ ∈ (0, 1), in
Õγ(n

2−ϵ) time we can return a (1, 4γn)-approximation
to the value of µ(G), whp. Here, ϵ ∈ (0, 1) is a
sufficiently small constant depending on γ.

Proof. First, we apply Theorem VI.1, with ϵ = ϵ′, to get
the oracle matchM (.) in Õγ(n

2−ϵ) time. Note that M is
a (1, 3γn)-approximate matching in G = (V,E). Using
Chernoff bound, we now compute a (1, γn)-approximate
estimate µ̂ of |M | by sampling, uniformly at random, a
set S of Õγ(1) nodes from V and querying matchM (v)
for each node v ∈ S. This takes Õγ(n

1+ϵ′′) = Õγ(n
2−ϵ)

time. The last inequality holds since ϵ = ϵ′ and ϵ′′ are
chosen to be sufficiently small, so that 1+ϵ′′ ≤ 2−ϵ. It is
now easy to observe that µ̂ is a (1, 4γn)-approximation
to the value of µ(G).

Proof of Theorem VI.1
Algorithm 4 contains the relevant pseudocode. We

slightly abuse the notation in step 2-(b) of Algorithm 4,
when we write Z = (Mout, ϵout). Here, we essen-
tially mean that Augment(G,Min, i, γ2, ϵin) returns
the oracle matchMout(.) with query time Õγ(n

1+ϵout).
Similarly, in step 2-(b), when we write Min ← Mout,
this means that henceforth we will refer to the oracle
matchMout(.) as matchMin(.).

The idea behind Algorithm 4 is simple and intuitive.
We start by initializing Min ← ∅, k ← ⌈1/γ⌉ and ϵin ←
ϵ′, where ϵ′ ∈ (0, 1) is a sufficiently small constant.
At this point, we trivially have the oracle matchMin(.)
with query time Õγ(n

1+ϵin). The algorithm now runs in
rounds. In each round, it repeatedly tries to augment the
matching Min along small-length augmenting paths, by
successively calling Augment(G,Min, i, γ2, ϵin) for
i ∈ [0, k]. Whenever a call to Augment(·) succeeds,
the algorithm feeds its output into the next call to
Augment(·). The algorithm terminates whenever it en-
counters a round where every call to Augment(·) returns
FAILURE.

Algorithm 4 Near-optimal-matching-oracle (G =
(V,E), γ).
Choose ϵ′ ∈ (0, 1) to be a sufficiently small constant.
ϵin ← ϵ′, k ← ⌈1/γ⌉, Min ← ∅.
τ ← TRUE.
While τ = TRUE: // Start of a new round

1) τ ← FALSE.
2) For i = 0 to k:

a) Z ← Augment(G,Min, i, γ2, ϵin). // See
Theorem V.2

b) If Z ̸= FAILURE, then
• Suppose that Z = (Mout, ϵout).
• Min ←Mout, ϵin ← ϵout.
• τ ← TRUE.

M ←Min, ϵ′′ ← ϵout.
Return the oracle matchM (·), which has query time
Õγ(n

1+ϵ′′).

Claim VI.3. Algorithm 4 runs for Õγ(1) rounds, and
makes Õγ(1) calls to Augment(·).

Proof. Say that a given round of Algorithm 4 is suc-
cessful iff during that round: for some i ∈ [0, k], the call
to Augment(G,Min, i, γ2, ϵin) succeeded (see Theo-
rem V.2 and step 2-(a) of Algorithm 4). By Theorem V.2,
each time a call to Augment(G,Min, i, γ2, ϵin) suc-
ceeds, it increases the size of the matching Min (see
step 2-(b) of Algorithm 4) by at least Θγ(1) · n. Since
µ(G) ≤ n, such an event can occur at most Θγ(1)
times. Finally, each round of Algorithm 4 consists of
(k + 1) = Θγ(1) calls to Augment(·), and all but the
last round is successful. This implies the claim.

Claim VI.4. Suppose that at the start of a given round
of Algorithm 4, there exists a collection of at least
γ2 · n many node-disjoint length (2i + 1)-augmenting
paths w.r.t. Min in G, for some i ∈ [0, k]. Then whp,
Algorithm 4 does not terminate at the end of the given
round.

Proof. If there exists some j ∈ [0, i − 1] such that the
call to Augment(G,Min, j, γ2, ϵin) succeeds during
the given round, then it immediately implies the claim
(since we would have τ = TRUE when the round ends
and so the While loop in Algorithm 4 will run for at
least one more iteration).

For the rest of the proof assume that during the
given round, for all j ∈ [0, i − 1] the call to
Augment(G,Min, j, γ2, ϵin) returns FAILURE, and
hence the matching Min does not change during iter-
ations j = 0 to i − 1 of the For loop. Accordingly,
at the start of the concerned iteration i of the For
loop, the matching Min still admits a collection of
at least γ2 · n many node-disjoint length (2i + 1)-

augmenting paths in G. Thus, by Theorem V.2, the call
to Augment(G,Min, i, γ2, ϵinp) succeeds whp. So, it
follows that Algorithm 4 does not end after the given
round, whp.

Corollary VI.5. When Algorithm 4 terminates, whp
Min is a (1, 3γn)-approximate matching in G.

Proof. Let M∗ be a maximum matching in G. By
Claims VI.3 and VI.4, the following holds whp when
the algorithm terminates: For all i ∈ [0, k], there exists
at most γ2 ·n many length-(2i+1) augmenting paths in
Min ∪M∗.

As k = ⌈1/γ⌉, the augmenting paths in Min∪M∗ that
are of length ≤ 2k+1 contribute at most (k+1) ·γ2n ≤
2γn extra edges to M∗ compared to Min. On the other
hand, augmenting paths Min ∪M∗ that are of length
> (2k + 1) contribute at most (k+2)−(k+1)

k+1 · |Min| ≤
γ · |Min| ≤ γn extra edges to M∗ compared to Min.
Thus, we get: |M∗| ≤ |Min|+ 3γn.

Since Algorithm 4 makes only constantly many calls
to Augment(·), we can choose ϵ′ > 0 to be suffi-
ciently small so as to guarantee that 0 < ϵ′′ ≪ 1
(see Claim VI.3 and Theorem V.2). Further, during the
execution of Algorithm 4, each call to Augment(·)
takes Õγ(n

2−ϵin) = Õγ(n
2−ϵ′) time. Theorem VI.1 now

follows from Claim VI.3 and Corollary VI.5.

VII. DYNAMIC (1 + ϵ)-APPROXIMATE MATCHING
SIZE

We now prove our main result in the dynamic setting;
as summarized in the theorem below. Note that Theo-
rem VII.1 is a restatement of Theorem I.2.

Theorem VII.1. There is a dynamic (1+ϵ)-approximate
matching size algorithm with m0.5−Ωϵ(1) worst-case
update time, where m is the number of edges in the
dynamic input graph G = (V,E) with n nodes. The
algorithm is randomized and works against an adaptive
adversary whp. Moreover, the algorithm maintains an
oracle matchM (.) with query time Õ(m0.5+ϵ′) (for a
small constant ϵ′ > 0 which depends on ϵ), where M is
a (1 + ϵ)-approximate maximum matching of G.

To highlight the main idea behind the proof of Theo-
rem VII.1, first we recall that using techniques presented
in a series of papers [AKL19], [Beh23], [BDH20],
[BKSW23], [Kis22], we can assume: µ(G) = Ω(n)
throughout the sequence of updates. Accordingly, con-
sider the following dynamic matching size algorithm,
which runs in phases, where each phase lasts for ϵn
updates. At the start of a phase, we compute a (1 + ϵ)-
approximate estimate µ∗ of µ(G), by invoking Corol-
lary VI.2, in Õϵ(n

2−ϵ) time. Sine µ(G) = Ω(n), the
value of µ∗ continues to remain a (1+Θ(ϵ))-approximate

estimate of µ(G) throughout the duration of the phase.
This already leads to an amortized update time of:
Õϵ(n

2−ϵ)/(ϵn) = Õϵ(n
1−ϵ), which is sublinear in n.

We now show how to extend this idea to get an update
time that is sublinear in

√
m, and how to answer queries

in m0.5+ϵ′ time.

Proof of Theorem VII.1

For ease of exposition, we first focus on proving an
amortized update time bound. We start by recalling a
useful technique for sparsifying G, which allows us to
assume that µ(G) = Ω(n).

Contractions: Consider a function ϕ : V → Vϕ which
maps every node in V to some element in the set Vϕ. We
say that ϕ is a contraction of G iff |Vϕ| ≤ |V |. Define
the multiset of edges Eϕ := {(u, v) ∈ E : ϕ(u) ̸=
ϕ(v)}, and consider the multigraph Gϕ := (Vϕ, Eϕ).
From every matching in Gϕ, we can recover a matching
in G of same size. Hence, we have: µ(Gϕ) ≤ µ(G).

The next theorem follows immediately from past work
on the maximum matching problem across a range
of computational models [AKL19], [Beh23], [BDH20],
[BKSW23], [Kis22]. For the sake of completeness, how-
ever, we outline the proof of Lemma VII.2 in Ap-
pendix A.

Lemma VII.2. There exists a dynamic algorithm A
with Õ(1) worst-case update time, which maintains: a
set of K = Õ(1) contractions {ϕ1, . . . , ϕK} of G, the
corresponding graphs {GΦ1

, . . . , GΦK
}, and a subset

I ⊆ [1,K]. Throughout the sequence of updates (whp
against an adaptive adversary) the algorithm ensures
that: (i) |Vϕi

| = Θ
(

µ(G)
ϵ

)
for all i ∈ I , and (ii) there

is an index i∗ ∈ I such that (1− ϵ) ·µ(G) ≤ µ(Gϕi∗) ≤
µ(G).

Description of our dynamic algorithm: We maintain
a (2 + ϵ)-approximate estimate µ̂ of µ(G), in Õ(1)
worst-case update time, using an existing deterministic
dynamic matching algorithm as a subroutine [BCH17].
We also use the algorithm A, as in Theorem VII.2, as
a subroutine. Let ϵ0 ∈ (0, 1) be a sufficiently small
constant, depending on ϵ.

Our dynamic algorithm partitions the update sequence
into phases. We now explain how the algorithm works
during a given phase, which can be of two types.

Type-I Phase: At the start of a type-I phase, we have
µ̂ ≥ |E|0.5+ϵ0 . Let minit denote the value of |E| at the
start of the phase. Then the phase will last for the next
ϵ · (minit)

0.5+ϵ0 updates. At the start of the phase, we
call an existing static algorithm to compute a (1 + ϵ)-
approximate maximum matching M of G, which takes
Oϵ(minit) time [DP14]. Define µ∗ = |M |. Throughout

the phase, µ∗ continues to remain a (1+2ϵ)-approximate
estimate of µ(G), and we continue to output the same
value µ∗. This leads to an amortized update time of:

Oϵ(minit)

ϵ · (minit)0.5+ϵ0
= Oϵ

(
(minit)

0.5−ϵ0
)
= m0.5−Ωϵ(1).

The last equality holds since |E| = m = Θ(minit)
throughout the phase. We can ensure that throughout
the phase, the algorithm explicitly maintains M , which
remains a (1 + 2ϵ)-approximate maximum matching of
G. This gives us the matching oracle matchM (.), with
constant query time.

Type-II Phase: At the start of a type-II phase, we have
µ̂ < |E|0.5+ϵ0 . Let µ̂init and minit respectively denote
the value of µ̂ and |E| at the start of the phase. The phase
will last for the next ϵµ̂init updates. Hence, µ(G) can
change by at most a multiplicative (1 + ϵ) factor during
the phase.

At the start of the phase, for each i ∈ I , we find a
(1, 4γ)-approximate estimate µ∗

i of µ(Gϕi
). We obtain

µ∗
i by invoking Corollary VI.2 on Gϕi

, with γ = ϵ2.11

This takes time:

Õ
(
|Vϕi
|2−ϵ∗

)
= Õϵ

(
(µ(G))2−ϵ∗

)
= Õϵ

(
(µ̂init)

2−ϵ∗
)
,

where ϵ∗ ∈ (0, 1) is a sufficiently small constant de-
pending on ϵ. Since |I| = Õ(1), overall we spend
Õϵ

(
(µ̂init)

2−ϵ∗
)

time to compute µ∗
i for all i ∈ I .

Next, in |I| = Õ(1) time, we find an index j ∈ I which
maximizes the value µ∗

j . From Theorem VII.2, it follows
that:

(1− ϵ) · µ(G)−Θ(γ) ·Θ
(
µ(G)

ϵ

)
≤ µ∗

j ≤ µ(G). (7)

As γ = ϵ2, we infer that µ∗
j is a purely multiplicative

(1 + Θ(ϵ))-approximate estimate of µ(G). We continue
to output the same value µ∗

j throughout the phase, since
we have already observed that during the phase µ(G)
changes by at most a multiplicative (1 + ϵ) factor.

The phase lasts for ϵµ̂init updates. Accordingly, this
leads to an amortized update time of:

Õϵ

(
(µ̂init)

2−ϵ∗
)

ϵµ̂init
=

Õϵ

(
(µ̂init)

1−ϵ∗
)
=

Õϵ

(
(minit)

0.5+ϵ0−ϵ∗
)
=

m0.5−Ωϵ(1).

The last equality holds because we can ensure that ϵ0
is sufficiently small compared to ϵ∗ (which, in turn,

11It is trivial to verify that Corollary VI.2 holds even when applied
on a multigraph.

depends on ϵ), and since |E| = m = Θ(minit)
throughout the duration of the phase.

Because of (7), at the start of the phase we can con-
struct the oracle matchM (.) by invoking Theorem VI.1
on the graph Gϕj∗ . Over the ϵµ̂init edge updates of the
phase, M continues to remain a (1+O(ϵ))-approximate
maximum matching in G. Finally, to maintain the oracle
under edge insertions/deletions during the phase, we
simply ignore edge deletions and assume that if a vertex
is matched by a deleted edge of M then it is unmatched.

Improving the update time bound to worst-case:
Recall that µ̂init denotes the value of µ̂ at the beginning
of a phase. As observed after the initialization of a
phase the output maintained by the algorithm remains
(1+O(ϵ))-approximate for the next O(ϵ · µ̂init) updates.
Furthermore, the total computational work done by the
algorithm in both types of phases is upper bounded by
Õ(µ̂2−ϵ∗

init) for some small constant ϵ∗ ∈ (0, 1) depending
on the parameters of the algorithm. Let Gi stand for
the state of the input graph at the beginning of phase
i and let A(Gi) stand for the output of the previously
described algorithm initialized on Gi. Let µ̂init,i stand
for the value of µ̂init at the beginning of phase i. We
will now describe the behaviour of the worst-case update
time algorithm.

The improved algorithm similarly initializes it’s output
to be A(G1). Throughout the first three phases it does
not alter it’s output and during the first two phases it
doesn’t complete any background computation. During
phase i for i > 2 the algorithm calculates A(Gi−2)
distributing the work evenly throughout the phase. Note
that by phase i the algorithm has complete knowledge
of Gi−2. At the end of the same phase it switches it’s
output to be A(Gi−2).

As the algorithm only outputs a matching size estimate
and an oracle and not an actual matching this switch
is done in constant time. Computing A(Gi−2) takes
time proportional to Õ(µ̂2−ϵ∗

init,i−2) and is distributed over
ϵ · µ̂init,i updates. As during a phase µ(G) may change
by at most a 1 + O(ϵ) multiplicative factor we must
have that µ̂init,i = Θ(µ̂init,i−2). The amortized imple-
mentation amortizes the work of computing A(Gi−2)
over ϵ · µ̂init,i−2 updates. This implies that the worst-
case update time guarantee of the delayed rebuild based
algorithm matches the amortized versions update time
within a constant factor.

VIII. ACKNOWLEDGEMENTS

We would like to thanks David Wajc for introducing
us to the possibility that McGregor’s algorithm [McG05]
can be adapted in the dynamic setting.

REFERENCES

[ABKL23] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and
Huan Li. On regularity lemma and barriers in streaming
and dynamic matching. In STOC, 2023.

[ACC+18] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein,
and David Wajc. Dynamic matching: Reducing in-
tegral algorithms to approximately-maximal fractional
algorithms. In Proceedings of the 45th International
Colloquium on Automata, Languages and Programming
(ICALP), pages 79:1–79:16, 2018.

[AKL19] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The
stochastic matching problem with (very) few queries.
ACM Trans. Economics and Comput., 7(3):16:1–16:19,
2019.

[ARVX12] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning
Xie. Space-efficient local computation algorithms. In
Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pages 1132–1139.
SIAM, 2012.

[ARW17] Amir Abboud, Aviad Rubinstein, and Ryan Williams.
Distributed pcp theorems for hardness of approximation
in p. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 25–
36. IEEE, 2017.

[BCH17] Sayan Bhattacharya, Deeparnab Chakrabarty, and
Monika Henzinger. Deterministic fully dynamic ap-
proximate vertex cover and fractional matching in O(1)
amortized update time. In Proceedings of the 19th
Conference on Integer Programming and Combinato-
rial Optimization (IPCO), pages 86–98, 2017.

[BDH20] Soheil Behnezhad, Mahsa Derakhshan, and Moham-
madTaghi Hajiaghayi. Stochastic matching with few
queries: (1-ϵ) approximation. In Proccedings of the
52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 1111–1124. ACM, 2020.

[Beh22] Soheil Behnezhad. Time-optimal sublinear algorithms
for matching and vertex cover. In 2021 IEEE 62nd An-
nual Symposium on Foundations of Computer Science
(FOCS), pages 873–884. IEEE, 2022.

[Beh23] Soheil Behnezhad. Dynamic algorithms for maximum
matching size. In Proceedings of the 34th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), page
To appear in, 2023.

[BFH19] Aaron Bernstein, Sebastian Forster, and Monika Hen-
zinger. A deamortization approach for dynamic spanner
and dynamic maximal matching. In Proceedings of
the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1899–1918, 2019.

[BFS12] Guy E Blelloch, Jeremy T Fineman, and Julian Shun.
Greedy sequential maximal independent set and match-
ing are parallel on average. In Proceedings of the
twenty-fourth annual ACM symposium on Parallelism
in algorithms and architectures, pages 308–317, 2012.

[BGS11] Surender Baswana, Manoj Gupta, and Sandeep Sen.
Fully dynamic maximal matching in O(logn) update
time. In Proceedings of the 52nd Symposium on
Foundations of Computer Science (FOCS), pages 383–
392, 2011.

[BGS20] Aaron Bernstein, Maximilian Probst Gutenberg, and
Thatchaphol Saranurak. Deterministic decremental
reachability, scc, and shortest paths via directed ex-
panders and congestion balancing. In Proceedings
of the 61st Symposium on Foundations of Computer
Science (FOCS), pages 1123–1134, 2020.

[BHN16] Sayan Bhattacharya, Monika Henzinger, and Danupon
Nanongkai. New deterministic approximation algo-
rithms for fully dynamic matching. In Proceedings
of the 48th Annual ACM Symposium on Theory of
Computing (STOC), pages 398–411, 2016.

[BK19] Sayan Bhattacharya and Janardhan Kulkarni. Determin-
istically maintaining a (2 + ϵ)-approximate minimum

vertex cover in O(1/ϵ2) amortized update time. In
Proceedings of the 30th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1872–1885,
2019.

[BK21] Sayan Bhattacharya and Peter Kiss. Deterministic
rounding of dynamic fractional matchings. In Proceed-
ings of the 48th International Colloquium on Automata,
Languages and Programming (ICALP), 2021.

[BK22] Soheil Behnezhad and Sanjeev Khanna. New trade-offs
for fully dynamic matching via hierarchical edcs. In
Proceedings of the 33rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 3529–3566,
2022.

[BKS23] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Sara-
nurak. Sublinear algorithms for (1.5 + ϵ)-approximate
matching. In STOC, 2023.

[BKSW23] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranu-
rak, and David Wajc. Dynamic matching with better-
than-2 approximation in polylogarithmic update time.
In Proceedings of the 2023 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 100–128.
SIAM, 2023.

[BLM20] Soheil Behnezhad, Jakub Łącki, and Vahab Mirrokni.
Fully dynamic matching: Beating 2-approximation in
∆ϵ update time. In Proceedings of the 31st An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2492–2508, 2020.

[BNS19] Jan van den Brand, Danupon Nanongkai, and
Thatchaphol Saranurak. Dynamic matrix inverse:
Improved algorithms and matching conditional lower
bounds. In Proceedings of the 60th Symposium on
Foundations of Computer Science (FOCS), pages 456–
480, 2019.

[BRR23] Soheil Behnezhad, Mohammad Roghani, and Aviad
Rubinstein. Sublinear time algorithms and complexity
of approximate maximum matching. In STOC, 2023.

[BRRS23] Soheil Behnezhad, Mohammad Roghani, Aviad Rubin-
stein, and Amin Saberi. Beating greedy matching in
sublinear time. arXiv preprint arXiv:2206.13057, 2023.
To appear at SODA’23.

[BS15] Aaron Bernstein and Cliff Stein. Fully dynamic match-
ing in bipartite graphs. In International Colloquium on
Automata, Languages, and Programming, pages 167–
179. Springer, 2015.

[BS16] Aaron Bernstein and Cliff Stein. Faster fully dy-
namic matchings with small approximation ratios. In
Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pages 692–711.
SIAM, 2016.

[CKK20] Yu Chen, Sampath Kannan, and Sanjeev Khanna. Sub-
linear algorithms and lower bounds for metric tsp
cost estimation. In 47th International Colloquium
on Automata, Languages, and Programming (ICALP
2020). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020.

[CS18] Moses Charikar and Shay Solomon. Fully dynamic
almost-maximal matching: Breaking the polynomial
barrier for worst-case time bounds. In Proceedings
of the 45th International Colloquium on Automata,
Languages and Programming (ICALP), pages 33:1–
33:14, 2018.

[DP14] Ran Duan and Seth Pettie. Linear-time approximation
for maximum weight matching. Journal of the ACM
(JACM), 61(1):1, 2014.

[Edm65a] Jack Edmonds. Maximum matching and a polyhedron
with 0, 1-vertices. Journal of research of the National
Bureau of Standards B, 69(125-130):55–56, 1965.

[Edm65b] Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of mathematics, 17(3):449–467, 1965.

[Gha16] Mohsen Ghaffari. An improved distributed algorithm
for maximal independent set. In Proceedings of the

twenty-seventh annual ACM-SIAM symposium on Dis-
crete algorithms, pages 270–277. SIAM, 2016.

[Gha22] Mohsen Ghaffari. Local computation of maximal in-
dependent set. arXiv preprint arXiv:2210.01104, 2022.
Announced at FOCS’22.

[GLS+19] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski,
Chris Schwiegelshohn, and Shay Solomon. (1 + ϵ)-
approximate incremental matching in constant deter-
ministic amortized time. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1886–1898. SIAM, 2019.

[GP13] Manoj Gupta and Richard Peng. Fully dynamic
(1 + ϵ)-approximate matchings. In Proceedings of the
54th Symposium on Foundations of Computer Science
(FOCS), pages 548–557, 2013.

[GRS14] Manoj Gupta, Venkatesh Raman, and SP Suresh. Main-
taining approximate maximum matching in an incre-
mental bipartite graph in polylogarithmic update time.
In Conference on Foundation of Software Technol-
ogy and Theoretical Computer Science (FSTTCS), vol-
ume 29, pages 227–239, 2014.

[GSSU22] Fabrizio Grandoni, Chris Schwiegelshohn, Shay
Solomon, and Amitai Uzrad. Maintaining an edcs in
general graphs: Simpler, density-sensitive and with
worst-case time bounds. Proceedings of the 5th
Symposium on Simplicity in Algorithms (SOSA), pages
12–23, 2022.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying dis-
tributed algorithms with ramifications in massively par-
allel computation and centralized local computation.
In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1636–1653.
SIAM, 2019.

[JJST22] Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin
Tian. Regularized box-simplex games and dynamic
decremental bipartite matching. In International Col-
loquium on Automata, Languages, and Programming
(ICALP), 2022.

[Kis22] Peter Kiss. Improving update times of dynamic match-
ing algorithms from amortized to worst case. Proceed-
ings of the 13th Innovations in Theoretical Computer
Science Conference (ITCS), pages 94:1–94:21, 2022.

[KMM12] Christian Konrad, Frédéric Magniez, and Claire Math-
ieu. Maximum matching in semi-streaming with few
passes. In Proceedings of the 15th International Con-
ference on Approximation Algorithms for Combinato-
rial Optimization Problems (APPROX), pages 231–242,
2012.

[KMNFT20] Michael Kapralov, Slobodan Mitrović, Ashkan
Norouzi-Fard, and Jakab Tardos. Space efficient
approximation to maximum matching size from
uniform edge samples. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1753–1772. SIAM, 2020.

[Kuh55] Harold W Kuhn. The hungarian method for the as-
signment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955.

[LRV22] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan.
Properly learning monotone functions via local cor-
rection. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pages 75–
86. IEEE, 2022.

[LRY15] Reut Levi, Ronitt Rubinfeld, and Anak Yodpinya-
nee. Local computation algorithms for graphs of non-
constant degrees. In Proceedings of the 27th ACM sym-
posium on Parallelism in Algorithms and Architectures,
pages 59–61, 2015.

[McG05] Andrew McGregor. Finding graph matchings in data
streams. In Proceedings of the 8th International Con-
ference on Approximation Algorithms for Combinato-

rial Optimization Problems (APPROX), pages 170–181.
Singer, 2005.

[MR09] Sharon Marko and Dana Ron. Approximating the
distance to properties in bounded-degree and gen-
eral sparse graphs. ACM Transactions on Algorithms
(TALG), 5(2):1–28, 2009.

[NO08] Huy N Nguyen and Krzysztof Onak. Constant-time
approximation algorithms via local improvements. In
2008 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 327–336. IEEE, 2008.

[OR10] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a
large matching and a small vertex cover. In Proceedings
of the 42nd Annual ACM Symposium on Theory of
Computing (STOC), pages 457–464, 2010.

[ORRR12] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt
Rubinfeld. A near-optimal sublinear-time algorithm
for approximating the minimum vertex cover size. In
Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pages 1123–1131.
SIAM, 2012.

[PGVWW20] Maximilian Probst Gutenberg, Virginia
Vassilevska Williams, and Nicole Wein. New
algorithms and hardness for incremental single-source
shortest paths in directed graphs. In Proceedings
of the 52nd Annual ACM Symposium on Theory of
Computing (STOC), pages 153–166, 2020.

[PR07] Michal Parnas and Dana Ron. Approximating the mini-
mum vertex cover in sublinear time and a connection to
distributed algorithms. Theoretical Computer Science,
381(1-3):183–196, 2007.

[RSW22] Mohammad Roghani, Amin Saberi, and David Wajc.
Beating the folklore algorithm for dynamic matching.
In Proceedings of the 13th Innovations in Theoretical
Computer Science Conference (ITCS), pages 111:1–
111:23, 2022.

[RTVX11] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning
Xie. Fast local computation algorithms. arXiv preprint
arXiv:1104.1377, 2011.

[RV16] Omer Reingold and Shai Vardi. New techniques and
tighter bounds for local computation algorithms. Jour-
nal of Computer and System Sciences, 82(7):1180–
1200, 2016.

[San07] Piotr Sankowski. Faster dynamic matchings and vertex
connectivity. In Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 118–126, 2007.

[Sol16] Shay Solomon. Fully dynamic maximal matching in
constant update time. In Proceedings of the 57th Sym-
posium on Foundations of Computer Science (FOCS),
pages 325–334, 2016.

[Waj20] David Wajc. Rounding dynamic matchings against an
adaptive adversary. In Proceedings of the 52nd Annual
ACM Symposium on Theory of Computing (STOC),
pages 194–207, 2020.

[YYI09] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An
improved constant-time approximation algorithm for
maximum˜ matchings. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pages
225–234, 2009.

[YYI12] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito.
Improved constant-time approximation algorithms for
maximum matchings and other optimization problems.
SIAM Journal on Computing (SICOMP), 41(4):1074–
1093, 2012.

APPENDIX

In this section, we prove Lemma IV.3.

Preliminaries on Randomized Greedy Matching. A
greedy maximal matching in G with respect to an edge

permutation π, denoted by M = GMM(G, π) is a
maximal matching obtained by scanning through edges
with ordering defined by π, and for each edge e, include
the edge e into the matching if both of its end point
are not matched. The matching oracle matchM (v) of
Lemma IV.3 simply returns VO(v) where the vertex
oracle VO and the edge oracle EO are defined in [Beh22]
follows.

Algorithm 5 VO(v, π)

1) Let e1 = (v, u1), . . . , ek = (v, uk) be the edges
incident to v where π(e1) < · · · < π(ek).

2) for i = 1, . . . , k: if EO(ei, ui, π) = TRUE, then
return (v, ui).

3) return ⊥

Algorithm 6 EO(e, u, π)

1) if EO(e, u, π) is computed, then return the com-
puted answer.

2) Let e1 = (u,w1), . . . , ek = (u,wk) be the edges
incident to u where π(ei) < π(e) and π(e1) <
· · · < π(ek).

3) for i = 1, . . . , k: if EO(ei, wi, π) = TRUE, then
return FALSE.

4) return TRUE.

Let T (v, π) denote the number of recursive calls
EO(·, ·, π) over the course of answering VO(v, π). The
main theorem of [Beh22] is as follows.

Lemma A.1 (Theorem 3.5 of [Beh22]). Let v be a
random vertex and π be a random permutation over
edges, independent from v.

Ev,π[T (v, π)] = α ≜ O(d log n).

Given access to adjacency list, we can execute
VO(v, π) using O(T (v, π)∆) time straightforwardly. But
Behnezhad [Beh22] also showed that we can think
of T (v, π) as the running time, given access to the
adjacency lists:

Lemma A.2 (Lemma 4.1 of [Beh22]). Let v be an
arbitrary vertex in a graph G = (V,E). There is an
algorithm that draws a random permutation π over E,
and determines whether v is matched in GMM(G, π)
in time Õ(T (v, π) + 1) having query access to the
adjacency lists. The algorithm succeeds w.h.p.

Basic Properties of Randomized Greedy Matching.
Recall that d is the given parameter where d ≥ d. We
set the threshold ℓ = Θ(d log(n)/ϵ) such that ℓ ≥ α · 8ϵ .
We have by Markov’s inequality that

Pr
v,π

[T (v, π) > ℓ] ≤ ϵ/8. (8)

For any edge permutation π, let f(π) =
Prv∼V [T (v, π) > ℓ] measure the fraction of vertices
such that randomized greedy matching w.r.t. π makes
many recursive calls exceeding the threshold ℓ. We say
that π ∈ Π is great if f(π) ≤ ϵ/2. Observe that

Pr
π
[π is great] ≥ 1/4 (9)

Otherwise, Prv,π[T (v, π) > ℓ] ≥ Prv,π[T (v, π) > ℓ |
π is not great] Prπ[π is not great] > (ϵ/2) · (1/4) which
contradicts Equation (8). We also say that π ∈ Π is good
if f(π) ≤ ϵ, otherwise we say that it is bad.

Algorithm 7 TESTPERM(π)

1) Sample r = 1000 log(n)/ϵ vertices independently:
v1, . . . , vr.

2) Let X = |i | {T (vi, π) > ℓ}| and f̃ = X/r.
3) If f̃ ≤ 3

4ϵ, return “yes”. Otherwise, return “no”.

A simple procedure in Algorithm 7 accepts a great
permutation and rejects a bad permutation with high
probability.

Lemma A.3. If π is great, then TESTPERM(π) re-
turns “yes” with high probability. If π is bad, then
TESTPERM(π) returns “no” with high probability.

Proof. If π is great but TESTPERM(π) returns “no”, then
we have f(π) ≤ ϵ/2 but f̃ > 3ϵ/4. Since E[X] = ϵ·f(π)
and X = ϵ · f̃ , we have

X − E[X] > rϵ/4.

Applying Chernoff bound Proposition III.2 with t =
rϵ/4 and µ = rϵ/2 ≥ E[X], we have

Pr[X − E[X] > rϵ/4]

≤ exp(− (rϵ/4)2

3µ
)

≤ exp(− rϵ
24

)

≤ 1/n10.

If π is bad but TESTPERM(π) returns “yes”, then
we have f(π) ≥ ϵ but f̃ < 3ϵ/4. This means that
X < 3

4E[X]. Applying the standard Chernoff bound,
i.e.,Pr[X < (1−δ)E[X]] ≤ exp(− δ2E[X]

2) for δ ∈ [0, 1],
we have

Pr[X <
3

4
E[X]] ≤

exp(−
(14)

2E[X]

2
) ≤

exp(− rϵ
32

) ≤

1/n10.

Now, we are ready to prove Lemma IV.3.

Preprocessing. The preprocessing algorithm is as
follows. First, independently sample O(log n) ran-
dom edge-permutations π1, . . . , πO(logn). For any i, if
TESTPERM(πi) returns “yes”, then set π∗ ← πi.

We claim that π∗ is good w.h.p. Recall that each πi
is great with probability at least 1/4 by Equation (9).
So w.h.p. one of the permutation πi is great and so, by
Lemma A.3, TESTPERM(πi) must return “yes” w.h.p.
Moreover, also by Lemma A.3, the returned permutation
π∗is not bad w.h.p. That is, π∗ is good.

Query. Given a vertex v, we simply execute VO(v, π∗)
except that we return ⊥ if it makes more than ℓ recursive
calls. If VO(v, π∗) = (v, v′) returns a matched edge, to
make sure that the answers on v and v′ are consistent,
we also call VO(v′, π∗). If it turns out that VO(v′, π∗)
makes more than ℓ recursive calls, then we return ⊥.
Otherwise, VO(v′, π∗) must also return (v, v′) and then
we return (v, v′).

By construction, we obtain a matching oracle whose
answers are consistent w.r.t. some fixed matching M . If
ℓ =∞, then M would be a normal randomized greedy
maximal matching of size |M | ≥ µ(G)/2. This might
not be true in reality as we set ℓ = Θ(d log(n)/ϵ). But
since π∗ is good, i.e., f(π∗) = Prv∼V [T (v, π) > ℓ] ≤ ϵ.
So

|M | ≥ µ(G)/2− ϵn.

This completes the correctness of Lemma IV.3. It re-
mains to analyze the running time.

Time analysis. Step Item 1 of TESTPERM(·) takes
O(r) time as we just sample r vertices in G. Step
Item 2 takes time r · Õ(ℓ) time where the factor Õ(ℓ)
is by Lemma A.2. Since r = Θ(log(n)/ϵ) and ℓ =
Θ(d log(n)/ϵ), each TESTPERM takes Õ(d/ϵ2). We call
TESTPERM O(log n) times. So the total preprocessing
time is Õ(d/ϵ2). For the query time, we run VO and
makes O(ℓ) recursive calls. Therefore, the total query
time is Õ(ℓ) = Õ(d/ϵ) time by Lemma A.2.

This algorithm description is analogous to the algo-
rithm in [Kis22] which extends previous algorithms from
[AKL19], [Beh23], [BDH20], [BKSW23] to function
against an adaptive adversary. Assume we are given
G = (V,E). Using a Õ(1) worst-case update time
deterministic algorithm from literature we maintain an
α = O(1)-approximate estimate µ̂ of µ(G). We make
Õ(1) guesses of µ(G), 1, α, α2, . . . , αk. For µ(G) guess
αi we will define T = ln(n)·512

ϵ2 = Õ(1) contractions
of V ϕij : j ∈ [T] and contracted graphs Gϕi

j
. If

µ̂ ∈ [αi, αi+1) we define µ(G) guess αi to be the
accurate guess at the given time. If guess αi is currently
the accurate guess then the algorithm will maintain that
i) for all j ∈ [T] we have that |Vϕi

j
| = Θ(µ(G)

ϵ) and ii)

there exists some j ∈ [T] such that (1 − ϵ) · µ(G) ≤
µ(Gϕi

j
) ≤ µ(G).

We will now define how ϕij is generated. We define a
set of vertices |Vϕi

j
| = 8·αi+1

ϵ and map vertices of V to
Vϕi

j
uniformly at random. Note that property i) holds as

for the accurate guess we must have that µ(G) = Θ(αi).
From the definition of vertex contractions for any con-
tracted graph Gϕi

j
we must have that µ(Gϕi

j
) ≤ µ(G).

Therefore, it remains to show that if αi is the currently
accurate guess of µ(G) then there exists some j ∈ [T]
such that (1− ϵ) · µ(G) ≤ µ(Gϕi

j
).

Let’s assume that αi is the currently accurate guess
of µ(G). Note that this implies that µ(G)/α ≤ αi ≤
µ(G) · α. Let S be an arbitrary subset of V of size 2 ·
µ(G) representing the possible endpoints of a maximum
matching. There can be

(
n

2µ(G)

)
≤ n2·µ(G) ≤ exp(ln(n)·

2µ(G)) such chooses of S.Fix some j ∈ [T]. For all v
vertices of Vϕi

j
define the event Xv

j to be the indicator
variable of the event ϕ−1(v) ∩ S ̸= ∅ and define X̄j =∑

v∈V
ϕi
j

Xv
j .

Claim A.4. For a fixed j events Xv
j are negatively

associated random variables.

The proof of Claim A.4 appears in the appendix of
[Kis22]. Let β = αi+1/µ(G) ∈ [1, α]. We first lower
bound the expectation of X̂j :

E[Xj
i] = 1− Pr[S ∩ V j

i = ∅] (10)

= 1−

(
1− 1

|Vϕi
j
|

)2µ(G)

(11)

= 1−
(
1− ϵ

8 · µ(G) · β

)2µ(G)

(12)

≥ 1− exp

(
− ϵ

4 · β

)
(13)

≥ ϵ · (1− ϵ/(8 · β))
4 · β

(14)

Inequality 14 holds for small values of ϵ. Therefore,

E[X̄j] ≥ |Vϕj
i
|·ϵ · (1− ϵ/(8 · β))

4 · β
≥ 2µ(G)·(1−ϵ/(8·β))

.

Now we apply Chernoff’s bound on the sum of
negatively associated random variables X̄j to get that:

Pr

(
X̄j ≤ 2µ(G) · (1− ϵ

4 · β
)

)
≤ Pr

(
X̄j ≤ E[X̄j] · (1−

ϵ

8

)
≤ exp

(
−
E[X̄j] ·

(
ϵ
8

)2
2

)

≤ exp

(
−µ(G) · ϵ

2

64

)
Recall that we construct T = ln(n)·512

ϵ2 contracted Gϕj
i

for µ(G) guess αi.

Pr

(
min
j∈[T]

X̄j ≤ 2 · µ(G) · (1− ϵ

4
)

)
≤
(
1− exp

(
−µ(G) · ϵ

2

64

))T

≤ exp(−16 ln(n) · µ(G))

Further recall that S may be selected at most
exp(2 ln(n)·µ(G)) different ways. Hence, taking a union
bound over the possible choices of S we can say that
regardless how S was chosen there is a vertex contraction
ϕij such that X̄j ≥ 2 ·µ(G) ·(1−ϵ/4). Fix any maximum
matching M∗ of G. By this argument we know that with
high probability there must be some j ∈ [T] such that
ϕij(V [M∗]) ≥ 2µ(G) · (1 − ϵ/4) (here V [M∗] stands
for the set of endpoints of M∗). This implies that there
might be at most µ(G) · ϵ/2 vertices of V [M∗] which
are mapped not mapped to a unique vertex of Vϕi

j
by ϕij

amongst other vertices of V [M∗]. In turn this implies
that µ(G)·(1−ϵ) edges of M∗ have both their endpoints
mapped to unique vertices of Vϕi

j
by ϕij amongst other

endpoints of µ(G) hence µ(Gϕj
i
) ≥ µ(G) · (1− ϵ).

Observe that this argument holds regardless of the
choice of M∗ the statement remains true as G undergoes
updates even when the updates are made by an adaptive
adversary. The contractions ϕij are fixed at initialization.
The task of the algorithm is to maintain maximum
matching size estimate ˆµ(G) and hence maintain the
accurate guess of µ(G) and to update the contracted
graphs. Each contracted graph may undergoes a single
update per update to G and there are Õ(1) contracted
graphs. All parts included the worst-case update time of
the algorithm is Õ(1).

Consider the following folklore algorithm for
explicitly maintaining a matching: recompute a
(1 + ϵ)-approximate matching M from scratch in
O(mϵ−1 log ϵ−1) time [DP14] every after ϵm/2n edge
updates. Before recomputation, if any edge of M is
deleted from the graph, we delete it from M .

The amortized update time is clearly O(mϵ−1 log ϵ−1)
ϵm/2n =

O(nϵ−2 log ϵ−1) = O(n). Also, we have |M | ≥
µ(G)/(1+ϵ)−ϵm/2n where the term ϵm/2n is because
we might decrease the size of M by ϵm/2n before we
recompute a new (1 + ϵ)-approximate matching. But
since µ(G) ≥ m/2n, we have

|M | ≥ µ(G)/(1 + ϵ)− ϵµ(G) ≥ µ(G)/(1 +O(ϵ))

implying that M is always a (1 + O(ϵ))-approximate
matching.

To see why µ(G) ≥ m/2n, consider the process
where we repeatedly choose an edge e and delete both
endpoints of e from the graph until no edge is left.
Since the set of deleted edges forms a matching, we
may repeat at most µ(G) times. Also, each deletion
removes at most 2∆ edges from the graph. Therefore,
m ≤ µ(G) · 2∆ ≤ µ(G) · 2n.

Model Adjacency List Adjacency List Adjacency Matrix
Guarantee Approx Time Approx Time Approx Time

[PR07] (2, ϵn) ∆O(log(∆/ϵ))

[NO08] (2, ϵn) 2O(∆)/ϵ2

(1, ϵn) 2∆
O(1/ϵ)

[YYI09] (2, ϵn) ∆4/ϵ2

(1, ϵn) ∆O(1/ϵ2)

[ORRR12],
[CKK20]

(2, ϵn) (d+ 1)∆/ϵ2 (2, ϵn) n
√
n/ϵ2

[Beh22] (2, ϵn) (d+ 1)/ϵ2 2 + ϵ n+∆/ϵ2 (2, ϵn) n/ϵ3

[BRRS23] (2− 1
2O(1/γ) , o(n)) (d+ 1)∆γ 2− 1

2O(1/γ) n+∆1+γ (2− 1
2O(1/γ) , o(n)) n1+γ

[BKS23],
[BRR23]

(1.5, ϵn) nd1−Ω(ϵ2) 1.5 + ϵ n∆1−Ω(ϵ2) (1.5, ϵn) n2−Ω(ϵ2)

[BRR23]
bipartite
graph only

(1.5− Ω(1), o(n)) n2−Ω(1) 1.5− Ω(1) n2−Ω(1) (1.5− Ω(1), o(n)) n2−Ω(1)

Our (1, ϵn) n2−Ωϵ(1)

TABLE I
SUMMARY OF SUBLINEAR-TIME ALGORITHMS FOR ESTIMATING THE SIZE OF MAXIMUM MATCHING. WE OMIT polylog(n/ϵ) FACTORS. ∆

AND d DENOTE THE MAXIMUM AND AVERAGE DEGREE OF THE GRAPH, RESPECTIVELY.

Reference Approximation Query time

[PR07], [MR09] 2 + ϵ ∆O(log(∆/ϵ))

[RTVX11], [ARVX12] 2 ∆O(∆ log∆)

[RV16] 2 2O(∆)

[LRY15]
2 ∆O(log2 ∆)

2 + ϵ ∆4

1 + ϵ ∆O(1/ϵ2)

[Gha16] 2 ∆O(log∆)

[GU19] 2 ∆O(log log∆)

[Gha22] 2 ∆O(1)

[KMNFT20] O(1) in expectation ∆

Our (1, ϵn) n2−Ωϵ(1)

TABLE II
SUMMARY OF LOCAL COMPUTATION ALGORITHMS FOR MATCHING ORACLES. WE OMIT polylog(n/ϵ) FACTORS. ALL 2-APPROXIMATION

ALGORITHMS ACTUALLY COMPUTE A MAXIMAL INDEPENDENT SET. ∆ AND d DENOTE THE MAXIMUM AND AVERAGE DEGREE OF THE
GRAPH, RESPECTIVELY.

	NEW_WRAP_Coversheet_Accepted_AAM_13_07_2018 - Copy
	dcs-260923-wrap--paper

